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ABSTRACT

In this paper, minimax robust data fusion schemes based on discrete-time observations
with statistical uncertainty are considered. The observations are assumed to be i.i.d and the
decisions of all sensors independent when conditioned on the either of two hypotheses.. The
statistics of the observations are only known to belong to uncertainty classes determined by 2-
alternating Choquet capacities. Both cases of fixed-sample-size (block) data fusion and sequen-
tial data fusion are examined. For specific performance measures, three robust fusion rules:
suboptimal, optimal and asymptotically optimal --as the number of sensors increases--are
derived for the block data fusion case, and an asymptotically robust fusion rule is derived for
the sequential data fusion case; these fusion rules are optimal in the class of rules employing
likelihood ratio tests. In all situations the robust fusion rule makes use of likelihood ratios and
thresholds which depend on the least-favorable probability distributions in the uncertainty class.
In the limit of a large number of sensors, it is shown that the same threshold can be used by
. all sensors, which in turn simplifies the overall computation.
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Sysiems Research Center at the University of Maryland, College Park, through the National Science Foundation's Engineering
Research Centers Program: NSF CDR 8803012.






L INTRObUCTION AND PROBLEM FORMULATION

Recently, distributed detection with or without a fusion center has attracted consid-
erable attention([1]-[3]). In [1] it is shown that the optimal decision statistic for fixed-
sample-size (block) detection is a likelihood ratio test with dependent thresholds which
satisfy coupled equations. The computation of these thresholds is a very difficult task
and becomes even more difficult when sequential test is used ([2]). Further in {1]-[3] the
statistics of the observations are assumed to be known a priori, which can be unrealistic
in practical situations. Frequently only imperfect knowledge is available in real situations.
In [4] minimax ?obust distributed detection schemes without fusion were developed for a
general uncertainty class, the class of 2-alternating Choquet capacities. In this paper min-
~ imax robust data fusion schemes are derived for the binary discrimination problerh. The
uncertainty class considered here is the same as that of [4], it contains many uncertainty

“models ([5]-[7]) and is described by
P = {PIP(S) < o(5), ¥S € B, P(2) = ()} )

where ( is a sample space, B the associated o-field and v a 2-alternating capacity [5]. The
properties relevant to our paper of this uncertainty model are stated in the following.

Lemma 1: Suppose vp and v, are two alternating capacities on (€2, B8) and Py and P,
are the uncertainty classes determined by them as in (1). Then there exists a Lebesgue-

measurable function * : @ — [0, 00] such that
vo({my > 0}) + vi({my < 8}) < Ovo(5) + v1(5°) (2)

for all S € B and all # > 0. Furthermore there exist measures (130,131) in P, X Py such



that

Py({my > 8}) = vo({my > 6}) (3)
P ({my < 8}) = v1({r, < 8}) (4)

ie.,: m, is stochastically largest over Py under Py and stochastically smallest over P,
under f’l.The function r, is a version of df’l / dPy and unique a.e. [Po + }51]. The measures
(Py, Py) are termed the least-favorable measures over Py X P;.

The system models used here are similar to those of [2] and [9]. Each sensor makes a
decision based on the observations y;(t) and sends a binary méssage u; (1=12,---,K)
which represents its decision ; then the fusion center makes the final decision according to
a specific fusion rule. Hereafter the following assumption is made.

Assumption 1(A1): (i) The statistics of the observations conditioned on either hypothe-
sis, p,-(y_,:(t)) (i=0,1; § =1,2,...,K), are the same for each sensor j and all time instants
t. (stationarity) (ii) pi(y;(t)) are independent across sensors and time instants.

Both cases of fixed-sample-size (block) data fusion and sequential data fusion are
considered. Denote the likelihood ratio and the optimal threshold of sensor ¢ by L; and
7i, Tespectively, (¢ = 1,-.-, K), and by 71 the optimal threshold of the fusion center. vIn
.the case of block data fusion, when K is finite, the performance index adopted here has
the form

CK(Ll',nl'a 1= 07"',K)
=1 Pr(Liyni;i=0,--+, K) + caPpp(Liymisi=0,-- -, K) (5)

where Pg, and Py, are the probabilities of false alarm and missing of the fusion center and

c1,c2 are positive constants representing cost. Further let p,,(m = 0,1) denote the prior



probability of hypothesis H,, then P. = poPF, + p1 Pm, is the error probability. When

K — oo, since the error probability will approach zero, the performance is measured by

) cL.‘, i, 1=0,---,
'Joo(La,n;=0,1,---,)_—.K1,-_IP°°1‘1P( " I’( 0,---,K)

(6)
which is the exponential rate of decrease of the error probability and is useful for asymp-
totic analysis ([2]&[8]). For sequential data fusion, besides the error probability, the
expected value of the sample size of the fusion center must also be included as part of the
performance measure.

This paper is organized as follows. In section II, robust block data fusion algorithms
are derived for suboptirﬁa.l fusion and for optimal fusion with equal local thresholds. In
particular as the number of sensors K — oo, the- asymptotically robust fusion rule is

derived. In section III, an asymptotically robust sequential data fusion rule is developed.

Finally,



II. MINIMAX ROBUST BLOCK DATA FUSION
II.A “AND”, “OR” and Optimal Fusion Rules

Two simple data fusion rules are : (1) The fusion center decides H; if all sensors
transmit u; = 1 for all i —termed “AND” rule. (2) The fusion center decides H, if at
least one sensor transmits u; = 1 for 1 < i < K —termed “OR” rule. Notice that for
these two suboptimal fusion ;ules, there is no 79 in the usual sense of thresholds. These
two policies are suboptimal but easy to implememt, especially when the number of sensors
become very large.

Under (A1), the error probabilities of false alarm and missing can be expressed as

K .
Pr,=P(uwi=1;i=1,---,K|Ho) =[] Pr, (7
. i=1

and

K
Pup=P(wi=0;1<i< K|H) =Y Py, (8)

i=1

for the “AND?” fusion rule: and as

K
Pg, = P(ui=1;1<i< K|Ho)=)_ Pr, (9)
=1
and
K
PM0=P(u,'=0;i:l,---,K|H1)=HPM‘. (10)

i=1

for the “OR” fusion rule.

Usually for the purpose of performance evaluation the distribution of the observations
is assumed to be known a priori. However, what we may have in practice is some imperfect
knowledge about the statistics of observations . Let the statistics of data belong to the

uncertainty set defined by equation (1). Then by lemma 1 the error probabilities Pr; and



Puyg, of each sensor (1 < ¢ < K) satisfy 2 (5]

Pr(Liyni) < Pr(Li, %)) < Pr( Diymi) : (11)
and
Pat( Liy ) < Pt Lis i) € Pagi( Diymi) (12)

where L; = dPy; / Py; is the worst-case likelihood ratio of the ith sensor (the measures Py
and Py; are singled out by lemma 1) and D; is any other potential test of that sensor with
the same observed data. For finite summations ([8]&[9]) or multiplications ([7]) over 1,
the direction of inequalities still holds the same as in (11) and (12). Thus the following

proposition holds.

Proposition ‘1: Suppose the performance index of data fusion with “AND” or “OR”

fusion rules is defined by equation (5). Then under (A1)

Cx(Lifi;i=1,--,K)
S CK( I;i’ﬁi; 1= 17"'1K)

< C'K(Diyni;izlv"'aK) (13)

Remark 1: The threshold 7 or 7o of the fusion center are missing from (13) since the
“AND” or “OR” fusion rules cio not involve common thresholds.

Next we consider the optimal robust fusion rule. Here the optimality is in the sense
that the center uses the Neymdn-Pearson test on the transmitted binary signals by the

sensors. When all the sensors are alike and with the same level of error probabilities, i.e.,

24 variable with a hat means that it is a function of worst-case values; a probability with a hat means

that the corresponding sensor operates under worst-case conditions.



Pr, = Pr and Py, = Pyp, thus 1y = 9(i = 1,-. -, K), the Neyman-Pearson test becomes
k — out — of — K rule (3] under (A1). Therefore the optimal fusion rule is

>H
k Zn, K (14)

where k* is a suitable threshold related to njo. In this case the overall error probabilities
of false alarm and missing under mismatch [that is, k* is the threshold matched to the

worst-case (Pg, Py), but (Pr, Py) characterize the operating conditions] are:

K (K ) .

Pro= Y, (i)Pp'(l-'Pp)("") (15)
i=[k“|
[k*]-~1 K ) ,

Puy= Y (i)(l-PM)'PM(K-') (16)
t=1

Notice that k* is a ft;nction of Pr, Pps and K ; Pr and Py are functions of the number
of sa.mples‘ f that each sensor collects for making its decision. For proposition 2, another
assumption is made (see Appendix)

Assumption 2(A2): Pr < [k*]/K and Py < 1— [k*]/K for all K.
Then from the above definition of Pg, and Pyy,, proposition 2 follows.
Proposition 2: Suppose the thresholds of all sensors are equal, ther under (A1) and

(A2) the following inequalities are true
Cx(Li#;i=0,--,K)
< Ck(Li,;i=0,--,K)
< Ck(Diym;i=0,-+,K) (17)

Proof : Taking derivative of (15) with respect to Pr, we have

dPg,
dPr

X (K (i-1) K—i-1)/;
) (i)PF (1 - Pe)E==N(i - K Pp)
i:rk‘]



If (A2) is satisfied, then Pr < Pp < [k*]/K as well and subsequently dPr,/dPp > 0
jthus Pg, is an increasing function of Pr. By a similar a.rgument, it can be shown that
dPpy,/dPr > 0, thus Py, is also an increasing function of Pps. Hence Ck will be an
increasing function of Pp and Ppy under (Al) and (A2). Thus by (11) and (12), (17)
holds.

Remark 2: The assumption (A2) is nonrestrictive for praqtical cases (refer to Appendix).
If it is not satisfied, data fusion is of no use because Pr, and Pp, do not offer any
improvement over Pr and Pps.

The above proposition only covers a special case [9]; in general the computation com-
plexity of the optimal thresholds of the sensors is N-P complete. Thus our interest in the
limiting case , K — o0, is justified.

II.B Asymptotic Behavior

When the number of sensors increases to infinity, the probal;ihty of error decreases
to zero. Therefore the performance index adopted in asymptotic analysis should be the
exponential rate of decrease of the error probability (6), where P. = poPr, + p1Pu,-
As stated in theorem 1 of [2], when K — oo under the assumption 1 of (2], the same
threshold 7 could be used in each sensor for optimal data fusion (to minimize In P,/ K)).
Hence Jo( Di,mi;t = 0,1,--) = Jo( Diyn; i = 0,1,--) and the error probabilities Pg,
and Py, satisfy (15) and (16). Then proposition 3 follows.

Proposition 3: Under (Al) and (A2), as K — oo, the performance index defined by (6)

satisfies

Joo( Liafb)ﬁ; i:O,l,'--)



< Joo(Lis iy 5 i = 0,1,-+7)
S joo( Di9770777;i=0a17"') (18)

Proof: Based on the above discussion, a similar proof to that of proposition 2 can be

developed by replacing Cx with Joo.



III. ASYMPTOTICALLY ROBUST SEQ.UEN-
TIAL DATA FUSION

In this section the SPRT (sequential probability ratio test) is adopted as the decision
policy of the fusi;)n center whereas the policies of all the sensors remain the same , i.e.,»
likelihood ratio tests. The data used for fusion are the binary signals transmitted by the
seﬁsors.

The scheme of sequential data fusion is used to minimize the following cost function :
the exponent of the sum of the error probability and the average sample sizes under both
hypotheses. This kind of fusion rule has not yet been shown to be the optimal cne, but for
robustness in the class of likelihood ratio tests,it is a reasonable choice for the sequential
fusion rule. Thus, in this case , the expected value of the sample size Ng of the fusion
center .(that is, the number of times the fusion center collects the decisions of the sensors
before reaching its decision) enters into the performance measure.

Again let the statistics of observations conditioned on either hypothesis belong to the
uncertainty model defined by (1). When K — oo, under suitable conditions, it can be
shown that the worst-case pair of statistics of observations is still the one singled out by

lemma 1, if the performance index for robustness has the following form

JOO(Liv T’i;i = 01 1’ e )
1
= MK oo I {Y pmEm{NolLi,ni;i=0,---, K} -1
m=0 ’

+P¢(Livni;i= 0?,K)} (19)

where 7 = (4, B),(A < 1 < B) are the optimal thresholds of the SPRT used by the fusion

center and 7;,1 = 1,---, K are the optimal thresholds used by the sensors. As K — oo,



the expected sample size approac;.hes 1 and the error probability approaches 0. Thus (19)
is the exponent of the sum of these two terms ( i.e., the sum is of the form -exp(JooK )
and is an extension of the performance measure in [2]. In the following, we abbreviate
(L.:,r).-;i =0,-.-,K) as n where n = (m,m,-++, k) and (L;, no, 7% = 0-_--,K) as 7 for
those expressions inside the conditioning in the expected sample size and inside the error

probability. Define for 0 < s < 1

1
pi(mi,8:) =10 Y- fio(D)' % fun (1)

=0

where f;, (1) is the probability mass function under hypothesis H,,(m = 0, 1) of the binary
message { € {0,1} that the i—th sensor sends to the fusion center; fi,x(.) is stationary,
independent of time. Let (7, 8) minimize ui(7;,3;i) for i = 1,2,-- (i.e., u(n,s) < pi(ni,si)
for all 1) and r = e*. Before we proceed, we state the assumption 1 of [2].
Assumption 3(A3): (i).|u(r),s)| < 00, Vn,s. (ii) There exists a constant R such that
lii(n,8)| £ R, ¥(n,s) € [0,00] x [0,1], where a dot stands for differentiation with respect
to s.

Notice that the function- ¢ has the same form as that in [2] and {10]. In fact, we can
obtain a similar result to theorem 1 of [2] for (19). First we derive the upper and the lower
bounds on the expected sample size.

Lemma 2: Suppose (Al) and (A3) are satisfied , then for m = 0,1

e*mr(n, 5)%

En[N < — 20

m[ OI”]_1+ 1-—T(7),8)K ( )
En[No|n) > 1+ ¢y exp[Kp(n, s) — (2K R)'/?) (21)

where dy = a,d; = —b and ¢, is a constant defined in the course of the proof.

10



Proof: Denote by u;; the message send by sensor ¢ at time instant j and by fir, its

(stationary) distribution under hypothesis H,,(m = 0,1). Further let

n
fa(w;) .
Zimy =Y w0 gk
;g; fioui;)
be the log-likelihood ratio based on n decisions of the i-th sensor and define by g(K,n) =

K
Z Zi(n) the overall sufficient statistic used by the fusion center .Then the left-hand side

=1

of (20) becomes (a = In A,b = In B)

i Pm(No > n)

n=0

= 1+ZP,,,(N0>TZ)

n=1

oo K
= 1+ Pu(a< ) Zin) <b)
n=1

i=1

E [ No|n]

= 14 iPm(a < g(K,n)<b)

n=1

Only the proof of the case m = 0 will be given, since a similar proof can be obtained

for m = 1. Suppose the same threshold 7 is used in all sensors, then

Z Po(a < g(K,n) < b)
n=1
< ZPO(G < g(Kan))
n=1
< Z Eo[es(y(K.n)—a)]
n=1
= e
n=1
e=*r(n,5)"
1 —r(n,s)¥

where the second inequality is the Chernoff bound, and the equality is from the sum of a
geometric series (r(n, 8) < 1). Hence we have (20).

11



On the other hand, for the proof of (21), suppose different thresholds 7 are used by

the sensors, then

Z Po(a < g(K,n)<b)

n=1

Po(a < g(K,1) < b)

v

—_ a fll(ull)
= Py <§h’f.o(u,1) <b)

where u;; are i.t.d for all j (across time). Let Ux = (a < g(K,1) < b). Then by (3.20)&

(3.40) of [10] and under assumption 1 of [2]

Po(Ux )
K K
> crexpd_ pi(mi, s0) — (23 fti(mi, :))'?]
=1 - =1
> ciexp(Kp(n,s) - (2K R)'/?|

where (), and Y, have been defined in [10] and
0<e1 =3 yuny, @s(Y) < 0o. Thus we have (21).
Next, let us consider the bounds on the error probability.

Lemma 3: Suppose (Al) and (A3) are satisfied,

P.(n) < eKuln9) (22)
Po(1) 2 caexp{K p(n, s)E[No] + (K u(n, 9))"/*E[N, ")} (23)
where E[Nq] = Y_} _o pmEm[No] and ¢; is a constant defined in the course of the proof.

Proof: Because A <1 < B,

PO(L() > B‘No = 11) < Po(Lo > I‘No = n);

P](Lo < AIN() = n) < PI(LO < 1'N0 = n)

12



Suppose the same threshold 7 is used for all sensors, then by section III of [10], we have

Pe(n)

=§ Pe(n|No = n)P(No = n)

n=1 _
<Y P(No= n)[Po(Lo > 1|Np = n) + Py(Lo < 1|Np = n)]
n=1
m -
<> P(No= n)eKnu(ns)
n=1

< E[eKNou(n.s)]

< Kn(n.3)

since p(n, s) < 0 and Ng > 1. Then we show (23). Denote by 7 the optimal threshold for

block fusion under known N = n, then

- poPo(Lo > B{No = n)+ p1 Pi(Lo < A{No = n)

= poPo(Lo > A|NQ = n) + plpl(lq < AINO = n)

v

PoFPo(Lo > 7i|No = n) + prPi(Lo £ il No = n)
According to III of [10], we have

P.(n)

= 3 [poPo(n|No = n)Po(No = n)

n=1

+p1 Pi(n|No = n)Pi(No = n)]

3 [poPo(Lo > 7lNo = n)Po(No = m)

>
n=1
+p1Pi(Lo £ 7j|No = n)Pi(No = n))
oo 1 K
> 3 2 APmPm(No = n)exp(_ mi(7hi, 3:)

n=1m=0 =1

13



K
—@) i(m s ) 3 Qu(Y)}

i=1 " YmNY,

1 . K
> Y copmEm{exp[K Nop(n,s) — (23 i(mi, i)/}

m=0 i=1

where );(¢ = 0,1) were defined in [10]. Let

&2 = min{exp{ E[Syynz, @Qa(V)]}yexp{ E[Sy,ny, @:(¥)}}

Using (A3) and the convexity of exponential function, we have

P.(n) > caexp{E[K Nou(n,s)~ (2K NoR)'/*}}

caexp{K pu(n, s)E[No] - (2K R)/*E[No'/%)}

which is (24). According to lemmas 2 and 3, it can be shown _the performance (measured
by J) will not be hurt if the same threshold is used by all sensors, and this value could
be computed via a simple method (optimize u; with respect' to 7, 8). Thus the following
. proposition holds.

Proposition 4: Under (A1) and (A3),

Jim - In{EWNolz) — 1+ P.(x)

.1 .
= Jim —In{E[No|7] - 1+ P.()} : (24)

Proof: This is a direct result from (20)-(23) of the above two lemmas. By using the lower

bounds in (21) and (23) and the facts that
In(ay + a2 + a3) 2 %(lnal +Inaz +1lnaz)+1n3

and limg oo Eqm[Nojn] = 1, we have

Jim_ ~ n{E[Nolg) — 1 + P.(n)}

14



1 |
> Jim (3 (npn + {EalNolg) - 1) + 2 (D)
2 p(n,s)

Then by substituting from the upper bounds in (20) and (22‘) and taking the limit, we

will have

S|
I}J_rpoo = In{E[No[n] - 1 + P.(n)}

< wun,s)

IA

! ‘
Jim = In{E[No|n] ~ 1+ Pe(n)}

The reverse inequality also holds by definition.

Thus the same threshold can be used for all sensors; consequently Pr, = Pr and
Py, = Ppg forio=1,-+-, K. Let ng denote the number of times that the fusion center
collects the decision of the K sensors before making its own decision. Then in analogy
to the k — out — of — K rule of block data fusion, the decision test of the fusion center

becomes

decide H] tf k(no) _>_ b*
defer " b* > k(ng)>a*

decide Hy " a* > k(ng)

where k(ng) is the number of sensors which have transmitted ‘1’ by the no-th time the

fusion center has collected the decisions of the sensors and the thresholds {a*,b*) are

15



induced by (a,b) and are functions of Pr, Py and K. Then Pr, and Py, have forms

K K . .

Prp= 3 () B(1— Pp)E) (25)
i=[b*]
[a*]-1 _ ,

Pmy= 3. (If) P - Py (26)
i=1 v : ’

Similar to (A2) the following assumption is made for robustness (see Appendix).
Assumption 4(A4): For sequential data fusion Pr < [6*]/K and Py < 1-[6"]/K for
all K.

Finally, the following assumption is necessary for robustness (see [4]).

Assumption 5(A5): In 1_}’)_:& > Py ln L‘—Paﬁgl;l’ﬁ'l.

Proposition 5: Under (A1), (A3) and assumption 1 of [2], the performance index defined

by (20) satisfies

Joo( ihi’()’f’; 2.=0,1,"-)

< JoolLiyfioy i1 i = 0,1, 4

IA

jOO( Di,flﬂﬂl? i=031,"') (27)

Proof: By proposition 4, the same threshold can be used by all sensors to obtain asymp-
totically optimal sequential data fusion. Then Pg, and Pug, will have the forms described
by (22) and (23). Therefore a similar proof to that of proposition 2 can be developed
corresponding to the exponent of the error probability. According to proposition 5 of [4],
the least-favorable pair of distributions for expected sample sizes are the same as those
for the err;)r probabilities under (A4). Thus the saddle point of performance measure (19)

can be reached by the same least-favorable pair of proposition 2 in section II.

16



IV. CONCLUSION

In this paper we formulated and solved several problems.of robust data fusion for
situations characterized by incomplete knowledge of the probability distributions of the
discrete-time observations. The uncertainty in the probability distributions was modeled
by 2-alternating capacity classes. For robust block data fusion, ;;ubo;;timal, opﬁmal, and
asymptotically optimal-as the numbex; of sensors increases—schemes were derived. For
sequential data fusion an asymptoticauy robust scheme was developed. This scheme is
robust in the sense that the sensors use likelihood ratio tests and the fusion uses the
sequential probability ratio,teét (SPRT). In all situations the robust fusion rule use like-
lihood ratios and thresholds that depend on the pair of least-favorable distributions in
the uncertainty class. The advantage of asymptotic analysis manifests itself in that the
optimal thresholds of the various sensors turn out to be the same, which in turn reduces

considerably the required computation effort.

17
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APPENDIX

In (A2), it follows from [2] that

~ Pp
Prg

— -1 K ln
Py Pr (7o +

—=—)

and for large K

. | -
(k1)K o L= B0 = Pr) ™) 1 Pr
Py Pr Py

If 5o =0, Py = Pp, then k* = K /2 and [k“]/K ~ 1/2. Thus (A2) is not restrictive.
Similarly, in (A3)

v _ . (1= Py)(1 = Pr) ~ Pp
i N
(1- PM)(l - PF) 1~ Pp
= [In o B J7H(b+ Kln =)

and for large K

,..l [ln(l PM)(I Pp)]_ I—PF

Py P Py
[6°] ~ [In (1 - PM)(I - Pp) 1, 1 - Pr
PMPF Py

If Por = Pr,as K — oo, [a*] /K ~ 1/2, [0 /K % 1/2.






