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ABSTRACT

Continuing our program to understand the geometry and dynamics of
floating four-bar linkages, we explore the relative equilibria of an assembly
that admits symmetric configurations. We show that a symmetric config-
uration is a relative equilibrium. As we vary certain kinematic parameters
which preserve the symmetry, a symmetric relative equilibrium is bifurcated.
The type of bifurcations can be either supercritical or subcritical pitchfork.
The stability of the relative equilibria at symmetric configurations is in-
vestigated. Elementary techniques of singularity theory are applied in the
analysis of the bifurcations. This investigation illustrates the possible rich
dynamics in multibody systems with closed loop structure even with small

number of degrees of freedom.
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Program under grants AFOSR-87-OO73 and AFOSR-90-0105 and by the National Science
foundation’s Engineering Research Centers Program: NSFD CDR 8803012, and also by the
Army Research Office through the Mathematical Sciences Institute of Cornell University.
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1. Introduction

An interesting problem in the mechanics of multibody systems is to find relative
equilibria. Investigations along this line in several examples, e.g. planar two- or three-
body system, two-body system with ball-in-socket joints, etc., have been reported in |2,
6,9-11). Increasing sophistication in spacecraft configurations (e.g. the NASA Flight
Telerobotic Servicer, modular space station designs, etc.) has underscored the need for
a better understanding of the dynamics of multibody systems. Systems incorporating
kinematic loops, as does the four-bar linkage, are particularly challenging. The ideas of the
present paper might be used for instancé in bringing a mod:ular articulated space structure
into a nonstandard (e.g. nonsymmetric) equilibrium shépe by slowly altering a bifurcation
- parameter, say, through mass shifting. It is our intention in this paper to illustrate the
possibilities for such a control strategy by focusing on the bifurcation phenomena in one
example, the four-bar linkaée. In [172] we studied the geometry and dynamics of floating
four-bar linkages which may have a general structure. Relevant notations, terminology,
and key concepts are recalled in Appendix A. In this paper, we study qualitatively the
relative equilibria of a floating four-bar linkage with symmetric configurations.

Referring to the notations in Appendix A, a floating four-bar linkage is of symmetric

type if, with proper labels of the bars,
my =1mgs

doi =dos, dio=d30, diz=d3z2, di =ds;. (1.1)

In other words it can form symmetric shapes as shown in Fig. 1.1. It is not hard to verify

that any four-bar linkage which satisfies (1.1) has two such symmetric configurations.

In this paper we shall show how the relative equilibria of this system vary with
respect to certain parameters: the positiéms of body-centers-of-mass. We shall show that
the two symmetric configurations are relative equilibria for any choice of the parameters.
By varying the offset of the center of mass of the 0-th bar, the symmetric relative equilibria
are bifurcated generically. The bifurcations are of pitchfork type. For different choices of

position of body-center-of-mass of the 2-nd bar, this pitchfork bifurcation can be either
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Fig. 1.1 A Symmetric Configuration

supercritical or subcritical. To avoid tedious calculations, we will consider a simplified case
which also exhibits these bifurcation phenomena. In fact, the verification of the assertions
in this paper have been carried out both numerically and symbolically. For symbolic
analysis, MACSYMA! was employed.

As in [12], the theorem of Smale has been used to determine relative equilibria of
the system. The singularity theory (3,5] has been applied in the analysis of the bifurcation

problem.

2. Relative equilibria and bifurcations

We recall Smale’s theorem about relative equilibria {8]. Consider a hamiltonian

system (M,w,Xpy) where M is a 2n-dimensional smooth manifold, w is a symplectic

I MACSYMA is a trademark of Symbolics Inc., Cambridge, Mass.
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form on M, Xy is hamiltonian vector field determined by
txyw=dH

for some smooth hamiltonian function H on M. Here, we consider natural mechanical
systems, so M = T*Q, the cotangent bundle of the configuration space @, of the system.
Let G be a Lie group acting on @ on the left,

$:GxQ—Q

(9,9) = 34(9) 2 ®(g,9),

and hence on T*@Q by cofangent lift. The following definition of a relative equilibrium is
standard [1]. 7
Definition 2.1: Let F)‘(" be the flow of Xy on M. Then 2z, € M is arelative equilibrium

if F%, (z¢) is a stationary motion, i.e. there exists £ € G such that

F}.{H(ze) = exp(t€)(z.),

where G is the Lie algebra of the group G.
Remark: A physical interpretation of relative equilibria is that if the dynamics of a system
is rotationally invariant, the dynamical orbit of a relative equilibrium appears to be a fixed
point for an observer in a suitable uniformly rotating coordinate system.

Given a simple mechanical system with symmetry, (@, K,V,G), where K is a G-
invariant Riemannian metric on Q, V:Q — R is a G-invariant potential function, we
have the following very useful theorem.

Theorem : [8] For simple mechanical system: with symmetry (@, K,V,G), define

Ve:Q = R:gm V(o) - 5K(ala).£o(0)) @

for each ¢ € G, where £g is infinitesimal genefétor of the action corresponding to £. Then
2e = (ge,pe) € T“Q is a relative equilibrium if and only if ¢, is a critical point of V¢ for
some £ € G and p. = K*(¢o(q.))-

Remark:

(1). The function Vg is called augmented potential function.
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(2). It can be shown that, for a given € € G, V¢ has the symmetry,

Ve(24(2)) = Ve()

for all ¢ € G¢ := {g € G|Ad,{ = €}. If G is abelian, G¢ = G. If the action & is free
and proper, then the quotient space, @/Gg, is a smooth manifold and 7¢ : Q@ — Q/G¢ is
& submersion. Thus V¢ induces a function V¢ on Q/G¢ such that

Vf:ffeO’n‘f.

(3). If G is abelian, it,can_Be shown that if m¢(g.) is a local minimizer of Vg,
the corresponding z, = (ge,p.) is a stable relative equilibrium, and if 7¢(ge) is a local
maximizer of VE , the corresponding z, = (ge,pe) is an unstable relative equilibriuxﬁ. We
will refer to @Q/G¢ as the shape space, and the points m¢(g.) as the relative equilibrium
shapes.

(4). One can also use the amended potential in the sense of Smale to study the
relative equilibria (see [7,8]). 1
Now we return to the problem of relative equilibria of floating four-bar linkages which
admit symmetric configurations. In [12] we have shown that a floating four-bar linkage is
a simple mechanical system with symmetry with group S'. Moreover, setting V to be
zero, locally, VE is of the form
Ve(810) = —eTJe (2.2)

where e = (111 1)7, the elements of the 4 x 4 matrix J are functions of a relative angle,
say, 010 = 6; — 6p. Although it is not easy to find analytically the critical points of (2.2),
for a particular example one can easily do this numerically since Vf is only a one variable
function. Unlike the planar two body problem [g] for which the dimension of the shape
space is also one, here the function 17'5 has many parameters, even under the conditions
of (1.1). A natural questioﬁ is to determine how these parameters affect the relative

equilibria, e.g. their numbers and location on shape space, etc.. Of course, it is difficult to

answer this question for completely arbitrary choice of parameters. However, by leaving one

particular parameter free such that the assembly preserves its symmetric configurations and
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freezing all other parameters, one still can observe a nontrivial bifurcation phenomenon.
To illustrate this we consider an example.

Example: Let us choose the parameters as follows.
my=1 my=1 my=1 m3=1;

dos = (_2$ A0)’ dOl = (-Za AO)a - dio = (-—1.5,—1), d;; = (1.5,—1),
d21 = (——1.5, -—1.4), d23 = (15, -—14), d32 = ("—1.5? _1), d30 - (15, -—l)

Now the assembly has non-Grashbf structure. We know that 610 cannot be used as a
Aglobal coordinate system since for each 810 there are two points in configuration space,
‘which has been shown to be a torus [4]. One pbint cérresponds to leading form. Another
one corresponds to lagging form (see Ai)pendix A). Nevertheless, one can see that 69
taken together with the sign of sin(f,3) can separate these forms. For this reason, we
define a new variable as follows. Assume the 0-th bar is the longest bar. Let a > 0 be
the maximum attainable interior angle between 0-th bar and 1-st bar. Then § is defined
as follows:

a

fo=r=e Z - if sin(623) < 0 (lagging form).

5 { —21-";’5—"—"-’25, if sin(623) > 0 (leading form);

It is clear that if we identify —m and 7 to be the same point on S?, @ parameterizes S.

Now, using Ve, for any Ao one can find relative equilibria (6;0). for both leading
form and lagging form, and hence one can find 6. As Mo changes from —oo to +oo,
one can plot a diagram with A¢ and 6 as the parameter. Fig. 2.1 shows the result, in
which solid dots represent stable relative equilibria, small circles represent unstable relative
equilibria.

From this example one can make the following empirical observations:

(1). There are two unbounded symmetric branches on the diagram and and
these branches are bifurcated at some points. The bifurcations appear to be pitchfork
bifurcations. 7

(2). Almost any value of 6 can be relative equilibrium for a particular Ag. In other

words the bifurcation diagram is connected globally.
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Fig. 2.1 Bifurcation diagram: an example

(3). The number of relative equilibria can be two, six and ten.

The first observation, which relates to the local bifurcation problem, is what we will

concentrate on in the rest of this paper. The others will be discussed in section 4.

3. The recognition problem in bifurcation theory

Our problem raised in the previous section can be reduced to showing how the

solutions z of a single scalar equation

g9(z,A) =0 (3.1)

change with the parameter A; or, more precisely, what type of bifurcation occurs with

parameter A. Without loss of generality, one can assume ¢(0,0) = 0. Moreover, we

assume ¢ : R x R — R is smooth. This is one of the standard local (static) bifurcation

problems with one state variable, called the recognition problem. As with many bifurcation

problems, this problem can be solved successfully through singularity theory, in which the
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related issue is called finite determinacy. Let z = (z,)). Near origin, the function g can

be written as

o= Y S0+ Y au(), (3.2

laj<k+1 la|=k+1
for some smooth functions a, defined in a neighborhood of the origin. Here we used the

conventions with multi-indices:

lal= a1+ a2, al=(a;)l(az),

(5)7 = ()" ()

za -— xal Aaz a2

A key question is what terms in Eq.(3.2j can be ignored such that the values of coefficients
of remaining terms can be used to determine the qualitati;ve behavior of the original
equation (3.1), for example, the variation in number of solutions. Singularity theory solves
this problem by finding a suitable change of coordinates such that function ¢ is equivalent
to a standard model h, called normal form. A precise definition is given as follows (see
[5])-

Definition 3.1: Two smooth mappings ¢g,h : R x R — R defined near the origin are
equivalent if there exist a local diffeomorphism of R?, (z,)) — (X(z,X),A())) at the

origin and a nonzero function S(z, ), such that
g9(z,A) = S(z, Mh(X(z, ), A(N)) (3.3)

where X;(0,0) > 0 and A'(0) > 0. If A=)\, g and h are strongly equivalent.

From this definition we see that, since S(z, A) is nonzero, the solution of g(z,\) =0
and h(X,A) = 0 are the same in the sense of diffeomorphism. From this point of view, by
means of singularity theory one can show why and what the high-order terms in Eq.(3.2)
do not effect the qualitative behavior of equation g(z,A) = 0. It should be not‘iced that
although this method does not tell us how to derive an appropriate normal form h, for
most physical problems, such as the one considered in this paper, it is not hard to pick up
some of the candidates from a large number of known simple polynomials of z and A, or
the rﬁodel of normal forms which have standard bifurcation diagrams. This is in essence

the spirit of application of singularity theory to a physical problem.
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Without considering detailed issues of singularity theory which are applicable to
bifurcation problems, we directly give the following result which will be used in the next
section. For details see 5], chapter 2. First we need the concept of germs.

Definition 3.2: Two smooth functions defined near the origin are equivalent as germs if
there is some neighborhood of the origin on which they coincide. Let &; 5 denote the set
of equivalence classes of such functions. The elements in £; ) are called germs.

Lemma: A germ ¢ € £; ) is strongly equivalent to

ex* + 6z (3.4)
for k> 2 if and only if at 2= XA =0
0 04y 0 ‘
9= 5-9= —(az) =539 =0 (3.85)a
and
9 o 9
€= sgn(b;) g, 6—sgna—x—a—>\g. (3.5)b

Remark: When k = 3 the normal form (3.4) provides a pitchfork bifurcation. From this
lemma, so is g if (3.5) holds. It is easy to show that if €6 > 0, the pitchfork bifurcation is
subcritical; if €6 < 0, the pitchfork bifurcation is supercritical.
4. Bifurcations at symmetric configuration

As we have seen, the function VE of a four-bar linkage i1s a multiple parameter
function. One might expect very complicated bifurcation features with respect to these
parameters. Here, instead of considering a general structure, we study a special assembly
which has symmetric configuration as defined in section 2. To avoid too many tedious

calculations we particularly choose the parameters of the assembly as follows.
mog=1n; =mMg =m3=1;

dos = (—=do,Xo), do1 = (do,Xe), dio=(-1,0), dy2=(1,0) (4.1)

d21 - (—d2,A2)a d23 = (d2a )‘Z)w d32 = (—170)’ d30 = (1v0)
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where dy and d, are fixed and dy > d; > 0, Xo,A2 € R. Moreover, we consider the

non-Grashof case only, 1.e.
do+do+2— 2(maz{dg, dy, 1} -+ min{do,dz, 1}) < 0. (42)

Figure 4.1 shows two symmetric configurations for above choice of parameters. We

will see that although only two parameters Ao and A, are left to be free, the bifurcation

features with respect to these paraméters are still informative.

Fig. 4.1 Symmetric Configurations

The function Vf now has the following form:
L1 '
/5 = Z(2>\251n(932) + d2COS(932) - 608(931) + doCOS(ego)

+2X251n(621) + dacos(b21) — dodacos(80) + docos(810))
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A . .
+-—4£(2sm(930) + Azc05(029) — 2sin(6y0)) + C (4.3)

where C is a constant determined by d,;, m; and the moments of inertia of the bodies,

Ii. For i, =0, 1, 2, 3, 6;; = 6; — 6; and 6; satisfy the constraint equations
do + cos(610) + d2c08(820) + cos(630) = 0 (4.4)a

sin(em) + dzsin(ozo) + 81:717,(7930) = 0. (44)1)

In the following, at symmetric cbnﬁguration, >the variables will be denoted by
superscript “s” (say, 63,), the formulas will be deﬁoted by “|ls” (say, f(610)]s). As
shown in the example in section 2, the bifurcation diagram of felative equilibria will be
parameterized by (6, A¢). |
Theorem 4.1: For a floating four-bar linkage with parameters shown in Eq.(4.1), the
bifurcation diagram of relative equilibria has the following properties:

(1). There are two infinite branches in the diagram, one corresponds to 65, in the
leading form, another one corresponds to 67 in the lagging form. We refer to these as the
symmetric branches.

(2). There ezists a constant A} such that no bifurcation occurs on the symmetric
branch of leading form sf A; = A ; and, no bifurcation occurs on the symmetric branch of
lagging form if A, = —=A3.

(8). On the symmetric branch of leading (lagging) form, if Ay < A3 (—A}), there
exists a constant ¢y (c3) such that the relative equilibria are stable for Ao < c¢; (c3), unstable
for Mo > ¢1 (c3), bifurcated for A\g = ¢; (c3); one the other hand, if Ay > X} (=A}), there
exists a constant cy (cq) such that the relative equilibria are unstable for Ay < ¢z (c4),
stable for Xo > ¢z (cq), bifurcated for Ao = ¢ (¢4).

(4). Assume A, # £)3. Let '

46,02 + e hote
+ 17\ 212 3
_ 45
¢ agn €4 tes (4.5)

and

6% = sgn(8; 22£6;) | (4.6)
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where €; and 6; are constants which are determined by dy and dz. Then, the bifurcation
on the symmetric branch of leading form will be supercritical pitchfork if et 6+ < 0. It will
be subcritical pitchfork if €t6% > 0. Similarly, the bifurcation on the symmetric branch of
lagging form will be supercritical pitchfork if €6~ < 0. It will be subcritical pitchfork if
e 6 >0.
Remark:

(a). Based on the techniques of bifurcation theory shown in section 3, the proof of the
above assertions is very elementary. However, two aspects have to be considered before the
bifurcation theory is applied. ' First, one has to determine the ezistence 6f the bifurcation
and where the branch:es are bifurcated. Second, as one can see, it is not éasy to write
down explicitly-the function VE as a function of one variable. Therefore, when applying
the techniques of bifurcation theory which involves as high as fourth order derivatives of
the function V¢, one should consider the constraint equations simultaneously.

(b). Although the proof of the above assertions is elementary, it requires a large
effort in calculations. We used MACSYMA to handle these computations (see listings at
the end of the paper). In the following, we only give a sketch of the proof.

Proof of theorem 4.1: Note that the function Vf can be written as a function of relative
angles 010, 020, and 839, which are related through constraint equations (4.4). From (4.4),

we can consider (locally) 620 and 630 as the functions of 8yo. Again, from (4.4) one can

generate the quantities %’}ml , and %—;;3‘1[, for any positive integer :. Moreover, from Fig.
10 10

4.1 it is easy to see that at symmetric configuration

20 =T and 610 = —030. (4.7)
With above considerations, one can have closed form expressions for %}QI, and %%QQI .
- 10 10
For instance,
%1, = 2 cos(6,)
88,018 T dzcos 10/> (4 8)
80§Q| — 1 :
‘88,01 T
and
| 860, = 222°0%0) (4, — cos(62,))
867, 18 = dZain(6;,)\"? 10/7s (4.9)

Bial, = Zeonak(dy — 2cos(61))
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and so on.
To prove assertion (1) in the statement of the theorem, one needs to show that at

symmetric configuration, the equation
Ve

s =0
8010

does not depend on Ag. Concentrating on the term involving Ay in f/f and applying
Eq.(4.7) and (4.8), one can show that the first derivative of that term with respect to
6,0 at symmetric conﬁgurat:ion 1s zero. Since the rest of the terms of g;e%l, = 0 are still
functions of 6], one can see two infinite symmetric branches in the bifurcation diagram
for two different 6. Assertion (1) is thus proved.

Applying (4.8) and (4.9), one can show that the second derivative of the function Ve

at symmetric configuration has the form

3V 6211 dy — 2c0s3(82,) cos?(62,)
5, T o, T ey T g 410

where II is the summation of the terms not involving A¢ in 175. It is obvious that when

& 2dycos*(63,) — d3
T cos?(63,)sin(85,)’

Ay = A (4.11)
-‘Z—z%l, will not depend on Ag. One can also show that with Eq.(4.11), %;%—ls # 0
under assumptions (4.1) and (4.2). This means that bifurcation may not occur on either
symmetric branch of leading form or symmetric branch of lagging form. Note that on
these different forms cos(6],) has the same value, sin(65,) has the same absolute value
but different sign. (See Fig. 4.1) Thus, assertion (2) is proved.

As we have known earlier, the stability of relative equilibria depends on the sign of
%}?ﬂil,. From Eq.(4.10) we see that %%?jl, is a linear function of A¢. Using the Aj in
(4.11), the proof of (3) is straight forward.

To prove assertion (4), we apply the bifurcation theory mentioned in section (3). Let

A} denote ¢; in assertion (3) for some suitable i. One can show that at (61¢,2§),

’ 2"‘/ ":/' 277
6V5=025=6335= 0% Vg -0 (4'12)
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Moreover

MV,

+e;02 + e2 X246
610, Ag) =
69?0 ( 100 0) €4 /\2:i:€5 (413)
and R

3V, .

5@-2——5;0(9:0, AL) = 61 A6, (4.14)
10

for some constants ¢; and é;, where “+” corresponds to leading form, “—~" corresponds

to lagging form. See Appendix B for expressions of ¢; and §;. Since (4.13) and (4.14)
are not zero in general, applying fhe lemma in section 3, we can say g}:‘; is strohgly
equivalent to the normal form of pitchfork bifurcation. In addition, the type of pitchfork
bifurcation depends on the sign ofﬁ(4.13) and (4.14). The assertion (4) is proved.
| i
Remark: (i). The condition of A\; # A} guarantees that (4.14) and the denpminatér of
(4.13) are not zero. (i1). In general the bifurcation changes from a supercritical one to
subcritical one at the roots of numerator of (4.13).
Example: To see how A, changes the bifurcation diagram with parameter Ay we give
following example. We will concentrate on the symmetric branch with respect to leading
form. Let dy = 2 and d; = 1. Then ¢ and § have the following form

o N3+ 6.938); — 3.623
=T 873 — 0.051 A,

6% = sgn(1.025 — 0.028),)

Then
¢ T 1 41, otherwise.

Note that the region for A, 1is an approximation. So we can say that, when X\, €
(—7.426, 0.488), the pitchfork bifurcation is supercritical. Otherwise, it is subcritical.
Fig 4.2 shows this result.

Before closing this section, we would like to make some further remarks regarding
this paper. _
(1). Although our discussion only concentrated on a structure of non-Grashof type,

a version of theorem 4.1 also holds for the Grashof case.
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Fig. 4.2 Bifurcation Diagrams
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(i1). Up to now we have understood the phenomenon of bifurcation on the symmetric
branches. The global analysis of the bifurcations is in progress. This involves massive
symbolic computations. However, as shown in the example in section 2 and other
simulations, one can numerically determine a global bifurcation diagram. A large body
of such numerical simulations show that the branches in the bifurcation diagram are
connected. In other words, for any point in shape space, there is a finite )¢ for which
that shape determines a relative equilibrium. This is consistent with the linearity of f/e in
Ao Thisrpropérty provides a possibility to control the attitude of a space structure with a
closed kinematic chain by simply changing the position of the center of mass of some‘ bars.

(ii1). Our results in this paper rely on some ideal conditions, for instancé, the
symmetry conditions (1.1), and the absence of external and internal disturbances. One
may ask what will happen when these conditions are violated. The é.ﬁswer to this question
will be related to the notion of universal unfolding in bifurcation theory. We will explore
this in a further paper. Numerical results show that it is possible to use the unfolding

property to control the shape of the structure near the bifurcation point.

5. Conclusion

We have investigated the local and global structure of bifurcations of relative
equilibria in a model multibody problem - the floating four-bar linkage. The observed
slobal connectivity of the bifurcation diagram suggests that it might be possible to
change the attitude/orientation/shape of such a system by merely tuning an appropriate
parameter, e.g. a mass offset. The precise dynamics associated to such a control strategy
would, of course, depend on the role of internal dissipation and consequent change of a
stable center into a focus. Further work on the phase portrait and domains of attraction
is under way and we hope to report on these matters in a future paper.

Since we employed the symbol manipulation language MACSYMA for our local
analysis, we have included a listing of the relevant MACSYMA program at the end of

this paper, to assist the reviewer.
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Appendix A
A.1. Notations and Geometric Constraints
The structure of a closed floating four-bar linkage is represented in Fig. A.1. The

bars are labeled clockwise from 0 to 3 as shown. We define the following quantities.

Fig. A.1 The general structure of four-bar linkage

d;; the vector of hinge point which connects i-th bar with j-th bar
relative to a body-fixed frame with origin at the center of mass

of the i1-th body;

R(6;) the rotation through angle 6; giving the orientation of z-th bar

relative to the inertial space;

a0 = (5 e )

R(6;;) joint rotation between i-th, and j-th bar,

R(6i;) = R(6; — 6;) = R(6;)R(—6;);

18



l; the distance between the joints on i-th bar, (or "length” of :-th
bar); all I; > 0; l; = ||di i1 — dii-1]l;

With above notations, the loop constraint can be represented as

Z R(6;)(di 41 — dii-1) =0,

1=0

‘where we adopt the convention that d; 4 = d.-,o- and dy; =do,;.
A.2. The Configuration Space

Let
s = length of shortest bar

1 = length of longest bar

p,q = lengths of intermediate bars.
Assume that the observer is at the center of mass of the system. Then we have following
results. (See [12])
If

s+l<p+g

the configuration space is isomorphic to two separated tori. Under this condition the

assembly is called Grashof type. If
s+1l>p+gq

the configuration space is isomorphic to one torus. Under this condition the assembly is

called non-Grashof type. If
st+l=p+gq

the configuration space is not a smooth manifold..

Let I, = s and define the orientation of bars as shown in Fig A.1. Then we say that
the structure is in leading form if sin(6; — 6;) < 0, in lagging form if sin(6; — 6;) > 0.
From this definition, we see that for the Grashof case, each component of the configuration
space corresponds to a distinct form. Two such forms cannot be deformed into each other.

But for the non-Grashof case, they can be continuously deformed on the torus.
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Appendix B

The expression of ¢; and §; in the theorem 4.1 are of the following form.

€ = —12d§(d2 - do)z(dg - dodg - dgdz —2ds + dg - 4do);

€2 = 48d3dy((d2 — do)? — 1)(d5 — d5)V/4 — (do — d2);
€3 = 48d2d%(d; — do)*(d3 — dod} — djda — 4dz + df — 2do);
e = d3((dy — do)? — 4)(d2 — do)* /2 = (do — d2)?;
es = 2d3((dz — do)? — 4)((dz — do)® — 4d2).
Let '
A = 4d3\/4 — (do — d2)*.

Then

1
6 = _-A-(d2 — do)?\/4 — (do — d2)?;

5, = _%d2(dg + 3dod? — 3d2dy + 4d; + d3).
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The MACSYMA Program

to Determine Local Bifurcations



/******************k*********ﬁ***i**********/

/* BIFURCATIONS OF RELATIVE EQUILIBRIA */

/**t****t*t***k**********t**t***t******kt***/
apply(writefile, [bifur out]):

depends ({th_20, th_30], th_10);

/****ttt****************ﬁ*********************/

/* CONSTRAINT EQUATIONS */
/**t*t*w*****u*********t**********************/

fl: d_O+cos(th_10)+4d_2*cos(th_20)+cos(th_30)$%

f2: sin(th_lO)+d_2*sin(th_20)+sin(th_30)$

/*ﬁ*t*ﬁ***********************ﬁ*********i*****/
/* THE FIRST DERIVATIVE OF CONSTRAINT */
/* EQUATIONS W.R.T. th_lO - ~/

/*%*******************************************/:

dlfl:diff(f1, th 10, 1)$
dif2:diff(£2, th 10, 1)$

/*****w********g******************************/'

/* THE EVALUATION OF */
/* THE FIRST DERIVATIVE OF CONSTRAINT *x/
/* EQUATIONS W.R.T. th 10 AT */
/* SYMMETRIC CONFIGURATIONS *x/

/*****i**ﬁ************************************/
difls:ev(d1fl, diff(th_20, th_10, 1)=dls_2,
diff(th_30, th_10, 1)=dls_3,

th_20=%pi, th_30=-ths 10, th_10=ths_10)$
d1f2s:ev (d1£2, diff(th_20, th_10, 1)=dls_2,
diff(th_30, th_10, 1)=dls_3,

th_20=%pi, th_30=-ths_10, th_10=ths_10)$

/*********************************************/

/* SOLVE Dth _20/Dth_10 AND Dth_30/Dth_10  */

/**********************i**********************/

solve ([dlfls, dif2s]), ([dls_2, dls 3]}),globalsolve:true;

/t**********t*********************************/

/*  THE SECOND DERIVATIVE OF CONSTRAINT */
/*  EQUATIONS W.R.T. th 10 */
/t********************************************/
d2f£1:diff (d1£1, th 10, 1)$
d2£2:diff (d1£2, th 10, 1)$

/t*ﬁ*i*****k****i**************ﬁ******t*******/

/*  THE EVALUATION OF */
/*  THE SECOND DERIVATIVE OF CONSTRAINT */
/*  EQUATIONS W.R.T. th_10 AT */
/*  SYMMETRIC CONFIGURATIONS */

/1*****&******************i**t****************/

d2flis:ev(d2fl, diff(th 20, th_10, 1)=dls 2, diff(th_30,
diff(th_20, th_10, 2)=d2s_2, diff(th_30,

th 20=%pi, th_30=-ths_ 10, th_10=ths_10)$
d2f2s:ev(d2£2, diff(th_20, th 10, 1)=dls 2, diff(th_30,
diff (th_20, th_ 10, 2)=d2s_2, diff(th 30,

th _20=%pi, th _30=-ths 10, th_10=ths 10)$

/ﬁtttﬁ*t*t*t*******t***t**i************t*******i**/

/* SOLVE DDth_20/bDth_10 AND DDth_30/DDth_ 10

/ﬁ**ﬁﬁ*i******k******ﬁﬁ*ﬁ**************t**********/

solve ([d2fls, d2f2s), [d2s_2, d2s_3}),glcobalsclve:true;

d25_2:factor(d2s_2);
d25w3:factor(d23_3);

th_10,
th_10,

th_10,
th_10,

1)=dls_3,
2)=d2s_3,

1)=dls_3,
2)=d2s_3,



/*&*******t*********t****i*****************t**/

/* THE THIRD DERIVATIVE OF CONSTRAINT */
/* EQUATIONS W.R.T. th 10 */
/*****ﬁ**k***tﬁ*********;****t***ﬂ***t*****t**/
d3£1:diff (d2£1, th_10, 1)$
d3£2:diff (d2£2, th_10, 1)$§

/*ﬂ**tﬂ**i**t******************t**************/

/* THE EVALUATION OF */
/* THE THIRD DERIVATIVE OF CONSTRAINT */
/* EQUATIONS W.R.T. th 10 AT */
/* SYMMETRIC CONFIGURATIONS */

/*ﬁt**ﬂ*it*t*************t******************t*/

d3fls:ev(d3fl, diff(th_ 20,
diff (th_20,

~diff{th_20,
th 20=%pi, th_
d3f2s:ev(d3f2, diff(th_20,
diff(th_20,

diff(th_20,
th 20=%pi, th_

th_10, 1)=dls_2, diff(th_30,
th_10, 2)=d2s 2, diff(th 30,
th_10, 3)=d3s_2, diff(th_30,
30=-ths_10, th_10=ths 10)$

“th_10, 1)=dls_2, diff(th_30,
th_10, 2)=d2s_2, diff(th_30,
th_10, 3)=d3s 2, diff(th_30,
30=-ths_10, th_10=ths_10)$

/**i**ﬁ************f**************************t*******/

/* SOLVE DDDth_20/DDDth_10 AND DDDth_30/DDDth_10  */
/*t*************t*************f****************:******/

solve ([d3fls, d3f2s],
d3s_2:factor(d3s_2});
d3s_3:factor(d3s_3);

[d3s_.

2, d3s_3]),globalsolve:true;

/*********************************************/

/* THE FOURTH DERIVATIVE OF CONSTRAINT */
/* EQUATIONS W.R.T. th_ 10 */
JrRA AR A K RRARRAR KRR RKRARRARKR R KR AR AR AR AR R AR Kk [
d4rfl:diff (d3£f1, th_10, 1)§
d4f2:diff(d3£f2, th_ 10, 1)$

/tﬁ*t*****************************************/

/* THE EVALUATION OF */
/* THE FOURTH DERIVATIVE OF CONSTRAINT */
/* EQUATIONS W.R.T. th 10 AT */
/* SYMMETRIC CONFIGURATIONS */

/**********************************t**********/

d4fls:ev(d4fl, diff(th_20,
diff (th_20,
diff (th 20,
diff (th_20,
th 20=%pi, th_
ddf2s:ev(d4f2, diff(th_20,
diff(th_20,
dlff(th_ZO
diff (th_20,

th_20=%pi, th_

th_10,
th_10,

1)=dls_2, diff(th_30,
2)=d2s 2, diff(th_30,
th 10, 3)=d3s_2, diff(th 30,
th_ 10, 4)=d4s_. "2, dlff(th 30,
30--ths 10, th 10=ths 10)$
“th 10, 1)-dls_2 d1ff(th_30
th_lO 2)=d2s 2, diff(th_30,
th_10, 3)=d3s_2, diff(th_30,
th 10, 4)=d4s_2, diff(th_30,
30=-ths_10, th_10=ths_10)$

th_10,

th 10,

th_10,

th 10,
th_10,
th_10,

th_10,
th_10,
th_10,
th_10,

th_10,
th 10,
th_10,
th_10,

/*mi*twti*tt******ttt***************t**************ti**t**/

/* SOLVE DDDDth_20/DDDDth

10 AND DDDDth_30/DDDDth_10

*/

/tmﬁ*tﬁt*****ﬁ*i*tttﬁttt**:*tt***t**********************k*/

solve ([d4fls, d4f2s],
d4s_Z2:factor(dés_z);
d4s_3:factor(dds_3):

[dds_

2, dés_3)),globalsolve:true;

/*****i*il****************t***t**/

/* DERIVE V FUNCTION

*/

/i**t*i******k*******iit***tt****/

d 03:matrix([~d 0], [mu_0})¥%

d_Ol:matrix([d_O],[mu_O])S
d 10:matrix({-1],[0})%

l)=dls_ 3,
2)=d2s 3,
3)=d3s_3,

1)=dis_3,
2)=d2s_3,
3)=d3s_3,

l)y=dls 3,
2)=d2s 3,
3)=d3s_3,
4)=dds 3,

1)=dls 3,
2)=d2s 3,
3)=d3s_3,
4)=dds_3,



d 12:matrix({1],([0]))$

d 21:matrix({-d_2], [mu_2})$

d 23:matrix((d_2], [mu_2])$

d_32:matrix([-1),({0])$

d 30:matrix([1],[0])$

r 10:matrix([cos(th_10), -sin(th_10)],

[sin(th_10), cos(th 10)1)$

j_01:-(3/8)*(transpose(d_01).(r_10.d_10))+
(1/8)*(transpose(d_03).(r_lO.d_lZ))S

j_0l:ratsimp(3_01, sin(th_10), cos(th_10))$

r 20:matrix({cos(th_20), =-sin(th_20)],
[sin(th_20), cos(th_20)))$
j_02:-{1/8) * (transpose(d_01).(r_20.d_23))-
(1/8)* (transpose(d_03).(r_20.d 21))$
j_02:ratsimp(j_02, sin(th_20), cos(th_20))$

r O3:matrix({cos(th_03), -sin(th 03)],
[sin(th_03), cos(th_03)])$§
j_03:-(3/8) * (transpose (d_30).(r_03.d 03))+
(1/8)*(transpose(d_32).(r_03.d_01))$'
j_03:ratsimp(3j_03, sin(th_03), cos(th _03))$:

r 21:matrix({cos(th_21), -sin(th 21)],
{sin(th_21), cos(th_21)})%$
j_12:-(3/8)* (transpose(d_12).(xr_21.d _21))+
(1/8)* (transpose (d_10) . (r_21.d_23))$
j_l2:ratsimp(j_12, sin(th_21), cos(th _21))$

r 31l:matrix([cos(th_31), =-sin(th_31)],
{sin(th_31), cos(th_31)])%
j_13:-(1/8)* (transpose(d 12).(r_31.d4_30))-
(1/8) * (transpose (d_10) . (r_31.d_32))$
j_13:ratsimp(j_13, sin(th 31), cos(th_31))$

r_32:matrix([cos(th_32), -sin(th_32)],
{sin(th_32), cos(th 32)])$
j_23:-(3/8)*(transpose(d 23).(r_32.d_32))+
(1/8) * (transpose (d_21).(x_32.d_30))$
j_23:ratsimp(3j_23, sin(th _32), cos(th_32))$

viratsimp(j_01+3j_02+3j_03+3j_12+35_13+3j_23, mu 0)$
viev(v, th 03 = -th 30, th 32 = th 30 - th 20,
th 31 = th 30 - th_10, th 21 = th 20 - th_10);

/*k*t**tt***********************************/

/* THE FIRST DERIVATIVE OF V FUCTION */
/* W.R.T. th 10 ) */

/*******'ﬁ*****'k********'k********************’

dlv:diff (v, th_10, 1)$

/*ttﬁt*ttitt**********************i*t*******/

/* THE FIRST DERIVATIVE OF V FUCTION */
/* W.R.T. th 10 AT */
/* SYMMETRIC CONFIGURATION */

/*****tt*********************t***tﬁ*********/

dlvs:ev(dlv, diff(th_20, th_10, 1l)=dls_2, diff(th_30, th_10, 1)=dls_ 3,
th_20=%pi, th_30=-ths_10, th_10=ths_10)$

dlvs:trigexpand(dlvs);

/t*ﬁ****tt*****i*ﬁ**************t*******t***/

/* THE SECOND DERIVATIVE OF V FUCTION */
/* W.R.T. th 10 */

/*'k***ﬁtk*'k**************t***********Q***i**/

d2v:idiff(dlv, th 10, 1)$



/**ﬁ***ﬂ**t******t**************************/

/* THE SECOND DERIVATIVE OF V FUCTION */
/* W.R.T. th 10 AT */
/* SYMMETRIC CONFIGURATION */

/*****ih***************t*******************t/
d2vs:ev(d2v, diff(th_20, th 10, 1)=dls_2, diff(th 30, th 10, 1)=dls_3,
dlff(th 20, th 10, 2)=d2s_ "2, diff(th 30, th_10, 2)=d2s_3,
th 20=%pi, th_30-~ths_10 th_lO-ths_10)$
d2vs:trigexpand (d2vs);

/******ﬁ************************************/

/* THE THIRD DERIVATIVE OF V FUCTION */
/* WM.R.T. th 10 */

/***it*m***t******************k*************/

d3v:diff(d2v, th_10, 1)$

/***k***************************************/

/* THE THIRD DERIVATIVE OF V FUCTION */
/* W.R.T. th 10 AT : */
/* SYMMETRIC CONFIGURATION */

/********************t**********************/
d3vs:ev(d3v, diff(th_20, th_10, 1)=dls_2, diff(th_30, th 10, I)=dls_ 3,
diff (th_20, th 10, 2)=d2s_ 2 diff (th 30, th 10, 2)-d23 3,
diff(th_20, th 10, 3)=d3s_ "2, d1ff(th 30, th 10, 3)=d3s 3,
th _20=%pi, th_ 30--ths 10, th 10=ths 10)$
d3vs:trigexpand (d3vs);

/*******************************************/

/* THE FOURTH DERIVATIVE OF V FUCTION */
/* W.R.T. th 10 */

/*******************************************/

d4v:diff(d3v, th 10, 1)$

/**i****************************************/

/* THE FOURTH DERIVATIVE OF V FUCTION */
/* W.R.T. th_10 AT */
/* SYMMETRIC CONFIGURATION */

/*****************************t*************/
d4vs:ev(ddv, diff(th_20, th 10, 1)=dls_2, diff(th 30, th_10, 1)=dls 3,
diff(th 20, th 10, 2)=d2s 2, diff(th_30, th_10, 2)=d2s 3,
diff (th 20, th_10, 3)=d3s_2, diff(th_30, th_10, 3)=d3s 3,
diff(th_20, th_10, 4)=dd4s_2, diff(th_30, th_10, 4)=d4s_3,
th_20=%pi, th 30=-ths_10, th_10=ths 10)$
ddvs:trigexpand (ddvs);

/*******************************************/

/* THE SECOND DERIVATIVE OF V FUCTION */
/* W.R.T. th_10 AND */
/* THE FIRST DERIVATIVE OF V FUNCTION */
/* W.R.T. mu 0 */

/*****t**t*i********i************t**********/

d3vmu:diff(d2v, mu 0, 1)§ -

/****ﬂﬂ****t**tt**t*************************/

/* THE SECOND DERIVATIVE OF V FUCTION */

/% W.R.T. th_10 AND */
/* THE FIRST DERIVATIVE OF V FUNCTION */
/* W,R.T. mu 0 */

/* EVALUATED AT SYMMETRIC CONFIGURATION — */
/****t****t********t**t***********kﬁ*i******/
d3vmus:ev(d3vmu, diff(th 20, th_10, 1)=dls_2, diff(th_30, th_ 10, l)=dls 3,
diff(th_20, th_10, 2)=d2s_2, diff(th_30, th_10, 2)=d2s_ 3,
th_20=%pi, th_30=-ths_ 10, th 10=ths 10)$
d3vmus:trigexpand (d3vmus) ; -



/*ﬁ**tﬁk****************************t**********i*/

/* FIND mus_0 AT WHERE THE BIFURCATION HAPPENS */
[RIKRKIRA AR ARKA KRR ARRARKA AR RARAARAR KRR ARk kR ke [

linsolve ([d2vs], [mu_O]),globalsolve:true$
mus_O:trigexpand(mu_0);

/*ﬁi**ti****i**ﬁ*************************************&t*/

/* AT BIFURCATION POINTS THE FOLLOWING EQUATIONS */
/* SHOULD HOLD */
/* g(ths_10, mus_0) = 0 *x/
/* Dg_th 10(ths_10, mus _0) = O */
/* DDg_(th_10, th_10) (ths_10, mus_0) = 0 */
/* WHERE g—Dv/Dth 10 ths 10 IS th 10 AT * /
/* SYMMETRIC CONFIGURATION */

/*ﬁ*t********t****t*********************t***************/
trigsimp (ev(dlvs, mu_O=mus 0)):
trigsimp (ev(d2vs, mu O=mus 0));
trigsimp (ev(d3vs, mu O=mus 0));

/***t***************************************************/

/* AT BIFURCATION POINTS THE FOLLOWING EQUATIONS */
/* SHOULD HOLD */
/* DDDg_(th_10, th_ 10 th_10) (ths_10, mus 0) not= 0 */
/* ppg_(th_10, mu_O)(ths 10 mus_O) not= 0 */

/********;*****************;*********t******************/
d4vs:trigexpand (trigsimp (ev(d4vs, mu_O=mus 0}))):
d3vmus:trigexpand (trigsimp (ev(d3vmus, mu_O=mus 0))):

/*******************************************************/

/* AT LEADING FORM */
/* MAKE d4vs AND d3vmus AS FUCTIONS OF d 0 AND d_2 */
/*******************************************************/
musl O:ev(mus 0, sin(ths 10)=~sqrt (4.-(d_2-d 0)**2)/2,
cos(ths_10)=-(d _0-d 2)/2)$
musl O:ratsimp (musl 0):
d4vslead:ratsimp (ev (ddvs, sin(ths_lO)--sqrt(4.—(d_2—d_0)**2)/2,
cos (ths_10)=-(d_0-d_2)/2,
mus_O=musl 0));
d3vmuslead:ratsimp (ev (d3vmus, sin(ths_lO)--sqrt(4.-(d_2-d_0)**2)/2,
cos(ths 10)=-(d_0-d_2)/2,
mus_O=musl 0));

/**t**********************************i*********t*****t*/

/* AT LAGGING FORM */
/* MAKE d4vs AND d3vmus AS FUCTIONS OF d 0 AND d_2 */
/*i***ﬂ**********k**************************************/
.mus2 O:ev(mus_0O, sin(ths 10)=+sqrt(4.-(d_2-d_0)**2)/2,
cos(ths 10)=~-(d _0-d_2)/2)$
mus2 0:ratsimp (mus2_ 0);
dévslag:ratsimp (ev (ddvs, sin(ths 10)=+sqrt (4.-(d_2-d_0)**2)/2,
cos(ths_10)=~-(d_0-d 2)/2,
mus_ O=mus?2 _0))» )
d3vmuslag:ratsimp (ev (d3vmus, sln(ths _10)=+sqrt (4. -(d 2-d_0)**2)/2,
cos(ths_lO)--(d_O-d_Z)/2,
mus_O=mus2_ 0)); ’

/*******ﬁi***i********/

/* AN EXAMPLE */
JRAARAR AR RRKKARRRR KKKk /

ev(musl 0, d 0=4/3, d_2=1);
ev(mus2 0, d 0=4/3, d_2=1);

ev(ddvslead, d 0=4/3, d 2=1);
ev(d3vmuslead, d_0=4/3, d_2=1);



ev(ddvslag, d 0=4/3, d_2=1);
ev(d3vmuslag, d_0=4/3, d 2=1);

apply (closefile, [bifur out]);



