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Abstract

A methodology for the determination of wafer temperature in
Molecular Beam Epitaxy via diffuse reflectance measurements is devel-
oped. Approximate physical principles are not used, instead, patterns
in the data (reflectance versus wavelength) are exploited via wavelet
decomposition and Principal Component Analysis.

1 Introduction

Progress made in optical techniques for in sifu monitoring of semi-
conductor film properties (thickness, temperature etc.) in Molecular
Beam Epitaxy (MBE) has made Diffuse Reflectance Sensors (DRS)
an attractive possibility in the semiconductor industry. A brief expla-
nation of the principle of DRS follows. During measurement, white
light is focused onto the semiconductor substrate, which is polished
on the front surface and textured on the back. The measurement is
such that only the light diffusely reflected from the back surface is
collected. The diffuse reflectance as a function of the wavelength is
measured by a spectrometer. Since at short wavelengths light does not
penetrate the front surface, the onset of transparency corresponds to
a sharp increase in the diffuse reflectance at a particular (knee) wave-
length (Aknee). Though such a knee wavelength is not always clear-cut,
recent research has focused on using physical principles to relate the



temperature to band gap, film thickness, etc., (their effect on the onset
of transparency and hence the knee wavelength), and the temperature
is obtained approximately as a function of knee wavelength and sub-
strate thickness. Johnson et al [8] obtain a function that is quadratic
in Agpee and linear in substrate thickness. However the observation
that the reflectance measurements are made available over an entire
range of wavelengths motivates us to explore the possibility of finding
the temperature solely from analysis of patterns contained in the data
without relying on approximate physical principles.

In order to bring out such patterns, we use 2-dimensional (2-D)
spectra defined on an appropriate phase plane, that we construct from
a wavelet analysis of the DRS spectra. Then such 2-D spectra (which
we call DRS faces) are further analysed with a view to finding impor-
tant features or patterns in them, localized in the phase plane. Our
approach to finding such patterns uses what is widely known in the
signal processing context as Karhunen-Loeve decomposition and in
the statistics literature as Principal Component Analysis (PCA). We
show that, when applied to our data-set of DRS faces, PCA reveals
a small number of characteristic patterns (or eigen-faces), and every
DRS face in the data set is representable as a linear combination of
these patterns. The associated coefficients, known as modal coeffi-
cients or principal components, constitute a compact code for a DRS
face (equivalently the DRS spectrum). Then the problem reduces to
finding a mapping that connects the modal coeflicients to the temper-
ature. There are various ways to do this and, in section 5 below, we
demonstrate the use of a linear regression model.

2 Wavelet Analysis

Wavelet theory has emerged as an elegant tool in the analysis of
data with interesting time-frequency concentrations/localizations. In
essence, one seeks to decompose a given function via special bases
(or their generalized form called frames), which show such localiza-
tions clearly. Such special bases inciude orthogonal or bi-orthogonal
wavelets and wavelet packets [1]. One aspect of this theory leads to a
type of coarse-to-fine scale decomposition known as Multi-Resolution



Analysis (MRA) [3]. In the one dimensional case, MRA leads to an
efficient decomposition via orthonormal basis elements, and a fast al-
gorithm for evaluating the resulting coefficients. We give a brief ex-
position of MRA; more details can be found in [3].

2.1 MRA

Given a function 1 € L2(R), the space of square-integrable functions
on the real line, the translated and dilated family {1, = 2//%¢ (272 —
k),7,k € Z}, under certain conditions, forms an orthonormal basis
for L(R). Consider the closure of the span {t;,k € Z} for each
J € Z, and notice that these subspaces denoted W; have the prop-
erty Ujez W; = L2(R). With increasing J, U7, W forms a nested
sequence of subspaces, and such a sequence is called multi-resolution
analysis. One may define functions whose translations span such sub-
spaces. Such functions are known as scaling functions, and are essen-
tial to MRA.

Definition: A function ¢ is a scaling function if

1. The translated and dilated family {¢;x|¢;r(z) = 20242 —
k), j,k, € Z} generates a sequence of sub-spaces of the form ---V_; C
Vb C V1 v

2. UjezV; = L*(R).

3. {¢(. — k) : k € Z} is an orthonormal basis (or at least a Riesz
basis) for Vj.

4. f(z) e Vo & f(2z) € V;.

The above properties also imply that

L. Njez Vs = {0}.

2. ¢(z) = ﬂ;\nez hnqi(\Zw —ﬁsince ¢ € Vo C V1. This can be
written as ¢(w) = H(w/2)$(w/2) where H(w) = V23 ,c7 hne ™"

3. one can introduce W as V; 1 =V, @ W;;5 € Z.

Using the above properties, one can choose suitable scaling func-
tions ¢ and find corresponding orthonormal wavelets 1. Moreover a
fast algorithm for calculating the wavelet coeflicients can be derived as



follows. Let f € L2(R) and cjx =< f,$;x >, and djp =< f, 0k > .
Then it can be shown that

Cj—1k = Z hn—2k Cjn
n

and
dj—1x = Zgn—% Cjm
n

where gp, = (—1)"h_p+1.

Hence we can think of the decomposition as a filtering scheme
with filters H, G (corresponding to the g,) and the algorithm is illus-
trated in Figure 1. The symbol 2 | denotes that every other sample
is discarded, also known as downsampling or decimation. The sam-
pled version of the function is an N-element (N is assumed to be a
power of 2) vector and corresponds to the dilation level j = 0. When
the algorithm is applied to this vector (i.e., ¢ = f ) once, one gets
a coarser level (; = —1) information in the coefficients (d_l,k)fcv:/%,
and L successive applications of the algorithm give info}gmation on

all coarser levels j = —1,---, —L, in the coefficients (d; ;) ,%7:1. For the
current discussion, it suffices to note that when — L is the coarest level
of resolution selected, f can be written as

~1
F=3 Sdisip+> corpb-Li

j=—L k k

The second term above represents the residual obtained when only
levels finer than —L are analysed. Thus one can see that given an N-
element vector for the sampled function, the coarsest level that can
be analysed is constrained by log,(N).

The orthonormal bases resulting from the above analysis (start-
ing from the scaling function) often have the drawback of having
infinite support, which makes their computer implementation diffi-
cult; however, starting with the filtering scheme rather than scaling
functions, Daubechies [3] has derived several compactly supported or-
thonormal bases, and in this paper, we use what is known widely as
the (Daubechies) D4 orthonormal wavelet.
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Figure 1: The fast algorithm

3 Feature Extraction via PCA

Principal component analysis is a standard method used in diverse
applications for dimensionality reduction [6, 9, 10]. The idea is to find
a transformation of the data space into a feature space, which is of the
same dimension as the data space but is such that a small number of
these characteristic features are adequate to capture the information
in the patterns. These characteristic (eigen-) features are then used
in pattern classification problems.

Let the N-dimensional vectors, {6; - -0ar} be the set of 2-D spec-
tra (patterns) obtained via wavelet analysis of the DRS data-set avail-
able for M temperatures. The average pattern is formed as q~5 =
o S M 0. Deviations from this average pattern will be used effi-
ciently in characterising the patterns. We shall deal with the ensem-
ble ¢, = 0 — ¢,k = 1,---, M, and we will denote by ¢ the random
variable corresponding to these features .

Let {u;}}/ be an orthonormal basis for the set of patterns.

Then we can write

M
b= afu; (1)
=1

where {af}}, are the principal components or modal coefficients,
given by af =< ui, P >.

The discrete Karhunen-Loeve expansion theorem states that the vec-
tors {u;} that optimally represent the patterns are the eigenvectors
of the covariance matrix R = E[¢¢”]. (Here and later, the superscript
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T is used to denote transpose of a vector or a matrix.) Proof of this
theorem in different forms can be found in [5, 6, 9]. We shall therefore
refer to members of this orthonormal basis set as “eigen-patterns” or
eigen-faces. Since we have only a set of M elements, the co-variance
matrix R is approximated by

1 & 7
C=23 didf. (2)
k=1
Hence we can find the orthonormal basis by solving for uy in

Cup, = Mgug, k=1,---, M. (3)

Since C is an N x N matrix, directly solving the above problem is
not advisable. Instead observe that equations (1), (2) ,(3) combined
with the orthonormality of {u;}¥ imply that the eigen-patterns are
admixtures of patterns in the ensemble; precisely,

Cu, = bibiT up

and hence

u — S gkg,

k M)\k;azqsz

M

> b (5)

i=1

Hence upon substituting in equation (3), we have a simplified (i.e.,
when M << N) problem, whereby the coefficents bf are obtained as
components of the eigenvectors of an M x M matrix L as shown below:

1 M M M
37 2 it 2 be = M D bndm
i=1 7

j=1 m=1
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diffuse reflectance

M M M
YD et = A Y bEgm (6)

=1 j=1 m=1
Equation (6) implies that by letting L = [L;;] with L;; = II/T

<
¢i,¢; >, and bk = [bf]T, the problem is essentially solving for b* and
Ar in the eigenvalue problem:

L = \.bF. (7)

4 Data Analysis
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Figure 2: The data (from S.R. Johnson)

We received [7] a set of data from Shane Johnson (then of the Uni-
versity of British Columbia) representing measurements of diffuse re-
flectance of a wafer for eighteen wafer temperatures. The plot of data



is shown in Figure 2. For this data-set, we used the fast wavelet algo-
rithm available in WaveLab (2] and obtained a set of DRS faces alluded
to in the introduction. Each such DRS face is simply a plot of the
wavelet coefficient d; =< f,1;x > versus j, k, where f denotes the
measured DRS spectrum (function of wavelength) and 1 5 arise from
the chosen multi-resolution. A sample DRS face is shown in Figure 3.
Observe that j = 0 corresponds to the finest scale at the sampling
interval of 0.5nm wavelength. Further, reversing the notation used
in section 2, increasing values of j correspond to coarser features in
the face. The procedure outlined in section 3 was carried out for the
spectra with M = 18, N = 1024, L = 10. Examining the normalized
eigenvalues in Figure 4, we see that only four or five of the principal
components are necessary to represent the patterns adequately, thus
achieving significant dimensionality reduction.

5 Modeling for Temperature

Utilizing the small number of principal components as input, our
task is to find a mapping that gives temperature. Once the map-
ping is established, for any new measurement, one would compute
the DRS face and then the principal components; these components
would then be plugged into the mapping to find the temperature.( This
is the essence of extrapolation of temperature from a fresh DRS spec-
trum.) We attempted linear regression of the form T = Wta+ b where
W = (Wy,---, W) is the weight vector and a = (a1, --,a;)! is the
principal component vector. (Here the superscript ¢ is used to denote
transpose of a vector.) Using [ = 5, a fit was obtained as shown in
Figure 5, which gives error upto 7 degrees C (Figure 6). The resulting
weight values are W1 = 2.9590, Wy = 3.2220,W3 = —2.5669, W, =
—1.8820, W5 = 4.7129 and b = 348.3999. The resulting model fit error
is significant, but our experience with fitting procedures indicates that
this is a result of being constrained by the limited number of observa-
tions available to us. With more data, better fit may be obtained for
the linear regression, or better models can be constructed via methods
such as splines or neural networks. We await more data in order to
use the proposed method toward the goal of achieving an error less
than 1 deg C.
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Figure 3: Sample DRS face corresponding to 510 Celsius.

6 Conclusions

Additional experimental data is needed to construct a more accurate
mapping of the temperature T from modal coefficients. Our results
suggest that affine mappings (as in section 5) may do an adequate
job, and as such can lead to an effective, automatic, fast temperature
extrapolation procedure. Compared to existing methods, we expect
that our approach will require more data for fitting an accurate model,
but this is done off-line only once, and does not seem to pose any real
disadvantage. There exist fast methods for performing both PCA and
final model fitting using regressions or neural networks. Moreover,
our method can be extended to other measurements of complex phe-
nomena for which physical models are hard to obtain otherwise. For
instance, in many chemical processes, such complex phenomena often
require interpretation of patterns by human experts even when visu-
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Figure 4: The principal values: normalization is such that the sum of these
values is one

alization tools such as wavelet packets are used [4]. We believe our
methods could be extended to such processes and render the active
intervention of users in carrying out interpretation unnecessary. We
hope to continue to explore this further.
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