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1 IntroductionMost real-time systems possess only a small handful of inherent timing constraints which will \makeor break" their correctness. These are called end-to-end constraints, and they are established onthe systems' external inputs and outputs. Two examples are:(1) Temperature updates rely on pressure and temperature readings correlated within 10�s.(2) Navigation coordinates are updated at a minimum rate of 40ms, and a maximum rate 80ms.But while such end-to-end timing parameters may indeed be few in number, maintaining function-ally correct end-to-end values may involve a large set of interacting components. Thus, to ensurethat the end-to-end constraints are satis�ed, each of these components will, in turn, be subject totheir own intermediate timing constraints. In this manner a small handful of end-to-end constraintsmay { in even a modest system { yield a great many intermediate constraints.The task of imposing timing parameters on the functional components is a complex one, and itmandates some careful engineering. Consider example (2) above. In an avionics system, a \naviga-tion update" may require such inputs as \current heading," airspeed, pitch, roll, etc; each sampledwithin varying degrees of accuracy. Moreover, these attributes are used by other subsystems, eachof which imposes its own tolerance to delay, and possesses its own output rate. Further, the nav-igation unit may itself have other outputs, which may have to be delivered at rates faster than800Hz, or perhaps slower than 400Hz. And to top it o�, subsystems may share limited computerresources. A good engineer balances such factors, performs extensive trade-o� analysis, simulationsand sensitivity analysis, and proceeds to assigns the constraints.These intermediate constraints are inevitably on the conservative side, and moreover, they areconveyed to the programmers in terms of constant values. Thus a scenario like the following isoften played out: The design engineers mandate that functional units A, B and C execute withperiods 65ms, 22ms and 27ms, respectively. The programmers code up the system, and �nd that Cgrossly over-utilizes its CPU; further, they discover that most of C's outputs are not being read bythe other subsystems. And so, they go back to the engineers and \negotiate" for new periods { forexample 60ms, 10ms and 32ms. This process may continue for many iterations, until the system�nally gets fabricated.This scenario is due to a simple fact: the end-to-end requirements allow many possibilities forthe intermediate constraints, and engineers make what they consider to be a rational selection.However, the basis for this selection can only include rough notions of software structuring andscheduling policies { after all, many times the hardware is not even fabricated at this point!Our Approach. In this paper we present an alternative strategy, which maintains the timingconstraints in their end-to-end form for as long as possible. Our design method iteratively { andautomatically { instantiates the intermediate constraints, all the while taking advantage of the lee-way inherent in the end-to-end constraints. If the assignment algorithm fails to produce a full set ofintermediate constraints, potential bottlenecks are identi�ed. At this point an application analysistool takes over, determines potential solutions to the bottleneck, and if possible, restructures the1



application to avoid it. The result is then re-submitted into the assignment algorithm.Domain of Applicability. Due to the complexity of the general problem, in this paper we placethe following restrictions on the applications that we handle.Restriction 1: We assume our applications possess three classes of timing constraints which wecall freshness, correlation and separation.� A freshness constraint (sometimes called propagation delay) bounds the time it takes for data to
ow though the system. For example, assume that an external output Y is a function of somesystem input X . Then a freshness relationship between X and Y might be: \If Y is deliveredat time t, then the X-value used to compute Y is sampled no earlier than t � 10ms." We usethe following notation to denote this constraint: \F (Y jX) = 10."� A correlation constraint limits the maximum time-skew between several inputs used to producean output. For example, if X1 and X2 are used to produce Y , then a correlation relationshipmay be \if Y is delivered at time t, then the X1 and X2 values used to compute Y are sampledno more than with 2ms of each other." We denote this constraint as \C(Y jX1; X2) = 2."� A separation constraint constrains the jitter between consecutive values on a single outputchannel, say Y . For example, \Y is delivered at a minimum rate of 3ms, and a maximum rateof 13ms," denoted as l(Y ) = 3 and u(Y ) = 13, respectively.While this constraint classi�cation is not complete, it is su�ciently powerful to represent manytiming properties one �nds in a requirements document. (Our initial examples (1) and (2) arecorrelation and separation constraints, respectively.) Note that a single output Y1 may { eitherdirectly or indirectly { be subject to several interdependent constraints. For example, Y1 mightrequire tightly correlated inputs, but may abide with relatively lax freshness constraints. However,perhaps Y1 also requires data from an intermediate subsystem which is, in turn, shared with a veryhigh-rate output Y2.Restriction 2: All subsystems execute on a single CPU.While a variant of our approach could beused in the multiprocessor case, it would greatly complicate the intermediate constraint-assignmentproblem.Restriction 3: The entity-relationships within a subsystem are already speci�ed. For example, ifa high-rate video stream passes though a monolithic, compute-intensive �lter process, this situationmay easily cause a bottleneck. If our algorithm fails to �nd a proper intermediate timing constraintfor the �lter, the restructuring tool will attempt to optimize it as much as possible. In the end,however, it cannot redesign the system!Finally, we stress that we are not o�ering a completely automatic solution. Even with a fullyperiodic task model, assigning periods to the intermediate components is a complex, nonlinearoptimization problem which { at worst { can become combinatorially expensive. As for softwarerestructuring, the speci�c tactics used to remove bottlenecks will often require user interaction.Problem and Solution Strategy. We duly note the above restrictions, and tackle the interme-diate constraint-assignment problem, as rendered by the following ingredients:2



� A set of external inputs fX1; : : : ; Xng, outputs fY1; : : : ; Ymg, and the end-to-end constraintsbetween them.� A set of intermediate component tasks f�1; : : : ; �lg, and their associated worst-case executiontimes fe1; : : : ; elg.� A task graph, denoting the communication paths from the inputs, through the tasks, and tooutputs.Solving the problem requires setting timing constraints for the intermediate components, so thatall end-to-end constraints are met. Moreover, during any interval of time utilization may neverexceed 100% (and in practice should be held as low as possible).Our solution employs the following ingredients: (1) A periodic, preemptive tasking model (whereit is the our algorithm's duty to assign the rates); (2) a bu�ered, asynchronous communicationscheme, allowing us to keep down IPC times; (3) the period-assignment, optimization algorithm,which forms the heart of the approach; and (4) the software-restructuring tool, which takes overwhen period-assignment fails.Related Work. This research was, in large part, inspired by the real-time transaction modelproposed by Burns et. al. in [4]. While the model was formulated to express database applications,it can easily incorporate variants of our freshness and correlation constraints. In the analogueto freshness, a persistent object has \absolute consistency within t" when it corresponds to real-world samples taken within maximum drift of t. In the analogue to correlation, a set of data objectspossesses \relative consistency within t" when all of the set's elements are sampled within a intervalof time t.We believe that in output-driven applications of the variety we address, separation constraintsare also necessary. Without postulating a minimum rate requirement, the freshness and correlationconstraints can be vacuously satis�ed { by never outputting any values! Thus the separationconstraints enforce the system's progress over time.Burns et. al. also propose a method for deriving the intermediate constraints; as in the datamodel, this approach was our departure point. Here the high-level requirements are re-written asa set of constraints on task periods and deadlines, and the transformed constraints can hopefullybe solved. There is a big drawback, however: the correlation and freshness constraints can inordi-nately tighten deadlines. E.g., if a task's inputs must be correlated within a very tight degree ofaccuracy { say, several nanoseconds { the task's deadline has to be tightened accordingly. Similarproblems accrue for freshness constraints. The net result may be an over-constrained system, anda potentially unschedulable one.Our approach is di�erent. With respect to tightly correlated samples, we put the emphasis onsimply getting the data into the system, and then passing through in due time. However, sincethis in turn causes many di�erent samples 
owing through the system at varying rates, we perform\tra�c control" via a novel use of \virtual sequence numbering." This results in signi�cantly looserperiods, constrained mainly by the freshness and separation requirements. We also present a periodassignment problem which is optimal { though quite expensive in the worst case.3



This work was also in
uenced by Je�ay's \real-time producer/consumer model" [11], whichpossesses a task-graph structure similar to ours. In this model rates are chosen so that all messages\produced" are eventually \consumed." This semantics leads to a tight coupling between theexecution of a consumer to that of its producers; thus it seems di�cult to accommodate relativeconstraints such as those based on freshness.Klein et. al. surveys the current engineering practice used in developing industrial real-timesystems [12]. As is stressed, the intermediate constraints should be primarily a function of theend-to-end constraints, but should, if possible, take into account a sound real-time schedulingtechniques. At this point, however, the \state-of-the-art" is the practice of trial and error, asguided by engineering experience. And this is exactly the problem we address in this paper.The remainder of the paper is organized as follows. In Section 2 we introduce the applica-tion model and formally de�ne our problem. In Section 3 we show our method of transformingthe end-to-end constraints into intermediate constraints on the tasks. In Section 4 we describethe constraint-solver in detail, and push through a small example. In Section 5 we describe theapplication transformer, and in Section 6 we show how the executable application is �nally built.2 The Application ModelOur framework renders an application in an asynchronous task graph (ATG) format, where for agiven graph G(V;E):� V = P [D, where P = f�1; : : : ; �ng, i.e., the the set of processes; and D = fd1; : : : ; dmg, a setof asynchronous, bu�ered channels. We note that the external outputs and inputs are simplytyped nodes in D.� E � (P �D) [ (D � P ) is a set of directed edges, such that if �i ! dj and �l ! dj are bothin E, then �i = �l. That is, each channel has a single-writer/multi-reader restriction.The semantics of an ATG is as follows. Whenever a task �i executes, it reads data from all incomingchannels dj corresponding to the edges dj ! �i, and writes to all channels dl corresponding to theedges �i ! dl. The actual ordering imposed on the reads and writes is inferred by the task �i'sstructure.All reads and writes on channels are asynchronous and non-blocking. While a writer alwaysinserts a value onto the end of the channel, a reader can (and many times will) read data fromany location. For example, perhaps a writer runs at a period of 20ms, with two readers running at120ms and 40ms, respectively. The �rst reader may use every sixth value (and neglect the others),whereas the second reader may use every other value.While a channel is eventually implemented as circular, slotted bu�er, a programmer treatsit as unbounded, and accesses it using generic operations such as \read" and \write." Afterthe constraint-assignment algorithm determines all of the processes' rates, a post-processing phasedetermines the actual bu�er bounds, and then instantiate the \read" and \write" operations ineach module. 4



This type of scheme allows us to minimize the overhead incurred when blocking communicationis used, and concentrate exclusively on the assignment problem. In fact { as we show in the sequel{ communication can be completely unconditional, in that we do not even require short lockingfor consistency. However, we pay a price for avoiding this overhead; namely, that the periodassignments must ensure that no writer can overtake a reader currently accessing its slot.Moreover, we note that our timing constraints de�ne a system driven by time and outputrequirements. This is in contrast to reactive paradigms such ESTEREL [5], which are input-driven. Analogous to the \conceptual in�nite bu�ering" assumptions, the rate assignment algorithmassumes that the external inputs are always fresh and available. The derived input-sampling ratesthen determine the true requirements on input-availability. And since an input X can be connectedto another ATG's output Y , these requirements would be imposed on Y 's timing constraints.2.1 A Small ExampleAs a simple illustration, consider the system whose ATG is shown in Figure 1(A). The systemis composed of six interacting tasks with three external inputs and two external outputs. Theapplication's characteristics are as follows:Freshness Constraints: F (Y1jX1) = 30 F (Y1jX2) = 30 F (Y2jX2) = 20 F (Y2jX3) = 15Correlation Constraints: C(Y1jX1; X2) = 3 C(Y2jX2; X3) = 4Separation Constraints: l(Y1) = 18 u(Y1) = 31 l(Y2) = 29 u(Y2) = 41Max Execution Times: e1 = 6 e2 = 3 e3 = 3 e4 = 2 e5 = 3 e6 = 2While the system is small, it serves to illustrate several facets of the problem: (1) There maybe many possible choices of rates for each task; (2) correlation constraints may be tight comparedto the allowable end-to-end delay; (3) data streams may be shared by several outputs (in this casethat originating at X2); and (4) outputs with the tightest separation constraints may incur thehighest execution-time costs (in this case Y1, which exclusively requires �1).2.2 Solving the ProblemGuaranteeing the end-to-end constraints actually poses three sub-problems, which we de�ne asfollows.Correctness: Let C be the set of derived, intermediate constraints and E be the set of end-to-endconstraints. Then all system behaviors that satisfy C also satisfy E .Feasibility: The task executions inferred by C never demand an interval of time during whichutilization exceeds 100%.Schedulability: There is a scheduling algorithm which can e�ciently maintain the intermediateconstraints C, and preserve feasibility.In the problem we are addressing, the three issues cannot be decoupled. Correctness, for example,is often treated as veri�cation problem using a logic such as RTL [10]. Certainly, given the ATG5



X1 X2 X3�1 �2 �3d1 d2�4 �5Y1 d3 d4�6Y2
X1 X2 X3�sdX1 dX2 dX3�1 �2 �3d1 d2�4 �5Y1 d3 d4�6Y2Figure 1: (A) A Task Graph (B) the Transformed Task Graph.we could formulate E in RTL and query whether the constraint set is satis�able. However, a \yes"answer would give us little insight into �nding a good choice for C { which must, after all, be simpleenough to schedule. Or, in the case of methods like model-checking ([2], etc.), we could determinewhether C)E is invariant with respect to the system. But again, this would be an a posteriorisolution, and assume that we already possess C. On the other hand, a system that is feasibile maystill not be schedulable under a known algorithm; i.e., one that can be e�ciently managed by arealistic kernel.In this paper we put our emphasis on the �rst two issues. However, we have also imposed a taskmodel for which the greatest number of e�cient scheduling algorithms are known: simple, periodicdispatching with o�sets and deadlines. Thus, we put structural limitations on the constraint set Cso that the scheduling problem is reduced in complexity.More formally, each task �i possesses a period Ti, an o�set Oi � 0 (denoting the earliest start-time from the start-of-period), and a deadline Di � Ti (denoting the latest �nish relative to thestart-of-period). Thus the interval [Oi; Di] denotes the window of execution, with Wi = Di � Oi.The periods, deadlines and o�sets make up constraint set C.The problem of scheduling a set of periodic real-time tasks on a single processor CPU hasbeen studied for many years. Such a tasking model can be used to construct static calendar basedschedules (e.g., [14]), or analyzed under a static preemptive priority scheme for schedulability. Ourdiscussion for most part is independent of the underlying scheduling scheme. However, for the sakeof simplicity we may assume an underlying static priority architecture. Static priority schedulinghas been shown to be applicable to a number of variants of the periodic tasking model, such as6
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Figure 2: Overview of the Approach.pre-period deadlines [3], precedence constrained sub-tasks [9], o�sets [13] etc. A good overview tostatic priority scheduling may be found in [6].Thus we focus our e�orts on the correctness and feasibility problems. This is done in a four-stepprocess, as shown in Figure 2: First the rate-based, intermediate constraints are derived, which mayrequire creating new tasks to get tightly correlated inputs into the system. Next, a constraint-solverattempts to �nd a solution, by using the criterion of minimized CPU utilization. If a solution cannotbe found, the restructuring tool alters the ATG to eliminate bottlenecks. Finally, the derived ratesare used to reserve memory for the channels, and to instantiate the \read" and \write" operations.3 Step 1: Deriving the ConstraintsIn this section we show the derivation process of intermediate constraints, and how they (conser-vatively) guarantee the end-to-end requirements. We start the process by synthesizing the inter-mediate correlation constraints, and then proceed to treat freshness and separation.Synthesizing Correlation Constraints. Recall our example task graph in Figure 1(A), wherethe three inputs X1; X2 and X3 are sampled by three separate tasks. If we wish to guarantee that�1's sampling of X1 is correctly correlated to �2's sampling of X2, we must pick short periods forboth �1 and �2. Indeed, in many practical real-time systems, the correlation requirements mayvery well be tight, and way out of proportion with the freshness constraints. This typically resultsin periods that get tightened exclusively to accommodate correlation, which can easily lead togross over-utilization. Engineers often call this problem \over-sampling," which is somewhat ofa misnomer, since sampling rates may be tuned expressly for coordinating inputs. Instead, theproblem arises from poor coupling of the sampling and computational activities.Thus, our approach is to decouple these components as much as possible, and to create special-ized samplers for related inputs. For a given ATG, the sampler derivation is performed by in thefollowing manner. 7



foreach Correlation constraint Cl(YljXl1; : : : ; Xlm)Create the set of all input-output pairs associated with Cl, i.e.,Tl := f(Xli; Yl)jXli 2 fXl1; : : : ; Xlmggforeach Tl, foreach TkIf there's a common input X such that 9(X; Yl) 2 Tl 9(X; Yk) 2 Tk, andif a path from X to Yl shares a common task with the path from X to Yk , thenSet Tl := Tl [ Tk; Tk := ;foreach Tl, identify all associated sampling tasks, i.e.,Sl := f� j(X; Y ) 2 Tl ^ X ! �gIf jSlj � 1, create a periodic sampler �sl to take samples for inputs in TlThus the incoming channels from inputs Tl to tasks in Sl are \intercepted" by the new samplertask �sl .Returning to our example Figure 1(A), since both correlated inputs share the center stream, theresult is a single group of correlated inputs f(X1; X2; X3)g. This, in turn, results in the formationof the single sampler �s. We assume �s has a low execution cost of 1. The new, transformed graphis shown at the right column of Figure 1(B).As for the deadline-o�set requirements, a sampler �sl is constrained by the following trivialrelationship Dsl �Osl � tcorwhere tcor is the minimum bound on all correlated inputs read by �sl .However, this by itself is not su�cient to ensure correlation requirements. Since correlated datacan 
ow along di�erent data streams, it may still reach the consumer task at di�erent absolutetimes. (E.g., one stream may run faster than another.) Delay after all, is posited by the freshnessrequirement. For example, refer back to Figure 1, in which F (Y2jX2) > F (Y2jX3). This disparityin freshness requirements causes a problem, since if task �6 attempts to satisfy the correlation con-straints, it may have to violate the tighter freshness requirement. To ensure that the correlationrequirements are also satis�ed, we remove the \noise" that may exists between the di�erent require-ments. Thus, whenever a fresh output is required, we ensure that there are correlated data sets toproduce it. This means that in our example, the freshness requirement F (Y2jX2) is tightened toF (Y2jX3).Generally, whenever there is an output Y with freshness constraints F (Y jX1) and F (Y jX2),with X1 and X2 correlated as well, we setF (Y jX1); F (Y jX2) := minfF (Y jX1); F (Y jX2)gSynthesizing Freshness Constraints. Consider a freshness constraint F (Y jX) = tf betweenan input X and output Y . Recall that the freshness constraint requires that \for every outputof Y at some time t, the value of X used to compute Y must have been read no earlier thattime t � tf ." As the data 
ows through the task chain, a delay is incurred in processing the data8



�2�1 � tf D2D1
D3�3 O1 O2 O3Figure 3: Freshness Constraints with Coupled Tasksat each task in the chain, and in \handing over" of the data from one task to the other. Thefreshness requirement is satis�ed if the cumulative delay does not exceed the freshness bound tf .The delay due to processing in each task is dependent on the task's window of execution, whereasthe delay su�ered in hand over depends on the coupling between tasks. To optimize the waitingtime associated with handover, we impose a harmonicity constraint between (producer,consumer)pairs; (i.e., pairs (�p; �c) where there are edges �p ! d and d! �c.)De�nition 3.1 (Harmonicity) A task �2 is harmonic with respect to a task �1 if T2 is exactlydivisible by T1 ( represented as T2jT11 ).To illustrate this refer to Figure 3 in which there are three tasks �1; �2 and �3 in a freshnesschain. From the harmonicity assumption we have T3jT2 and T2jT1.The harmonicity assumption allows us to achieve tight freshness requirements. Consider afreshness chain �1; �2; : : : ; �n, where �n is the output task, and �1 is the input task. From theharmonicity assumption, we get Ti+1jTi, for 1 � i < n. Therefore, assuming that initially all tasksare invoked at time 0, for every invocation of the output task (�n) there is a simultaneous invocationof every task in the freshness chain. We derive the constraints based on the assumption that eachtask in the chain reads input data, processes it, and writes output data within this invocation. Inthat case, the worst case end-to-end delay is given by Dn � O1, and the freshness requirement ifguaranteed if the following holds: Dn � O1 � tfNote that we also require a precedence between each producer/consumer task pair. The simplestway of establishing precedence is by letting Di � Oi+1, for 1 � i < n. However, the use of o�sets1xjy i� 9� :: �y = x and � � 1, where � is an integer.9



and deadlines to enforce precedence like this has two drawbacks:� A consumer task cannot start execution before its o�set even if the producer task �nishes itsexecution prior to its deadline.� The end-to-end freshness bound tf must be divided into a delay bound allowed at each task.It is not clear, how the slack should be distributed among intermediate tasks.Instead, if the scheduler could enforce precedence, then we need not worry about the problemof distributing slack among intermediate tasks. The precedence is straightforward to handle in acalendar based scheduler. In a static priority scheduler, we need to ensure that (i) the producer has ahigher priority, and (ii) the consumer is not made active before the producer. This is easily achievedby setting the o�set of the consumer task equal to the o�set of the producer task. Normally, thispriority assumption is �ne, since the deadline of the consumer task is higher than the producer, andshould be assigned lower priority [3]. However, this is not desirable if the consumer task alreadyhas an o�set requirement (e.g., due to separation constraints). In this case, the consumer task mayhave a smaller window of execution, and thus, a lower priority for it may not be the correct choice.As a result, we use the following rule of thumb:\If the consumer task is not an input or output task, i.e., if it does not have any otherconstraints on its o�set, then its precedence requirement is deferred to the scheduler.Otherwise, the precedence requirement is satis�ed through assignment of o�sets."Output Separation Constraints. Consider the separation constraints for an output Y , generatedby some task �i. The window of execution [Oi; Di] denotes the variability in the time an output canbe made within a period. Thus, the separation constraints will be satis�ed if the following holdstrue: Ti +Wi � u(Y ) Ti �Wi � l(Y )Example, Revisited. Revisiting the example, consider the constraints that arise from outputseparation requirements, which are induced on the output tasks �4 and �6. The derived constraintsare presented below: T4 + (D4 � O4) � u(Y1) T4 � (D4 � O4) � l(Y1)T6 + (D6 � O6) � u(Y2) T6 � (D6 � O6) � l(Y2)In addition, we have the following constraints on each task.Oi + ei � Di; Oi � 0; Di � Ti; 1 � i � 6Os + es � Ds; Os � 0; Ds � Ts; sampler taskFinally, consider the freshness constraints. There are four freshness constraints F (Y1jX1) = 30,F (Y1jX2) = 30, F (Y2jX2) = 15, and F (Y2jX3) = 15. Consider the freshness requirement F (Y1jX1),10



F (Y1jX1) F (Y1jX2) F (Y2jX2) F (Y2jX3)D4 �Os � 30 D4 � Os � 30 D6 � Os � 15 D6 �Os � 15Ds � D1 � e1 Ds � D2 � e2 Ds � D2 � e2; D2 � D5 � e5 Ds � D3 � e3D1 � O4 D2 � O4 D2 � O6 D3 � O6T4jT1; T1jTs T4jT2; T2jT1 T6jT5; T5jT2; T2jTs T6jT3; T3jTs�s < �1 �s < �2 �s < �2; �2 < �5 �s < �3Table 1: Constraints due to Freshness Requirementsfor which the data 
ows from through the task chain h�s; �1; �4i. The end to end freshness require-ment gives the constraint D4 � Os � 30. Since �1 is an intermediate task we let the precedence�s < �1 be handled by the scheduler. However, we use the o�set for �4 to handle the precedence�1 < �4. This leads to the constraints D1 � O4 and Ds � D1 � e1. Similar inequalities are derivedfor the remaining freshness constraints, and the entire resulting set is shown in Table 1.4 Step 2: Constraint SolverThe constraint solver forms the main component of our approach, and it generates a solution for theset of constraints derived from the high level timing requirements. The constraint solver must notonly synthesize a satis�able solution; it must also address the notion of feasibility as an optimizationcriteria. The feasibility aspect is addressed by minimizing the overall system utilization, as wellas maximizing the window of execution for each task. Unfortunately, the non-linearity in theoptimization criteria as well as the constraints leads to a complex non-linear optimization problem.We present a solution to this problem which decomposes the problem into relatively tractableparts. The decomposition is motivated by the fact that the non-linear constraints in the problem,(i.e., the ones due to harmonicity) as well as the overall system utilization do not involve deadlineand o�set variables. This suggests the use of variable elimination to remove deadline and o�setvariables in deriving a transformed constraint set only involving period variables. The transformedconstraint set may now be solved and optimized for minimum overall utilization. The solutionfor the periods is then used to derive the o�sets and deadlines in a manner, which attempts tomaximize the execution window of each task. An outline of our solution strategy is presented inFigure 4. The details of the three stages, i.e., variable elimination, deriving periods, and derivingo�sets and deadlines are presented in the following subsections.4.1 Elimination of O�set and Deadline VariablesWe use an extension of Fourier-Motzkin variable elimination [7] to simplify our system of con-straints. The Fourier Motzkin variable elimination is a linear programming technique which elimi-nates a variable from a set of linear constraints. Intuitively, it may be viewed as the projection ofan n dimension convex object (described by the constraints) on to n � 1 dimensions.11



Algorithm 4.1 Obtain o�sets, deadlines, and periods for all tasks./* C = Linear constraints on the task variables. *//* H = Harmonicity constraints on the periods. *//* U = e1=T1 + e2=T2 + : : :+ en=Tn. */Step 1 Eliminate all variables other than Ti's from C to obtain a new set of con-straints Ĉ.Step 2 Solve the set of constraints Ĉ ^ H to minimize the objective function U .Step 3 Let C0 be the set of constraints obtained after substituting the values forTi obtained in step 2. Solve C0 for the o�sets and deadlines, so as to maximizeschedulability.Figure 4: Top Level Algorithm to Obtain Task Characteristics.Consider a system of constraints from which we want to eliminate variable x. Let � � x, andx � � be two constraints on x. Then, we can combine these two to infer � � �, which is theprojection of the two constraints. Therefore, if we combine every such pair of constraints on x, weobtain a new set of constraints in which x has been eliminated. The correctness of the methodfollows simply from the observation that if the new set of constraints has a solution, then theremust be a value of x, which satis�es the original constraints.The derived set of constraints have the property that any solution for task periods ensures thatthere is at least some solution for the o�sets and deadlines which ensures correctness. The variableelimination method eliminates one variable at a time - generating a new set of constraints at eachstage. As the constraints are generated, the algorithm tests for inconsistent constraints (e.g., 0 > 5),and reports failure if any inconsistency is detected. In that case, the constraints are too tight tobe satis�ed, and application restructuring may be needed. In general, the algorithm can result inan exponential growth in the number of constraints generated. However, it is our belief that theuse of an aggressive approach to remove redundant and trivially satis�able constraints would helpalleviate the problem signi�cantly.We illustrate the e�ect of variable elimination through the example application presented earlier.Due to space constraints, we do not trace the execution of the variable elimination algorithm; ratherwe present the �nal set of constraints that are generated. The derived constraints impose lowerand upper bounds on task periods, and are shown in Table 2. We note that the �nal set of derivedconstraints have simple intuitive meaning, and other non-intuitive constraints generated due tovariable interactions were found to be redundant.In the �nal set of constraints, the constraints on the output tasks, i.e., �4 and �6 stem fromthe separation constraints, which impose both an upper and a lower bound on the period. Theconstraints on all other tasks are merely from the execution requirements. For example, withintask �5's period we must be able to execute �s; �2 and �5 since they all are part of a freshness chain.Thus, T5 � es + e2 + e5 = 7. 12



�s �1 �2 �3 �4 �5 �61 � Ts 7 � T1 4 � T2 4 � T3 20 � T4 � 29 7 � T5 31 � T6 � 39Table 2: Derived Constraints on Task Periods.4.2 Deriving Task PeriodsOnce the deadlines and o�sets have been eliminated from the constraints, we obtain a new set ofconstraints involving only the task periods. We now need to obtain a feasible period assignmentwhich satis�es the derived constraints, as well as harmonicity constraints. Recall that our objectivefunction is the overall system utilization which is given as U =P eiTi .In general, the derived constraints may be arbitrary linear constraints, and may require anexpensive enumerative search algorithm to determine a feasible solution. In this paper, we restrictour solution to the special case in which the derived constraints only impose a lower/upper boundon a single task's period, as is the case in our example application. However, we believe that thealgorithm is extensible to the more general case through the use of variable elimination.Let li and ui be the lower and upper bounds on a task period Ti. In addition, for each pro-ducer/consumer pair along a freshness chain, there is a harmonicity requirement. The harmonicityrequirements may be succinctly represented as a directed acyclic graph, in which the nodes are thetasks and the edges represent harmonicity constraints. Each node also has a cost (its executiontime) associated with it. An edge from �i to �j represents the constraint Tj jTi. Let Predi (Succi)denote the set of tasks which are predecessors (successors) of task �i, i.e., those tasks from whichthere is a directed path to (from) �i.Clearly, this problem is a complex optimization problem in which non-linearity is imposed dueto harmonicity and the optimization criteria. However, as will be evident, we also exploit this non-linearity to �nd an optimal solution. The key idea behind our optimization algorithm is pruningof the search space. The �rst step in the pruning process involves tightening the bounds on theperiods. Subsequently, the task graph is simpli�ed by merging nodes. By doing so, we restrict thenumber of variables in the optimization problem. These two steps are described below.(1) Due to harmonicity, an edge �i ! �j in the task graph implies that Ti � Tj . The �rst pruningtakes place by propagating this information to tighten the period bounds. Thus, for each task�i, the bounds are tightened as follows:li = maxflk :: �k 2 Predig ui = minfuk :: �k 2 Succig(2) The second step in the algorithm is to simplify the task graph. Consider a task �i, which hasan outgoing edge �i ! �j . Suppose ui � uj , then the maximum value of Ti is constrainedonly by harmonicity restrictions. The task graph simpli�cation is done by merging �i and�j , whenever it is safe to set Ti = Tj , i.e., the restricted solution space contains the optimalsolution. The following two rules give the condition when it safe to perform this simpli�cation.13



Rule 2Rule 1

�s(1)
�4(2) �3(3)�5(3) �6(2)
�1(6) �2(3) �4(8) �6(8)

�s(1)�2(3) �2(4)�4(8) �6(8)Figure 5: Task Graph for Harmonicity and its Simpli�cation.Rule 1: If a vertex �i has a single outgoing edge �i ! �j , then �i is merged with �j .Rule 2: If Succi � (Succj \ f�jg) for some edge �i ! �j , then �i is merged with �j .To illustrate these rules consider the task graph in Figure 5. The parenthesized numbersdenote the costs of corresponding nodes. In the graph, the nodes �3, �5, and �1 have a singleoutgoing edge. Using Rule 1, we merge �3 and �5 with �6, and �1 with �4. In the simpli�edgraph, Succs = f�4; �6; �2g and Succ2 = f�4; �6g. Thus, we can invoke Rule 2 to merge �swith �2.The next stage in the pruning process is the use of harmonicity restrictions and utilizationbounds to aggressively limit the search space. Let � denote the set of feasible solutions for Ti, andis initially given by �i = fTi :: li � Ti � uig. The pruning takes place by successively re�ningand restricting �i for each task. Algorithm 4.2 implements the pruning rules described below. Thealgorithm traverses the nodes in the task graph in a reverse topological ordering, and applies thepruning rules to restrict its own feasible set, as well as the feasible sets of its successors.Pruning with Harmonicity Requirements: Consider any particular node �i in the task graph.Then, the feasible set of solutions for this node can be reduced by considering the harmonicityrelationship with all its successor nodes.�i := fTi 2 �i :: (8�k 2 Succi)(9Tk 2 �k :: TkjTi)gThat is restrict �i to those periods Ti for which there exists some period Tk in each of thesuccessors such that TkjTi. The reduced feasible set of �i may now be propagated to all its14



successors �k by restricting their feasible space to those periods Tk which have some periodTi 2 �k, such that TkjTi. �k := fTk 2 �k :: (9Ti 2 �i :: TkjTi)gPruning with Utilization Bounds: Let Umax be the upper bound on the utilization that wewant to achieve. An any stage, a lower bound on the utilization for task �i is given by:Umini = eiTmaxi ;where Tmaxi = maxfTi 2 �igThus, if the lower bound on overall utilization Umin(= PUmini ) exceeds Umax then there isno solution which satis�es the utilization bound. Now, consider a single task �`, and considera value T̂` 2 �`. De�ne T̂k for all other tasks as follows:T̂k = ( maxfTk 2 �k :: TkjT̂`g �k 2 SucclmaxfTk 2 �kg �k 62 SucclThen, if T̂` is the period for �`, a lower bound on the utilization is given by:U =X eîTiClearly, if U > Umax, then no feasible solution can be obtained with T̂`, and hence it may beremoved from the feasible set.Let us revert back to our example, and consider the reverse topological sort order �4; �6; �2, withexecution time costs 8; 8 and 4 respectively. The initial feasible sets are �4 = fT4 :: 20 � T4 � 29g,�6 = fT6 :: 31 � T6 � 39g, and �2 = fT2 :: 4 � T2 � 29g. Suppose the utilization boundUmax = 1.Since �4 and �6 have no successors, and the utilization bounds are satis�ed for all values, norestriction takes place. Now consider �2. The feasible set of values such that there is an integralmultiple in each of �4 and �6 is: �2 = f4; 5; 6; 7; 8; 9; 11; 12; 13gOf these, after testing for utilization, we obtain the reduced set �2 = f9; 11; 12; 13g. This informa-tion is propagated to the successors to obtain �4 = f27; 22; 24; 26g and f36; 33; 39g. The optimalsolution in easily found to be �2 = 13; �4 = 26; �6 = 39, giving a utilization of 0:82.Unfortunately, the pruning algorithms do not totally avoid the search part, if we seek optimality.However, by carefully setting the utilization bound, we can limit the search time required, sincethe tighter the utilization bound, the greater is the pruning achieved. Thus, by starting with alow utilization bound, and successively increasing it if no solution is determined, we can limit thesearch time. 15



Algorithm 4.2 Prune Feasible Search Space using Harmonicity and Utilization constraints./* Umax = maximum allowable utilization. *//* Tmaxi = maxfTi : Ti 2 �ig *//* Umin =PUmini , where Umini = ei=Tmaxi */Sort the graph in reverse topological order. Let the sorted list be L = h�i1 ; �i2; : : : ; �ini.for j := 1 to n do /* traverse the list */�ij = fTij 2 �ij :: (8�k 2 Succij)(9Tk 2 �k :: TkjTij)g/* check utilization condition for each value in �ij */foreach Tij 2 �ij doforeach �k 2 Succij doÛk := ek̂Tk , where T̂k = maxfTk 2 �k :: TkjTijgUmin := Umin � Umink + U 0kendU := U � Uminij + ei=Tijif U > Umax then �ij := �ij � Tijend/* Propagate restricted feasible set to all successors */foreach �k 2 Succij do�k := fTk 2 �k :: (9Tij 2 �ij :: TkjTij)gendend Figure 6: Pruning Feasible Space for Period Derivation.4.3 Deriving O�sets and DeadlinesOnce the task periods are determined, we need to revisit the constraints to �nd a solution tothe deadlines and o�sets of the periods. While the variable elimination method ensures that afeasible solution exists, we need to �nd a solution which maximizes schedulability. However, thisis not easily achievable since no simple analytic solutions exist when tasks have both o�sets anddeadlines [13].The variable elimination method allows us to select values for the variables in the reverseorder in which they are eliminated. Suppose we eliminate variables [x1; x2; : : : ; xn] from a systemof constraints in this order. Then, when variable xi is eliminated, the remaining variables are[xi+1; : : : ; xn]. Also, note that the constraints at that stage can be written either as � � xi, orxi � �, where � and � only contain variables [xi+1; : : : ; xn]. It is apparent that if [xi+1; : : : ; xn] arealready given values, then the constraints immediately give a lower and an upper bound on xi, andany value of xi within this range can be chosen.We use this property of variable elimination in assigning o�sets and deadlines to the tasks.As the variables are assigned values, each variable can be individually optimized. Recall that thefeasibility of a task set requires that the task set never demands a utilization greater than one in16



�s �1 �2 �3 �4 �5 �6Period 13 26 13 39 26 39 39O�set 0 0 0 0 21 0 13Deadline 3 21 13 13 26 13 15Execution Time 1 6 3 3 2 3 2Table 3: Derived Task Set.
0 13 26 39

39 52 65 78

�s �2 �2 �2�s �s�s �s�s �2�2�2 �4 �4 �4�3�3 �5�5 �5 �6�6�1 �1 �1�1 �1Figure 7: Feasible Schedule for Example Applicationany time interval. We use a greedy heuristic, which attempts to maximize the window of executionfor each task. For tasks which do not have an o�set, this is straight forward, and can be achievedby maximizing the deadline. For input/output tasks which have o�sets, we also need to �x theposition of the window on the timeline. We do this by minimizing the o�set for input tasks, andmaximizing the deadline for o�set tasks.The order in which the variables are assigned is given by the following strategy: First, we assignthe windows for each input task, followed by the windows for each output task. Then, we assignthe o�sets for each task followed by deadline for each output task. Finally, the deadlines for theremaining tasks are assigned in a reverse topological order of the task graph. Thus, an assignmentordering for the example application is given as fWs;W4;W6;Os; D4; D6; D5; D3; D1; D2g. Noticethat the variables must be eliminated in the reverse order of assignment. The �nal task set pa-rameters, derived as a result of this approach, are shown in Figure 3. A feasible schedule for thetask set is shown in Figure 7. We note that the feasible schedule can be generated using the �xedpriority ordering �6; �s; �4; �2; �3; �5; �1.5 Step 3: Graph TransformationWhen the constraint-solver fails, often replicating part of a task graph may prove useful in reducingthe system's utilization. This bene�t is realized by eliminating some of the tight harmonicityrequirements, mainly by decoupling the tasks that possess common producers. As a result, theconstraint derivation algorithm has more freedom in choosing looser periods for those tasks.Recall the example application from Figure 1(B), and the constraints derived in Section 4. Inthe resulting system, the producer/consumer pair (�2; �5) has the largest period di�erence (T2 = 13and T5 = 39). Note that the constraint solver mandated a tight period for �2, due to the coupled17



harmonicity requirements T4jT2 and T5jT2. Thus, we choose to replicate the chain including �2 fromthe sampler (�s) to data object d2. This decouples the data 
ow to Y1 from that to Y2. Figure 8shows the result of the replication. X1 X2 X3dX1 dX3�1 �3d1�4 �5Y1 d3 d4�6Y2
dX2�2d2�s1 �s2dX 02� 02d02

Figure 8: The Replicated Task Graph.Running the constraint derivation algorithm again with the transformed graph in Figure 8, weobtain the following result. �s1 �1 �2 �4 �s2 � 02 �3 �5 �6Periods 29 29 29 29 39 39 39 39 39Execution Time 1 6 3 2 1 3 3 3 2The transformed system has a utilization of 0.7215, which is signi�cantly lower than that of theoriginal task graph (0.8215).The subgraph replication technique begins with selecting a producer/consumer pair which re-quires replication. There exist two criteria to select a pair depending on the goal. If the goal isreducing expected utilization, a producer/consumer pair with the maximum period di�erence ischosen �rst. On the other hand, if the goal is achieving feasibility, then we rely on the feedbackfrom the constraint solver in determining the point of infeasibility.After a producer/consumer pair is selected, the algorithm constructs a subgraph using a back-ward traversal of the task graph from the consumer. In order to avoid excessive replication, thetraversal is terminated at the �rst con
uence point. The resulting subgraph is then replicated andattached to the original graph.The producer task in a replication may, in turn, be further specialized for the output it serves.For example, consider a task graph with two consumers �c1 and �c2 and a common producer �p.If we replicate the producer, we have two independent producer/consumer pairs, namely (�p; �c1)18



and (� 0p; �c2). Since � 0p only serves �c2, we can eliminate all operations that only contribute to theoutput for �c1. This is done by a compiler technique called dead code elimination [1]. The samespecialization is done for �p.6 Step 4: Bu�er AllocationBu�er allocation is the �nal step of our approach, and hence applied to the feasible task graphwhose timing characteristics are completely derived. During this step, the compiler tool determinesthe bu�er space requirement for each data object and replaces reads and writes to a data objectwith system-provided macros to ensure the correct bu�er management. Thus the goal of thebu�er allocation is to enable the resultant system to combine a set of correlated data at any of itscon
uence points in a practical and realizable manner.However, combining a set of correlated data at a given con
uence point of a task graph iscomplicated, because (1) the producers and the consumer may all be running at di�erent rates;and (2) the 
ow delays from a common sampler to the distinct producers may well be di�erent.We approach these problems by allocating a multiple place bu�er for each data object. As the datacommunication mechanism is one of the key components in our approach, we optimize it in termsof space and time requirements. To do so, we raise two issues.(1) Finding a �nite bu�er size for each data object.(2) Enabling a consumer task to take a set of correlated data by an e�cient look-up in themultiple place bu�ers.Our solution to these issues relies on the following facts.Fact 6.1 Let (�p; �c) be a producer/consumer pair, and d be a data object between them. When �cis about to read from d, any data items �p has put into d since the beginning of the �c's currentperiod, are valid with respect to the freshness constraint imposed on the 
ow.Figure 3 pictorially illustrates this situation. By the induction on the chain of producer/consumerpairs, it can be easily proved that this is the case.Fact 6.2 For 1 � i � n, let (�pi ; �c) be the ith producer/consumer pair, and di be a data object ofthe pair. Suppose all dis must be correlated. Then a data set consisting only of the data items, eachof which �pi put into di �rst within the �c's current period, is tightly correlated. (They were read inthe same period by the sampler.)This is trivially the case, because all data items in a correlated set are read by a common samplerand any pair of producer/consumer has harmonic periods.Based on these facts, the solution strategy is:\Whenever a consumer reads from a channel, it uses the �rst item that was generatedwithin its current period." 19



As a result, when a producer/consumer pair (�p; �c) and their shared data object d are given, thecommunication mechanism is realized by the following techniques:(1) The data object d is implemented with s number of bu�ers where s = Tc=Tp.(2) The producer �p circularly writes into d: It begins with slot 0, and then writes into the nextuntil it �lls slot s � 1; then it goes back to slot 0.(3) The consumer �c reads only from slot 0.However, the technique is incomplete for the situation where a data object is read by multipleconsumers. For 1 � i � n, let (�p; �ci) be the ith producer/consumer pair, and d be a data objectshared by the consumers �ci . Also, let L = LCM1�i�n(Tci).2 The general techniques are:(1) The data object d is implemented with s number of bu�ers where s = L=Tp.(2) The producer �p circularly writes into d in exactly the same way as above.(3) The consumer �ci reads circularly from slots (0; Tci; : : : ; m � Tci) where m = L=Tci � 1.
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�p�c1 �c2 Tp = 10Tc1 = 20Tc2 = 30Figure 9: A Task Graph with Bu�ers.Figure 9 shows a task graph after the bu�er allocation. In the graph, there are two consumertasks �c1 ; �c2 running with periods 20 and 30, respectively and one producer running with period10. Thus, the data object requires a 6 (6 = LCM(20; 30)=10) place bu�er, and �c1 reads from slots(0, 2, 4) while �c2 reads from slots (0, 3).After the bu�er allocation, the compiler tool expands each data object into a multiple placebu�er, and replaces each read and write operations with macros that perform proper pointer up-dates.7 ConclusionWe have presented a four-step design methodology to help synthesize end-to-end requirements intofull-blown real-time systems. Our framework can used as long as the following ingredients are2LCM is the least common multiple. 20



provided: (1) the entity-relationships, as speci�ed by an asynchronous task graph abstraction; and(2) end-to-end constraints imposed on freshness, input correlation and allowable output separation.This model is su�ciently expressive to capture the temporal requirements { as well as the modularstructure { of many interesting systems from the domains of avionics, robotics, and control andmultimedia computing.However, the asynchronous, fully periodic model does have its limitations; for example, wecannot support high-level blocking primitives such as RPCs. On the other hand this de�cit yieldssigni�cant gains; e.g., handling streamed, tightly correlated data solely via the \virtual sequencenumbers" a�orded by the rate-assignments.There is much work to be carried out. First, the constraint derivation algorithm can be extendedto take full advantage of a wider spectrum of timing constraints, such as those encountered ininput-driven, reactive systems. Also, we can harness �ner-grained compiler transformations suchas program slicing to help transform tasks into read-compute-write-compute phases, which will evenfurther enhance schedulability. We have used this approach in a real-time compiler tool [8], andthere is reason to believe that its use would be even more e�ective here.Finally, perhaps the greatest challenge lies in incorporating scheduling decisions into the con-straint solver. We believe such policy-speci�c strategies can be used to signi�cantly help in pruningthe search space.References[1] Alfred V. Aho, Ravi Sethi, and Je�rey D. Ullman. Compilers: Principles, Techniques, andTools. Addison Wesley Publishing Company, 1986.[2] R. Alur, C. Courcoubetis, and D. Dill. Model-Checking for Real-Time Systems. In Proc. ofIEEE Symposium on Logic in Computer Science, 1990.[3] N. C. Audsley, A. Burns, M. F. Richardson, and A. J. Wellings. Hard Real-Time Scheduling:The Deadline Monotonic Approach. In Proceedings Eighth IEEE Workshop on Real-TimeOperating Systems and Software, pages 133{137, May 1991.[4] N. C. Audsley, A. Burns, M. F. Richardson, and A. J. Wellings. Data consistency in hard real-time systems. Technical Report YCS 203 (1993), Department of Computer Science, Universityof York, England, June 1993.[5] G. Berry, Sabie Moisan, and Jean-Paul Rigault. ESTEREL: Towards a synchronous andsemantically sound high level language for real time applications. In Proceedings IEEE Real-Time Systems Symposium, pages 30{37. IEEE Computer Society Press, December 1983.[6] Alan Burns. Preemptive priority based scheduling: An appropriate engineering approach. InSang Son, editor, Principles of Real-Time Systems. Prentice Hall, 1994.21
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