
ABSTRACT

Title of Thesis: DISTRIBUTED TRUST EVALUATION IN
AD-HOC NETWORKS

Georgios E. Theodorakopoulos,
Master of Science, 2004

Thesis directed by: Professor John S. Baras
Department of Electrical and Computer Engi-
neering

An important concept in network security is trust, interpreted as a relation

among entities that participate in various protocols. Trust relations are based on ev-

idence related to the previous interactions of entities within a protocol. In this work,

we are focusing on the evaluation process of trust evidence in Ad Hoc Networks.

Because of the dynamic nature of Ad Hoc Networks, trust evidence may be uncer-

tain and incomplete. Also, no pre-established infrastructure can be assumed. The

process is formulated as a path problem on a directed graph, where nodes represent

entities, and edges represent trust relations. We show that two nodes can establish

an indirect trust relation without previous direct interaction. The results are robust

in the presence of attackers. We give intuitive requirements for any trust evaluation

algorithm. The performance of the scheme is evaluated on various topologies.

DISTRIBUTED TRUST EVALUATION IN AD-HOC NETWORKS

by

Georgios E. Theodorakopoulos

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Master of Science

2004

Advisory Commmittee:

Professor John S. Baras, Chair
Professor Virgil D. Gligor
Professor Richard J. La

c© Copyright by

Georgios E. Theodorakopoulos

2004

DEDICATION

To my family, friends, and teachers.

ii

ACKNOWLEDGEMENTS

I am grateful to my advisor Dr. John Baras for his continual guidance, and

support. I would like to thank Dr. Virgil Gligor and Dr. Richard La for agreeing

to serve on my committee and for reviewing my thesis.

Sincere thanks to my colleagues in the SEIL lab, and the CSHCN. Special ac-

knowledgements are due to my officemates, Ulas Kozat, Gun Akkor, Burcak Keskin-

Kozat, and Ayan Roy-Chowdhury. I had the most fruitful discussions with Tao

Jiang, and the Wireless Information Assurance research group. Althia Kirlew was

the major contributor in keeping administrative details to an absolute minimum. I

cannot thank her enough for that.

Of the many friends I was lucky to make in College Park, I would like to single

out Brent Anderson and Damianos Karakos for helping me adjust in an environment

with unique challenges.

This work was supported by the U.S. Army Research Office under Award No.

DAAD19-01-1-0494.

iii

TABLE OF CONTENTS

List of Figures vi

1 Introduction 1

1.1 Organization . 3

2 Related Work 4

2.1 Taxonomy . 4

2.1.1 System Model . 4

2.1.2 Centralized vs decentralized trust 4

2.1.3 Proactive vs reactive computation 5

2.1.4 Extensional vs intensional (scalar vs group) metrics 6

2.1.5 Attack resistance (node/edge attacks) 6

2.1.6 Negative and positive evidence (certificate revocation) 7

2.1.7 What layer should trust be implemented in? 8

2.2 Representative Examples . 8

2.2.1 Decentralized Trust Management 9

2.2.2 PGP trust metric . 9

2.2.3 Probabilistic . 10

2.2.4 Path Independence . 11

2.2.5 Flow based . 11

2.2.6 Subjective Logic . 12

2.2.7 Local Interaction . 12

iv

3 Our Approach 15

3.1 System Model . 15

3.2 Semirings . 20

3.2.1 Definitions . 20

3.2.2 Semirings for path problems 21

3.2.3 Semirings for systems of linear equations 22

3.2.4 Semirings in previous work on trust 23

3.3 Trust Semiring . 27

3.3.1 Intuitive Requirements . 27

3.3.2 Path semiring . 28

3.3.3 Distance semiring . 30

3.3.4 Computation algorithm . 33

4 Evaluation and Experimental Results 37

4.1 Good and Bad Nodes . 37

4.2 Simulation details . 37

4.3 Results . 39

4.4 Discussion . 67

5 Conclusion and Future Work 71

5.1 Conclusion . 71

5.2 Future Work . 72

Bibliography 73

v

LIST OF FIGURES

3.1 Opinion space . 16

3.2 System operation . 18

3.3 ⊗ and ⊕ operators for the Path semiring 29

3.4 ⊗ and ⊕ operators for the Distance semiring 31

4.1 Opinion convergence. Opinions for good nodes are black, opinions for

bad nodes are red. 38

4.2 Grid:bad1:Rounds(10-20) . 40

4.3 Grid:bad1:Rounds(30-40) . 40

4.4 Grid:bad1:Rounds(50-60) . 41

4.5 Grid:bad1:Rounds(70-80) . 41

4.6 Grid:bad1:Rounds(90-95) . 41

4.7 Grid:bad1:Round(99)AndClassifiedNodes 42

4.8 Grid:bad5:Rounds(10-20) . 43

4.9 Grid:bad5:Rounds(30-40) . 43

4.10 Grid:bad5:Rounds(50-60) . 44

4.11 Grid:bad5:Rounds(70-80) . 44

4.12 Grid:bad5:Rounds(90-95) . 44

4.13 Grid:bad5:Round(99)AndClassifiedNodes 45

4.14 Grid:bad9:Rounds(10-20) . 46

4.15 Grid:bad9:Rounds(30-40) . 46

4.16 Grid:bad9:Rounds(50-60) . 47

vi

4.17 Grid:bad9:Rounds(70-80) . 47

4.18 Grid:bad9:Rounds(90-95) . 47

4.19 Grid:bad9:Round(99)AndClassifiedNodes 48

4.20 SmallWorld:bad1:Rounds(10-20) . 49

4.21 SmallWorld:bad1:Rounds(30-40) . 49

4.22 SmallWorld:bad1:Rounds(50-60) . 50

4.23 SmallWorld:bad1:Rounds(70-80) . 50

4.24 SmallWorld:bad1:Rounds(90-95) . 50

4.25 SmallWorld:bad1:Round(99)AndClassifiedNodes 51

4.26 SmallWorld:bad5:Rounds(10-20) . 52

4.27 SmallWorld:bad5:Rounds(30-40) . 52

4.28 SmallWorld:bad5:Rounds(50-60) . 53

4.29 SmallWorld:bad5:Rounds(70-80) . 53

4.30 SmallWorld:bad5:Rounds(90-95) . 53

4.31 SmallWorld:bad5:Round(99)AndClassifiedNodes 54

4.32 SmallWorld:bad9:Rounds(10-20) . 55

4.33 SmallWorld:bad9:Rounds(30-40) . 55

4.34 SmallWorld:bad9:Rounds(50-60) . 56

4.35 SmallWorld:bad9:Rounds(70-80) . 56

4.36 SmallWorld:bad9:Rounds(90-95) . 56

4.37 SmallWorld:bad9:Round(99)AndClassifiedNodes 57

4.38 Random:bad1:Rounds(10-20) . 58

4.39 Random:bad1:Rounds(30-40) . 58

vii

4.40 Random:bad1:Rounds(50-60) . 59

4.41 Random:bad1:Rounds(70-80) . 59

4.42 Random:bad1:Rounds(90-95) . 59

4.43 Random:bad1:Round(99)AndClassifiedNodes 60

4.44 Random:bad5:Rounds(10-20) . 61

4.45 Random:bad5:Rounds(30-40) . 61

4.46 Random:bad5:Rounds(50-60) . 62

4.47 Random:bad5:Rounds(70-80) . 62

4.48 Random:bad5:Rounds(90-95) . 62

4.49 Random:bad5:Round(99)AndClassifiedNodes 63

4.50 Random:bad9:Rounds(10-20) . 64

4.51 Random:bad9:Rounds(30-40) . 64

4.52 Random:bad9:Rounds(50-60) . 65

4.53 Random:bad9:Rounds(70-80) . 65

4.54 Random:bad9:Rounds(90-95) . 65

4.55 Random:bad9:Round(99)AndClassifiedNodes 66

4.56 Node classification, 10% bad nodes 70

4.57 Node classification, 50% bad nodes 70

4.58 Node classification, 90% bad nodes 70

viii

Chapter 1

Introduction

An important concept in network security is the notion of trust, interpreted as

a set of relations among entities that participate in various protocols [17]. Trust

relations are based on the previous behavior of an entity within a protocol. They

are determined by rules that evaluate, in a meaningful way, the evidence generated

by this previous behavior. What is meaningful depends on the specific protocol

(application), and on the entity that calculates the validity of the trust relation.

The application determines the exact semantics of trust, and the entity determines

how the trust relation will be used in the ensuing steps of the protocol.

For example, suppose that entity A wants to determine the public key that

entity B owns. A and B have had no previous interactions, hence no trust relation,

so A has to contact entities that have some evidence about B’s key. Relevant pieces

of evidence in this case are certificates binding B’s key to B’s identity. Also, the

trustworthiness of the entities that issued these certificates should be taken into

account. If A has had previous interactions with these issuing entities then their

public keys as well as their trustworthiness will be known to A. Otherwise, the same

steps will have to be repeated for the issuing entities, recursively. Finally, A will

evaluate the whole body of evidence and establish a trust relation with B. In this

case, the trust relation will be : ”A does (or does not) believe that B’s key is KB”.

The specification of admissible types of evidence, the generation, distribution,

discovery and evaluation of trust evidence are collectively called Trust Establish-

ment.

1

As first pointed out in [17], there are significant differences in the Trust Estab-

lishment process according to the type of network we are considering. Specifically,

the characteristics peculiar to Ad-Hoc Networks are explored and contrasted against

those of the Internet.

In this work, we are focusing on the evaluation process of trust evidence in Ad-

Hoc Networks. We will be using the terms ”trust evaluation”, ”trust computation”,

and ”trust inference” interchangeably. This process is formulated as a path problem

on a weighted, directed graph, where nodes represent users, and edges represent

trust relations. Each node has direct relations only towards his one-hop neighbors,

so all user interactions are local. The aim is for a node to establish an indirect

relation with a node that is far away; this is achieved by using the direct trust

relations that intermediate nodes have with each other. This locality requirement

is a distinguishing feature of the work reported here.

We are imposing the following two main constraints on our scheme, based on

the characteristics of the networks that we are dealing with:

• There is no preestablished infrastructure.

The computation process cannot rely on, e.g., a Trusted Third Party. There

is no Public Key Infrastructure, Certification Authorities, or Registration Au-

thorities with elevated privileges.

• Evidence is uncertain and incomplete.

Evidence is generated by the users on-the-fly, without lengthy processes. So,

it is uncertain. Furthermore, in the presence of adversaries, we cannot assume

2

that all friendly nodes will be reachable: the malicious users may have rendered

a small or big part of the network unreachable.

We require that the results are as accurate as possible, yet robust in the presence of

attackers. It is desirable to, for instance, identify all allied nodes, but it is even more

desirable that no adversary is misidentified as good. We use a general framework for

path problems on graphs as a mathematical basis for our proposed scheme, and also

give intuitive requirements that any trust evaluation algorithm should have under

that framework. We evaluate the performance of the scheme with simulations on

various topologies.

1.1 Organization

This thesis is organized in five chapters. In the Introduction, the current chapter,

the trust evaluation problem is placed into context, and the aims for our approach

are set. The second chapter describes and comments on related work that has been

done in the field of trust computation. The main ideas are exposed, and repre-

sentative examples are given. The third chapter explains our approach, proposes

a mathematical framework for trust computation, and describes intuitive proper-

ties that any scheme under this framework should have. In the fourth chapter,

our proposed scheme is used for actual computation scenarios, and the results are

discussed. The fifth chapter concludes the thesis and suggests future directions for

improvement.

3

Chapter 2

Related Work

In this chapter we are examining previous work that is relevant to the evaluation

part of the Trust Establishment process. The main aim is to expose and comment

on the ideas presented in that work. After this taxonomy, representative examples

are given, that serve to illustrate the salient points.

2.1 Taxonomy

2.1.1 System Model

The most commonly used model is a labeled, directed graph. Nodes represent

entities, and edges represent binary trust relations. These relations can be (for an

edge i → j): a public key certificate (issued by i for j’s key), the likelihood that the

corresponding public key certificate is valid, the trustworthiness of j as estimated

by i, etc.

2.1.2 Centralized vs decentralized trust

By centralized trust we refer to the situation where a globally trusted party cal-

culates trust values for every node in the system. All users of the system ask this

trusted party to give them information about other users. The situation described

has two important implications: First, every user depends on the trustworthiness

of this single party, thus turning it into a single point of failure. Second, it is rea-

sonable to assume that different users are expected to have different opinions about

4

the same target; this fact is suppressed here.

The decentralized version of the trust problem corresponds to each user being

the ”center of his own world”. That is, users are responsible for calculating their

own trust values for any target they want. This ”bottom-up” approach is the one

that has been most widely implemented and put into use, as a part of PGP [50] for

public key certification.

Note that the distinction just mentioned refers to the semantics of trust. The

actual algorithm used for the computation of trust is a separate issue: all data

may be gathered at a single user, where the algorithm will be executed; or the

computation may be done in a distributed fashion, throughout the network; or the

algorithm may even be localized, in the sense that each node only interacts with his

local neighborhood, without expecting any explicit cooperation from nodes further

away.

2.1.3 Proactive vs reactive computation

This is an issue more closely related to the communication efficiency of the actual

implementation. The same arguments as in routing algorithms apply: Proactive

trust computation uses more bandwidth for maintaining the trust relationships ac-

curate. So, the trust decision can be reached without delay. On the other hand,

reactive methods calculate trust values only when explicitly needed. The choice de-

pends largely on the specific circumstances of the application and the network. For

example, if local trust values change much more often than a trust decision needs

to be made, then a proactive computation is not favored: The bandwidth used to

5

keep trust values up to date will be wasted, since most of the computed information

will be obsolete before it is used.

2.1.4 Extensional vs intensional (scalar vs group) metrics

One possible criterion to classify uncertainty methods is whether the uncertainty is

dealt with extensionally or intensionally. In extensional systems, the uncertainty

of a formula is computed as a function of the uncertainties of its subformulas. In

intensional systems, uncertainty is attached to ”state of affairs” or ”possible worlds”.

In other words, we can either aggregate partial results in intermediate nodes (in-

network computation), or we can collect all data (opinions and trust topology) at

the initiator of the trust query and compute a function that depends on all details

of the whole graph.

As pointed out by Maurer [36], there seems to be a trade-off between compu-

tational efficiency and semantic correctness. Extensional systems are more efficient,

whereas intensional ones are more correct. The notion of semantic correctness seems

to be related to the attack resistance of a metric, since Levien ([28]) claimed that

scalar metrics (as he called extensional systems) are vulnerable to single-node at-

tacks (see next section).

2.1.5 Attack resistance (node/edge attacks)

Levien ([29]) suggested a criterion for measuring the resistance of a trust metric

to attackers. First, he distinguished between two types of attacks: node attacks,

and edge attacks. Node attacks amount to a certain node being impersonated. So,

6

the attacker can issue any number of arbitrary opinions (public key certificates in

Levien’s case) from the compromised node about any other node.

Edge attacks are more constrained: Only one false opinion can be created per

each attack. In other words, an attack of this type is equivalent to inserting a false

edge in the trust graph. Obviously, a node attack is the more powerful of the two,

since it permits the insertion of an arbitrary number of false edges.

The attack resistance of a metric can be gauged by the number of node or

edge attacks, or both, that are needed before the metric can be manipulated beyond

some threshold. For instance, in [42] Reiter and Stubblebine show that a single

misbehaving entity (a 1-node attack) can cause the metric proposed in [3] to return

an arbitrary result.

Here an important clarification has to be made: there are trust graphs that

are ”weaker” than others. When, for example, there exists only a single, long

path between the source and the destination, then any decent metric is expected

to give a low trust value. So, the attack resistance of a metric is normally judged

by its performance in these ”weak” graphs. This line of thinking also hints at why

intensional systems (group metrics) perform better than extensional: They take into

account the whole graph, so they can identify graph ”weaknesses” more accurately.

2.1.6 Negative and positive evidence (certificate revocation)

It is desirable to include both positive and negative evidence in the trust model.

The model is then more accurate and flexible. It corresponds better to real-life

situations, where interactions between two parties can lead to either satisfaction or

7

complaints. When a node is compromised (e.g. its private key is stolen) the public

key certificates for this node should be revoked. So, revocation can be seen as a

special case of negative trust evidence.

On the other hand, the introduction of negative evidence complicates the

model. Specifically, an attacker can try to deface good nodes by issuing false negative

evidence about them. If, as a countermeasure to that, issuing negative evidence is

penalized, good nodes may refrain from reporting real malicious behavior for fear

of being penalized.

2.1.7 What layer should trust be implemented in?

An important issue that is often glossed over is the layer at which the trust protocol

will operate. That is, the services required by the protocol and the services it offers

should be made clear, especially its relationship to other security components. As

pointed out in [7], some secure routing protocols assume that security associations

between protocol entities can be established with the use of a trust establishment

algorithm, e.g. by discovering a public key certificate chain between two entities.

However, in order to offer its services, the trust establishment algorithm may often

assume that routing can be done in a secure way. This creates a circular dependency

that should be broken if the system as a whole is to operate as expected.

2.2 Representative Examples

Some of the following examples have been cast in the public key certification frame-

work, whereas others are more general. However, they can all be viewed as trust

8

evaluation metrics, insofar as they compute a trust ”value” for a statement like ”Is

this public key certificate valid?”.

2.2.1 Decentralized Trust Management

Blaze, Feigenbaum, and Lacy [6] seem to have been the first to introduced the

term ”Trust Management”, and identified it as a separate component of security

services in networks. They designed and implemented the PolicyMaker trust man-

agement system, which provided a unified framework for describing policies (rules),

credentials (trust evidence), and trust relationships. Also, this system was locally

controlled, since it did not rely on a centralized authority to evaluate the credentials:

Each user had the freedom and the responsibility to reach his own decisions.

The main issues in this and related work (KeyNote [5], SPKI/SDSI [13], Del-

egation Logic [30], Trust Policy Language [22], also [46]) are: the language in which

the credentials and the policies will be described; the compliance-checking algorithm

that checks if the credentials satisfy the policy rules; and the algorithm for the dis-

covery of the credentials in the first place (remember, credentials can be stored

throughout the network). Note that a graph is often used for depicting the creden-

tials issued by an entity i for an entity j, and the edges of the graph are labeled

according to the parameters of the credential.

2.2.2 PGP trust metric

In PGP [50], a distinction is made between the validity of a public key and its trust

level. Bob’s key is valid for Alice, if Alice believes that it really belongs to Bob. The

9

trust level of Bob’s key corresponds to how carefully Bob authenticates keys before

issuing certificates for them. The trust levels of the keys known to Alice are assigned

in any way Alice wants. PGP only determines the validity of a key according to

how many keys have signed it, and what the trust levels of the signing keys are.

The default rules for computing the validity of keys are described next, but a user

is free to change them.

Trust level of

signing key

Validity rule

unknown Certificates signed with unknown keys are ignored.

untrusted Certificates signed with untrusted keys are ignored.

marginally

trusted

Key is valid if 2 or more marginally trusted keys have

signed it.

fully trusted Key is valid if 1 or more fully trusted keys have signed it.

2.2.3 Probabilistic

Maurer’s metric ([36],[27]) assigns weights wij ∈ [0, 1] to edges. These weights

correspond to i’s opinion about the trustworthiness of the certificate issued for j’s

public key, i.e. to what degree i believes that the {public key – owner ID} binding

implied by the edge i → j has been properly certified. The weights are then treated

as link survival probabilities. The metric calculates the probability that at least one

path survives that leads from the entity evaluating the metric to the entity involved

in the certificate in question.

10

2.2.4 Path Independence

Reiter and Stubblebine ([41],[42]) introduced the concept of path independence for

entity authentication. They argued that multiple independent paths are a safer way

to authenticate Bob than either the reachability or the bounded reachability metric.

Their proposal was a Bounded Length Independent Paths metric which returns a

set of node-disjoint paths from Alice to Bob which are shorter than K hops. Since

the computation of this metric is an NP-complete problem for K ≥ 5 they gave

approximation algorithms. Note that if we drop the bounded length constraint, the

problem becomes polynomial.

In a subsequent paper the same people suggested a different metric, based

on network flow techniques. The model being the same, weights were added on

the edges indicating the amount of money that the issuer will pay to anyone who

is misled because of the certificate. Being misled means falsely authenticating the

certified entity or incurring losses because the certified entity misbehaves. Treating

the edge weights as capacities, the metric calculates the maximum flow from Alice

to Bob. This is the minimum amount of money for which Alice is insured in the case

of her being misled by Bob’s key. Note that if all edges are assigned unit capacities,

this metric calculates the number of edge-disjoint paths from Alice to Bob.

2.2.5 Flow based

Levien’s metric ([29]) is also network flow based. After assigning edge capacities

the metric treats trust as a commodity that flows from Alice to Bob. Alice has unit

11

quantity of trust and tries to send it to Bob. The metric calculates how much of

this unit quantity reaches Bob. By suitably assigning capacities, the metric is made

more resistant to attacks. However, some assumptions in this work are not realistic,

e.g. that all nodes have the same indegree d.

2.2.6 Subjective Logic

Jøsang ([24]) has developed an algebra for assessing trust relations, and he has ap-

plied it to certification chains. To a statement like ”The key is authentic” he is

assigning a triplet (called opinion) (b, d, u) ∈ [0, 1]3 : b + d + u = 1, where b, d,

and u designate belief, disbelief, and uncertainty respectively. Belief (disbelief) in a

statement increases when supporting (contradicting) evidence appears. Uncertainty

is caused by the lack of evidence to support either belief or disbelief. When un-

certainty is zero, these triplets are interpreted as a traditional probability metric.

An opinion is qualified by the user who issues it, and by the statement it refers to:

ωX
Y = {bX

Y , dX
Y , uX

Y } is user X’s opinion about Y. Y can be a user, in which case ωX
Y

is X’s opinion about the quality of Y’s recommendations, or Y can be a statement

such as ”The key is authentic”.

2.2.7 Local Interaction

Trust computation based on interactions with one-hop physical neighbors is a typ-

ical case for extensional systems. In [8], for instance, first-hand observations are

exchanged between neighboring nodes. Assume i receives from j evidence about

k. First of all, i adjusts his opinion for j, based on how close j’s evidence is to i’s

12

previous opinion about k. If it is not closer than some threshold, the new evidence

is discarded, and i lowers his opinion about j. Otherwise, i increases his trust for j

and the new evidence is merged with i’s existing opinion for k. The whole process

is based on local message exchange.

In [33], a group Q of users is selected, and they are asked to give their opinion

about a certain target node. The end result is a weighted average of their opinions

and any preexisting opinion that the initiator node may have. One possible selection

for the group Q is the one-hop neighbors of the initiator.

In the EigenTrust algorithm [26], nodes exchange vectors of personal ob-

servations (called local trust values) with their one-hop neighbors. Node i’s lo-

cal trust value for node j is denoted by cij. These trust values are normalized

(∀i :
∑

j cij = 1). Each node i calculates global trust values tij for all other nodes

j by the following iterative computation: t
(n+1)
ij =

∑
k cikt

(n)
kj , where t

(0)
kj = ckj. If

C = [cij] is the local trust value matrix (row i holds node i’s local trust values),

then the above iteration essentially solves the following system of linear equations

for T :

T = CT

where T = [tij] contains the global trust values.

Under some assumptions for C, all rows of T are identical: All nodes i have

the same opinion about any particular node j. The assumptions for C are that it

is irreducible and aperiodic. If C is viewed as the transition probability matrix of

a Markov chain, then each of T ’s rows is the steady state probability distribution,

13

and also the left principal eigenvector of C.

14

Chapter 3

Our Approach

3.1 System Model

We view the trust inference problem as a generalized shortest path problem on a

weighted directed graph G(V,E) (trust graph). The vertices of the graph are the

users/entities in the network. A weighted edge from vertex i to vertex j corresponds

to the opinion that entity i, also referred to as the issuer, has about entity j, also

referred to as the target. The weight function is l(i, j) : V × V −→ S, where S is

the opinion space.

Each opinion consists of two numbers: the trust value, and the confidence

value. The former corresponds to the issuer’s estimate of the target’s trustworthi-

ness. For example, a high trust value may mean that the target is one of the good

guys, or that the target is able to give high quality location information, or that a dig-

ital certificate issued for the target’s public key is believed to be correct. On the other

hand, the confidence value corresponds to the accuracy of the trust value assignment.

A high confidence value means that the target has passed a large number of tests

that the issuer has set, or that the issuer has interacted with the target for a long

time, and no evidence for malicious behavior has appeared. Since opinions with a

high confidence value are more useful in making trust decisions, the confidence value

is also referred to as the quality of the opinion. The space of opinions can be visual-

ized as a rectangle (ZERO TRUST, MAX TRUST)×(ZERO CONF, MAX CONF)

in the Cartesian plane (Figure 3.1, for S = [0, 1]× [0, 1]).

15

Trust

C
on

fid
en

ce

BAD GOOD

0

1

1

Opinion: (t, c)

t

c

Figure 3.1: Opinion space

Both the trust and the confidence values are assigned by the issuer, in accor-

dance with his own criteria. This means that a node that tends to sign public key

certificates without too much consideration will often give high trust and high con-

fidence values. The opposite holds true for a strict entity. When two such entities

interact, it is important for the stricter entity to assign a low enough trust value

to the less strict one. Otherwise, the less strict entity may lead the stricter one

to undesirable trust decisions. This situation is easier to picture in the context of

Certification Authorities and public key certification. There, a CA A will only give

a high trust value to B, if B’s policy for issuing certificates is at least as strict as

A’s and has the same durability characteristics [17].

Also, it is assumed that nodes assign their opinions based on local observations.

For example, each node may be equipped with a mechanism that monitors neighbors

for evidence of malicious behavior, as in [35]. Alternatively, two users may come in

16

close contact and visually identify each other, or exchange public keys, as suggested

in [12]. In any case, the input to the system is local: however, extant pieces of

evidence based on, e.g., previous interactions with no longer neighboring nodes can

also be taken into account for the final decision. This would come into play when

two nodes that have met in the past need now to make a trust decision for each

other. Of course, the confidence value for such evidence would diminish over time.

One consequence of the locality of evidence gathering is that the trust graph initially

overlaps with the physical topology graph: The nodes are obviously the same, and

the edges are also the same if the trust weights are not taken into account. As nodes

move, opinions for old neighbors are preserved, so the trust graph will have more

edges than the topology graph. However, as time goes by, these old opinions fade

away, and so do the corresponding edges.

In the framework described, two versions of the trust inference problem can

be formalized. The first is finding the trust-confidence value that a source node

A should assign to a destination node B, based on the intermediate nodes’ trust-

confidence values. Viewed as a generalized shortest path problem, it amounts to

finding the generalized distance between nodes A and B. The second version is

finding the most trusted path between nodes A and B. That is, find a sequence of

nodes 〈v0 = A, v1, . . . , vk = B〉 : (vi, vi+1) ∈ E, 0 ≤ i ≤ k − 1 that has the highest

aggregate trust value among all trust paths starting at A and ending at B. A high

level view of the system is shown in Figure 3.2.

Both problems are important: finding a target’s trust value is needed before

deciding whether to grant him access to one’s files, or whether to disclose sensitive

17

Figure 3.2: System operation

18

information, or what kind of orders he is allowed to give (in a military scenario,

for instance). With this approach, a node will be able to rely on other nodes’ past

experiences and not just his own, which might be insufficient. The second problem

is more relevant when it comes to actually communicating with a target node. The

target node being trustworthy is one thing, but finding a trusted path of nodes is

needed, so that traffic is routed through them. Note that this does not necessarily

reduce to the previous problem of finding the trust distance between the nodes, as

is the case for the usual shortest path problem in a graph. In the trust case, we

will usually utilize multiple trust paths to find the trust distance from the source

to the destination, since that will increase the evidence on which the source bases

its final estimate. Consequently, there may be more than one paths contributing to

this estimate.

The core of our approach is the two operators that are used to combine opin-

ions: One operator (denoted ⊗) combines opinions along a path, i.e. A’s opinion for

B is combined with B’s opinion for C into one indirect opinion that A should have

for C, based on B’s recommendation. The other operator (denoted ⊕) combines

opinions across paths, i.e. A’s indirect opinion for X through path p1 is combined

with A’s indirect opinion for X through path p2 into one aggregate opinion that rec-

onciles both. Then, these operators can be used in a general framework for solving

path problems in graphs, provided they satisfy certain mathematical properties, i.e.

form an algebraic structure called a semiring. More details on this general frame-

work are in section 3.2. Two existing trust computation algorithms (PGP [50] and

EigenTrust [26]) are modeled as operations on two particular semirings. Note that

19

our approach differs from PGP in that it allows the user to infer trust values for

unknown users/keys. That is, not all trust values have to be directly assigned by

the user making the computations. The operators are discussed in greater depth in

section 3.3.

3.2 Semirings

For a more complete survey of the issues briefly exposed here, see [43].

3.2.1 Definitions

A semiring is an algebraic structure (S,⊕,⊗), where S is a set, and ⊕,⊗ are binary

operators with the following properties (a, b, c ∈ S):

• ⊕ is commutative, assosiative, with a neutral element 0© ∈ S:

a⊕ b = b⊕ a

(a⊕ b)⊕ c = a⊕ (b⊕ c)

a⊕ 0© = a

• ⊗ is associative, with a neutral element 1© ∈ S, and 0© as an absorbing

element:

(a⊗ b)⊗ c = a⊗ (b⊗ c)

a⊗ 1© = 1© ⊗ a = a

a⊗ 0© = 0© ⊗ a = 0©

20

• ⊗ distributes over ⊕:

(a⊕ b)⊗ c = (a⊗ c)⊕ (a⊗ c)

a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c)

A semiring (S,⊕,⊗) with a partial order relation ¹ that is monotone with

respect to both operators is called an ordered semiring (S,⊕,⊗,¹):

a ¹ b and a′ ¹ b′ =⇒ a⊕ a′ ¹ b⊕ b′ and a⊗ a′ ¹ b⊗ b′

An ordered semiring (S,⊕,⊗,¹) is ordered by the difference relation if:

∀a, b ∈ S : (a ¹ b ⇐⇒ ∃z ∈ S : a⊕ z = b)

A semiring is called idempotent when the following holds:

∀a ∈ S : a⊕ a = a

3.2.2 Semirings for path problems

In the context of the generalized shortest path problem in a weighted graph, ⊗ is the

operator used to calculate the weight of a path based on the weights of the path’s

edges:

p = (v0, v1, . . . , vk), w(p) = w(v0, v1)⊗ w(v1, v2)⊗ . . .⊗ w(vk−1, vk)

The ⊕ operator is used to compute the shortest path weight dij as a function of all

paths from the source i to the destination j:

dij =
⊕

p is a path
from i to j

w(p)

21

In the familiar context of edge weights being transmission delays, the semiring

used is (<+ ∪ {∞}, min, +), i.e. ⊕ is min, and ⊗ is +: The total delay of a path

is equal to the sum of all constituent edge delays, whereas the shortest path is the

one with minimum delay among all paths. Also, 0© is ∞, and 1© is 0. On the other

hand, if edge weights are link capacities, then the maximum bottleneck capacity

path is found by the semiring (<+ ∪ {∞}, max, min), with 0© ≡ 0, 1© ≡ ∞. The

transitive closure of a graph uses the Boolean semiring: ({0, 1},∨,∧), where all edge

weights are equal to 1. This answers the problem of path existence.

Note that the ⊕ operator may pick a single path weight (as is the case with

max and min) or it may explicitly combine information from all paths (addition or

multiplication).

3.2.3 Semirings for systems of linear equations

An equivalent way to describe the previous shortest path problem is by way of

a system of equations that the shortest path weights and the edge weights should

satisfy. If aij is the weight of the edge (i, j), with 0© being the weight of non-existent

edges, and xij is the shortest path weight from i to j, then the following equation

has to hold (assume there exist n nodes):

xij =
n⊕

k=1

(aik ⊗ xkj)

For example, when edge weights are transmission delays, this equation becomes:

xij = min
1≤k≤n

(aik + xkj)

22

Note, also, that if ⊕ and ⊗ are the usual addition and multiplication, respectively,

then the first of the above equations becomes exactly matrix multiplication.

xij =
n∑

k=1

aikxkj ⇔ X = AX,X = [xij]n×n , A = [aij]n×n

We will use this fact in a later section to model an existing trust computation

algorithm.

3.2.4 Semirings in previous work on trust

Semirings have not been used in the context of trust management, with one exception

[4]. In this paper, the aim is to combine access control policies, and come up with one

that maximally satisfies the imposed constraints. The problem is seen as a Semiring-

based Constraint Satisfaction Problem, in which the constraints are defined over a

semiring.

In order to show the modeling power of this framework, we now model PGP’s

web of trust computations [50] as a semiring. Remember that PGP computes the

validity of an alleged key-to-user binding, as seen from the point of view of a par-

ticular user, henceforth called the source. The input to the computation algorithm

consists of three things: The source node, the graph of certificates issued by users

for each other, and the trust values for each user as assigned by the source. Note

that the validity of all key-to-user bindings has to be verified, since only certificates

signed by valid keys are taken into account, and any certificate may influence the

validity of a key-to-user binding.

The validity of the key-to-user binding for user i will be deduced from the

23

vector di ∈ Nk, where k is the number of different trust levels defined by PGP. It

seems that k is 4 (”unknown”, ”untrusted”, ”marginally trusted”, ”fully trusted”),

but some include a fifth level : ”ultimately trusted”. Our analysis is independent of

the exact value of k. The vector di will hold the number of valid certificates for user

i that have been signed by users of each trust level. For example, di = (0, 1, 2, 3)

means that one ”untrusted”, two ”marginally trusted”, and three ”fully trusted”

users have issued certificates for user i’s public key. In addition, all six of these

certificates are signed by valid keys, i.e. keys for which the key-to-user binding has

been verified.

In order to verify the actual validity of the binding, we will use the function

val : Nk → V, where V is the space of admissible results. For simplicity, we will be

assuming that V ={”invalid”, ”valid”}, although values such as ”marginally valid”

have also been proposed. The output of val for a specific input is determined

by thresholds such as: ”A key-to-user binding is valid if at least two ”marginally

trusted” users have issued a certificate for it”. These thresholds are incorporated in

val and will be transparent to our analysis. Finally, for computation simplicity we

will be assuming that V = {0, 1}, where ”invalid”= 0, and ”valid”= 1.

The edge weights wij ∈ Nk, 1 ≤ i, j ≤ n, where n is the number of users,

correspond to the certificate from i about j’s alleged public key. A weight can only

have one of k + 1 possible values. Either it consists only of 0s, or of exactly k − 1

0s and one 1. An all-zero weight means that there is no certificate from i about j’s

key. An 1 in the position that corresponds to trust level t means that the source

has assigned trust level t to i, and i has issued a certificate for j.

24

The ⊗ operator is defined as follows (a, b ∈ Nk):

a⊗ b = val(a)b ∈ Nk

The ⊕ operator is defined exactly as vector addition in Nk.

Verification of the semiring properties

For ⊗, the absorbing element is 0© = (0, . . . , 0) ∈ Nk, and the neutral element is

1© = {x ∈ Nk : val(x) = 1}. That is, all such vectors are mapped to 1©; for our

purposes, they are equivalent. It is trivial to prove that 0© is a neutral element for

⊕.

The ⊗ operator is associative:

a⊗ (b⊗ c) = a⊗ (val(b)c) = val(a)val(b)c

(a⊗ b)⊗ c = (val(a)b)⊗ c = val(val(a)b)c

and these two are equal because val(0©)=0.

The ⊕ operator is commutative and associative, because it is vector addition.

The ⊗ operator distributes over ⊕:

a⊗ (b⊕ c) = val(a)(b + c)

(a⊗ b)⊕ (a⊗ c) = val(a)b + val(a)c

The following computation algorithm uses the above semiring to compute the

validity or otherwise of all keys in the certificate graph G. The source node is s and

the function w maps edges to edge weights.

25

PGP-Semiring-Calculation(G,w, s)

1 for i ← 1 to |V |

2 do d[i] ← 0©

3 d[s] ← 1©

4 S ← {s}

5 while S 6= ∅

6 do u ← Dequeue(S)

7 for each v ∈ Neighbors [u], such that val(d[v]) = 0

8 do

9 d[v] ← d[v]⊕ (d[u]⊗ w(u, v))

10 if val(d[v]) = 1

11 then Enqueue(S, v)

The computation starts at the source s, and progressively computes the va-

lidity of all keys reachable from s in the certificate graph. The queue S contains all

valid keys for which the outgoing edges (certificates signed with these keys) have not

been examined yet. When a key is extracted from S, its certificates to other keys

are examined, and their d-vectors are updated. Only certificates to so-far-invalid

keys are examined, since adding a certificate to the d-vector of a key already shown

to be valid is redundant. If a so-far-invalid key obtains enough certificates to be-

come valid, it is added to the queue for future examination. Each key is enqueued

at most once (when it becomes valid), and all keys in the queue are eventually de-

queued. Ergo, the algorithm terminates. After termination, all valid keys have been

discovered.

26

Note that if s is only interested in the validity of a particular key-to-user

binding, then the algorithm can stop earlier: as soon as its validity is determined,

or after all certificates for that key have been examined.

We can also model the EigenTrust algorithm [26] as a semiring. Using the

system of linear equations interpretation of a semiring, the EigenTrust algorithm

solves the following matrix equation for T :

T = CT ⇔ tij =
n∑

k=1

ciktkj

where the semiring operators are the usual addition and multiplication.

3.3 Trust Semiring

3.3.1 Intuitive Requirements

Based on intuitive concepts about trust establishment, we can expect the binary

operators to have certain properties in addition to those required by the semiring

structure.

Since an opinion should deteriorate along a path, we require the following for

the ⊗ operator (a, b ∈ S):

a⊗ b ¹ a, b

where ¹ is the difference relation defined in Section 3.2. Note that the total opinion

along a path is ”limited” by the source’s opinion for the first node in the path.

The element 0© (neutral element for ⊕, absorbing for ⊗) is the set of opinions

(t, ZERO CONF), for any t ∈ [0, 1], which, in essence, corresponds to non-existent

trust relations between nodes. The motivation is that if a 0© is encountered along

27

a path, then the whole path ”through” this opinion should have zero confidence.

Also, such opinions should be ignored in ⊕-sums.

The element 1© (neutral element for ⊗) is the ”best” opinion that can be as-

signed to a node: (MAX TRUST, MAX CONF). This can be seen as the opinion of

a node about itself. Also, it is the desirable point of convergence of the opinions of

all good nodes about all other good nodes in the classification example. If encoun-

tered along a path, 1© effectively contracts the corresponding edge and identifies the

nodes at its endpoints for the purposes of the aggregation.

Regarding aggregation across paths with the ⊕ operator, we generally expect

that opinion quality will improve, since we have multiple opinions. If the opinions

disagree, the more confident one will weigh heavier. In a fashion similar to the ⊗

operator, we require that the ⊕ operator satisfies (a, b ∈ S):

a⊕ b º a, b

3.3.2 Path semiring

In this semiring, the opinion space is S = [0, 1]× [0, 1] Our choice for the ⊗ and ⊕

operators is as follows (Figure 3.3):

(tik, cik)⊗ (tkj, ckj) = (tiktkj, cikckj) (3.1)

(tp1

ij , cp1

ij)⊕ (tp2

ij , cp2

ij) =

(tp1

ij , cp1

ij) if cp1

ij > cp2

ij

(tp2

ij , cp2

ij) if cp1

ij < cp2

ij

(max(tp1

ij , tp2

ij), cij) if cp1

ij = cp2

ij = cij

, (3.2)

where (tp1

ij , cp1

ij) is the opinion that i has formed about j along the path p1.

28

Trust

C
on

fid
en

ce

BAD GOOD

0

1

1

A⊗B = C

A

BC

Trust

C
on

fid
en

ce

BAD GOOD

0

1

1

A⊕B = A

A

B

Figure 3.3: ⊗ and ⊕ operators for the Path semiring

Since both the trust and the confidence values are in the [0, 1] interval, they

both decrease when aggregated along a path. When opinions are aggregated across

paths, the one with the highest confidence prevails. If the two opinions have equal

confidences but different trust values, we pick the one with the highest trust value.

We could have also picked the lowest trust value; the choice depends on the desired

semantics of the application.

This semiring essentially computes the trust distance along the most confident

trust path to the destination. An important feature is that this distance is computed

along a single path, since the ⊕ operator picks exactly one path. Other paths are

ignored, so not all available information is being taken into account. One of the

advantages is that if the trust value turns out to be high, then a trusted path to

the destination has also been discovered. Also, fewer messages are exchanged for

information gathering.

29

Verification of the semiring properties

The neutral elements for this semiring are: 0© = (t, 0), for any t, and 1© = (1, 1).

We can verify this by direct substitution.

The ⊗ operator is both associative and commutative, since the underlying

multiplication operator is. The ⊕ operator also has both of these properties, since

it picks the opinion with the highest confidence. So, it is essentially equivalent to a

max operation. The distributivity of ⊗ over ⊕ is proven as follows (We can assume,

without loss of generality, that cp1

kj > cp2

kj, or cp1

kj = cp2

kj and tp1

kj > tp2

kj):

(tik, cik)⊗
(
(tp1

kj, c
p1

kj)⊕ (tp2

kj, c
p2

kj)
)

= (tik, cik)⊗ (tp1

kj, c
p1

kj)

= (tikt
p1

kj, cikc
p1

kj)

(
(tik, cik)⊗ (tp1

kj, c
p1

kj)
)⊕ (

(tik, cik)⊗ (tp2

kj, c
p2

kj)
)

= (tikt
p1

kj, cikc
p1

kj)⊕ (tikt
p2

kj, cikc
p2

kj)

= (tikt
p1

kj, cikc
p1

kj)

So, we have proven that:

(tik, cik)⊗
(
(tp1

kj, c
p1

kj)⊕ (tp2

kj, c
p2

kj)
)

=
(
(tik, cik)⊗ (tp1

kj, c
p1

kj)
)⊕ (

(tik, cik)⊗ (tp2

kj, c
p2

kj)
)

3.3.3 Distance semiring

Our second choice is a semiring based on the Expectation semiring defined by Eisner

in [15], and used for speech/language processing:

(a1, b1)⊗ (a2, b2) = (a1b2 + a2b1, b1b2)

(a1, b1)⊕ (a2, b2) = (a1 + a2, b1 + b2)

30

The opinion space is S = [0,∞] × [0, 1]. Before using this semiring, the pair

(trust, confidence)=(t, c) is mapped to the weight (c/t, c). The motivation for this

mapping becomes clear when we describe its effect on the results of the operators.

The binary operators are then applied to this weight, and the result is mapped back

to a (trust, confidence) pair.

(tik, cik)⊗ (tkj, ckj) →
(

cik

tik
, cik

)
⊗

(
ckj

tkj
, ckj

)
=

(
cikckj

tik
+

cikckj

tkj
, cikckj

)

→
(

1
1

tik
+ 1

tkj

, cikckj

)

(
tp1

ij , cp1

ij

)⊕ (
tp2

ij , cp2

ij

) →
(

c
p1
ij

t
p1
ij

, cp1

ij

)
⊕

(
c
p2
ij

t
p2
ij

, cp2

ij

)
=

(
c
p1
ij

t
p1
ij

+
c
p2
ij

t
p2
ij

, cp1

ij + cp2

ij

)

→

 c

p1
ij +c

p2
ij

c
p1
ij

t
p1
ij

+
c
p2
ij

t
p2
ij

, cp1

ij + cp2

ij

Trust

C
on

fid
en

ce

BAD GOOD

0

1

1

A⊗B = C

A

B
C

Trust

C
on

fid
en

ce
BAD GOOD

0

1

1

A⊕B = C

A

B

C

Figure 3.4: ⊗ and ⊕ operators for the Distance semiring

So, when aggregating along a path, both the trust and the confidence decrease.

The component trust values are combined like parallel resistors. We can see here

the effect of the mapping: Two resistors in parallel offer lower resistance than either

of them in isolation. Also, a zero trust value in either opinion will result in a zero

trust value in the resulting opinion (absorbing element), while a trust value equal to

31

infinity will cause the corresponding opinion to disappear from the result (neutral

element). On the other hand, the component confidence values are between 0 and

1, and they are multiplied, so the resulting confidence value is smaller than both.

When aggregating across paths, the total trust value is the weighted harmonic

average of the components, with weights according to their confidence values. So,

the result is between the two component values, but closer to the more confident

one. Again we can see the effect of the mapping: The weighted harmonic average

outcome is a direct result of the inverse mapping. Note, also, the behavior caused

by extreme (zero or infinity) trust values: A zero trust value dominates the result

(unless its corresponding confidence is zero); a trust value equal to infinity results in

an increase in the trust value given by the other opinion. In order for the resulting

trust value to be the maximum possible, both opinions have to assign the maximum.

So, in general, we can say that this operator is conservative. A zero confidence value

(neutral element) causes the corresponding opinion to disappear from the result.

Verification of the semiring properties

The neutral elements are: 0© = (0, 0) and 1© = (0, 1), which we can verify by direct

substitution.

Because of their symmetry, both operators are commutative. The ⊕ operator

is trivially associative, and here is the proof for the associativity of ⊗:

((a1, b1)⊗ (a2, b2))⊗ (a3, b3) = (a1b2 + a2b1, b1b2)⊗ (a3, b3)

= (a1b2b3 + a2b1b3 + a3b1b2, b1b2b3)

32

(a1, b1)⊗ ((a2, b2)⊗ (a3, b3)) = (a1, b1)⊗ (a2b3 + a3b2, b2b3)

= (a1b2b3 + a2b1b3 + a3b1b2, b1b2b3)

We now prove that ⊗ distributes over ⊕:

(a1, b1)⊗ ((a2, b2)⊕ (a3, b3)) = (a1, b1)⊗ (a2 + a3, b2 + b3)

= (a1(b2 + b3) + b1(a2 + a3), b1(b2 + b3))

((a1, b1)⊗ (a2, b2))⊕ ((a1, b1)⊗ (a3, b3)) = (a1b2 + a2b1, b1b2)⊕ (a1b3 + a3b1, b1b3)

= (a1b2 + a2b1 + a1b3 + a3b1, b1b2 + b1b3))

= (a1(b2 + b3) + b1(a2 + a3), b1(b2 + b3))

3.3.4 Computation algorithm

The following algorithm, due to Mohri [38], computes the ⊕-sum of all path weights

from a designated node s to all other nodes in the trust graph G = (V, E).

33

Generic-Single-Source-Shortest-Distance(G, s)

1 for i ← 1 to |V |

2 do d[i] ← r[i] ← 0©

3 d[s] ← r[s] ← 1©

4 S ← {s}

5 while S 6= ∅

6 do q ← head(S)

7 Dequeue(S)

8 r′ ← r[q]

9 r[q] ← 0©

10 for each v ∈ Neighbors [q]

11 do if d[v] 6= d[v]⊕ (r′ ⊗ w[(q, v)])

12 then d[v] ← d[v]⊕ (r′ ⊗ w[(q, v)])

13 r[v] ← r[v]⊕ (r′ ⊗ w[(q, v)])

14 if v /∈ S

15 then Enqueue(S, v)

16 d[s] ← 1©

This is an extension to Dijkstra’s algorithm [14]. S is a queue that contains

the vertices to be examined next for their contribution to the shortest path weights.

The vector d[i], i ∈ V holds the current estimate of the shortest distance from s to i.

The vector r[i], i ∈ V holds the total weight added to d[i] since the last time i was

extracted from S. This is needed for non-idempotent semirings, such as the second

one proposed.

34

Our computation algorithm is based on Mohri’s, but with three adjustments

which are needed when considering the problem from the perspective of trust. Lines

11-13 of the algorithm will be referred to as ”node q votes for node v”.

First of all, some nodes may be prevented from voting. Only if a node’s trust

value exceeds a predefined trust threshold, is the node allowed to vote. This is

motivated from the common sense observation that only good nodes should partic-

ipate in the computation, and bad nodes should be barred. Note that there is no

restriction on the corresponding confidence. This will initially lead to bad nodes

being allowed to vote, but after some point they will be excluded since good nodes

will acquire evidence for their maliciousness.

Second, no node is allowed to vote for the source (s). Since it is s that initiates

the computation, it does not make sense to compute s’s opinion for itself.

Third, no cyclic paths are taken into account. If that were the case, we would

be allowing a node to influence the opinion about itself, which is undesirable. Un-

fortunately, there is no clear way to discard any single edge-opinion of the cycle. So,

the approach taken is to discard any edges that would form a cycle if accepted. As

a result, the order in which the voters are chosen in line 6 is important. We argue

that it makes sense to choose the node for which the confidence is highest.

Note that these adjustments introduce characteristics from the Path semiring

into the Distance semiring. For example, the node with the maximum confidence

gets to vote first. Moreover, some paths are pruned which means that fewer messages

are exchanged, thus saving bandwidth, but also some of the existing information is

not taken into account. In general, this combination of the two semirings seems to

35

be a good tradeoff between the two.

36

Chapter 4

Evaluation and Experimental Results

In this chapter, we are describing the scenarios that were examined in the simula-

tions. The results obtained are discussed, and explained in terms of the parameters

and properties of the algorithms.

4.1 Good and Bad Nodes

We assume that some nodes are Good, and some are Bad. Good nodes adjust their

direct opinions (opinions for their neighbors) according to some predefined rules

(explained in Section 4.2). Bad nodes, however, always have the best opinion (1, 1)

for their neighboring Bad nodes, and the worst opinion (0, 1) for their neighboring

Good nodes.

We expect that the opinions of a Good node for all other nodes would evolve

as in Figure 4.1. That is, all Good and all Bad nodes will be identified as Good and

Bad, respectively.

4.2 Simulation details

When the network is ”born”, the nodes are partitioned into Good and Bad. We

pick a Good node, which will be computing indirect opinions to all other nodes.

Initial direct opinions are all set to (0.5, 0.1), i.e. medium trust and low confidence.

The trust threshold, which decides which nodes are allowed to vote, is empirically

set to 0.3. Time is discrete and is measured in rounds. At each round, two things

happen. First, the direct opinions of each node for his neighbors approach the correct

37

Trust

C
on

fid
en

ce

BAD GOOD

0

1

1

Figure 4.1: Opinion convergence. Opinions for good nodes are black, opinions for

bad nodes are red.

opinion, which is (0, 1) for the bad neighbors, and (1, 1) for the good neighbors.

Second, the designated good node calculates his indirect opinions for all other nodes.

These indirect opinions are the experimental results shown in Section 4.3. Also, the

confidence for some indirect opinions may be too low (within ε = 0.01 of zero), so

these nodes are not assigned any opinion.

The most important evaluation metric is whether the nodes are correctly clas-

sified as good and bad. In other words, we want the opinions for all bad nodes to

be close to (0, 1) and the opinions for all good nodes close to (1, 1). Moreover, we

want this to happen as soon as possible, i.e. before all direct opinions converge to

the correct ones, since the users in the real network may be forced to make an early

trust decision. Furthermore, a failsafe is desirable: If trust evidence is insufficient,

we prefer not to make any decision about a node, rather than make a wrong one.

38

Of course, we have to evaluate the robustness of each of the above mentioned

metrics as the proportion of bad nodes increases. We also measure the effect of

different trust topologies. Namely, three topologies are selected: Grid, Random,

and Small World. The Grid and Random topologies can be seen as two extremes of

a spectrum. On the one hand, the Grid is completely symmetric and deterministic:

We are using a 10x10 square for 100 nodes. Each node, except the perimeter nodes,

has exactly 8 neighbors. On the other hand, the Random topology was constructed

so that the average degree is again 8, but this symmetry is completely probabilistic.

Each edge has the same probability of existing, according to the Erdös-Rényi model

[16]. The Small World topology [45] is between these two extremes, in the sense

that there are a few nodes that have a high degree, and all the rest have much fewer

neighbors. In this case, too, the average degree is 8. The Small World topology for

trust has also been used in [23].

4.3 Results

In this section we present the results obtained from the simulations. For each of

the three topologies (Grid, Random, Small World), the percentage of bad nodes is

increased from 10% to 50% to 90%. The figures show the opinions of the source

node (s) for every other node after the computations of rounds 10, 20, ..., 90, 95, 99.

The nodes originally designated as Good appear in black, whereas the Bad ones

appear in red. The aim is, first and foremost, for the black nodes to be separated

from the red ones. Also, the black nodes should be as close as possible to the upper

right corner (GOOD corner, corresponding to the (1, 1) opinion), and the red nodes

39

to the upper left corner (BAD corner, (0, 1) opinion).

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

Figure 4.2: Grid:bad1:Rounds(10-20)

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

Figure 4.3: Grid:bad1:Rounds(30-40)

40

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

Figure 4.4: Grid:bad1:Rounds(50-60)

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

Figure 4.5: Grid:bad1:Rounds(70-80)

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

Figure 4.6: Grid:bad1:Rounds(90-95)

41

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

0 20 40 60 80 100
0

20
40
60
80

100

Figure 4.7: Grid:bad1:Round(99)AndClassifiedNodes

42

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

Figure 4.8: Grid:bad5:Rounds(10-20)

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

Figure 4.9: Grid:bad5:Rounds(30-40)

43

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

Figure 4.10: Grid:bad5:Rounds(50-60)

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

Figure 4.11: Grid:bad5:Rounds(70-80)

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

Figure 4.12: Grid:bad5:Rounds(90-95)

44

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

0 20 40 60 80 100
0

20
40
60
80

100

Figure 4.13: Grid:bad5:Round(99)AndClassifiedNodes

45

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

Figure 4.14: Grid:bad9:Rounds(10-20)

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

Figure 4.15: Grid:bad9:Rounds(30-40)

46

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

Figure 4.16: Grid:bad9:Rounds(50-60)

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

Figure 4.17: Grid:bad9:Rounds(70-80)

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

Figure 4.18: Grid:bad9:Rounds(90-95)

47

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

0 20 40 60 80 100
0

20
40
60
80

100

Figure 4.19: Grid:bad9:Round(99)AndClassifiedNodes

48

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

Figure 4.20: SmallWorld:bad1:Rounds(10-20)

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

Figure 4.21: SmallWorld:bad1:Rounds(30-40)

49

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

Figure 4.22: SmallWorld:bad1:Rounds(50-60)

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

Figure 4.23: SmallWorld:bad1:Rounds(70-80)

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

Figure 4.24: SmallWorld:bad1:Rounds(90-95)

50

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

0 20 40 60 80 100
0

20
40
60
80

100

Figure 4.25: SmallWorld:bad1:Round(99)AndClassifiedNodes

51

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

Figure 4.26: SmallWorld:bad5:Rounds(10-20)

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

Figure 4.27: SmallWorld:bad5:Rounds(30-40)

52

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

Figure 4.28: SmallWorld:bad5:Rounds(50-60)

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

Figure 4.29: SmallWorld:bad5:Rounds(70-80)

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

Figure 4.30: SmallWorld:bad5:Rounds(90-95)

53

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

0 20 40 60 80 100
0

20
40
60
80

100

Figure 4.31: SmallWorld:bad5:Round(99)AndClassifiedNodes

54

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

Figure 4.32: SmallWorld:bad9:Rounds(10-20)

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

Figure 4.33: SmallWorld:bad9:Rounds(30-40)

55

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

Figure 4.34: SmallWorld:bad9:Rounds(50-60)

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

Figure 4.35: SmallWorld:bad9:Rounds(70-80)

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

Figure 4.36: SmallWorld:bad9:Rounds(90-95)

56

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

0 20 40 60 80 100
0

20
40
60
80

100

Figure 4.37: SmallWorld:bad9:Round(99)AndClassifiedNodes

57

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

Figure 4.38: Random:bad1:Rounds(10-20)

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

Figure 4.39: Random:bad1:Rounds(30-40)

58

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

Figure 4.40: Random:bad1:Rounds(50-60)

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

Figure 4.41: Random:bad1:Rounds(70-80)

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

Figure 4.42: Random:bad1:Rounds(90-95)

59

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

0 20 40 60 80 100
0

20
40
60
80

100

Figure 4.43: Random:bad1:Round(99)AndClassifiedNodes

60

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

Figure 4.44: Random:bad5:Rounds(10-20)

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

Figure 4.45: Random:bad5:Rounds(30-40)

61

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

Figure 4.46: Random:bad5:Rounds(50-60)

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

Figure 4.47: Random:bad5:Rounds(70-80)

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

Figure 4.48: Random:bad5:Rounds(90-95)

62

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

0 20 40 60 80 100
0

20
40
60
80

100

Figure 4.49: Random:bad5:Round(99)AndClassifiedNodes

63

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

Figure 4.50: Random:bad9:Rounds(10-20)

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

Figure 4.51: Random:bad9:Rounds(30-40)

64

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

Figure 4.52: Random:bad9:Rounds(50-60)

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

Figure 4.53: Random:bad9:Rounds(70-80)

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

Figure 4.54: Random:bad9:Rounds(90-95)

65

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

0 20 40 60 80 100
0

20
40
60
80

100

Figure 4.55: Random:bad9:Round(99)AndClassifiedNodes

66

4.4 Discussion

We can observe some general trends in the diagrams shown. First of all, in the

early rounds Good and Bad nodes are intermixed: there is no clear separating line.

Even more, Bad nodes seem to be given better opinions than Good nodes, which is

clearly undesirable. The explanation for this is based on two aspects of the scheme;

namely, the trust threshold and the Bad nodes’ way of assigning direct opinions.

Initially, Bad nodes are allowed to vote, since the trust threshold (0.3) is lower than

the initial default trust value (0.5), i.e. they have not been ”discovered” yet. So,

their (0, 1) opinions for Good nodes are taken into account and the result is that

Good nodes appear to be bad. Also, Bad nodes give (1, 1) opinions to each other,

hence reinforcing each other.

The situation in later rounds improves. The Good nodes move towards the

upper right corner, the Bad ones towards the upper left. There is also a clear

separating line between the two groups of nodes. For an actual implementation a

practical guideline could be derived from the above observation, i.e. to be especially

careful when making important trust decisions in early rounds. The trust compu-

tation may be based on too little raw evidence (direct opinions) to be relied upon.

In all cases, however, the Good and Bad nodes are separated eventually (in the last

rounds). This serves as a sanity check for the algorithm.

As the percentage of Bad nodes increases, we can see that the separation is still

successful sooner or later, but the main observation is that the number of classified

nodes is decreasing, especially for the Grid topology. Classified nodes are those for

67

which the evidence was sufficient, i.e. the confidence of the source’s opinion for

them was more than ε = 0.01. The following graphs show the number of nodes

classified in each topology, for different percentages of Bad nodes, after every round

of computation. The general effect of Bad nodes on the number of classified nodes

is that, after they are discovered, they block the trust paths they are on since they

are not allowed to vote. So, nodes that are further away from the source than these

Bad nodes can be reached by fewer paths. They may even be completely isolated.

In any case, the confidence in the source’s opinion for them is decreased, so some of

them cannot be classified.

The Random topology performs best, because it is less affected by Bad nodes.

This topology has a relatively short average path length between the source (s) and

all other nodes, so confidence values for opinions are not too low. At the same time,

it does not rely on information provided by any single node or small set of nodes.

The links are random, so every node is reached through different paths.

The average path length from the source is the main defect of the Grid topol-

ogy, since for certain nodes it may be large. If this is coupled with Bad nodes

blocking some of the paths, the confidence values for nodes that are away from the

source is dropping considerably. The more bad nodes, the more pronounced this

effect is. So, the Grid topology performs worst of all.

As far as the Small World topology is concerned, the path length is short,

since there are some highly connected nodes. So, it performs better than the Grid

topology. However, it is exactly these highly connected nodes that degrade the

performance of the computation when they are Bad. The reason is, again, that they

68

block many paths and affect opinions for most nodes. If the majority of these highly

connected nodes are Bad, few trust paths will be able to be established.

The 90% bad node case is interesting to examine specifically. First, there is a

sudden drop in the number of classified nodes between rounds 30 and 40. This is

so, because at this point the opinions for Bad nodes acquire trust values that are

lower than the trust threshold, so they become ineligible to vote.

Second, and more intriguing, is that the Random topology becomes equivalent

to the Grid topology, and the Small World topology performs better than both. The

explanation is that almost all nodes are Bad, so only nodes one or (rarely) two hops

away from the source can be classified. This is true for all topologies. But the

Grid nodes have exactly 8 neighbors, and all Random nodes have approximately 8

neighbors, too. So, the number of classified nodes turns out to be around 20. On

the other hand, in the Small World topology the source node is one of the highly

connected nodes (19 neighbors, when the average degree is 8). So, all of the 19

neighbors, and some of the nodes that are two hops away are classified for a total

of about 40 nodes. A practical guideline for the Small World topology would then

be that highly connected nodes should be protected, better prepared to withstand

attacks, or, in general, less vulnerable.

69

grid

random
smallworld

0 20 40 60 80 100
0

20
40
60
80

100

Figure 4.56: Node classification, 10% bad nodes

grid

random

smallworld

0 20 40 60 80 100
0

20
40
60
80

100

Figure 4.57: Node classification, 50% bad nodes

grid

random

smallworld

0 20 40 60 80 100
0

20
40
60
80

100

Figure 4.58: Node classification, 90% bad nodes

70

Chapter 5

Conclusion and Future Work

In this chapter we derive conclusions based on the goals we set for this work, as

mentioned in the Introduction, and discuss in what degree these goals were met by

our proposed scheme.

5.1 Conclusion

We have presented a scheme for evaluating trust evidence in Ad-Hoc networks. Our

scheme is entirely based on information originating at the users of the network. No

centralized infrastructure is required, although the presence of one can certainly be

utilized. Also, users need not have personal, direct experience with every other user

in the network in order to compute an opinion about them. They can base their

opinion on second-hand evidence provided by intermediate nodes, thus benefitting

from other nodes’ experiences. Of course, we are taking into account the fact that

second-hand (or third, or fourth...) evidence is not as valuable as direct experience.

In this sense, our approach extends PGP, since PGP only uses directly assigned

trust values.

At each round of computation, the source node computes opinions for all

nodes. This means that information acquired at a single round can be stored and

subsequently used for many trust decisions. If there is not enough evidence to

determine an opinion, then no opinion is formed. So, when malicious nodes are

present in the network they cannot fool the system into accepting a malicious node as

benevolent. A failsafe state exists that ensures graceful degradation as the number

71

of adversaries increases. The trust topology also has significant influence on the

performance of the algorithm. We have seen that if any node can be malicious with

the same probability, the Random topology performs better. On the other hand, if

the highly connected nodes of the Small World topology are Good, the algorithm

fares better at the crucial cases of malicious node preponderance.

5.2 Future Work

In future work, we plan to implement more elaborate models for the attackers’

behavior, and for the measures taken against nodes that are being assigned low

trust values (i.e., detected to be bad). So, the attackers will be facing a tradeoff

between the amount of damage they can inflict, and the possibility of being, for

instance, isolated from the rest network. Suitable strategies will be developed for

Good as well as Bad nodes.

72

BIBLIOGRAPHY

[1] Alfarez Abdul-Rahman and Stephen Hailes. A distributed trust model. In Pro-

ceedings of the 1997 New Security Paradigms Workshop, pages 48–60, Septem-

ber 1997.

[2] Karl Aberer and Zoran Despotovic. Managing trust in a peer-2-peer information

system. In Proceedings of the Ninth International Conference on Information

and Knowledge Management (CIKM 2001), 2001.

[3] Thomas Beth, Malte Borcherding, and Birgit Klein. Valuation of trust in open

networks. In Proceedings of the European Symposium on Research in Computer

Security, ESORICS94, pages 3–18, 1994.

[4] Vijay Bharadwaj and John Baras. Dynamic adaptation of access control poli-

cies. In Proceedings of MILCOM 2003, Boston, MA, October 2003.

[5] Matt Blaze, Joan Feigenbaum, John Ioannidis, and Angelos D. Keromytis. The

KeyNote trust management system. RFC 2704, September 1999.

[6] Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decentralized trust management.

In Proceedings of the 1996 IEEE Symposium on Security and Privacy, pages

164–173, 1996.

[7] Rakesh Babu Bobba, Laurent Eschenauer, Virgil Gligor, and William Arbaugh.

Bootstrapping security associations for routing in mobile ad-hoc networks. In

Proceedings of IEEE Globecom 2003, San Francisco, CA, December 2003.

73

[8] S. Buchegger and J. Y. Le Boudec. The effect of rumor spreading in reputation

systems for mobile ad-hoc networks. In Proceedings of WiOpt ‘03: Modeling

and Optimization in Mobile, Ad Hoc and Wireless Networks, Sophia-Antipolis,

France, March 2003.

[9] S. Buchegger and J. Y. Le Boudec. A robust reputation system for mobile ad

hoc networks. Technical Report IC/2003/50, EPFL-DI-ICA, July 2003.

[10] Srdjan Čapkun, Levente Buttyán, and Jean-Pierre Hubaux. Small worlds in

security systems: an analysis of the pgp certificate graph, 2002.

[11] Srdjan Čapkun, Levente Buttyán, and Jean-Pierre Hubaux. SECTOR: Secure

tracking of node encounters in multi-hop wireless networks. In V. Swarup and

S. Setia, editors, Proceedings of the 1st ACM Workshop on Security of Ad Hoc

and Sensor Networks (SASN 2003), Fairfax, VA, October 2003.

[12] Srdjan Čapkun, Jean-Pierre Hubaux, and Levente Buttyán. Mobility helps

security in ad hoc networks. In Proceedings of the ACM Symposium on Mobile

Ad Hoc Networking and Computing (MobiHOC 2003), Annapolis, MD, June

2003.

[13] Dwaine Clarke, Jean-Emile Elien, Carl Ellison, Matt Fredette, Alexander Mor-

cos, and Ronald L. Rivest. Certificate chain discovery in SPKI/SDSI. Journal

of Computer Security, 9(4):285–322, 2001.

[14] E. W. Dijkstra. A note on two problems in connection with graphs. Numerische

Mathematik, 1:269–271, 1959.

74

[15] Jason Eisner. Parameter estimation for probabilistic finite-state transducers. In

Proceedings of the 40th Annual Meeting of the Association for Computational

Linguistics, Philadelphia, July 2002.

[16] Paul Erdös and Alfréd Rényi. On random graphs. Publicationes Mathematicae,

6:290–297, 1959.

[17] Laurent Eschenauer, Virgil D. Gligor, and John Baras. On trust establishment

in mobile ad-hoc networks. In Bruce Christianson, Bruno Crispo, James A.

Malcolm, and Michael Roe, editors, 10th International Security Protocols Work-

shop, Cambridge, UK, April 2002, volume 2845 of Lecture Notes in Computer

Science, pages 47–66. Springer-Verlag, 2004.

[18] Deepak Ganesan, Ramesh Govindan, Scott Shenker, and Deborah Estrin.

Highly-resilient, energy-efficient multipath routing in wireless sensor networks.

Mobile Computing and Communications Review, 1(2), 2002.

[19] V.D. Gligor, S.W. Luan, and J.N. Pato. On inter-realm authentication in large

distributed systems. In Proceedings of the 1992 IEEE Symposium on Research

in Security and Privacy, May 1992.

[20] Virgil D. Gligor, Himanshu Khurana, Radostina K. Koleva, Vijay G. Bharad-

waj, and John S. Baras. On the negotiation of access control policies. In Bruce

Christianson, Bruno Crispo, James A. Malcolm, and Michael Roe, editors,

9th International Security Protocols Workshop, Cambridge, UK, April 2001,

75

volume 2467 of Lecture Notes in Computer Science, pages 188–201. Springer-

Verlag, 2002.

[21] Rolf Haenni. Web of trust: Applying probabilistic argumentation to public-key

cryptography.

[22] Amir Herzberg, Yosi Mass, Joris Michaeli, Dalit Naor, and Yiftach Ravid.

Access control meets public key infrastructure, or: Assigning roles to strangers.

In Proceedings of the 2000 IEEE Symposium on Security and Privacy, pages

2–14, Berkeley, CA, May 2000.

[23] Jean-Pierre Hubaux, Levente Buttyán, and Srdjan Čapkun. The quest for

security in mobile ad hoc networks. In Proceedings of the ACM Symposium on

Mobile Ad Hoc Networking and Computing (MobiHOC 2001), 2001.

[24] Audun Jøsang. An algebra for assessing trust in certification chains. In Proceed-

ings of the Network and Distributed Systems Security (NDSS’99) Symposium,

1999.

[25] Audun Jøsang, Elisabeth Gray, and Michael Kinateder. Analysing topologies of

transitive trust. In Proceedings of the First International Workshop on Formal

Aspects in Security & Trust: FAST2003, Pisa, Italy, September 2003.

[26] Sepandar D. Kamvar, Mario T. Schlosser, and Hector Garcia-Molina. The

EigenTrust algorithm for reputation management in p2p networks. In

WWW2003, May 2003.

76

[27] Reto Kohlas and Ueli Maurer. Confidence valuation in a public-key infras-

tructure based on uncertain evidence. In Proceedings of Public Key Cryptog-

raphy 2000, volume 1751 of Lecture Notes in Computer Science, pages 93–112.

Springer-Verlag, January 2000.

[28] Raph Levien. Attack-resistant trust metrics (draft). PhD thesis, UC Berkeley,

www.levien.com/thesis/.

[29] Raph Levien and Alex Aiken. Attack-resistant trust metrics for public key certi-

fication. In Proceedings of the 7th USENIX Security Symposium, San Antonio,

Texas, pages 229–242, January 1998.

[30] Ninghui Li, Benjamin N. Grosof, and Joan Feigenbaum. A practically imple-

mentable and tractable delegation logic. In Proceedings of the 2000 IEEE Sym-

posium on Security and Privacy, pages 27–42. IEEE Computer Society Press,

May 2000.

[31] Ninghui Li, William H. Winsborough, and John C. Mitchell. Distributed

credential chain discovery in trust management. In Proceedings of CCS01,

Philadelphia, Pennsylvania, USA., pages 156–165, November 2001.

[32] Sergio Marti, Prasanna Ganesan, and Hector Garcia-Molina. Sprout: P2P

routing with social networks. Technical report, Stanford University, January

2004.

[33] Sergio Marti and Hector Garcia-Molina. Limited reputation sharing in p2p

systems.

77

[34] Sergio Marti and Hector Garcia-Molina. Examining metrics for peer-to-peer

reputation systems. Technical report, Stanford University, July 2003.

[35] Sergio Marti, T.J. Giuli, Kevin Lai, and Mary Baker. Mitigating routing mis-

behavior in mobile ad-hoc networks. In Proceedings of MOBICOM 2000, pages

255–265, 2000.

[36] Ueli Maurer. Modelling a public-key infrastructure. In E. Bertino, editor, Proc.

1996 European Symposium on Research in Computer Security (ESORICS’ 96),

volume 1146 of Lecture Notes in Computer Science, pages 325–350. Springer-

Verlag, 1996.

[37] Seapahn Meguerdichian, Sasa Slijepcevic, Vahag Karayan, and Miodrag

Potkonjak. Localized algorithms in wireless ad-hoc networks: Location dis-

covery and sensor exposure. In Proceedings of ACM MobiHoc 2001, October

2001.

[38] Mehryar Mohri. Semiring frameworks and algorithms for shortest-distance

problems. J. Autom. Lang. Comb., 7(3):321–350, 2002.

[39] Panagiotis Papadimitratos and Zygmunt J. Haas. Secure routing for mobile

ad hoc networks. In Proceedings of the SCS Communication Networks and

Distributed Systems Modeling and Simulation Conference (CNDS 2002), San

Antonio, TX, January 2002.

78

[40] Bartosz Przydatek, Dawn Song, and Adrian Perrig. SIA: Secure information

aggregation in sensor networks. In SenSys ’03, Los Angeles, CA, November

2003.

[41] Michael K. Reiter and Stuart G. Stubblebine. Resilient authentication using

path independence. IEEE Trans. Comput., 47(12):1351–1362, December 1998.

[42] Michael K. Reiter and Stuart G. Stubblebine. Authentication metric analysis

and design. ACM Trans. Inf. Syst. Secur., 2(2):138–158, May 1999.

[43] Günter Rote. Path problems in graphs. Computing Supplementum, 7:155–189,

1990.

[44] Anand Srinivas and Eytan Modiano. Minimum energy disjoint path routing

in wireless ad-hoc networks. In Proceedings of the 9th Annual International

Conference on Mobile Computing and Networking, pages 122–133. ACM Press,

2003.

[45] D. Watts and S. Strogatz. Collective dynamics of ”smallworld” networks. Na-

ture, 393, 1998.

[46] William H. Winsborough, Kent E. Seamons, and Vicki E. Jones. Automated

trust negotiation. In DARPA Information Survivability Conference and Expo-

sition, January 2000.

[47] Li Xiong and Ling Liu. Building trust in decentralized peer-to-peer electronic

communities. In Fifth International Conference on Electronic Commerce Re-

search (ICECR-5), Canada, 2002.

79

[48] Raphael Yahalom, Birgit Klein, and Thomas Beth. Trust relationships in secure

systems - a distributed authentication perspective. In Proceedings of the IEEE

Symposium on Research in Security and Privacy, 1993.

[49] Raphael Yahalom, Birgit Klein, and Thomas Beth. Trust-based navigation in

distributed systems. Computing Systems, 7(1):45–73, Winter 1994.

[50] Philip R. Zimmermann. The Official PGP User’s Guide. MIT Press, 1995.

80

