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Abstract. Analytical and experimental methods are provided for estimating
synaptic connectivities from simultaneous recordings of multiple neurons. The results
are based on detailed, yet flexible neuron models in which spike trains are modeled as
general doubly stochastic point processes. The expressions derived can be used with
non-stationary or stationary records, and can be readily extended from pair-wise to
multi-neuron estimates. Furthermore, we show analytically how the estimates are
improved as more neurons are sampled, and derive the appropriate normalizations to
eliminate stimulus-related correlations. Finally, we illustrate the use and interpreta-
tion of the analytical expressions on simulated spike trains and neural networks, and

give explicit confidence measures on the estimates.






1 Introduction

Most functions of the mammalian nervous system are performed by networks
of highly interconnected neurons. In the experimental study of these networks, ex-
tracellular recording are often employed to sample the patterns of action potentials
simultaneously generated by several neurons (Abeles and Goldstein 1977; Gerstein
and Perkel 1969; Yang and Shamma 1988). The correlations among the recorded fir-
ings of the different cells are then used as measures of the type and strength of their
interconnections, Many such measures have been proposed to accomplish the latter
task; they include the cross-interval histograms, the cross-correlation histograms, the
cross-covariance histogram, and the joint peri stimulus time (PST) histogram (the
scatter diagram) (Gerstein 1970; Gerstein and Perkel 1969). In all cases, the his-
tograms provide statistical measures in support of various hypotheses such as whether
the two (or more) neurons under study directly influence each other or simply share

common inputs, and whether the influences are excitatory or inhibitory.

There are three basic difficulties with these methods that we tackle in this re-

port. The first concerns the lack of flexible general analytical treatments that outline
the relations between the synaptic connectivities and the correlation measures that
are used to estimate them. Thus, while various features in the above mentioned
histograms may reflect qualitatively the underlying connections, several parameters
and conditions can render these measures inadequate. Examples of such difficulties
are the differing integrating dynamics of different cell types, and the potentially se-
vere errors due to stimulus-induced (rather than synaptic) correlations. Attempts to
overcome these problems, as in the use of the shuffling method to reduce stimulus

effects, are shown here to be largely inadequate.

The second basic shortcoming of the above correlation methods stems from

the nonstationarity of the neural records. In constructing cross-interval and cross-



correlation histograms, counts are usually obtained not only by averaging over dif-
ferent stimulus presentation but also by averaging over the time duration of each
presentation period. This makes these two estimates inadequate when working with
non-stationary records and, instead, measures based on time-dependent histograms
such as the joint PST scatter diagram should be used for the analysis {Habib and

Sen 1985; Stokkum et al. 1986).

Finally, it is unclear in many existing methods how to extend the analysis to more
than two neurons, and how to evaluate the degree to which a pair-wise estimate is
improved when the records from many other neurons are included. This is a partic-
ularly important criterion as progress in multiunit recording technologies promises

to increase significantly the number of records of simultaneously active neurons.

To summarize, the objectives of this report are (1) to provide rigorous analyti-
cal and experimental methods to estimate synaptic connectivities from simultaneous
recordings of multiple neurons that are based on accurate and flexible neuron mod-
els; (2) to express synaptic connectivity in terms of probability densities of joint
neuronal firings and individual neuronal firings that can be used with non-stationary
(or stationary) records; (3) to extend these methods from pair-wise to multiunit

correlations.

The paper is organized as follows. In the next section, a stochastic nonlinear
neuron model is proposed, and the spike train generated by the model is expressed
by a doublely stochastic process. This model will serve as the fundamental tool
upon which the analytical results are based. In section 3, quantitative analyses of
neuronal connectivities are carried out through the model. These include derivations
of the relations between the synaptic connectivity and the firing probability densities,
and extending the pair-wise correlations to the multi-neuron case. In section 4, the

results are summarized and discussed in the context of practical implementations



and considerations of the accuracy of the estimates. Finally, the analytical results
are simulated and discussed in section 5. The proofs of lemmas and theorems are

given in the Appendix.

All the analytical treatments are contained within sections 2 and 3. For the
reader interested only in using the final expressions, section 4 outlines the results

and is sufficient as a guide for their experimental applications.

2 The Neuron Model

The basic unit of the nervous system which receives and transmits neural signals
is the neuron. The interactions of neurons in a network occur in most cases through
synaptic connections between them. Most synapses are found between the axon
terminals of a presynaptic neuron and the soma or dentritic tree of a post-synaptic
neuron. Since there can be many synapses between any two neurons, it is impractical
in modeling the neural network to account for individual synapses; rather, it is more
fruitful both for experimental investigation and mathematical description to consider

the total effective influence of one cell on another.

A synaptic connection from a presynaptic neuron B to post-synaptic neuron A is
said to be excitatory (inhibitory) if the firing rate of neuron A increases (decreases)
when neuron B fires. For the purposes of the model, we assume that the post-
synaptic potentials due to many presynaptic inputs are continuously integrated to
produce a post-synaptic membrane potential. A neuron fires an action potential when
its membrane potential exceeds a threshold level. After each action potential, there
is a period during which the probability of firing is reduced. This period is divided
into two intervals; The first is the absolute refractory period, in which the neuron

cannot fire again; the second is the relative refractory period where the neuron may



generate a spike only when the stimulus is fairly strong.

Since the action potentials of a given neuron are similar in shape, we assume that
the transmitted information is carried only through the temporal patterns of the
spike trains, and hence we use a sequence of impulses to abstract a train of action
potentials. Because the instantaneous firings of a neuron are not deterministic, a
stochastic point process is adopted to model the firings (Perkel et al. 1967). All
the stochastic processes and random variables to be discussed are defined on some
probability space (2, F, P). Let (Q, F, P) be a probability space, and let {F; : ¢ > 0}
be a non-decreasing family of sub o-field of F (i.e., Fs C Fi, for every s < t). The
family {F;} is called a history, and F; represents the information collected during
[0,1]. Let {V3}¢>0 be a stochastic process (representing the semi-membrane potential
process) defined on (2, F, P). The family of the sub o-field generated by {Vi}:>0,
H; = o(V, : 0 < s < t), is called a history of {Vi}ipo if H; C Fy, for t > 0. And in
this case, {Vi}>0 is said to be adapted to {F:}. Let R* be the o-field generated by
set [0,00). A function f from (Q, H:) into ([0,00), R*) is measurable if for every

SeRY, f7YS) € Hs.

Consider that neuron A is influenced by a family of neurons B;, ¢ = 1,2,---,n.
The model we use is depicted in Fig. 1; it is similar in many respects to that
studied by Knox (1974) and by Van Den Boogaared et al. (1986). A sequence of
impulses from neuron B; is transformed into a membrane potential in neuron A. If
the integrated membrane potential exceeds a threshold value 6(t), an impulse (spike)
is generated while the membrane potential discharges to a resting level v,. h;(t,s)
is the impulse response (not necessarily time-invariant) which describes the total
temporal influence of neuron B; on neuron A from past up to present, including the
conduction and transmission delay. A synaptic connection is said to be excitatory if

h(t,s) > 0 for all ¢, all s in R; it is said to be inhibitory if h(t,s) <O forallt,all s



in R.

The somatic (membrane) potential (W) of neuron A is represented by a linear
spatial-temporal superposition of all input action potentials of neurons By, B,,---, B,
(including self-inhibition and/or self-excitation), and an unknown random potential
U; which represents the influence of all other unobservable neurons and biophysical

factors. A sigmoid function ¢ is used to map the somatic potential as follows:

NB‘ (t)

¢
Wi =g+ [ heniNe () =90+ 3 S T ()
% i k=1
where {TkB‘}kZl are the epoch times of spike train from neuron B;, and {Np,(t)}+>0
is the associated counting process, i.e., the number of spikes arriving from neuron B;

in the interval (0,1].

For mathematical simplicity, let us assume that the nonlinearity ¢ has the form of
g(z) = ae®, a > 0, i.e., that neuron A is operating around threshold and is thus not
strongly driven. Suppose further, without loss of generality, that we are interested

in finding the connectivity between two neurons (A and B;). Then we write

NB,‘ (t)

1 .
Wi =—gU+3 3 MELTY) V! 2)
i#1 k=1

where VA is called here the semi-membrane potential and is defined as:

NBl (t)
VA =g( 3 WGLTY)). (3)
k=1

In order to account for the firings of neuron A that are due to Vi, we can think of

the factor 2g(Us+ ¥z Eff{(t) h(t,T,f3 “})) as a continuous random variable Z, such



that a random threshold 6(t) is formed, which is defined as:
ot) = 26, (4)

where 0,(t) is a time function. Due to the refractory period 7 during which a neuron

is unable to produce a successive spike, the time function can be taken as simple as

00, Tp<t<Tp+r

0o(t) = (5)

b, Tk+7”St<Tk+1

where 8, > 0is a constant, Tx and Tk are the times at which the k-th and (k+1)-st

spike occuy, respectively.

A spike occurs whenever the threshold is exceeded by the accumulated semi-

membrane potential, i.e.,
¢
/ VAdr > 6(t) (6)
to

where ty is the instant of the preceding spike. Denoting by N4(t) the number of
spikes in train A during time interval (0, ¢], a stochastic counting process {N4(t)}:>0
is associated with spike train A with N4(0) = 0. Let AN4(t) = Na(t + At) — Na(t)
be the number of spikes in an infinitesimal duration At. We say that a process is

orderly if P.(AN4(T) > 1) = o(At).

Armed with this general neuron model, we are ready for the analysis of the

interneuronal connectivities deduced from the stochastic firing of several neurons.

3 Analytical Results

In this section, we shall derive and elaborate on three basic results. We will first

consider the simpler case of two observable neurons, and show how the connectivity



between them can be expressed analytically in terms of the neuron model outlined
above. We then consider the sources of uncertainty in this estimate and how they can
be reduced through added information from neighboring neurons. Finally, we will
comment on the critical normalization procedures used to remove the confounding
effects of stimulus artifacts. In the following discussion, assume that 4; = { neuron
A firing at instant t}, and B, = { neuron B firing at instant s}. The three basic

results derived are:

Result 1. The joint firing probability of a pair of presynaptic and post-synaptic
neurons can be expressed as the product of individual firing probabilities and the
pairwise connectivity, and a corrupting (uncertainty) factor due to other unobserv-

able influences on the firing of A:
P,(A;, B,) = P(A)P.(B,)y(t,s)e™®) (7
where (¢, s) is the corrupting factor (y > 0) given by:

 E[fa(t,6)Ps(s)]
7(6:9) = 725,001 BPalVET ®

where f4(t,0;) is measurable with respect to o(VA,Na(7);7 < t) and Pp(s) is

measurable with respect to o(V.2, Ng(r);T < 5) .

Result 2. The uncertainty can be reduced (i.e., the corrupting factor made closer to
1) if more interacting neurons are observed simultaneously. The pairwise connectivity

becomes:

Pr(At’ st Ct)Pr(Ct)
Pr(At7 Ct)Pr(st Ct)

h(t,s) = log ~ log v (9)



with Cy = {neurons C1,Cy,- -, Cy, firing at instant t}, where

Elfa(t,6:)Pp(s)|Ci] (10)
E[fa(t,0,)|Ci] E[Pg(s)|Ci]

Y (t,8) =

is a quantity satisfying |[y* — 1| < |y — 1|. If 4* is very close to 1, then log 'y* may be

negligible.

Result 3. In order to minimize the effects of the stimulus on the estimators of the

connectivity, the normalized joint firing probability given by :
Ny(t,s) = P,(Ay, B,)/ P,(A))P.(B,) (11)
leads to estimators superior to those produced by the often employed shuffle method:
Ny(t,s) = Po(A4, Bs) — Pr(A)P(Bs), (12)
which is the quantity that the cross-covariance histogram estimates.

3.1 Definitions and Further Relationships

In order to discuss the derivation of the above stated results, we will need to
utilize a few more definitions and relationships. In particular, we will make use of
the PST histogram of a single cell spike train which measures the firing rate of a
neuron with respect to the stimulus onset. Each bin of the PST histogram is an
unbiased estimator for the probability density of the average neuron firing over a
short period At at instant ¢ corresponding to that bin. The firing probability density

of a neuron (A) is defined as

E[P4(1)] = lim F(ANA) = 1)

At—0 At (13) '

where P4(t) is the conditional firing probability density of the post-synaptic neuron

given the history of the intensity process of the presynaptic neuron and the history



of spike train A denoted by N = o(N(s) : s < t), that is,

. P(AN4(t) = 1|HB,NA
PA(t) —_ Aligo ( A( )At | t t ) (14)

Therefore, the PST histogram of a neuron A estimates E[P4(t)]At.

Likewise, we have

P.(ANB(s) =1)
As

E[Pp(s)] = Jim, (15)

where Pp(s) is the conditional firing probability density of the presynaptic neuron
given the history of the intensity process of the presynaptic neuron and the history

of spike train B, that is,

P,(ANg(s) = 1/HB,NB
Pg(s) = lim_ ( B(S)As LN, (16)

Therefore, the individual PST histograms of neurons A and B estimate E[P4(t)]At

and E[Pg(s)]As, respectively.

Moreover, the joint PST histogram of the two neurons estimates E[P4p(t, s)]AtAs

where
ElPas(t,9)] = Jim P.(AN(1) ZtlﬁNB(sh 1) (17)
and
Pant) = i P (AN4(t) = 17ANBi‘z)ZslngaX(t,s)’AftA’NsB)' (18)

Given a pair of interacting neurons (A and B), the following lemmas will play an

important role in the analysis below.

10



Lemma 1. Pg(t) can be expressed as a map from the semi-membrane potential space

of neuron B onto [0, o),

&m=;%%mﬁ (19)

where 2; = f;o VBdr, and fp(-), Fu(-) are the density and the distribution functions
of the threshold of neuron B, respectively. The function Pg(-) may have a very simple
form. For example, if the threshold is an exponentially distributed independent
random variable with mean X, then Pg(t) = AV/Z. And in this case, {NB()}:>0 is a

doubly stochastic Poisson process.

Lemma 2. The conditional expectation of the product of the semi-membrane poten-

tial of neuron A and the firing rate of neuron B can be expressed as

BvATNBE)) o) gy po(s) (20)

The proofs of the lemmas are given in the Appendix. Lemma 1 gives the ex-
pression of the conditional firing probability density of the presynaptic neuron given
the history of the intensity process of that neuron. Lemma 2 relates the connectiv-
ity, the membrane potential of the post-synaptic neuron, and the firing rate of the

presynaptic neuron.

3.2 Discussion of Result 1

We will first need to derive an expression for the firing rate of the post-synaptic
neuron (A). In general, the threshold 8; of this neuron is not an independent variable,
since it depends on all other unobservable inputs to the neuron. Given an arbitrary

value for 8,, we can write

P(ANAR) = 1)6,) ~

11



t+A4t A A 6,
P,(ft VAdr 2 8,6) = P.(VA > 2516, (21)
Since #; is assumed to be a positive threshold, by the Markov inequality we have

PANA® = 118) < GBIV I8, (22)

Averaging for all possible §; and taking limit as At goes to zero result

Po(Ay) = P.(dNa(t) = 1) < E[.;—V,A]dt. (23)

In fact, it can be shown (see the Appendix) that there exists a measurable function

fa(t,6;) with respect to o(VA, Na(7); 7 < t) such that

P.(A:) = E[fal(t,6,))dt. (24)
Similarly, the conditional joint firing probability can be expressed as
P, (AN4(t) =1,ANg(s) = 1]6,) ~

t4+ At A At 4

P /t VAdr > 8, ANs(s) = 116) < 5 E[VAAN5(s)|6. (25)
t
By Lemmas 1 and 2, we therefore have

P.(As, B,) = P,(dN4(t) = 1,dNg(s) = 1) < eh("s)E[—;—X/}APB(s)]dtds. (26)

t

As in Eq.(24) above, a more precise expression can be derived as

P.(Ag, B,) = ") E[£4(¢, 6,) Pg(s))dtds. (27)

Since the firing probability of the presynaptic neuron is

P,(B,) = E[Pg(s)lds, (28)

12



then combining equations (27), (24) and (28) gives Result 1 with

E[fA(t7 Bt)PB('S)]
E[fa(t,0)] E[Pp(s)]’

v(t,8) = (29)

3.3 Discussion of Result 2

The factor y(t,s) reflects our ignorance of the input to neuron B, or that of
the knowledge of the threshold #;. For a completely known input {VE} (hence
Pg(s) is determined), ¥(t,s) = 1; for a completely known threshold, ¥(,s) is a
constant. When the activity of more neurons are known, the uncertainty in the input
and/or threshold decreases, and v(¢,s) approaches 1. For instance, if the activities
of more interacting neurons (Cq,Cs,--+,Cp,) are available, we can use a multiunit

PST histogram in addition to the conventional joint and individual histograms to

estimate

Pr(At,Bs,Ct)Pr(Ct) - Pr(Atulect)
Pr(At,Ct)PT(Bsy Ct) PT(AtiCt)Pr(lect)

= 7*(t, s)eM b9 (30)
where v*(t, s) is defined in Eq.(10).

Note that observing more neurons makes v* closer to one than 7 is in Eq.(29),
and hence the estimator for h(t, s) is more reliable. This is because neurons C; may
contain information about Pg(s) and/or 6, (for instance, if neurons C; influence the
activity of either or both neurons A and B), hence making fa(t,6) less correlated

with Pg(s), and 7* closer to one.

3.4 Discussion of Result 3

An important factor in correctly interpreting the correlations among the activities
of different cells concerns the effects of the stimulus. Specifically, this refers to the

fact that unconnected cells may exhibit strong correlations in their firings purely

13



due to the fact that they are driven by the same stimulus. In order to eliminate
these effects, some form of normalization is necessary. In Result 3 we show how
the stimulus shuffle alone fails to accomplish this task. In order to illustrate this
with explicit analytic expressions, three simplifying assumptions will be adopted
concerning the properties of the post-synaptic neuron threshold 6; (used in Theorem
1 below) and the distribution of the presynaptic potential (used in Theorem 3). We
start by stating two of these assumptions and the theorems associated with them,
and then proceed to relate the correlation functions explicitly to the inter-neuronal

connectivity (h(t,s)) in a pair of neurons (A and B).

Assumption 1. The random variable Z of the threshold in Eq.(4) is independent of

VA, and has an exponential pdf:

ooe-—(%z-—vo), 'Uo/oo S z < 00

pa(2) = (31)
0, z2 < vof0, .

This assumption is typically valid in cases where Neuron B is only related to
neuron A, i.e., it is weakly related to any other neuron. It can be verified that under

Assumption 1, the output spike train of the neuron A is a doubly stochastic Poisson

process {N 4(t)}t>0 with the intensity process {Af'};>0, where

0, Th<t<Tp+7r
A = (32)
VA, Ti+r<t<Tip

where r is the refractory period.

For a doubly stochastic Poisson process {N4(t)}, we have
P(ANA(t) = OHANA) = 1-ALAL+o(AY), (33)
PAANA(1) = 1HANAY = ALAL+ o(Al), (34)

14



P.(ANA(?) > UHANA) = o(Ad) (35)

Note that At depends on NV, and hence {N4(t)}:>0 is a self-exciting process with

the intensity function E[A{|NA].

Assumption 2. The refractory period is much smaller than any interspike interval

and hence is negligible.

Under this assumption Af' does not depend on A, and hence the intensity

process becomes the membrane potential process.

Theorem 1. Under Assumptions 1 and 2, { N 4()}¢>0 is a doubly stochastic Poisson

process with the intensity process {V/A}s>o. Furthermore, the conditional joint firing

probability density of neurons A and B can be expressed as
PAB(t, S) = PA(t)PB(s)eh(t’a) (36)

for all ¢t and all s, where h(t,s) is the inter-neuronal connectivity with non-zero

transmission delay.

Theorem 1 states that the joint firing probability density can be expressed as
the product of the individual firing densities and the connectivity. Thus the inter-

neuronal connectivity h(t,s) can be directly identified by
h(t,s) = log Pap(t, s) — log P4(t) — log Pp(s). (37)

This is an ideal case.

Experimently, if only neurons A and B are recorded, the semi-membrane po-
tential of the presynaptic neuron B is generally unknown (hence P4p, P4, and Pg
are unknown), because the membrane potentials are unobservable in extracellular
recordings. Therefore, one must instead evaluate the normalized unconditional joint

probability density Np(2,s).

15



Let us recall that the PST histogram of neuron A estimates E[P4(t)]At and
that of neuron B estimates E[Pg(t)]At, and the joint PST histogram estimates
E[Psp(t,s)]AtAs. Therefore, N,(t,s) can be formed by these three histograms:

E[P4s(t, )]
E[PA(D)]E[Ps(s)]

Np(t,s) = (38)

Lemma 3. Under Assumptions 1 and 2, the conditional firing probability of the

post-synaptic neuron can be expressed as

Palt) = EIVAIHE] = aexp{ [ (467 = 1jv2ar). (39)

Theorem 2. If Assumptions 1 and 2 hold, the uncertainty 4 in Result 1 can be

expressed as

E[V exp{fy(e*®7) — 1)V, Pdr}]
E[VB) Elexp{ Jo(e"t) ~ 1)VEdr}]

7(t’ 3) = (40)

Theorem 3. If the semi-membrane potential process of the presynaptic neuron can
be decomposed in the form of V,2 = X f(t) where X is a random variable, and f(t)

is a deterministic time function, then

1(hs) = E[évi{],gwm()m) 4

where M(-) is denoted as the moment generating function of X, and M'(n;) is the

first derivative of M(-) with respect to 7y which is expressed by

= /Ot(eh(t”) = 1)f(r)dr. (42) |

Furthermore, ¥(¢,s) — 1 when Var(X) — 0.

16



Assumption 3. The presynaptic membrane potential X is Gamma, distributed with

parameters (A, v).

One consequence of Theorem 3 is that if Assumption 3 holds — a relatively
common occurrence (Bishdp et al. 1964; Nakahama et al. 1968; Correia and Lan-
dolt 1977) — the normalized unconditional joint probability density Ny(t,s) can be

explicitly evaluated in terms of these parameters as

A
Ny(t, s) = 37 meh@'s), < A (43)

Comparing this expression with that of Theorem 2 suggests that (¢, ) = A/(A — ).
Therefore, for a given Gamma distribution (of degree v), as the variance of X (=
v/A?%) becomes smaller, X increases, and v(t,8) — 1. In other words, the more is

known about V2 (e.g., from recordings of additional neurons), the more accurate is
the estimate of the connectivity between neurons A and B. We will illustrate these

result through simulations later in section 5 (see Fig. 3).

If the membrane potential does not vary much for different stimulus presentation

(small variance of X'), then A >» 7. Consequently, we have
N,(t,s) ~ Mt (44)
This confirms the conclusions established in Result 2 earlier.
In contrast to the normalization used in Eq.(11), the conventional cross-covariance

histogram (which is the modified joint PST diagram using the shuffling method) uses

a difference normalization which estimates (Gerstein 1970; Habib and Sen 1985)
Nq(t,s) = E[Pas(t,s)] - E[Pa(t)] E[Pp(s)]- (45)

In general, this expression is very complicated. However, if we make use of the

assumptions in Theorem 3 for the intensity process of the presynaptic neuron (i.e.,

17



a Gamma distribution), it reduces to

eh(ts) 1
Nalt,) = e SOM ()G~ 1) (46)

If the membrane potential is not varying too much for different stimulus presentation

(A > nt), then Ny(t, s) can be approximately written as
Ny(t,s) =~ 9"’—’;(-‘52(6’%8) - 1). (47)

This expression suggests that identifying the connectivity here is considerably more
difficult than that of the normalization N,(2,s) used earlier, since quantities o, v, A
and function f(s) are generally unknown. Nevertheless, Eq.(47) suggests that the
shuffling method remains effective in indicating the absence of a direct connection
(i.e., when h(t,s) is very small), since in that case Ng4(t,s) is approximately zero
regardless of the confounding terms («, v, A and function f(s)). We will illustrate

this in simulations in section 5 (see Figs. 4).

4 Experimental Considerations

In the analysis of multi-neuronal connectivities, spike trains from several neurons
are recorded in response to the repeated presentation (e.g., R times) of a stimulus.
Spikes are usually sampled and parsed into (i.e., labeled by) small time bins, using
the onset of the stimulus as the initial bin. The bin width At is always chosen
to be so small that at most one spike may occur in each bin (which corresponds
to the orderliness of the point process). Thus each spike train is converted into a -
discrete 0-1 process, and is further segmented into R segments, each for one stimulus

presentation,

18



Let A,, be the time bin corresponding to the n-th bin associated with the r-th
stimulus presentation. A spike train can then be represented by a R X N random
matrix A with elements (A,p, r=1,2,---,R; n = 1,2,-.-, N) — called here a spike
matriz. Let us assume that the firing activity during each stimulus presentation
is statistically iﬁdependent. Therefore, each element is a random variable taking
values {0,1}, and the elements in the same column are independent and identically

distributed.

The PST histogram (H,, n = 1,2,.-+, N) reflects the stimulus-locked firing rate
of each single neuron, and it is formed by taking average over every column of the
spike matrix,

1 R

H = =3 A, n=1,2,---,N. (48)

r=1

The value of HA counts the average spikes over R stimulus presentations in the n-th

bin in a spike train A.

The joint PST scatter diagram of two neurons 4 and B (HAB, m =1,2.--,N; n =
1,2,---, N) measures the coincidence spikes in train A and in train B relative to stim-
ulus onset. It is a two-dimensional histogram with one axis (m) for train A and the
other axis (n) for train B, and hence it is an N square matrix H. Element HAB

represents the average count for coincidence of a spike in the m-th bin of train A and

a spike in the n-th bin of train B over R stimulus presentations, that is,
AB 1 &
HAB — —IEZAMBM,m=1,2~--,N;n=1,2,---,N (49)
r=1

where A, and B,, are the elements of spike matrices for trains A and B, respectively.

Therefore, the matrix presentation of the joint PST scatter diagram is

1
H = —EATB (50)
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where T' denotes transposition. The expanded joint PST histogram for multiunit

recordings (of M neurons) is then

NN Npf

1 R
FC1CaCy EZQ}M T2n2...6%M, ni=1,2--- N;i=12-- .M (51)
r=1

where C}lm is the element of the spike matrix for the i-th neuron.

4.1 Using the Scatter Plot to determine neuronal connectivities

The correlations between a pair of recorded neurons (A and B) can be computed

from the experimental estimate of the expression of Result 1, i.e.,

E[P4p(t, 5)]
Pa(t)] E[Pp(s)]

h(t,) = log( 222 = log( - )~ log(x(t,)

7(t» s)

where E[P4(t)] and E[Pp(s)] represent the PST histograms of firings of the neuron
pair, E[P4p(t, s)] is their scatter plot, and v (> 0) is the corrupting factor represent-
ing the uncertainty in the estimate due to the influences of other unobserved neurons
and biophysical factors. Thus in terms of bin numbers m and =, the above equation

can be written as

AB
Hmn

IOg(W) = h{mAt, nAt) + log(y(mAt, nAt)). (52)

In the case of time invariant connectivities, h(t,s) becomes A(t — s), and the corre-

lation peak becomes a band that runs parallel to the principal diagonal (¢ — s = 0).1

In the practical application of Eq.(52), the confounding 7(, s) contributions are

not known. However, the analysis shows that additional simultaneous recordings can

INote that one can detect further correlations in the unnormalized scatter plot, such as the
more diffuse bands of time-invariant common inputs (Yang 1989). Of course, these features are
intentionally removed by the normalization since they do not reflect direct connectivities between

the neuron pair.
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be used to reduce these uncertainties. Therefore, by using the additional data, the

improved estimator for h(t, s) becomes

ABC3-.C C5.:C
HABGs:Ou J1Cs:0nm

MR m

JACsCy pBCs--Opg

mim--"m N+

log( ) = h(mAt, nAt) + log(y*(mAt, nAt)) (53)

where Hﬁ‘,g%jj;gé“ are simply the joint multi-dimensional scatter plots defined in

Eq.(51), and the uncertainty factor v* (< ) is defined in Eq. (10). The estimates

of Eqs.(52) and (53) are illustrated in network simulations in section 5.
4.2 Establishing confidence measures on the estimates

The histograms are random variables subject to fluctuations. Hence, it is impor-
tant to determine upper and lower bounds such that we assume a connection between
neurons A and B whenever these bounds are surpassed. By the law of large numbers,
HAB converges to E[P4g(t, )], so does HA to E[P4(t)] and HP to E[Pg(s)] almost
surely as B — oo. Therefore, if neurons A and B are independent, by theorems on
limiting distributions,

AB
Him

ﬁzH—g—#l as R — o0 (54)

almost surely.

The hypothesis Hg is that the two neurons are statistically independent, which
is supported by
E[Pap(t,s)] = E[P(t)] E[P5(s)]. (55)
And the alternative hypothesis H; is that the two neurons depend, which is described
by

E[Pap(t, s)] # E[Pa(t)] E[Pp(s)]- (56) -

One expects HAB/HAHDB to be close to 1 if hypothesis Ho is true. Conversely, if

n

the amount it deviates from 1 exceeds a bound b, one accepts hypothesis H;.
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Now for a given significance level a, we need to find the bound b satisfying

AB
Hmn

H(laas — U> b1 Ho) = o (57)

The hypothesis testing is stated as the following theorem.

Theorem 4. Let b be a bound which divides a critical region for the hypothesis
testing. One announces that there is a dependence between the two observed neurons
if

A o
HAHB

~1|>b. (58)

For the given significance level o of false announcement of dependence, the bound

can be calculated by

b= 1-HAHE 59
T\ "RHAHP (59)
where the value of ¢; is determined from
o) =1-73 (60)

and ®(z) = V%Ifoo e~ 12dz.

The function ®(z) is usually available as the standard normal distribution table.

For example, o = 0.05 gives ¢, = 1.96.

The above theorem implies that element HAB/(HAHP) of the normalized joint
PST diagram has a conditional expectation value 1 and an approximate conditional

variance

2, 1= HyH7D

Tmn = TRHAHRB

(61)
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given the values of 4 and HP under hypothesis Ho. Since HA and HP are usually
very small and R is fairly large, this approximation is close to a recent result by Palm
et al. (1988) where their conditional variance is

p2 - (A= HR)(1- HP)
mn = " (R—1)HAIB

(62)

under hypothesis Hp.

The bound dividing the hypothesis regions can be made more useful in neural
networks with time invariant connectivities. Let w,, reflect the fluctuation in the
normalized joint PST diagrams such that

AB
Hmn

HAHD = y(mAt, nAL)eP(m=nA0 |y, (63)

and the mean of w, is zero. Let £ = m — n. A collapsed version can be generated
by averaging over diagonals of the normalized joint PST diagram. This collapsed

version is a 1-dimensional histogram G} expressed by

min({N,N-k) AB
1 Hn+k,n

Gk = =Tl TA B
N - 1kl n=max(1,1—k) Hn‘l'k‘H"
k=-N41,-+,~1,0,1,---,N — 1 (64)

where k = 0 is the collapsed point of the principal diagonal.

Since averaging reduces the fluctuations (the average of wy, has a smaller vari-
ance), G is a better estimator for the time invariant connectivity h(t,s) = h(t — s).

This enables us to establish a bound such that

P(|Gk = 1] > b | Ho) = c. (65)
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Theorem 5. Given a significance level a, let by be a bound of critical region satis-

fying the above equation, then by may be approximately written as

Emin(N,N—-k) 2
n=max(1,1-k) O ntkn

N - [k|

€p (66)

where ¢; is the the same as in Theorem 4, and 02, is given by (61). Furthermore,

by will reduce to

by ~ —=——= (67)
when 02,.’s are taken as constants.

This theorem indicates that the critical region is enlarged (the bound value de-

creases) when the collapsed version of the normalized joint PST histogram is used.

5 Simulations and Discussion

In order to illustrate the nature of the estimates, uncertainties, and bounds de-
rived earlier, we show the results from simulations of networks of excitatory and
inhibitory neurons. The neuron model used for the simulations is depicted in Fig.
1(c) where the nonlinearity g(z) = ae® and the random threshold has an exponential

distribution with mean 1.

In the first case (Fig. 2), pair-wise excitatory and inhibitory, time-invariant
connections are estimated using the normalized scatter plots; the uncertainty factor
(7) is equal to 1. The upper plots show the two-dimensional normalized scatter
plots. The correlations appear as bands along the principal diagonal because h(t, s)
is time-invariant. Hence, the scatter plot can be collapsed along this axis to produce

the lower histograms. Note that time-variations in h(t,s) (e.g., due to post-stimulus
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adaptation) do not allow this reduction. Consequently, it should only be performed
on the portions of the neural record that display obvious stationary behavior. In
both simulations of Fig. 2, the predicted analytical estimates are also plotted for
comparison, together with the bound lines for the confidence measures (determined

by Theorem 5).

In order to illustrate the effects of the uncertainty factor 4, we examine in Fig.
3 the interactions among three neurons with time-invariant connectivities. Here,
neuron A is inhibited by neuron B and excited by neuron ', and neuron € is in turn
excited by neuron B. Because of the interactions between B and C, the threshold
in neuron A is no longer independent of the firings of B. Thus, if we attempt to
identify the connectivity between neurons A and B from pair-wise recordings, the
estimates will be contaminated by the ¥ uncertainty factor. The top curve in Fig.
3 first shows the “target” theoretical connectivity obtained from the multi-recording
estimate given by formula (30) with v*(t,s) = 1 (i.e., €*48{t=%)), If neuron C is
ignored, the pair-wise estimate of e"45(t=%) is shown as the middle curve in Fig. 3
(corresponding to formula (52)). The correlation is so distorted that actual inhibition
becomes false excitation because of the strong excitatory activity from neuron C. To
correct the erroneous correlation, we have to use the information from the third
neuron. The tripartite correlation according to formula (53) is displayed at bottom

of Fig. 3, which is much closer to the analytical estimate.

Fig. 4 compares the preferred normalization with the difference normalization
(shuffle method) under two situations. In the absence of a direct connection, the
shuflle method provides accurate indication of the lack of synaptic inputs between
the two neurons. However, in the presence of a direct connection, the shuffle method
fails to remove completely the stimulus correlations as indicated by the deviation from

the analytical results. Instead, the normalization suggested in this paper performs
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well in both cases.

In conclusion, the above simulations confirm the proposed theory. The neuron
model adopted is quite general because (1) the synaptic connectivity h(t, s) represents
a time-varying system; (2) the processes representing spike trains are not necessarily
Poisson processes, and (3) the nonlinear function g(z) = ae® is an approximation
of ae®[1 + ae® when ae” < 1, meaning that the neuron is operating at low firing
rates. Moreover, our analytical Results 1 and 2 do not dependent on any further
assumptions. Although the three simplifying assumptions were made in order to see

Result 3 more clearly, we did not use these assumptions in the simulations of Fig. 4.

The analysis presented in this paper also points to the following sobering conclu-
sion: For multiunit correlation analysis to play a useful role in establishing the basic
circuitry of the nervous system, new technologies have to be developed for stable,
multi-unit recordings. These requirements stem from the need for extended simulta-
neous recordings from many cells in order to construct adequate scatter histograms
and to minimize inherent uncertainty due to unobserved but related activities. Unfor-
tunately, neither of these requirements are easily met at present, although extensive
efforts towards this goal are underway through the use of silicon-based microelectrode

arrays (Kriiger 1983).
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Appendix

Proof of Lemma 1: Since the threshold of neuron B is a continuous random variable,

let its probability density function and distribution function be fp(z) and Fp(z),
respectively. Let z; = ftto VBdr, where 1y is the occurrence instant of the previous

spike. From definition (16) we have

> . HB ArB
Py(t) = A%r_{}o Pr(ziqat 2 €t|:cAtt< 0y, HE , NB)

= lim Pr(xt < Bt < xt+AtlHtB5'AftB) = VtBPBt(xt)
At—0 At PT(.’Et < gtlﬂtBa-/V‘tB) 1- Fet(zt)'

(68)

Furthermore, if the threshold is exponentially distributed with mean A, then
fe(z:)/1 — Fe(z:) = X, and hence Pg(t) = AVE. In this case, Pp(t) does not

depend on {Ng(t)}, and {Np(t)}+>0 evolves without aftereffects.

Proof of Lemma 2: Because ANg(t) can take values 0 and 1 only, by Eq.(3) we have
ANpg(s
v ANE) gn )

Np(t) _ B ArB
— Elaexp{ 3 At TEHANs(s) = 18, NE HANBE) = WH ) - g

k=1

For t > s, the conditional expectation in the above equation can be written as

NB(i)
Elaexp{ Y h(t,T¢)}ANs(s) = LHT 1]
k=1
Np(s) Np(t)
= Elaexp{ 3 h(t,TP)}exp{h(t,s + As)}exp{ ) h(t, TS, N,
k=1 k=N3(8+A3)+1

(70)
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which becomes

"I EVAHE NP (71)

as As goes to 0. Since Pg(s) is a measurable function with respect to o(HZ x V),

hence
dNpg(s
EvA D)) - ) BBIVA P, NFIPa(s)] = MO EVAP(s)).  (72)
For t < s, we have

v 0B gyn B = pvp s, v BrERE D s o)

- E[VtAW_tsB,NSB] Pr(ANB('S)Zgl‘HsB,MsB), (73)
hence
evA B - ppwAmE NPIPs(s) = EVAPe().  (14)

Since h(t, s) represents a synaptic connectivity, which is a causal system with non-

zero transmission delay, h(t,s) = 0 for t < s. Thus Eq.(71) holds for all ¢ and

8.

Proof of Equation (2{): Replace neuron A for neuron B in the proof of Lemma
1. Here we emphasis the threshold 6; of neuron A so that fg,(-) and Fp,(-) re-
place fp(:) and Fpg(-), respectively. Thus limas—o P(ANA(2) = 1|H{, NA)/At =
VAP, (24)/1— Fg, (), where z; = ft VAdr. Although the joint distribution function

of §; and z; is unknown in general, we can define a measurable function

- V fe,(lt)
fa(t,0;) = m (75)
Therefore, we have
P.(A)) = E[P.(dNa(t) = 1M} NN = E[fa(t, 6)]dt. (76)
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Proof of Theorem 1: Suppose that Assumptions 1 and 2 hold, and that the threshold
6; has an exponential distribution with mean 1. By the proof of equation (24) and

Lemma 1,

Aim P.(ANA(t) = 1M N/ AL = fa(t,00) = VE, (77)

hence spike train N 4(t) is represented by a doubly stochastic Poisson process. There-

fore, by Egs.(32) and (34) we have
Pa(t) = E[VAME) (78)

Because Poisson process evolves without aftereffects, the conditional probability

given the firing histories of neurons A and B can be split into
P(AN4(t) = 1,ANp(s) = 1|H{, HE,,
= P.(ANA(t) = 1/H{) P,(ANB(s) = 1IH{, HE,,). (79)
By Eqs.(32) and (34), the first factor is
P(AN4(t) = /M) = VAAL + o(At). (80)
We write the second factor as
P,(ANp(s) = 1[H{', Hy,,) = E[ANp(s)| M, HE,J), (81)
and we have
P.(ANA(t) = 1,ANB(s) = UHA, HE ) = EIVAANB(s)|HA, HE, | + o(At). (82)

By taking average over the o-field H{!, we obtain

dNp(s
Pan(s) = VA B ) (8)
which is, by the proof of Lemma 2,

Pap(t,s) = OV E[VAHPIPp(s) = €49 Pa(t) P (s). (84)
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Proof of Lemma 3: Under Assumptions 1 and 2, P4(t) becomes the conditional

expectation of the post-synaptic membrane potential, which can be expressed as

Ng(t)
EVAIMP] = Elaexp{ >_ h(t,TP)}HP] (85)

k=1 -

Define an event D, = {Npg(t) = n}, which has a conditional Poisson distribution
ty B n
VEdr™ _rtysy,
P.(DaHP) = Up Vo dr]" = 7] e~ Jo VP, (86)
n!

Because {Np(t)}:>0 is an inhomogeneous Poisson process with the associated point

process {Tt}r»o for the given realization of the intensity process {VtB}tZO, it can be

shown that (Larson and Shubert 1979)

Np(t) t Jh(t,7)y/B
eIV Edr. .
Blexp{ Y h(t, TP))Np(t) = n, 1) = (R TVdre gy
k=1 o VBdr
Therefore, we have
Ng(t)
Elexp{ >_ h(t,T{)}Np(t) = n,HP]
k=1
o0 NB(t)
= 2_ Elexp{ > h(t, TE)}|Np(2) = n, HE|P.(Du|1F)
n=0 k=1
0 ty/B n
_ S BV v )
n!

n=0
and the summation in the above equation is a series expression for an exponential

function. Thus rewriting it proves the lemma.

Proof of Theorem 2: By Lemma 1, Pg(s) = V.B; by Theorem 1, fa(t,8;) = VA. We
write

E[VAVP]

EVAIEVA] (89)

v(t,8) =

32



Note that E[VAVP) = E[E[VAHPIVE] = E[Pa(t)VF] and BIVA] = E[BVAHP]] =

E[P4(t)]. Hence, applying Lemma 3 completes the proof.

Proof of Theorem 3: In the expression (40), the numerator of y(¢, s) can be written as
E[X f(s)eX™]; the denominator can be written as E[X f(s)]E[eX™]. Eq.(41) is true
by canceling f(s). Furthermore, as the variance of X decays to zero, M'(n;) — pet™

and M(n;) — ek, consequently y(¢,s) — 1.

Proof of Theorem 4: For a given significance level o, we need to find a bound b
satisfying

AB
Hmn

Y (i

1> b| Ho) = o (90)

Let us remember that RHAP is binomially distributed with parameters

(R, E[P4aB(t,s)]) and that HAB — HAHP almost surely under Ho. Hence by the

central limiting theorem,

RHAB — RHAHE
VRIAHB(1 ~ HAHB)

— N(0,1) as R — o0 (91)

where N(0,1) is denoted as a standard Gaussian random variable. This means that

Eq.(56) can be approximately written as

P.(IN(0,1)| > es | Ho) = @ (92)
where
e = bRHANB (93)
VRHAHE(1 - HAHB)
which results in an expression of the bound as
b=e %ﬁ%ﬁ (94)

33



The value of ¢} is determined by
D(ep) =1~ % (95)

where &(z) = 7121-—7Fff00 e~% 12,

The above arguments imply that element HAB /(HAHP) of the normalized joint
PST diagram has a conditional expectation value 1 and an approximate conditional

variance

. _1-HAHP

= s ©)

under hypothesis Ho.

Proof of Theorem 5: Let us note that under hypothesis Ho, HAZ /HAHB is approx-

imately Gaussian distributed with mean 1 and variance o2,,. Hence

min(N,N —k)
Z Ontkn Na(0,1)) (97)

n=max(1,1-k)

1
N

|Ge — 1] |

where each N,(0,1) approximately has a standard Gaussian distribution expressed
by
RHJE,, — RIA, B

\/RHf+kH§(1 - HALHD)

Na(0,1) = (98)

and o2, is given in Eq.(61). Therefore, G —1 is approximately Gaussian distributed

with zero-mean and variance

1 min({N,N—k)
— 2
Var(Gy - 1) = TR n:mg(:l . Oh rkm (99)

where mutual independence of N,(0,1)’s is assumed. Let

b

= VVar(Gy = 1)
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we obtain

Po(|Gr = 1] > be | Ho) = 2(1 - B(ep)). (101)

If all 02,,’s are the same, observing the bound b in Theorem 4 completes the proof.
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Figure 1: A dynamical nonlinear neuron model, where neuron A is considered as the
post-synaptic neuron.

(a) Neuron A is influenced by presynaptic neurons By, Bz, -+, By.

(b) A synaptic connection between neurons A and B; the influences of other neurons
on neuron A are summarized by Us.

(c) An equivalent probabilistic version of the neuron model. The impact of the
random input U; is now moved to the spike generator where the threshold becomes
random.
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Figure 2: Simulations for pair-wise excitatory and inhibitory correlations.

(a) Excitatory coupling h(t,s) = 0.8¢=20(t=2) t > 5. Shown is the two-dimensional
normalized scatter plot generated by the spike trains of the two neurons; below it
is the histogram G} that results from collapsing the scatter plot along the principal

diagonal. It corresponds to the function Ny(k) = "), The upper and lower bound
lines represent the 95 % confidence measure.

(b) Inhibitory coupling, similar to (a) for A(t,s) = ~3.0e~20(t=9) ¢ > g
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Figure 3: Interaction among three neurons. The network structure is displayed on
the top graph: neuron B inhibits neuron A and excites neuron C, and neuron C
excites neuron A. hap(t) = —1.8¢7%°% hac(t) = 3.6e7%%, and hop(t) = 2.0e72%,
The top curve gives the theoretical connectivity from formula (30) with v*(¢,s). The
middle one is the correlation curve corresponding to formula (52) generated from
spike trains A and B only. The correlation is so distorted that actual inhibition
becomes a false excitation (which is actually due to a strong excitatory input from
neuron C). The bottom curve shows the tripartite correlation according to formula
(53), which displays the correct inhibitory sign for the connectivity.
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Figure 4: Comparison of the preferred normalization with the difference normaliza-
tion (shufle method).

(a) The absence of a direct connection case (h = 0): neurons A and B have a common
input source — a neuron driven by a stimulus. The connection strength from the
common input is w = 1. The top curve gives the collapsed version of the joint
PST histogram without any normalization. The correlation peak is purely due to
stimulus effects. The middle curve represents the difference normalized correlation.
The bottom curve shows the preferred normalized correlation curve. Both methods
perform well in indicating the absence of connection between A and B.

(b) The presence of a direct connection case (h # 0): neurons A and B have a
common input source as in (a), and in addition, a direct synaptic connectivity from
B to A, hap(t) = 0.4e~2%%. The top curve gives the theoretical correlation predicted
from N,(k) = e**). The middle curve shows the difference normalized correlation.
Although the connectivity is weak (only 0.4), the large sharp peak in the correlation

leads to a false impression of high excitatory connectivity, which is in fact due to
stimulus effects. The bottom curve shows the preferred normalized correlation, which

is very close to the theoretical function 03‘58_2(”.



