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This dissertation describes experiments in spherical Couette devices, using

both gas and liquid sodium. The experimental geometry is motivated by the Earth’s

outer core, the seat of the geodynamo, and consists of an outer spherical shell and

an inner sphere, both of which can be rotated independently to drive a shear flow

in the fluid lying between them. In the case of experiments with liquid sodium, we

apply DC axial magnetic fields, with a dominant dipole or quadrupole component,

to the system. We measure the magnetic field induced by the flow of liquid sodium

using an external array of Hall effect magnetic field probes, as well as two probes in-

serted into the fluid volume. This gives information about possible velocity patterns

present, and we extend previous work categorizing flow states, noting further infor-

mation that can be extracted from the induced field measurements. The limitations

due to a lack of direct velocity measurements prompted us to work on developing

the technique of using acoustic modes to measure zonal flows. Using gas as the

working fluid in our 60 cm diameter spherical Couette experiment, we identified



acoustic modes of the container, and obtained excellent agreement with theoreti-

cal predictions. For the case of uniform rotation of the system, we compared the

acoustic mode frequency splittings with theoretical predictions for solid body flow,
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splittings for this case, our colleagues performed an inversion to infer the pattern

of zonal velocities within the flow, the first such inversion in a rotating laboratory

experiment. This technique holds promise for use in liquid sodium experiments, for

which zonal flow measurements have historically been challenging.
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Chapter 1: Introduction

Large-scale magnetic fields are common in the universe, and are found in

planets, stars, accretion disks, and galaxies.1 Many of these fields are thought to be

the result of self-sustaining dynamo action, whereby motions of a conductive fluid in

the presence of a magnetic field give rise to induced currents that in turn generate

magnetic fields that reinforce the original field [1, 2]. Starting from an arbitrarily

small field, the flow of a conductive fluid, driven by some energy source, can result

in a persistent large-scale magnetic field that can also show a variety of dynamical

changes including polarity reversals. In our own solar system, the Sun, a majority

of the planets (Mercury, Earth, Jupiter, Saturn, Uranus, Neptune [2]), and at least

some moons (e.g. the Jovian moon Ganymede [3]) exhibit dynamos, while Earth’s

Moon [4] and Mars [5] show signs of past dynamo action. Farther out, most stars

generally have magnetic fields that are thought to arise via dynamo action, and the

galaxy itself has a magnetic field that may also be the result of this mechanism [2].

The prevalence of such large-scale fields implies that this mechanism of dynamo

action is robust, generally having three ingredients: a large volume of conductive

fluid, an energy source to drive the dynamo, and overall rotation to help organize

1Much of the material of this chapter, as well as some of the material in chapter 2, originally
appeared in Adams, Matthew M., et al. “Liquid sodium models of the Earth’s core.”, Progress in
Earth and Planetary Science 2.1, (2015):1.
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the flow [6]. The first requirement can be fulfilled by the large liquid metal cores of

planets, including Earth with its liquid iron outer core, and Jupiter with its liquid

metallic hydrogen core, as well as its moon Ganymede [7], by the plasma found in

stars including the Sun, and by conductive aqueous solutions, such as those found in

Uranus and Neptune [2]. The second requirement, needed to sustain the magnetic

fields against the inevitable Ohmic dissipation resulting from the finite conductiv-

ity of the fluid, can be met by a variety of sources, including convection driven

by thermal or compositional gradients, as well as precessional and tidal forcings in

planetary bodies. The third ingredient, rotation, while not necessary in all cases,

is often helpful in organizing the feedback between the flow and the magnetic field.

Given that the conservation of angular momentum results in most stars and plan-

etary bodies having a significant amount of overall rotation, rotational effects will

often be present even if they are not required for the dynamos to operate [6]. Also, a

paradigm of dynamo action is the so-called “stretch-twist-fold” mechanism. In this

picture, the flow first stretches a loop of magnetic field, and then twists it and folds

it back on itself, thus reinforcing it, first presented in [8] as a dynamo mechanism.

System rotation can be one of the ingredients giving the flow field a topology that

leads to something like the “stretch-twist-fold” mechanism. In addition, for rapidly

rotating systems such as planetary bodies, the interaction of magnetic fields with

convection can result in the possibility of distinct weak- and strong-field regimes [2],

possibly of relevance to the dynamics of the geodynamo and of other planetary

dynamos.

While nature apparently has no problem generating dynamos (with some no-
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table exceptions, like Venus, which is discussed below in section 1.1.1), they have

proven more elusive in laboratory settings. Thus far, all fluid dynamos realized in a

lab have either involved imposing a specific flow pattern via an arrangement of pipes

and baffles (as in the experiments in Riga [9–11] and Karlsruhe [12]) or have had

ferromagnetic boundaries as a necessary ingredient (as in the von Kármán sodium

(VKS) experiment [13,14]. Significant research in numerical dynamos has been per-

formed, including simulations of the geodynamo that exhibit a dipolar structure and

occasional polarity reversals [15, 16], but these geodynamo simulations use one or

more unrealistic diffusive parameters in modeling planetary or stellar dynamos.

Both the computational and the experimental difficulties in modeling an Earth-

like (or other planetary or stellar) dynamo can be understood in terms of dimen-

sionless parameters. Such parameters are generally constructed by making non-

dimensional the applicable equations of motion, such as the Navier-Stokes equation

(see sections 2.1.1 and 2.2.1 below). They may be understood as quantifying the rel-

ative importance or strength of various forces. Very large or very small dimensionless

parameters indicate that a wide range of length and time scales may be important.

A particularly noteworthy example of this is turbulence, whereby a fluid exhibits

complicated dynamics on a wide range of length and time scales, which must all be

resolved if the flow is to be directly simulated by numerical computations. Similarly,

for an experimental device to be a good analog of a planetary core, it must match

as many of the relevant dimensionless parameters as possible. Both simulations and

laboratory experiments have intrinsic limitations that prevent them from achieving

some of the relevant dimensionless parameters (see Table 2.2.2 below).
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Although both simulations and experiments fall short of the parameter regimes

found in planetary and stellar dynamos, experiments can get closer than simulations

in certain cases. In particular, turbulent flows are readily achieved in the labora-

tory that are not amenable to direct numerical simulations. On the other hand,

simulations have the advantage of having measurement access to all properties of

a fluid flow, unlike experiments which are generally constrained to a limited num-

ber of local measurements and perhaps a few global measurements. Simulations

can also arbitrarily vary material properties, where again experiments are limited

by the available working fluids. Thus, dynamo studies can be furthered through a

combination of observational, experimental, and computational efforts.

In this thesis we detail experiments designed and built to address some of the

challenges in understanding the interaction of turbulent flow with magnetic fields,

and the possibility of dynamo action. In addition we describe efforts to implement

acoustic modal velocimetry, a laboratory application of the technique developed for

helioseismology, in laboratory experiments using air, and the prospects for imple-

menting this in liquid sodium devices. In the laboratory we use so-called spherical

Couette devices, consisting of an outer spherical shell and an inner sphere that share

an axis but can be rotated independently to drive a shear flow in the working fluid

between them (see diagram in Figure 1.1). This experimental work can also be of

use in guiding and benchmarking simulations. In the rest of this chapter, we review

some of the observations and relevant natural science that provides a motivation

for the experiments, and for the technique of acoustic modal velocimetry. Then,

in Chapter 2, we provide the necessary theoretical background in fluid dynamics,

4



hydromagnetics and dynamo theory, and helioseismology, as well as a review of past

work (theoretical, numerical, and experimental) in these areas. In Chapter 3 we

provide information about the experimental apparatus and instrumentation used.

In Chapter 4 we discuss the results of hydromagnetic experiments, primarily those

performed in rotating 3 m diameter spherical shell experiment, the so-called 3 m ex-

periment. In Chapter 5 we discuss the results of acoustic experiments, primarily in

another, 60 cm diameter spherical shell experiment, but also including information

about the status of acoustic experiments in the 3 m experiment. Finally, in Chapter

6 we discuss some conclusions and indicate possible directions

1.1 Motivation and Review

While the geomagnetic field is the specific inspiration for the experiments

described here, ultimately the motivation for this work is a greater understanding

of the natural world. The study of conducting fluids combines aspects of fluid

dynamics and electromagnetism, and such fluids are ubiquitous in the universe. In

the following sections we discuss some of these natural phenomena and how they

inform the experimental design.

1.1.1 Geophysics

Closest to home, the Earth’s magnetic field is generated by the turbulent

flow of liquid iron in Earth’s outer core. The geometry of both the 3 m and the

60 cm experiments is based on that of the core of the Earth, with the outer shell

5
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Working 
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Figure 1.1: Diagram of Spherical Couette Flow. The working fluid is located between
an outer spherical shell and an inner sphere; flow is driven by differential rotation
of the inner and outer spheres, which share an axis. For experimental devices, the
inner sphere must be supported by a shaft arrangement.

6



representing the mantle, and the inner sphere corresponding to the solid inner core.

The magnetic field of the Earth impacts humans both in the field of navigation (via

compass) and by protecting the Earth from the solar wind. If the Earth’s magnetic

field was to disappear suddenly, compasses would of course no longer work, and

animals that rely on it for nagivation would also face difficulties. The main effect on

humans however would be on technological devices that are sensitive to the radiation

and magnetic fields due to the solar wind and solar storms, namely satellites and the

power grid. Without the Earth’s magnetic field, satellites would be more quickly

degraded due to increased radiation levels in low Earth orbit, and could be knocked

out entirely by solar flares. The rate of glitches in the electronics onboard satellites

increases over the so-called South Atlantic Anomaly, where the geomagnetic field is

significantly weaker (and indeed extrapolating down to the core-mantle boundary

(CMB), there is a patch of reversed magnetic flux there).

The first major technological use of the geomagnetic field was the compass.

At the most basic level of navigation, one can use the fact that compasses point

north. This uses the fact that the Earth’s field is primarily dipolar, with the south

magnetic pole approximately co-located with the north pole of Earth’s rotation axis.

Once the age of exploration started, with ships navigating across oceans and even

all around the world, more detailed knowledge of the magnetic field was needed for

navigational purposes, with the primary measurement being the so-called declina-

tion of the magnetic field, that is the deviation of the horizontal component of the

magnetic field from true north, as a function of longitude and latitude. The lat-

ter can be determined relatively straightforwardly with astronomical measurements,
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while the determination of the former is more challenging but was also the subject

of much effort during this time. Measurements of the overall strength of the field as

well as the inclination of the field (the amount by which the overall local magnetic

field vector is deflected from horizontal) were also taken during this time. The field

inclination, declination, and overall strength together fully determine the local mag-

netic field vector. Gauss was the first to attempt a global model of the geomagnetic

field using local measurements, performing a least squares fit of a vector spherical

harmonic expansion to local field measurements [17], with the coefficients of the

(truncated) expansion being called Gauss coefficients as a result.

In addition to the more complicated structure of the Earth’s magnetic field

revealed by such measurements, another aspect that became apparent over time was

its dynamic nature. That is, the local magnetic field (inclination, declination, and

overall strength) varies over time. Over the period of historical geomagnetic records,

the field strength has decreased by about 10 percent, along with various smaller

scale changes. There also appears to be a slight westward drift of the magnetic field

structures relative to Earth’s crust.

The magnetic field of the Earth has also undergone greater changes in the

more distant past, the most dramatic of these being field reversals. In a field re-

versal, the Earth’s field weakens, with the dipole component especially weakening

or even disappearing, before reappearing with its orientation reversed; for instance,

before the most recent field reversal about 780,000 years ago compasses would have

pointed approximately south. The Earth’s field has reversed approximately once

every 450,000 years, though the timing is not regular and the process itself seems to
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be chaotic. In addition to the irregular history of reversals, another phenomenon of

interest is the occurrence of so-called superchrons, long periods on the order of tens

of millions of years during which there were no reversals. While the orientation of the

Earth’s field is recorded anywhere rock containing ferromagnetic material is heated

above the corresponding Curie temperature and then cooled, the most dramatic

example of this is seen in the ocean floors. At the mid-oceanic ridges, new oceanic

crust is constantly being created, and thus as the rock cools it records the current

magnetic field orientation, and is slowly carried away from the ridge as the sea floor

continues to spread. Surveys of the sea floor have determined that the remanent

magnetization of the rocks lies in strips running parallel to the mid-ocean ridges,

with the remanent magnetization either parallel or anti-parallel with the current

field orientation. Thus, the magnetic field record provided key evidence for sea-floor

spreading and plate tectonics. The sea floor magnetic records also provide fairly

straightforward evidence of the reversals in Earth’s magnetic field going back more

than 100 million years. Continental rocks also bear the imprint of the reversals, in-

cluding ones going back much further (the ocean doesn’t provide anything past that

since the oldest oceanic crust is only about 180 million years old; all older oceanic

crust having been subducted), but its interpretation is more involved. The evidence

from continental rocks is important in establishing that the Earth has had a dynamo

for billions of years, and also provides a key constraint on continental positions in

the past (giving the paleolatitude, under the assumption of an approximately axial

dipole dominated–field).

In addition to the interest in its magnetic field as a general geological diag-

9



nostic tool, the Earth’s field is also one of the major properties that can be used

in comparing it to other planets, to help in probing the properties of other planets’

interiors. As noted above, in addition to the Earth, the planets Mercury, Jupiter,

Saturn, Uranus, and Neptune have dynamos, and Mars did in the past. Venus does

not currently have a magnetic field, and it is unknown if it had one in the past,

though it has been suggested that some of the highlands of Venus may contain

magnetite that has remained below its Curie temperature and could thus provide a

record of any previous magnetic field [18]. It is speculated that the reason Venus

lacks a magnetic field is due to it being in a different thermal regime from the Earth:

while the Earth loses heat at a relatively constant rate with plate tectonics driven

by mantle convection, which in turn cools the outer core of the Earth and provides

an energy source for the geodynamo, Venus appears to have occasional massive

resurfacing events that release large amounts of heat, followed by a period where

the crust is stagnant and heat is only lost via conduction out of the crust at a low

rate [19]. This current state, with perhaps a stagnant mantle and core, could result

in too little energy being available to drive a dynamo. Thus the presence or absence

of a magnetic field can be used to infer information about the interior of a planet

that might otherwise be unavailable.

The comparative planetology aspect also comes up in the topic of planetary

habitability, including in the study of exoplanets. The presence of a magnetic field

is believed to be an important element of planetary habitability, and the early

shutdown of the Martian dynamo is postulated to have played a role in assuring

Mars became the relatively inhospitable planet it is today. While Mars at one
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point did have a dynamo, this shut down early in its history, presumably due to

a loss of a driving mechanism as it cooled much more rapidly than the Earth [20].

There is some evidence that Mars was at one time warmer, perhaps with a thicker

atmosphere and liquid water existing (at least occasionally) on the surface. The

shutdown of the dynamo meant that Mars was left with just patches of magnetic

field due to remanent magnetization of its crust, much weaker than the global-scale

field possible with a dynamo. This in turn meant a much reduced protection of the

Martian atmosphere from the solar wind, resulting in the erosion of the Martian

atmosphere to its present state [20].

1.1.2 Astrophysics

While the Earth’s core is the primary motivation for the geometry of the ex-

periments described in this thesis, these experimental investigations can also inform

a broader array of studies of conducting fluids. In addition to planets (touched

on in the previous section), magnetic fields are found in most if not all stars, as

well as accretion disks (both those leading to stellar system formation, and those

around compact objects like white dwarfs, neutron stars, and black holes), and in

the interstellar and intergalactic medium.

A primary motivation of dynamo studies is to understand how various astro-

physical bodies, including the Earth and the Sun, generate their magnetic fields.

Historical observations of sunspots and global models of Earth’s magnetic field are

available for the past few hundred years, giving a sense of the dynamics of both
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bodies in that time period. [21] [22] In the satellite era, much more refined measure-

ments are available for both bodies, though these data are limited to a timespan of

decades. These include satellite measurements of Earth’s field [23] as well as X-ray

observations of the Sun, giving more detailed information about magnetic activity

in its corona [24]. Spacecraft have also provided measurements of other solar system

bodies.

The solar observational data in particular provide a portrait of a dynamic mag-

netic field. Sunspots (the sites of intense magnetic fields) undergo regular variations

in number and spatial distribution during the 11-year solar cycle (or 22 years to

return to the same polarities). Moreover, the sunspot number has shown significant

variations during historical times, including the Maunder minimum when very few

sunspots were observed for an extended period. On shorter time scales, magnetic

fields influence the evolution of the solar atmosphere, including playing a key role in

coronal mass ejections (CMEs), which can in turn affect the magnetosphere of the

Earth, as ejected material and its associated magnetic fields interacts with Earth’s

magnetic field.

In addition to the observations of the magnetic fields of these bodies, other in-

vestigations, observational as well as experimental and computational, have greatly

improved the theoretical understanding of both the Sun and the Earth. In particu-

lar, seismological studies of the Earth and helioseismological studies of the Sun have

provided knowledge of the structure of their interiors, which can then be combined

with experimental and numerical investigations of material properties. This in turn

allows improved estimation of relevant dimensionless parameters.
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Besides the dynamo process itself, the interaction of magnetic fields with con-

ductive fluids is of interest for the new degrees of freedom it offers. One notable

example of this is the magnetorotational instability, in which a shear flow that is

Rayleigh stable is destabilized by a magnetic field [25]. This potentially allows for

much greater angular momentum transport than would be expected without the

magnetic field, and plays a major role in current theories of accretion in astrophys-

ical systems. Accretion disks are believed to be an integral step in the formation of

stars and planetary systems, whereby clouds of gas and dust collapse to form a star

and any planets and other objects that orbit it. In addition, accretion disks can form

in binary systems, where matter from a star accretes onto a compact companion (a

white dwarf, neutron star, or black hole), and in active galactic nuclei (AGN) where

matter accretes onto a supermassive black hole. Conservation of angular momen-

tum is central to the reason for disk formation: any given protostellar cloud, which

by some perturbation or other has begun the process of gravitational collapse, will

in general have some net angular momentum; similar remarks apply to the case of

binary systems and AGNs. While the kinetic energy released during gravitational

collapse is converted into heat which in turn can be radiated away, allowing the col-

lapse to continue, the angular momentum cannot be similarly radiated away. Thus

a disk forms, with the protostar at the center, and with the disk’s axis in the di-

rection of the original cloud’s net angular momentum. Particles in the disk will be

in approximately Keplerian orbits about the center of mass of the system, and so

the angular velocity of the particles decreases with distance from the system center.

Thus there is shear present in the system, although the system is stable according
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to the Rayleigh criterion. According to classical hydrodynamic theory, with realistic

parameters put in for models of accretion disks, such systems should not be able

to shed angular momentum at rates consistent with the rate of accretion observed

for such systems [26]. This apparent paradox is resolved by the realization that

magnetic fields are essentially always present in such systems, and such disks are

generally hot enough to be at least partially ionized, and thus conductive. Thus, in

addition to hydrodynamic effects, which here appear unable to achieve the necessary

rate of angular momentum transport, there are hydromagnetic effects, the relevant

one here being the so-called magnetorotational instability (MRI).

1.1.3 Helioseismology

While the previous two sections provided some background on motivations

based on natural science, some of the experiments described in this thesis have

the intermediate motivation of developing an experimental technique that allows

inferences of fluid flow velocities using acoustic modes. This technique is based on

a similar approach used in the field of helioseismology. In this section we provide

some background both of the techniques used in helioseismology, and motivation for

why a similar technique is of interest in our experiments.

An important consideration for our experiments is the working fluid used,

which in turn informs the experimental design (see chapter 3 and the choice of

instrumentation). Liquid sodium has been used in all the hydromagnetic experi-

ments carried out in Dan Lathrop’s laboratory at the University of Maryland. This
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choice of working fluid is motivated by the conductivity of liquid sodium, which is

higher than any other practical liquid available. With this choice comes a number

of challenges, but one of the greatest experimentally is common to all liquid con-

ductors, namely the opacity of the fluid. Determining the flow patterns in a liquid

sodium experiment is challenging; unlike in water experiments one cannot use opti-

cal tracking of tracer particles to extract a detailed map of the velocity field. Other,

indirect techniques must be used. By applying a magnetic field and measuring the

field induced by the flow, one can put constraints on the possible flow patterns

present in the fluid (though generally more than one flow pattern can give rise to

the same induced field for a given applied field, so ambiguity remains; see section

2.3.1). This approach works since magnetic fields can penetrate the liquid sodium,

and the modifications caused by the flow are informative. In addition to magnetic

fields, pressure or sound waves pass easily through liquid sodium, and besides pres-

sure measurements (giving a relatively global measure of the fluid state), ultrasound

doppler velocimetry (UDV) has been used to determine the parallel component of

velocity along a chord through the fluid volume.

Both inversion of the induced magnetic field and UDV have limitations. Using

the global pattern of the applied and induced magnetic fields (represented as an

expansion in vector spherical harmonics) and some selection rules [27], it is possi-

ble to infer the global velocity patterns that could be present, but as noted above

the inversion is not unique. UDV measurements, again as noted above, give only

local measurements of one velocity component, and thus many measurement de-

vices, or repeated experiments with the ultrasound device in different locations and
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pointing in different directions, are required to get the global velocity pattern. In

addition UDV measurements require tracer particles, and while naturally present

oxide particles often serve this purpose, their exact properties and locations within

the flow are not easily controlled. Adapting the techniques of helioseismology to

laboratory experiments offers a way to potentially combine aspects of both these

techniques, with acoustic waves being used to probe the flow (like UDV) but using

global modes that give a picture of the global flow pattern (as in the magnetic field

inversion technique).

As its name implies, helioseismology is a field of study focused on the sun,

using techniques analogous to those used in seismological studies of the Earth. The

basic idea is that acoustic (i.e. pressure) waves can propagate through the sun,

and so it has resonant modes. Since the sun is nearly spherically symmetric, the

structure of these modes is amenable to analytical approximation. If there is any

acoustic excitation of the sun, the resonant modes can be excited. On the Earth

the excitation is by earthquakes (a natural phenomenon), as well as man-made

explosions. While we are not currently capable of inputting acoustic energy into the

sun, fortunately the vigorous turbulent flow in the star’s convective zone is sufficient

to excite many modes.

Because the sun has global acoustic modes, and these are excited by turbulent

flows in the convective zone (driven ultimately by the nuclear fusion taking place

in the sun’s core). It is natural to consider how we might go about observing

these modes. Since acoustic modes cannot propagate through vacuum, the acoustic

energy in the sun is trapped in it. Some modes are only partially trapped, and
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thus lose energy in the form of running waves in the solar atmosphere, and so are

expected to be strongly damped. [28] Energy leaking in this way also drives some of

the dynamics of the solar atmosphere. [29] While the pressures at the sun’s surface

cannot be measured directly, the modes do cause spatially coherent displacements

across the sun’s surface with a characteristic frequency. The spatial pattern and

frequency of this displacement field can be extracted from observations of the sun

by measuring doppler shifts of the h-alpha line (and others), caused by the up and

down motion of the solar plasma that is emitting this light.

Using such measurements, helioseismologists have now identified more than a

thousand such modes. Since the sun is approximately spherically symmetric, these

modes can be identified by the number of radial nodes n present in them, along with

their spherical harmonic degree l and order m. For a perfectly spherically symmetric

system, all the modes in a given (n, l) family would have the same frequency, since

the different m-values require picking an axis of rotation, and in this case such a

choice is arbitrary. If a specific axis is selected (in the sun’s case, it’s rotation axis),

the modes with different m-values in a given (n, l) family can split (with the number

of modes given by 2l+ 1, with m running from −l to +l). Thus, rotation splits the

frequencies of the various modes in each of the (n, l) multiplets, with the amount

of splitting giving information about the rotational depth profile of the sun. Since

the sensitivity of a given mode to rotation (or more generally, azimuthal flow) will

depend on its structure, by using many different modes a picture of the azimuthal

flow as a function of radius and polar angle can be built up. Also, it is important

to note that any deviations from spherical symmetry (like the presence of a shaft
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in the 60 cm experiment) may also introduce splitting of multiplets, though modes

with the same absolute value of m will not be split by this mechanism. Finally,

exchange of energy among the modes induced by the flow, which is called coupling,

may also cause splittings.

By using the frequencies of various modes, helioseismologists have improved

models of the internal structure of the sun, in turn providing independent checks of

models of physical processes in the solar interior. The amount of splitting of modes

in a given (n, l) family with different m numbers has in turn been used along with

a model for the sun’s structure to infer the zonal flow rotation profile in the sun

(that is, the azimuthal velocity vφ of solar plasma as a function of radius r and

polar angle θ), with reliable inversions extending from the solar surface down to

below the transition from the solar convection zone to the radiative zone, around

r = 0.7Rsun. In particular, this approach yielded the surprising discovery that the

surface differential rotation (with the equatorial region rotating faster than the polar

regions) extends all the way through the solar convection zone, with this differential

rotation being accommodated to the uniform rotation of the solar radiative zone

in a relatively thin (in radius) zone of high shear, called the tachocline. [30] This

region is speculated to play a role in the solar dynamo. [31]

One of the goals of the work described in this thesis is to implement these helio-

seismology techniques in liquid sodium experiments, to further our understanding of

turbulent hydromagnetic flow, including flows possibly relevant to dynamo processes

in the Earth, the Sun, and other astrophysical bodies.
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1.2 Contribution of the Author

The author modified the top inner bearing and seal assembly, as well as the

inner shaft, of the 60 cm experiment, and designed and constructed (with welding

done by Don Martin) a reaction torque sensor used to measure the torque needed

to drive the inner sphere at its rotation rate. The author installed the microphones

and speakers used in performing acoustic experiments in air and nitrogen gas in the

60 cm experiment, and designed and constructed the associated rotating electronics

used to power these instruments and acquire the relevant data. The author led

the acoustic experimental campaigns in the 60 cm experiment, and served as a

co-pilot or as the lead on several experimental campaigns in the 3 m experiment.

The author converted the LabView code used in data acquisition for the 60 cm

experiment to Matlab, and converted the analysis code originally written in C to

Matlab, in addition to writing a number of other analysis scripts in Matlab. The

author replaced the LabView control code with C code, used to control the motors

and magnets used in the 60 cm experiment, and adapted from similar code written

for the 3 m experiment by Santiago Triana. The author collaborated with Dan

Lathrop, Ved Lekic, and Anthony Mautino on the analysis of the acoustic mode

results in 60 cm, including the identification of acoustic modes and matching same

with theoretical predictions, and the extraction of mode splittings from the data.

This includes the identification of more than 20 modes, and simultaneous splitting

measurements for more than 10 modes, at a variety of different inner and outer

rotation rates. The author led the writing of a review paper focusing on liquid
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sodium experiments: Adams, Matthew M., et al. “Liquid sodium models of the

Earth’s core.”, Progress in Earth and Planetary Science 2.1, (2015):1. The magnetic

experiments with the 3 m device included a number of runs, primarily led by Doug

Stone, at full speed, and the author performed some of the analysis of this data,

including some work on estimating flow states using magnetic results. The author

collaborated in ongoing efforts to attempt to identify acoustic modes in the 3 m

experiment.
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Chapter 2: Theoretical Background and Review of Past Work

In this chapter we provide some theoretical background for the thesis, as well

as a review of past work. For many systems of interest, including the experiments

that are the focus of this work, the equations of motion in the relevant parameter

range do not have known analytical solutions, and direct numerical simulation is not

feasible; nevertheless, the equations of motion can be used to guide investigations.

One example of this is the widespread use of dimensionless parameters, formed

generally by making the equations of motion dimensionless; the magnitude of these

parameters (in particular, whether they are much less than one, close to one, or

much greater than one) can then be used to divide parameter space into various

regimes where different behavior may be expected.

We start with a consideration of hydrodynamics, that is fluid flow without any

influence of magnetic fields. In this case the equations of motion are the Navier-

Stokes equation, and the continuity equation. In particular, we consider spherical

Couette flow (see Figure 1.1), and touch on issues relating to turbulence. Since we

are considering rotating systems, we use the Navier-Stokes equations written in a

rotating frame. Next we consider hydromagnetic systems, where the Navier-Stokes

equation is modified by the addition of the Lorentz force, and another equation, the
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so-called induction equation, governs the evolution of the magnetic field. Finally,

we close with a review of the basic theory of the splitting of acoustic modes by fluid

flow, used in helioseismology and applied in the air experiments discussed in chapter

5 (with ongoing work to apply the technique in liquid sodium).

2.1 Hydrodynamics

Fluids exhibit a wide variety of properties and behaviors; here we will focus

on the equations of motion applicable to viscous Newtonian fluids (which includes

both water and sodium). After presenting these equations and describing the terms

appearing in them, and commenting on some of their properties, we proceed to

make them dimensionless. This results in the definition of several dimensionless

parameters, and we review their meaning and indicate how they are used to guide

investigations in fluid dynamics. We then provide a review of past work — analyti-

cal, numerical, and experimental — in hydrodynamic systems of interest.

2.1.1 Equations of Motion

The equations of motion for the case of hydrodynamics are the equation of

mass conservation:

∂ρ

∂t
+∇ · (ρu) = 0 (2.1)

and the Navier-Stokes equation, in this case for a Newtownian viscous fluid:

ρ(
∂u

∂t
+ u · ∇u) = −∇p+ µ∇2u + F (2.2)

22



essentially F = ma for a fluid. The left hand side represents the acceleration

of a fluid parcel, and since it is embedded in a continuous medium (the fluid),

in addition to a simple time derivative of the fluid parcel’s velocity, there is the

so-called convective acceleration, taking into account changes in the fluid parcel’s

velocity due to it being advected by the flow. For instance, in steady flow down a

pipe, the fluid speeds up in regions where the pipe narrows; for a steady state flow,

though, none of the parameters of the system are varying in time, and thus the

change in speed of a fluid parcel entering this region of higher velocity is not due

to a time-dependence in the system but to the fact that the parcel has been carried

by the flow (“advected”) to a different region of the flow. These two accelerations

are multiplied by the density of the fluid ρ, thus making it analogous to the ma of

Newton’s Second Law of Motion. On the right-hand side of the equation, then, is

the analog of F. The first term, the gradient of the pressure p, represents the force

on a fluid parcel due to the surrounding fluid, normal to the (imaginary) interface

between them. The next term represents viscous dissipation, that is, the resistance

to fluid parcels sliding past one another, and thus gives the force on a fluid parcel

due to the surrounding fluid in directions tangent to the interface between them;

µ is the dynamic viscosity of the fluid, a measure of how much elements of the

fluid resist sliding past one another. Finally, the last term on the force side of

the equation is F, representing all external forces acting on the fluid. This could

include body forces, such as gravity, as well as boundary forcings (such as those due

to an impeller). Dividing this equation through by the density ρ, and denoting the
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kinematic viscosity by ν, with ν = µ/ρ, we have

∂u

∂t
+ u · ∇u = −1

ρ
∇p+ ν∇2u +

F

ρ
(2.3)

For the cases of interest here (at low Mach number), the fluid can be assumed

to be incompressible, so ρ is a constant, and the equation of continuity simplifies to

∇ · u = 0 (2.4)

Also, since the systems we will be considering are rotating, it is convenient to work

in a rotating frame, with (constant) rotation vector Ω, so that the Navier-Stokes

equation becomes

∂u

∂t
+ u · ∇u = −1

ρ
∇p+ ν∇2u +

FR

ρ
− 2Ω× u−Ω×Ω× r (2.5)

where FR is the external force as seen in the rotating frame, and r is the position

vector of the fluid parcel. In shifting to the rotating frame, two new terms have

appeared in the equation: the Coriolis force −2Ω × u and the centrifugal force

−Ω×Ω× r. The centrifugal force can also be written in the form −1
2
∇(Ω× r)2, so

defining the reduced pressure P = p − 1
2
ρ(Ω × r)2, we can combine the centrifugal

force with the pressure force. Then we have

∂u

∂t
+ u · ∇u = −1

ρ
∇P + ν∇2u +

FR

ρ
− 2Ω× u (2.6)
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This is a challenging system of equations to solve. In fact, while solutions

are known when various approximations and simplifications are made in the above

equations, for the general case there are no known solutions that exist for all time.

Finding such a solution is the task required to obtain one of the so-called Millennium

Prizes offered by the Clay Mathematical Institute, or alternatively showing that such

solutions do not exist (though this is viewed as unlikely).

One way of describing the difficulty is to divide up differential equations into

a number of groups based on their properties. The first division is that between

ordinary and partial differential equations (see Table 2.1). Ordinary differential

equations (ODEs) are generally easier to solve than partial differential equations

(PDEs), since in PDEs the variables are a function of multiple variables (for physical

problems, generally time and space), and thus have the scope for more complicated

dynamics. In solving PDEs, one major strategy is to turn them into an ODE (or a

set of ODEs).

Another important distinction is between linear and nonlinear differential

equations. Solutions to linear ODEs have many nice properties (such as obeying

superposition) that make the solution of such equations relatively straightforward,

compared to nonlinear equations. Nonlinear differential equations often have no

known analytical solutions, and for nonlinear systems a common approach is to lin-

earize about some point of interest to gain some insight into the dynamics of the

system. The general Navier-Stokes equation is an example of a nonlinear PDE, and

thus is one of the most challenging to solve. One manifestation of this difficulty is

seen in physical systems as the phenomenon of turbulence. Turbulence refers to the
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Differential Equations Linear Non-Linear

Ordinary Harmonic Oscillator Verhulst (Logistic) Equation

Partial Heat Equation Navier-Stokes, General Relativity

Table 2.1: Categories of Differential Equations, with Examples.

fluctuations on a wide range of spatial and temporal scales seen in fluid flow.

2.1.2 Dimensionless Parameters: Hydrodynamics

As noted above, for hydrodynamics we use the continuity equation (eq. 2.1)

and the Navier-Stokes equation (eq. 2.6) written in the rotating frame. It is conve-

nient to make these equations dimensionless, for then the relative importance can be

judged based on the magnitude of their prefactors. The continuity equation simply

indicates that the velocity field is divergence-free, and since it only has one term,

does not result in any dimensionless parameters upon dividing through by a velocity

scale. In making this approximation (of an incompressible fluid), however, we do

assume that the relevant velocity scale of the system, U , is much smaller than the

speed of sound in the fluid, cs. The sound speeds of the relevant working fluids are

listed in Table 2.1.2. Since typical fluid flow speeds in the experiments will be on

the order of tens of meters per second, this is a good approximation for the water

and sodium experiments, while some compressibility effects may start to become

apparent in the air experiments.

Turning now to the Navier-Stokes equation, we first consider the non-rotating

case, and moreover for simplicity we drop the forcing term. Then we have the
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following equation:

∂u

∂t
+ u · ∇u = −1

ρ
∇p+ ν∇2u (2.7)

We note that this equation involves both the fluid velocity and pressure, and has

time and spatial derivatives. Thus the units used involve length, time, and mass.

Picking a velocity scale U and a length scale L, we can construct a time scale L/U ,

and for a pressure scale we pick ρU2. Then we can define the following dimensionless

variables and operators:

u′ =
u

U
, t′ =

Ut

L
,∇′ = L∇, p′ = p

ρU2
(2.8)

and writing the original variables in terms of the dimensionless ones (and the scales

we have selected), we have

u = Uu′, t =
Lt′

U
,∇ =

∇′

L
, p = ρU2p′. (2.9)

Substituting these expressions into equation 2.7, we have

U2

L

∂u′

∂t′
+
U2

L
(u′ · ∇′)u′ = −U

2

L
∇′p′ + νU

L2
∇′2u′ (2.10)

and multiplying through by L/U2, defining the Reynolds number Re = UL/ν, and

dropping the primes on the dimensionless variables and operators, we have

∂u

∂t
+ (u · ∇)u = −∇P +

1

Re
∇2u (2.11)
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After carrying out this exercise, then, we have one dimensionless parameter,

the so-called Reynolds number, Re. As can be seen from the above, it is constructed

from a characteristic velocity scale U , length scale L, and the kinematic viscosity ν

of the system under consideration, Re = UL/ν, and its reciprocal is the prefactor of

the term representing viscous dissipation in the Navier-Stokes equation. Specifically,

this term represents the tendency of viscosity to smooth out velocity variations in

the flow. Thus, when Re is small, the viscosity will dominate the equation and the

flow will be laminar. When Re is large, on the other hand, the viscous term will

be relatively small compared to the other terms in the equation, and large velocity

fluctuations (including eddies and vortices) will be able to persist for a long time

before viscosity causes them to decay (and may not decay away if there is persistent

forcing of the fluid).

The Reynolds number is often used as a guide for when to expect the develop-

ment of turbulence. Even in flows that are linearly stable at all Reynolds numbers,

nonlinear instabilities (seeded by finite-sized perturbations, which are often present

in experimental and natural systems) may develop at sufficiently high Reynolds

number. Such is the case, for instance, with pipe flow. The Reynolds number can

be interpreted as a ratio of the strength of advection of fluid momentum to its diffu-

sion by viscosity. Thus, at large Reynolds numbers, any eddies or other structures

in the fluid tend to be advected by the flow with very little viscous dissipation.

Next we consider the case of the Navier-Stokes equation in a rotating frame.

Now in addition to the velocity scale U and length scale L, we have a natural time

scale given by Ω−1, where Ω is the rotation rate of the rotating frame of reference
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Fluid Sound speed (m/s)
Air (at 25C) 343
Water (at 20C) 1482
Liquid Sodium (at 110C) 2520

Table 2.2: Sound Speed in Working Fluids.

in an inertial frame, Ω = |Ω|. While we have suppressed the appearance of any

external forcing F in the Navier-Stokes equation, ultimately this forcing is what

sets the typical velocity scale in the experiment (e.g., for the case of the experiments

considered here, we drive a shear flow, and thus velocity scale would be related to the

differential rotation of the inner and outer boundaries of the fluid volume). Another

velocity scale is given by ΩL, and there is now more than one way to construct a

pressure scale for the system. Following Zimmerman [32], we choose ρΩLU , and

making the rotating version of the Navier-Stokes equation dimensionless, we have,

after some rearrangement, the following dimensionless equation:

∂u

∂t
+Ro(u · ∇)u = −∇P +

Ro

Re
∇2u− 2Ω× u, (2.12)

where we have defined a new dimensionless parameter, the Rossby number Ro =

U/(ΩL). This quantifies the ratio of the velocity scale of the flows in the rotating

frame with the velocity scale of the overall system rotation. An alternative dimen-

sionless group that can be used to quantify the strength of the system rotation is

the so-called Ekman number, E = ν/(ΩL2), which gives the ratio of viscous forces

to Coriolis forces. Given these definitions, we have E = Ro/Re, so we can also write
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equation 2.12 as

∂u

∂t
+Ro(u · ∇)u = −∇P + E∇2u− 2Ω× u. (2.13)

In this case, then, two of the three dimensionless groups E, Ro, and Re are

sufficient to make the rotating Navier-Stokes equation dimensionless. As can be

seen, there is some freedom in constructing dimensionless parameters, with multiple

possibilities. This is quantified by the Buckhingham Π theorem, which states that

for a system described by n parameters, with m different fundamental units used,

n−m dimensionless parameters are needed to specify it. If n > m, then there will

be multiple ways of constructing such a set, since multiple expressions will share the

same unit and can thus be substituted for each other in making dimensionless groups.

For instance, applying the theorem to the hydrodynamic case for our experiments,

we note that they are characterized by the material parameters ρ and ν of the

fluid, the geometrical factors ri and ro, the radii of the inner and outer spheres,

respectively, and by the experimental parameters (the “control knobs” we have

which we can vary in experiments) Ωi and Ωo, the rotating rates of the inner and

outer spheres. So for hydrodynamic experiments we have 6 parameters, which use

3 fundamental units: length, time, and mass, and thus the system is specified by

3 dimensionless groups. As noted above, two of Ro, E, and Re can be used, and

in this case take into account variations in Ωi and Ωo. Thus the exploration of the

(Ωi,Ωo) space can also be characterized as exploring the (Ro,E) or (Ro,Re) space.

For the third group (which of course is not unique), one choice is to use the radius
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ratio of the experimental vessel, Γ = ri/ro. Also, we note that the only parameter

containing the unit of mass is the density, ρ. So, the density does not appear in

any of the dimensionless groups, since there is no other unit that can cancel out the

mass unit in it. One way of interpreting this is as a sign that it is natural to use the

kinematic viscosity ν, rather than the dynamic viscosity µ. If we had used µ instead

of ν, then wherever ν appears in dimensionless groups (like Re and E), we would

have instead had µ/ρ, since these are the only terms containing mass units and thus

must always go together in dimensionless groups to ensure there isn’t a remaining

unit of mass. For the experiments described below, we will use Ro = (Ωi −Ωo)/Ωo,

thus choosing U = (Ωi − Ωo)L and Ω = Ωo in the definition of Ro. For E we use

L = ro and Ω = Ωo. For the air experiments described below in section 5.4 with the

outer rotating at 6 Hz, this gives E = 4.6× 10−6.

There is a hierarchy in Reynolds number among observations, experiments,

and simulations (see Table 2.2.2). The larger the Reynolds number, the greater the

range of scales that are important to the dynamics of the system. Thus, numerical

simulations become prohibitively expensive much above a Re of 104, though higher

values can be reached by making various assumptions and approximations. Mean-

while, experiments can reach Reynolds numbers of around 106, with some of the

largest experiments reaching 108. Astrophysical systems, on the other hand, such as

accretion disks, may be characterized by Re of around 1012 or more. Thus, both ex-

periments and observations can provide knowledge about systems at Re inaccessible

numerically, and some natural systems are characterized by dimensionless parame-

ters (including Re) that are inaccessible to both simulations and experiments.
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2.1.3 Past Work: Theory and Simulations

For the case of hydrodynamic spherical Couette flow, generally three limits can

be distinguished (see Figure 2.1.3) the case of outer stationary (the limit |Ro| → ∞)

and the case of rapid outer rotation with either the inner sphere sub-rotating (Ro

→ −0) or with it super-rotating (Ro → +0). For the outer stationary case, a jet of

fluid comes off the inner sphere, setting up a poloidal return flow. In the latter two

cases, the bulk of the fluid spins with the outer sphere, while the volume of fluid

inside the tangent cylinder spins under the influence of both the inner and outer

spheres, and the velocity jump across the tangent cylinder is accomodated by a thin

shear layer. This so-called Stewartson layer was first predicted by Stewartson [33],

who analytically studied the case of spherical Couette with strong overall rotation

and infinitesimal differential rotation. For strong forcing, both the equatorial jet

(infinite Ro) and the Stewartson layer (|Ro| � 1) develop instabilities, which require

numerical studies to elucidate.

When the differential rotation becomes sufficiently large, instabilities develop

in the Stewartson layer of an overall rapidly rotating system. They were studied

numerically by Hollerbach [34] for a radius ratio of ri/ro = 1/3. In this study, the

primary concern was the dependence of the instabilities on the sign of Ro. This

work was partly motivated by a discrepancy in the experimental results obtained by

Hide and Titman [35] and Früh and Read [36] regarding the effect of changing the

sign of Ro; the original analysis of Busse [37] had predicted that the system should

be symmetric about Ro = 0. Hollerbach (2003) found that Ro > 0 (inner super-
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Figure 2.1: General circulation patterns for spherical Couette flow. Flow patterns for
the case of outer sphere stationary (a) and rapidly rotating (b). For (a), the super-
rotating inner sphere pumps fluid out into the bulk in the form of an equatorial jet
with a poloidal return flow. For (b), the fluid outside the tangent cylinder spins in
solid body rotation with the outer sphere, while the fluid inside the tangent cylinder
spins at a rate intermediate between the two spheres with Ekman pumping along
the boundaries of the tangent cylinder. The velocity jump across the boundary of
the tangent cylinder is accommodated by the Stewartson layer, which is a region of
high shear. From [32].
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rotating) results in non-axisymmetric instabilities of the axisymmetric base state

that have progressively larger azimuthal wavenumbers m for lower E (i.e. faster

overall rotation). However, the instability has azimuthal wavenumber m = 1 for

most of the range of E considered (down to 10−5) for Ro < 0 (inner sub-rotating).

Thus the sign of Ro for values near zero is significant, while the limits of infinite Ro

are the same for both positive and negative values. In a later study [38], Hollerbach

et al. investigated stronger differential rotation both numerically and experimentally

for the case Ro > 0. They found that for sufficiently strong differential rotation a

series of mode transitions back to smaller azimuthal wavenumbers occurs.

Another interesting regime is found near Ro = −2, in which the spheres are

counter-rotating with the same angular frequencies. In this regime (with the relative

sizes of the spheres also possibly playing a role), the bulk of the fluid is at rest in

an inertial frame, and thus while the flow can be strongly driven, the influence of

rotation is small (see e.g. [39]).

Wicht [40] performed an extensive study of wide-gap spherical Couette flow

(with Earth-like radius ratio ri/ro = 0.35) across a wide range of parameter space.

The study varied both outer sphere rotation (i.e. E) and the amount of differential

rotation (i.e. Ro) over a wide range. Specifically, the study covered the following

range of parameters: 102 ≤ |Ro/E| ≤ 105 and 104 ≥ E ≥ 10−6 (where the length

scale used is L = ro − ri in the definition of E). The results are consistent with

previous numerical and experimental studies where the parameters overlap. For

slow overall rotation, an equatorial jet formed that eventually developed instabilites

as the inner sphere rotation rate (i.e. Ro) was increased and the Coriolis force
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did not have a significant effect on the flow. For fast overall rotation (i.e. low

Ekman number), a Stewartson layer is formed and develops various instabilities as

differential rotation is increased. In addition, inertial waves are found, which are

possibly driven by instabilities in the Stewartson layer, as posited by Rieutord et

al. [41]

2.1.4 Past Work: Experiments

Previous studies have also investigated the spherical Couette system exper-

imentally. In addition to systems using water (where no hydromagnetic effects

would be present), liquid sodium systems can also shed light on the hydrodynamics

of spherical Couette. When applied fields are weak, liquid sodium systems behave

approximately like water systems operated at the same dimensionless parameters

(Re, Ro, etc.). Thus, a good portion of the phenomena seen in liquid sodium exper-

iments are in fact hydrodynamic, rather than hydromagnetic, with perhaps slight

modifications due to the applied field. Of course, when applied fields are strong,

this hydrodynamic limit no longer applies, and a system exhibiting dynamo action

is also not in the hydrodynamic regime. Here we review some of the results in wa-

ter experiments, as well as the hydrodynamic phenomena seen in weak-field liquid

sodium experiments.

At the University of Maryland, a series of liquid sodium devices have been con-

structed. A device with a 30 cm diameter stationary outer spherical shell had flows

driven by impellers, propellers, or an inner sphere. [42] A larger device was originally
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constructed as a rotating convection experiment, with a cooled inner sphere 20 cm

in diameter and a heated outer spherical shell 60 cm in diameter driving flows in

liquid sodium, with the centrifugal force due to the overall system rotation standing

in for gravity. [43] As mentioned above, the high thermal conductivity of sodium

makes it difficult to achieve vigorous flows with a thermal gradient, so this device

was modified to have a differentially rotating inner sphere. [44–46] Finally, the 3

m device is a spherical Couette device (3 m diameter outer sphere, 1 m diameter

inner sphere) that was initially run as a water experiment but is now operating with

liquid sodium (see e.g. Zimmerman 2010 and Zimmerman et al. 2014).

While the water experiments in the 3 m device were initially for mechanical

debugging purposes in preparation for the sodium experiments, they provided some

new results concerning non-magnetic spherical Couette flow. In these experiments,

the two variables are the rotation rates of the inner and outer sphere. Using dimen-

sionless parameters, this parameter space can be characterized by Ro and Re. In

water, the primary measurements were the torque required to drive the inner sphere

(from a reaction flange torque sensor), pressure measurements, and wall-shear and

ultrasound Doppler velocimetry (UDV) measurements. It was found that Ro deter-

mines the state of the flow, while varying Re just scales the velocities and torques

seen. For some Ro numbers, moreover, it was found that the system exhibited bista-

bility, switching between two distinct states as determined by the torque required to

drive the inner sphere at its rotation rate. [47] The torque was significantly higher

in the so-called high torque state as compared to the low torque state.

This state was also investigated in liquid sodium with the 60 cm device (see
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section 3.1 for more details of the apparatus). For these experiments an array of

Hall probes measured the magnetic field outside the outer sphere, while the motor

drives provided coarse-grained torque measurements. A relatively weak applied

field allowed the velocity profile in the device to be inferred from induced field

measurements. To do this, first the induced field is modeled as a sum of vector

spherical harmonics up to degree and order 4. These Gauss coefficients are found

via a least squares fit to the field measurements. Selection rules can then be used

to determine the possible patterns of fluid flow in the device, since the applied

field geometry is known (see e.g. [48]). From the magnetic field measurements, the

presence of an inertial wave was identified, consistent with results in the 3 m device.

In addition, the power in another Gauss coefficient correlated well with the low-

torque state, and has been interpreted as the result of interaction of the Earth’s

field (which is not shielded out in the device) with a Rossby wave. This wave is

nearly 2D, and given its geometry would not be expected to cause any induction

at all when acted on by a uniform, axially-aligned field like the one applied in the

experiment.

While the results from the 60 cm device are generally compatible with those

from 3 m, a significant difference is found in the values of Ro for which the bistable

states occur. This may be due to geometric differences between the two devices:

the 60 cm device has a relatively thicker shaft which spins with the outer sphere, as

opposed to the shaft in 3 m that spins with the inner sphere. Thus, at least in this

case, analogous states can be found despite significant geometric differences in the

devices, with the 60 cm device requiring a larger Ro, and thus faster relative inner
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rotation, which intuitively might be thought of as being necessary to overcome the

effect of the large shaft rotating with the outer sphere. [32]

In addition to regions of bistability, the 3 m water experiments also revealed

the presence of precession-driven flows. [49] When the inner and outer spheres are

locked together and spun up to some constant rotation rate, one might expect the

flow to come to a state of solid body rotation with the spheres. However, the

laboratory is not an inertial frame since the Earth is rotating. Thus, the axis of

the experiment is precessing, completing one revolution a day. This precession of

the experiment’s rotation axis drives the spin-over mode, which can be understood

as the fluid spinning in a state of solid-body rotation but with an axis that lags

that of the experiment itself. Effectively, the fluid retains some “memory” of the

previous orientations of the rotation axis. The structure and strength of the observed

flows were consistent with the presence of a spin-over mode driven by precession.

Since many planetary bodies, including the Earth, exhibit significant amounts of

precession of their rotation axes, analogous flows can be expected in their liquid

cores. Precessional forcing has been proposed as an energy source for dynamos,

including the geodynamo. [50]

2.2 Hydromagnetics

In studying the dynamics of conductive fluid, including their interactions with

magnetic fields, both the Navier-Stokes equations and Maxwell equations are used.

As is the case for hydrodynamical systems, dimensionless parameters are often used
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in describing hydromagnetic systems, to facilitate comparisons between theoreti-

cal, computational, experimental, and observational results. These dimensionless

parameters are constructed by scaling the units of the equations of motion by ap-

propriate factors for the system under study in order to nondimensionalize the equa-

tions; the relevant dimensionless parameters then appear as prefactors of the terms

of the equation. While these parameters are in general not unique, a small number

of interchangeable numbers are used in the community.

2.2.1 Equations of Motion

For the case of a conducting fluid in the presence of a magnetic field, we now

have to include electrodynamic effects. The Navier-Stokes equation is modified by

the addition of the Lorentz force fL given by

fL = q(E + u×B) (2.14)

where q is charge, E is the electric field, u is velocity, and B is magnetic field.

Considering specifically a parcel of conducting fluid with charge density ρe, we can

write for the specific Lorentz force FL

FL = ρeE + J×B (2.15)

where J is the current in the fluid element. For the case of non-relativistic systems

(as is the case for our liquid metal experiments), the electric field can be neglected,
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as the time scale for charge imbalances to relax in the fluid (that is, for electrons

to rearrange themselves to reduce any electric fields due to static concentrations of

charge) is much shorter than any of the other relevant time scales. Thus, for the

case of magnetohydrodynamics (MHD) in liquid metals, the two primary variables

of interest are the fluid velocity u and the magnetic field B. As noted above, the

Navier-Stokes equation must be modified in this case to include the Lorentz force,

which we wish to write in terms of the magnetic field and the fluid velocity. Using

Ampere’s law, we have that

∇×B = µ(J + ε0
∂E

∂t
) (2.16)

and we note that for the case of non-relativistic MHD the displacement current can

be neglected, so that the above becomes

∇×B = µJ (2.17)

and we can write the Lorentz force as

FL =
1

µ0

(∇×B)×B (2.18)

and putting this into the Navier-Stokes equation (written in the rotating frame), we

have

∂u

∂t
+ u · ∇u = −1

ρ
∇P + ν∇2u +

FR

ρ
− 2Ω× u +

1

ρµ0

(∇×B)×B (2.19)
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Also, we note that, like water, liquid sodium is approximately incompressible,

so we can again take u to be divergence-free. To fully specify the system, we need an

equation governing the evolution of the magnetic field, B. We start with Faraday’s

law,

∇× E = −∂B

∂t
(2.20)

giving the rate of change of B. We note that the electric field here is the full electric

field, and not just that due to static charges. Using Ohm’s law,

J = σ(E + u×B) (2.21)

we can substitute for E in Faraday’s law to find

∂B

∂t
= −∇× (

1

µ0

J− u×B) (2.22)

and as above we use Ampere’s law to eliminate J to find

∂B

∂t
= ∇× (u×B− 1

µ0

∇×B) (2.23)

and using the vector identity

∇×∇×A = ∇(∇ ·A)−∇2A (2.24)

and the fact that B is divergence-free, i.e. ∇ ·B = 0, and defining η = 1/(µ0σ), the
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“magnetic diffusivity”, we have

∂B

∂t
= ∇× (u×B) + η∇2B, (2.25)

the so-called induction equation. This equation gives the evolution of the magnetic

field of the system, as a function of the current field B and the fluid velocity u.

The first term on the right-hand side gives the changes in the magnetic field due

to its advection by the fluid flow, and is the possible source of increasing magnetic

field, including dynamo action. The second term, on the other hand, represents the

tendency of the finite resistance of the fluid flow to smooth out variations in magnetic

field and damp it, by dissipating the currents in the fluid flow. This equation couples

u and B, as does the Navier-Stokes equation with the Lorentz force term added,

and we have a coupled, non-linear system of equations.

2.2.2 Dimensionless Parameters: Hydromagnetics

With the addition of magnetic fields to the dynamics of the physical system,

and thus to the equations describing them, a number of new dimensionless groups

can be formed. First we note that the only new variable that has been introduced

is B, so we can use the same definitions of dimensionless variables and operators

as above, with the addition of a dimenionsionless magnetic field variable, B′ =

B/B0, where we have normalized by B0, the magnitude of the applied field. This

is convenient since for all of the hydromagnetic experimental results we will be

discussing later, there will be an applied field. Of course for the case of dynamo
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action, there is no applied field, and then some other scale must be chosen for the

field, like the typical strength of the field. Turning to the relevant equations, we

first make the induction equation dimensionless, and after substitution we find

ΩB0
∂B′

∂t′
=
UB0

L
∇′ × (u′ ×B′) +

ηB0

L2
∇′2B′ (2.26)

and after simplifying we have

∂B′

∂t′
=

U

ΩL
∇′ × (u′ ×B′) +

η

ΩL2
∇′2B′ (2.27)

and we note that we have already defined the Rossby number Ro = U/(ΩL), and the

prefactor of the diffusive term is reminiscent of the Ekman number, E = ν/(ΩL2),

but with the kinematic viscosity (a kind of “momentum diffusivity”) replaced by the

magnetic diffusivity. Thus we introduce the magnetic Prandtl number, Pm = ν/η,

the ratio of these two diffusivities and a material property of the fluid, and so we

have (dropping the primes on dimensionless variables)

∂B

∂t
= Ro∇× (u×B) +

E

Pm
∇2B (2.28)

We now have four independent dimensionless groups, including those from the hy-

drodynamic case above: Ro, E, Γ, and Pm. We note that Re is another possible

group, which can be written in terms of Ro and E, and that we have retained the

geometrical factor Γ. The new dimensionless group, Pm, defined in terms of two

material properties of the fluid, takes into account the fact that the electromagnetic
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properties of the fluid are now important, in addition to its viscosity. For liquid

metals, including liquid sodium and the liquid iron of Earth’s core, Pm ∼ 10−5.

We note that B0 doesn’t appear in this group; B appears once in each term in the

induction equation, so any scaling factors for it drop out. To get a dimensionless

group including B0, we must turn to the hydromagnetic Navier-Stokes equation.

Again putting in the dimensionless parameters, and dividing through by a factor of

ΩU , we have (again dropping primes)

∂u

∂t
+

U

ΩL
(u · ∇)u = −∇P +

ν

ΩL2
∇2u− 2Ω× u +

B2
0

ρµ0ΩLU
(∇×B)×B (2.29)

and we see that we now have a dimensionless group containing B0. There are many

different possible choices for the new group; here we use the Lundquist number, given

by S = B0L/(η
√
ρµ0), which gives the ratio of the typical time scale of magnetic

waves (specifically, Alfven waves) to the typical decay constant of them. The larger

the value of S, the more persistent are magnetic waves in the system. Using S along

with the other defined dimensionless groups, the Navier-Stokes equation becomes

∂u

∂t
+Ro(u · ∇)u = −∇P + E∇2u− 2Ω× u +

S2E2

Pm2Ro
(∇×B)×B (2.30)

As noted above, dimensionless parameters allow comparison of observational,

experimental, and computational results. The definitions and values of some dimen-

sionless parameters relevant to the experiments and simulations to be discussed can

be found in Table 2.2.2. Of particular interest in dynamo studies are the Reynolds
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number, Re = UL/ν, and the magnetic Reynolds number, Rm = UL/η. Here U and

L represent velocity and length scales of the flow, while ν and η are the kinematic

viscosity and magnetic diffusivity, respectively. The Reynolds number characterizes

the presence and strength of turbulence in the flow. Above some critical value for

Re, a flow will transition from laminar flow to turbulence, and above this value a

larger Re implies stronger turbulence. Re can also be viewed as a ratio between in-

ertial forces (causing advection and vortex stretching in the flow) and viscous forces

(smoothing out variations in velocity). Similarly the magnetic Reynolds number,

Rm, can be viewed as the ratio between advection of the magnetic field, tending

to strengthen it via stretching of magnetic field lines, and dissipation of the field

via diffusion due to resistive losses. The higher the Rm of a flow, the more likely

dynamo action is to occur. For a given flow that is capable of dynamo action, a

self-sustaining field will arise if Rm exceeds some critical value. In general this crit-

ical value is unknown, however, so experiments simply try to maximize it, and the

estimated values for astronomical bodies provide some guidance as to what values

may be necessary in a given configuration. Also, since rotation is often an important

ingredient in both planetary dynamos and in experiments, the Ekman number E =

ν/(ΩL2) is relevant. This parameter quantifies the relative strength of viscous and

rotational effects, and also sets the size of the Ekman boundary layer, which scales

as E1/2.

Experiments and simulations can reach Rm values comparable to those of mag-

netized planetary bodies, consistent with the fact that dynamos have been realized

in both experiments and simulations. While experiments can also reach realistic
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Parameter Symbol Definition Experiments Simulations Earth’s
Outer
Core

Magnetic
Prandtl
number

Pm ν/η < 10−5 > 10−3 10−5

Reynolds
number

Re UL/ν < 108 < 106 108

Magnetic
Reynolds
number

Rm UL/η < 103 < 104 300-1000

Rossby
number

Ro ∆Ω/Ω > 10−5 > 10−5 10−5

Ekman
number

E ν/ΩL2 > 10−8 > 10−6 10−14

Table 2.3: Dimensionless Parameters. Typical values for experiments and simu-
lations, along with estimated values for the Earth’s core. Values for Earth’s core
from [6].

values of Re, simulations cannot resolve the wide range of length and time scales

needed to capture such turbulent flows, and thus simulations generally introduce

unrealistically large viscosities in order to suppress turbulence and render the flow

amenable to simulation (see Table 2.2.2). Finally, in the case of the Ekman number,

astrophysical bodies often exhibit values well beyond the range of both experiments

and simulations (though again experiments can go to lower values than simulations

and thus get closer to values typical of planetary and stellar bodies).

Another set of dimensionless parameters involves the strength of the magnetic

field. In studies of kinematic dynamos, where the background magnetic field is

generally assumed to be negligible, such parameters will not be relevant. However,

such parameters are important for characterizing dynamo systems once a magnetic

field has been established. They may also be relevant to the description of subcritical
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dynamos, for which an initial finite field strength is required for dynamo action to

occur, though no external field is required to sustain the dynamo action once it is

established. Since to date dynamos have only been achieved under a limited number

of laboratory settings, systems that have relatively strong external applied fields

are also often used to study hydromagnetic processes. Dimensionless parameters

relevant to such studies include the Elsasser number and the interaction parameter.

The Elsasser number Λ = B2
0/(Ωµ0ρη) measures the ratio of Lorentz to Coriolis

forces; here µ0 is the permeability of free space, ρ is the fluid density, B0 is the

applied magnetic field, and the other symbols are as above. It thus quantifies the

relative importance of the magnetic field and overall system rotation in influencing

the fluid flow. The interaction parameter N = σLB2
0/ρU , where σ is the conductivity

of the fluid, provides the ratio of Lorentz forces to inertial forces in the system. For

small N, Lorentz forces do not appreciably affect the flow, while for large N the

Lorentz forces can significantly modify the flow.

2.2.3 Past Work: Theory and Simulations

Numerical simulations complement the observational and experimental work

detailed above, providing flexibility in parameters as well as detailed information

about the entire system. Motivated by observational and experimental results, sim-

ulations have shed light on various processes that may be at work in those systems.

They have, in turn, also motivated new experimental studies. Much work has been

done in numerical studies relevant to the observations and experiments described
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above, including simulations of models of the geodynamo and direct numerical sim-

ulations of spherical Couette flow. This includes work on both hydrodynamic and

hydromagnetic phenomena in spherical Couette, as well as studies of dynamo action

in this and related geometries. [51] We first review hydrodynamic studies of spher-

ical Couette flow, in which no magnetic field is present, before moving on to the

magnetized case. Finally we close this section with a discussion of some dynamo

studies, and their relevance for experiments.

For the case of hydromagnetic phenomena, a number of studies have addressed

various aspects of magnetic spherical Couette flow. Starting with weak fields, the

introduction of magnetic fields generally modifies the Stewartson layer (in the case

of rapid overall rotation) or the equatorial jet (in the case of outer stationary or

slow outer rotation); as the applied field gets stronger, it can eventually dominate

rotational effects, with field lines structuring the flow. As in the non-magnetic case,

the axisymmetric base state was studied analytically [52], as well as numerically

[53–57]. A discussion of a number of recent results can be found in Chp. 7 of

Rüdiger et al. (2013) and in Wei et al. (2012). For the case of an applied field

that is axisymmetric about the rotation axis of the spheres, the fluid is divided into

regions magnetically coupled to either one or both of the spheres (see e.g. Hollerbach

and Skinner (2001)). As in the hydrodynamic case, jets and free shear layers can

appear to accommodate the adjustment of the fluid rotation rate between these

various regions.

When rotation is strong, the presence of a magnetic field can alter the Stew-

artson layer. In strong magnetic fields, free shear layers called Shercliff layers tend
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to form along magnetic field lines, and Ekman layers are modified by the magnetic

field to become what are called Hartmann layers (see e.g. Rüdiger et al. 2013).

Starchenko (1998) performed an asymptotic study of magnetic spherical Couette

with an axial applied field, finding that a Shercliff layer formed at the tangent cylin-

der. He also considered a dipolar applied field, which can be made sufficiently strong

to produce two rigidly rotating regions, with the shear layer between them following

the field lines that are tangent to the outer sphere at its equator. Here both spheres

were insulating.

In the case of conducting spheres, a similar set-up can result in super-rotation.

Starchenko (1997) and Dormy et al. (1998, 2002) numerically found a super-rotating

jet (the fluid rotates faster than the inner sphere) in the case of a stationary outer

sphere with a conducting inner boundary and an imposed dipolar field, while insu-

lating boundaries gave results consistent with previous asymptotic findings. Holler-

bach [58] studied how varying the imposed field geometry and the boundary condi-

tions (insulating or conducting) could give rise to super- or counter- rotating jets.

Hollerbach and Skinner [56] found that for the case of a stationary outer sphere

and a strong axial field that stronger magnetic field stabilizes flow: the shear layer

goes unstable to nonaxisymmetric disturbances at higher and higher Re. Wei and

Hollerbach [59] also considered spherical Couette flow with outer stationary and with

overall rotation, with or without an axial magnetic field, and studied the stability of

Stewartson (without an applied field, but with overall rotation) and Shercliff (with

an applied field) layers. They found that the instabilities of the Shercliff layer were

symmetric about the solid body case (that is, inner sphere sub- and super-rotation
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behaved in the same way), while as noted above the Stewartson layer instabilities are

asymmetric about this case. By considering the mixed case (overall rotation with an

applied field), they showed that these two different cases are smoothly connected.

For a useful overview of this work see also [51].

Gissinger et al. [60] investigated instabilites of magnetized spherical Couette

flow for a variety of Ro, imposed fields, and magnetic boundary conditions. They

found that an applied field can suppress hydrodynamic instabilities of the Stewartson

layer or of the equatorial jet, but can also introduce new instabilities, associated

either with disruption of the axisymmetry of the meridional return flow or with

the Shercliff layer going unstable to nonaxisymmetric modes. Figueroa et al. [61]

studied spherical Couette flow in a dipolar field (motivated by the DTS experiment),

finding that fluctuations in the magnetic field had most of their energy located

near the inner sphere (where the dipolar field is strongest), but are due to velocity

fluctuations that originate in the outer boundary layer. These velocity fluctuations

originate in two coupled instabilities: a high-latitude Bödewadt-type boundary layer

instability and a secondary non-axisymmetric instability of a centripetal jet near the

equator of the outer sphere. Bödewadt-type boundary layers form between rigidly

rotating flows and a stationary (or more slowly rotating) boundary, resulting in

inflow along the boundary and outflow into the fluid bulk along the axis of rotation.

This is an example of an active boundary layer, where the boundary flow set up by

the motion of the bulk fluid has a significant back-reaction on the bulk flow. [62]

Generally, the introduction of magnetic fields provides new ways to both stabilize

and destabilize the equatorial jets and Stewartson layers found in the non-magnetic
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case. In addition, applied magnetic fields can lead to the formation of flow structures

with no analog in the hydrodynamic case, and these structures can in turn develop

their own instabilities.

There have also been numerical investigations of dynamo action in spherical

Couette flow. One type of simulation is the kinematic dynamo, which ignores the

back reaction of the magnetic field on the flow. In these simulations, the flow of

a conducting fluid in spherical Couette is calculated first. Then this flow pattern

is used in the magnetic induction equation to determine if there are any growing

magnetic fields, which is a sign of dynamo action.

In the kinematic dynamo, a larger aspect ratio (ro/ri) and conducting bound-

ary layers favor dynamo action (Wei et al. 2012). The similar case of the kinematic

dynamo in a full-sphere (i.e. no inner sphere), but with boundary conditions that

mimic the tangent cylinder flow of spherical Couette (polar caps that rotate at a

different rate from the rest of the spherical boundary), was studied by Schaeffer

and Cardin. [63] Using a quasi-geostrophic model allowed them to reach very low

Ekman number (10−8), and they considered the case of low Pm (resulting in a scale

separation between the magnetic and velocity fields, and making the results relevant

to liquid metal experiments and planetary cores). The kinematic dynamo found was

interpreted as an α − ω type, with differential rotation providing the ω effect and

Rossby waves (which are instabilities of the internal shear layer) providing the α

effect.

In addition to kinematic dynamos, nonlinear dynamos have also been studied,

in which the back reaction of the magnetic field generated by dynamo action onto
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the fluid flow is included. Guervilly and Cardin [39] found that dynamo action was

achieved in spherical Couette flow when non-axisymmetric hydrodynamical insta-

bilities were excited and Rm was sufficiently high. For the case of outer stationary,

the critical Rm was of the order of a few thousand, with its value increasing with

increasing Re. Specifically, the critical value of Pm was found to be 1. With outer

rotation, the critical Pm was reduced by a factor of two (indicating overall rotation

is more favorable for dynamo action), and for intermediate values of rotation (E =

10−3), a favorable window for dynamo action was found, with a critical Rm of 300.

The authors speculate that this may be due to an enhanced shear layer around the

inner core, which however becomes unstable at lower E, eliminating this favorable

regime for faster rotation. They also looked at the effect of ferromagnetic boundary

conditions, finding minimal impact on the dynamo threshold though the strength

of the saturated magnetic field above the dynamo threshold was enhanced in the

ferromagnetic regions. These studies can offer hints regarding what set-ups may

favor dynamo action, including that inner conducting boundaries and large aspect

ratios may be more favorable to dynamo action (Wei et al. 2012).

The phenomena of intermittency near the onset of dynamo action has been

investigated numerically by Raynaud and Dormy. [64] They found intermittency in

the magnetic field near the dynamo threshold for a variety of boundary conditions

(both spheres insulating, inner sphere conducting, and both ferromagnetic), with

the intermittency eventually going away when the system is sufficiently above the

dynamo threshold. This work may offer some guidance in the analysis of states

observed in 3 m with bursts of magnetic field enhancement.
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Finally, a comparison of smooth and rough inner boundaries for kinematic

spherical Couette dynamos was made by Finke and Tilgner. [65] They considered

the case of outer stationary, with ri/ro = 1/3, and compared the case of flow driven

by a smooth inner sphere with no-slip boundary conditions and the case of flow

driven by a volume force near the inner sphere (to simulate a rough inner sphere

surface). The case of a rough inner sphere results in a reduction of the critical inner

rotation rate for dynamo action by a factor of 10. This case also results in a thicker

boundary layer and equatorial jet, which also make dynamo action somewhat more

favorable. This work is of particular interest in future plans for roughening the inner

sphere of 3 m via the attachment of baffles, thus increasing the coupling of the inner

sphere with the bulk fluid and increasing the strength of the equatorial jet off the

inner sphere and associated poloidal flows.

2.2.4 Past Work: Magnetized Spherical Couette Flow and Dynamo

Experiments

In this section we describe some of the previous work done on magnetized

spherical Couette, as well as dynamo experiments.

In trying to understand the geodynamo in particular, a class of experimental

and numerical studies have focused on spherical Couette flow (see Chp. 7 of Rüdiger

et al. 2013 for an excellent overview). [66] This consists of flow in the space between

an outer bounding spherical shell and a concentric inner sphere of smaller diameter.

Flow is driven by differential rotation between the inner and outer spheres. The
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system can be characterized by the difference in inner and outer rotation rates ∆Ω

and, if the outer sphere is rotating, by the overall system rotation Ω (i.e. the outer

sphere rotation rate). Such systems are geophysically relevant, having a similar ge-

ometry to the Earth’s core, especially if they approximately match the inner-to-outer

core radius ratio of 0.35. While not capturing all aspects of the geodynamo, such

systems are relatively simple models of dynamo action, providing a straightforward

way to achieve the differential rotation that is a key ingredient of many dynamo

mechanisms (see e.g. Wei et al. 2012).

A significant difference between flow in Earth’s core and such a set-up is the

driving of the flow. Earth’s core flows (including any differential rotation contribut-

ing to dynamo action) are believed to be driven primarily by a combination of

compositional and thermal convection, with rotational, and possibly precessional,

effects playing a significant role. In spherical Couette flows, on the other hand, a

shear flow is driven by differential rotation imposed at the boundaries. Thus the an-

gular momentum transport between the two spheres, rather than heat and chemical

transport, is the driver of the flow.

While thermal convection can be used to drive flows in experimental devices,

these flows tend to be less vigorous than shear flows, as measured by the achievable

Re and Rm. Moreover, if hydromagnetic phenomena are to be investigated, the

working fluid must be a conductor, and a good electrical conductor is desirable to

achieve a large Rm. Thus experiments generally make use of a liquid metal, like

sodium or gallium. In fact, liquid sodium is the best liquid conductor usable in such

experiments, but with high electrical conductivity comes high thermal conductivity.
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Thus when a thermal gradient is used to drive flows in liquid sodium, the induced

flows are relatively weak, resulting in a low Re and thus, since Rm = RePm, a

relatively low Rm (at least compared to shear-driven sodium flows). For instance,

the rotating convection experiment described in Shew and Lathrop (2005) achieved

an Re of ∼ 40000 based on zonal flows in the liquid sodium; later, it was reconfigured

to be a mechanically driven spherical Couette device, achieving Re of ∼ 106 (Kelley

2009). Spherical-Couette devices using liquid sodium can thus achieve turbulent

hydromagnetic flows with significant rotational effects in an Earth-like geometry. A

similar experimental set-up is that of a spherical vessel of fluid with flow driven by

impellers; while less Earth-like, the impellers allow more vigorous flow to be driven

as compared to the smooth-walled boundaries of spherical Couette devices.

A number of liquid sodium devices have been implemented with a spherical

geometry. The Madison dynamo experiment (MDE) is an example of an impeller-

driven flow [67] while the Derviche Tourneur Sodium (DTS) experiment in Grenoble

is a spherical Couette device with a ferromagnetic inner sphere [68, 69]. At the

University of Maryland a series of liquid sodium devices have been constructed,

including three spherical vessels ranging in size from 30 cm to 3 m. The two current

sodium experiments are both spherical Couette devices, 60 cm and 3 m in diameter,

and magnetic fields can be applied to the fluid volume using external coils.

In spherical geometries, we note that both magnetic and velocity fields are

commonly described using vector spherical harmonics to decompose the fields into

poloidal and toroidal components [27]. This can always be done for magnetic fields

which are always divergence-free, and can also be done for the velocity field of an
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incompressible flow - such as that found in liquid metal experiments. The toroidal

component of the magnetic field has no radial component, and does not extend out

of the conductor; thus for measurements outside the Earth’s core (or outside the

fluid volume of an experiment), only the poloidal component of the field can be

measured, which can be written as the gradient of a scalar field (assuming no other

current sources). Models of Earth’s field outside its core are often expanded in terms

of spherical harmonics, with the coefficients in the expansion (one for each harmonic,

identified by degree l and order m) referred to as Gauss coefficients (after Gauss,

the first to represent Earth’s field in this manner [17]. Moreover, descriptions of the

dynamo mechanism are often conceptualized in terms of the conversion of poloidal

field into toroidal field (the ω effect) and of toroidal field into poloidal field (the α

effect) via fluid flow.

Below we first review some of the results from previous successful dynamo

experiments (all in non-spherical geometry), along with some results from MDE,

which while not a dynamo shares many characteristics with the VKS experiment

(the only successful dynamo in an open geometry). Then we review some results

from the DTS experiment, a liquid sodium device modeled on Earth’s core and

having a strong imposed dipolar field. This section closes with discussion of the

Maryland spherical Couette experiments.

While the Maryland devices and DTS are modeled on Earth’s core, MDE

follows in the tradition of the Riga and Karlsruhe dynamos in being based on a

kinematic dynamo (Riga: the Ponomarenko flow [70]; Karslruhe: G.O Roberts flow

[71]). While the mean flow of the device approximately models a laminar kinematic
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dynamo, turbulent fluctuations are always present as well. In the Riga and Karlsruhe

dynamos, turbulent fluctuations were limited in size by the diameter of the pipes

used in constraining the flow, thus separating the scale of the turbulent eddies from

the system size over which the dynamo acts. MDE, on the other hand, has an open

geometry like VKS and the Maryland devices where turbulent fluctuations can be

present up to the system size. Such a geometry is more astrophysically relevant, since

natural bodies generally have unconstrained flows in simply-connected regions more

akin to those of MDE or VKS than the Riga or Karlsruhe dynamos [67]. The lack

of scale separation also means, however, that the predictions of laminar kinematic

dynamo theory, while still a potentially helpful guide, are no longer reliable.

The Madison dynamo experiment (MDE) has a very similar driving set-up to

that of the VKS experiment, but in a spherical rather than cylindrical container.

The experiment consists of a 1m diameter spherical shell filled with liquid sodium,

driven by two impellers. The impellers have a common axis, mounted on shafts

entering the container from the two poles of the experiment. Two sets of coil pairs,

one coaxial with the impellers, and one perpendicular to the axis, can be used to

apply a magnetic field of dipolar or quadrupolar symmetry, either parallel to the

impeller rotation axis or perpendicular to it. Unlike the VKS experiment, MDE

does not achieve dynamo action, including when using ferromagnetic impellers [72].

While no dynamo was seen, a variety of phenomena involving the interaction of

turbulent flow with magnetic fields have been observed and quantified.

As noted above, the set-up of MDE was in part motivated by a kinematic

dynamo for the spherical geometry. This flow consists of counter-rotating toroidal
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flows in the two hemispheres (driven by the counter-rotating impellers), as well as

poloidal rolls consisting of outflow from the equatorial regions between the impellers

towards the poles (again driven by the impellers) and a return flow along the outer

boundary (Nornberg et al. 2006). This double-vortex flow results in a kinematic

dynamo in the laminar case [73], with feedback resulting in a transverse dipole

(i.e. a dipole oriented perpendicular to the axis defined by the impeller shafts).

Using liquid sodium, with the resulting small Pm, however, means that the actual

experiment will be highly turbulent, with Re ∼ 107 and turbulent fluctuations up

to ∼20% of the mean [74].

While the mean flow of MDE is expected to approximate that of the lami-

nar kinematic dynamo, these turbulent fluctuations in the experiment can have a

number of effects. Nornberg et al. [67] follow a mean-field approach in separating

the magnetic and velocity fields into their mean and fluctuating components and

focusing on the mean field and the net effect of the fluctuating components on it (see

e.g. [75]). The expected dynamics are a combination of those due to the mean, ax-

isymmetric flow (approximating the laminar kinematic dynamo) and the net effect of

the fluctuations in the velocity and magnetic fields (due to turbulence). Correlated

fluctuations in the magnetic and velocity fields can result in coherent generation of

magnetic field (referred to as the α effect, first experimentally observed by Steen-

beck et al. [76]). Tangling of the magnetic field lines by turbulent eddies can result

in an increase in dissipation of magnetic field in the system, which can be viewed as

a turbulent enhancement of the system’s magnetic diffusivity (termed the β effect).

Finally, gradients in the amount of turbulence can result in flux expulsion from
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regions of higher turbulence (the γ effect).

In the parameter regimes studied, the MDE experiment does not achieve dy-

namo action, but by applying magnetic fields in a number of different geometries,

the effects of turbulent fluctuations have been investigated. For the case of an axial

applied field, in addition to the expected induced field due to the mean flow (ax-

isymmetric l = 3 and l = 5 modes), an axial dipole is also seen [74]. This cannot be

due to the interaction of the axisymmetric mean flow with the axisymmetric applied

field (by well-known symmetry arguments, see [77]), so it is argued that it must be

due to a turbulent EMF which breaks the symmetry of the system.

In addition to the liquid sodium experiment, the Madison group has an identical-

scale water experiment, which when run at an appropriate temperature (40◦C), ap-

proximately matches the kinematic properties of liquid sodium (see e.g. [67]). In the

water experiment Laser Doppler velocimetry (LDV) measurements of the velocity

were taken (which are not possible in opaque liquid sodium), allowing the mean flow

field in the sodium experiment to be predicted. By comparing the induced magnetic

field in the liquid sodium to the field expected by the action of this mean flow field on

the applied magnetic field, Spence et al. [78] infer the presence of electrical currents

in the experiment due to the turbulent EMF. This current in turn produces poloidal

(which is primarily dipolar) and toroidal field that is opposed to the primary field

induced by the mean flow; the system exhibits turbulent diamagnetism. Kaplan et

al. [79] report on the results of installing equatorial baffles in MDE, resulting in a

reduction of the global β effect in the experiment. Further improvement in reducing

the turbulent resistivity were reported in [80], though the system was still below the
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threshold for a dynamo.

In addition to these relatively steady effects, intermittent bursts of magnetic

field have also been observed in MDE (Nornberg et al. 2006a). When an axial mag-

netic field is applied to the experiment, a fluctuating amount of energy is observed

in the transverse dipole, which is the least-damped magnetic eigenmode predicted

by laminar kinematic dynamo theory. The orientation of the dipole within the equa-

torial plane of the experiment is random, so on average the induced magnetic field

is axisymmetric. Also, the distribution of the strength of magnetic fluctuations di-

verges from a Gaussian distribution due to these large bursts, serving as another

indication that the bursts are not simply due to noise in the system. The strength

of the Lorentz forces due to the bursting field is at most comparable to those due

to the applied field, so the interaction parameter remains low (N ∼ 0.01), and the

effect of these forces is minimal.

The authors propose several possible explanations for these bursts. Turbulent

velocity fluctuations could lead to a locally higher Rm, resulting in it temporarily

exceeding the critical Rm for this least-damped eigenmode. Alternatively, the tur-

bulent fluctuations could alter the overall shape of the flow, making it more favorable

to this eigenmode, effectively reducing its critical Rm below the experiment’s Rm

(again, temporarily). In either case, the mode would start growing, and there would

be a burst of magnetic field in the form of a transverse dipole, which would decay

away once the favorable turbulent fluctuations had dissipated. Another possibil-

ity is that if at small scales the kinetic helicity of eddies becomes strong enough,

the current produced by their interaction with the applied field could result in the
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bursts. In summary, the authors argue that for a turbulent dynamo the transition

from non-dynamo to dynamo states will be marked not by a smooth transition from

a decaying to a growing magnetic eigenmode (as in laminar kinematic dynamos),

but rather by intermittent bursts of magnetic field.

The DTS experiment was designed to study the magnetostrophic regime rel-

evant to the Earth’s core (see e.g. [81]). In this regime, the Coriolis and Lorentz

forces dominate viscous forces. Such a regime is characteristic of rapidly-rotating

systems with strong magnetic fields. The DTS experiment has a 42 cm outer diam-

eter sphere, while the 14.8 cm inner sphere has a copper surface with an internal

permanent magnet, so that a dipolar field is applied to the liquid sodium that fills

the gap between the inner sphere and the outer spherical shell. The dipole is ori-

ented along the axis of rotation of the spheres. The inner and outer spheres can be

rotated independently, driving a variety of flows that are significantly modified from

the hydrodynamic case by the presence of the relatively strong field of the inner

sphere.

In terms of dimensionless parameters, such a system has a small Ekman num-

ber (so rotational effects dominate viscous ones) and an Elsasser number Λ ∼O(1),

so that the Coriolis and Lorentz forces are of comparable strength. Although lab-

oratory experiments cannot reach Ekman numbers comparable to those found in

planets and stars, they are capable of reaching regimes of rapid rotation that are

computationally inaccessible. Since a dynamo has not yet been demonstrated in the

spherical geometry, however, in order to reach an Elsasser number of order ∼ O(1),

some other magnetic field must be applied to the fluid. In the case of DTS, the
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inner sphere is ferromagnetic, applying a dipolar field of fixed strength. Given this

geometry, a variety of force balances are present in the experiment, ranging from a

magnetically-dominated one near the inner sphere, to a rotationally dominated one

near the outer sphere (see e.g. [68]). For instance, magneto-coriolis waves have also

been observed, where both rotational effects (via the Coriolis force) and magnetic

effects result in the fluid supporting novel wave modes [82]. A similar phenomenon,

magnetic Archimedes Coriolis (MAC) waves — where buoyancy effects, in addition

to rotational and magnetic ones, are important — may play a significant role in the

dynamics of Earth’s core. [83,84]

Another such flow involves the super-rotation of the flow as compared to the

inner sphere, so that the flow velocity exceeds that of both system boundaries. [85]

Super-rotation was first found in numerical simulations [53,86], and was later found

in the DTS experiment [68,69,85]. In [68] and [69], the azimuthal angular velocities

of the flow were inferred from electric potential measurements at the surface of

the outer sphere, and interpreted as revealing a strong super-rotation of the liquid

sodium in the equatorial region.

While super-rotation was found, consistent with the previous numerical pre-

dictions, there were also notable differences between the numerical model and the

experimental results. In particular, the experimental variation of the electric poten-

tial with latitude did not match that of the numerical simulation, and oscillatory

motion near the equator of the outer sphere, seen using ultrasound Doppler velocime-

try (UDV), did not match up with the steady result in numerics. The oscillations

were interpreted as due to an instability of the super-rotating region.
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Intuitively, this phenomenon can be understood in terms of the electric cur-

rents in the system and the geometry of the applied field lines (see discussion of

simulation results below, and [58]). Generally the electric currents follow the field

lines, thus generating no Lorentz force on the fluid. In boundary layers the electric

currents cross field lines, generating Lorentz forces that balance the viscous forces.

Near the equator of the experiment, however, given the dipole geometry of the ap-

plied field, if large enough currents are flowing they are forced to cross the magnetic

field lines here. The Lorentz forces that result allow the inner sphere to act like a

magnetic propeller, grabbing on to the fluid and forcing it to spin with it rather

than with the outer sphere.

These forces can become so large that they overcompensate for the viscous

forces due to the differential rotation of the inner with the outer sphere, and result

in the acceleration of the fluid in this region to angular velocities that exceed that of

the inner sphere. In Brito et al. (2011), UDV measurements confirmed the presence

of super-rotating jets in DTS for the case of a stationary outer sphere. They also

show that the electric potential measurements are somewhat difficult to interpret

and are not always a good guide to the azimuthal velocities. The phenomenon of

super-rotation is an interesting and unusual hydromagnetic phenomenon; numerical

models match well features of the experiment that depend only on dimensionless

parameters that do not include diffusivities [85]. Thus comparison of experimental

results with numerical models allows elucidation of the limits of linear models; a

similar explanation (involving the lack of strong dependence on diffusivities) has

been proposed to explain why Earth-like geodynamo models do surprisingly well. [87]
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Another experimental result from DTS is of particular interest for dynamo

studies. Cabanes et al. [88] report on measurements of the α and β effects, and note

that the β effect due to small-scale turbulent fluctuations is negative in the interior

of the experiment, and positive closer to the outer sphere. Thus, the turbulent

fluctuations near the inner sphere reduce the effective magnetic diffusivity, implying

that turbulence could be a contributing factor to dynamo action, as opposed to

a hindrance (as it has often seemed in past experiments). Indeed, the authors

speculate that if the magnitude of this negative β effect were to grow large enough,

it could promote dynamo action. As reported in another paper [89], the ω effect

is present in the rotationally dominated outer region, which is another possible

ingredient of dynamo action.

In previous work [90] with the 3 m experiment, at least twelve distinct non-

dynamo states have been identified, with the states depending on Ro as in the

case of the water experiments (as expected for non-magnetic states). In addition,

a power peak at a specific Ro has been identified. For the case of magnetized flow,

a dipolar magnetic field is applied with a large electromagnet located around the

experiment’s equator (or, in more recent work, with an array of two magnets - see

section3.2.2). The strength of the applied magnetic field serves as another parameter

that can be varied, in addition to varying Ro and Re, providing a large parameter

space to explore. Of course, if a self-sustaining dynamo (a prime motivation for the

experiment) were to be obtained, no applied field would be necessary (beyond some

initial seed field, such as an ambient field or one due to random fluctuations).

A useful conceptual framework for evaluating the prospects for dynamo action

64



in the 3 m device is the α-ω dynamo (Parker 1955). In this model, differential

rotation converts poloidal field into (more intense) toriodal field (the ω effect), and

then toroidal field is converted back into poloidal field via the so-called α effect,

thus strengthening the original field and closing the dynamo feedback loop. During

magnetized experiments in 3 m, the dipolar field applied by the external magnet

provides a seed poloidal field. Any toroidal field present in the experiment is the

result of the ω effect due to differential rotation in the fluid acting on the applied

field. This toroidal field does not extend outside the experiment, however, and so can

only be measured by a probe within the fluid volume. In order to have a diagnostic

of the toroidal field, some measurements of magnetic field inside the flow have been

taken at a single point using an inserted Hall probe (in addition to the external field

measurements made by an array of Hall probes just outside the experiment). From

these measurements it is seen that the azimuthal field is significantly stronger than

the local applied field, which has radial and vertical components. This is interpreted

as a sign of the ω effect operating in the experiment, converting poloidal magnetic

field (in this the dipolar applied field) into toroidal (i.e. azimuthal) magnetic field.

While the strong differential rotation of the flow for some Ro supplies significant

ω effect, so far no states have been found with strong enough α effect to give self-

sustaining dynamo action. Finally, looking at global magnetic field measurements,

steady dipole gain of up to ∼ 20% has been observed in the experiment, with bursts

of amplifaction of up to ∼ 40% though these states require an external applied field,

and thus are not dynamo states. [90]
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2.3 Analysis Background

In this section we look at the theoretical background for two of the main

techniques used in extracting information from our instruments. For the magnetic

data, where we have an array of Hall probes around the exterior of the experiments

(see Chapter 3 for more details), we use Gauss coefficients to characterize the global

magnetic field patterns, and in turn infer information about the possible global

velocity patterns present. For the air experiments in the 60 cm experiment (and

hopefully in the future the sodium experiments), we use the splittings of acoustic

modes of the experimental cavity to infer information about the global pattern of

zonal flow.

2.3.1 Spherical Harmonics

Three experiments in the University of Maryland Geodynamo lab have used

the approach of fitting the induced field in an experiment in a spherical shell to vector

spherical harmonics in order to obtain a global model of the field. This is motivated

by the use of Gauss coefficients in studies of Earth’s magnetic field. The basic idea

is to have an array of probes around the experiment measuring the induced field in

the system (by calibrating out any contribution due to the applied field) and then

to do a least squares fit of a (truncated) expansion of vector spherical harmonics to

these measurements. In this way a series of point measurements of one component

of the magnetic field can be used to infer the global pattern of the field; a limitation

of this approach is that we are not sensitive to small scale structures. Since the
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measurements are taken outside the fluid volume, there will be some filtering due

to the more rapid fall-off with distance of higher order magnetic moments, so such

higher-order structures will also have less of an effect on the probe measurements.

The 30 cm and 60 cm experiments used arrays of identical design (the one for

60 cm being scaled up appropriately), containing 30 Hall probes mounted around

the experiments in the laboratory frame; the initial array for the 3 m experiment

contained 31 Hall probes, mounted to the exterior surface of the vessel (and thus

in the rotating frame). See Chapter 3 for more details regarding the experimental

set-ups. Below, we provide an overview of the use of spherical harmonics and Gauss

coefficients in representing magnetic measurements, following a similar discussion in

section 2.3 of Kelley 2009 [91].

The basic idea in using the vector spherical harmonics is to represent the

induced magnetic field as the gradient of a potential; this is a valid representation

provided the measured field is due to currents interior to the experiment and not

exterior to the array. Provided external fields (like those due to the magnets in

producing the applied field, as well as the Earth’s field and fields due to building

structures) have been calibrated out, the magnetic field seen outside the experiment

(where the array is located), obeys

∇×B = µJ + ε0
∂E

∂t
= 0 (2.31)

where we have used the fact that in the region of the array there are no currents

present, and have used the MHD approximation in neglecting the displacement
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current. Since the curl of B is zero in this region, we can write it as the gradient of

a potential,

B = −∇Φ (2.32)

and taking the divergence of both sides, and using the fact that B is divergence-free,

we have

∇2Φ = 0 (2.33)

i.e. Laplace’s equation. The solution of Laplace’s equation in a spherical geometry

are the scalar spherical harmonics. Expanding Φ in terms of the spherical harmonics,

we have

Φ(r) =
∞∑
l=0

l∑
m=−l

(Alr
l +Blr

−(l+1))(am cosmφ+ bm sinmφ)Pm
l (cos θ). (2.34)

where we have broken out the φ dependence of the scalar spherical harmonics, in

order to make explicit the cosine and sine terms, with Y mc
l = cosmφPm

l (cos θ) and

Y ms
l = sinmφPm

l (cos θ). Here the Pm
l are the generalized, Schmidt semi-normalized

Legendre function (see [91] for further details). Next, we note that the field must

go to zero at infinity (since we’re representing only the field due to currents inside

the experiment, all other fields assumed to have been calibrated out), so that we

must have all Al equal to zero. Also, we must have B0 = 0, since it corresponds to

a magnetic potential that falls off like 1/r, and thus corresponds to a magnetic field

that falls off like 1/r2 from its source, which corresponds to a magnetic monopole,

the presence of which would violate the requirement that B be divergence-free.
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Putting in these results and combining terms we have

Φ(r) = b
∞∑
l=1

l∑
m=−l

(gmcl cosmφ+ gmsl sinmφ)(
r

b
)−(l+1)Pm

l (cos θ), (2.35)

where the terms gmcl and gmsl are the so-called Gauss coefficients, b is the radius of

the fluid volume (outside of which we assume there are no currents, which would act

as sources of magnetic field), and we have used the Thus we have a representation

for the magnetic potential, and thus (by taking the gradient) the field, outside the

experiment, using scalar spherical harmonics.

The values of the coefficients gmcl and gmsl indicate how much contribution to

the local magnetic field is due to their corresponding spherical harmonic, and so by

using n measurements of magnetic field, we can fit up to n coefficients (in a least

squares sense). Of course, better results are obtained by having more measurements

of the magnetic field, and for 3 m we obtain 31 (or later, 33) measurements of the

field, and use this to fit to 24 Gauss coefficients, corresponding to l running from 1

to 4 and m running from −l to +l for each value of l.

In addition to giving us a sense of the global field geometry, that is, whether it

is mainly dipolar, quadrupolar, or higher order, the use of Gauss coefficients can aid

in the identification of the geometry of waves and, through the use of selection rules,

allow us to infer what velocity patterns could be present in the flow. In the case of

waves, one previous result found with the 60 cm experiment, as noted above (see

section 2.2.4), was the presence of strongly excited inertial modes in the system over

a wide range of parameters. Since the inertial modes are characterized by a degree
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l and order m, in addition to a frequency ω, they are easily identified by taking

the power spectra of the Gauss coefficients, and looking for peaks in the frequency

range [0, 2Ω] where Ω is the rotation rate of the vessel (or, more precisely, of the

bulk of the fluid). For the case of waves with a definite azimuthal wave number m

but no specific degree structure, the Gauss coefficient approach can still be helpful

in identifying the m number, and in indicating whether the wave has a definite

equatorial symmetry (symmetric or anti-symmetric).

In the use of selection rules to identify possible velocity modes, we follow the

approach of Bullard and Gellman [27], as explicated in [91], and note that since the

magnetic field is divergence-free, and the velocity field is assumed divergence-free

(using the approximation of an incompressible fluid), both fields can be represented

using a sum of poloidal and toroidal vector fields,

v =
∑
α

(sα + tα), (2.36)

and

B =
∑
α

(Sβ + Tβ), (2.37)

where the tα, Tβ are the toroidal vector spherical harmonics and the sα, Sβ are

the poloidal vector spherical harmonics. Here we have introduced the convention of

using lowercase letters for the velocity field representation (tα, sα) and uppercase

letters for the magnetic field representation (Tβ,Sβ). The subscripts α and β stand

in for the specific labels for the components, which are identified (like the scalar
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spherical harmonics) by degree l and order m (with 0 ≤ m ≤ l), and further labeled

cosine or sine (in keeping all components real, also note that the m = 0 term counts

as a cosine, with no corresponding sine component); another approach is in terms of

complex exponentials, in which case instead of cosine and sine labels for the nonzero

m terms, we use only l and m to label them, but with m running from −l to +l

instead of from 0 to l. Also note that in either case, for each value of l there are a

total of 2l + 1 terms. The vector spherical harmonics can be defined as

Tmt
l = ∇× T (r)Y mt

l (θ, φ)r̂ (2.38)

and

Smtl = ∇×∇× S(r)Y mt
l (θ, φ)r̂ (2.39)

where the superscript t in Tmt
l , Smtl , and Y mt

l are all either s or c, denoting the cosine

or sine component of the vector and scalar spherical harmonics, the Y m
l being the

scalar spherical harmonics, discussed above, and T (r) and S(r) are complete and

orthogonal scalar function of r, with r̂ the unit radial vector. We note that since both

the toroidal and poloidal terms are written in terms of a curl (or a curl of a curl),

the resulting field will be divergence-free by construction. Besides the mathematical

convenience of automatically satisfying the requirement that the fields be solenoidal,

the use of an identical basis for both fields makes the use of selection rules relatively

straightforward (if mathematically intensive). Here we assume the applied field

geometry is known (as it is in the case of our experiments), and then for a given
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induced field geometry, we can use selection rules to infer what possible flow velocity

field geometries could result in the observed induction. While the field was always

primarily dipolar (produced by two ring-shaped electromagnets with their shared

axis aligned with the rotation axis of the experiment, and thus in a Helmoholtz

pair-like configuration) for the 60 cm hydromagnetic experiments, in the case of

the 3 m experiment, the field used was sometimes dipolar (produced either by a

single electromagnet located around the equator, or by a pair of electromagnets in a

similar configuration to the 60 cm magnets) and sometimes quadrupolar (with the

pair of magnets, but with their produced fields being opposed rather than aligned).

Also we note that the induced field can also act on the velocity field to result in

further induced fields, quickly complicating the picture, but for the case of weak

applied fields (i.e. Lorentz force term in the hydromagnetic Navier-Stokes equation

being negligible compared to the dominant terms) such second-order effects can be

neglected.

2.3.2 Acoustic Modes of Full Sphere and Spherical Shell

In this section we consider the calculation of acoustic modes in idealized models

of our experiments, which illustrate the basic properties of the modes and yield

approximations to their frequencies. This will lay the groundwork for the inference of

zonal flows from frequency splittings of acoustic modes, discussed further in section

2.3.3. Since acoustic waves are just pressure waves in the fluid, we start with the

wave equation for the pressure of a isentropic fluid (since we’re assuming the fluid
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is in approximate equilibrium, or at least steady state; here we follow the discussion

in Appendix A of [92]), which is

∂2P (r, t)

∂t2
= c2∇2P (r, t). (2.40)

Plugging in an ansatz of P (r, t) = f(r)e−iωt, corresponding to oscillatory behavior,

the above reduces to the Helmholtz equation for f(r):

∇2f(r) + k2f(r) = 0 (2.41)

where we have introduced the wavenumber k, given by k = ω/c. For acoustic waves

propagating in an infinite fluid, then, any frequency is allowed. Next we consider

the case of waves propagating in a spherical cavity (a first rough approximation

of our vessels). In this case, we must solve the Helmholtz equation in spherical

coordinates, and subject to boundary conditions. Using the usual spherical co-

ordinates r = (r, θ, φ), we note that the Helmholtz equation separates, so that

f(r) = R(r)Q(θ)Φ(φ). The solutions for Q(θ) and Φ(φ) are, not surprisingly, the

spherical harmonics Y m
l (θ, φ), while for R(r) we have the spherical Bessel equation

∂

∂r
[r2 ∂

∂r
R(r)] = [l(l + 1)− k2r2]R(r), (2.42)

and the solution for R(r) is, up to a constant pre-factor, given by

R(r) = jl(kr) +Bnl(kr), (2.43)
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where jl and nl are the order l spherical Bessel functions of the first and second kind,

respectively. Boundary conditions are needed to fully specify the possible solutions.

For the case of a full sphere, we require that the pressure be finite at r = 0, and

thus we must have B = 0, since the nl are singular at the origin. We also require

that the radial derivative of the pressure vanish at the outer boundary, ∂
∂r
P = 0, so

we must have R′(r = ro) = 0, where the prime denotes a radial derivative and ro is

the radius of the cavity. Working in units where ro = 1, this gives j′l(k) = 0. This

determines the allowable wavenumbers k, namely the zeros of the first derivative of

the spherical Bessel function of the first kind. So, for each value of l, l = 0, 1, 2, ...

there are an (denumerably) infinite number of possible wavenumbers k, which we

label in ascending order of k by n = 0, 1, 2...; n can be thought of as the number of

radial nodes within the fluid volume. Each (n, l) pair will have a corresponding k, or

equivalently, angular frequency ωnl given by ωnl = ck/ro, where c is the sound speed

of the fluid, and ro is the outer radius of the vessel. In our reports of experimental

results, we usually work with the cyclic frequency f , given by f = ω/(2π). Also,

as noted above, the frequency does not depend on m, and thus the 2l + 1 modes of

each (n, l) family are degenerate, sharing the same frequency for the case of spherical

symmetry.

For the case of a spherical shell, that is an outer spherical boundary and an

inner sphere (a closer approximation to our experiments, though still spherically

symmetric), we return to equation 2.43, and note that since r = 0 is no longer

in the fluid region, both kinds of Bessel functions can appear in R(r). Instead of

requiring regularity at the origin, we now have an inner boundary at r = ri with the
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same boundary condition as the outer boundary, namely ∂
∂r
P (r = ri) = 0. These

two boundary conditions determine can be used to solve for B and k. Again working

in units where ro = 1, and defining ri = a in these units, we have

j′l(ka) +Bn′l(ka) = 0 (2.44)

and

j′l(k) +Bn′l(k) = 0. (2.45)

Multiplying the first equation by n′l(k) and the second by n′l(ka) and summing them,

we can eliminate B, obtaining

j′l(ka)n′l(k)− j′l(k)n′l(ka) = 0, (2.46)

and solving for B we have

B = − j
′
l(k)

n′l(k)
(= − j

′
l(ka)

n′l(ka)
). (2.47)

The possible values of k for this case are then determined by equation 2.46, and

for a given k the corresponding value of B is given by equation 2.47. We again

label the modes corresponding to a given k by n, for n = 0, 1, 2.., with the k

arranged in ascending order. The values of k can be found numerically, and then

the corresponding mode frequency is again given by ωnl = ck/ro. Here again the

2l + 1 modes (corresponding to m = −l, ..., 0, ...l) are degenerate, since spherical
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symmetry is still present (since we have neglected the presence of a shaft and other

departures from spherical symmetry in the experiments). Thus, using the above

approach, and plugging in the values of ro, a = ri/ro, and c (see Table 2.1.2 for

values relevant to the experiments), we can obtain approximate predictions for the

mode frequencies.

2.3.3 Acoustic Velocimetry

In this section we provide some background on the techniques of helioseis-

mology, along with the basics of it as applied to laboratory experiments, which we

refer to as acoustic velocimetry. As noted in section 1.1.3 above, the field of he-

lioseismology makes use of observations of the frequencies of acoustic modes of the

sun, including the splittings of modes in the same (n,l) family but with different

azimuthal wave number m, to infer properties of the solar interior, including the

pattern of azimuthal flow. This approach relies on the fact that the frequencies of

acoustic oscillations in the sun depend on the properties of the solar interior, and

different modes reflect properties in different regions of the sun. While the mea-

surement of oscillation frequencies has been important in validating and fine-tuning

models of the solar interior [28], here we focus on the use of these measurements to

infer azimuthal velocities as a function of position within the solar interior.

Assuming an adequate model of the expected frequencies for a non-rotating

sun has been constructed, the oscillation frequency of a given mode ωnlm can be

written in terms of the non-rotating frequency ωnl0 (since the m = 0 mode is not
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affected by the rotation to first order, while the rotation splits the non-zero m modes

in the (n,l) family from the m = 0 mode) and the solar rotation profile Ω(r, θ) as [28]

ωnlm = ωnl0 +m
∫ R

0

∫ π

0
Knlm(r, θ)Ω(r, θ)rdrdθ, (2.48)

where Knlm(r, θ) is the sensitivity kernel of the given mode to the solar rotation pro-

file. It is basically a weight function, giving the sensitivity of the mode frequency

to flows in different parts of the meridional plane, and is calculated using the eigen-

function of the given mode in the non-rotating solar model. Since the dependence

on r and θ of Knlm will vary among modes, by combining observations of multiple

mode splittings from the non-rotating case a picture of Ω(r, θ) can be built up. In

particular, for the case of the sun we note that high degree modes modes tend to be

concentrated near the surface of the sun, while low degree modes probe deep into

the solar interior. In particular, the turning point of a mode, that is the radius rt

(within the sun) at which the wave vector is horizontal, resulting in the wave turning

back towards the surface, with the wave exponentially decaying in the region r < rt,

is given by [28]

rt =
c(rt)

√
l(l + 1)

ω
, (2.49)

with this relationship holding for modes of high radial order, which many of the

observed acoustic modes in the sun are. As can be seen in the above equation, rt

is small for low degree (small l) modes or high frequency modes, and is in fact zero

for radial modes (l = 0). Since the speed of sound varies with depth in the sun,
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this must also be taken into account, and c(rt) is the speed of sound at the turning

point. By measuring the frequencies of modes of both low and high degrees, the sun

can be probed at a variety of depths. In addition, high degree modes that have m

close in value to l are concentrated around the equator.

Applying this to the case of laboratory experiments, if we can measure the

mode frequencies for the stationary case, and develop a good model of the mode

eigenfunctions, then we can use the above relation to perform an inverse problem:

using the observed frequencies for a number of modes, and the calculated sensitivity

kernels for them, we can infer the rotation profile Ω(r, θ) of the experiment. See

Chapter 5 below for more details on applying these techniques to experiments, and

on the results obtained.

2.3.4 Previous Laboratory Results

In this section we review some results from previous acoustic investigations in

laboratory experiments. Using the 30 cm experiment, a spherical Couette device

with a fixed outer sphere and a rotating inner sphere, measurements were performed

in air both of aoustic mode splittings and, using an anemometer, of the average

azimuthal velocity at a number of locations within the fluid volume [92].

A speaker was used to excite acoustic modes in the system, by playing a chirp,

and the acoustic signal was acquired on several microphones, with both the micro-

phones and the speaker mounted on the outer sphere. In addition, an anemometer

was inserted into the system to measure the azimuthal velocity of the fluid at several
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different locations. Experiments were conducted for a variety of different inner ro-

tation rates, and the splittings of 26 different acoustic modes were determined. The

amount of splitting of a given mode as a function of inner rotation rate was found

to fit a line (indicating that the state of the fluid was not changing significantly,

with the velocities simply scaling up with the inner rotation rate). In addition, a

reasonable fit was found between the azimuthal velocities inferred using the splitting

measurements, and the velocities measured by the anemometer; it is important to

note that the anemometer measurements were used to guide the inversion method

(see Mautino’s forthcoming master’s thesis for further discussion).
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Chapter 3: Experimental Apparatus

In this chapter we provide details about the experimental apparatus used to

obtain the results described in this thesis. The main devices used were two spherical

Couette devices, consisting of an outer shell and an inner sphere that can be rotated

differentially, to drive a shear flow in the working fluid between them. The smaller

experiment, 60 cm in diameter, had experiments done using liquid sodium, as well as

experiments with gas (air and nitrogen) as the working fluid; the focus of the liquid

sodium experiments was hydromagnetics, while the gas experiments were aimed at

further developing the technique of acoustic mode velocimetry. In this thesis I will

focus on the acoustic experiments performed in the 60 cm experiment. The larger

experiment, 3 m in diameter, was configured as a liquid sodium experiment for all

of the results discussed in this thesis (though earlier work was done with water

serving as the working fluid [32,47,49,93]). First we discuss the 60 cm experiment,

describing the set-up and instrumentation for the gas experiments. Then, we turn

to the 3 m experiment, detailing the set-up used for the liquid sodium experiments

discussed in Chapter 4 of this thesis.
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3.1 The 60 cm Experiment

3.1.1 Overview

As noted previously, the 60 cm experiment is a spherical Couette device, with

a rotating outer spherical shell and an independently rotating inner sphere driving

a turbulent flow in the working fluid lying between them. We first provide a de-

scription of the mechanical set-up of the system (see Figure 3.1). Further details on

the design and set-up, especially for liquid sodium experiments, can be found in [94]

and [91].

3.1.2 Mechanical Set-up

The experimental vessel of the 60 cm experiment consists of an outer spherical

shell, machined from aircraft alloy titanium (Ti, 6% Al, 4% V) and consists of three

parts: an upper hemisphere, a lower hemisphere, and an equatorial hoop into which

both pieces screw when the experiment is assembled. The vessel rests in a cylindrical

base, on a pair of spherical roller bearings (SKF 7216BECBY). The cylindrical base

is in turn attached to the bottom of a large stainless steel vessel which holds the

experiment. A lid for this vessel in turn covers the experiment (for mechanical

and sodium safety purposes) and holds the upper bearing (SKF 6016-2RSGA) that

sits around the shaft that extends from the top of the upper hemisphere. This

shaft is hollow, and extends through the top hemisphere, towards the center of the

sphere. The bottom hemisphere has a similar design. There are historical reasons
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for this design: originally the experimental vessel was designed for a liquid sodium

rotating convection experiment, described in Woodward Shew’s dissertation [94].

The shafts extending from the top and bottom hemispheres mated with a hollow

inner sphere, and kerosene was pumped through a rotating fluid junction in the

base of the experiment, up through the hollow shaft of the bottom hemisphere,

and through the inner sphere before returning out the bottom. The experiment

was heated from the outside with incandescent heaters, and cooled by the kerosene

circulating within the inner sphere. The centrifugal force due to the overall rotation

served as an analog for gravity, and the heating of the outer sphere and cooling of

the inner set up an adverse temperature gradient unstable to convection. Later the

experiment was modified by Douglas Kelley [91] to have a differentially rotating,

solid copper inner sphere. The bottom shaft was plugged, and the top of it modified

to hold the lower bearings for the inner sphere shaft. This inner shaft then extended

up through the hollow top hemisphere shaft, which held a seal and top roller bearing

assembly. The inner shaft extends out of the outer shaft, where it can be driven by

a motor. This motor sits on a mount that in turn sits on the containment vessel’s

lid. The outer sphere is also rotated by a motor, via a belt that runs around a

pulley mounted on the outer shaft, with the motor sitting on the lid, to the side of

the inner sphere motor mount. The pulley also has a pair of slip rings in order to

acquire the signal from an internal thermal couple, used to monitor the temperature

of the working fluid.

The motors used are both General Electric 5KS215SAB105 (10 Hp 60Hz) AC

induction motors, and are each driven by a 10 Hp, variable frequency drive (ABB
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Figure 3.1: Mechanical setup of the 60 cm experiment during the acoustic experi-
ments. Adapted from Figure 3.1 of [91]. The red circle with a “T” in it indicates
the position of the internal thermocouple; while the experiment was not purposely
heated in the acoustic experiments, viscous dissipation in the system did result in
measurable temperature changes (rising from room temperature to a maximum of
∼ 50 − 55 ◦C), which in turn change the frequencies of the acoustic modes. The
green rectangles indicate the location of 5 of the 6 microphones and are labeled with
the numbering used throughout this dissertation; the last microphone does not lie
in the plane shown, but is separated from Mic 5 by an azimuthal angle ∆φ = π/26
radians. Inset photo shows installed rotating instrumentation package.
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ACH-500). Control signals are sent via an opto-isolated RS-232 connection, and the

drives are controlled with a program written in C, run on a control computer. The

program uses the MODBUS library to communicate with the drives, and during

sodium experiments also controls the magnets. This code is based on similar code

written by Santiago Andres Triana to control the motors for the 3 m experiment,

and adapted by the author for the 60 cm experiment.

3.1.3 Acoustic Instrumentation

Data for the acoustic mode experiments in 60 cm is taken using two micro-

phones at a given time, from a choice of six microphones. These microphones (model

ADMP404) are small, low aspect (3.35 x 2.50 x 0.88 mm), MEMS-element micro-

phones with a built-in impedance converter and output amplifier; their design is

typical of those used in mobile devices, and thus are inexpensive and readily avail-

able. The microphones are powered, and their analog outputs are acquired, using a

rotating instrumentation package mounted to the top outer shaft of the experiment

(see figure 3.1). A sketch of the rotating instrumentation set-up is given in figure 3.2

and a schematic of the circuit used with the microphones is given in figure 3.1.3. The

position of the microphones are listed in Table 3.1, and Figure 3.1.3 has photographs

showing them installed in the hemispheres of the experiment. The combination of

mics 1 and 2 allows the parity of the azimuthal m-structure of an acoustic mode

to be determined, while the combination of mics 1 and 4 allows determination of a

mode’s equatorial parity. Mics 5 and 6 are arranged in an m-finder set-up, placed
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Microphone θ φ

Mic 1 3π
4

0

Mic 2 3π
4

π

Mic 3 π
2

0

Mic 4 π
4

0

Mic 5 π
4

π

Mic 6 π
4

π − π
26

Table 3.1: Microphone Positions given by spherical polar angle θ and azimuthal
angle φ.

Speaker θ φ

Top Speaker π
2
− π

13
π − π

13

Bottom Speaker 3π
4

3π
4

Table 3.2: Speaker Positions given by spherical polar angle θ and azimuthal angle
φ.

at the same latitude and separated in azimuth by an angle of π/26.

The acoustic modes can be excited in the system using chirps from one of two

speakers, whose positions are shown in Table 3.2. The speakers (model APS2509S-

T-R) are piezoelectric, low aspect (25.2 x 16.6 x 1.6 mm) devices, of the type used

in mobile devices. A WAV file for the chirp, constructed using Matlab, is played

using the rotating computer’s soundcard, and sent to the speaker circuit shown in

figure 3.5. When one or both sphere are spinning the modes are also stochastically

excited (by the turbulent flows, mechanical noise of the experiment, or both). For

the most recent data acquired for differential rotation, and for which the inversions

detailed below were performed, mics 1 and 2 were used (allowing m-parity to be

determined), and the analysis has focused on data taken without any chirp being

played.

85



Battery
Pack and
Voltage 
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Microphone 
Circuit

Overo 
computer
with WiFi
Connection
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Circuit

To Speaker

To Microphones

Slip Ring 
Connection to 
Thermocouple

Outer Shaft
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Slip Ring 
Contacts

Slip Ring, 
mounted to 
outer shaft

To power and signal 
conditioning electronics, 
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computer

Figure 3.2: Rotating Instrumentation for the 60 cm experiment during the acoustic
experiments. Two of the six microphone signals are acquired into the sound card of
a rotating computer, mounted on the outer shaft of the 60 cm experiment; the stereo
audio output of this card can also be used to drive one of two speakers installed in
the vessel. The data is then written out wirelessly to a computer in the lab frame.
The temperature measured by the internal thermocouple is also acquired through a
slip ring.
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1uF

100k

1k

To Overo 
Speaker Input

To 
Mic

TL072CP

+

-

R

Figure 3.3: Circuit for acquiring data from the microphones. The resistor labeled R
determines the gain G of the circuit, with G = 1 + R/(1kΩ). For the experiments
done to date, we have used R = 15kΩ, 6 kΩ, and ∼ 0 kΩ, giving G = 16, 7, and 1,
respectively.
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Figure 3.4: Photograph of bottom hemisphere with inner sphere, microphones, and
speaker installed.

LT1010

+

-

LF356
1uF

10k 100pF 100k

To 
Speaker

From 
Overo

Figure 3.5: Circuit for powering speakers. The LT1010 is an integrated circuit
specifically designed to allow op-amps to drive reactive loads, like the piezoelectric
speakers we used.
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3.2 The 3 m Experiments

We now detail the experimental set-up for the 3 m liquid sodium experiments.

In the following sections we describe the mechanical set-up of the 3 m system, as

well as the instrumentation and control systems used. Further details on the design

and construction of the 3 m experiment can be found in [93] and [32].

3.2.1 Mechanical Set-up

The mechanical set-up of the 3 m system is similar to that of the 60 cm

experiment, but on a grander scale. The main vessel again consists of an outer

spherical shell, in this case 2.920 m in diameter, and an inner sphere, 1.016 m in

diameter (thus, with a inner-to-outer radius ratio Γ = 0.348, approximating the

geometry of earth’s core, with Γ = 0.35). The two spheres rotate independently,

and differential rotation is used to drive a shear flow in the liquid sodium that fills

the volume between them (see figures 3.2.1 and 3.2.1). The sphere is housed in

a stainless steel cubic structure, which in addition to serving as a safety barrier

around the sphere, also supports the base of the sphere (which holds the bearing

and rotating fluid junctions) and the top bearing, as well as the inner and outer

sphere motors. Like in the 60 cm experiment, the inner sphere motor is mounted

directly above the vessel, on axis with it. It is coupled to the inner sphere shaft

through a Futek TFF-600 reaction flange torque sensor, which provides a measure

of the torque required to drive the inner sphere at its set rotation rate. The outer

sphere motor is mounted off-axis, on the top of the cube near one of the sides, and
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drives the outer sphere via a belt and pulley system.

The outer spherical shell is solid, 1-inch thick stainless steel, up to a northern

latitude of 59 degrees, where it mates with a lid. The bottom surface of the lid serves

as the top boundary of the spherical fluid volume, while its top surface is flat and

serves as a location to mount instrumentation and data acquisition systems. There

is a vacuum space in between the top and bottom surfaces of the lid, to insulate

these systems from the heat of the liquid sodium during operation. The lid holds the

top bearing for the inner sphere shaft, and is also the attachment point for the inner

race of the top bearing for the outer sphere. At its thinnest (at the instrumentation

ports), this surface is 3/8” thick. A series of halfpipes welded onto the outer sphere

serve as channels for heating oil to be circulated, providing temperature control of

the experiment. This oil is fed in through a manifold mounted on one side of the

outer sphere, while the return flow enters another manifold on the opposite side of

the sphere. The oil enters the system and returns to the heating and cooling units

through a rotating fluid junction in the base of the experiment. Four instrumentation

ports in the lid of the experiment provide direct access to the working fluid. They

are located 60.3 cm from the axis of the experiment (corresponding to a cylindrical

radial distance of 0.41Router), equally spaced in 90 degree increments around the

experiment (see figure 3.2.1). See [32] and [93] for more details on the design of the

3 m experiment’s vessel and associated systems.
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Figure 3.6: Rendering of the 3 m Experiment. The inner sphere and the outer
spherical shell can be driven independently by their two respective motors (top).
Liquid sodium serves as the working fluid for hydromagnetic experiments. Figure
credit: Laurent Hindryckx.
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Figure 3.7: Schematic and Photos of the 3 m Experiment. Left: A schematic of
the experimental apparatus. Photos, clockwise from top center: the outer sphere;
the inner sphere with shaft and lid; the inner sphere being lowered into the outer
vessel, which is filled with water in this view; the bottom bearing and rotating fluid
junction (allowing heating oil to be circulated in the jacket around the outer sphere).
Figure credit: Daniel Zimmerman.
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Figure 3.8: Instrumentation for 3 m Experiment. (a) Outer spherical shell; (b)
Inner sphere; (c) External magnet, located around the vessel’s equator; Note that
in later experiments a pair of external mangets was used, with the magnets located
symmetrically above and below the equator; (d) Reaction torque sensor; (e) Instru-
mentation ports; (f) External Hall effect magnetic field probes. Originally Figure 1
from [90].
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3.2.2 Magnets

When running 3 m sodium experiments, in addition to choosing inner and

outer sphere rotation rates (thus setting Ro and Re), the strength and geometry of

the magnetic field applied can be varied. First, we note that since the system is not

magnetically shielded, there is always a background magnetic field present, due to

the earth and the building that houses the system. For the initial hydromagnetic

studies, a single magnet located around the equator of the sphere was used, applying

an approximately dipolar field to the system [90] (see figure 3.2.1). More recently, a

pair of magnets, located symmetrically above and below the equator, have been used,

and can be wired to apply either a dipolar field (with current flowing through them

in the same sense) or quadrupolar field (with the dipole moments of the magnets

anti-parallel); I assisted Doug Stone in installing the magnets, and in rewiring them

as necessary to switch between dipole and quadrupole configurations.

3.2.3 Torque Measurements

While crude measures of the torque supplied by both inner and outer motors

are provided by their respective motor drives, a more precise measure of the torque

required to drive the inner sphere is provided by a reaction torque sensor, mounted

in-line between the inner motor output shaft and the shaft of the inner sphere.

Under the assumption of a statistically steady turbulent shear flow, there should be

a constant flux of angular momentum through the system, with opposite torques

applied to the inner and outer spheres. An imbalance would imply the fluid is
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spinning up (for a net positive flux into the system) or down (for a net negative

flux) and thus that the fluid is not in a statistically steady state. This neglects

the additional angular momentum sinks of bearing friction and air resistance, but

for all but the lowest rotation rates these are small compared to fluid torques (at

the percent level of the fluid torques for high speeds, but up to around 50% at the

lowest Re). [32] Thus measurements of the torque required to drive the inner sphere

serve as a good approximation of the angular momentum flux through the system,

which in turn serves as a good way of delineating different states of the system [90],

which seem to depend on Ro rather than Re. A rotating battery pack mounted

on the inner shaft powers the torque sensor as well as the rotating data acquisition

system that acquires the torque signal and sends it wirelessly to the primary control

computer in the lab frame (see [32] for more details).

3.2.4 Magnetic Measurements

The magnetic field around the system is measured using hall-effect probes

(Honeywell SS94A1F), arranged in an array around the exterior of the system. The

main array, consisting initially of 31 probes (see figure 3.2.1), is made up of probes

mounted on the outer sphere, measuring the field in the spherical radial direction

(and thus measuring the external field, including any field due to the magnets, as

well as the induced fields in the liquid sodium of the experiment). The probes are

arranged in five rings, with the probes in a given ring each sharing approximately

the same latitude. The rings ranged in latitude from about 66.0 degrees “south”
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to 53.5 degrees “north”. For later experiments, an additional two Hall probes were

installed at a higher latitude (81.8 degrees “north”), mounted on the lid of the

experiment. These were added in order to better constrain the field values at this

location, in order to improve estimates of the gauss coefficients, especially the higher

degree ones (i.e. l = 3, 4); previously the field in this region had been essentially a

free parameter, with the possibility that unrealistic field values in this region were

favored in order to better fit the measured field at lower latitudes. The exact position

of the probes was selected partly based on constraints due to the geometry of the

experiment, and partly on an analysis performed by Yuto Beki to determine what

measurement locations would give the greatest improvement to the gauss coefficient

estimates. The locations of the probes of this external array are given in Table 3.3;

the last two entries correspond to the recently added probes. In addition to these

measurements of the external field, a pair of measurements of the internal field are

obtained from two Hall probes mounted inside the end of a stalk that extends 10cm

from one of the instrumentation ports into the fluid. These Hall probes (the same

model as those used in the external array) measure the internal field at this location

in the fluid in the cylindrical radial and azimuthal directions.

3.2.5 Gauss Coefficient Projection and Selection Rules

While time series and spectra of the Hall probes can be looked at individually,

and the internal field measurements are generally analyzed in this way, the external

array data is used to estimate the associated Gauss coefficients of the field up to
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r/b θ φ r/b θ φ
1.0522 2.7065 0.7856 1.0522 1.6008 4.1905
1.0522 2.7049 2.3564 1.0522 1.6008 4.8874
1.0522 2.7049 3.9259 1.0522 1.6118 5.5851
1.0522 2.7222 5.4978 1.0522 1.0818 0.4485
1.0522 2.1429 0.4485 1.0522 1.0914 1.3458
1.0522 2.1490 1.3458 1.0522 1.1023 2.2445
1.0522 2.1607 2.2445 1.0522 1.1074 3.1416
1.0522 2.1710 3.1416 1.0522 1.1177 4.0387
1.0522 2.1853 4.0387 1.0522 1.1320 4.9375
1.0522 2.1941 4.9375 1.0522 1.0767 5.8345
1.0522 2.1375 5.8348 1.0522 0.6456 0.3943
1.0522 1.6158 0 1.0522 0.6713 1.9673
1.0522 1.6223 0.6980 1.0522 0.6796 3.5366
1.0522 1.6321 1.3964 1.0522 0.6369 5.1026
1.0522 1.6425 2.0954 1.1054 0.1431 1.3090
1.0522 1.5870 2.7861 1.1054 0.1431 3.9270
1.0522 1.5937 3.4908

Table 3.3: Probe Positions of the External Hall Magnetic Field Probes for the
3 m Experiment. Angles are measured in radians, while the radial positions are
normalized by the inner radius of the outer spherical shell, b = 1.46m.

degree and order 4. Details of the method used (a least squares fit of the Gauss

coefficients (see section 2.3.1) up to l = 4) are given in [48]; the specific code used

in performing the analysis consists of Matlab scripts.

Following this operation, the induced magnetic field is represented in terms of

a sum of poloidal vector spherical harmonics Sml , the associated Gauss coefficients

giving the strength of each of the harmonics. The external applied field can also

be written in terms of vector spherical harmonics, and as noted in section 2.3.1,

incompressible fluid flows can be written using the same expansion. The induction

equation (eq. 2.25) allows us to calculate the magnetic field induced by the interac-

tion of a given velocity field with a given applied magnetic field. For given applied

field and velocity geometries, only certain induced field geometries are possible; the
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mathematical rules governing this, so-called selection rules, are presented in Ta-

ble 3.2.5, take from [27]. Essentially, for a given applied magnetic field geometry

Bapplied, expressed as some Sml or Tml , and an observed induced field Binduced, also

expressed in terms of one or more of the Sml or Tml , then the observed induction can

only be attributed to certain distinct velocity field patterns v = sml , t
m
l . For clarity,

we use uppercase for vector spherical harmonics representing magnetic field (applied

or induced) and lowercase for those representing fluid velocities. The selection rules

governing the system specify which triplets of (vfluid,Bapplied,Binduced) are allowed,

given the geometrical properties of the vector spherical harmonics and the physics of

the induction equation, and are similar in spirit and in mathematical machinery to

the so-called 3j symbols used extensively in quantum mechanics. In Table 3.2.5, we

write sα or tα for the vector spherical harmonic describing the fluid motion, with α

representing the specific l and m of the field. Similarly for the applied magnetic field

we write Sβ or Tβ, and for the induced field, Sγ or Tγ (following a similar convention

used in Bullard and Gellman 1954 [27].

3.2.6 Pressure Measurements

Three of the four instrumentation ports contain a pressure probe (Kistler

211B5) to measure the local pressure (with a sensitivity of 50 mV/psi). These

probes were also used in water experiments conducted previously in the 3 m ex-

periment. The probes include compensating elements to cancel out signals due to

centrifugal accelerations, so are unaffected by the rotation of the outer spherical shell
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(vfluid,Bapplied,Binduced) Selection Rules
(sαSβSγ), (sαTβTγ), (tαSβTγ) (i) lα+lβ+lγ is even, (ii) lα,lβ, and lγ can

form the sides of a triangle, including
degenerate case of one equaling the sum
of the other two, (iii) at least one of the
four expressions mα ±mβ ±mγ vanishes,
(iv) three of the harmonics has cos or
one has (m = 0 counts as cos).

(sαTβSγ), (sαSβTγ), (tαSβSγ),
(tαTβTγ)

(i) lα + lβ + lγ is odd, (ii) lα,lβ, and lγ can
form the sides of a triangle, (iii) at least
one of the four expressions mα±mβ±mγ

vanishes, (iv) two of the harmonics has
cos or none has (m = 0 counts as cos),
(v) no two harmonics are identical.

(tαTβSγ) Always zero.

Table 3.4: Selection Rules. For the given combinations of vector spherical harmon-
ics of the fluid velocity, applied magnetic field, and induced magnetic field in the
first column, only those obeying the selection rules given in the second column are
allowed, i.e. the velocity field (s, t)α can interact with the applied magnetic field
(S, T )β to produce the induced magnetic field (S, T )γ.

in which they are installed. Their -5% low frequency response point is at 0.025 Hz,

so they are insensitive to the centrifugal pressure of the fluid due to the overall

rotation, but are sensitive to fluctuations, including those associated with inertial

waves. Their +5% high frequency response point is at 50 kHz, so they are also

sensitive to acoustic signals, though that depends on the filters used with them and

the sample rate of the data acquisition system. Previously the circuit used to power

these probes and filter their outputs (described in [93]) used both a high-pass filter

(with roll-off frequency 0.033 Hz, similar to the probes’ -5% point) and low-pass

filter (with roll-off frequency 207 Hz, chosen based on the data acquisition system’s

typical sampling rate of 256 Hz). I modified this circuit, replacing the 1.425 nF

capacitors used in the RC low-pass filters with 19.42 nF capacitors, changing the
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roll-off frequency from 207 Hz to 2.34 kHz. For some of the acoustic studies per-

formed in 3 m, described later in section 5.6, a sampling rate of 5 kHz was used for

these probes, so the measurements were sensitive to acoustic modes of the system.

In addition to these three probes, there are another set of three probes, one

in each of the ports that also has a Kistler pressure probe, installed with a view to-

wards taking acoustic measurements. Three ICP Dynamic Pressure Sensors (model

106B51 or 106B52, with 1000 mV/psi and 5000 mV/psi sensitivities, respectively),

manufactured by the Pressure Division of PCB Piezotronics, are used. These probes

are powered by Model 480C02 Battery-Powered ICP Sensor Signal Conditioners.

Their -5% low frequency response point is at 2.5 Hz, so they are not sensitive to

some of the slow waves that might be present in the system, including some of the

inertial waves, but with a resonant frequency above 40 kHz they provide more sen-

sitive pressure measurements in the acoustic frequency range. Data is not normally

acquired from them, but they were used for some of the acoustic studies done (and

discussed in section 5.6).
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Chapter 4: Magnetic Studies

In this chapter we present some of the findings from the 3 m liquid sodium

experiment, which in addition to their general scientific interest serve as the motiva-

tion for the development of the acoustic velocimetry technique, described in chapter

2, with results given in chapter 5.

4.1 Overview of Results in the 3 m Experiment

Previous hydrodynamic and hydromagnetic studies in the 3 m device have

established that in the accessible parameter ranges, the turbulent state is mainly

a function of Ro = (Ωi − Ωo)/Ωo, with changes in Re serving to simply scale the

system variables (velocities, torques, etc.) but not altering the topology of the

flow [90] (see Figure 4.1). The 3 m experiment has now been taken to full speed on

the outer sphere (a rotation rate of 4 Hz), and for a number of Ro has also reached

the maximum allowed torque values (as set by the torque rating of the currently

installed reaction torque sensor installed in-line between the inner motor and inner

sphere shaft, which is also close to the maximum torque that can be supplied by

the inner motor as currently configured; see section 3.2.3 for more details). Here we

build on some of the work presented in [90].
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Figure 4.1: Normalized Torque vs. Ro−1 in 3 m Experiment. The average torque G
required to drive the inner sphere at its selected rotation rate is plotted, normalized
by the torque Ginf needed to drive it at that same rotation rate when the outer
is stationary (corresponding to Ro = inf), versus Ro−1. Inverse Ro is used for
the abscissa because the torque curve is continuous through Ro−1 = 0, while it is
discontinuous through Ro = 0. The fact that the curves collapse for different Re
(i.e. different inner rotation rates for measuring G and Ginf) indicates that for the
parameters explored in the 3 m experiment, the flow state is a function only of Ro,
and not Re. The different state regions are labeled, and discussed further in the
text. Originally Figure 3 from [90].
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4.2 Inferred Velocity Patterns

In previous work [90], some of the different states (as determined by the spectra

of wall shear probes, as well as torque measurements) seen in the 3 m experiment

as a function of Ro were classified and characterized. Here we consider a similar

range of Ro, and characterize the states by looking at the induced magnetic fields

found for the case of a dipolar applied field, as well as, where available, the case of

a quadrupolar field. We use this information to infer the possible spatial velocity

patterns present in the flow, investigate how the patterns change with Ro, and

compare with results found for wall shear stress and torque (see Figure 4.1). In

particular, here we make used of the array of external Hall magnetic field probes,

and fit these measurements with an expansion in vector spherical harmonics (see

sections 3.2.4 and 3.2.5 for more details on the array and this method); then by

using selection rules we infer the possible flows within the experiment. In Table 4.1

we present the only possible velocity patterns that can produce a given induced field

pattern, for both the case of a dipolar applied field and a quadrupolar applied field,

using the selection rules from [27], presented in Table 3.2.5. In Figure 4.2, we show

the vector spherical harmonics up to l = 4 and m = 4, at the surface of a sphere

(presented with the Mollweide projection), showing the component of the field in

the cylindrical radial direction, to give an idea of what these various magnetic field

patterns look like.

Turning to experimental results, in Table 4.2, we note the possible velocity

fields that could cause the observed induction patterns seen at a variety of Ro. In
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Possible Velocity Patterns sm
l for:

Observed B Field Sm
l S0

1 applied B field S0
2 applied B field

S0
1 s0

2 s0
1, s

0
3

S1c
1 s1c

2 , t
1s
1 s1c

1 , s
1c
3 , t

1s
2

S0
2 s0

1, s
0
3 s0

2, s
0
4

S1c
2 s1c

1 , s
1c
3 , t

1s
2 s1c

2 , s
1c
4 , t

1s
1 , t

1s
3

S2c
2 s2c

3 , t
2s
2 s2c

2 , s
2c
4 , t

2s
3

S0
3 s0

2, s
0
4 s0

1, s
0
3, s

0
5

S1c
3 s1c

2 , s
1c
4 , t

1s
3 s1c

1 , s
1c
3 , s

1c
5 , t

1s
2 , t

1s
4

S2c
3 s2c

2 , s
2c
4 , t

2s
3 s2c

3 , s
2c
5 , t

2s
2 , t

2s
4

S3c
3 s3c

4 , t
3s
3 s3c

3 , s
3c
5 , t

3s
4

S0
4 s0

3, s
0
5 s0

2, s
0
4, s

0
6

S1c
4 s1c

3 , s
1c
5 s1c

2 , s
1c
4 , s

1c
6 , t

1s
3 , t

1s
5

S2c
4 s2c

3 , s
2c
5 , t

2s
4 s2c

2 , s
2c
4 , s

2c
6 , t

2s
3 , t

2s
5

S3c
4 s3c

3 , s
3c
5 , t

3s
4 s3c

4 , s
3c
6 , t

3s
3 , t

3s
5

S4c
4 s4c

5 , t
4s
4 s4c

4 , s
4c
6 , t

4s
5

Table 4.1: Selection Rules Relevant for 3 m Experiment. For the induced modes
with non-zero m, we list only the velocity patterns responsible for the cos modes
Smcl ; to get the selection rules for the sin ones Smsl , the c and s symbols are switched
in the velocity modes sml .

104



Figure 4.2: Cylindrical Radial Component of Vector Spherical Harmonics up to
degree and order 4. Red corresponds to field out of the page, while blue is field
into the page, with green being zero field. These illustrations give an idea of the
field patterns that are discussed throughout this chapter. Figure Credit: Douglas
H. Kelley.
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the Induced Magnetic Fields column of this table, we note the Gauss coefficients

that have the largest fluctuations (quantified by their RMS deviations). This gives

us information about what magnetic field patterns are present in the system, and

thus also what velocity patterns may be present. Since we’re looking at fluctuating

patterns (i.e. those Gauss coefficients with large RMS deviations), the spectral

properties of the Gauss coefficients also inform us about possible waves present in

the system with the geometry of the velocity patterns associated with them. We

also obtain information about the turbulent amplitude present in the system specific

to that spatial harmonic, among other things.

We can also look at the means of the Gauss coefficients. Here we generally

expect only the axisymmetric (i.e. m = 0) modes to have significant mean values,

since any non-zero m pattern will average to zero unless it is stationary in the frame

of the external array. Since the inner sphere rotates at a different rotation rate than

the outer, the shear flows driven by this differential rotation will in general drift

relative to the frame of the external array. Also, since we are applying axisymmetric

fields (dominated by either S0
1 or S0

2), proper calibration is more critical to separate

out the induced field from the applied field. In the third column of Table 4.2, we

list the possible velocity field patterns that could result in the observed induction,

assuming that the measured induced magnetic field is created by the velocity field

interacting with the applied dipolar field. We do not list velocity fields that could

generate one of the induced fields by interacting with another of the induced fields.

In other words, we assume that the induced magnetic fields are not strong enough to

produce additional large magnetic fields by interacting with the velocity field. This
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assumption is reasonable since the applied field is weak and the measured induced

magnetic field is smaller than the applied field, with the possible exception of T 0
2 ,

induced from the applied field by the ω effect (discussed previously in section 2.2.4,

and discussed further later in this section). Since we are driving a shear flow by

differentially rotating the two spheres, for most Ro the dominant velocity pattern

present is simply azimuthal flow of varying magnitude (to match the boundaries).

This corresponds in vector spherical harmonics to a t01 velocity field. Thus, in the

final column of Table 4.2, we list the magnetic field patterns induced by the action of

a t01 velocity pattern on the experimentally measured induced fields (listed in column

2). Note that neither an S0
1 nor an S0

2 applied field act on a t01 velocity pattern to

produce any observable (i.e. of the form Sml ) induced fields, so this is perforce a

two-step induction process, (applied field − > induced field − > secondary induced

field), but the overall strength of the t01 velocity pattern makes it worthwhile to

consider.

One particularly important aspect of the t01 flow’s interaction with magnetic

field is the so-called ω effect, whereby poloidal magnetic field (i.e. fields that can

be described by some combination of Sml components) is converted into toriodal

magnetic field (Tml ). For at least some of the hydromagnetic states studied in the

3 m experiment, there is a strong ω effect, with large azimuthal fields, as measured

by the internal Hall probe measuring Bφ, present [90] (see Figure 4.3).

Another phenomenon of particular interest is the so-called spin-over mode,

which is an inertial mode that has the same frequency as the fluid rotation, and is

often one of the easiest to excite. For instance, it can be excited via precessional
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Figure 4.3: Internal Field Measurements from 3 m Experiment. Mean cylindrical
radial (Bs) and azimuthal (Bφ) fields measured at one location, 10 cm into the flow,
at a cylindrical radius of 60 cm, normalized by the applied field strength at that
location. Notice the large amplification of Bφ over the applied field, a sign of the ω
effect acting in the experiment. Originally Figure 9 from [90].

108



forcing, and for the case of solid body rotation of the 3 m experiment (i.e. inner and

outer spheres rotating at the same rate), this mode is excited due to the precession

of the experiment’s rotation axis as the Earth rotates; in-depth investigations of this

phenomenon were reported in [93]. The spin-over mode corresponds to a t11 velocity

pattern, and results in a S1
1 induced field for the case of an applied dipole field (S0

1).

In Figure 4.4 we plot the power in the S1
1 induced magnetic field at the frequency

of the outer sphere fo versus Ro, since the spin-over mode has the same frequency

as the fluid rotation, which in our system is usually dominated by the outer sphere

rotation. For the Ro values considered, the peak excitation of the spin-over mode

corresponds to the torque maximum of the system, around Ro = −18, while the

minimum occurs at Ro = 5, near the boundary between the LL and B states, where

some of the lowest normalized torques are found.

4.3 Characterization of States at different Ro

It is informative to look at the frequency spectra of the most significant Gauss

coefficients, to see if there are waves present in the system (indicated by significant

power at specific frequencies), and to further distinguish between different states

found as we vary Ro. Here we organize our findings in terms of the previously

identified states found in the 3 m system, organized in terms of their Ro dependence.

In the figures below we present the power spectral density versus frequency of the

dominant induced field patterns, for a variety of Ro. We consider both the case of

a dipole (S0
1) applied field (Figures 4.5 to 4.9) and the case of a quadrupole (S0

2)
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x

Figure 4.4: Average Power Spectral Density at fo, for the case of a S0
1 applied field,

for a variety of Ro. The lines are offset from one another for clarity.
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Ro Observed In-
duced Magnetic
Fields

Possible Velocity Fields Possible Induced B via t01

-1 S0
1 , S

0
3 , S

1
1 s0

2, s
1
2, s

0
4, t

1
1 S1

1 , T
0
2 , T

1
2 , T

0
4

-2 S1
1 , S

1
3 s1

2, s
1
4, t

1
1, t

1
3 S1

1 , S
1
3 , T

1
2 , T

1
4

-3
-4 S1

1 , S
0
1 , S

1
3 s0

2, s
1
2, s

1
4, t

1
1, t

1
3 S1

1 , S
1
3 , T

0
2 , T

1
2 , T

1
4

-5
-6 S0

1 , S
1
1 , S

1
2 s1

1, s
0
2, s

1
2, s

1
3, t

1
1, t

1
2 S1

1 , S
1
2 , T

1
1 , T

0
2 , T

1
2 , T

1
3

-18 S1
2 , S

1
1 s1

1, s
1
2, s

1
3, t

1
1, t

1
2 S1

1 , S
1
2 , T

1
1 , T

1
2 , T

1
3

10 S1
1 , S

0
1 , S

1
3 s0

2, s
1
2, s

1
4, t

1
1, t

1
3 S1

1 , S
1
3 , T

0
2 , T

1
2 , T

1
4

5
4
3 S0

1 , S
1
1 , S

1
2 s1

1, s
0
2, s

1
2, s

1
3, t

1
1, t

1
2 S1

1 , S
1
2 , T

1
1 , T

0
2 , T

1
2 , T

1
3

2
1

Table 4.2: Experimentally Measured Induced Large Magnetic Fields for various Ro
for S0

1 (dipole) applied magnetic field. Column 2 lists the largest observed induced
magnetic fields (categorized by Gauss coefficient) for the Ro listed in the column 1.
Column 3 lists the possible velocity patterns that could interact with the applied
(dipole) magnetic field to result in the induced fields listed in column 2. The final
column lists the magnetic fields that could be induced by the action of the observed
fields of column 1 via a t01 velocity field (note that the applied S0

1 field does not
result in any observable induced field).
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applied field (Figures 4.10 to 4.12). For this discussion we follow the categorization

of fluid states presented in [90], which organizes the states according to Ro−1, and

so in the following plots we order the states by Ro−1, even though the labels are

still in terms of Ro. In Tables 4.3 and 4.4, we summarize these findings.

The first state region we consider is the Inertial Mode (IM) region, charac-

terized by strong spectral peaks corresponding to inertial modes that have been

excited in the system. For the data we are presenting here, both Ro = −1 and

Ro = −2 fall into this category. Strong spectral peaks are evident for one or both

of these states in Figures 4.6, 4.7, and 4.9 for the dipole case, and in Figures 4.11

and 4.12 for the quadrupole case. Note also the differences between Ro = −1 and

Ro = −2, indicating the presence of different inertial modes (as has been noted

previously in [90] for the 3 m experiment, and systematically investigated in the

60cm liquid sodium experiment [91]). Since |Ro| is relatively small for these states,

the system is dominated by the overall rotation of the system, and thus it is not

surprising that the inertial modes, Coriolis-restored wave modes, are present and

the dominant feature of the system.

The next state region is labeled the Quiet region (QN), with the second letter

indicating that the Ro is negative. This state is characterized by broadband spectra

corresponding to turbulence in the system, but no sharp spectral peaks in the wall

shear or pressure. For this data, the states Ro = −3,−4,−5,−6, and −18 all fall

into the “QN” category. As can be seen from the spectra in Figures 4.5 to 4.9, while

these states do not have the sharp spectral peaks at low frequencies characteristic of

the Inertial Mode region, they do have some variations among them. In particular,
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while Ro = −3 and Ro = −4 have relatively flat spectra, a broad peak around a

frequency of 2.8Ωo appears for Ro = −5, and is also present in Ro = −6; possibly

the same feature is present for Ro = −18 at a lower normalized frequency of around

2.5Ωo. This peak is much broader than the inertial mode peaks, and thus does

not have as well-defined a frequency as the inertial modes. Also, it shows up most

strongly in the m = 1 Gauss coefficients, but is also seen in m = 0 ones, and thus

does not seem to be characterized by a single azimuthal wave number. Also for

this state, which corresponds approximately to the torque maximum of the system

(normalized by Re), there is a large broad peak at Ω = Ωo.

We did not take data for the “RN” and “RP” states, corresponding to |Ro−1| <

0.03. Moving on to positive Ro, we note that here there are a couple of regions of

bistability, where the system spontaneously transitions between two distinct states

for some range of Ro, with the neighboring regions in Ro on either side dominated

by one or the other state. Starting at low positive Ro, we first have the high torque,

or “H”, state. For the data considered here, the Ro = 1 state falls in this category. It

is characterized by a number of fairly sharp spectral peaks, possibly inertial modes,

at 0.100fo and 0.176fo (with l = 2, m = 1), as well as by a spectral feature at

0.276fo that doesn’t seem to have a definite l or m associated with it. In particular,

the (2, 1 : 0.176fo) peak likely corresponds to a l = 3, m = 1 velocity mode, which

closely matches the full sphere prediction for an inertial mode with l = 3, m = 1,

and a frequency of 0.1766fo. For a range of Ro numbers, this state is bistable with

another state characterized by a lower value of the torque, the so-called low (“L”)

state; the Ro = 2 state falls in this region of bistability. These states and the region
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of bistability were investigated in depth in the 3 m water experiments and the results

presented in [32]. As Ro is further increased, the transitions between the H and L

states cease, with the system always in the L state. For Ro = 3 the system is in this

L state. At even greater Ro, however, another region of bistability is found, with

the system transition between the L state and another state characterized by even

lower torque, and thus denoted “LL”; the transition region is narrower than in the

H/L bistability case, however, and for the Ro values considered here there isn’t an

example of this bistability, with Ro = 3 in the L state and Ro = 4 in the LL state.

The final state we consider here is the “B”, or “bursty”, state identified in [90]. For

the data presented here, the Ro = 10 state falls in this category, and the Ro = 5

state is near the boundary between this state and the “LL” state.

4.4 Internal Field Measurements

While the majority of the measurements taken for the 3 m experiment are

from the external Hall probe array, two measurements of the magnetic field in the

interior of the system are taken. These are also taken by Hall magnetic field probes,

in this mounted inside a tube that extends from one of the instrumentation ports

into the fluid to a depth of 10cm (see 3.2.4). The probe measuring the azimuthal

component of the field gives some sense of the toroidal field present in the system;

since the toriodal field does not extend outside the fluid volume, the external array

gives no access to this. On the other hand, since these probes only measure two
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Figure 4.5: Power Spectral Density of induced S0
1 magnetic field, for the case of a

S0
1 applied field, versus frequency for a variety of Ro. The lines are offset from one

another for clarity. The different colors correspond to different Ro, with the ordering
following that from the Ro−1 torque curve in Figure 4.1, with Ro−1 = −1 at the
top, increasing through Ro−1 = 0 to Ro−1 = 1 at the bottom; the corresponding
Ro values are given in the legend. The corresponding state labels are indicate on
the right side of the figure. Note the sharp spectral features present for some Ro,
particularly Ro = 1, 2, the significant variation in the amount of power at low
frequencies, and in the relative power at f/fo = 1.
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Figure 4.6: Power Spectral Density of induced S1
1 magnetic field, for the case of a

S0
1 applied field, versus frequency for a variety of Ro. The lines are offset from one

another for clarity. The different colors correspond to different Ro, with the ordering
following that from the Ro−1 torque curve in Figure 4.1, with Ro−1 = −1 at the
top, increasing through Ro−1 = 0 to Ro−1 = 1 at the bottom; the corresponding
Ro values are given in the legend. The corresponding state labels are indicate on
the right side of the figure. Note the sharp spectral features for Ro = −1,−2, not
present in the previous plot for S0

1 , which are likely associated with inertial modes.
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Figure 4.7: Power Spectral Density of induced S1
2 magnetic field, for the case of a

S0
1 applied field, versus frequency for a variety of Ro. The lines are offset from one

another for clarity. The different colors correspond to different Ro, with the ordering
following that from the Ro−1 torque curve in Figure 4.1, with Ro−1 = −1 at the
top, increasing through Ro−1 = 0 to Ro−1 = 1 at the bottom; the corresponding Ro
values are given in the legend. The corresponding state labels are indicate on the
right side of the figure. Note the very large and broad peak around f/fo = 1 for
the Ro = −18 curve, corresponding approximately to the torque maximum for this
system. Also note that the peaks around f/fo = 2.8 for Ro = −5,−6 are especially
prominent in this coefficient, and occur in the Quiet Negative (QN) state, indicating
that there is some type of wave present in this state as well.
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Figure 4.8: Power Spectral Density of induced S0
3 magnetic field, for the case of a

S0
1 applied field, versus frequency for a variety of Ro. The lines are offset from one

another for clarity. The different colors correspond to different Ro, with the ordering
following that from the Ro−1 torque curve in Figure 4.1, with Ro−1 = −1 at the
top, increasing through Ro−1 = 0 to Ro−1 = 1 at the bottom; the corresponding Ro
values are given in the legend. The corresponding state labels are indicate on the
right side of the figure. Note the large amount of power at very low frequencies for
the Ro = −18 (torque maximum) state.
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Figure 4.9: Power Spectral Density of induced S1
3 magnetic field, for the case of a

S0
1 applied field, versus frequency for a variety of Ro. The lines are offset from one

another for clarity. The different colors correspond to different Ro, with the ordering
following that from the Ro−1 torque curve in Figure 4.1, with Ro−1 = −1 at the
top, increasing through Ro−1 = 0 to Ro−1 = 1 at the bottom; the corresponding Ro
values are given in the legend. The corresponding state labels are indicate on the
right side of the figure. Note the peak near f/fo = 2.5 for Ro = −18, which may
be related to the peaks at f/fo = 2.8 for Ro = −5,−6.
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Figure 4.10: Power Spectral Density of induced S0
1 magnetic field, for the case of a

S0
2 applied field, versus frequency for a variety of Ro. The lines are offset from one

another for clarity. The different colors correspond to different Ro, with the ordering
following that from the Ro−1 torque curve in Figure 4.1, with Ro−1 = −1 at the
top, increasing through Ro−1 = 0 to Ro−1 = 1 at the bottom; the corresponding Ro
values are given in the legend. Also note that the Ro values shown are not exactly
the same as for the case of a S0

1 applied field. The corresponding state labels are
indicate on the right side of the figure. Note how flat many of the spectra are
for Ro < 0 as compared to the Ro > 0 spectra, which have more power at lower
frequencies that then falls off at higher frequencies.
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Figure 4.11: Power Spectral Density of induced S1
1 magnetic field, for the case of a

S0
2 applied field, versus frequency for a variety of Ro. The lines are offset from one

another for clarity. The different colors correspond to different Ro, with the ordering
following that from the Ro−1 torque curve in Figure 4.1, with Ro−1 = −1 at the
top, increasing through Ro−1 = 0 to Ro−1 = 1 at the bottom; the corresponding Ro
values are given in the legend. Also note that the Ro values shown are not exactly
the same as for the case of a S0

1 applied field. The corresponding state labels are
indicate on the right side of the figure. Note the very large, broad peaks around
f/fo = 0.2 for Ro = 1− 5.
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Figure 4.12: Power Spectral Density of induced S2
2 magnetic field, for the case of a

S0
2 applied field, versus frequency for a variety of Ro. The lines are offset from one

another for clarity. The different colors correspond to different Ro, with the ordering
following that from the Ro−1 torque curve in Figure 4.1, with Ro−1 = −1 at the
top, increasing through Ro−1 = 0 to Ro−1 = 1 at the bottom; the corresponding Ro
values are given in the legend. Also note that the Ro values shown are not exactly
the same as for the case of a S0

1 applied field. The corresponding state labels are
indicate on the right side of the figure. Note the large peaks at low frequency for
Ro = −2.5 to Ro = −5, with the peak around f/fo = 0.1 for Ro = −2.5, and
shifting up in frequency, to f/fo = 0.25 for Ro = −5. Again this shows that there
is significant activity in the Quiet Negative state. In addition, the lack of such a
peak for Ro = −6 may indicate that at this Ro value the flow is in a distinct state
from the rest of the states labeled QN.
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Figure 4.13: Power Spectral Density of main induced magnetic fields, for Ro = −1
and an S0

1 applied field, versus frequency. Note the sharp spectral features below
f/fo = 1, which have their frequencies indicated, and the variation in power seen
for different Gauss coefficients.
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Figure 4.14: Power Spectral Density of main induced magnetic fields, for Ro = −1
and an S0

2 applied field, versus frequency. Note the peak at f/fo = 0.2172, seen
here but not for the case of a dipole applied field (Fig. 4.13), indicating that the
combination of quadrupole and dipole results may yield more information than just
one of them in isolation.

124



f/f
o

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

P
S

D

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

g1-1c
g3-1c

f/f_o: 0.635

Figure 4.15: Power Spectral Density of main induced magnetic fields, for Ro = −2
and an S0

1 applied field, versus frequency. Note the sharp spectral peak at f/fo =
0.635, likely associated with an inertial mode with l = 4 and m = 1.
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Figure 4.16: Power Spectral Density of main induced magnetic fields, for Ro = −2
and an S0

2 applied field, versus frequency. While the signature of the inertial mode
(4,1,0.64) is also seen here, note that the low-frequency f/fo = 0.04178 peak is much
more prominent here than for the case of a dipole applied field (Fig. 4.15).
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Ro State Label Spectral Peaks (l,m : f/fo) Notes
10 B (2,1: 0.210), (1,1: 0.210),

(3,1: 0.210)
Broadband power at
low frequencies in S0

1
5 B/LL (1,0: 0.18,0.28), (2,1: 0.150) Some oscillations in

fall off at higher fre-
quencies in S0

1
4 LL (2,1: 0.134)
3 L (2,1: 0.142) Low frequency power

in S0
1 , also broadband

rise around 0.6
2 H/L (1,0: 0.510,0.593,0.677),

(1,1: 0.343,0.0.393),
(2,1: 0.223)

Faster fall off in
power at higher fre-
quencies for S0

1
1 H (1,0: 0.351,0.443,0.543),

(1,1: 0.276),
(2,1: 0.100,0.176),
(3,2: 0.276), (3,1: 0.167)

Inertial mode:
(3,1,0.1766)

Table 4.3: Spectral Peaks of Gauss Coefficients in 3 m for various positive Ro. The
left column gives the value of Ro. The second column gives the state label, discussed
in the text. The third column lists the spectral peaks seen, with the l and m of
the Gauss coefficient given, and their frequencies, normalized by the outer sphere
rotation rate. A “b” appended to the frequency value indicates that it is a broad
spectral feature, rather than a sharp peak. The final column contains comments
about the states where appropriate.
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Ro State Label Spectral Peaks (l,m : f/fo) Notes
-1 IM (1,0: 0.142,0.443,0.5),

(1,1: 0.125,0.45,0.618,0.744),
(2,2: 0.577,0.744),
(2,1: 0.134)

Inertial mode:
(3,2,0.75)

-2 IM (1,1: 0.635,1.278),
(1,0: 0.359), (3,1: 0.64)

Inertial mode:
(4,1,0.64)

-3 QN (1,0: 0.042),
(1,1: 0.117,0.075)

-4 QN (2,1: 0.033),
(3,1: 2.8b), (2,1: 2.8b),
(3,2: 0.0334,0.292,1.6b)

-5 QN (1,1: 2.8b), (1,0: 2.8b,3.5b),
(2,1: 0.167,2.8b),
(3,1: 2.8b)

-6 QN (1,0: 2.8b,3.5b),
(1,1: 0.215,2.8b),
(2,1,: 0.167,2.8b),
(3,1: 2.8b)

-18 QN (1,0: 4b) Broadband power at
low frequencies, oscil-
lations in S1

1 spectra
as it falls off

Table 4.4: Spectral Peaks of Gauss Coefficients in 3 m for various negative Ro. The
left column gives the value of Ro. The second column gives the state label, discussed
in the text. The third column lists the spectral peaks seen, with the l and m of
the Gauss coefficient given, and their frequencies, normalized by the outer sphere
rotation rate. A “b” appended to the frequency value indicates that it is a broad
spectral feature, rather than a sharp peak. The final column contains comments
about the states where appropriate.
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components of the field at one location, we cannot build up a global picture of

the full magnetic field within the fluid, as can be done for the external field using

the array. Another advantage of these internal probes is their sensitivity to higher

frequency fluctuations in the flow; the external probes are somewhat shielded from

the flow by the vessel and thus have a cutoff frequency above which they do not see

magnetic fluctuations in the flow.

In Figures 4.17 and 4.18 we have plotted the spectra of these two probe mea-

surements for a variety of Ro. The spectra are plotted versus frequency normalized

by the outer rotation rate, and we see similar features to those noted above in the

spectra of various Gauss coefficients. For Ro = −1 and Ro = −2 there are sharp

spectral features below 2fo corresponding to inertial modes. For the other Ro, the

only sharp spectral features correspond to the outer rotation rate and its harmonics.

For the QN states, Ro = −3,−4,−5,−6,−18, we note that there is a somewhat

sharp spectral feature below 3fo that was found above in the Gauss coefficient spec-

tra, but here it is clear that this feature is also present for Ro = −3 and Ro = −4.

It becomes more prominent for Ro = −5 and Ro = −6 where it also shows up in

some of the Gauss coefficient spectra.

Moving on to the case of positive Ro, for the high torque state, for the Bφ

spectra there is strong broadband power at low frequencies, but no distinct spectral

peaks (other than at fo at harmonics), while Bs shows similar spectral content at low

frequencies to that found in the Gauss coefficients. For larger Ro, the spectra start

to exhibit oscillations, with several broad peaks one after another in the spectra.

Finally, for the B state, the spectra of Bφ is relatively featureless, while the spectra
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Figure 4.17: Power Spectral Density of locally measured internal azimuthal magnetic
field, for the case of a S0

1 applied field, versus frequency for a variety of Ro.

of the Bs shows a spectral peak around 0.210fo similar to what was found in the

Gauss coefficient spectra in S1
2 , S1

1 , and S1
3 .

In addition to the internal field measurements, we also have pressure measure-

ments, from probes in 3 of the instrumentation ports. Some of these are presented

in section 5.6 below, in regards to looking for acoustic modes in the 3 m experiment.
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Figure 4.18: Power Spectral Density of locally measured cylindrical radial magnetic
field, for the case of a S0

1 applied field, versus frequency for a variety of Ro.
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Chapter 5: Acoustic Studies

In this chapter we review the results of acoustic studies in gas experiments in

the 60 cm experiment, and also discuss efforts at measuring acoustic modes in the

3 m liquid sodium experiment.

5.1 Computed Modes

As noted in section 2.3.2, the calculation of the acoustic modes of a whole

sphere, or simple spherical shell (i.e. inner and outer spherical surfaces without a

shaft or other geometrical complications), is straightforward numerically speaking:

one has only to find the roots of equations involving Bessel functions. To get better

estimates of mode frequencies, as well as to more precisely determine the sensitivity

of the modes to flows within the cavity, a more accurate model of the acoustic cavity

of the experiment is required. Mode frequency predictions based on this model are

then compared in detail to experimental acoustic measurements.

We worked with seismologist Ved Lekic and his Master’s student Anthony

Mautino, who constructed a finite-element model of the 60 cm experiment to more

closely approximate the geometry of the experiment. This is an axisymmetric model;

in order to determine the mode frequencies and structures, for each value of az-
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imuthal wavenumber m the scalar Helmholtz wave equation in pressure is solved.

To do this, a specific m is selected, and then the equation is rewritten using a

quasi-2D acoustic operator with the choice of m built in, and is solved over a 2D

domain comprising a meridional slice of the model of the experiment. It is solved by

using a piecewise linear isoparametric finite element formulation on a highly regular

mesh to calculate the stiffness and mass matrices. The eigenvalues and eigenvectors

are solved using ARPACK, with sparse Lanczos iteration. For more details see the

forthcoming Master’s thesis of Anthony Mautino.

An example of the structure of a mode calculated in this way is shown in Figure

5.1. The colors indicate the pressure field in a meridional plane of the acoustic

mode labeled (2,3,2). Since l − m = 1, this mode has one node on the outer

surface, located at the equator; since n = 2 there are two radial nodal lines between

the inner and outer spheres. Note also the presence of both the inner sphere and

the outer shaft that projects from the poles of the outer sphere towards the inner

sphere. This pressure pattern is an eigenvector of the acoustic operator, and the

associated eigenvalue gives the mode’s frequency (we assume the speed of sound in

the fluid is uniform). In Figure 5.2 the sensitivity kernel (Knlm of eq. 2.48) of this

same mode (2,3,2) is given. Here the colors indicate the amplitude of the frequency

shift expected in this mode as a function of location in the meridional plane, for a

given rotation pattern in the flow. In particular, note that the kernel is symmetric

about the equator; as in helioseismology this is a limitation of only considering

(or analyzing) the coupling of isolated modes with the flow, in that asymmetries

between the northern and southern hemispheres are not detectable. We could detect
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Figure 5.1: Example of Calculated Mode Pressure Pattern. The pressure pattern of
the (2,3,2) mode. Figure credit: Anthony Mautino.

odd degree structure that would be sensitive to hemispheric differences if we were

to compute coupling among the modes. Also, note that all the values are negative,

indicating that positive m modes will have their frequencies shift lower, and negative

m modes shift higher, due to flows in the positive azimuthal direction. This splits

the frequencies of ±m pairs, here m = ±2, that otherwise have equal (degenerate)

frequencies.

5.2 Observed Modes: Stationary Case

For the case of a stationary system (both inner and outer spheres at rest), ±m

modes will have the same frequency, and the splittings of modes with different |m|
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Figure 5.2: Example of Calculated Mode Kernel. The kernel of the (2,3,2) mode.
This gives the sensitivity of the mode to fluid velocities as a function of position in
the (r, θ) plane. Figure credit: Anthony Mautino.
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within a given (n,l) family will be due to the departure of the system from spherical

symmetry (mainly due to the large cylindrical shaft that extends above and below

the inner sphere, but also any deviations in the shape of the outer shell and inner

sphere away from perfect sphericity). Since there is no ambient noise due to the

rotation of the experiment or fluid flow between the spheres, we excite the modes

using a speaker. This is done by playing a chirp using one of the installed speakers,

and simultaneously recording the sound inside the experiment. As described in

more detail in section 3.1.3, we could simultaneously record on two (of six possible)

microphones, while acoustically exciting the system with one of two speakers.

The acoustic excitation used was generally a chirp, that is rising tone, gener-

ated by sending a signal s(t) to the speaker consisting of a sine wave with a frequency

that varies linearly in time t:

s(t) = sin(2π(finitalt+
ffinal − finitial

2tchirp
t2)) (5.1)

where finitial and ffinal are the initial and final frequencies of the chirp signal, re-

spectively, and tchirp is the duration of the chirp. Typically these chirps lasted for 30

seconds, with a frequency that varied over a bandwidth from around 10 Hz to 2 kHz

or often from about 50 to 200Hz. When the frequency of the chirp is near that of

one of the modes of the cavity, the mode is resonantly excited and a large amplitude

acoustic response is observed. Looking at the power spectrum of the microphone

recordings, we can then identify peaks corresponding to acoustic modes.

Some of the acoustic modes that have been experimentally identified in the
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60 cm experiment are listed in Table 5.1. The list of predicted mode frequencies is

provided by Mautino, using a speed of sound c = 348 m/s. The modes are listed

in order of increasing predicted frequency, and identified by their mode numbers,

(n, l, |m|). The n and l numbers for a given mode are determined by examining its

structure from the calculations done by Mautino; information about l and m can also

be inferred from the experiments by making use of the relative phase between the

two recording microphones. Specifically, the parity of l −m and of m (i.e. whether

these are even or odd) can be determined if recordings from the appropriate pair of

microphones are available.

By using microphones located at the same azimuth but at opposite latitudes

(e.g., mics 1 and 4), the l−m parity (i.e. whether l−m is even or odd) can be found,

determining whether the mode is equatorially symmetric or anti-symmetric. To do

so, first both signals are bandpassed around the frequency range of the chirp used,

and then their signals are normalized to have the same amplitude, and the sum and

difference of these filtered and normalized time series are taken. The power spectral

density of the sum and the difference is then taken; modes with l−m even will appear

in the sum signal, while modes with l−m odd will appear in the difference signal. An

example of this approach can be seen in Figure 5.3. Also, we note that the difference

of the signals will tend to reduce any correlated digital noise on the signals, and in

the case of differential rotation discussed below, the differences of the signals often

have notably lower noise floors than the sums of the signals. Similar to the approach

in determining l−m parity, by using microphones located at the same latitude but

separated in azimuth by π radians (e.g., mics 1 and 2), the m-parity of a mode
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(n,l,m) fpred Symm.: Eq.,Az. Obs. Freq. % error
(0,1,1) 346 S,O 346.0 0.00
(0,1,0) 365 A,E 367.0 0.54
(0,2,1) 570.2 A,O 569.5 0.12
(0,2,2) 593.0 S,E 594.5 0.25
(0,2,0) 612 S,E 616 0.65
(0,3,1) 774 S,O 775 0.13
(0,3,2) 806.7 A,E 807.5 0.10
(0,3,3) 808.8 S,O 810.5 0.21
(0,3,0) 838 A,E 843 0.60
(1,0,0) 932 S,E 936 0.43
(0,4,1) 970 A,O 972 0.21
(0,4,2) 1008.9 S,E 1010.0 0.11
(0,4,3) 1013.6 A,O 1015.0 0.14
(0,4,4) 1013.7 S,E 1015.5 0.18
(1,1,1) 1045.4 S,O 1048.0 0.25
(0,4,0) 1056 S,E 1063 0.66
(1,1,0) 1071 A,E 1080 0.84
(0,5,1) 1165 S,O 1168 0.26

Table 5.1: Identified Acoustic Modes. In addition to comparing the observed and
predicted frequencies, mode identification was facilitated by looking at the symme-
tries of the mode: S,A refer to the symmetry of the mode about the equatorial
plane (S for symmetric or A for anti-symmetric), and E,O refer to the whether the
azimuthal wave number is even or odd, respectively. The gravest mode (0,1,1) was
used to calibrate the temperature of the system, thus giving an exact match be-
tween its predicted and observed frequencies; the 0 % error for it is an artefact of
this calibration. Prediction Data Credit: Anthony Mautino.
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Figure 5.3: Modes (0, 3, 1), (0, 3, 2), and (0, 3, 3) identified in a plot of the logarithm
of power spectral density vs. frequency. This data was taken with the experiment
stationary, and with a chirp from 700 to 900 Hz. The modes with l −m even have
much higher peaks in the sum curve, while the l−m odd mode has a higher one in
the difference curve.
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Figure 5.4: Modes (0, 4, 1), (0, 4, 2), and (0, 4, 3) identified in a plot of the logarithm
of power spectral density vs. frequency. This data was taken with the experiment
stationary, and with a chirp from 940 to 1015 Hz. The mode with m even shows
up prominently in the sum curve, while the m odd modes are prominent in the
difference curve.

140



can be determined. An example of this can be seen in Figure 5.4. Using these two

parities and the observed frequency of a given mode, the modes up through 1kHz

can be identified unambiguously. In Table 5.1, the modes are labeled as equatorially

symmetric (S) or anti-symmetric (A), with even (E) or odd (O) m-number, and if

this spatial structure has been observed in the experiment, that is noted in the

column giving information about experimental observations. Note that given the

limitations of the current experimental set-up (only obtaining simultaneous data

from two microphones), two experiments must be conducted to get both parities

for a given mode. Another possible set-up is to use two closely spaced microphones

located at the same latitude to extract information about the m-value (like Mics 5

and 6 of our setup). For the stationary case, however, this does not work since the

+m and −m modes have the same frequency and can form a standing wave pattern;

thus to get the absolute value of m associated with a given peak, one would need

to make use of amplitude information as well, which is more challenging than using

more easily extracted phase information. It also turned out that our m-finder setup

(Mics 5 and 6) was note effective in determining m for the rotating case. Probably

they were spaced too closely given our sample rate, so that the expected phase shifts

between them for the modes we were observing were comparable to the smallest ones

possible to measure. With the good agreement found between the mode frequency

predictions of Mautino’s model and the experimental results, however, modes can be

identified by frequency without having both parities. Moreover, when measurements

from a range of rotation rates are available, the splitting of ±m modes, with the

amount of splitting being approximately proportional to m, can also be used to help
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in identifying modes.

5.3 Observed Modes: Solid Body Rotation

Moving to non-stationary cases, the simplest state is that of solid body rota-

tion, with the inner and outer spheres rotating at the same rate. In this case, the

fluid simply rotates at the same angular velocity (barring effects due to precessional

forcing, which are small for the cases considered here) and the only splitting of ±m

mode pairs is due to the Coriolis force. This case serves as a useful test of the model

of the acoustic modes, since the expected flow (solid body rotation) is known. Thus

instead of doing the inverse problem of determining the flow from the splittings, we

can perform the forward problem of calculating the expected splittings of modes

due to a known flow. In this way we can validate the calculated mode structures,

which in turn determine their sensitivities to the flow.

We measured the splittings for a number of different modes for the case of solid

body rotation, and compared the frequency splitting with the calculated splittings.

Splittings for nine different modes were used for three different rotation rates: 5 Hz,

10 Hz and 15 Hz. As expected [92], the splittings appear linear with the rotation

rate of the system (for a given state). Thus it is natural to normalize the amount

of splitting of a given mode δnlm by the overall rotation rate f . In Table 5.2 we

compare this normalized predicted amount of splitting for each of the nine modes

with the measured splitting at three different rotation rates, again normalized by

the overall rotation.
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The modes used are most of the nonzero m modes with frequencies up to

about 1 kHz. The m = 0 modes do not split, though they can be used to help

determine the speed of sound in the system, which varies with temperature and

thus can and do vary between experimental runs. Temperature changes cause shifts

in the frequencies of all modes, proportional to the change in the speed of sound, but

do not have a significant effect on the values of the splittings. Mautino has also not

detected frequency shifts due to nonuniform temperature profiles in the experiment;

such effects appear to be below the detection limit given other noise limitations (see

Mautino’s forthcoming Master’s Thesis). Also, a couple of the modes in this range

(0 to ∼ 1 kHz) were not used because of the noisy nature of the power spectra

for their peaks, perhaps a result of the location of the microphones used and the

geometry of these modes. For the measurements, empirically it was found that

there was often an optimum rotation rate range for measurements, with splittings

being small and hard to conclusively identify for low rotation rates, while for the

highest rotation rates the mechanical noise of the experiment eventually again made

splitting measurements difficult. In Table 5.2 this can be seen in the errors, with

the largest errors for most modes seen either at 5 Hz or at 15 Hz. Overall we

find excellent agreement between the predictions and observations, with most errors

being around the percent level or less.
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Mode Predicted
∆f

f
∆5

5
% error ∆10

10
% error ∆15

15
% error

(0,1,1) 0.660 0.660 0.07 0.664 0.60 - -
(0,2,1) 0.214 0.213 0.35 0.212 0.58 0.205 4.1
(0,2,2) 0.728 0.730 0.25 0.725 0.44 0.707 3.0
(0,3,2) 0.459 0.455 0.80 0.460 0.30 0.462 0.66
(0,3,3) 0.704 0.700 0.58 0.700 0.58 0.708 0.60
(0,4,2) 0.315 0.310 1.44 0.317 0.95 0.315 0.15
(0,4,3) 0.502 0.460 8.4 0.503 0.10 0.500 0.40
(0,4,4) 0.670 0.650 3.0 0.673 0.36 0.687 2.5
(1,1,1) 0.135 0.155 15.1 0.150 11.4 0.132 2.2

Table 5.2: Comparison of Predictions of Acoustic Mode Splittings with Observations
for the case of solid body rotation. Most of the nonzero m modes up to a frequency
of about 1kHz are used; (0,3,1) and (0,4,1) had complicated peaks that were difficult
to extract splittings from. Mode prediction credit: Anthony Mautino.

5.4 Observed Modes: Differential Rotation

With the inner and outer spheres differentially rotating, it has been found

empirically that the acoustic modes are excited without any excitation chirp needed,

and that in fact the presence of a chirp does not enhance the prominence of the

acoustic mode peaks above the background (and note that given the limitations of

the speaker we were using, we could not further increase the volume of the chirp).

This excitation is either from the turbulence in the flow, or from the mechanical

noise of the experiment (bearings, motors, etc.), or some combination of the two.

Splittings of the lowest lying modes are generally easy to identify (see Figure

5.5), while for higher-order modes the peak structure becomes more complicated.

Some of the m = 0 modes show fairly simple, easily identifiable peaks (e.g. (0, 1, 0)

for most Ro, see Figure 5.5, and (1, 0, 0), see Figure 5.6); these are used to calibrate

the temperature (and therefore mean sound speed) of the system. The variation
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of their frequencies between experimental runs at different Ro is attributable to

temperature variations (see Mautino’s forthcoming Master’s Thesis). Other m = 0

peaks show more complicated structure. For instance, the (0, 4, 0) and (1, 1, 0) modes

lie fairly close to each other in frequency, and may be coupling via flow perturbations

from the meridional flow [95], see Figure 5.7. The peaks of the acoustic modes also

vary with time (see Figure 5.8), presumably due to fluctuations in the flow, as well

as the stochastic nature of their excitation.

Using ambient excitation, we performed a scan in Ro, keeping the outer at a

rotation rate of 6 Hz and varying the inner sphere from 4 to 40 Hz in 2 Hz steps, for

both co-rotation and counter-rotation. An example of the spectra obtained can be

seen in Figure 5.9, with a zoomed in view of the same in Figure 5.10. In addition,

looking at spectrograms we can follow the frequency splitting of a given mode as Ro

is varied, with the trend in splittings helping to constrain the amount of splitting

for cases where the data is noisier, see Figures 5.11 and 5.12. Frequency splittings

extracted from this data have in turn been used in calculating the velocity inversions

presented in the next section.

5.5 Inversions and Implications

The ultimate goal of these acoustic measurements is to be able to infer char-

acteristics of the zonal (azimuthal) flow in liquid sodium experiments; as a step

towards this, we have measured acoustic splittings in gas in the 60 cm experiment.

Acoustic modes are readily identified in the 60 cm gas system, as are the splittings
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Figure 5.5: Peaks for modes (0, 1, 1) and (0, 1, 0) for a variety of Rossby numbers.
Note the variation in the amount of splitting of (0, 1, 1), seen on the left, which
correlates well with the outer rotation rate. All the lines are plots of the logarithm
of the power spectral density of either the difference (on the left) or sum (on the
right) of the signals from Mics 1 and 2. Some of the variation in peak location
between different runs may be due to temperature variations. The lines for different
Rossby numbers are offset from each other for clarity.
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Figure 5.6: Peak for mode (1, 0, 0) for a variety of Rossby numbers. This peak
is more prominent and easily identifiable than some of the other m = 0 modes,
though the width of its peak does show some variation with Rossby number. The
variation in the location of the peak (in frequency) is probably due to variations in
temperature between the different experimental runs. The lines for different Rossby
numbers are offset from each other for clarity.
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Figure 5.7: Peaks for modes (0, 4, 0) and (1, 1, 0) for a variety of Rossby numbers.
These peaks are not as easily identifiable as some other m = 0 modes, like (1, 0, 0).
One possible explanation is meridional flows resulting in interaction between these
two modes which are fairly close in frequency. The lines for different Rossby numbers
are offset from each other for clarity.
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Figure 5.8: Variations in time of the splitting of modes (0, 1,±1) for the case of
Ro = −2.5. Each line is a plot of the logarithm of the power spectral density
of the difference between signals from Mic 1 and 2 (thus emphasizing modes with
odd azimuthal wave number m); the lines are offset from each other for clarity.
The spectra are calculated using consecutive time windows of an acoustic recording,
with each window being about 5.2 s long. The location and prominence of the peaks
varies over time, presumably due to fluctuations in the flow and the stochastic nature
of the excitation of the mode. Vertical lines at 345 Hz and 350 Hz are shown to
highlight the variation.
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Figure 5.9: Power Spectral Density of the sum and difference of the signals from
microphones 1 and 2, emphasizing even- and odd-m modes, respectively. Data taken
with the outer sphere rotating at 6Hz, and with the inner counter-rotating at 24Hz,
giving Ro = −5. No excitation chirp was used; note the many modes excited by
the ambient noise. Also, note the lower noise floor for the difference of the signals,
compared to their sum, which we believe is due to digital noise in the system that
shows up on both microphone signals being canceled out by subtracting one from
the other.
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Figure 5.10: Power Spectral Density of the sum and difference of the signals from
microphones 1 and 2, emphasizing even- and odd-m modes, respectively. Data taken
with the outer sphere rotating at 6Hz, and with the inner counter-rotating at 24Hz
(the same data as in Fig. 5.9). No chirp was used. Note the clear splittings of
several of the modes, both even and odd, present in the frequency range shown.
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Figure 5.11: Spectrograms of the Power Spectral Density of acoustic signals for a
variety of Ro, with the outer sphere rotating at 6Hz, and the inner sphere rotation
rate varying from -4Hz to -40Hz. The sum or difference of the signals from micro-
phones 1 and 2 are used to emphasize the acoustic modes in the displayed frequency
range. Note the variations in the amount of splittings of the different modes as the
inner rotation is varied.
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Figure 5.12: Spectrograms of the Power Spectral Density of acoustic signals for a
variety of Ro, with the outer sphere rotating at 6Hz, and the inner sphere rotation
rate varying from 4Hz to 40Hz. The sum or difference of the signals from micro-
phones 1 and 2 are used to emphasize the acoustic modes in the displayed frequency
range. Note the variations in the amount of splittings of the different modes as the
inner rotation is varied.
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Index Mode
1 (0,1,1)
2 (0,2,1)
3 (0,3,1)
4 (0,3,2)
5 (0,4,1)
6 (0,4,3)
7 (1,1,1)
8 (0,5,1)
9 (0,6,1)
10 (1,3,2)
11 (1,4,1)
12 (2,2,1)
13 (1,5,1)
14 (2,3,1)
15 (2,3,2)

Table 5.3: Acoustic Modes used in Inversions, labeled by (n,l,m); the index label is
the same as those used in Figures 5.14 and 5.16. Figure credit: Anthony Mautino.

induced in them by the flow. This is not the case for liquid sodium experiments, as

we will discuss in section 5.6 below. For the 60 cm gas system, inversions have been

computed using splitting measurements on 15 modes (see Table 5.3). Examples of

inversions for the zonal flows are shown in Figures 5.13 and 5.15, while the fit of

these inferred flows to the observed splittings are shown in Figures 5.14 and 5.16,

respectively. The index of modes used in these inversions is given in Table 5.3.

The primary results from the inversions is a gradually strengthening jet from

the inner sphere as the absolute rotation rate of the inner sphere is increased (as

expected) with the bulk of the fluid rotating approximately with the outer sphere.

Interestingly, the jet of fluid associated with the inner sphere appears to transport

angular momentum from the inner sphere to the fluid above and below, resulting

in a cylindrical region with larger zonal velocities (i.e. closer to that of the inner

sphere) than the bulk of the fluid inside and outside it, which rotates at the outer
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Figure 5.13: Inversion of Acoustic Mode Splittings for Zonal Flow, for the case fi = -
4 Hz, fo = 6 Hz. On the left is the inferred rotation profile (i.e. rotation rate of the
fluid as a function of (r, θ) in Hz in the rotating frame. Thus 0 Hz corresponds to
the fluid rotating with the outer sphere. On the right is the standard deviation of
the inferred velocity from inversion ensembles, giving a sense of the uncertainty in
the inferred velocities. Figure credit: Anthony Mautino.

155



Figure 5.14: Fit of the Inversion shown in Figure 5.13 to the acoustic mode splittings
used. The modes used are shown in Table 5.3. Figure credit: Anthony Mautino.

sphere rotation rate. While this is somewhat unusual for generic spherical Couette

flows, it is plausible in the 60 cm experiment, given that the shaft above and below

the inner sphere spins with the outer sphere, rather than with the inner.

5.6 Prospects for Acoustics in the 3 m Liquid Sodium Experiment

Since the initial impetus of the acoustic experiments in the 60 cm experiment

was the implementation of this technique in liquid sodium experiments, we here

detail some of the efforts to date to measure acoustic modes in the 3 m experiment.

Unlike in the case of the 60 cm gas experiments, even the lowest lying modes are not

obviously excited (by the turbulent flow or mechanical noise) for differential rotation

in the 3 m liquid sodium experiment. In Figure 5.17, we plot the power spectral
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Figure 5.15: Inversion of Acoustic Mode Splittings for Zonal Flow, for the case fi = -
22 Hz, fo = 6 Hz. On the left is the inferred rotation profile (i.e. rotation rate of
the fluid as a function of (r, θ) in Hz in the rotating frame. Thus 0 Hz corresponds
to the fluid rotating with the outer sphere. On the right is the standard deviation
of the inferred velocity, giving a sense of the uncertainty in the inferred velocities.
Figure credit: Anthony Mautino.
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Figure 5.16: Fit of the Inversion shown in Figure 5.15 to the acoustic mode splittings
used. The modes used are shown in Table 5.3. Figure credit: Anthony Mautino.

density of the signal from one of the Kistler pressure sensors in the 3 m system (see

section 3.2.6). At low frequencies the signature of the broadband turbulence can

be seen. The peaks around 400 Hz and 800 Hz are presumably due to belt noise:

the outer sphere was rotating at 1 Hz, driven via a belt that meshes with a ring

pulley mounted on the outer sphere, which has 400 teeth [32], and thus the belt

meshes and unmeshes with the ring pulley teeth at a rate of 400 Hz. While there

are lots of other structures present in this spectra, there are not any peaks that can

be unambiguously identified as acoustic modes.

Perhaps the overlap between the mechanical noise or turbulent acoustic spec-

tra of the system and the acoustic modes is not as favorable as in the 60 cm gas

experiments. The 3 m system is five times larger than the 60 cm system (which

would result in five times lower mode frequencies), but the speed of sound in liquid
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sodium is about seven times higher than in air (or nitrogen gas), so the net effect

is that the expected mode frequencies in 3 m are 1.4 times higher than those in the

60 cm gas system.

Given this, it appears we will need to actively excite acoustic modes in the

system. While we have pressure probes that are sensitive in the relevant frequency

range, obtaining a “speaker” that works in liquid sodium is more challenging. In

order to provide some direct excitation to the system, we installed a piezo-electric

shaker in one of the ports. The model used (Wilcoxon Research F7 Piezoelectric

vibration generator) is designed for use in vibration testing structures, and can oper-

ate in the frequency range 500-20,000Hz and apply accelerations up to 1000g. Minh

Doan designed and constructed a device to hold the shaker in one of the instrumen-

tation ports on 3 m, with a rod connected to it that seated into a small depression

in the bottom of the port, such that the rod was pressed against the bottom port

face (see mechanical drawings in Appendix A). The idea behind the design was that

when the shaker was driven, it would in turn vibrate the instrumentation port face,

and couple to the liquid sodium on the other side of it.

While signs of the chirp were seen on the pressure probes, especially on the

probes located in the same instrumentation port as the shaker, so far there has

only been one acoustic mode tentatively identified, and no definitive splitting of it

has been measured (see Figures 5.18 and 5.19). We have shown example spectra

in Figure 5.18, with a zoomed in version in Figure 5.19. The peak seen in these

figures has the frequency predicted by Mautino for the lowest lying mode in the 3 m

experiment.
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Turning to the properties of the modes themselves, the quality factors of the

modes in the 3 m sodium experiment could be lower than those of the 60 cm gas

experiment. In Table 5.4, we show the observed quality factors for some of the

modes in the 60 cm gas experiment, for differential rotation with no chirp. Here we

define the quality factor as the ratio of the frequency of the mode to the full width

of its spectral peak at half maximum. For comparison, we also give an estimate of

the expected quality factor based on just the viscosity of air, given by Q = ω/(νk2),

where ω is the mode frequency, ν is the kinematic viscosity of air, and k is the

wavenumber of the mode, given by k = (l + 1/2)/r, where l is the mode’s degree

and r is the radius of the vessel. As can be seen, all of the acoustic modes have

significantly lower quality factors than would be estimated based on viscosity alone.

For liquid sodium, which has a kinematic viscosity about twenty times lower than

that of air, the quality factor estimates based on viscosity would be even higher.

Some other mechanism would be required to lower the quality factors.

One possibly relevant difference between the 60 cm gas system and the 3 m

liquid sodium system is found in the values of the acoustic impedance mismatch

between the vessel and the fluid. Using the product Z of the density and the speed

of sound for the two systems, the mismatch between air and the titanium alloy of

the 60 cm vessel is Zvessel/Zfluid =5.24e4, while for liquid sodium in stainless steel

this is 10.5. The reflection coefficient (for the case of normal incidence), given by

R = (Zvessel−Zfluid)/(Zvessel+Zfluid), is 0.99996 for 60 cm and 0.826 for 3 m. Thus

acoustic modes can be expected to more readily couple to the outer shell in 3 m, but

this would only lower the quality factor of the modes if there is some other source

160



of damping (i.e. the shell modes are strongly damped). Since the 3 m system is

surrounded by air, the shell will not readily lose much energy to the environment,

though perhaps some energy is dissipated in the oil heating jacket.

There is also a bubble in the 3 m experiment (to allow for thermal expansion

of the sodium), resulting in a free surface or (if the bubble is ingested into the flow)

bubbles, which could also lead to acoustic modes coupling to other modes of the

system (such as free surface waves), but again a further damping mechanism is re-

quired to extract energy from the acoustic modes. In addition, the DTS experiment

in Grenoble has also not found any readily identifiable acoustic modes when the

experiment is filled with liquid sodium (while they have been seen when the system

is filled with air), and for this experiment there is no bubble present in the spherical

cavity (though there is one in an expansion tank above the vessel).1 Thus it seems

unlikely that the presence of a free surface or bubbles within the fluid can provide

the sole explanation for the difficulty in observing acoustic modes in liquid sodium.

If the difficulties with identifying acoustic modes in the 3 m system to date

are due to low quality factors for the modes, whatever the cause, then perhaps

more intense acoustic excitation could partially overcome this limitation. Since the

shaker is attached to a rod that in turn is pressed up against a stainless steel plate

3/8” thick (the bottom of the instrumentation port, which faces the sodium), it is

possible that much less power is coupling into the liquid sodium itself than would be

the case for more direct excitation. Also, the acoustic modes might not be obviously

split, but instead appear to broaden and perhaps change shape in response to the

1Personal communication, Henri-Claude Nataf 2016
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(n,l,m) Frequency Full Width at Half Max Observed Q Viscous Q
(0,1,1) 344.8 1.1 313 8.80e5
(0,1,0) 371.3 0.35 1061 9.47e5
(0,2,1) 572.4 1 572 5.26e5
(0,2,0) 620.7 1.55 400 5.70e5
(0,3,1) 778.6 1.07 728 3.65e5
(0,3,2) 810.1 1.1 736 3.80e5
(0,3,0) 850.3 1.13 752 3.98e5
(1,0,0) 946.3 1.6 591 2.17e5
(0,4,1) 978.1 2 489 2.77e5
(0,4,3) 1018.5 1.1 926 2.89e5
(1,1,1) 1056.5 1 1057 2.70e6
(0,4,0) 1073.4 2.5 429 3.04e5
(1,1,0) 1092 2.4 455 2.79e6

Table 5.4: Quality Factors of Acoustic Modes in the 60 cm gas experiments. Com-
parison of observed quality factors for acoustic modes, using the frequency of the
modes divided by their full width at half maximum, with an estimate based on
viscous damping. Note that all the observed quality factors are much lower than
the estimates, indicating that other factors besides viscosity are important for mode
damping.

fluid flow. Perhaps more aggressive acoustic excitation of the system will yield more

satisfactory results.
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Figure 5.17: Power Spectral Density vs. Frequency of the Pressure Probe Signal in
Port 1 of the 3 m Experiment: fi = 3.05 Hz, fo = 1 Hz. Note the large amount of
power at low frequencies, a signature of the turbulent flow, and the two peaks near
400 Hz and 800 Hz, probably due to belt noise.
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Figure 5.18: Power Spectral Density vs. Frequency of the Pressure Probe Signal in
Port 1 of the 3 m Experiment: Inner-only rotation, with a chirp from 400 to 600
Hz, targeting mode (0, 1, |1|), predicted by Mautino to have a frequency of 539 Hz
(indicated by vertical black line); note that the (0, 1, 0) is also predicted to lie in
this range, with a frequency of 545 Hz.
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Figure 5.19: Power Spectral Density vs. Frequency of the Pressure Probe Signal in
Port 1 of the 3 m Experiment: Inner-only rotation, with a chirp from 400 to 600
Hz, targeting mode (0, 1, |1|), predicted by Mautino to have a frequency of 539 Hz
(indicated by a vertical black line); note that the (0, 1, 0) is also predicted to lie
in this range, with a frequency of 545 Hz (also indicated by a vertical black line).
Same as Figure 5.18 above, but showing a narrower range in frequency.
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Chapter 6: Conclusions and Future Directions

In this final chapter, I provide a review of the work presented and offer some

suggestions for future investigations.

6.1 Magnetic Results

In chapter 4, I presented an overview of the results of hydromagnetic exper-

iments in the 3 m liquid sodium spherical Couette experiment. In particular, the

spectra of Gauss coefficients for a variety of Ro were presented, and used to charac-

terize the different states previously identified in [90]. We applied both dipolar and

quadrupolar fields, and ran experiments with the outer at its maximum design speed.

We corroborated previous results, and a new behavior was seen in the previously

labeled Quiet state, with a broad spectral feature around 2.8fo, most prominent in

the m = 1 Gauss coefficients. Spectral features of other states were also discussed

in more detail. We also commented on the velocity inferences that can be made

with this magnetic data, noting the possible velocity field patterns responsible for

the primary observed induced magnetic field. These velocity inferences are helpful

but also have major limitations, motivating the investigation of acoustic modes as

a possible route to further flow field metrology.
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6.2 Acoustic Results

In chapter 5, I presented the results of acoustic studies in gas with the 60 cm

experiment. Acoustic modes of the container are readily identified, with discrimi-

nation between modes of similar frequency helped by considerations of spatial sym-

metry and simultaneous measurement using two microphones in different locations.

We obtained excellent agreement between experimental and theoretical frequencies

for stationary gas and uniformly rotating gas, as well as performing measurements

with a turbulent flow. Many modes are excited by the turbulent flow and/or the

mechanical noise of the experiment, obviating the need for direct acoustic excita-

tion using speakers (though this was also done). Using splitting measurements for

15 modes, along with sensitivity kernels for the modes derived from a model of the

60 cm experiment, Anthony Mautino and Ved Lekic inverted this acoustic infor-

mation for the zonal flow of the fluid Ω(r, θ). The results of these inversions are

plausible, and imply that further experiments in air would be able to further refine

the flow patterns; if acoustic modes can be identified in liquid sodium experiments,

such techniques should also allow velocity patterns of hydromagnetic experiments

to be inferred.

6.3 Future Directions

One obvious area for further work is in attempting to excite and observe

acoustic modes in the 3 m liquid sodium experiment. Of course, since this has
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not been demonstrated, here we can only speculate on further investigations that

might be fruitful. While there are not any obviously excited ambient modes in the

3 m system, more powerful acoustic excitation of the system may yield results. In

particular, so far both excitation methods used (that is, tapping the outside of the

experiment with a hammer, and exciting the piezoelectric shaker with a chirp) have

put acoustic power into the sodium by first coupling to the outer spherical shell.

Directly exciting the sodium, by for instance actuating a surface in contact with the

sodium or perhaps using localized electric and magnetic fields to force oscillations in

the sodium, has the potential to excite acoustic modes. This involves significantly

more development work, and the actuation method perhaps would be better tested

in a smaller set-up before attempting to implement it in the 3 m experiment. In

particular, such a system would require the construction of a custom instrumentation

port, along with the installation of any necessary supporting equipment on the lid.

If acoustic modes can be excited with such a set-up, a next step would be

to consider using accelerometers to measure the modes. While initial studies would

make use solely of the pressure probes already installed in the instrumentation ports,

an advantage of the accelerometers is that, since they are mounted on the exterior

of the outer shell, there is much more freedom in their locations, as opposed to the

pressure probes which can only be installed in the instrumentation ports. By care-

ful selection of their locations, the accelerometers could allow fine discrimination

between various modes by using the spatial structure of the modes (as I achieved

for the case of even and odd m and l−m modes in the 60 cm acoustic experiments

described in chapter 5). The accelerometers also have their own challenges, since
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they will also be sensitive to modes of the shell of the experiment. The modes of the

shell, and any coupling of them to the modes of the cavity, will therefore have to be

explicitly modeled when making flow inferences from accelerometer measurements.

Accelerometers have been tested with air in the DTS experiment at the Université

Grenoble-Alpes, in Grenoble, France, and while they were not as sensitive as inter-

nally mounted microphones (unsurprisingly), they are capable of detecting acoustic

modes. 1

Assuming acoustic modes can be identified, with a robust method of exciting

them and sufficient measurements (pressure probes and perhaps accelerometers)

to distinguish between close-lying modes, inversions for the zonal flows could be

performed. While meridional flows are expected to be significantly weaker than the

zonal flows in the 3 m experiment, and thus a similarly weaker effect on the acoustic

modes, it is possible that information regarding the meridional flows could also be

extracted. This will require taking into account the coupling between different modes

mediated by the meridional flows. There are plans to add baffles to the inner sphere

of the 3 m experiment in order to enhance the coupling between the inner sphere and

the fluid and drive more vigorous meridional flows. This is motivated by theoretical

results that indicate such a modification may improve the chances of dynamo action

[65]. If dynamo action is achieved in the 3 m experiment, acoustic mode velocimetry

could be particularly useful in characterizing the flow field and possible dynamo

mechanism, since magnetic measurements would be more challenging to interpret

than in the case of fields only being induced by a weak applied field. Even in the

1Personal communication, Henri-Claude Nataf 2016.
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absence of dynamo action, hydromagnetic flows with strong applied fields are also of

interest, and would also benefit from velocity diagnostics independent of magnetic

fields.

This proposed integration of acoustic and magnetic data to further under-

stand strong field hydromagnetic flow, including any dynamo processes that may be

present, can be seen more broadly as a move toward integrating a variety of mea-

surements, including torque, pressure, and magnetic field measurements, to build up

a more detailed picture of the fluid flow. Another complementary avenue is that of

data assimilation, by which estimates of model parameters for the system could be

refined using time series data from the 3 m system and techniques developed in the

context of weather prediction. In particular, the goal for such models would be to

converge on the internal state of the 3 m system (its flow field and internal magnetic

field) from time series measurements of the external magnetic field, with the hope

that this could inform efforts to do something similar for Earth’s core. While data

assimilation techniques are commonly used in meteorology, they have only recently

been applied to the geodynamo [96, 97]. While both the Earth’s atmosphere and

the Earth’s core are complicated systems obeying nonlinear equations of motion,

the timescales or changes that we can measure are very different. Weather systems

develop and dissipate on a timescale of weeks, while the geomagnetic field only

slowly changes over the course of years. More dramatic changes like field reversals

take hundreds or thousands of years to complete, and are separated by hundreds of

thousands of years. Since the relevant timescales of the 3 m experiment are much

shorter than those of the Earth, data assimilation used with the 3 m experiment
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could be a step towards turning geomagnetic studies into a predictive science. By

providing information about the flow field present in the 3 m experiment that is not

mediated by magnetic field measurements, acoustic velocimetry could make such an

approach in 3 m more robust, providing another way of evaluating the effectiveness

of the models in estimating the internal state of the system. Lessons learned with

3 m could in turn inform work on estimating the state of Earth’s core.
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Chapter A: Mechanical Drawings

Here we include technical drawings by Minh Doan of the shaker holder which

he designed and built, used in some of the acoustic studies detailed in chapter 5.
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