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1. Introduction

In our previous paper [6] we considered the problem of the exponential stabiliza-

tion of the heat equation with Neumann boundary conditions
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in the smooth and bounded domain 2 in R", where 8/dv denotes the differentiation
in the direction normal to the boundary 8f). The solutions of this problem, although
stable (in the sense of Liapunov, considered for any L” space, say) are not asymp-
totically stable, because spatially homogeneous functions do not decay. A practical
way to induce asymptotic stability is to introduce a feedback mechanism which ob-
serves the temperature at a patch of the boundary 8} and causes an appropriate
exchange of heat through the boundary or through an interior subset of (1. A feed-
back mechanism of the latter type may be modeled by introducing a term of the
form

(1.2) 8(s,t) == —¢ ([ _uln,)p(v) dv) o(2)

on the right hand side of the equation in (1.1). The functions ¢ and o, prescribed
on 91} and (1, respectively, are indicators of the sites where the observation and the
feedback take place. The coefficient € is the ‘gain factor’ of the feedback. Feedback
mechanisms of the former type may also be treated by combining the method of

section 6 of [6] and the estimates developed in the present paper.

More generally, we may consider a more complex diffusion processs governed by
a general (autonomous) linear elliptic operator A, and several feedback mechanisms
of the type above that act simultaneously and independently, so that the governing

equation becomes

(1.3) %’tf = Au — ei i'm (/m u(y,t)sok(y)) o;(z).

k=1j=1

For instance,
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may correspomd to a heat conduction problem in an anisotropic and inhomogeneous

medium.



The method introduced in [6] for the stability analysis extends to this and more
general situations. In this paper we study an abstract evolution equation which
includes the problem in [6] and the problem corresponding to equation (1.3) as special
cases. Our main result, in the context of the latter problem is, roughly, that if certain
hypotheses are satisfied and if € is sufficiently small then the system is exponentially
asymptotically stable. Studies of similar kind, albeit with quite more complicated
sufficient stability conditions, appear in various places in the literature; we refer the
reader to the articles in [1], [5], [7], and [8].

The smallness of the feedback gain factor ¢ is essential for stability. In [6] we give
an example where for a large ¢ the solution grows exponentially as ¢ — co. For a
comprehensive study of the spectral properties and the spectral resolution of elliptic

operators of the type occuring in (1.3) see the recent article of van Harten[3].

2. The Abstract Problem

Let A be a sectorial operator (cf. [4]) on a Hilbert space H, and denote by 4
the analytic semigroup generated by A. Suppose that the null-space Hy of A is

finite-dimensional and non-trivial, and that the following hypotheses hold:

Hypotheses on A:

(i) There exists a continuous projection operator @, not necessarily orthogonal,

of H onto Hy, which commutes with A; thus AQ = QA = 0.

(ii) If P = I — @, where I is the identity mapping in H, and H; = range(P) =

null space(Q), then there exist positive constants ¢ and « such that

(2.1) 40| < ae™v], v e Hy

Thus, in the dynamical system corresponding to €4, all orbits in H; are asymp-
totically exponentially stable. The points in Hy, on the other hand, are equilibria and
remain stationary. We now introduce a feedback process, motivated by the concrete

application in [6], which makes all orbits in H tend exponentially to zero as t — oo.



We suppose we are given ¢ elements {o1,---,0,} of H and p linear (possibly
unbounded) functionals {l1,---,!,} on H, for which there exists a p X ¢ real matrix

~;, such that the feedback operator B, formally defined by

(22) B(u) - — Zp: zq:'yjklk(u)aj,

k=17=1

satisfies the following hypotheses:

Hypotheses on B:

(i) For each t > 0 and k = 1,2,---,p, the expression [} (etA) defines a bounded

linear functional on H.

(ii) There exists a 6 € (0,1) such that

(2.3) |l;c (emu)‘ < at™e *ul, u € Hi,
and
(2.4) [le(uw)| < alul, u € Hp.

(iii) If we define the operator By : Hy — Hy by

14 q
(2.5) Bow = — Z Z'yjklk(w)on, w € Hy,
k=1j=1

then there exist positive constants b and 3 such that

(2.6) |etB°w| < be Pt |w], w € Hy.

Remark: The inequalities (2.4) and (2.6) imply the estimate

(2.7) 1lk (etB"w)| < abe™?*|w|, w € Hp.

Note that, formally, By = QBQ, and that the operator Be‘4 is bounded on H for
each t > 0. In view of this we are able to show that the equation

u© = Au + eBu
(2.8)

u(O) = Ug



makes sense in H. We prove the

Stabilization Theorem: There exists a number ¢, > 0, depending on the constants
a,o,b, 8,6 entering in estimates in (2.1), (2.3), and (2.6) as well as on p,q,vx,
and the norms of the o;’s, such that, for any € € (0,¢), the solution of (2.8) decays

exponentially as t — oo.
We defer the proof to the next section but first make some remarks:

(i) It is possible to obtain an ezplicit upper bound ¢, in terms of the quanti-
ties mentioned above. The computation proceeds along the lines described in

section 4 of [6].

(ii) It is worthwhile to observe that in our computation we use the estimates in
(2.1), (2.3), (2.4), (2.6) very sparingly. In fact, the bulk of the computation in
the following section, up to the derivation of the system of integral equations
(3.7), is in terms of equalities rather than estimations. This has the advantage
of keeping the results as sharp as possible; moreover, the general theorem on

integral equations developed in [6] applies here directly.

(ili) The inequality in (2.1) applies in situations where the initial condition is
in the space H. This assumption is of course unnecessarily strong; in concrete
cases the initial conditions are often allowed to be outside H. For instance,
H may be L*(}) whereas ug is a distribution. The regularizing effect of the
analytic semigroup puts the orbit in H in positive times. The estimate (2.1)

can be modified to apply to such irregular data; see [6] for details.

(iv) The estimate in (2.6) is an assumption of the positivity of the operator — By
on the space Hy. One might also consider a possible order-preserving property

of — By, in the form

w>0 = —Byw >0, Ywe H



where the inequalities are understood in the sense of a partial order on H for
which one has a maximum principle for A. It seems likely, but we have not
verified this, that under this stronger condition the equation (2.8) is asymptot-
ically stable with no restrictions on the magnitude of the coefficient ¢. See [6]

for further discussion and practical impications.

(v) It is possible to show, although we do not do it here, that the operator
A + €B entering in (2.8) is sectorial for arbitrary e. Hence it generates an

analytic semigroup on H.

3. The Proof of the Stabilization Result

We apply the projections P and @ to the evolution equation (2.8) and use the

notation v = Pu, w = Qu, to arrive at the following coupled system of differential

equations:
P q
(3.1) v o= Av—e) > vli(u)Po;
k=1j=1
P g
(3.2) o= —e) > Vlk(u)Qo;
k=1j=1

We also set vo = v(0) = Pu(0) and wo = w(0) = Qu(0). Note that the equation
(3.2) may be re-written, in view of the definition of the operator By in (2.5) and the
identity v = v + w, as:
P4
w+ EBo’w = —€ Z Z’ijlk(’v)QUj.
k=1j=1
Applying the variation of constants formula, we get

(3.3) v(t) = ety —e zp: Zq: /Ot ik [e(t—s)APaj] L(v(s) +w(s)) ds,

k=1j=1
p q t
(3.4) w(t) = ePowg—e) Z/o ik [ee(t_s)B"Qorj] Le(v(s)) ds.
k=1j5=1

Now define
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and apply /; to both of equations (3.3) and (3.4) to obtain
p t
pi(t) = U (etA’Uo) —€ Z/o ik (t — 8) (pk(s) + lk(w(s))) ds,
k=1
p t
Lw(t) = & (e“B"wo) — GZ/O nix(t — ) pr(s) ds.
k=1

Substitute the second of these equations in the first, interchange the order of inte-
gration in the resulting double-integral (justified by the estimates in (2.1) and (2.3),)

and simplify, to arrive at
(¢4) e [ (¢
p;(t) =l,' € Vy) — € / )\;k(t—s)lk e’ Wo ds
k=1 0
4 t
—EZ/ Xik(t — s)pr(s) ds
k=1"0
p t s
(3.5) +e? Z /0 /0 Aik(t — 8)newr (s — 7)pie (7) dr ds.

kk'=1

Further simplification is achieved by letting p}(t) denote the sum of the first two
terms on the right hand side of (3.5) (i.e., the terms which contain the initial data)

and setting
r t
(3.6) uis(t) = Mg (t) — €3 /0 it (r) g (t — 7) dr.
k=1
After a bit of manipulation, (3.5) then yields the following system of integral equa-

tions:
@) p(0) = p10) — € [ st = r)os(r) dr

for:=1,2,---,p.

It is easy to see that by the assumption 0 < § < 1 in (2.3), the functions p} and
1. have integrable singularities, hence the system of Volterra equations (3.7) has a
unique solution. By a computation similar to the one in [6], it is possible to show

that this solution decays exponentially as ¢ — oo, if € > 0 is sufficiently small. Going



8
back to (3.4), recalling that l;(v(t)) = pi(t), and using the estimations in (2.1) and

(2.3), we conclude that the norm of w(t) decays. Now since
be(u(t)) = Le(v(t)) + Le(w(t)) = pe(t) + Le(w(?))

we get exponential decay for [ (u(t)). Finally, using this in (3.3) we obtain exponential
decay for v(t) and, consequently, for u(t) = v(t) + w(t). This completes the proof of

the stabilization result.

Remark: A variant of the control problem treated in this paper is that of the bound-
ary observation and boundary control. In this situation the feedback mechanism

involves interaction with Q entirely through the boundary of 2. The corresponding

mathematical model is:

ou - ou X

Fri .;::1 (a,-j(x) 5;;) in 02 x (0, c0)
o e ([ vlwens) dy) 21 x (0, )
2o . ; on

Y € o Vik 50 Y,t)Pr\y)ay | o5 )
u(z,0) = uo(z) r € Q.

Abstractly, this corresponds to having e*4o; € H for ¢ > 0 rather than o; € H;

we must then assume an estimate like (2.3) for ’CtAO']'

, corresponding to having o; €
D(A®). Tt is possible to show that this system is also asymptotically exponentially
stable provided that the coefficient ¢ is sufficiently small. The proof is along the lines
of the argument in section 6 of [6], combined with the generalized frmework that we

have developed in the resent paper.
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