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Chapter 1

Introduction

As the size of data available for processing increases, new models of computation
are needed. This motivates the study of data streams, which are sequences of
information which need to be read in order, one element at a time. Streaming
algorithms process these data streams, with the caveat that their working memory
is significantly less than the size of the whole data stream. The field of streaming
algorithms began in the eighties with results on computing basic properties of
sequences, such as the K-th moment.

As the internet evolved, and more and more applications started to be modeled
as graphs, the study of graph streaming algorithms commenced. Here the data
stream consists of the edges of a graph, presented one at a time. Examples of
real-world graphs which are too big to fit a traditional offline computation model
are the friendship graph of Facebook or the call graph of Skype.

It turns out that many problems which are easy to compute in an offline setting
(such as single-source shortest paths) become hard to do in a single pass streaming
graph algorithm, where the memory available to such an algorithm is less than O(n),
were n is the number of vertices of the graph. Therefore alternative models, such as
the semi-streaming model, have been proposed in order to be able to study which
graph problems can be solved efficiently in a streaming setting. The semi-streaming
model is defined by an O(n polylog n) space restriction, which is significantly less
than the memory required to store all edges for dense graphs.

In parallel with the development of graph streaming algorithms, the increase in
the size of available DNA available for processing sparked the development of the
field of bioinformatics. A large strand of DNA can be interpreted as a data stream,
where individual elements are part of the alphabet {A, C, G, T}. One of the ways
to model this computation is to consider DNA strands as words. Many important
problems on DNA, such as protein folding, can be reduced to computing certain
combinatorial properties, such as repetitions, on words. The notions of repetition
and primitivity are defined as fundamental concepts on sequences used in a number
of fields, among them being stringology and algebraic coding theory.

In this thesis, we attempt to study both types of data streaming problems. The
second chapter deals with lower bounds on promised graph streaming problems.
Promised in this context refers to the guarantee that the graph to be streamed will
have a certain property (in our case the graphs are guaranteed to be forests). We
show an (n) lower bound for several problems, such as determining the maximum
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size of a connected component. The end of the chapter presents an adaptation of
the FRT and Racke tree decomposition methods for the streaming case. The second
chapter deals with positive, upper bound results on studying an offline variant of
repetitions on words. Specifically, we present two problems related to computing
pseudo-repetitions efficiently on words. A word w is a pseudo-repetition if it equals
a repeated catenation of one of its proper prefixes t and its image f(t) under some
morphism or antimorphism. The chapter also presents the streaming variants of
the two problems.

1.1 Summary of results

This thesis is organized as follows:

Chapter [2| presents our results related to promised streaming graph problems,
which are based on the joint work with Hajiaghayi and Cormode. It is organized
in five sections. The first one, Motivation, presents the motivation for considering
streaming graph problems. The chapter then continues with a section on the pre-
liminaries required for understanding the results and literature review. The third
section gives a comprehensive review on the state of streaming and graph streaming
problems. The fourth section, Lower bounds for the single pass model gives lower
bounds for some problems on forests, showing that even for this restricted case
it is hard to design algorithms which use less than linear memory in terms of the
number of vertices. The final section gives an adaptation for the FRT and Racke
algorithms to the streaming case.

Chapter |3| presents upper bounds on two problems related to computing rep-
etitions on words. It extends on prior work we did in the area of combinatorial
properties, N P-Completeness and combinatorial algorithms on words, and is based
on a paper presented at STACS 2013 [GMM™13|, by Gawrychowski, Manea, Mercas,
Nowotka and Tiseanu. The chapter defines anti-/morphism and f-repetitions using
these anti-/morphisms. The chapter ends by presenting two streaming variants for
the two problems studied in an offline setting.

Finally, Chapter {4| presents further problems of interest related to the work
presented in the thesis.



Chapter 2

Streaming problems

2.1 Motivation

The model of data streams is a natural extension of offline problems, motivated by
the increase in the size of information relative to the capacity of processing. By a
data stream we mean a sequence of information which needs to be read in order.
The individual elements of the data stream can take multiple forms. One of the
earliest problems in this area was the study on the space needed to approximate
the K-th moment of a sequence of numbers using at most P passes over the input
stream, as presented by Munro and Paterson [MP80]. In the paper the individual
elements of the data stream were numbers.

Graph problems were considered by Henzinger and Raghavan [Rag99] in one
of the earliest papers on the data-stream model. Their paper tackled a number
of problems including pointer jumping problems in relationship to the degrees
of various nodes in a directed layered graph. Unfortunately, many of the results
showed that a large amount of space is required for these types of problems. Other
early work studies the problem of counting the number of triangles in a graph
and estimating common neighborhoods. As before, a significant portion of these
results were negative. It appeared that more complex computation with only a
small amount of space (linear) was not possible in this model.

So far, most graph algorithms have a need for access to data in an adaptive
fashion. Given that the entire graph can not be stored with the amount of space
provided, using a traditional graph algorithm may necessitate a large number
of passes over the data. This has led to various specific stream models adapted
to processing graphs, such as the Semi-Streaming, W-Stream, and Sort-Stream
models. The semi-streaming model, which is the most popular in the contemporary
graph streaming literature, is defined by an O(n polylog n) space restriction.
Note that for dense graphs (for which |E| approaches O(|V]?)) this represents
considerably less space than that required to store the entire graph. This restriction
was identified as an apparent “sweet-spot” for graph streaming in a survey article
by Muthukrishnan [Mut05] and was first explored by Feigenbaum, Kannan and
McGregor [FKMT05]. The W-Stream and Stream-Sort models, which were described
earlier, were introduced by Demetrescu and Aggarwal, respectively.

Recently, the increase in the size of the data available today for processing has
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given rise to the field of Big Data in the industry, of which the Map / Reduce
model is the most common, which was introduced by Dean and Ghemawat [DGO0S].
The Map / Reduce framework is built with computations over a large size of
information in mind, for which the time of computation is not important. One of
the main applications of this model is indexing a large corpus of information, which
is an operation which doesn’t need to be done in an online fashion, but can be
rather scheduled every few days. One particularly interesting development is the
appearance of frameworks which deal with large amounts of data which arrive in a
streaming fashion (for example tweets). In this case the results need to be computed
in an online manner as opposed to having the luxury of offline computation such as
for Map / Reduce tasks. One representative streaming framework in this emerging
field of real-time computation is the Storm framework [Marll], an open source
project maintained at Twitter.

To see the connection between real-world problems and the graph streaming
instances presented in this work note that massive graphs arise naturally in many
big data environments today. One of the more prominent examples are social
networks, such as Facebook, Twitter or LinkedIn. The friendship graph of Facebook
can be considered a streaming graph instance, since friendship relationship are
generated dynamically and with a large volume. Also, follow actions on Twitter
can be thought of as directed edges from one user to another. One of the major
issues of classical graph algorithms, when applied to massive real-world graphs
such as the web, is the need for random access to the edge set. Streaming graph
algorithms on the other hand don’t have this requirement.

2.2 Preliminaries

2.2.1 Data streams

A data stream [Rag99] is a sequence A =< xq,xs,...,2, > of data elements z;
such that each element can be read only after the previous one (in increasing order
of indices). Note that the data elements don’t have to be numbers, an can be in
fact, as we will see, edges of a graph.

The data stream can be of multiple types [Mut05]:

e Time series model. Here each x; equals one data element of A, presented in
increasing order of 7. An example would be a graph stream where only edge
additions are allowed. This is the most commonly used model.

e Cash register model. Here each x; = (j,v), v > 0 represents an increment
to A[j]. Specifically, when z; is encountered, A[j|; = A[j]i—1 + v, with A;
representing the state of the stream after encountering x;.
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o Turnstile model. Here each x; = (j,u) represents and update to A[j]. Specifi-
cally, when z; is encountered, A[j]; = A[j];—1 + v, with A; representing the
state of the stream after encountering x;. In this case u can be less than
0. A strict turnstile model is defined as satisfying the requirement A[j] > 0,
Vj € [n]. An example of a strict turnstile model would be a graph stream
where both edge additions and deletions are allowed (obviously an edge can
only be deleted if it has already been added to the graph).

2.2.2 Graph streams

In the following, G = (V, ) represents a graph G with vertex set V' and edge set
E. For simplicity n represents the number of vertices and m the number of edges.

A graph stream is a data stream where each data element represents an edge e;
of a graph G. Specifically,

Definition 1 ( [FKM™05]). A graph stream is a sequence of edges e;,, €, ..., €,
where e;, € E and iy, 1y, . ..,%n is an arbitrary permutation of [m] = {1,2,...,m}.

The graph is revealed to the algorithm one edge at a time. Normally, it is
assumed that the elements z; of a data stream are distinct. In the case of graph
streams we discern between three variants:

e dynamic graphs, where multiple edges are allowed between vertices, defining
a multi-graph.

e directed graphs, where an element z; = (u,v) defines a directed edge
e weighted graphs, where an element x; = ((u,v),w) defines a weighted edge

Unless explicitly stated, we will be using the normal definition of undirected
graphs in which multiple edges between vertices are not allowed.

The complexity of a stream graphing algorithm [FKMT05] is determined by the
space it uses, the time it requires to process each edge and the number of passes it
takes.

Definition 2 ( [FKM705]). A streaming graph algorithm computes over a graph
stream using S(n,m) bits of space. The algorithm may access the input stream
in a sequential order (one-way) for P(n,m) passes and use T'(n,m) time for each
edge.

One particularly popular streaming graph algorithm model is the semi-streaming
graph algorithm model, where the algorithm can use space O(n - polylogn). This
allows more than O(n) memory (which is not sufficient even for the simplest
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problems), while at the same time not allowing the storage of the entire graph in
memory.
Specifically,

Definition 3 ( [FKM™05]). A semi-streaming graph algorithm is a streaming graph
algorithm which computes over a graph stream using S(n,m) = O(n - polylogn)
bits of space.

The order in which edges arrive is also subject to a choice of model. The most
common scenario is the one in which the edges of the streamed graph arrive in a
manner chosen by an adversary, such that it presents a worst-case scenario for the
streaming algorithm. The incidence model, where edges incident on the same node
arrive consecutively has also been studied. Finally, in some of the problems we
study the graphs have a certain property (for example, they don’t contain a cycle).
We introduce this concept as promised streaming problems, and we define it as:

Definition 4. A promised streaming problem with respect to a property P is a
streaming problem where the graph to be streamed G' = (V| E) obeys P(G) = true.

2.2.3 Communication complexity

One of the main tools used to show lower bounds for graph streaming problems is
taken from the field of communication complexity [Rag99]. Let X, Y and Z be
finite sets and let f: X x Y — Z be a function.

Definition 5. The (2-party) communication model consist of two players, Alice
and Bob. Alice is given an input x € X and Bob is given an input y € Y and
they want to compute f(z,y). Alice does not know y while Bob does not know
x. Therefore, they need to communicate (exchange bits) according to an agreed
upon protocol. The communication complexity of a function f is the minimum over
all communication protocols of the maximum over all x € X and all y € Y of the
number of bits that need to be exchanged to compute f(z,y).

The protocol can be deterministic, Monte Carlo or LasVegas. When the com-
munication is restricted to one player sending and the other receiving, then this is
called a one-way communication complexity. In a one-way protocol, it is necessary
to specify which player is the sender and which the receiver. In this case only the
receiver needs to be able to compute f.

Two well-known problems from the area of communication complexity are the

INDEX and DISJOINTNESS problems.

Problem 1 (INDEX). Let Alice have a string 2 € {0, 1}? and Bob have a natural
number i € [n]. Bob wants to compute INDEX(z, i) = z; by receiving a single
message from Alice (one-way complexity model).
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This problem has a well known lower bound of €2(n) which need to be exchanged
between Alice and Bob in the one-way communication complexity model for Bob
to compute INDEX(z, i). Interested readers can refer to [FKM™05] and [FKM™08|
for more uses of communication complexity results used to prove lower bounds for
graphs streaming algorithms.

A related but stronger result is obtained from the following problem:

Problem 2 (DISJOINTNESS). Let Alice have a string € {0,1}? and Bob
have a string y € {0,1}2. Bob wants to compute whether there is an index i
such that x; = y; = 1, that is DISJOINTNESS(z, y) = “istherean 1 < i <
n such that x; = y; = 17”7 by exchanging as many messages as needed (multi-way
complexity model).

This problem also has a well known lower bound of Q(n) bits which need to be
exchanged between Alice and Bob for Bob to compute DISJOINTNESS(z, i), over
multiple passes. The key difference to problem INDFEX is that the lower bound of
2(n) bits holds even when multiple exchanges between Alice and Bob are allowed.
Therefore, this allows to prove lower bounds for graph streaming problems even in
the multi-pass model.

2.3 Related work

The concept of data streams and graph streaming algorithms was introduced by
Raghavan et al. in |[Rag99]. Their work focuses on establishing a connection
between communication complexity and lower bounds for streaming algorithms,
as well as analyzing the relationship between the number of passes and space
complexity. Ragahvan et. al. introduce and study the MAX, MAXNEIGHBOR,
MAXTOTAL and MAXPATH problems on graph streams. They show a Q(kn?)
lower bound and a O(kn?lgn) space solution for each of those four problems. A
reduction from communication complexity problems has been used before by Alon,
Mathias and Szegedy |[AMS96|, where they showed lower bounds for computing
the k-th frequency moment of a sequence in one-pass. They draw on earlier work
by Munro et al. [MP80] showed an upper bound of n'/*1gn and a lower bound
of n'/* for computing the k — th largest element out of a sequence of n elements
using P passes, for large enough k.

Muthukrishan gives [Mut05] a relevant study of the the state of data streaming.
He defines data stream models, such as the time series model, cash register model
and turnstile model. The study also covers the main approaches used for streaming
algorithms, such as sampling or using random projections. Most of the work on
graph streaming algorithms up to that point focused on the extremes of using either
enough dynamic memory sufficient to store the whole graph in memory, or using
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poly lgn space. However, most of the streaming graph problems turned out to be
hard to do in one-pass even in a linear space model. For example, Buchsbaum,
Giancarlo and Westbrook showed [BGWO03| that finding two vertices which have a
large enough set of common neighbors is essentially equivalent to storing the whole
graph (which would need O(n?) in the worst case). McGregor [McGO05| studied
maximum cardinality matching in graphs for which he derived an approximation
algorithm using O(n) space but a constant number of passes.

Therefore, Muthukrishnan proposed a model of O(n polylgn) space, where n
is the number of vertices. This model allows for more than constant memory per
vertex, while at the same time not allowing the storage of the whole graph (which
could take O(n?) for dense graphs).

Feigenbaum et. al took on Muthukrishnan suggestion with their landmark
paper [FKM™05|, On graph problems in a semi-streaming model. The paper defined
semi-streaming graph algorithms for the first time as streaming algorithms which
use O(n polylgn) space. The paper gives a one-pass semi-streaming algorithm for
computing a bipartition for a graph, a one-pass semi-streaming algorithm for findind

a maximal matching, as well a semi-streaming algorithm for unweighted bipartite

1
graph matching that computes a O(2/3 — €) approximation in (’)(lgee ) passes. Other

results include a one-pass O(1/6) approximation algorithm for the maximum graph
weighted matching and a O(lgn/lglgn) approximation for diameter and shortest
paths in weighted graphs. Finally, using reductions from classic communication
complexity problems, the authors give a Q(lg' “n) lower bound for the the above
two problems in unweighted graphs.

Their paper led to continuation papers studying streaming graph problems in
the semi-streaming model. Zelke gives [Zel06] two semi-streaming algorithms for
the deciding the k-connectivity of a graph. One of them takes O(k*n) time per
edge while needing only one pass, while the other takes O(k + «(n)) time per edge
but needs k + 1 passes.

The authors of the original paper on the semi-streaming model continued their
exploration of positive results and lower bounds [FKM™08|. Feigenbaum et al.
give a semi-streaming one-pass algorithm for computing the 2¢ + 1 spanner of a
graph, when t = Q(lgn/lglgn) resolving on the open question they proposed in
the previous paper. The paper also gives a lower bound of either O(k) passes or
Q(n'+Y/F) for computing the first & layers of a breadth first search (BFS). Given
the importance of BFS in may graph algorithms their result is a testament of the
hardness of traditional graph algorithms in the semi-streaming model. Finally, the
paper gives a lower bound for t-approximations of graph distance. Specifically, they
prove an Q(n'+1/) lower bound for the space required to compute a t-approximation
of the graph distance between two nodes, in the one-pass model. From that they
derive lower bounds for computing other graph properties, such as the length of
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the shortest cycle.

Given the inherent challenge of computing traditional graph properties in
one-pass, even in the semi-streaming case, researchers have explored the trade-
off between space and the number of passes. Demetrescu, Finocchi, and Ribi-
chini showed [DFR09] an algorithm for computing single-source shortest paths in
O((nlg**n)/y/s), using s bits when the weights of the graph are small integers.
Furthermore, they show a O((nlgn)/s) pass algorithm for undirected connectivity,
also using O(s) bits of space.

As the field of streaming graph algorithm expanded, so did the methods used.
Sampling is one of the main techniques used to prove (randomized) algorithms.
Ahn, Guha and McGregor [AGM12| introduce the concept of graph sketching, that
is computing linear sketches of a graph and then solving the problem offline, using
traditional graph algorithms. They used random projections of a graph (which is es-
sentially O(n?) space) to a d-dimensional space, with d << n?, while still preserving
many of the characteristics of the graph. The paper shows that d = O(n polylgn)
is enough for computing connectivity, k-connectivity, bipartiteness and any constant
approximation for the weight of the minimum spanning tree. If d is taken to be
O(n'*7), and if O(1/€) rounds of sketches which can be taken dependent of the
previous one are allowed, then graph sparsifiers, approximate maximum weighted
matching and the exact minimum spanning tree can be computed. Guruswami and
Onak |[GO12| proved tighter lower bounds for three p-pass streaming algorithms
for the following problems on n-vertex graphs: testing if an undirected graph has a
perfect matching, testing if two specific vertices are at distance at most 2(p+1) in an
undirected graph, and testing if there is a directed path from s to ¢t for two specific
vertices s and ¢ in a directed graph. Their paper gives an O(n{1 4 Q(1/p))/p°(1)
lower bound, which is a significant improvement given that prior to their result the
best lower bound was O(n?) in one pass, but no n!**(!) lower bound was known
for any p > 2.

In parallel to graph streaming problems, other classic offline problems, such
as pattern matching, were studied in a streaming model. For example, Clifford,
Efremenko, Porat B. and Porat E. [CEPPO0S8| showed that many offline pattern
matching algorithms could be adapted to a streaming model using a O(lgm) factor
overhead in the time complexity per symbol in the stream, where m is the length
of the pattern. Improvements for some pattern matching problems were made
but all of them needed space linear in m. It is actually possible to show that
any exact pattern matching algorithm will need O(m) space. In an important
development of the field, Porat B. and Porat E. [PP09] showed how to do exact
pattern matching using O(lgm) space and O(lgm) time per new stream symbol.
Using a method based on fingerprints they manage to find all matches with high
probability. Their approach was refined by Breslauer and Galil [BG11] to only use
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constant time per new stream symbol while using the same space. Jalsenius, Porat
and Sach [JPS11] made a further important development to the streaming pattern
matching community by presenting a sublinear near constant time algorithm for
parameterized matching in a stream, using near optimal space. Specifically they
give a randomized algorithm that uses O(1) worst-case time per character and
uses O(|X|1gm) words of space. The probability that the output is correct at all
text alignments is at least 1 — 1/n¢ for any constant ¢. Magniez, Mathieu and
Nayak [MMN10] studied the problem of computing DY C'K(s), in which they check
if a parenthesis expression is correctly matched, where s is the number of types of
parentheses. They show a one-pass randomized streaming algorithm for DY C'K (2)
using space O(y/nlgn) with polylgn time per letter and one-sided error. An
interesting find is that if two passes are allowed, one from the beginning and one
from the end of the expression, then the space requirement for DY C'K(2) becomes
O(g’n).

Below is a summary related to known problems in the single-pass, semi-streaming
model.

Lower Bound Upper Bound
Problem Approximation factor | Approximation Factor
Weighted Matching &, [FKM™05]
Unweighted Bipartite Matching 5, [FKM™05)
Unweighted Diameter O((lgn)'~)
Graph Spanner (1+¢)lgn, [FKM*05] |
Planarity Testing Exact Exact [FKM™05] B
Articulation Points Exact Exact [FKM™05]
Connectivity Exact Exact [AGM12]
k-Edge-Connectivity Exact Exact [AGM12]
Bipartiteness Exact Exact [AGM12]
Minimum Spanning Tree 1+ ¢ [AGM12]

2.4 Lower bounds for the single pass model

A natural direction to explore graph streaming algorithms would be to look for
problems which can be solved with sublinear working memory. As can be seen
in Related Work, most problems on regular graphs require at least linear space.
Therefore, one would be curious about the lower bounds for graph streaming
problems on particular classes of graphs. To this effect, let us study problems on
graphs which are forests (they donOt have any cycles).

From now on we are going to assume that |V'| = n. The key question we try to



2.4 LOWER BOUNDS FOR THE SINGLE PASS MODEL 11

explore in this section is: can we do better than linear space for some problems on
forest graphs ?

One natural problem to consider would be MAX-CONN-COMP, which asks for
the size of the largest connected component (for a graph which is a forest) :

Problem 3 (MAX-CONN-COMP). Let G = (V, E) be a forest graph. Find
the smallest £ € N such that there isn’t any connected component in G with size
larger than k.

Alternatively, the decision version of the above problem is:

Problem 4 (MAX-CONN-COMP (k)). Let G = (V, E) be a forest graph. Is
there a connected component of size at least k£ > 3 in graph G 7

Another important problem on a tree is finding the diameter:

Problem 5 (TREE-DIAM(k)). Let G = (V, E) be a tree. Is the diameter of G
at least k > 37

Finally, we are interested in determining if a forest graph is in fact a tree:

Problem 6 (IS-TREE). Let G = (V, E) be a graph. Is G a tree 7

(note that the only non-trivial case for this problem happens when |E| = |V|—1.
If that is not the case we can answer the problem directly with NO.) A subproblem
useful for the study of Problem [6] is

Problem 7 (INDEX-SAME). Let Alice have a string z € 0,1% and Bob have a
natural number i € [n — 1]. Bob wants to compute INDEX-SAME(z, i) = 'is x; =
x;+17" by receiving a single message from Alice (one-way complexity model).

In the following we will give linear space lower bounds for all of the above
problems.

Theorem 1. Any single pass streaming graph algorithm solving MAX-CONN-
COMP (k) on forest graphs needs O(n) working memory.

Proof of Theorem []. We are going to prove that even such a basic problem needs
at least O(n) working memory, matching the upper bound. For this we will make
use of the classic problem INDEX from communication complexity.
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We will give a reduction of Problem [1] to Problem [4] Let IN = (z,i) be an
instance of INDEX. Let us construct the instance G = (V = VUV, UV, E =
EALICE U EBOB) of MAX—CONN—COMP(G, k)

We define the vertices as:

o Vi={l,ly,.... 1}

o V. ={ry,ra,....10}

o Vy={dy,ds,...,dp o}

We define the edges as:

® Eavice =A{(lj,r)lz; =1, j € [1,n]}

o Egop = {(lj,;r;)} U{(d;,dj+1)lj € [1.k — 3]}

For clarity, we present the resulting graph G for an instance IN = (1011, 3) and
k= 4.

11 — rl
12 r2
13 r3 dl d2
14 — 14

Clearly, G has no cycles. The crux of the construction is the following:
MAX-CONN-COMP(G, k) = 1 & INDEX(z, i) = 1. To see that, notice that
every connected component in G has size 1, 2, k — 1 or k. The only possible
component of size k is the one containing i + n. If INDEX(z, i) = 1 then that
component would have size k. Else it would have size k — 1. It is easy to see
now that any single pass streaming algorithm A for Problem 4] using f(n) working
memory, where f is an arbitrary function, implies a protocol for Problem|[I| where
f(n) bits are instance of INDEX. We will assume localization of = and i in the
following (note that only Bob knows 7). Let Alice run A on the edges encoded
by x. She obtains graph G’ = (V, Ear;cr). She then sends the resulting memory
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image of f(n) bits to Bob. Bob continues the execution of algorithm A by adding
Epop and obtains the final graph G = (VU V, U Vy, Earrcp U Egop). If the
answer A(G, k) gives at the end is 1, Bob can conclude that INDEX(z, i) = 1. Else,
INDEX(z, i) = 0. The total communication between Alice and Bob is O(f(n))
bits. Since we established earlier that we need to exchange a linear number of bits
between Alice and Bob to solve Problem [I| we can establish that f(n) is indeed
O(n), and that a sublinear space solution for Problem {4| does not exist. |

It is actually possible to prove the following slightly stronger theorem:

Theorem 2. Any multi pass streaming graph algorithm solving M AX-CONN-
COMP (k) on forest graphs needs O(n) working memory.

Proof of Theorem[J. One could prove a slightly stronger version of the above by a
reduction from the classic communication complexity problem DISJOINTESS:
We will now give a reduction of Problem [2| to Problem [4]

Let DISJ = (z,y) be an instance of DISJOINTNESS. Let us construct the
instance G = (V =V, UV, UV, UVy, E = Earicr U Egop U Ep) of MAX-CONN-
COMP(G, k).

We define the vertices as:

o Vi={l,ly,.... 1}

o V,,={my,mo,...,m,}

o V. ={ry,ro,....10}

o Vy={dylje[l,k—4],ie(l,n]}

We define the edges as:

® Eavicp ={(lj;m;)|z; =1, j € [1,n]}

e Egop = {(m;,rj)ly; =1, j € [1,n]}

o Ep={(rj;dj)lj € [Ln]} U{(dji, djriny)li € 1,k — 4]0 € [1,n]}

For clarity, we present the resulting graph G for an instance DI.SJ = (1011, 0101)
and k = 4.
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11 — ml rl — di1
12 m2 — r2 — d21
I3 — m3 r3 — d31

14 m4 r4 d41

The crux of the construction is the following: MAX-CONN-COMP(G, k) =k <
DISJOINTESS(z,1) = 1. To see that, notice that every connected component
in G has size 1, 2, £ — 1 or k. The only possible component of size k is one where
both z; and y; are 1, for some 1.

It is easy to see now that any multi pass streaming algorithm A for Problem
using f(n) working memory, where f is an arbitrary function, implies a protocol for
Problem2| where f(n) bits are exchanged. We will assume localization of = and
y in the following (note that only Bob knows y). Let Alice run A on the edges
encoded by z. She obtains graph G' = (V, U V,,, EDGFEsr;cg). She then sends
the resulting memory image of f(n) bits to Bob. Bob continues the execution of
algorithm A by adding the edges in EDGFEgop and EDGFEp and obtains the final
graph G = (‘/l U Vm U ‘/r U ‘/d, EDGEAL[CE U EDGEBOB U EDGED) If the answer
A(G, k) gives at the end is 1, Bob can conclude that DISJOINTNESS(z, i) = 1.
Else, DISJOINTNESS(z, i) = 0. The total communication between Alice and Bob
is O(f(n)) bits. Since we established earlier that we need to exchange a linear
number of bits between Alice and Bob to solve Problem [2] we can establish that
f(n) is indeed O(n), and that a sublinear space solution, even with multiple passes,
for Problem Ml does not exist. [

Next we concern ourselves with the lower bound for Problem [B

Theorem 3. Any single pass streaming graph algorithm solving TREE-DIAM (k)
on a tree needs O(n) working memory.

Before we can lay out the proof for Theorem |3| we need the aid of the following
theorem:

Theorem 4 (LSUBSEQ). Given a bit sequence x of size n, there is a single pass
streaming algorithm LSUBSEQ which uses O(lgn) bits of memory and outputs
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(1,7) such that x, = 0,Vk € [j, 7 +1—1] and there is no I' > [ such that the previous
property holds. In case of multiple solutions the algorithm picks the minimal 7.

Proof of Theorem[4. Tt is quite easy to see how this problem can be solved by a
single pass algorithm which maintains 3 counters (one for the start of the best
sequence seen so far, one for length of the current subsequence of 0's and one for
the best length seen so far). This requires O(lgn) bits of memory.

|

Now we are ready to prove Theorem [3}

Proof of Theorem[3 In the following we will show the same lower bound as for
Problem {4, by using a similar approach.

We propose the following protocol for solving INDEX (x,7): Alice starts with
a graph containing only the dummy vertex 0, that is Gy = (Vo, Ep) with V5 =0
and Ey = (). As she streams bit x;, she builds graph G; = (G;, E;) with 2 choices
depending on z;:

[ 1fx,:0thenV,:V;_1U2and EZ:EZ_lLJ(Z—]_,Z)
° leEZ: 1 then ‘/;:‘/;_1Uiand Elel_lLJ(O,Z)

Intuitively, if z; = 0 she connects a new vertex to a previous chain. Else she
connects a new vertex to the dummy vertex 0. The resulting graph is a spider
graph having vertex 0 as the root. Assume WLOG that G, is not a chain (or
else the problem would be trivial). Also assume WLOG that x; = 1 (or else we
could stream the augmented string 1z of length n + 1). In parallel, Alice runs
algorithm LSUBSEQ(x). After streaming the whole input x, Alice sends the
resulting memory image Mem(G,,) of the graph constructed so far together with
the output of LSUBSEQ(x) (which takes only O(lgn) bits) to Bob. Given that
we want to prove a lower bound of O(n) bits we can afford the extra O(Ign) bits.
Bob receives the memory image of the graph streamed Mem(Gn) so far together
with the pair (I, ) given by LSUBSEQ(z). Bob uses TREE - DIAM(k) to find
the diameter of GG,,. Note than in order for Bob to not alter his memory image,
he creates an auxiliary copy of the memory image he has so far and runs TRFEE -
DIAM(k) on it. Let the diameter that he finds be d (by iterating k over all possible
values). Given that GG, is not a chain, the diameter of G,, would be composed by
adding the lengths of the 2 longest branches of GG,,. We already know [, which is the
length of the longest branch of G,,. Therefore, we are able to get I’ = d — [ which is
the length of the second-longest branch of GG,,. There are 3 cases to consider:

o if i € [j,7+ 1 — 1] then clearly INDEX (x,1) = 0 (vertex i is strictly part of
a branch in G,,).
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e if i = j — 1 then clearly INDEX (x,i) = 1 (vertex i is the start of a new
branch in G,,).

e we add a chain of length I’ — 1 to vertex ¢, in the same manner as for proving
the lower bound for Problem [4] .

For the third case, Bob runs TREE-DIAM(k) again to find the diameter for this
new graph. The key point to note is that the diameter increases iff INDEX (z,i) =
0. Note that if INDEX (z,i) = 1 then adding a chain of length I’ —1 to vertex ¢ will
not increase the diameter. Let c¢y_; be the end point of the chain added to vertex i,
and let e; be the last vertex on the branch containing i (before the chain was added).
Clearly, dg, (0,cp—1) =1'. Also, dg, (ei,cl' — 1) =1'"—1+dg, (i,e;) < U'—1+1—1 < d.
On the other hand, if INDEX (x,7) = 0 then adding a chain of length I’ — 1 to ¢
would create a path of length dg, (0,cp—1) > 1U'=1+2 > 1"+ 1 because dg, (0,7) > 2.
Given that there is another branch of length [ in G,, (by assumption of the three
cases we considered) we would get a diameter of at least ' —=1+2+1 > I'+1+1 > d.
Therefore, we proved that we can use TREE-DIAM(k) to solve INDEX (x,1).
Therefore, Problem [5| has a lower bound of O(n) bits of working memory. |

Also, please note that the graph constructed by our protocol is connected at all
times. Therefore, our result holds in a more restrictive streaming model in which
we assume the streamed graph is connected at all times.

We will now show a lower bound for Problem [0 First, we need the following
theorem:

Theorem 5. Any single pass protocol for INDEX-SAME needs O(n) memory.

Proof of Theorem[§. We will now prove that this problem has a lower bound of
O(n) bits which need to be transmitted by Alice in an one-way complexity model.
We will use an reduction from INDFEX to this problem. For this we give the
following protocol for solving INDEX:

Let IN = (z,j) be an instance of INDEX. Alice builds the following string 2’
from IN : 2’ = 2.z} where 2} = 01 if z; = 0 and 2 = 11 otherwise, for i € [n].
Note that |2'| = 2n. Alice sends the representation of 2’ to Bob. Bob can now
compute a = INDEX — SAME(2',2-(j —1) +1). It is easy to see now that
a=0«< INDEX(z,j) =0 and vice-versa. We have now proven a lower bound of
O(n) bits needed by any one-way protocol solving INDEX-SAME.

[

We can proceed to prove the following theorem:

Theorem 6. Any single pass streaming algorithm solving IS-TREE needs O(n)
working memory.
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Proof of Theorem [6]. We will outline a protocol showing how IS-TREE can be used
to solve INDEX-SAME.

Let INS = (z,j) be an instance of INDEX-SAME. Alice starts with the empty
graph G = (V, E) with V' = () and F = (). She now streams x;,i € [n] as follows:

e if x; = 0 then she adds edge (ZFRO,1) to E.
e if z; = 1 then she adds edge (ONE, i) to E.

Below is an example for a string x beginning with 01 and ending with 1.

ZERO ONE

PP SN

1 2 n

After streaming the edges defined by x in the fashion described above, Alice
has a graph with n + 2 vertices and n edges. She sends the representation of the
graph to Bob. Bob now adds the edge (7,7 + 1) using his knowledge of j. Please
note that the graph now has n 4+ 1 edges, therefore it will be a tree if and only if
it is a connected graph. Given the way G was constructed it is connected if and
only if vertices j and j + 1 are either not both connected to ZFE RO or both not
connected to ON E. Notice that this is equivalent to z; # x;;1 which further means
that INDEX-SAME(z, j) = 1 < IS-TREE(G) = NO. We showed the required

reduction. [ |

2.5 Adapting the FRT and Racke algorithms to streaming
model

In this section we will discuss an adaption of the FRT and Racke algorithms to
a single pass semi-streaming graph model. Specifically, we sketch a proof for the
following two results:

Theorem 7. For ¢ > 0, and a weighted undirected graph on n wvertices, whose
mazximum edge weight, Wyae, and minimum edge weight Wy, satisfy lg% =
polylog n, there is a semi-streaming algorithm that constructs a (1+¢)lgn? spanner
of the graph which is a tree. The algorithm uses O(1/e - n polylog n) bits of space

and worst case processing time for each edge is O(1/e - n polylog n).

and
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Theorem 8. For € > 0, and a weighted undirected graph on n wvertices, there is
a semi-streaming algorithm that constructs a spanning tree which approximates

the congestion in the original graph by (1 + €) O (Ign). The algorithm uses
O(1/e - n polylog n) bits of space.

In the following we assume that the original graph is G.

Proof of Theorem[7. Let d4(z,y) denote the distance between vertices z and y in
graph A. Note that using Theorem 5 in [FKMT05] gives us a O(lg (1 + ¢€)lgn)
spanner of the graph. Let this graph be G’. This means that for any pair of
vertices x and vy, dg(z,y) < de(x,y) < lg(1+¢€)lgn - de(x,y). Applying the
classic FRT algorithm (from [FRTO03|) to graph G’ we get a tree T which in
expectation is a Ign spanner of GG'. This means that for any pair of vertices x and
y, Elde(z,y)] < Eldr(z,y)] <lgn- Elde(z,y)]. Therefore, it must mean that for
any pair of vertices z and y, E[dg(z,y)] < Eldr(z,y)] < (1+¢€)(Ign)? - Eldg(z,y)],
making 7' in expectation a (1 + ¢)(lgn)? spanner for the original graph G, proving
the theorem. |

A similar technique yields a proof for the adaption of the Racke algorithm
(described in [R4c08]) to a single pass semi-streaming model.

Proof of Theorem[§ We will start by applying the algorithm in [AG09] to get a
graph G’ which approximates every cut in the original graph G by a factor of 1+ €.
After that we use the Racke algorithm on graph G’ to get a spanning tree 7" (which
is also a spanning tree for G) which approximates the congestion pf the edges by
O Ign for G’, giving the combined congestion result for graph G as stated in the
theorem.

Too see that in more detail, consider what happens to the load of the edges in
T, per Racke algorithm. Localize T" as the spanning tree (note that it is a spanning
tree for both G and G’). Denote loadx(e) as the load of edge e in graph X. Take
an edge e € G'. If e ¢ T, then loads/(e) = 0, and loadg(e) would also be 0. If
e € G', note that the way the load is calculated guarantees that loadq (e) is within
a factor of 1 + € from loadg(e), because G’ approximates the weight of every cut
within a factor of 1 + €. Combining both cases, we get that the load of the edges in
G’ [ |



Chapter 3

Finding Pseudo-repetitions

3.1 Introduction

The notions of repetition and primitivity are fundamental concepts on sequences
used in a number of fields, among them being stringology and algebraic coding
theory. A word is a repetition (or power) if it equals a repeated catenation of one
of its prefixes. We consider a more general concept here, namely pseudo-repetitions
in words. A word w is a pseudo-repetition if it equals a repeated catenation of one
of its proper prefixes t and its image f(¢) under some morphism or antimorphism
(for short “anti-/morphism”) f, thus w € t{t, f(t)}.

Pseudo-repetitions, introduced in a restricted form by Czeizler et al. [CKS10],
lacked so far a well-developed algorithmic part. Given that the motivation for
studying these objects originates from bioinformatics, where efficient algorithms
are crucial, producing such tools seems not only natural but even necessary. This
work is aimed to fill this gap. We investigate the following two basic algorithmic
problems: decide whether a word w is a pseudo-repetition for an anti-/morphism f
and find all k-powers of pseudo-repetitions occurring as factors in a word w, for an
f as above; in these problems w is given as input, while f, although of unrestricted
form, is fixed, thus not a part of the input. We establish algorithms and complexity
bounds for these problems for various types of anti-/morphisms thereby improving
significantly the results from |[CKX12|. Apart from the application of standard
stringology tools, like suffix arrays, we extend the toolbox by nontrivial applications
of results from combinatorics on words.

Background and Motivation. The motivation of introducing pseudo-repetition
and pseudo-primitivity in [CKS10] originated from the field of computational
biology, namely the facts that the Watson-Crick complement can be formalized as
an antimorphic involution and both a single-stranded DNA and its complement (or
its image through such an involution) basically encode the same information. Until
now, pseudo-repetitions were considered only in the cases of involutions, following
the original motivation, and the results obtained were mostly of combinatoric nature
(e.g., generalizations of the Fine and Wilf theorem - see, e.g., [CKS10, MMN12]).

A natural extension of these concepts is to consider anti-/morphisms in general,
which is done in this paper. Considering that the notion of repetition is central
in combinatorics of words and the plethora of applications that this concept has

19
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(see [Lot97]), the study of pseudo-repetitions seems even more attractive, at least
from a theoretical point of view. While the biological motivation seems appropriate
only for the case of antimorphic involutions, the general problem of identifying
pseudo-repetitions can be seen as a formalization of scenarios where we are interested
in identifying sequences having a hidden repetitive structure. Indeed, as each pseudo-
repetition is an iterated catenation of a factor and its encoding through some simple
function, such words have an intrinsic, yet not obvious, repetitive structure.

Some Basic Concepts. For more detailed definitions we refer to |[Lot97].

Let V be a finite alphabet; V* denotes the set of all words over V and V* the
set of all words of length k. The length of a word w € V* is denoted by |w|. The
empty word is denoted by A\. We denote by alph(w) the alphabet of all letters that
occur in w. A word u € V* is a factor of v € V* if v = zuy, for some x,y € V*; we
say that u is a prefiz of v, if x = A, and a suffiz of v, if y = X\. We denote by wli]
the symbol at position i in w, and by w[i..j] the factor of w starting at position i
and ending at position j, consisting of the catenation of the symbols wli], ..., w[j],
where 1 < i < j < n; we define wli..j] = X if i > j. Also, we write w = u™lv
when v = uw. The powers of a word w are defined recursively by w® = X\ and
w™ = ww" ! for n > 1. If w cannot be expressed as a nontrivial power of another
word, then w is primitive. A period of a word w over V is a positive integer p
such that w(i] = w[j] for all ¢ and j with ¢ = j (mod p). By per(w) we denote the
smallest period of w.

The following classical result is extensively used in our investigation:

Theorem 9 (Fine and Wilf [FW65]). Let u and v be in V*. If two words a €
u{u,v}* and 5 € v{u,v}* have a common prefix of length greater than or equal
to |ul + |v| — ged(|ul, |v]), then u and v are powers of a common word of length

ged([ul, [v]).

A function f : V* — V* is a morphism if f(zy) = f(x)f(y) for all x,y € V*;
f is an antimorphism if f(zy) = f(y)f(z) for all z,y € V*. In order to define a
morphism or an antimorphism it is enough to give the definitions of f(a) for all
a € V. An anti-/morphism f : V* — V* is an involution if f?(a) = a for alla € V.
We say that f is uniform if there exists a number k with f(a) € V* for all a € V;
if k =1 then f is called literal. If f(a) = X for some a € V', then f is called erasing,
otherwise non-erasing.

We say that a word w is an f-repetition, or, alternatively, an f-power, if w is in
t{t, f(t)}T, for some prefix ¢ of w. If w is not an f-power, then w is f-primitive. As
an example, the word ACGT AC' is primitive from the classical point of view (i.e.,
1-primitive, where 1 is the identical anti-/morphism) as well as f-primitive for the
morphic involution f defined by f(A) =T, f(C) =G, f(T) = A, and f(G) =C.
However, for the antimorphic involution f(A) = T and f(C) = G (which is, in
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fact, a formalization of the Watson-Crick complement, from biology), we get that
ACGTAC = AC - f(AC) - AC, thus, it is an f-repetition.

Finally, the computational model we use to design and analyse our algorithms
is the standard unit-cost RAM (Random Access Machine) with logarithmic word
size, which is generally used in the analysis of algorithms.

3.2 Finding Pseudo-repetitions via f — morphisms

In the upcoming algorithmic problems, we assume that the words we process are
sequences of integers (called letters, for simplicity). In general, if the input word
has length n then we assume its letters are in {1,...,n}, so each letter fits in a
single memory-word. This is a common assumption in algorithmics on words (see,
e.g., the discussion in [KSBO06)).

In the first problem, which seems to us the most interesting one in the general
context of pseudo-repetitions, we approach the fundamental problem of deciding
whether a word is an f-repetition, for a fixed anti-/morphism f.

Problem 8. Let f : V* — V* be an anti-/morphism. Given w € V*, decide
whether this word is an f-repetition.

We solve this problem in the general case of erasing anti-/morphisms in O(nlgn)
time. However, in the particular case of uniform anti-/morphisms we obtain an
optimal solution running in linear time. The latter covers the biologically motivated
case of involutions from [CKS10]. This optimal result seems interesting to us, as
it shows that pseudo-repetitions can be detected as fast as repetitions, if the way
we encode the repeated factor (i.e., the function f) is simple enough, yet not the
identity. We also extend our results to a more general form of Problem [§] testing
whether w € {¢t, f(t)}T for a proper factor ¢t of w. Except for the most general case
(of erasing anti-/morphisms), where we solve this problem in O(nH@ lgn) time,
we preserve the same time complexity as we obtained for Problem 3]

Two other natural algorithmic problems are related to the fundamental combi-
natorial property of freeness of words, in the context of pseudo-repetitions. More
precisely, we are interested in identifying the factors of a word which are pseudo-
repetitions.

Problem 9. Let f: V* — V* be an anti-/morphism and w € V* a given word.
(1) Enumerate all (,7,¢), 1 <1i,j,¢ < |w|, such that there exists ¢t with w[i..j] €
{t, F()}".

(2) Given k, enumerate all (i,7), 1 < 4,5 < |w|, so there exists ¢ with wli..j] €

{t. f(&)}".
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Question (2) was originally considered in [CKX12], while the first one is its
natural generalisation. Our approach to question (1) is based on constructing
data structures which enable us to retrieve in constant time the answer to queries
rep(i, j,£): “Is there t € V* such that wli..j] € {t, f(t)}*?”, for 1 <i < j <n and
1 < /¢ < n, where n = |w|. For unrestricted f, one can produce such data structures
in O(n3?) time. When f is non-erasing, the time taken to construct them is O(n?),
while when f is a literal anti-/morphism we can do it in time O(n?). Once we have
these structures, we can identify in ©(n?) time, in the general case, all the triples
(i,4,) such that w(i..j] € {t, f(t)}¢, answering (1) in O(n%) time. Similarly, for
f non-erasing (respectively, literal) we answer question (1) in ©(n?) (respectively,
O(n?lgn)) time and show that there are input words on which every algorithm
solving this question has a running time asymptotically equal to ours (including
the preprocessing time). Unfortunately, the time bound obtained for most general
case is not tight.

Exactly the same data structures are used in the simplest case of literal anti-
/morphisms to answer the more particular question (2). We obtain an algorithm that
outputs in O(n?) time, for given w and k, all pairs (4, j) such that w[i..j] € {t, f(¢)}*;
this time bound is shown to be tight. Taking advantage of the fact that k is given
as input (so fixed throughout the algorithm) we can refine our solution for question
(1) in order to get a ©(n?)-time solution of question (2) for f non-erasing, again a
tight bound, and a O(n?k)-time solution for the general case. Our results improve
significantly the algorithmic results reported in [CKX12].

3.2.1 Prerequisites

We begin this section by presenting several number theoretic properties. For the
lemmas for which a proof is not shown here, the interested reader can consult the
paper on which this chapter is based [GMM™13]. Lemma (1| is used in the time
complexity analysis of our algorithms, while Lemma [2| and its corollary are utilised
in the solutions of Problem [0} Given two natural numbers k and n, we write k | n if
k divides n. We denote by d(n) the number of divisors of n and by o(n) their sum.

Lemma 1. Let n be a natural number. The following statements hold:

(1) Yi<o<nd(l) € O(nlgn), Yi<p<p,d(f) > nlgn, d(n) € o(n) for all e > 0
(see [Apo76]); (2) o(n) € O(nlglgn) (see [ApoT76]); (3) Xi<pcn(n — L+ 1)d(l) €
O(n*lgn). |

Lemma 2. Let n be a natural number. We can compute in O(n?) time a three
dimensional array T'[k|[m][(], with 1 < k,m,{ < n, where T[k][m][¢] = 1 if and
only if there exists a divisor s of ¢ and the numbers k£ and ko such that ky + ks = k
and kis + kosm = L. [ |
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Corollary 1. Let R be a fixed natural constant, and n and k be given natural
numbers. We can compute in O(nlgn) time a matrix Ty[m][¢] with 1 <m < R
and 1 < ¢ < n, where Ty[m][¢] = 1 if and only if there exists a divisor s of ¢ and
the numbers k; and ks such that &y + ko = k and ks + kosm = (. The constant
hidden by the O-notation depends on R. [

We briefly present the data structures we use. For a word u with |u| = n over
V C{1,...,n} we can build in linear time a suffix array structure as well as data
structures allowing us to return in constant time the answer to queries “How long is
the longest common prefix of u[i..n] and u[j..n|?”, denoted LCPref(u[i..n],u[j..n]).
For more details, see [Gus97, KSB06|, and the references therein. Also, for u
and an anti-/morphism f, we compute an array len with n elements defined as
len[i] = |f(u[l..7])|, for 1 <4 < n. For f non-erasing we also compute an array inv,
having | f(u)| elements, such that inv[i| = j if len[j] = ¢ and inv[i] = —1 otherwise.
These computations are done in O(n) time. Note the following result:

Lemma 3. Let w € V* be a word of length n. We compute the values per|i],

the period of wll..i], for all i € {1,...,n} in linear time O(n). Also, we compute
the values per[i][j], the period of wl[i..j], for all i, j € {1,...,n} in quadratic time
O(n?). [

Next we show an important property of pseudo-repetitions, for non-erasing
morphisms.

Lemma 4. Let f be a non-erasing anti-/morphism, and z,y, z be words over V
such that f(z) = f(z) = y. U {z,y}*z{x,y}* N {z,y}*z{z,y}* # 0 then z = 2.

Proof. We sketch the proof only for the case when f is a morphism; a similar
argument works for antimorphisms. If {z, y}*z{z, y}* N {z, y}*2{z, y}* # 0 then we
may assume without losing generality there exists w such that w = xw', w’ € {z,y}*,
and w € {z,y}*2{z,y}"

If z is a prefix of w, as f(z) = f(z) and f is non-erasing, we get easily that
x =z

Assume now that w = yzw” with w” € {z,y}*. It is not hard to see that from
|z| < |y| and w = zw’ we obtain that |z| is a period of y, and, thus, y = x‘u where
¢ > 0 and u is a prefix of . If y and x are powers of the same word v, then z = v*!,
y = v* and u = v, so z is also a power of v. Since f(z) = f(z) we conclude
again that x = z. Further, assume that x and y are not powers of the same word.
Hence, u is a proper prefix of z, i.e., x = uv for u # A # v. Consequently, v’
has a prefix of the form zPy, with p > 0, and it follows that after the first |y|
symbols of w both the factor vu and the factor z occur (as vu occurs after the first
ly| — |x| symbols of w’). Since |vu| = |x| we get easily that z = vu. So, |z| = |z|,
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y = f(z) = flvu) = f(v)f(u) and y = f(x) = f(u)f(v). It follows that y is a
power of a primitive word t. By an involved case analysis, it follows that x is a
power of the same primitive word as y, a contradiction.

In the case when w = yyzw” for some w” € {z,y}*, we can apply Theorem [J] to
the prefix of length 2|y| of w (which is a prefix of a word from z{z,y}*, as well)
and obtain that x and y are powers of the same word. Once again, we obtain that
Z=1. [

The next lemmas provide insights to the combinatorial properties of f-repetitions,
for f a general morphism, and are utilised in showing the soundness and efficiency
of our algorithms. When using them, we take x to be the shorter and y the longer
of the words ¢ and f(t).

Lemma 5. Let  and y be words over V' such that x and y are not powers of the
same word. If w € {x,y}* then there exists a unique decomposition of w in factors
from {z,y}. |

Lemma 6. Let z,y € V™ and w € {x,y}* \ {z}* be words such that |z| < |y| and
x and y are not powers of the same word. Let M = max{p | 2P is a prefix of w}
and N = max{p | 2z is a prefix of y}. Then M > N. Moreover, if M = N
then w € y{z,y}* holds, while if M > N then either it is the case that w €
oM Nyl gy \ M=V "lyzV* or we have w € M N1y{z, y} T\ 27 NyV* and
N > 0. L

3.2.2 Solution of Problem

§A general solution. We first assume that f is a morphism and let n = |w|. We
construct in linear time the word x = w f(w) of length m = n + |f(w)| (which is in
O(n)); note that the length of z (hence, the constant hidden by the O-notation)
depends on the fixed morphism f. Moreover, we build in O(n) time data structures
enabling us to answer LCPref queries for z.

Using these data structures, Algorithm [1] tests whether w is an f-repetition or
not.

Following the comments inserted in its description, it is not hard to see that
Algorithm [1}is sound. In the following, we compute its complexity. The step where
we test whether w is a repetition takes O(n) time, as it can be done by locating the
occurrences of w in ww. Further, note that the computation in each of the steps
6 — 9 of the algorithm can be executed in constant time using the data structures
we already constructed. Indeed, for some s < n, we can compute the largest ¢ such
that w[s..f] is a power of z in constant time as follows. In the worst case, { = s — 1,
or, in other words, w[s..f] = A, when x does not occur at position s. Otherwise, ¢
is the largest number less than or equal to LCPref(wls..n], w[s + |x|..n]) such that
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Algorithm 1 Test(w, f): decides whether w is an f-repetition

1: Test whether there exists a word z such that w = z*, with k& > 2. If yes, then
we halt and decide that w is an f-repetition. Otherwise, go to step 2.
{If the result of the test is positive we decide that w is an f-repetition, as
repetitions can be seen as trivial f-repetitions. The algorithm continues for w
primitive. }
2: for t = w[l..7], such that i < n, len[i] > 1, t and f(t) are not powers of some
r e V*do
33 Setx=tandy= f(t)if i <len[i] or x = f(t) and y = t, otherwise;
4 Set s =i+ 1, 0, = |y|, ¢! = |z|; {We have ¢, = max{lenli],i} and ¢! =
min{i, len[i]}}
5. If s =n + 1 halt and decide that w is an f-repetition;
: Compute M = max{p | 2Pisa prefix of w[s.n]}, N = max{p |
aP is a prefix of y};
7. If wis.n] = M set s = n + 1, go to step 5;{If w[s.n] € {z} then
w e t{t, f(1)}}
. If 2M~Ny occurs at position s, set s = (M — N){/ + £%, go to step 5;
9:  If M > N and 2"~ N~1yz occurs at position s, set s = (M — N — 1)¢/ + (.,
go to step 9;
{By Lemma @, wl[s..n] should have either 2Ny or z yx as prefix. By
Lemma @ if 2M=N=Llyx occurs at position s, we shall check whether w[s..n] €
eV y{a, yht
{If none of the above holds, we get that w[s..n] ¢ {t, f(t)}T, so w ¢
t{t, f(t)}+.}
10: end for
11: Halt and decide that w is not an f-repetition.

M-N-1

¢ — s+ 1 is divisible by |z|. This strategy is used in step 6 to compute M and N.
The verification from step 7 takes clearly constant time: we just check whether
n—s+1= M|z|. Moreover, step 8 and 9 can also be implemented in constant time
using LCPref queries; indeed, we know that 2™~ occurs at position s, and then
we just have to check whether y occurs at position s + (M — N)|z| by a LCPref
query, for step 8, or, respectively, whether yz occurs at position s+ (M — N — 1)|z|
by two LCPref queries, for step 9. Further, the iterative process in steps 3 — 9
is executed for each prefix w[l..7] of w, and during each iteration the algorithm
makes at most O(L%J) steps, as s can take at most L%J different values (in the

cycle defined by the “go to” instruction from step 8). Since ¢, > i, the overall
time complexity of the algorithm is upper bounded by O(3;<;<,|%]). Thus, the

%

time complexity of Algorithm [1]is O(nlgn). As a side note, in the case when f is
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erasing, w € t{t, f(t)}T for some ¢t with f(¢t) = A if and only if w € {t}*, that is,
w is a repetition. Hence, we run the iterative process starting in step 2 only for
prefixes w(1..i] with len[i] > 1.

The case when f is an antimorphism is similar. We take x = w f(w), build the
same data structures, and proceed just as in the former case. As the single difference,
now we have w[s+1..s+len[i|]] = f(w[l..7]]) iff LCPref(s+1,m—len[i]4+1) = len]i],
where m = |z|.

When f is uniform we can easily obtain a more efficient algorithm. In this case,
|t| divides n, so we only need to run the iterative instruction for the prefixes w]l..i]
of w with ¢ | n. Hence, the total running time of the algorithm is, in this case,
upper bounded by O(¥;,, %) € O(nlglgn), by Lemma .
8A linear time solution for the case when f is uniform. We can obtain an even
faster solution for Problem [§| for the case when f is uniform by using some more
intricate precomputed data structures in order to speed-up Algorithm (1| To this
end, we analyse again the computation performed by Algorithm [1jon an input word
w.

The main phase of the algorithm is the following. For a prefix ¢ = w[1..7] of w
with i | n we run a cycle (steps 5 —9) that extends iteratively a prefix w[l..s — 1],
where s > ¢ + 1, of the word w such that the newly obtained prefix is in t{¢, f(¢)}*.
However, at each iteration the prefix is extended with a word of the form t*f(t),
with £ > 0. As k can be actually equal to 0, we can only say that the number
of iterations of the cycle is upper bounded by IJ”T(ZT)\ < ﬁ Here we plug in our
speed-up strategy: we try to extend the prefix in each of the iterations of the cycle
from steps 5 — 9 with a word that belongs to {t, f(¢)}* for some fixed number
a that depends on n, but not on t. In this way, we upper bound the number
of iterations of the cycle by ﬁ, and the overall complexity of the algorithm by
O(%). Finally, in order to obtain an algorithm solving Problem [§| in linear
time, we choose a = [lglgn].

Let R = |f(a)|, for a € alph(w); as f is uniform, the definition of R does not
depend on the choice of a from V, and we also have R = |f|(uu‘)‘, YVu € V*. Let
re = max{/ | t* prefix of f(t)}. Clearly, 7, < R and we can assume without losing
generality that & > R. Indeed, this holds for n > 22" which is the case when we
want to optimise Algorithm [T} for smaller n the algorithm runs in constant time
O(1), as nlglgn < R2%" and R is constant (f being fixed).

It only remains to show how we can implement efficiently the above mentioned

extension of the prefix. First, note that there exists a constant C such that
(1gn)*(lglgn)?
n

< C for all n. Therefore, running the original form of Algorithm |1| for

the prefixes t of w with [¢| > e e and [t| | n (that is, at most (Ign)?1glgn
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prefixes) takes O(n) time. Therefore, from now on, we only consider prefixes ¢ such
that |t| | n, |t] < m, and, assuming that the input word is not a repetition,
t and f(t) are not powers of the same word.

Now consider a prefix ¢, as above. There are 2% € O(lgn) words in {¢, f(¢)}*.
Every such word can be encoded by a bit-string of length «a: each occurrence of t is
encoded by 0 and an occurrence of f(¢) by 1. Denote these bit-strings vy, ..., vsa,
and let 7; be the word encoded by v;, for all 1 <1 < 2% Further, for a bit-string v,
we can determine by binary search two values b, and e, such that all the suffixes
contained in the suffix array of w between the positions b, and e, have the word
vt as a prefix. From Theorem @ applied for two strings v;t"* and v;t" with
i # 7, and the facts that ¢t and f(¢) are not powers of the same word and 7, is the
maximal power of ¢ occurring as a prefix of f(t), we get that the intervals [b;, e;]
and [b;, e;] are disjoint. The time needed to compute these values for each ¢ is
O(lgnlglgn), as a comparison between the word v, and a suffix of w can be
done in O(lglgn) by looking at the encoding v, and the string ™ (a prefix of f(t))
and, consequently, comparing only the factors of length |¢| and |f ()| of U,t™ with
those of the words from the suffix array. Thus, the time needed to compute b, and
ep for all £ is O((Ign)?1glgn). Next, we construct a set F; containing the values e,
ordered increasingly, while keeping track for each e, of the corresponding values of
¢ and b,. Note that E; contains O(lgn) integers from {1,...,n}.

We need one more result before concluding this preprocessing phase. We want
to store a static set S C {1,...,n} so that finding the successor in S of a given
x € {1,...,n} takes constant time. Thus, we use a static d-ary tree of depth 2,
where d = [n%°], so that the whole tree has n leaves corresponding to different
values of x. We mark all leaves corresponding to the elements of S, and remove all
nodes with no marked leaf in the corresponding subtree. At each remaining inner
node v we store a table of length d where for each child of v (both remaining and
already removed) we store the successor of the rightmost leaf in its corresponding
subtree. The total size of the structure is O(|S|n®°) and we can construct it in the
same time if we start with an empty S and add its elements one-by-one, creating
new inner nodes when necessary. Furthermore, using the tables we can find the
successor of any x in O(1) time by traversing the path from the root of the tree
towards = as long as the nodes exist and taking the minimum of the successors
stored for these nodes. If we store each F; in this way the query time is constant
and the total construction time and space is in O(d(n)n"?1gn) C O(n), where the
final upper bound follows from Lemma

By the previously given explanations, this entire preprocessing takes linear time.
We now use it to solve in linear time Problem R

Assume now that we run step 5 of the algorithm for some prefix ¢ of w as above
and the word w[s..n| with s < n — (o + r)|t| + 1. There is at most one ¢ such that
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the index i, of w[s..n] in the suffix array of w is between b, and e, (that is, T,t" is
a prefix of w[s..n]). This ¢ can be found, if it exists, in O(1) using the precomputed
data structures (i.e., the sets F;, organised as described above): return the value ¢
such that e, is the minimal element of F; greater than or equal to i, and b, < 7.
Then, we repeat the procedure for the word w(s'..n] where wls..s" — 1] = 7y, but
onlyifn—s+1>(a+nr)ltfors =n+1. Ifn—s +1<(a+r,)|t| we run the
processing of the original algorithm. Clearly, this process takes O(Z + 2a) steps
for each ¢, so the complete algorithm runs in O(n) time. We only have to show
that it works correctly, i.e., it decides whether w € t{t, f(¢)}T. The soundness is
proven by the following remark. If w(s..n] starts with 7;¢" for some j < 2%, then it
is enough to consider in the next iteration only the word w[s+ |7;|..n], and no other
word w(s + |Ug|..n] where k < 2% such that Ty is also a prefix of w[s..n]. Indeed,
if there exists v, leading to a solution, we get a contradiction with either the fact
that 7, is the maximal power of ¢ occurring as a prefix of f(t), or with the fact that
t and f(t) are not powers of the same word.

To conclude, this implementation of Algorithm 1| runs in optimal linear time
for f uniform.

§Summary. We were able to show the following theorem.

Theorem 10. Let f : V* — V* be an anti-/morphism. Given w € V*, one can
decide whether w € t{t, f(t)}" in O(nlgn) time. If f is uniform we only need
O(n) time. |

The more general problem of testing whether there exists ¢t with w € {t, f(¢)}t, f(¢)}
for f a fixed anti-/morphism is also worth considering. Solving this problem seems
to require a different strategy than the one in Algorithm [T} There we take prefixes
t of w, which determine uniquely f(¢), and check whether w € t{t, f(¢)}*. Here,
a prefix y does not determine uniquely, in general, a factor z such that f(z) =y,
so more possibilities have to be considered when checking whether there exists ¢
such that w € f(¢){t, f(t)}*. However, the cases of f non-erasing and uniform anti-
/morphisms have solutions based on results in the line of Lemmas {4 and |5, leading
to similar complexities as for Problem [§ The case of erasing anti-/morphisms is
solved by a more involved algorithm, based on both combinatorics on words and
number theoretic insights.

Theorem 11. Let f: V* — V* be an anti-/morphism. Given w € V*, we decide
whether w € {t, f(t)}{t, f(t)}T in (’)(nH@ lgn) time. If f is non-erasing we
solve the problem in O(nlgn) time, while when f is uniform we only need O(n)
time. [ |
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3.2.3 Solution of Problem

Recall that our approach to solve the first question of Problem [J] is based on
constructing, for the input word w, data structures that enable us to obtain
in constant time the answer to queries rep(i, j,¢): “Is there t € V* such that
wli..j] € {t, f(®)}7?7, forall 1 < i < j < |w|and 1 < ¢ < |w|. Moreover, a
solution for the second question is derived directly from this strategy: we only need
to construct similar data structures, that allow us to answer, this time, queries
rep(i, 7,¢) for a single ¢, given as input of the problem together with w.

§The case of erasing morphisms. We start by presenting the solution of the first
question of the problem. Given an arbitrary anti-/morphism f and a word w of
length n, we can construct the aforementioned data structures in O(n3°) time.
More precisely, we construct an oracle-structure that already contains the answers
to every possible query.

We only give an informal description of our construction. Assume that |w| = n.
The idea is to compute the n x n x n three dimensional array M such that
M{[i][j][k] = 1 if there exists a word ¢ with w[i..j] € {t, f(¢)}*, and M[i][j][k] = 0,
otherwise. We proceed as follows.

Let ¢ be a position in w. We first consider the prefixes ¢ of w|i..n| such that
t and f(t) are not powers of the same word. Note that, for such a prefix ¢ of
wli..n|, with t # X # f(t), and j > i there is at most one number k such that
wli..j] € t{t, f(t)}*"1. The set of these prefixes is partitioned in n%® + 1 sets
Sis = {t | |f@®)] = 6}, for 1 <6 < n® and S; = {t | |f(t)] > n®°}; note
that some of these sets may actually be empty. Further, for each § we compute
fis = max{k | z* is a suffix of w[l..i], |x| = §}.

We first deal with the case when t € S, for 1 <7 < n. We compute for each j
the number k such that wli..j] € t{t, f(¢t)}*~!; this can be done in constant time
(for each j) using LCPref-queries, as in the previous algorithms. More precisely,
for some j we only need to look at the corresponding value for j — |t| and j — | f(t)],
increase them with 1 (if they are defined) and store as the value corresponding to j
the one obtained from j — |t if ¢ occurs as a suffix of w[i..j] or the one corresponding
to j — | f(¢)] if f(¢) occurs as a suffix of wli..j] (due to Lemma [f] at most one case
holds); if none of these values was defined, or neither ¢ nor f(¢) occurs as a suffix of
wli..j], the value corresponding to j remains undefined. This entire process takes
linear time. Then, for j such that wli..j] € t{t, f(¢)}}~* and all ¥’ € {0,1,..., fis},
where § = |f(t)], we set M[i — k'0][j][k + k| = 1. It is not hard to see that for
§ > n® we have f; 5 < n®?, so the process described above takes O(n%%) time for
each j. Now, we repeat the process for all i € {1,...,n} and all prefixes ¢ from
S; and discover all the factors w[i’..j/] and numbers k such that {f(t),¢}*, with
|f(t)] > n®5. The time needed to do the computations described above is O(n3?).
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Further, we consider the case of the words of the sets S; s, for some fixed § < n°?
and all 1 <7 < n. For each ¢, for each ¢ in S; 5, and for each j we compute and
put the pairs (i, k) such that wli..j] € ¢{¢, f(£)}*" in a list R}. This takes roughly
O(n?) time. Note that the number of elements of the list R? is also bounded by n?,
as for each ¢ we have a unique decomposition of w[i..j] in k parts, starting with a
prefix ¢.

Now, for each j (and, recall, that ¢ is fixed), we build an n x n matrix Tf ,
initially with all the entries set to 0. Now we partition this matrix in diagonal
arrays obtained as follows: for ¢ from 1 to n and for p from 1 to n, if the element
T?[0][p] is not stored already in a diagonal array, we construct a new diagonal array
that stores the elements T?[(][p], T?[( — 0][p+1],... T [¢ — dé][p+d], for 0 < d < .
While constructing this matrix we can keep track for each element of the array it
belongs to. This procedure takes, clearly, O(n?) time. These arrays partition the
elements of the matrix Tf so the total number of their elements is n?.

To continue, for each element (i, k) of the list R?, we check in which diagonal
array (i,k) is and memorise that we should mark (i.e., set to 1) in this array
the consecutive elements T?[i][k], T?[i — 0][k + 1], ..., T?[i — f;50][k + fis]. This,
again, can be done in O(n?) time, as we only need to memorise the first and the
last of these elements (called, in the following, margins). When we are done we
have to mark r; groups of consecutive elements in each diagonal array d, where
Sara € O(n?). To do the marking we sort the margins of the groups associated
with each diagonal array, with the counting sort algorithm, and then traverse each
array, keeping track of how many groups contain each of its elements, and mark
the elements appearing in at least one group. Sorting the lists of intervals takes
O(X4rq) = O(n?) time, and, thus, the marking takes O(n?) time in total. Once
the elements of all groups are marked, for all i and k we set M[i][j][k] = 1 if and
only if T?[i][k] = 1.

The overall complexity of the computation described above for a fixed 9§ is
O(n?). As we iterate through all § < n%5, we get that this case requires O(n??),
as well. Now, we know all triples (i, j, k) such that w[i..j] € {t, f(¢)}* and t and
f(t) are not powers of the same word.

Further, we consider the case of triples (4, j, k) such that wli..j] € {t, f(t)}*,
where t and f(t) are powers of the same word. By Lemma [3| we compute in O(n?)
time the periods of all the factors wli..j] of w and of the factors f(wli..j]) of f(w).
We also compute in cubic time the array 7' from Lemma [2] Now we can check in
constant time using LCPref queries whether per(t) = p, p | |t|, and f(w[i..i+p—1])
is a power of wli..i + p — 1] (i.e., t and f(t) are powers of the same word). If this
is the case, we compute m = W and set M[i][j][k] = 1 if and only if
T[k]lm|[j —i+ 1] = 1. Indeed, M[i][j][k] = 1 if and only if there exists s, k1, ks such
that s | j—i+1, ky+ke = k, and w[i..j] = (w[i..i+p—1])%) (f((w[i..i+p—1])%))*,



3.2 FINDING PSEUDO-REPETITIONS VIA f — morphisms 31

that is, sky + smky = j — i + 1, which is equivalent to T[k][m|[j —i+ 1] =1

There is a simple case that remained to be discussed. If f(wli..j]) = €, then
MTi][j][k] = 1, for all £ > 1. Identifying and memorising all such factors takes
O(n?) time.

By the above case analysis, we conclude that we can compute all the non-zero
entries of the matrix M in O(n*%) time. The answer to rep(i, j, k) is given by the
entry M{i][j][k].

Finally, we consider the case when we search f-repetitions with £k factors,
for a fixed k. This time, we compute a two dimensional matrix M, such that
My [i][7] = M[i][][k], defined previously. Fortunately, M} can be computed much
quicker than the whole matrix M. According to Corollary [1| the case of ¢ and f(t)
being factors of the same word can be implemented in quadratic time (the constant
R from the statement of the corollary can be taken as the maximum length of
f(a), for all letters a € alph(w)). Further, when ¢t and f(¢) are not periods of the
same word we just need to compute, for each i, t and j the number £’ such that
wli..j] € t{t, f(t)}* ' and check (in constant time) whether f(¢)*=*" is a suffix of
wll..7]; if all these hold, we get that M;[i][j] = 1. However, note that we do not
need to go through all the possible values of j. Indeed, we first generate all the
prefixes of w(i..n| that have the form #* with ¢ < k and see if one of them is longer
than [t| + |f(t)|. If yes, we try to extend the longest such prefix with ¢ or f(t)
iteratively until we use k factors t or f(t) in the constructed word. By Lemma
we obtain in this process only O(k) such words, and these are exactly the prefixes
of wli..n] that can be expressed as the catenation of at most k factors ¢ and f(t);
in other words, this process provides a set that contains all the values j for which
My[i][j] = 1. According to these, the whole process of computing the non-zero
entries of the matrix M’ takes O(n? - k) time. Note that the answer to a query
rep(i, j, k) is given by My[i][j]; as we already mentioned, we only ask queries for
the value k given as input.

§The case of non-erasing morphisms. For f non-erasing, the oracle matrix M
described previously can be computed in O(n?) time, where |w| = n. Initially, we
set M[i|[j][k] =0, for i, j,k € {1,...,n}.

As in the case of erasing morphisms, by Lemma [3| we compute (and store) in
quadratic time the periods of all the factors wli..j] of w and of the factors f(wli..j])
of f(w). We also compute in cubic time the array 7' from Lemma 2]

First we analyse the simplest case. We can check in constant time using L CPref
queries whether per(wli..j]) =p, p | (j —i+1), and f(wli..i +p —1]) is a power of
wli..i +p — 1]. If so, we compute m = W#”)' and set M[i|[j][k] = 1 if and
only of T[k][m][j —i+ 1] = 1.

Further we present the more complicated cases.
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First, let ¢ be a number from {1,...,n}. We want to detect the factors wli..j]
that belong to t{t, f(t)}*~! for some prefix ¢ of w[i..n] such that ¢t and f(t) are
not powers of the same word (this case was already covered) and k£ > 2. To do
this we try all the possible prefixes ¢ of w[i..n]. Once we choose such a t = wli..(|
we set Mi][(][1] = 1. Further, starting from the pair (¢,1), we compute, by
backtracking, all the pairs (m,e) such that w[i..m] € t{t, f(¢)}*~!; basically, from
the pair (m,e) we obtain the pairs (m + [t|,e + 1) if w[m + 1.m + |t|]] = ¢ and
the pair (m + |f(t)],e + 1) if wim + 1.m + |f(¢)|] = f(t). By Lemma [5| we obtain
exactly one pair of the form (m,-) (as there is an unique decomposition of wli..m|
into factors t and f(t) as long as ¢t and f(t) are not powers of the same word).
Therefore, computing all these pairs takes linear time. Further, if we obtained the
pair (m, k) we set M[i][m][k] = 1.

The whole process just described can be clearly implemented in O(n?) time. At
this point we know all the possible triples (i, j, k) such that wli..j] € t{t, f(¢)}*~! for
some t. It remains to find also the triples (i, 7, k) such that wli..j] € f(¢){t, f(t)}F1
for some t¢.

In this case, for each 7 € {1,...,n} we go through all the prefixes y = w[i..f] of
wli..n] and assume that y = f(t). Further, we compute a set of pairs (m,e) such
that wi..m| = y°; this can be done easily in linear time, using LCPref-queries.
Now, for each of these pairs, say (m,e), we try to find a factor t = wjm + 1..m/]
such that f(t) = y and ¢ and y are not powers of the same word. Once we found
such a factor ¢ (which can be done in constant time using LCPref queries and the
array inv) we store the pair (m + |t|, e+ 1) and starting from this pair we compute,
as in the previous case, all the pairs (m”, ¢') such that w[m + 1..m"] € t{t,y}¢ 1.
The key remark regarding this process is that, by Lemma [4] no two pairs having
the first component equal to m” are obtained for a fixed i. As the number of values
that m” may take is upper bounded by n, the entire computation of these pairs
takes O(n) time. Once this is completed, we set M[i][m][k] = 1 for each (m, k)
obtained.

In this way we identified all the triples (4, j, k) such that w(i..j] € {t, f(¢)}*, for
some t, in cubic time and stored in the array M the answers to all the possible
rep-queries.

Now, consider the case when we search f-repetitions with k factors, for a
given k and f non-erasing. The computation goes on exactly as in the case of
general morphisms with the only difference that when we consider the prefix t of
a word wli..n] we can restrict our search to the prefixes ¢ shorter than . Thus,
the overall complexity of computing the entries of the matrix M, decreases to
O(n- % - k) = O(n?) time. Again, the answers to a query rep(i, j, k) for the given
value k is given by the entry M[i][j] of the matrix M.
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§The case of literal morphisms. In the case when f is literal, we are able to construct
faster some data structures enabling us to answer rep queries. More precisely, we
do not need to construct the entire oracle structure, but only some less complex
matrix allowing us to retrieve in constant time the answers to our queries. To
this end, we first create for the word wf(w) the same data structures as in the
initial solution of Problem [§] Further, we define an n x n matrix M such that
for 1 <i,d < n the element M[i|[d] = (j,141,12) stores the beginning index of the
longest word wlj..7] contained in {¢, f(t)}" for some word t of length d, as well
as the last occurrences wliy..i; + |[t| — 1] of ¢t and wlis..is + | f(t)] — 1] of f(¢) in
wlj..1], such that d divides both ¢ —i; + 1 and i — iy + 1. If there exist ¢ and ¢’ with
t £t and wlj.i] € {t, FO I N{t, fF(t')}F, we have t = f(¥') and f(t) = t/; in this
case, M[i][d] equals (j,41,42) if i1 > 5 or (j,i2,41), otherwise. The array M can be
computed in O(n?) time by dynamic programming. Intuitively, M[i][d] is obtained
in constant time from M|i — d|[d] using LCPref queries on w f(w).

The matrix M helps us answer rep-queries in constant time. Indeed, the answer
to a query rep(i, j, k) is yes if and only if k£ | j — i + 1 and the first component of
the triple M[j][Z=-1] is lower than or equal to i, and no, otherwise.

§Solving Problem [9. We now give the final solutions for the two questions of
Problem [9

Let us begin with the first question. It is straightforward how one can use
the computed data structures to identify, given a word w of length n, the triples
(i, 4, k) such that the factor wli..j] is in {¢, f(¢)}* for some t. Indeed, we return the
solution-set comprising all the triples (i, j, k) for which the answer to rep(i, j, k)
is yes. The time needed to do so is ©(n?) (without the preprocessing), as we go
through all possible triples (i, j, k) and check whether rep(i, j, k) returns yes or no.
Furthermore, any algorithm solving this problem needs Q(n?®) operations in the
worst case. Take, for instance, the non-erasing uniform morphism f defined by
f(a) = aa and w = a™. It follows that wl[i..j] is in {a, f(a)}*, for all + and j with
|(j —i+1)/2] <k <j—i+ 1; hence, for these w and f we have ©(n?) triples
(1,7, k) in the solution set of our problem.

For f a literal anti-/morphism, we propose a ©(n?Ign) algorithm solving the
discussed problem. Using the Sieve of Eratosthenes, we compute in O(nlgn) time
the lists of divisors for all numbers ¢ with 1 < ¢ < n. Further, for each pair
(i,1 4+ ¢ —1) with £ > 1 and all d | £ we check whether rep(i,i + ¢ — 1, d) returns
yes. If so, the triple (i,i + ¢ — 1,d) is one of those we were looking for. Clearly,
the algorithm is correct. Its complexity is O(nlgn) + O(X 1 <p<,(n — £+ 1)d({)).
Following Lemma , the overall complexity of this algorithm is ©(n?1gn). Moreover,
any algorithm solving this problem does Q(n?lgn) operations in the worst case:
for w = a™ and the anti-/morphism f(a) = a, a correct algorithm returns exactly
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Si<e<n(n — L+ 1)d(0) € ©(n?1gn) triples. This proves our claim.

In the case of the second question of our problem, we proceed as follows. Recall
that, in this case, we are given both a word w and a number k. To identify the
pairs (i,7) such that the factor wli..j] is in {t, f(¢)}* for some ¢ we just have to
go through all the possible values for ¢ and j and check the answer of the query
rep(i, j, k). Clearly, this takes ©(n?) time. The preprocessing, in which the data
structures needed to answer rep queries are built, takes in the more efficient case of
non-erasing morphisms O(n?) time, as well; in the general case, the preprocessing
takes O(n?k) time, and this is more than the time needed to actually answer
all the queries. This improves in a more general framework the results reported
in [CKX12], where the same problem was solved in time O(n?1lgn). Finally, note
that the bounds obtained for non-erasing morphisms are tight, since all the factors
of length k¢ of w = a™ are equal to (a’)¥, thus being solutions to our problem,
no matter what anti-/morphism f is used. Hence, the number of elements in the
solution-set of question (2) of Problem [J] for w is in ©(n?).

§Summary. Before concluding this section, recall that the key idea in our approach
is to solve both parts of Problem [J] using rep queries. In order to assert the
efficiency of this method note that, once data structures allowing us to answer such
queries are constructed, our algorithms solve the two parts of Problem [J] efficiently.
In particular, no other algorithm solving any of the two questions of Problem [J]
can run faster than ours (excluding the preprocessing part), in the worst case.
Hence, in general, a faster preprocessing part yields a faster complete solution
for the problem. However, in the case of non-erasing and, respectively, literal
anti-/morphisms (which includes the biologically motivated case of involutions) the
preprocessing is as time-consuming as the part where we use the data structures
we previously constructed to actually solve the questions of the problem. Thus, the
time bounds obtained in these cases are tight.

Theorem 12. Let f : V* — V* be an anti-/morphism and w € V* a given word,
lw| = n.

(1) One can identify in time O(n>®) the triples (i, j, k) with wli..j] € {t, f(t)}*, for
a proper factor t of wli..j].

(2) One can identify in time O(n%k) the pairs (i, ) such that wli..j] € {t, f(t)}*
for a proper factor t of wli..j], when k is also given as input.

For a non-erasing f we solve (1) in ©(n3) time and (2) in ©(n?) time. For a literal
[ we solve (1) in O(n?lgn) time and (2) in O(n?) time.
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3.3 Streaming variants

Given that size of the words can be quite large, such as in real-world situations where
we model DNA strands, the natural need for formulating problems in a streaming
model arises. To this end we propose the two following streaming variants:

Problem 10. Given two words 7" and P over V , and an antimorphic involution
[ V* = V* identify all the factors P’ of T" such that P —7% P

and

Problem 11. Given two words 7" and P over V , and an antimorphic involution
f:V* = V* identify all the factors P of T" that are obtained by non-overlapping
f-rotations from P.

We hope to explore the solution for this problems in future work.



Chapter 4

Conclusion and future directions

The present work attempted to give further insights in graph streaming problems
and variants of problems amenable to streaming.

Chapter [1] explained the importance of studying graph streaming problems, even
when we are given a promised property about them, and gave a comprehensive
literature review. Chapter |2 presented four instances of promised streaming graph
problems on forests. A lower bound of 2(n) working memory was presented for
both problems. The chapter ended with presenting an adaptation of the classic FRT
and Racke methods for the streaming case. In Chapter [3| we presented two exact
problems related to finding combinatorial properties in strings, and the suggested a
formulation of those problems in the streaming model. We note that out methods
deal with finding strongly repeated structure in strings, and are applicable to a
variety of real-world scenarios.

The current work ends with presenting future problems of interest in the area
of streaming graph algorithms:

Problem 12. Given a streaming graph instance, compute the size of a maximal
matching (and implicitly, a 2-approximation of the maximum matching).

We suspect that solving Problem (12| deterministically in a single pass requires at
least 2(n) space, where n is the number of vertices of the streaming graph instance.

Another interesting problem to consider for when the graph is promised to be a
forest is:

Problem 13. Is it possible to characterize streaming graph problems for which
the instances are promised to be forests by property such that only problems which
satisfy that property need 2(n) working memory ?

Finally, it would be interesting to consider streaming problems derived from
testing combinatorial properties on strings, such as the ones defined at the end of
Chapter
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