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t. The development of robust and eÆ
ient algorithms for both steady-state simulationsand fully-impli
it time integration of the Navier{Stokes equations is an a
tive resear
h topi
. Tobe e�e
tive, the linear subproblems generated by these methods require solution te
hniques thatexhibit robust and rapid 
onvergen
e. In parti
ular, they should be insensitive to parameters inthe problem su
h as mesh size, time step, and Reynolds number. In this 
ontext, we explore aparallel pre
onditioner based on a blo
k fa
torization of the 
oeÆ
ient matrix generated in an Oseennonlinear iteration for the primitive variable formulation of the system. The key to this pre
onditioneris the approximation of a 
ertain S
hur 
omplement operator by a te
hnique �rst proposed by Kay,Loghin, and Wathen [25℄ and Silvester, Elman, Kay, and Wathen [45℄. The resulting operator entailssubsidiary 
omputations (solutions of pressure Poisson and 
onve
tion{di�usion subproblems) thatare similar to those required for de
oupled solution methods; however, in this 
ase these solutionsare applied as pre
onditioners to the 
oupled Oseen system. One important aspe
t of this approa
his that the 
onve
tion{di�usion and Poisson subproblems are signi�
antly easier to solve than theentire 
oupled system, and a solver 
an be built using tools developed for the subproblems. Inthis paper, we apply smoothed aggregation algebrai
 multigrid to both subproblems. Previous workhas fo
used on demonstrating the optimality of these pre
onditioners with respe
t to mesh sizeon serial, two-dimensional, steady-state 
omputations employing geometri
 multi-grid methods; wefo
us on extending these methods to large-s
ale, parallel, three-dimensional, transient and steady-state simulations employing algebrai
 multigrid (AMG) methods. Our results display nearly optimal
onvergen
e rates for steady-state solutions as well as for transient solutions over a wide range ofCFL numbers on the two-dimensional and three-dimensional lid-driven 
avity problem.
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avity problem.1. Introdu
tion. Re
ently, the development of eÆ
ient iterative methods forthe fully-impli
it solution of the Navier{Stokes equations has seen 
onsiderable a
-tivity. Signi�
ant in
reases in 
omputing power due to large-s
ale parallel systems
oupled with a de
ade of work on eÆ
ient parallel CFD algorithms (e.g., [16℄, [28℄,[42℄, [47℄) have now begun to make large-s
ale impli
it 
al
ulations tra
table in timeframes that are 
onsistent with engineering analysis and s
ienti�
 exploration. Fur-ther, an enhan
ed need to model sti� nonlinear multiple-time-s
ale PDE systems su
has the Navier{Stokes equations 
oupled with additional transport/rea
tion physi
s hasin
reased interest in fully-impli
it solution te
hniques.The use of fully-impli
it solvers allows the time stepping algorithm to resolve theappropriate time s
ales of interest (the dynami
al modes) as opposed to the mu
hsti�er short time s
ale physi
s [2℄, [29℄. The ability to produ
e a stable integratorfor large time steps 
an also be employed in a nontime-a

urate mode within pseudo-transient methods [9℄, [27℄. Further, similar iterative method 
omponents 
an oftenbe utilized in dire
t-to-steady-state solution methods for appropriate appli
ations.The robustness and versatility of the fully-impli
it s
hemes, however, 
ome witha signi�
ant 
ost. These methods pla
e a heavy burden on the development of robustnonlinear and linear solution methods for the large-s
ale systems produ
ed at ea
hyDepartment of Computer S
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time step. For this reason many solvers have relied on de
oupled solution strategies.Often, transient s
hemes 
ombine semi-impli
it methods with fra
tional-step (oper-ator splitting) approa
hes or use fully-de
oupled solution strategies. In these 
ases,the motivation is to redu
e memory usage and to produ
e a simpli�ed equation setfor whi
h eÆ
ient solution strategies already exist. Unfortunately, these simpli�
a-tions pla
e signi�
ant limitations on the broad appli
ability of these methods. Forexample, fra
tional-step methods su
h as pressure proje
tion [1℄, [6℄, [14℄ and operatorsplitting [35℄ require time step limitations based on the expli
it part of the time inte-gration pro
ess as well as on the stability and a

ura
y asso
iated with the de
oupledphysi
s [8℄, [17℄, [24℄, [29℄, [39℄, [40℄, [49℄. This restri
tion 
an severely limit the stepsize, and dire
t-to-steady-state simulations with these methods are not possible.Fully-de
oupled solution strategies (e.g., the SIMPLE [37℄, SIMPLER [36℄, andPISO [22℄ 
lass of methods) use a su

essive substitution (or Pi
ard) iteration to sim-plify the 
oupled systems of equations. Nonlinearities at ea
h time step are resolvedby an outer nonlinear iteration. Unfortunately, while this te
hnique should improvetime step limitations, steps are frequently redu
ed to fa
ilitate the nonlinear iteration.Convergen
e of these de
oupled methods 
an often be problemati
. In parti
ular, thenonlinear iteration has only a linear rate of 
onvergen
e and in pra
ti
e 
an often ex-hibit very slow 
onvergen
e. In addition, sin
e all the equations have been de
oupledarti�
ially, this strategy 
an sometimes result in non-
onvergen
e for diÆ
ult problemsin whi
h the essential 
oupling of the physi
s has been violated (see for example [11℄,[12℄, and the referen
es 
ontained therein). The intent of fully-
oupling the PDEs inthe time integration and nonlinear solver is to preserve the inherently strong 
ouplingof the physi
s with the goal to produ
e a more robust solution methodology in thepro
ess.Mu
h of the previous work on parallel fully-
oupled solution methods demon-strate 
onsiderable su

ess for the solution of the in
ompressible Navier{Stokes equa-tions (e.g., [11℄, [16℄, [41℄, [42℄). In these studies, high parallel eÆ
ien
ies are attainedusing pre
onditioned Krylov methods with additive S
hwarz domain de
ompositionpre
onditioning and e�e
tive sub-domain solvers based on in
omplete fa
torizations.While parallel s
aling and robustness are en
ouraging, the algorithmi
 s
aling is non-optimal sin
e the number of linear iterations in
reases with in
reasing problem sizeor an in
rease in the number of sub-domains [16℄, [42℄. Attempts at mitigating thispoor s
aling often 
onsider two-level domain de
omposition s
hemes whi
h a

elerate
onvergen
e by solving a proje
ted version of the problem on a very 
oarse grid witha dire
t solver. This 
oarse grid 
orre
tion is then interpolated to the �ne grid and
ombined with the more traditional S
hwarz pre
onditioner. These methods exhibitoptimal 
onvergen
e s
aling as demonstrated for 
oupled solution of Navier{Stokesand Navier{Stokes with thermal energy transport [16℄, [43℄, [53℄. The prin
ipal draw-ba
k is that on large three-dimensional problems with many sub-domains, the 
ostof the 
oarse grid dire
t solver be
omes prohibitive, and the method be
omes sub-optimal in terms of CPU time. Therefore true multi-level pre
onditioning methods,whi
h 
an deliver nearly optimal s
aling for these 
oupled solution methods, are stillan open resear
h issue.The 
urrent view towards produ
ing optimal 
oupled solution te
hniques for thein
ompressible Navier{Stokes equations is based on using pre
onditioners that ap-proximate the Ja
obian (or an approximate Ja
obian for a quasi-Newton method) ofthe 
oupled system with some simpli�ed blo
k-partitioned system of equations. Thesemethods in
lude approximate blo
k LU fa
torization te
hniques [7℄, [13℄, [25℄, [46℄ and2



physi
s-based pre
onditioning [30℄, [38℄. When applied to a system of PDEs, thereare many similarities among these pre
onditioners. They are all motivated by a \di-vide and 
onquer" approa
h to 
onstru
ting a pre
onditioner. The general goal is toapproximately invert separate s
alar systems rather than the fully-
oupled systems.This redu
tion to s
alar systems is motivated by the desire to apply a 
ompositionof multi-level solves on the separate equations to pre
ondition the 
oupled systeme�e
tively.In this manus
ript, we fo
us on the evaluation of an eÆ
ient fully-impli
it timeintegration and dire
t-to-steady-state solution method using a parallel 
oupled solverfor the in
ompressible Navier{Stokes equations. This solver is based on an Oseennonlinear iteration with a multigrid method for the linear subproblems. The Oseeniteration is a su

essive substitution approa
h that retains the pressure velo
ity 
ou-pling and relaxes (by means of the nonlinear iteration) the 
oupling of the 
onve
tionoperator (see Se
tion 2). Sin
e part of the Ja
obian 
oupling that is fully utilizedwithin a Newton s
heme is retained, studying the Oseen equations serves as an inter-mediate step towards the development of a fully-
oupled multi-level solution pro
ess.Additionally, pre
onditioners for the Oseen system 
an be employed within a New-ton 
ode. This is parti
ularly natural in the matrix-free Newton-Krylov setting [26℄.It is in this 
ontext that our study of the Oseen iteration nonlinear solver and theKay, Loghin, and Wathen [25℄ and Silvester, Elman, Kay, and Wathen [45℄ pre
ondi-tioner is 
arried out. Previous work with these methods has demonstrated optimalitywith respe
t to mesh size on serial, two-dimensional, steady-state 
omputations us-ing geometri
 multigrid; we fo
us on extending these methods to large-s
ale, parallel,three-dimensional, transient and steady-state simulations with algebrai
 multi-grid(AMG) methods.The remainder of this paper is organized as follows. Se
tion 2 provides ba
kgroundon the Oseen iteration and the approximate blo
k pre
onditioners. In Se
tion 3 wedes
ribe in some detail the algebrai
 multigrid methods that are used for the 
ompo-nent s
alar solvers for the pre
onditioner systems. Se
tion 4 provides a brief overviewof the MAC dis
retization of Navier{Stokes equations and the parallel implementa-tion of the nonlinear and linear solvers. Details of the numeri
al experiments andthe results of these experiments are des
ribed in Se
tion 5. Con
luding remarks areprovided in Se
tion 6.2. Ba
kground. We are 
on
erned with the in
ompressible form of the Navier{Stokes equations�ut � �r2u+ (u � grad)u+ grad p = f�divu = 0 in 
 � R3 ; (2.1)where u satis�es suitable boundary 
onditions on �
, say Diri
hlet 
onditions u = g.The value � = 0 
orresponds to the steady-state problem and � = 1 to the transient
ase.Our fo
us is on solution algorithms for the systems of equations that arise afterlinearization of the system (2.1). We will use a nonlinear iteration derived by laggingthe 
onve
tion 
oeÆ
ient in the quadrati
 term (u � grad)u. For the steady-stateproblem, this pro
edure starts with some initial guess u(0) for the velo
ities and then
omputes updated velo
ities and pressures by solving the Oseen equations��r2u(m) + (u(m�1) � grad)u(m) + grad p(m) = f�divu(m) = 0: (2.2)3



For transient problems, a strategy of this type 
an be 
ombined with an impli
it timedis
retization, see [48℄, [54℄. For example, a variant of the ba
kward Euler dis
retiza-tion uses a �rst order time dis
retization for ut and treats all other terms impli
itlyex
ept the lagged 
onve
tion 
oeÆ
ient. This gives the time-stepping strategyu(m)�u(m�1)�t � �r2u(m) + (u(m�1) � grad)u(m) + gradp(m) = f�divu(m) = 0: (2.3)This iteration 
an also be used to solve the steady-state problem by integrating intime until a steady solution is obtained. Customarily, when large time steps are used(or equivalently, large CFL numbers) and no error 
ontrol is applied, this s
heme istermed a pseudo-transient method [9℄, [27℄.For both (2.2) and (2.3), a stable �nite di�eren
e or �nite volume dis
retizationleads to a linear system of equations of the form� F BTB 0 �� up � = � f0 � ; (2.4)whi
h must be solved at ea
h step. For the steady problem, the matrix F has blo
kdiagonal form in whi
h ea
h individual diagonal blo
k 
onsists of a dis
retization ofa 
onve
tion{di�usion operator ��r2 + (w � grad) ; (2.5)where w = u(m�1). For the transient problem, the blo
ks of F represent dis
retiza-tions of the operator 1�t I � �r2 + (w � grad) ; (2.6)whi
h arises from impli
it time dis
retization of the time-dependent 
onve
tion{dif-fusion equation.The strategy we employ for solving (2.4) is derived from the blo
k fa
torization� F BTB 0 � = � I 0BF�1 I �� F BT0 �S � ;where S = BF�1BT is the S
hur 
omplement. This implies that� F BTB 0 �� F BT0 �S ��1 = � I 0BF�1 I � ; (2.7)whi
h, in turn, suggests a pre
onditioning strategy for (2.4). If it were possible to usethe matrix Q = � F BT0 �S � (2.8)as a right-oriented pre
onditioner, then the pre
onditioned operator would be theone given in (2.7). All the eigenvalues have the value 1, and it 
an be shown thatthis operator 
ontains Jordan blo
ks of at most 2, and 
onsequently that at mosttwo iterations of a pre
onditioned GMRES iteration would be needed to solve thesystem [33℄. 4



When any pre
onditioner Q is used in a Krylov subspa
e iteration, ea
h steprequires the appli
ation of Q�1 to a ve
tor. To see the 
omputational issues involvedfor the parti
ular 
hoi
e (2.8), it is useful to express Q�1 in fa
tored form� F BT0 �S ��1 = � F�1 00 I �� I �BT0 I �� I 00 �S�1 � :This shows that two nontrivial operations are required to apply Q�1: appli
ation ofS�1 to a ve
tor in the dis
rete pressure spa
e, and appli
ation of F�1 to a ve
tor inthe dis
rete velo
ity spa
e. These tasks, espe
ially the �rst one, are too expensivefor a pra
ti
al 
omputation. However, an e�e
tive pre
onditioner 
an be derived byrepla
ing these two operations with inexpensive approximations.Applying the a
tion of F�1 to a ve
tor v entails solving the dis
rete 
onve
tion{di�usion equation, i.e., solving Fx = v where F is a dis
rete version of (2.5) or (2.6).For this 
omputation, we will use a multigrid iteration, as outlined in the next se
tion.The key 
omponent for the pre
onditioner is the availability of an a

urate andinexpensive approximation to the a
tion of the inverse of the S
hur 
omplement op-erator BF�1BT . Here, we will use a strategy developed in [25℄ and [45℄. To deriveit, we begin with the 
onve
tion{di�usion operator of (2.5). (The treatment of thetransient version (2.6) is identi
al.) Suppose there is an analogous operator(��r2 + (w � grad))pde�ned on the pressure spa
e. It is not ne
essary to as
ribe any physi
al meaning tothis operator; it will only be used to 
onstru
t an algorithm. Suppose in addition thatthe 
onve
tion{di�usion operators formally 
ommute with the gradient operator, i.e.,(��r2 + (w � grad))r = r(��r2 + (w � grad))p : (2.9)A dis
rete version of this (posited) relation, using the dis
rete versions of the operatorsgiven in (2.4) together with a dis
retization Fp of the 
onve
tion{di�usion operatoron the pressure spa
e, is FBT = BTFp : (2.10)A straightforward algebrai
 manipulation then givesBF�1BT = (BBT )F�1p : (2.11)In reality, the formal relation (2.9) is not valid ex
ept in spe
ial 
ases (su
h as
onstant w). However, we 
an still take the matrix on the right side of (2.11) as anapproximation to the S
hur 
omplement, leading to the pre
onditionerQ = � F BT0 �Ŝ � (2.12)for (2.4), where Ŝ = (BBT )F�1p : Appli
ation of Ŝ�1 to a ve
tor is now a relativelystraightforward operation, entailing appli
ation of the a
tion of (BBT )�1 (i.e., solvinga system of equations with 
oeÆ
ient matrix BBT ), followed by a matrix-ve
torprodu
t by Fp. The matrix BBT is essentially a s
aled dis
rete Lapla
ian, and there5



are many approa
hes for solving the required systems. We will again use algebrai
multigrid methods for these 
omputations.1To implement this methodology, it is ne
essary to 
onstru
t the matrix Fp, i.e., adis
rete 
onve
tion{di�usion operator on the pressure spa
e. This requires a 
onven-tion for spe
ifying boundary 
onditions asso
iated with this operator. Our strategyhas been to 
hoose 
onditions that ensure that the resulting operator is ellipti
 overthe dis
rete pressure spa
e [10℄. When (2.1) is posed with Diri
hlet boundary 
on-ditions, Fp is de�ned using Neumann boundary 
onditions; if a 
omponent �
 is anout
ow boundary, then Diri
hlet 
onditions would be used for Fp. (Similar 
onditionsalso apply to Ap if that needs to be de�ned.) The issues involved here appear to beessentially the same as what is required for the pressure Poisson equation in othersettings [15, Se
t. 3.8.2℄. Note, however, that here the 
hoi
e of pressure boundary
onditions only a�e
ts the algorithm used to solve the dis
rete equations (i.e., thede�nition of the pre
onditioner) and is unrelated to the a

ura
y of the underlyingsolution method.We highlight some aspe
ts of using the pre
onditioner of (2.12). Considerableempiri
al eviden
e for two-dimensional problems indi
ates that it is e�e
tive, lead-ing to 
onvergen
e rates that are independent of mesh size, only mildly dependenton Reynolds numbers for steady problems, and essentially independent of Reynoldsnumbers in the transient 
ase [13℄, [25℄, [45℄. A proof that 
onvergen
e rates are inde-pendent of the mesh is given in [31℄. As observed above, ea
h step of a Krylov subspa
eiteration then requires a Poisson solve on the pressure spa
e and a 
onve
tion{di�usionsolve on the velo
ity spa
e. Both of these operations 
an be performed or approxi-mated using multigrid methods.3. Multigrid. It is well known that multigrid methods are among the most ef-fe
tive methods for solving dis
rete partial di�erential equations, see e.g, [5℄, [19℄,[51℄. In this study we employ a parti
ular multilevel method 
alled an algebrai
multigrid method (AMG). These methods require no mesh (or geometri
) informationand therefore are attra
tive for solving problems in 
omplex domains dis
retized withunstru
tured meshes. Although multigrid methods have been developed for the in-
ompressible Navier{Stokes equations (see, for example, [4℄, [60℄), there has been onlya modest amount of work on using algebrai
 multigrid in this setting. One reason forthis is the strong 
oupling inherent in the 
omplex blo
k stru
ture of the dis
retizedgoverning PDE system as des
ribed in Se
tion 2. A key advantage of the blo
k pre-
onditioning approa
h is that the resulting 
omponent blo
k solvers require separatesolutions of equations with 
oeÆ
ient matri
es F (a dis
rete 
onve
tion{di�usion op-erator) and Ap (a dis
rete Lapla
ian), ea
h of whi
h is amenable to solution by AMG.We begin by brie
y re
alling the philosophy behind traditional (geometri
) multi-grid methods. The basi
 idea is to 
apture errors by utilizing multiple resolutions in1This derivation is essentially a full des
ription of the pre
onditioner for the �nite-di�eren
edis
retization that we will use in Se
tion 5. A more 
areful derivation, appli
able in parti
ular to�nite element methods, leads to the approximationBF�1BT � (BM�1v BT )F�1p Mp = ApF�1p MpwhereMv andMp are the mass matri
es 
orresponding to the L2 representation of the �nite elementbases. Ap = BM�1v BT represents a s
aled dis
rete Lapla
ian operator on the pressure spa
e, andthis leads to the more general de�nition Ŝ = ApF�1p Mp. We will not dis
uss this more generalformulation here. It introdu
es no serious 
omputational diÆ
ulties but enables an extension ofthis approa
h to handle stable �nite element dis
retizations; see [25℄ and [45℄ for details. For �nitedi�eren
es on a uniform grid of width h, Mp = h2I and BBT = ApMp.6



an iterative s
heme. High energy (or os
illatory) 
omponents are e�e
tively redu
edthrough a simple smoothing pro
edure, while low energy (or smooth) 
omponentsare ta
kled using an auxiliary lower resolution version of the problem (
oarse grid).The idea is applied re
ursively on the next 
oarser level. In standard multigrid, thisis a

omplished by generating a hierar
hy of meshes, Gk, 
orresponding to di�eringresolutions. Grid transfer (i.e., interpolation and restri
tion) operators are de�ned tomove data (residuals and 
orre
tions) between meshes, and dis
retizations are 
on-stru
ted on all the meshes. On 
oarse meshes, it is 
ommon to employ the samedis
retization te
hnique (often the same subroutine) that is used on the �nest mesh.However, it is also possible to proje
t the �ne grid operator algebrai
ally viaAk+1 = P Tk AkPk (3.1)where Pk interpolates a solution from grid Gk to Gk+1, P Tk restri
ts a solution fromgrid Gk+1 to Gk, and Ak is the dis
retization on Gk. In this paper, we only userestri
tion whi
h is the transpose of interpolation. However, this does not have tobe the 
ase and for highly nonsymmetri
 problems it is often more appropriate to
onsider alternatives. This is planned for future work. A sample multilevel iterationis given in Figure 3.1 to solve A1u1 = b1: (3.2)// Solve Akuk = bkpro
edure multilevel(Ak; bk; uk; k)uk = Sk(Ak; bk; uk);if ( k 6= Nlevel)rk = bk �Akuk ;Ak+1 = PTk AkPk;uk+1 = 0;multilevel(Ak+1; PTk rk; uk+1; k + 1);uk = uk + Pkuk+1;uk = Sk(Ak; bk ; uk);Fig. 3.1. Multigrid V 
y
le 
onsisting of `Nlevel' grids to solve A1u1 = b1.To spe
ify the method fully, the smoothers Sk and the grid transfers Pk must bede�ned for ea
h level k.. The key to fast 
onvergen
e is the 
omplementary natureof these two operators. That is, errors not redu
ed by Sk must be well interpolatedby Pk. In our implementation, we employ a standard Gauss{Seidel smoother forthe Sk when solving the Poisson operator. For the 
onve
tion{di�usion operator, wepresent experiments with a few di�erent 
hoi
es. These experiments are dis
ussed inSe
tion 5.An algebrai
 multigrid algorithm has the same stru
ture as a standard multigridalgorithm (e.g., Figure 3.1). The main di�eren
e is that no grid hierar
hy is suppliedand so a notion of a mesh must be developed from matrix data. This mesh must thenbe 
oarsened, and �nally grid transfer operators Pk must be dedu
ed, from purelyalgebrai
 prin
iples. We will use one parti
ular approa
h, 
alled smoothed aggrega-tion. This is an algebrai
 multigrid te
hnique for determining the operators Pk thatinterpolate the aggregated graph to its re�nement given only the n� n dis
retizationmatri
es Ak. We give a brief des
ription of a simpli�ed smoothed aggregation s
heme7



for s
alar partial di�erential equations. More details 
an be found in [52℄, [56℄, [57℄,and [59℄.The key feature of AMGmethods is that no mesh information is supplied. Instead,a matrix graph is de�ned, and this graph e�e
tively o

upies the role of the meshused in traditional multigrid methods (with the ex
eption that no 
oordinates areasso
iated with a matrix graph). Spe
i�
ally, de�ne the matrix graphGk = fVk; Ekgwith verti
es Vk = f1; 2; : : : ngand undire
ted edgesEk = f(i; j) : i; j 2 Vk; j � i; Ak(i; j) 6= 0g:For this dis
ussion, it is assumed that Ak is stru
turally symmetri
 with nonzerodiagonal entries. In our notation, (i; j) and (j; i) refer to the same undire
ted edge.To produ
e the `next' mesh within the multigrid hierar
hy, Gk must be automati
ally
oarsened. In smoothed aggregation, Gk is 
oarsened by grouping or aggregatingneighboring verti
es together. Ea
h aggregate will e�e
tively be
ome a mesh pointon the next 
oarser mesh. Formally, an aggregate 
orresponds to a set aggk su
h thataggp \ aggj = � p 6= jand Vk = m[j=1 aggjwhere m is the total number of aggregates and � is the empty set. For details onaggregation algorithms, we refer the reader to [59℄ and [52℄. In this paper, it issuÆ
ient to 
onsider an ideal aggregate, aggk, as 
omprising a single 
entral vertexand all of its immediate neighbors. In pra
ti
e, it is not possible to a 
oarsen a graph
ompletely with ideal aggregates. This is further dis
ussed at the end of this se
tion.Using the above aggregates, a simple interpolation operator 
an be de�ned 
or-responding to pie
ewise 
onstants. Spe
i�
ally, a value at a 
oarse grid point is in-terpolated by assigning it to all �ne grid verti
es within its 
orresponding aggregate.This interpolation is referred to as the tentative prolongator and is represented byan n �m matrix ~Pk, where n is the dimension of Ak and m is the total number ofaggregates. Ea
h row of ~Pk 
orresponds to a grid point, and ea
h 
olumn 
orrespondsto an aggregate. Formally, the entries are given by2~Pk(i; j) = � 1 if i 2 aggj0 if i 62 aggj :The main point is that this simple prolongator is easily 
onstru
ted without geometri
information. Unfortunately, however, using ~Pk within a multigrid algorithm gives rise2For spe
i�
 appli
ations su
h as elasti
ity problems more 
ompli
ated tentative prolongatorsare de�ned based on rigid body motions. 8



Fig. 3.2. Three pie
ewise 
onstant basis fun
tions asso
iated with three aggregates. Ea
h fun
-tion 
orresponds to a single prolongator 
olumn.
Fig. 3.3. Three smoothed basis fun
tions. Ea
h 
orresponds to a single prolongator 
olumn.to suboptimal (not mesh independent) 
onvergen
e. Instead, a more robust methodis realized by smoothing the pie
ewise 
onstant basis fun
tions.The main idea of smoothed aggregation is to smooth the basis fun
tions (i.e.,the matrix 
olumns) and thereby lower the energy (i.e., essentially redu
e kPkkAk)asso
iated with ~Pk. We omit the theory details and refer the interested reader to thesmoothed aggregation referen
es. Spe
i�
ally, a simple damped Ja
obi iteration isapplied Pk = (I � �D�1k Ak) ~Pk (3.3)where Dk is the diagonal of Ak, and � is a damping parameter. Typi
ally, � is takenas 43�(D�1k Ak) where �(�) denotes the spe
tral radius. This smoothing step is 
riti
alto obtaining h-independent multigrid 
onvergen
e [3℄, [56℄. Figure 3.2 illustrates thepie
ewise 
onstant basis fun
tions (or matrix 
olumns) asso
iated with ~Pk. Figure 3.3illustrates the e�e
t of smoothing by depi
ting the basis fun
tions (or matrix 
olumns)asso
iated with Pk when Ak is a Lapla
e operator. Intuitively, it should be no surprisethat in this example the multigrid method using pie
ewise linear interpolation3 issuperior to that using pie
ewise 
onstant interpolation. It is important to noti
e thatthe aggregates in Figure 3.2 are ideal aggregates. That is, they are 
omprised of a
entral vertex and its immediate neighbors (i.e., they have a diameter of three). Ifthe diameter is greater than three, the smoothed basis fun
tions have a region wherethey are lo
ally 
onstant (i.e., the hat fun
tions have a plateau). This leads to slowermultigrid 
onvergen
e due to poorer interpolation properties. When the diameter isless than three, the leftmost and rightmost smoothed basis fun
tions in Figure 3.3will overlap. This implies that the 
oarse grid dis
retization matrix obtained viaP Tk AkPk will have additional nonzeros. This 
an 
ause the multigrid iteration 
ostto very qui
kly in
rease. Though this example is simple, the situation in higherdimensions and on unstru
tured grids is identi
al. In pra
ti
e, multigrid s
hemes with
onvergen
e/
ost properties similar to the ideal aggregate 
ase are a
hieved using goodaggregation heuristi
s that keep the number of nonideal aggregates to a minimum andprevent nonideal aggregates from be
oming too small or large. We refer the readerto [59℄ for more details.3In general, smoothed aggregation does not reprodu
e linear interpolation nor is this ne
essaryto obtain mesh independent 
onvergen
e. 9



The basi
 idea and most of the theory for smoothed aggregation has been devel-oped for symmetri
 positive de�nite systems. For the nonsymmetri
 system with 
o-eÆ
ient matrix F , we make one modi�
ation to the algorithm des
ribed here. Spe
i�-
ally, we repla
eAk in (3.3) by the symmetri
 part of F (i.e., (F+F T )=2) and estimatethe spe
tral radius of the symmetri
 part of F . In this way, the smoothing of the pro-longator maintains a sense of energy minimization. We have found that this pro
edureis quite e�e
tive when an in
omplete LU fa
torization [23℄ is used as a smoother. Forthe Reynolds numbers that we have 
onsidered, the resulting multigrid pro
edure isquite eÆ
ient. Our numeri
al results (Se
tion 5) demonstrate 
onvergen
e for the Fsolve within about 25 multigrid iterations. However, for highly 
onve
tive 
ows itshould be possible to further improve the multigrid by 
onsidering more sophisti
atedgeneralizations of smoothed aggregation to nonsymmetri
 problems whi
h allow fordi�erent restri
tion s
hemes [18℄, [58℄.4. Implementation. For the steady-state Oseen equations in three dimensions,the stru
ture of the 
onve
tion-di�usion operator F is a 3� 3 blo
k diagonal matrix
orresponding to the three velo
ity 
omponents [u; v; w℄. That is,F = 0� ��r2 +w � r ��r2 +w � r ��r2 +w � r 1A (4.1)where w = [u; v; w℄. The matrix BT is a simple gradient operator applied to thepressure unknowns. A marker-and-
ell (MAC) �nite di�eren
e s
heme [20℄ is usedto dis
retize the saddle-point linear subproblem [F B; BT 0℄. This dis
retization isstable and �rst-order a

urate in a dis
rete H1-norm [34℄. All of our experiments areon a uniform mesh of width h. Pressures are on the 
ell 
enters and velo
ities are onthe 
ell fa
es. In two dimensions, we have N2 
ells and approximately 3N2 degreesof freedom. In three dimensions, we have N3 
ells and approximately 4N3 degrees offreedom. The operator Fp needed for the pre
onditioner is also a 
onve
tion-di�usionoperator (2.5) but on the pressure spa
e. Spe
i�
ally, in three dimensions, the Fpoperator on a pressure ve
tor p 
orresponds toFpp = (��r2 + (w � grad))pp= ��(pxx + pyy + pzz) + upx + vpy + wpz : (4.2)The dis
rete Lapla
ian term is the usual seven point sten
il. Dis
retization of the 
on-ve
tion terms uses velo
ities at the 
ell edges. Finally, the operatorAp also required bythe pre
onditioner is a standard seven point Lapla
e operator with Neumann bound-ary 
onditions. Sin
e this operator is singular, the 
onstant ve
tor is proje
ted out ofthe right hand side and the resulting Ap solution. This singularity also makes solutionof the 
oarse grid equations somewhat more diÆ
ult than usual, and we handle the
oarse grid system by iteration.The implementation of the pre
onditioned Krylov subspa
e solution algorithmwas done using the software pa
kages Petra and Trilinos developed at Sandia Na-tional Laboratories [21, 32℄. Petra provides fundamental 
onstru
tion and supportfor many basi
 linear algebra fun
tions and fa
ilitates matrix 
onstru
tion on paralleldistributed ma
hines. Ea
h pro
essor 
onstru
ts the subset of matrix rows assignedto it via a partitioning, and a lo
al matrix-ve
tor produ
t is de�ned. On
e F andB are de�ned, a global matrix-ve
tor produ
t for the saddle point linear systemS = [F B; BT 0℄ is de�ned using the matrix-ve
tor produ
ts for the individual sys-tems. Petra handles all the distributed parallel matrix details (e.g. lo
al indi
es10



linear solve

nonlinear loop

time loop

u(0) = initial 
ondition or initial guessp(0) = initial 
ondition or initial guessform B and Ap and then set up MG for Ap subproblemfor m = 1;Ntimestepsu(m) = u(m�1), p(m) = p(m�1)while jjF(u(m);u(m�1); p(m);u(m))jj > �oseenulag = u(m)k/* Set up Ku(m) = b 
orresponding to F(u(m);u(m�1); p(m);ulag) = 0 */form F; Fp and K = � F BTB 0 � and then set up MG for F subproblemGMRESR on Ku(m) = b until jjrk jj=jjr0jj < �saddleSaddle Pre
ondition() = � F�1 00 I �� I �BT0 I �� I 00 �FpA�1p �whereA�1p = CG pre
onditioned AMG on Lapla
ian until jjrk jj=jjr0jj < �AF�1 = GMRES pre
onditioned AMG on F until jjrk jj=jjr0jj < �FFig. 4.1. Implementation Pseudo-
ode.versus global indi
es, 
ommuni
ation for matrix-ve
tor produ
ts, et
.). Constru
tionof the pre
onditioner follows in a similar fashion. That is, the individual 
omponentsare de�ned and then grouped together to form the pre
onditioner. All of the Krylovmethods (i.e. those for the saddle point solve and for the F and Ap subsystems)are supplied by Trilinos [21℄, a high-performan
e parallel solver library that makesavailable linear and nonlinear solvers along with several pre
onditioning options. Themultigrid pre
onditioning for the subsystems is done by ML [50℄, a multigrid pre
on-ditioning pa
kage, whi
h we a

ess through Trilinos.On
e all of the matri
es and matrix-ve
tor produ
ts are de�ned, we 
an useTrilinos to solve the in
ompressible Navier{Stokes equations using our blo
k pre
on-ditioner with spe
i�
 
hoi
es of linear solvers for the saddle-point problem and the
onve
tion{di�usion and pressure Poisson subproblems. To solve the saddle-point lin-ear problem asso
iated with ea
h Oseen iteration, we use GMRESR. GMRESR is avariation on GMRES proposed by van der Vorst and Vuik [55℄ allowing the pre
on-ditioner to vary at ea
h iteration. For the pressure Poisson problem, Ap, we use CGpre
onditioned with algebrai
 multigrid, and for the 
onve
tion{di�usion problem, F ,we use GMRES pre
onditioned with algebrai
 multigrid. For transient and pseudo-transient problems, we use ba
kward Euler for the time-stepping loop. These 
hoi
esare summarized in Figure 4.1 to solve the nonlinear problemF(u(m);u(m�1); p(m);u(m)) = 011
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Fig. 5.1. Sample velo
ity �eld and pressure �eld from 2D lid driven 
avity. h = 1=128, Re = 100.at ea
h time step whereF(u(m);u(m�1); p(m);w) = �u(m)�u(m�1)�t � �r2u(m) + (w � grad)u(m) + grad p(m) � f�divu(m) !and � = 1 for transient problems and � = 0 for steady-state problems.5. Numeri
al Results. Numeri
al experiments are performed on the lid driven
avity problem in two and three dimensions. Spe
i�
ally, we 
onsider a square regionwith unit length sides in two dimensions and a 
ube with unit length sides in threedimensions. Velo
ities are zero on all edges ex
ept the top (lid), whi
h has a drivingvelo
ity of one. The two-dimensional lid driven 
avity is a well-known ben
hmark for
uids problems. It 
ontains many features of harder 
ows. The three-dimensionalproblem is less well studied and is a
tually a mu
h more diÆ
ult problem. Lid driven
avity 
ows exhibit unsteady solutions and multiple solutions at high enough Reynoldsnumbers. In two dimensions, unsteady solutions appear around Reynolds number7000 to 10,000. In three dimensions, these unsteady solutions 
an o

ur at mu
hlower Reynolds number, Re < 1000 [44℄. Figure 5.1 shows the velo
ity �eld andpressure �eld for an example solution to a two-dimensional lid driven 
avity problemwith h = 1=128.Results are presented for both steady-state and transient problems. In all pre-sented results, the values for �oseen, �saddle, �F , �A, and NtimeSteps in Figure 4.1 arede�ned as follows. The relative stopping toleran
es for the nonlinear and saddle-pointproblems are �oseen = 10�5 and �saddle = 10�2 as For experiments using `exa
t' solu-tions of the 
onve
tion{di�usion and pressure Poisson subproblems, we have relativestopping toleran
es �F = �A = 10�10. All time-stepping studies employ ba
kwardEuler and take ten time steps (i.e., NtimeSteps = 10) using a 
onstant time step.All two-dimensional results were obtained in serial on a DEC Alpha ES40. All three-dimensional results were obtained on 100 pro
essors of Sandia's ASCI Red ma
hine.Ea
h of Red's 
ompute nodes 
onsists of two Intel Pentium II Xeon Core pro
essorswith a peak performan
e of 333 MFLOPs ea
h.5.1. Steady-State Results. We �rst explore the performan
e of the algebrai
multigrid solver for the dis
rete 
onve
tion{di�usion equations. Performan
e on thesimple Poisson subproblems is optimal and well understood. For the 
onve
tion{di�usion subproblem Fx = v, we explore two multigrid 
hoi
es: the smoothing12



operator and the grid transfer operator. In Table 5.1, both ILU and symmetri
Gauss{Seidel smoothers are 
onsidered within smoothed aggregation multigrid. TheILU and symmetri
 Gauss{Seidel smoothers are a
tually used in 
onjun
tion withS
hwarz domain de
omposition ideas. In parti
ular, ea
h pro
essor performs oneiteration of the smoother on the subdomain de�ned by the matrix partitioning (in-dependent of the others) and performs 
ommuni
ation between smoothing iterations.These subdomains in
lude one level of overlap (i.e., the pro
essor-based subdomainsare expanded by one layer of equations around the subdomain perimeter) though onlysolution values from the non-overlapped regions are used in the pre
onditioner. Inthe 
ase of symmetri
 Gauss{Seidel, we 
ompare using one and four iterations of sym-metri
 Gauss{Seidel (referred to as 1-Gauss{Seidel and 4-Gauss{Seidel respe
tively),performed before and after the 
oarse grid 
orre
tion on ea
h level of the V-
y
le.For ILU, one ILU sweep is performed before and after the 
oarse grid 
orre
tion onea
h V-
y
le level. Tables 5.1 and 5.2 show the average multigrid iteration 
ountsand CPU times required to solve the 
onve
tion{di�usion subproblems arising in theblo
k pre
onditioner. The timings in
lude the entire time within the Krylov solverand the algebrai
 multigrid pre
onditioners. They do not, however, in
lude algebrai
multigrid setup times. These will be dis
ussed later in this se
tion.1-Gauss{Seidel 4-Gauss{Seidel ILUiters AMG time iters AMG time iters AMG timeRe = 20 14 2.89 10 5.37 11 3.95Re = 50 15 3.06 11 5.53 12 4.03Re = 100 15 3.40 11 5.96 12 3.96Re = 200 65 14.11 116* 62.12 12 4.82Table 5.1Smoothed aggregation multigrid performan
e on 3D steady-state problems 
orresponding to N =64 and P = 100. Average times (se
onds) and iterations per 
onve
tion{di�usion subproblem aregiven. (*Note: In the Re=200, 4-GS 
ase, some of the 
onve
tion{di�usion subproblems rea
hedthe maximum number of iterations of 200 without 
onverging.)Table 5.2 gives the same information as Table 5.1, ex
ept using unsmoothedaggregation for the grid transfers. This 
orresponds to simple pie
ewise-
onstantinterpolation. We see in Table 5.1 that the symmetri
 Gauss{Seidel smoother hasdiÆ
ultly 
onverging when the Reynolds number is too large for the smoothed ag-gregation method. This is due to the grid transfers, whi
h are built ignoring non-symmetri
 information. The resulting 
oarse grid dis
rete operators (
onstru
ted via(3.1)) 
an 
orrespond to unstable dis
retizations for whi
h the Gauss{Seidel methodis divergent. This o

urs on the 
oarsest grid for Re = 200 in Table 5.1 and helpsexplain why four Gauss{Seidel iterations perform worse than a single Gauss{Seideliteration. Though unsmoothed aggregation generally gives poorer grid transfers (andnon-mesh independent 
onvergen
e), the 
oarse dis
retization stability problem doesnot arise. Thus, in some high Reynolds number 
ases, unsmoothed aggregation 
ana
tually perform better than smoothed aggregation. We are 
ontinuing to explorethis issue and are working on 
ombinations of smoothed and unsmoothed aggregationto handle 
onve
tion{di�usion 
ows. For the remainder of the experiments in this pa-per we use smoothed aggregation with ILU smoothing in the solution of the dis
rete
onve
tion{di�usion equations as it is the most robust and gives good solution times.In Table 5.3 we illustrate the breakdown of time spent within the saddle-point13



1-Gauss{Seidel 4-Gauss{Seidel ILUiters AMG time iters AMG time iters AMG timeRe = 20 45 10.30 27 12.26 32 7.05Re = 50 53 12.03 30 13.04 36 7.59Re = 100 64 11.60 35 15.53 43 9.86Re = 200 76 14.35 37 16.40 49 10.47Table 5.2Unsmoothed aggregation multigrid performan
e on 3D steady-state problems 
orresponding toN = 64 and P = 100. Average times (se
onds) and iterations per 
onve
tion{di�usion subproblemare given.linear subproblem for a three-dimensional steady-state Re = 100 
al
ulation. In ea
h1-Gauss{Seidel 4-Gauss{Seidel ILUAMG setup 59.41 59.72 59.33ILU fa
torization N/A N/A 74.58matrix-ve
tor produ
ts 116.08 623.48 183.85smoother 423.79 1022.80 629.95grid transfers 38.64 31.14 30.24total 637.92 1737.10 977.95Table 5.3Breakdown of the total time spent in various parts of the solution of the saddle-point subproblemover a 
omplete nonlinear, 3D, steady-state problem 
orresponding to Re = 100 and N = 64.Di�erent AMG smoothers are shown for solution of the 
onve
tion{di�usion subproblem.
ase the multigrid times for separate solutions of the pressure Poisson and 
onve
tion{di�usion subproblems are lumped together. In all 
ases, one symmetri
 Gauss{Seideliteration is performed before and after the 
oarse grid 
orre
tion within ea
h V-
y
lelevel for the solution of the pressure Poisson subproblem while results are shown withthree di�erent smoothers for the solution of the 
onve
tion{di�usion subproblem.Overall, it is 
lear that the multigrid setup time is small. The grid transfer timeis also small. Most of the time is spent 
omputing the ILU fa
torization, applyingthe smoother, and performing matrix-ve
tor produ
ts (this in
ludes both residual
al
ulations and within the Krylov solver). For the rest of this paper, we use theILU smoother for the 
onve
tion{di�usion subproblems and one symmetri
 Gauss{Seidel iteration before and after the 
oarse grid 
orre
tion for the pressure Poissonsubproblem.We now begin to explore the performan
e of the blo
k pre
onditioner. Ta-ble 5.4 demonstrates h-independent (i.e., mesh-independent) 
onvergen
e on the two-dimensional steady-state problem. This table displays the average number of itera-tions per linear saddle-point subproblem of the Oseen iteration.For moderate Reynolds numbers, 10 to 15 algebrai
 multigrid iterations are re-quired to rea
h 
onvergen
e on the 
onve
tion{di�usion and pressure Poisson subprob-lems. In the Re = 1000 example, 15 to 30 iterations were required for 
onvergen
e inthe 
onve
tion{di�usion subproblem. The number of saddle-point problem iterationsis h-independent, whi
h is in agreement with theory [31℄. As expe
ted, the numberof iterations grows moderately with in
reasing Reynolds number.Table 5.5 demonstrates h-independen
e on the three-dimensional steady-stateproblem. For the three-dimensional problems in this table, the 
onve
tion{di�usion14



N 8 16 32 64 128 256Re = 100 12 14 15 16 16 17Re = 300 18 22 25 27 27 30Re = 1000 26 39 44 50 56 57Table 5.42D steady-state results demonstrating h-independen
e. Average number of iterations to solveea
h linear saddle-point subproblem are shown. The 
onve
tion{di�usion and pressure Poissonsubproblems are solved exa
tly.and pressure Poisson subproblems required 10 to 25 algebrai
 multigrid iterationsfor 
onvergen
e to the given toleran
e. As mentioned above, nonlinear diÆ
ultiesfor the three-dimensional lid driven 
avity o

ur at mu
h lower Reynolds numbersthan in the two-dimensional 
ase. In three dimensions, the nonlinear Oseen solverfailed to 
onverge for Reynolds numbers above 200 and 
onverges quite poorly forReynolds number 200 (see Tables 5.8 and 5.9). We will 
onsider Newton's method (in
onjun
tion with Oseen pre
onditioners) in a future work to address these diÆ
ulties.N 8 16 32 64Re = 20 8 9 9 10Re = 100 13 15 17 18Re = 200 17 20 22 23Table 5.53D steady-state results demonstrating h-independen
e. Average number of iterations to solveea
h linear saddle-point subproblem are shown. The 
onve
tion{di�usion and pressure Poissonsubproblems are solved exa
tly.In Tables 5.6{5.9 we 
ompare steady-state solutions in whi
h the 
onve
tion{di�usion and pressure Poisson subproblems are solved exa
tly and inexa
tly withinthe pre
onditioner. For the exa
t solutions, the subproblems are solved to a toleran
eof �F = �A = 10�10. (This is how the results for Tables 5.4{5.5 were generated.)For the inexa
t solutions, we perform three, �ve, or seven iterations. All problems inTables 5.6{5.9 were run with N = 64 (produ
ing approximately one million degreesof freedom for the three-dimensional problems).Ap Exa
t, Ap 3, Ap 3, Ap 3, OseenN = 64 F Exa
t F Exa
t F 7 F 5 StepsRe = 100 16 16 18 20 8Re = 300 27 27 31 36 11Re = 1000 56 57 255 290* 19*Table 5.6The average number of iterations per linear saddle-point subproblem are shown for exa
t vs.inexa
t solutions in the 2D steady-state problem. The last 
olumn shows the number of nonlineariterations required for ea
h solution. (* Note: the \Ap 3, F 5" example took 32 Oseen steps andrea
hed the maximum 300 saddle-point iterations.)Table 5.6 shows the average number of iterations per linear saddle-point problemand Table 5.7 shows the total CPU time to solution in the two-dimensional 
ase.Tables 5.8 and 5.9 show the same information for the three-dimensional 
ase. Formoderate Reynolds numbers, solving the 
onve
tion{di�usion and pressure Poisson15



Ap Exa
t, Ap 3, Ap 3, Ap 3,N = 64 F Exa
t F Exa
t F 7 F 5Re = 100 66.46 52.18 44.72 40.29Re = 300 164.16 130.33 110.28 103.98Re = 1000 1072.83 930.45 1675.38 2674.04Table 5.7Total CPU time to solution (in se
onds) is shown for exa
t vs. inexa
t solutions in the 2Dsteady-state problem.subproblems inexa
tly in
reases the average number of iterations per linear saddle-point problem, however the total time to solution improves due to the less expen-sive 
onve
tion{di�usion and pressure Poisson solutions. In the Re = 1000 two-dimensional 
ase, the 
onve
tion{di�usion problem is mu
h more diÆ
ult, and solvingit inexa
tly in
reases the total time to solution. This is due to the GMRES/multigridsolver, whi
h initially 
onverges very slowly and then pro
eeds quite rapidly to thesolution. Thus, while only approximately thirty iterations are required to obtain asolution, very little progress is made after just seven iterations. We expe
t strongermultigrid smoothers to resolve this diÆ
ulty but have not pursued this here.4 Itshould also be noted that it may be possible to reuse Krylov ve
tors from previous
onve
tion{di�usion solutions to a

elerate the overall 
onvergen
e for the 
urrent
onve
tion{di�usion subproblem.Ap Exa
t, Ap 3, Ap 3, Ap 3, OseenN = 64 F Exa
t F Exa
t F 7 F 5 StepsRe = 20 10 11 13 15 6Re = 100 18 18 23 28 13Re = 200 23 24 31 37 90Table 5.8Average number of iterations per linear saddle-point subproblem are shown for exa
t vs. inexa
tsolutions in the 3D steady-state problem.Ap Exa
t, Ap 3, Ap 3, Ap 3,N = 64 F Exa
t F Exa
t F 7 F 5Re = 20 566.59 494.62 408.37 390.82Re = 100 2503.07 2045.33 1487.17 1435.23Re = 200 24,761.95 24,178.14 15,349.72 11,750.80Table 5.9Total CPU time to solution (in se
onds) is shown for exa
t vs. inexa
t solutions in the 3Dsteady-state problem.In the pre
eding steady-state examples, the diÆ
ulties en
ountered with largeReynolds number are largely due to the poor performan
e of the nonlinear Oseeniteration. One method of avoiding this diÆ
ulty is by introdu
ing time stepping.4In our 
ase, the ILU method does not smooth 
ertain modes on 
oarse grids. Modi�
ations toILU for multigrid smoothers dis
ussed in [51℄ may improve the method as well as alternative gridtransfers that better 
apture nonsymmetry. 16



In the next se
tion, we examine the performan
e of the blo
k pre
onditioner in the
ontext of transient and pseudo-transient problems.5.2. Transient Solver Results. In this se
tion, transient solver performan
eis demonstrated. In our �rst set of experiments, a moderate range of CFL numbersare 
onsidered. Our main emphasis is to demonstrate how 
onvergen
e of the methodis relatively insensitive to CFL number. This implies that arti�
ially small timein
rements are not required for the solver. Instead, time steps 
an be 
hosen basedentirely on a

ura
y 
on
erns and the time s
ales asso
iated with the physi
s beingresolved.In all of the tables in this se
tion, ten time steps are performed and averages arereported within ea
h of the 
olumns. Spe
i�
ally, \Time" is the average time per step,\Oseen Steps" indi
ates the average number of nonlinear steps per time step, \LinearSolves" denotes the average number of linear saddle-point iterations per Oseen step,and \Ap" and \F" show the average number of multigrid iterations for ea
h pressurePoisson, Ap, and 
onve
tion{di�usion, F , subproblem. Table 5.10 illustrates perfor-man
e for the 
ase where the 
onve
tion{di�usion and pressure Poisson subproblemsare solved exa
tly. Time Oseen LinearN = 64 CFL (se
s) Steps Solves Ap FRe = 500 0.1 83.03 2 2 20 2Re = 500 0.5 85.55 2 2 20 2Re = 500 1 79.30 2 2 20 2Re = 500 10 110.00 2 2 20 2Re = 500 50 92.76 2 2 20 3Re = 500 100 103.69 3 2 20 3Table 5.10Transient solver results on a 3D problem 
orresponding to Re = 500 for various CFL numbers.The 
olumns show total CPU time to solutions (in se
onds), the number of Oseen steps requiredfor 
onvergen
e of the nonlinear problem, the number of iterations required for 
onvergen
e in thelinear saddle-point problem and in the pressure Poisson and 
onve
tion{di�usion subproblems.We 
on
lude this se
tion with some results for very large CFL numbers. Table 5.11illustrates performan
e for `exa
t' solution of the 
onve
tion{di�usion and pressurePoisson subproblem. These results are intended to be indi
ative of a pseudo-transientsolver, where time stepping is introdu
ed to improve the nonlinear Oseen iteration,and very large time steps are 
hosen to step qui
kly to steady-state. Ten pseudo-timesteps are taken, and the results given are averaged per time step and per solve as in theprevious table. On
e again, good 
onvergen
e rates are observed for the linear solversand the iteration 
ounts are relatively insensitive to CFL numbers. In this 
ase, thenonlinear Oseen method performs a

eptably and solutions are obtained for largerReynolds numbers. The physi
al relevan
e of these higher Reynolds number solutionsis un
lear, as these Reynolds numbers approa
h regimes where the three-dimensionallid driven 
avity no longer exhibits steady 
ows. The use of higher Reynolds numbersin this table and the one that follows is intended to demonstrate that our methoddoes not pre
lude solving problems with higher Reynolds numbers when they areappropriate and physi
ally relevant. It should be noted that this Oseen performan
e isa
hieved with very large time steps. However, as progressively larger time in
rementsare 
hosen, the Oseen method eventually struggles as in the steady-state 
ase.17



Time Oseen LinearN = 64 CFL (se
s) Steps Solves Ap FRe = 500 5000 238.55 5 5 18 5Re = 500 10000 269.62 5 6 18 6Re = 500 50000 403.88 6 9 19 8Re = 1000 5000 212.30 5 5 18 4Re = 1000 10000 235.97 5 6 18 5Re = 1000 50000 524.83 7 10 19 9Table 5.11Pseudo-transient solver results on a 3D problem 
orresponding to Re = 500 and Re = 1000 forvarious large CFL numbers. The 
olumns show total CPU time to solutions (in se
onds), the numberof Oseen steps required for 
onvergen
e of the nonlinear problem, the number of iterations required for
onvergen
e in the linear saddle-point problem and in the pressure Poisson and 
onve
tion{di�usionsubproblems.Table 5.12 explores the e�e
ts of `inexa
t' solution of the subproblems. For theinexa
t solutions, the 
onve
tion{di�usion subproblem is `solved' with �ve iterations,and the pressure Poisson subproblem is `solved' with three iterations. The last two
olumns of the table report the number of iterations required for an exa
t solution tothe subproblems or the number of iterations spe
i�ed in an inexa
t solution.Exa
t / Time Oseen LinearN = 64 Inexa
t (se
s) Steps Solves Ap FRe = 500 exa
t 403.88 6 9 19 8Re = 500 inexa
t 357.70 6 12 3 5Re = 1000 exa
t 524.83 7 10 19 9Re = 1000 inexa
t 395.92 7 13 3 5Table 5.12Exa
t vs. inexa
t pseudo-transient solver results on a 3D problem 
orresponding to Re = 500and Re = 1000 with CFL = 50000. The 
olumns show total CPU time to solutions (in se
onds),the number of Oseen steps required for 
onvergen
e of the nonlinear problem, and iterations requiredfor 
onvergen
e in the linear saddle-point problem. In the exa
t solution 
ases, the last two 
olumnsshow the number of iterations required for 
onvergen
e of the pressure Poisson and 
onve
tion{di�usion subproblems. In the inexa
t solution 
ases, these 
olumns report the number iterationstaken for the subproblems.Tables 5.10{5.12 demonstrate that the multigrid method and the saddle-pointpre
onditioner require very few iterations for these transient 
omputations, and thatthe iteration 
ounts are relatively insensitive to the CFL number. Unlike the largeReynolds number steady-state simulations, good nonlinear 
onvergen
e is also ob-tained with the Oseen iteration for the transient and pseudo-transient problems. Thusa pseudo-transient strategy to obtain steady-state results would appear to mitigate, tosome degree, the relatively slow 
onvergen
e of the Oseen iteration at higher Reynoldsnumbers.6. Con
lusions. The multilevel blo
k pre
onditioner presented and examined inthis paper has been developed for linear systems arising from the impli
it solution ofthe in
ompressible Navier{Stokes equations. The blo
k pre
onditioner approximatesthe S
hur 
omplement (
orresponding to pressure unknowns) using a 
onve
tion{di�usion operator in the pressure spa
e. This method requires 
omponent s
alarblo
k solvers that have similarities to pressure proje
tion s
hemes and existing de-18




oupled solution strategies. These 
omponent solves are based on a set of momentum
onve
tion-di�usion equations and a pressure Poisson-type problem. Unlike the pres-sure proje
tion and fully-de
oupled solution methods, the te
hnique 
onsidered heredoes not su�er from overly restri
tive time-step limitations for stability and the es-sential nonlinear 
oupling of the velo
ity and pressure variables 
an be retained. Animportant aspe
t of this pre
onditioner is the relative ease of implementation usingexisting software kernels.In this study we have demonstrated mesh independent 
onvergen
e in 2D and 3Dof the saddle-point solver based on the Kay, Loghin, and Wathen [25℄ and Silvester,Elman, Kay, and Wathen [45℄ blo
k pre
onditioner. The 
onvergen
e of the saddle-point problem for transient problems was demonstrated to be fairly uniform over awide range of Reynolds numbers and for CFL 
onditions (time steps size) that variedfrom time-a

urate to pseudo-transient solutions. For steady-state problems a milddegradation is observed with in
reasing Reynolds number. This study extends the
urrent literature by providing, three dimensional steady results and both steadyand transient 2D and 3D results. These have been obtained with both serial andparallelalgorithms. Additionally, we have provided new results on the appli
ation ofparallel smoothed aggregation AMG solvers to the momentum and pressure Poisson-type 
omponent blo
k systems. This te
hnique has been demonstrated to be ane�e
tive solver for these systems over a wide range of Reynolds numbers and CFL
onditions.While the overall results were obtained by employing an Oseen nonlinear iterationwe believe they are more broadly appli
able. Spe
i�
ally this study is intended as a�rst step towards applying similar ideas within a more robust nonlinear solver su
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