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The field of ecology has long benefitted from the application of quantitative techniques 

and models borrowed from other disciplines.  There is a distinct need for the use of 

statistical and mathematical tools to address current, complex population- and species-

level ecological questions.  This dissertation aims to apply current mathematical and 

statistical approaches to answer questions regarding population dynamics, migratory 

behavior, and social learning.  Chapter one focuses on the density-dependence of fish 

reproduction.  I present a hierarchical model that leverages data from hundreds of 

populations to find statistically meaningful parameters at higher taxonomic levels.  I find 

that reproductive density-dependence is tightly clustered within taxonomic groupings, 

indicating a clear evolutionary history in these population dynamics.  In the second 

chapter, I develop a probabilistic model to look at how migratory knowledge is spread 

between individuals that migrate in small groups.  I focus on small populations at risk of 

losing migratory behavior in order to ask what aspects of learning behavior, population 



 

 

dynamics, and grouping structure are most important to retaining a migratory culture.  

My findings highlight the importance of informed leaders, rare, large groups, and regular 

mixing of group composition towards the preservation of migratory behavior in small 

populations.  In the final chapter, I use reaction-diffusion equations to look at the success 

of animal movement behaviors on landscapes where resources vary in space and time, 

and the role that memory plays in this system. I find that, while advective behaviors 

successfully maintain migratory movement on many landscapes, the addition of memory 

allows for greater populations when resources become especially scarce.  This is even 

more effective when both behaviors are allowed to work in concert. 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 



 

 

 
 
 
 
 
 
 
 
 
 
 

QUANTITATIVE CHALLENGES IN ECOLOGY:  
COMPETITION, MIGRATION, AND SOCIAL LEARNING 

 
 
 

by 
 
 

Andrew Philip Foss-Grant 
 
 
 
 
 

Dissertation submitted to the Faculty of the Graduate School of the  
University of Maryland, College Park, in partial fulfillment 

of the requirements for the degree of 
Doctor of Philosophy 

2017 
 
 
 
 
 
 
 
 
 
 
Advisory Committee: 
Professor William Fagan, Chair 
Professor Daniel A. Butts 
Dr. Justin M. Calabrese 
Professor Philip L.F. Johnson 
Professor Doron Levy 



 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by 

Andrew Philip Foss-Grant 

2017

 

 

 



ii 

 

Dedication 

For my mother, Linda 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 

 

Acknowledgements 

 Many people have, through their efforts, combined to make the completion of this 

dissertation possible.  I would like to thank my father and step-mother, Phil and Candy 

Grant, for their love and support.  Apologies for the many vacation days that I have spent 

working on this document while visiting home. 

 I would like to thank my advisor, Bill Fagan, for his hard work getting me 

through a tough five years.  You have greatly helped me develop as a professional and as 

a person, and thank you for having the patience to help me along the way. 

 I thank my committee, Dan Butts, Doron Levy, Justin Calabrese, and Philip 

Johnson, as well as my former committee member, Nathan Kraft, for their guidance as I 

have developed and produced this work.  Your feedback and suggestions have been 

invaluable to this work. 

 I would also like to thank several of my collaborators who have helped with my 

various projects.  I thank my co-author Elise Zipkin from Michigan State University, 

whose guidance and advice on the stock-recruitment project was indispensable.  Sharon 

Bewick’s assistance and feedback as a co-author on the migratory knowledge manuscript 

was also key to its success.  Olaf Jensen and Jim Thorson provided expertise and 

important feedback as co-authors on the stock-recruitment manuscript.  Further 

collaborators Grace Capshaw, Cindy Moss, Elie Gurarie, Yang Zhisong, and Dai Qiang, 

whose collaborations all appears outside of this dissertation, have been of great help and 

are much appreciated.  I also thank the late Ram Myers for his dedication to fisheries 



iv 

 

management and for bringing together the database essential to this dissertation’s stock-

recruitment project. 

 I would also like to thank Chris Che-Castaldo, Silvia Alvarez, Will 

Gammerdinger, Allison Howard, and Elise Larsen for their roles as both friends and 

mentors along the way. 

 Finally, I would like to thank the BEES program at the University of Maryland, 

the National Science Foundation, and the Department of Education GAANN fellowship 

for their funding and support of these projects. 

 

 

 

 

 

 

 

 

 

 



v 

 

Table of Contents 

Dedication ………………………………………………………………………………..ii 

Acknowledgements ……………………………………………………………………..iii 

Table of Contents ………………………………………………………………………..v 

List of Tables ……………………………………………………………………………vi 

List of Figures ……………………………………………………………………….....vii 

Chapter 1: Hierarchical analysis of taxonomic variation in intraspecific competition 

across fish species ………………………………………………………………………...1 

Chapter 2: Social transmission of migratory knowledge: quantifying the risk of losing 

migratory behavior ...…………………………………..………….……………………..27 

Chapter 3: The rescue of animal migration using memory-based movement on sparse 

resource landscapes …………………………………………………...…………………58 

Appendix …………………………………………………………….………………….80 

References ……………………………………………………………………..………..97 

 

 

 

 

 



vi 

 

List of Tables 

Table 2.1 – List of variables included in our model ………………………...…………..40 

Table 2.2 - List of simulation parameter values ……………………….…….………….41 

Table 3.1 - Names and descriptions of symbols used in this study ……………………..64 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 

 

List of Figures 

Fig. 1.1 - Examples of the Shepherd model for fixed α and β parameters ……………...11 

Fig. 1.2 - Order-level stock recruitment curves …………………………………………17 

Fig. 1.3 - Order-level α (per capita recruitment at low densities) values ……………….18 

Fig. 1.4 - Order level effects of maximum body length …………………………….…..20 

Fig. 1.5 - Median α plotted against median δ for all 54 fish species ………………..…..21 

Fig. 2.1 - Steps of migratory process …………………………………………………....32 

Fig. 2.2 - Mean group size vs. expected lifespan ……………………………………….43 

Fig. 2.3 - Fixed association vs. random association …………………………………….44 

Fig. 2.4 - Migratory persistence and rare, large groups ………………………..………..45 

Fig. 2.5 – Influence of the finite rate of increase ………………………………………..47 

Fig. 2.6 - Loss of migratory culture as a function of age-structured learning ……….….48 

Fig. 2.7 – Effect of learning mechanisms on migratory culture ……………………..….49 

Fig. 2.8 - Effects of different kinds of decision-making ……………………………..….50 

Fig. 3.1 - Advective-diffusive population vs. purely diffusive population …………..…69 

Fig. 3.2 – Growth ratios for advective populations ………………………………..……71 

Fig. 3.3a - The effect of memory-based advection on performance ……………..……..74 

Fig. 3.3b – Detail of Fig. 3.3a …………………………………………………….……..75



1 

 

Chapter 1: Hierarchical analysis of taxonomic variation in intraspecific 

competition across fish species 

Published in Ecology 97(7), 1724-1734. 2016. 

Abstract 

The nature and intensity of intraspecific competition can vary greatly among taxa, 

yet similarities in these interactions can lead to similar population dynamics among 

related organisms.  Variation along the spectrum of intraspecific competition, with 

contest and scramble competition as endpoints, leads to vastly different responses to 

population density.  Here we investigated the diversity of intraspecific competition 

among fish species, predicting that functional forms of density-dependent reproduction 

would be conserved in related taxa.   Using a hierarchical model that links stock-

recruitment parameters among populations, species, and orders, we found that the 

strength of overcompensation, and therefore the type of intraspecific competition, is 

tightly clustered within taxonomic groupings, as species within an order share similar 

degrees of compensation.  Specifically, species within the orders Salmoniformes and 

Pleuronectiformes exhibited density-dependence indicative of scramble competition 

(overcompensation) while the orders Clupeiformes, Gadiformes, Perciformes, and 

Scorpaeniformes exhibited dynamics consistent with contest competition (compensation).  

Maximum potential recruitment also varied among orders, but with less clustering across 

species.  We also tested whether stock-recruitment parameters correlated with maximum 

body length among species, but found no strong relationship.  Our results suggest that 

much of the variation in the form of density-dependent reproduction among fish species 
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may be predicted taxonomically due to evolved life history traits and reproductive 

behaviors. 

Introduction 

 Intraspecific competition for resources, including food, territory, and mates, can 

play a large role in the survival and reproduction of individuals and thus influence 

population dynamics.  The strength of intraspecific competition for these resources is 

often a limiting factor in overall population size (Pomerantz et al. 1980, Boström-

Einarsson et al. 2013, Ward et al. 2013).  Ecologists traditionally view intraspecific 

competition in terms of a dichotomy or gradient of contest versus scramble competition 

(Bellows 1981, Parker 2000).   Just as resources are rarely split evenly among individuals 

(e.g., scramble competition), it is equally uncommon to observe cases where superior 

competitors can wholly exclude inferior individuals (e.g., contest competition; Bellows 

1981).  This spectrum of intraspecific competition produces a wide range of functional 

forms that have been used to describe density-dependent reproduction (Bellows 1981).  

Under contest competition, density-dependence is compensatory, such that the 

reproductive output of a population is greatest when the population size becomes large 

enough to reach the maximum number of reproductive winners that limited resources will 

allow.  This generally occurs by reaching a maximum number of mates (Simmons and 

Ridsdill-Smith 2011), mating sites (Warner 1987), or territories (Marden and Waage 

1990).  Once the maximum number of winners is reached, additional reproductive 

competitors will neither increase nor decrease reproductive output, as resources are only 

split among the best competitors.  Scramble competition, however, leads to 

overcompensatory density-dependence wherein production of offspring actually declines 
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at high densities (Zipkin et al. 2009).  Limited resources are split evenly reducing the 

reproductive success of all individuals.  This reproductive scramble competition can 

happen as a result of adult resource consumption, juvenile resource consumption, nest 

destruction, or cannibalism (Bellows 1981).  Given this variety of possible outcomes, 

natural populations undergoing density-dependent reproduction tend to exhibit 

recruitment relationships somewhere along the contest – scramble gradient (which we 

term the “strength of overcompensation”).  

 Recent studies have examined the influence of evolution on aspects of population 

dynamics (Coulson et al. 2011, Schoener 2011, Fagan et al. 2013), suggesting that closely 

related species may share certain population-level dynamics due to similarities in life 

history traits.  Such relationships are a key part of the ‘ecogenetic loop’ that links life 

history traits, demography, and evolution (Kokko and Lopez-Sepulcre 2007, Coulson et 

al. 2010).  These linkages raise the question of whether the strength of overcompensation, 

which is rooted in life history strategy and related behaviors, may be similar across 

closely related species.  If phenotypic variation exists in how individual reproductive 

output changes in response to population density, it follows that the strength of 

overcompensation is itself a trait under selection and suggests that there may be 

similarities in density-dependence among related taxa. 

Body size is a key trait connecting life history characteristics to population 

dynamics.  Research suggests that there is a link between the maximum reproductive 

output of a population and the maximum body size of individuals within the population 

for a large variety of taxa including unicellular organisms, insects, fish, and mammals 

(Fenchel 1974, Blueweiss et al. 1978, Honěk 1993, Savage et al. 2004).  The fecundity of 
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an individual and population-level maximum reproductive rate have both been shown to 

increase with body size both within and among related species (Honěk 1993).  In 

fisheries, maximum reproductive rate is much higher for a population when large, old 

females are present (Venturelli et al. 2010). Species that reach a large maximum body 

size are likely to be relatively more fecund and have a greater maximum reproductive rate 

(Goodwin et al. 2006). 

 Fish populations are an excellent system for studying variations in the relationship 

between reproductive competition and density-dependence because fish species exhibit a 

wide variety of dynamics and life history strategies (Rose et al. 2001).  At a mechanistic 

level, the relationship between population density and reproductive success varies among 

fish species and populations because of resource limitations, habitat constraints, and 

potentially intrinsic, species-specific traits.  For example, anadromous salmonids, which 

reproduce in spatially constrained rivers and creeks, are known to have poor reproductive 

output at high densities because spawning sites, or redds, of some individuals are 

destroyed by other spawners (Van Den Berghe and Gross 1989).  As this behavior has the 

potential to reduce the fitness of all spawners roughly equally, it can be seen as a form of 

reproductive scramble competition.  On the other end of the spectrum, older, larger 

females of the black rockfish, Sebastes melanops, lay eggs that are competitively superior 

to those of their younger counterparts (Berkeley et al. 2004), endowing their offspring 

with a survival advantage typically observed in contest competition.  

 Stock-recruitment relationships, or the relationships between the maximum 

annual number or biomass of spawners (i.e., the stock) and the annual number or biomass 

of offspring that reach a threshold age (i.e., recruits), vary greatly among fish species and 
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taxa (Myers et al. 1999).  These relationships provide an ideal system to test ecological 

theory, as fisheries datasets are large-scale with high amounts of replication, allowing 

broad-scale investigations of ecosystem-level questions (Jensen et al. 2011).  However, 

estimating the functional relationships between spawners and their recruits presents many 

challenges and complications.  For example, decades of time series data that span a wide 

range of abundances are generally required to estimate individual stock-recruitment 

relationships accurately (Walters 1985, Myers 1997).  Moreover, such time series data 

typically include substantial measurement error, which can lead to bias in parameter 

estimates (Walters and Ludwig 1981, Sethi et al. 2005, Pitchford et al. 2007).  In 

addition, a wide variety of biotic and abiotic factors naturally leads to variation in the 

stock-recruit relationship.  For example, changes in environmental conditions can 

introduce variability to the number of recruits produced from a population, with habitat 

changes and phenological shifts affecting recruitment success (Rijnsdorp et al. 2009).  

 Because of this variability in stock-recruitment data, hierarchical models (Berliner 

1996, Gelman and Hill 2007) offer a valuable improvement on traditional stock-

recruitment methods that estimate parameters one population at a time (Dorn 2002, 

Forrest et al. 2010).  Hierarchical models provide a structure in which data can be 

grouped to observe stock-recruitment parameters at multiple levels, such as taxonomic 

order.  Similarly, Bayesian techniques have become popular in recent decades as 

researchers have looked for ways to integrate data from multiple sources into one 

analysis (Liermann and Hilborn 1997, Stewart et al. 2013).  Bayesian approaches 

facilitate estimation of hierarchical stock-recruitment curves by easily allowing for shared 

parameter estimation (Forrest et al. 2010).  By integrating information from multiple 
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sources, hierarchical models analyzed using Bayesian methods greatly improve the 

accuracy of stock-recruitment models by reducing the effect of noise around the stock-

recruitment relationship (Maunder and Punt 2013). 

 We developed a hierarchical model to investigate variation in stock-recruitment 

parameters, and thus types of intraspecific competition, among different taxonomic 

groupings of commercially harvested fish.  Our multi-species model accommodates a 

wide range of stock-recruit functional forms in a single estimation framework using data 

from a large stock recruitment database (Myers et al. 1995). We used this model to 

examine variation in maximum recruitment per unit spawning biomass and degree of 

compensation at both the species and order levels.  We also used maximum body length 

as a covariate to investigate the effect of body size on maximum recruits per spawner.  

We expected that the parameters governing the functional forms of stock-recruitment 

relationships of species would be clustered by taxonomic order, with orders that have 

highly spatially-constrained spawning grounds or nurseries displaying the highest levels 

of overcompensation.  We further expected that maximum recruitment per unit spawning 

biomass would be greatest in highly fecund species and orders and that maximum body 

length would be positively correlated with the maximum recruitment per unit spawning 

biomass among species of the same order.  

Methods 

The Dataset 

 We analyzed the Myers Stock-Recruit database, which was compiled and 

standardized from assessments of exploited marine fisheries worldwide (Myers et al. 

1995).  The database includes 281 reproductively isolated subpopulations from 62 species 
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in 8 orders with time series ranging from 6 to 73 years (mean = 25 years) and consists 

primarily of marine and anadromous species with a small number of freshwater species.  

For each population in this database, annual stock and recruitment data were estimated 

using commercial catch-at-age data and/or research survey estimates.  The data were 

standardized into spawning-stock biomass (SSB) for the stocks and thousands of metric 

tonnes or millions of fish for the recruits of marine fish and river-spawning salmonids, 

respectively (Myers et al. 1995). We then standardized the recruitment data further by 

dividing recruits by maximum annual spawning biomass per recruit (using values of 

natural mortality, maturity, and body weight at age compiled by R. A. Myers and C. 

Minto, pers. comm. 2015).  This ensures that we regress a measure of spawning success 

(in units mass) against a measure of spawning potential (in units mass), such that the 

productivity of each population (e.g., slope at the origin) is a dimensionless quantity, 

comparable among stocks, that complies with the exchangeability assumption of 

hierarchical models (Gelman et al. 2004).  A deterministic equilibrium of spawners and 

recruits is achieved at a ratio of 1 (i.e., the 1-1 line is replacement rate), such that the 

slope of the stock-recruit relationship at the origin must be greater than 1 for the 

population to be reproductively viable (Myers et al. 1995).    All data come from 

assessments that used standard, species-specific procedures for aging of individuals and 

follow stock boundary conventions set by the Northwest Atlantic Fisheries Organization 

(NAFO) and the International Council for the Exploration of the Sea (Myers et al. 1995).  

We used this dataset instead of its successor, the RAM Legacy Stock Assessment 

Database (Ricard et al. 2012), because many stock and recruitment values from the latter 

dataset were projected from population models that assume an underlying stock-
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recruitment relationships and parameters for each population, which can bias the results 

of meta-analysis (Ricard et al. 2012, Dickey-Collas et al. 2015).  In contrast, the Myers 

Stock-Recruit database contains recruitment estimates from sequential population 

analysis methods or direct survey estimates, which do not assume any a priori stock-

recruit relationship.  Maximum body length values were taken for each species from the 

FishBase database (fishbase.org).  After standardizing recruitment using natural 

mortality, maturity, and body size information, maximum body length values within each 

order were then rescaled to have a within-order mean of zero and a standard deviation of 

one.  This rescaling was used for all subsequent analysis of the relationship between 

standardized maximum body length and SR parameters, and is done to ensure (1) that 

estimated parameters within a taxonomic order represent values given the average body 

length in that order, and (2) to ease mixing of Bayesian sampling.  

 We excluded populations with under 10 years of data because temporal 

autocorrelation rendered the effective sample size too small (Worm and Myers 2003, 

Thorson et al. 2014).  We also excluded orders with fewer than five species (i.e., 

Lophiformes and Alopiformes).  Members of the orders Osmeriformes and Esociformes 

(Ayu and Pike, respectively) were grouped with the Salmoniformes because those species 

all belong to the superorder Protacanthopterygii.  These steps left us with six orders 

(Clupeiformes, Gadiformes, Perciformes, Pleuronectiformes, Salmoniformes, 

Scorpaeniformes), all of which were well-represented with 9-110 populations in 5-14 

species.  To avoid overparameterizing our models, we aggregated species within orders 

(n=6) rather than within families (n=18).  The final 256 populations, representing 54 

species in 6 orders, appear in Appendix 1.A. 
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The Stock-Recruitment Relationships 

 The Beverton-Holt (1957) and Ricker (1954) stock-recruitment models are 

commonly used spawner-recruit models for fish populations undergoing density-

dependent reproduction (Goodyear 1993, Myers 2001).  The Beverton-Holt model 

describes a system where the number of recruits reaches a maximum at high spawner 

densities, beyond which additional spawners do not affect overall recruitment.  This 

population behavior is one outcome of contest competition, where the ability to survive 

and reproduce varies among individuals (Brännström and Sumpter 2005).  The Beverton-

Holt model can also be derived from foraging arena theory and associated assumptions 

about risk-sensitive foraging behavior (Walters and Korman 1999).  Under the Beverton-

Holt model, the worst competitors decline in fitness at high densities as resources are 

disproportionately consumed by the best competitors.  Such compensatory recruitment 

can be expressed as: 

���� = ���/(1 + ���)                           (1) 

where �� is the stock value at time t and ���� is the recruits produced at the following 

time step, t+1.  The parameters α and β, constrained to be non-negative, govern the shape 

of the stock-recruitment relationship.  The parameter α represents the maximum 

reproductive output of an individual in the absence of density-related effects, or per-

capita recruitment at very low spawner abundance.  Thus the slope of the stock-

recruitment curve is α at the origin.  The parameter β determines the rate at which the 

number of recruits decreases as spawner density increases, and, in effect, determines the 

carrying capacity for a specified α-parameter. 
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 The Ricker (1954) model is a stock-recruitment relationship where the number of 

recruits reaches a maximum at an intermediate spawner density beyond which 

recruitment falls as spawner abundance increases.  This overcompensatory behavior is 

generally a result of scramble competition, where reproductive success depends on 

competition with neighbors and access to resources is equal among individuals 

(Brännström and Sumpter 2005).  This decline in recruits with increased spawner 

abundance is due to interference by neighbors, which results in lower juvenile survival at 

high densities.  The Ricker model is written as: 

���� = ���
����                            (2) 

where the non-negative α is directly comparable to the its estimate from the Beverton-

Holt model, while β is not directly comparable to the Beverton-Holt model. 

 An alternative to the Ricker and Beverton-Holt models is the Shepherd (1982) 

stock-recruitment model.  Through the addition of a third parameter, the Shepherd model 

accommodates stock-recruitment relationships that range from compensatory (as 

observed in the Beverton-Holt model) to overcompensatory (as observed in the Ricker 

model), as well as other asymptotic and non-asymptotic forms of density-dependence 

(Shepherd 1982).  As such, the Shepherd model allows for a wide range of functional 

forms, spanning from contest to scramble competition, as well as density-independent 

dynamics (Fig. 1.1).  The three parameter Shepherd model is: 

���� = ���/(1 + (���)�)                           (3) 

where the α and β parameters again define the maximum number of recruits per spawner 

and the carrying capacity, respectively.  The additional non-negative parameter δ 
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represents the degree of compensation, or the extent to which per capita reproduction 

declines at high densities.  When δ=1 the Shepherd model reduces to the Beverton-Holt 

model, and when δ>1 the model represents increased overcompensation similar to the 

Ricker model.  When δ<1 the recruitment curve grows indefinitely at a declining rate, 

becoming increasingly density-independent as δ approaches zero.  At δ=0, the 

relationship is exactly linear.  The Shepherd model is therefore particularly useful as a 

general framework for analyses that span multiple taxa of fish because it does not make a 

priori assumptions about the structure of intraspecific competition. 

 

 

Figure 1.1 – Examples of the Shepherd model for fixed α and β parameters (α = 2.5, β = 

0.01), where δ, which regulates the degree of compensation, is varied from 0 to 10.  

Curve shapes range from linear (δ=0), to compensatory (0>δ≥1 ), to overcompensatory 

(δ>1). 
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The Hierarchical Model 

 We constructed a hierarchical community model to link stock-recruitment 

parameters among species and compare parameter estimates across taxonomic groupings 

and maximum body lengths.  We designed our model to test two hypotheses: 1) 

taxonomic orders in which fish experience substantial spatial constraints on their 

reproductive output, particularly the Salmoniformes and Pleuronectiformes, have higher 

levels of overcompensation (e.g., higher values of δ) compared to other orders 

(Clupeiformes, Gadiformes, Perciformes, and Scorpaeniformes) in the dataset; and 2) 

maximum recruitment per unit spawning biomass (α) correlates with the species-level 

maximum body length in all orders of fish.  Our hierarchical model assumes that, for both 

α and δ, parameter estimates are related taxonomically.  That is, populations of the same 

species should be similar dynamically, as should species belonging to the same order.  

We assume that there is no hierarchical relationship in the parameter β among 

populations, as carrying capacity can fluctuate greatly for a variety of abiotic reasons, and 

we would thus not expect β to be similar, either among populations within species or 

among species within orders (Myers et al. 2001, MacKenzie et al. 2003).  At the most 

basic level, the Shepherd model is fit to data from each population: 

����,��� = α�������,�/(1 + (β�����,�)����)                           (4) 

where ����,� and ����,���  are the stock and standardized recruit values at time t and t + 1, 

respectively, for population i of species j within order k, and α���, β�, and δ��� are the 
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Shepherd parameters for each population i.   β� does not have species (j) and order level 

(k) indices as it is not modeled hierarchically.   

We assume that the population-level δ and α parameters each come from species-

specific distributions.  The logarithm of the parameter δ��� is assumed to be drawn from a 

normal distribution: 

 log (δ���) ~ N(log (%���), &��)                             (5) 

where log(%���) is the log-mean value of δ across all populations that belong to species j 

of order k, and &�� is the standard deviation among populations of species j.  We model δ 

on the log scale so that it remains positive.  The species level parameter, log (%���), is 

governed by an additional, order-level parameter such that it is also a random variable 

that comes from a common, normal, order-level distribution: 

log (%���) ~ '(log (%��), &��)                           (6) 

where log (%��) represents the mean of log (%���) (e.g., the mean δ value across all 

species in order k) and &�� is the standard deviation among all species within order k.  

We similarly specified α at the stock level:  

log (α���) ~ N(log (%(��), &(�)                           (7) 

where log(%(��) is the mean α for species j in order k and &(� is the standard deviation of 

α for populations in species j.  At the species level, we allow maximum body length to 

serve as a covariate on %(�� by assuming that: 
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log )%(��* =  +1��  +  ,-./�+2��                           (8) 

where ,-./� is the standardized maximum body length covariate for species j in order k, 

and +1�� and +2�� are the species-level intercept and slope terms that specify the 

relationship between maximum body length and α.  These parameters are linked at the 

order level as follows: 

+1��~ N(log (%1��), &1��)                             (9) 

+2��~N(log (%12�), &12�)                              (10) 

where %1��, &1��, %12�, and &12� are the order-level log-mean and standard deviation for 

the intercept and slope parameters, respectively.  Recruit values were standardized using 

lifetime spawning biomass per recruit in the absence of fishing (�3�456) to ensure that α 

was comparable among populations (Myers et al. 1999).  This gives spawner and recruit 

values the same units such that α is a dimensionless summary of the strength of lifetime 

compensation (i.e., maximum lifetime spawning biomass per spawning biomass) and that 

any differences between parameter values among taxa are meaningful. 

We modeled each population by additionally assuming that the recruit data could 

contain process and/or sampling error that is not adequately captured with the recruitment 

function (Myers 2001).  To account for this potential error, we assumed that each of the 

recruit data points is drawn from a normal distribution centered on the “true” recruitment 

value: 

�7�,��� ~ N8��,���, ��,���&9�: 



15 

 

Here, �7�,��� is the recruit data point for year t + 1 for population i, ��,��� is the expected 

recruitment value for population i, and &9� is the population-specific standard deviation 

around the mean recruitment value.   

 We analyzed our model with a Bayesian approach using Markov chain Monte 

Carlo (MCMC) to obtain samples from the posterior distributions of all model 

parameters.  MCMC allows us to easily estimate model parameters and directly present 

the probability that a parameter has a certain value.  We specified vague prior 

probabilities for all parameters in our model to represent a lack of knowledge on the 

order-level means, the variations among stocks, species and orders, and the carrying 

capacity within stocks: 

%��  ~ '(3,10)       %�� ≥ 0  

β� ~ '(0.01,0.1)      β� ≥ 0 

%1��  ~ '(3,10)     %1�� ≥ 0 

%12�  ~ '(0,10)  

&��, &��, &?�, &1��, &12� ~ U(0,100). 

The first parameter in each normal distribution is the mean and the second is the standard 

deviation.  The first and second parameters in the uniform distribution represent the limits 

of that distribution.  These prior distributions cover a range much larger than the expected 

possible parameter values, such that each prior is relatively flat over the expected 

parameter ranges.  Normal distributions were chosen over uniform distributions for mean 

parameter values because of improved model convergence.  We analyzed our model 
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using the programs R and JAGS (Plummer 2003) to estimate posterior parameter 

distributions.  We ran 100,000 MCMC iterations and thinned the chains by keeping only 

every 20th iteration after a burn-in of 40,000.  We analyzed model convergence using the 

Gelman-Rubin statistic �@ (Appendix 1.B).  Further tests of fit and validation of our model 

are found in Appendix 1.C, and figures showing posteriors produced without fitted data 

are found in Appendix 1.D for comparison.  We tested hypothesized differences in stock-

recruitment behavior among orders by comparing posterior distributions of parameters 

among species and order groups. 

Results 

Order-level Results 

 Parameter estimates from order-level stock-recruitment curves suggest a wide 

range of dynamics across orders ranging from scramble competition to varying degrees of 

contest competition (Fig. 1.2). Posterior distributions of δ for Clupeiformes, Gadiformes, 

Perciformes, and Scorpaeniformes exhibited low degrees of density-dependence, as 

credible intervals (CIs) ranged primarily between δ = 0 (density-independent) and δ = 1 

(Beverton-Holt-form compensation) (Fig. 1.2).  Curves with these values of δ have a 

declining slope, but never fully reach a saturated recruitment value (although an 

equilibrium population size still exists at the intersection of the recruitment curve and the 

1-1 replacement line).  The orders Pleuronectiformes and Salmoniformes, however, had 

50% credible intervals completely above the δ = 1 line. These results correspond to an 

overcompensatory stock-recruitment relationship (similar to the Ricker model), 

suggesting that populations within these two orders generally display overcompensation.  
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These two orders reach maximum total recruitment at stock values that vary by species 

and then show a decline in recruitment at populations beyond this size. 

 

Figure 1.2– Order-level stock recruitment curves showing intraspecific competition 

ranging from contest/compensatory competition (top panels) to 

scramble/overcompensatory competition (bottom panels).  On the left, median order-level 

stock-recruitment relationships (black lines) are shown with 50% credible intervals (grey 

shading), as estimated using the Shepherd model.  Dotted lines indicate the 1:1 line of 

stock and recruits.  Axes vary in size between orders to facilitate comparisons among 

functional forms rather than carrying capacity.  Values of β for each were determined by 

averaging median β values across all populations of a species and all species of an order.  

Stock and Recruit units are not given, as population sizes vary greatly within orders.  On 

the right, the 95% (thin lines) and 50% (thick lines) credible intervals for order level δ 
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(intensity of compensation) values.  Median values are represented by open circles.  The 

dashed line at A = 1 indicates where the Shepherd model is equivalent to the Beverton-

Holt Model. 

 The parameter α was highest in the Clupeiformes, Gadiformes, and Perciformes, 

all with median parameter values of α > 4 (Fig. 1.3),  suggesting high maximum lifetime 

spawners per spawner for species in these orders.  The orders Pleuronectiformes, 

Salmoniformes, and Scorpaeniformes had  comparatively lower median α parameter 

values (median α < 3 for all orders). 
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Figure 1.3 – The 95% (thin lines) and 50% (thick lines) credible intervals for order-level 

α (per capita recruitment at low densities) values.  Median values are represented by open 

circles. 

 There was no strong relationship between α and maximum body length (mean 

order-level covariate, %12�) for any of the orders (Fig. 1.4).  The 50% credible interval for 

Gadiformes and Pleuronectiformes both overlap zero, suggesting no relationship between 

α and ,-./ whereas Perciformes and Scorpaeniformes have positive order-level slopes 

and the Clupeiformes and Salmoniformes have negative order-level slopes.  When the 

order-level structure was removed from our model (e.g., all species were grouped 

together), no relationship was found between α and maximum body length.  When 

similarly tested, δ also showed no relationship with maximum body length (Appendix 

2.E). 
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Figure 1.4 – Order level effects of maximum body length on the parameter α.  A value of 

0 indicates no relationship while a positive (negative) value indicates a positive 

(negative) relationship between maximum body length and maximum per-capita 

recruitment.  Open circles represent median values and the lines indicate the 50% (thick 

lines) and 95% (thin lines) credible intervals. 

Species-level Results 

 We found that, within a given order, species generally exhibit clustered values of 

δ and more variation in α. All species within the orders Pleuronectiformes and 

Salmoniformes had median δ values in the range of overcompensation (δ > 1).   Species 

of all other orders lie within the range between a linear and a compensatory stock-
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recruitment relationship (0 < δ < 1).  The α parameter has a much greater amount of 

variation among species, especially within the Clupeiformes, Gadiformes, and 

Perciformes orders (Fig. 1.5).  Exploratory analysis showed that the sample mean of delta 

among species was similar in a model lacking grouping by order with some shrinkage of 

the variance (results not shown).   

 

Figure 1.5 – Median α plotted against median δ for all 54 fish species included in our 

model.  Species are grouped into symbols based on taxonomic order.  The dashed line at 

A = 1 indicates pure contest competition.  Values above the line indicate scramble 

competition.  Values below the line indicate weak intraspecific competition.  

Discussion 
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Our analyses document striking divergence in the strength of overcompensation 

and intraspecific competition among orders and species.  We found that the degree of 

intraspecific competition (δ parameter) for the Salmoniformes (here defined as salmonids 

and relatives, including other members of the superorder Protacanthopterygii) and 

Pleuronectiformes (flatfishes) lies primarily in the overcompensatory range (Fig. 1.2), 

suggesting that for these taxa, high stock levels can depress recruitment.  This result 

agrees with the common use of the Ricker model and observations of overcompensation 

in salmonids (Walters 1975, Krkošek et al. 2008), and with observed spawner-recruit 

relationships found in some studies of flatfish (Iles 1994, Rijnsdorp and Van Leeuwen 

1996, Van Der Veer et al. 2000, Wilderbuer et al. 2002, Wilderbuer et al. 2013, 

Archambault et al. 2014).   

The results for both of these orders accord with our prediction that fish with 

spatially constrained reproduction are severely suppressed by intraspecific competition at 

high abundances. For stream-dwelling salmonids, such scramble competition may come 

about via several mechanisms.  One example involves limitation on suitable spawning 

habitat (Armstrong et al. 2003) and redd superimposition (destruction of existing nests by 

subsequent spawners), which can cause strong overcompensation through the loss of a 

large percentage of eggs laid (Van den Berghe and Gross 1989, Fukushima et al. 1998). 

Moreover, immediately following emergence, juvenile salmonids at high densities also 

experience high mortality as severe competition and less efficient foraging behavior lead 

to greater mortality through starvation than when fry densities are low (Nislow et al. 

2011). Flatfish similarly experience density-dependence due to spatially constrained 

nursery habitats.  Eggs and larvae for many flatfishes drift in a pelagic phase before 
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becoming demersal juveniles and concentrating in nurseries (Rijnsdorp et al. 1995).  

Density-dependent processes come into effect and the concentration of individuals 

relative to nursery carrying capacities may limit successful recruitment (Beverton 1995, 

Rijnsdorp et al. 1995).  The spatial constraint of nurseries with limited seabed habitat 

promotes competition, and strong density-dependence is observed in populations with 

high juvenile concentrations in these habitats (Archambault et al. 2014).   

The four other orders included in our model (Clupeiformes, Gadiformes, 

Perciformes, and Scorpaeniformes) exhibit competition between density-independent 

(δ=0) and compensatory (δ=1) dynamics (Fig. 1.2).  For density-dependence in the range 

0 < δ < 1, recruitment can increase indefinitely with increasing spawning output.  We 

note that this does not suggest an indefinitely growing population, as there is an 

equilibrium abundance (e.g., carry capacity) whenever δ>0, which is identified as the 

point where the stock-recruit curve crosses the 1-1 replacement line.  Beyond this point, 

increasing spawner abundance will continue to increase recruitment, but at a net loss.  

The functional form of these orders differ from those found in studies that investigate 

stock-recruitment dynamics across taxa, such as in Scorpaeniformes (Dorn 2002, Forrest 

et al. 2010), as few studies have used models that allow for variation in the degree of 

compensation.  It is clear from their low values of δ that these orders have similar forms 

of intraspecific competition that are distinctly on the contest side of the contest-scramble 

gradient.  Overall, our δ parameter results suggest that even though the degree of 

compensation varies widely across taxa, much of that variation among fish species may 

be predicted taxonomically as a function of evolved life history traits and reproductive 

behaviors. 
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Our results demonstrated that the α parameter of the Shepherd model differs 

greatly among fish orders (Fig. 1.3).  Because α is a standardized reproductive output of 

individuals at low population levels without density-dependent effects (i.e., maximum 

lifetime spawners per spawner), we expected that orders with greater fecundity and 

higher per-capita spawning biomass would have greater α values (Andersen et al. 2008).  

Many of the species of the orders Clupeiformes, Gadiformes, and Perciformes do indeed 

have high fecundity, while the Salmoniformes are generally much less fecund (Mertz and 

Myers 1996).  The fecundity values for the orders Pleuronectiformes and 

Scorpaeniformes are much less consistent, but fish belonging to those orders do generally 

have higher fecundities than members of the Salmoniformes.  As fecundity is only one 

part of the recruitment process, other factors that affect survival of juveniles, such as 

predation or habitat quality, could greatly affect reproductive output at low densities 

(Karatayev et al. 2015).  Large, late-maturing fish have been associated with relatively 

higher fecundities, small eggs, and few reproductive bouts per season (Winemiller and 

Rose 1992).  Specifically, Scorpaeniformes tend to have small eggs and low maximum 

replacement rates (Winemiller and Rose 1992, Myers et al. 1999), which would indicate a 

low α parameter value.  Our results suggest that there are distinct differences in α, among 

fish orders, which appear to follow similar differences in fecundity and life history. 

Contrary to expectation, we did not find a consistent effect of maximum body 

length on the maximum lifetime replacement rate (α parameter) (Fig. 1.4).  The 

allometric dependence varied from positive to negative by order, but no strong pattern 

emerged.  When we analyzed all taxa together, we found no effect of maximum body 

length on α.   This appears to indicate that, at these broad levels, body size does not show 
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a strong effect on maximum lifetime compensation, contrary to previous hypotheses 

(Andersen et al. 2008).  

We found strong clustering by order when looking at the species-level α and δ 

Shepherd model parameters (Fig. 1.5).  This is especially true for the δ parameter.  

Median parameter estimates suggest that all species of the Pleuronectiformes and 

Salmoniformes orders exhibit overcompensatory dynamics, whereas none of the species 

of any of the four other taxonomic orders show a similar response. This implies that the 

type and degree of intraspecific competition is maintained through taxonomic groupings, 

mediated perhaps through similarities in life history and behavior.  The lack of similar 

clustering in the α parameter within taxonomic orders indicates a much higher variation 

in maximum recruitment per unit spawning biomass between taxa, as the orders 

Clupeiformes, Gadiformes, and Perciformes have especially high variation in α among 

species. 

A key strength of the hierarchical modeling approach is that it can leverage 

population-level variation in reproductive rate and the strength of compensation (whether 

that variation manifests from reaction norms or from genotypic variation) to yield 

species-level and order-level insights relevant for management.  Often, recruitment 

models are selected based on convention, model selection techniques, or by prior usage in 

related species.  These decisions are based on biological considerations at some level, but 

in cases where data are poor or limited, it can be difficult to determine which model is 

most appropriate for a particular species.  There is no standard approach for choosing a 

stock-recruitment model for a particular fish species, whether large amounts of data exist 
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or not.  Our modeling approach provides insight into the most appropriate density 

dependent models for a number of species. 

We found that the type and degree of intra-specific competition are tightly 

clustered within orders indicating strong similarities in the form of intra-specific 

competition among related species.  In contrast, maximum lifetime replacement rate 

shows a greater spread across species.  Overall, these results indicate that evolutionary 

history leaves a clear signal in the population dynamics of fish through tight, within-taxa 

clustering of reproductive density-dependence, likely mediated by taxonomic similarities 

in life history and behavior. Ultimately these findings may provide a pathway for 

leveraging information across species to further explore the ecology, evolutionary 

trajectories, and management of fish species. 
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Chapter 2: Social transmission of migratory knowledge: quantifying the 

risk of losing migratory behavior 

In press in Theoretical Ecology 

Abstract 

 When migration is a learned behavior, small populations have a significant 

problem of maintaining migratory knowledge across generations.  These populations 

risk losing migratory behavior entirely, which may exacerbate existing stressors on 

population size.  Here we investigated the success of various behavioral, demographic, 

and social factors towards maintaining migration within small populations.  Using a 

discrete-time probabilistic model to simulate repeated migrations, we found that 

migratory group size plays an important role in maintaining migratory knowledge within 

the population.  Rare, large groups allow for migratory knowledge to be spread to many 

individuals at once.  When a population learns migration information incrementally, the 

presence of individuals that can learn quickly, therefore transitioning rapidly into 

leaders, has a profound impact on migrational persistence.  Furthermore, small 

populations are better able to maintain migratory behavior when groups rely on 

informed leaders as compared to using collective group knowledge, even when that 

collective knowledge is heavily weighted towards knowledgeable individuals.  Finally, we 

found that both species with short lifespans and species that migrate with fixed group 

compositions are at especially high risk of losing their migration behavior at small 

population sizes. 
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Introduction 

 Group migration occurs when individuals that share breeding (or non-breeding) 

habitats organize into smaller, sub-population level groups to complete their migratory 

journey.  This form of collective behavior presents a unique challenge for persistence 

when the migratory behavior is partially or completely learned from other individuals 

(Fagan et al. 2012). In particular, successful navigation by a small migratory group 

hinges upon each group having at least one experienced individual that is capable of 

navigating the migratory pathway.  Such individual-level differences in navigation ability 

can be achieved either through differences in innate sensing and navigation of the 

environment (Pratt 1954, Wiltschko & Wiltschko 2003) or differences in learned 

migratory routes (Dodson 1988, Alerstam et al. 2003, Couzin et al. 2005).   

 If individuals are innately programmed and can use environmental cues for 

migration without the need for learning, migratory behavior may persist independent of 

population size.  However, small migratory populations may face strong Allee effects 

(Berdahl et al. 2016) and risk losing migratory behavior (Fagan et al. 2012). If migratory 

behavior has a learned component, the persistence of migratory culture within a 

population may depend on demography, the social interactions of individuals, and the 

mechanisms for learning migratory pathways (Alerstam et al. 2003, Wilcove & Wikelski 

2008, Fagan et al. 2012).  The impact of demography and the learning process is 

highlighted in the case of species for which individual migrational ability improves with 

repeated migrations (Mueller et al. 2013).  If migratory knowledge can be acquired as a 

benefit of successful small group migrations, then the spread of migratory information 

within a population will vary greatly.  The rate of learning will also depend on grouping 



29 

 

dynamics and the nature of decision-making within a group. In the context of collective 

behavior, different modes of group decision-making include leader-following, quorum 

sensing, and environmental modification (Couzin 2009). Of particular interest is how 

these different kinds of decision-making behaviors may interact with processes of group 

formation, dissolution, and reassembly (Conradt & Roper 2003) to impact migratory 

outcomes.  

 All populations face challenges when their numbers are declining.  With 

migratory species that rely on learning, such declines can be especially problematic 

because there is the added risk of losing migratory culture.  At the same time, population 

declines can themselves result from loss of migratory behavior (Bolger et al. 2008, 

Newmark 2008), setting up a devastating feedback cycle that exacerbates population 

losses.  Thus, there are special challenges involved in maintaining a migratory culture 

that is either partially or completely learned. Nelson (1998) has explored this issue for 

white-tailed deer (Odocoileus virginianus), demonstrating that migratory knowledge is 

not under rigid genetic control. Similarly, taking an experimental approach, Chernetsov et 

al. (2004) has used white storks (Ciconia ciconia) to demonstrate that juveniles isolated 

from adult migrants initiate their migrations in erratic directions and suffer high levels of 

mortality en route.   

The repeated successful transmission of knowledge required for learned migration 

is highlighted by the “adopted-migrant hypothesis” (McQuinn 1997), which is used in 

fisheries to explain the transmission of breeding ground knowledge between generations 

for Atlantic herring (Clupea harengus) and other fish species.  According to this 

hypothesis, migration can be a fragile behavior to maintain because information about 
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specific migratory locations is directly passed from older generations to first-time 

migrants.  For this reason, much uncertainty exists regarding the stability of migratory 

behavior within small populations of endangered species that rely on learned migratory 

routes, for example the whooping crane (Grus americana) or the southern right whale 

(Eubalaena australis) (Urbanek et al. 2010, Valenzuela et al. 2009).   From these 

perspectives, understanding what behavioral and demographic conditions are favorable to 

the persistence of migratory behavior can help to inform management decisions and 

better identify the biological scenarios under which partially or fully learned migratory 

behavior should be expected. 

 Small group migration with a learned component can be found across a wide 

range of life histories.  This includes short lived species that migrate in large groups, such 

as Atlantic herring (Clupea harengus) (Huse et al. 2010) or greater white-fronted geese 

(Anser albifrons) (Hayakawa & Furuhashi 2012), long-lived species that migrate in large 

groups, like the Mexican free-tailed bat (Tadarida brasiliensis) (Williams et al. 1973, 

McCracken & Gustin 1991), and long-lived species that migrate in small groups, such as 

whooping cranes (Grus americana) (Mueller et al. 2013), goitered gazelle (Gazella 

subgutturosa) (Blank et al. 2012) and orcas (Orcinus orca) (Higdon et al. 2011).  In 

contrast, there is little evidence of short-lived species maintaining learned, small-group 

migrations, but it is unclear if this is due to biological limitations or biases in species 

studied. 

 Here we present a probabilistic model of small group migration with which we 

explore how changes to grouping dynamics, learning behavior, and population structure 

affect the persistence of migratory cultural knowledge.  We use this model to investigate 
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which of these population characteristics and grouping conditions alter the likelihood of 

persistence versus loss of migratory culture. To better understand the mechanisms behind 

these outcomes, we explore different scenarios for transmission of migratory information 

within populations and identify the factors that most contribute to the persistence of 

migratory knowledge.  From heuristic arguments, we can formulate several hypotheses.  

First, learned migratory knowledge will be less likely to persist in short-lived species and 

those species prone to migrate in the smallest groups. Second, migration in small groups 

cannot persist without decision-making that defers towards informed leaders. Third and 

last, species with partial learning states will maintain migratory knowledge longer than 

species experiencing all-or-nothing learning due to the increased proportion of 

individuals with some capacity to successfully lead migrations. 

 

Methods  

Model Description 

Here we present a discrete-time probabilistic model describing learned migration 

in a population that migrates in small groups.  In this model we make the reasonable 

assumption that migratory information (e.g., migratory routes, stopover sites) is learned 

during migration. In this context, individuals only have the chance to learn from other, 

already knowledgeable individuals in their migratory group, and migratory information is 

equally available to all individuals in the group. 

In our base model, at any time T, a population of ' individuals comprises ,C 

individuals that have migratory knowledge (which we term learned individuals), and ' −
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,C individuals that are naive.  Each migratory time-step of the model (one round-trip 

migration) contains four Stages (Fig. 2.1). These are: Stage 1) formation of migratory 

groups, Stage 2) determination of migratory success or failure, Stage 3) updating of 

learning status of surviving individuals, and Stage 4) occurrence of births and non-

migratory deaths. 

 

Fig. 2.1 – Figure describing model, showing steps of migratory process 

 

We first consider two strategies for group formation (Stage 1). In Strategy 1, the 

Probabilistic Strategy, individuals are randomly assigned to equal-sized groups, which 

can differ among migrations. This random reassignment between migrations allows for 

horizontal transmission of migratory knowledge from learned individuals to naïve ones. 

In Strategy 2, the Fixed-Association Strategy, individuals are assigned to equal-sized 

groups, and group membership remains constant for life.  This permanent assignment 

represents vertical transmission, where individuals learn from parents and relatives, as 

contrasted with the horizontal transmission found in the Probabilistic Strategy.  Later, we 
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consider non-equal group sizes by allowing for group sizes drawn from a probability 

distribution (See Grouping Dynamics). 

Migratory success (Stage 2) is determined on a group-by-group basis and depends 

on the presence of a learned individual.  This migration is assumed as one round trip to 

and then from non-breeding grounds for simplicity.  In the base model, any group with at 

least one learned individual is deemed to have migrated successfully, whereas a group 

without a learned individual is deemed unsuccessful, resulting in the death of all group 

members. Initially, we do not consider any incremental benefit from having more than 

one learned individual.  Later, however, we consider both age-structured populations, 

where individuals have increasing abilities to successfully lead a migratory group as they 

become more experienced (See Age Structure and Incremental Learning) and group 

decision-making, where the composition of the entire group is important to migratory 

success (See Spontaneous Learning and Leadership). 

Naive individuals that complete the migration by migrating in the company of 

learned individuals may then transition to learned status (Stage 3) with a probability, &.  

We calculate this transition on an individual basis, where a successful migration may 

result in none, some, or all of the naive individuals in the group progressing to learned 

status.  In the age-structured model this learning probability is replaced by a set of 

transition matrices that span the range of possible learning types (See Spontaneous 

Learning and Leadership). 

Finally, our base model allows for the death of successful migrants (Stage 4), 

where learned and naive individuals die at a rate δ, followed by a birth process, where 

any dead individuals are replaced by newborn, naive individuals. In our first model 
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formulations, this step, which acts outside of the migrational process, represents a precise 

balance between birth and death, and ensures a constant, inter-seasonal group size. In the 

Fixed Association strategy, we do not model a mechanism for the creation of new groups.  

However, we do subsequently explore the effects of variable birth processes where we 

allow population size to increase or decrease through a separate birth step (See Variable 

Birth Processes). 

Considering the requirements of successful migration, learning, and survival, the 

probability of an unlearned individual becoming learned and surviving in our base model 

is: 

&(1 − A) E1 − (' − ,C − 1)!(' − ,C − G)! (' − G)!(' − 1)!H 

where & is the probability of learning the migration, (1 − A) is the survival rate, and the 

final term represents the odds of an unlearned individual being in a group with a learned 

individual, and therefore migrating successfully.  Here, G is group size. 

Grouping Dynamics 

 To consider variable group size, we also explore scenarios in which grouping can 

occur based on group size distributions.  For each migration, group sizes are drawn from 

a beta distribution, �(I, J) with shape parameter I and scale parameter b, spanning the 

proportion of the population from 0 to 1. Samples of random group size are drawn from 

the distribution until the cumulative number of individuals equals the migrating 

population.  If a group is drawn whose size exceeds that of the total remaining 

population, the distribution is resampled for the entire population.  This is done instead of 
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resampling only for the final group in order to greatly reduce skew towards small group 

sizes compared to other methods.  Individuals are then randomly assigned as in our 

Probabilistic Strategy in the base model.  We initially set I =2 and J =20. 

 Using this group size distribution, we explore migratory success as functions of 

mean group size and expected lifespan.  We vary the mean group size in Stage 1 by 

adjusting J such that % = ���KL where µ is our distribution mean.  We vary the death 

probability, δ (Stage 4) to vary our expected lifespan.  We measure the probability of 

maintaining migratory knowledge over 200 migrations while varying our expected 

lifespan, measured in number of migrations, from 1 (death after one migration) to 10, and 

varying mean group size from 1 to 10. 

 To determine the effect of rare, large groups, we use our base model with fixed 

group sizes.  We maintain group sizes of 4 individuals for all groups except one, which 

varies from 4 to 40 individuals.  In three separate simulations, we look at this large group 

occurring every one, two, or five migrations.  We simulate this system across a variety of 

expected lifespans (by varying the death probability, δ), ranging from 2 to 5 migrations.  

We then calculate the probability of migration loss, or the proportion of simulations that 

had lost migratory knowledge within 200 migrations. 

Variable Birth Processes 

To test how the persistence of migratory behavior scales from a stable population 

to a growing population, we additionally explore the case where the birth and death terms 

are not equal, allowing for variation in population size.  In this model, we introduce a 

separate birth process before deaths, where γ represents the birth rate per individual.  We 
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explore the range from 0.95A ≤ γ ≤ 1.05A to determine migration persistence as 

population dynamics vary from moderate population decline to stability to population 

growth.  In these scenarios, we use our variable group size process to form migratory 

groups, as changing population size raises the possibility of different group sizes for each 

migration. 

Age Structure and Incremental Learning 

 To test our hypotheses regarding the success of incremental learning, we create a 

model that allows for individuals to learn migratory information in increasing experience 

levels over repeated migrations.   

 We consider an age-structured model with P experience levels of migratory 

knowledge.  Within this model, we consider multiple cases for gaining knowledge. First 

we consider 1-step learning, where in any given migration individuals may only progress 

to the next level.  In this case, the probability of learning, σ, is fixed at one, and an 

individual’s extent of migratory knowledge corresponds to its age.  Alternatively, we 

consider 1-step stochastic learning (σ < 1).  This represents delayed learning, where 

individuals can successfully migrate and age but not increase in their migratory 

knowledge.  We examine both of these cases for models with both 2 and 5 experience 

levels.   

For this age-structured model, each level of experience, S, has a learnedness 

values of T = ���U�� where the first experience level corresponds to T = 0, or the complete 

inability to lead a successful migration, and the final level corresponds to T = 1, a 

guaranteed ability to successfully lead a migration.  Learnedness levels are thus equally 
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spaced within the range (0,1). Given this multi-level model, the probability of a naive 

individual successfully migrating, learning, and surviving becomes 

&(1 − A)(TVW.XWY) 

where TVW.XWY represents the probability of successful migration, giving the experience 

level of the ‘leader’ of the migratory group (which we define as the individual with the 

highest learnedness level).  

To provide a legitimate comparison between the 2- and 5-level models, we 

maintain the same expected lifespan and time until full learning.  This means that, in the 

2-level model, an individual must successfully migrate four times before moving to the 

2nd learned level.  This corresponds to a 5-level model where T = 0 for the first 4 

experience levels and T = 1 for level 5.  Alternatively, we also consider the 2-level case 

of “fast learners,” where the expected time until learning remains 4 migrations, but is 

modeled stochastically.  Here, we allow the learning probability to maintain the same 

expected time to full learning as in our 5-level model by setting & = 0.25.  This 

introduces variability in the learning ability of individuals into the model. 

We further explore our multi-level model through comparison of different 

learning capabilities.  Specifically, using transition matrices, we look at five types of 

learning. These are a) 1-step learning, b) 1-step stochastic learning, c) stochastic multi-

step learning, d) jump-to-leader, and e) jump-to-leader stochastic learning.  1-step 

learning, as described above, models individuals progressing exactly one level when they 

successfully migrate in the same group as a more learned individual.  In 1-step stochastic 

learning, these same individuals fail to progress to the next level with some probability, 
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which we set here as 0.5.  Stochastic multi-step learning indicates that an individual will 

have an equal probability of staying in their level, S, moving to the leader’s level, Z, or 

moving to any level in-between with probability equal to 
������ .  Jump-to-leader and 

jump-to-leader stochastic learning model scenarios where successfully migrating 

individuals have the potential to increase their learnedness to exactly the level of the 

leader of their group (respectively without or with some probability of staying in their 

current state).  These matrices are shown and described in detail in appendix 2.A. 

Spontaneous Learning and Leadership in Age-structured Populations 

 To explore the effects of learning in the absence of more knowledgeable 

individuals, we introduce a parameter, ω, which controls the degree of spontaneous 

learning.  When ω = 0, individuals that are the most knowledgeable migrants in their 

groups, or ‘leaders’, are unable to progress to the next experience level even after a 

successful migration (because no individuals in their groups are more knowledgeable 

than they are). In contrast, when ω = 1, surviving ‘leaders’ can learn spontaneously, 

progressing to the next experience level independent of the presence of a more 

knowledgeable individual.  We explore how spontaneous learning affects the retention of 

migratory knowledge in our 5-level model by allowing the individuals with the highest 

experience levels to move up a level at a probability of ω = 0.5.  This means that, if they 

are not already in the highest experience level, half of the group ‘leaders’ will on average 

to progress to the next level. 

As a final complexity, we investigate the importance of leaders, comparing leader-

based migration (where the survival of a group depends only on its most-knowledgeable 
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individual), with aggregate-decision migration (where each individual contributes to the 

group’s ability to migrate successfully).  For aggregate-decision migration, we calculate  

T, the probability of successful migration,  in three ways: 1) the mean T of all individuals 

in the group, 2) a weighted T, where individual contributions scale arithmetically with 

experience level (1, 2, 3…P) and 3) a weighted T, where individual contributions scale 

quadratically with experience level (1, 4, 9…P2). 

Parameter Summary and Comparison against Analytical Solutions 

 All simulations were run using R programing language.  Table 2.1 presents a 

summary of all parameters appearing in the base model and scenarios, along with a 

description of their purpose. Results for the scenarios outlined above are, for the most 

part, determined through numerical simulations.  Table 2.2 gives the parameter values for 

each simulation.  However, under the assumption of fixed population and fixed group 

sizes, we can obtain explicit mathematical formulae for the probabilities of migratory 

culture loss using combinatoric approaches.  These comparisons against analytical 

solutions appear in appendix 2.B. 
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Symbol Name Description N Population size Number of individuals in the population ,C  
 

Learned individuals Number of individuals knowledgeable of migration route at time T 

σ Learning 

probability Probability a naive individual will become learned after a successful migration δ Death probability Probability of death for an individual that has successfully migrated  G Group size Size of migratory groups when constant through the population β(a,b) Beta distribution Beta distribution with shape parameter a and scale parameter b μ Mean group size Mean size of migratory groups when variable though the population γ Birth rate Birth rate per individual 

λ Finite rate of 

increase Average per-capita change in population over one time step i Level of experience The experience level of an individual in our multi-level learning model 

l Learnedness value 

The probability, tied to experience level, that an individual can successfully lead a 

migratory group TVW.XWY 
 

Leader learnedness The highest experience level of an individual in a given group 

c Spontaneous 

learning 

The probability of a group leader progressing to the next level of experience, 

given that the leader is not at the highest experience level 

 

Table 2.1 – List of variables included in our model  
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Simulation Description N ,6 σ δ G γ Experience 

Levels 

l c 

Fig. 2.2 Group size vs. expected lifespan 200 100 0.2 0.1-1 beta(2,var.) 1-10 2 1 0 

Fig. 2.3 Fixed vs. random group association 12 4 0.2 0.1 4 --- 2 1 0 

Fig. 2.4 Effect of rare, large groups 200 100 0.1 0.2-0.5 4+ --- 2 1 0 

Fig. 2.5 Effect of the finite rate of increase 200 100 0.1 0.5 beta(2,20) 0.95-1.05 2 1 0 

Fig. 2.6 Age structure & spontaneous learning 200 N/A Var. Var. beta(2,50) 1 2-5 0-1 0 - 0.5 

Fig. 2.7 Comparison of learning mechanisms 100 N/A 0.5 Var. beta(2,80) 1 5 0-1 0 

Fig. 2.8 Leadership and decision-making 250 N/A 1 0.1-0.9 beta(2,20) 1 5 Var. 0 

 

Table 2.2 – List of simulation parameter values   0 
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Results  

 In the base model with variable group sizes, long-lived populations that aggregate 

in large groups best maintained migratory knowledge within small populations over 

many generations (Fig. 2.2).  For lifespans exceeding 4 years and group sizes exceeding 3 

individuals, migratory culture consistently persisted over the simulation period of 200 

migrations. Through our analyses we will consider persistence for 200 migrations as 

successfully maintaining migratory knowledge.  In contrast, populations in which 

individuals were shorter-lived or in which migration occurred in smaller groups 

consistently lost migratory behavior within this same time period. 
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Fig. 2.2 – The probability of migratory culture loss depends on an interaction between 
mean group size and expected lifespan.  Populations with either small group sizes or 
short-lived individuals are most at risk.  Parameters for this simulation were ' =200; ,6 = 100;  & = 0.2; T = 1;  c = 0 while δ and γ varying along our axes. 
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 The Fixed Association strategy, where individuals remain in the same migratory 

group for life, caused migratory persistence to decline rapidly compared with the 

Probabilistic Strategy, where groups re-formed after each migration (Fig. 2.3).  We view 

these two strategies as bounds on what could be expected in real populations, and assume 

that most real species are likely to have a group association that falls between these two 

extremes.  Rare, large groups increased the probability of migratory persistence, even if 

they only occur every five migrations (Fig. 2.4).  The size of the rare, large groups 

required to maintain migratory behavior becomes greater as its occurrence becomes more 

infrequent (Fig. 2.4).  

 

Fig. 2.3 – Strategies for group formation (fixed association versus random association) 
differ greatly in their predicted influences on the probability of culture loss across 
successive migrations.  Plotted are results for σ = 0.2, A = 0.1, with ' = 12 individuals 
in 3 groups of four individuals.  Initially, there were three learned individuals (,6 = 3) 
with one learned individual in each group. Other parameters used in this simulation are T = 1;  c = 0. 
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Fig. 2.4 –Migratory persistence as a function of variation in lifespan (x-axes) and the 
largest group in the population (y-axes). One group in each population is fixed at this 
largest size, and all other groups are of size 4.  These largest groups occur every year 
(Panel 1), every other year (Panel 2), and every five years (Panel 3).  Parameters for this 
simulation were ' = 200; ,6 = 100;  & = 0.1; T = 1;  c = 0 while δ varies along the x 
axis. 

 

 The finite rate of increase for the population did not greatly affect the probability 

of migration loss at small perturbations from steady state (e = 0.99, 1.01) (Fig. 2.5).  

With rapid population growth (e = 1.05), the migratory behavior was stable over 100 

years.  However, with rapid population decline (e = 0.95), the probability of retaining 

migratory behavior steadily declined over time.  This loss of migratory behavior in the 

e = 0.95 model is in the same timeframe as we would expect the population to become 

lost through decline: a population with e = 0.95 is expected to be under 1% of its 

original size after 100 time steps. 
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Fig. 2.5 – How the finite rate of increase (λ) influences the loss of migratory culture 
when migration occurs in groups. This figure presents results from a 2-level learning 
model where a naive individual can progress to the learned state with probability σ=0.1 
after successfully completing a migration. Individuals die with A = 0.5, and initial 
populations consist of '6 = 200 with ,6 = 100.  Further parameters for this simulation 
were T = 1;  c = 0. 

 

 Of our multi-level models, our 2-level model with “fast learners” showed the best 

retention of migratory culture, with no migratory loss over 200 migrations (Fig. 2.6).  Of 

the populations undergoing 5-level gradual learning, those with Spontaneous Learning 

(i.e., individuals could progress to the next experience level after a successful migration 

without the presence of a more learned individual) were the most successful at 

maintaining migratory culture, but less so than the 2-level model with “fast learners.”  

Furthermore, we found that those learning processes that allowed for non-zero 
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probabilities of skipping experience levels (i.e., the stochastic multi-step, jump-to-leader 

stochastic learning, and jump-to-leader models of learning) all maintained migratory 

culture more successfully than those that only allowed incremental progression (Fig. 2.7). 

Fig. 2.6 – The loss of migratory culture as a function of age-structured learning. Learning 
models are defined in the Methods subsection Age Structure and Incremental Learning. 

Here, ' = 200 with equal numbers of individuals initially in each experience level.  A ∈g0.1, 0.3, 0.5, 0.7, 0.9i for sequential experience levels in all cases except for 2-level 
learning with quick learners, where A ∈ g0.1, 0.9i.   σ = 1 for all learning models except 
for 2-level learning with quick learners, where σ = 0.25, meaning that all models have an 
expected time until complete knowledge of 4 migrations. Ability to successfully a 
migratory group ranged from complete (T = 1)  at the highest experience level to absent 
(T = 0)  at the lowest experience level, with intermediate levels being distributed evenly 
in that range.  ω = 0.5 for the 5-level with spontaneous learning simulation, while ω = 0 
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for all others.  j = 1 for all simulations.

 

Fig. 2.7 – How different Learning Mechanisms affect the loss of migratory culture. All 
results are for a population size of ' = 100 individuals and a learning model with 5 
experience levels each initially containing 20 individuals.  Learning probabilities are 
described in Age Structure and Incremental Learning and Appendix 2.A.  A ∈g0.1, 0.3, 0.5, 0.7, 0.9i and j = 1. 

 

 Leader-based migration, where migratory success was determined by the 

knowledge status of the most experienced individual in a migratory group, greatly 

outperformed the other decision-making mechanisms (i.e., averaged decision-making, 

arithmetic weights and quadratic weights; Fig. 2.8).  Arithmetic and quadratic weights 

offered only modest improvements in the persistence of migration compared to averaged 

decision-making.  
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Fig. 2.8 – Effects of different kinds of decision-making on the loss of migratory 
knowledge. Leader-based decision-making holds a clear advantage against other kinds of 
group decision-making, where all individuals in the migratory group contribute 
regardless of their experience levels.  This comparison uses the 5-level model.  Here, ' = 250 with equal numbers of individuals initially in each experience level.  A ∈g0.1, 0.3, 0.5, 0.7, 0.9i, σ = 1, and j = 1. 

 

 

Discussion 

 The persistence or loss of migratory behavior in species with group migration and 

social learning is not solely determined by population-specific factors, grouping 

dynamics, or learning processes.  Rather, the summation of all three of these factors can 

contribute to migratory loss.  We will address each of these causes in turn to better 

understand their importance in maintaining migration in small populations. 
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 The size of migratory groups affects how well information can be spread within a 

population.  Similarly, average lifespan determines the number of migrations an 

individual will perform.  Consequently, both group size and species lifespan are key 

variables determining how well a small population will maintain migratory behavior.  We 

found that populations with the most persistent migratory behavior were those with long 

lifespans and relatively large group sizes (Fig. 2.2).  In populations with a longer average 

lifespan, the average learned individual is able to share knowledge with naive individuals 

over repeated migrations. Likewise, in populations with larger migratory groups, a single 

learned individual can, on average, spread migratory knowledge to more individuals per 

migration.  Conversely, our model predicts low migratory success for populations in 

which individuals are short-lived and migrate in small groups.  We believe this 

corresponds with the dearth of examples of animals that fall into this category, as short-

lived species would likely require very large population sizes to maintain learned 

migration due to low individual transmission rates.  This fits with the expectation that 

species with a socially learned migratory behavior are likely to be long-lived with highly 

social behavior (Bauer et al. 2011).  Species exhibiting partially or completely learned 

migration tend to be long-lived (Higdon et al. 2011, Blank et al. 2012), have large group 

sizes (Huse et al. 2010, Hayakawa & Furuhashi 2012), or both (Nelson 1998, Chernetsov 

et al. 2004). 

 Migratory success also varies based on the importance of leaders and the role of 

knowledgeable individuals during the migratory process.  As expected, we found leader-

based migratory behavior to produce the highest persistence of migratory knowledge 

(Fig. 2.7), as this behavior relies on the best information present in each migratory group.  
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Interestingly, not only did average decision-making perform poorly, but weighted 

decision making also produced rapid decline of migratory culture, even when 

quadratically weighted, which made more experienced individuals disproportionately 

important.  In some species, for example whooping cranes (Mueller et al. 2013), 

migratory efficiency is closely linked to the presence of older, more experienced 

individuals and is relatively insensitive to the composition of the rest of the group, 

including variation in group size.  In some fish, the level of experience in an 

environment, independent of age, determines individuals to be followed (Reebs 2000).  

However, quorum sensing, or collective behavior that follows the preference of the 

majority, suggests an alternative to leader-based movement that can improve movement 

accuracy (Ward et al. 2008).  As quorum sensing necessitates large group sizes for 

accurate consensus-making, smaller groups would therefore be unusually reliant on 

leader-based decision-making in comparison.  Indeed, with even a moderately higher cost 

for leading than following, models have suggested that small groups will rely on few 

individuals to lead, a proportion that decreases with group size (Guttal & Couzin 2011).   

Conversely, the notion that larger groups necessitate a higher number of individuals 

capable of leading would make a single-leader strategy less viable at large group sizes. 

 The manner in which migratory groups are formed in a small population can 

greatly restrict or permit the transfer of migratory information within the population.  We 

found that fixed group association, similar to vertical transmission of knowledge, 

severely underperformed random association in terms of migratory persistence (Fig. 2.3).  

This is not surprising, because deterministic group associations can be thought of as a 

metapopulation model with no connectivity.  That is, once a migratory group loses its last 
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learned individual, the group is unable to be rescued by any other group.  By contrast, 

random association provides mixing similar to increased connectivity in metapopulations.  

Although true group formation is likely to lie somewhere between fixed group 

associations and fully random associations, these two scenarios set limiting bounds on the 

rate of migratory culture loss.  Social aggregations can be determined by relatedness for 

some species (Richard et al. 1996), whereas others form independently of kinship 

(Mueller et al. 2013).  In bottlenose dolphins, these strategies are both present, causing 

some social groupings to be fixed and others more liable to change (Krützen et al. 2003).  

Furthermore, fixed group associations may only exist in one life stage, such as mother 

humpback whales migrating with their calves, where further migratory groups are 

unrelated (Valsecchi 2002).  Despite the lower performance of fixed group strategies at 

low population levels (Fig. 2.3), these strategies can be found in real species with larger 

populations, where other benefits, such as kin altruism, may make the strategy favorable.    

 Furthermore, we found that the relative sizes of the migratory groups within a 

population greatly influenced whether that population remained migratory (Fig. 2.4).  

Given constant population size, persistence of migratory behavior increases as the largest 

group size increases. From a learning perspective, mass migration, or having the entire 

population migrate in one group, would permit the greatest spread of information, as one 

individual could teach the entire population under our assumed dynamics.  Indeed, we 

can see the importance of rare, large groups in Fig. 2.4, as few simulations of groups of 

four individuals maintained migratory behavior over 200 migrations.  In contrast, having 

a slightly larger group every migration or a rare, large group increased the probability of 

migratory persistence for many lifespans.  This might be of particular importance in 
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species such as herring, where individuals exhibit partially-learned migration in large 

groups varying from hundreds to millions of individuals (Misund 1993, Huse et al. 2010).  

As it is theorized that these herring require a certain percentage of learned individuals to 

successfully target their destination (Huse et al. 2002), smaller groups sizes might be 

prohibited by a low ability to learn or other factors (such as information exchange) that 

would slow the spread of migratory knowledge.  

 The mechanisms by which individuals learn are empirically harder to measure 

than group size or longevity, but such mechanisms nevertheless greatly influence the 

persistence of migratory culture. Some species, including some fish (Kieffer and Colgan 

1992) and whooping cranes (Mueller et al. 2013), have incremental learning whereas 

others, such as golden shiners (Reebs 2000), ravens (Foley et al. 2008), and elephants 

(Wright et al. 2003) have defined “leaders” and “followers” (King & Cowlishaw 2009).  

We found that a population with 5 levels in which learning occurred incrementally was 

able to maintain its migratory culture far longer than a population with leaders that learn 

all at once (stepwise) after 4 migrations (2-level delayed learning) (Fig. 2.6).  In contrast, 

when we leveled the playing field so that groups had equal expected times until complete 

learning, a “leaders” and “followers” behavior with variation in how quickly individuals 

learn (2-level learning with quick learners) more successfully maintained migration in a 

small population as compared to incremental learning.  To expand on this, even though a 

population with 2-level learning may have more completely naive individuals than a 

population of equivalent size in which learning occurs gradually over 5 experience levels, 

the possibility that a small number of individuals can become completely informed after 

the first or second migration can prevent the loss of migratory culture.  In contrast, 
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populations experiencing 2-level delayed learning have neither a buffer of partially 

learned individuals nor quick learners, making this strategy much less successful.  

 Spontaneous learning was another learning behavior that provided a mechanism 

for the persistence of migratory behavior. In our 5-level model of incremental learners, 

allowing for spontaneous learning (where successfully migrating individuals could 

progress to the next experience level without having joined a group with a more 

knowledgeable individual) provided a substantial buffer against the loss of migratory 

culture (Fig. 2.6).  To conceptualize spontaneous learning, we can think of a populations 

where groups are migrating with some element of randomness.  Of those moving 

randomly, individuals in groups that succeed retain the ability to complete this journey in 

future migrations, in effect causing them to learn without being taught by other 

individuals in the group.  In our model, adding spontaneous learning allowed a 

parameterization that had previously seen complete loss of migratory behavior within 100 

migrations to improve to roughly a 50% chance of persisting through 200 migrations 

(Fig. 2.6).  In a migrating population, this would represent the difference between less-

informed migratory groups failing to become better leaders and the more successful 

strategy of these groups learning by trail-and-error. 

In general, the ability to skip experience levels (whether by the stochastic multi-

step mechanism or the jump-to-leader mechanism) proved far more successful than 

incremental learning as a means of maintaining migratory behavior.  Indeed, allowing 

individuals to skip experience levels had a far greater effect than removing the possibility 

of not learning (Fig. 2.7).  Again, this implies that quick learners provide great benefit in 

small migratory populations.  This is contrary to the observed concept of reinforcement 
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learning, where satisfactory outcomes reinforce behaviors over time (Sutton et al. 1992).  

However, reinforcement learning is computationally simple (Sutton et al 1992), and 

slower learning may provide a mechanism to deal with variable quality of migratory 

knowledge.  Given limited capacity for memory, the ability to reinforce and maintain the 

most current information allows individuals to update route information as environmental 

conditions change (Fagan et al. 2013).  It is worth noting that, given time and stability, a 

population undergoing the “jump-to-leader” behavior will eventually lose intermediate 

experience levels and become a 2-level structured population, independent of the 

probability of jumping.  Therefore, this population would seem to only persist with a 

multiple-level learning behavior in changing environmental conditions, where the 

information being passed among individuals has some varied utility, such as changing 

migratory routes. 

Conclusions 

Our results highlight the importance of experienced individuals to migration 

persistence.  In some cases experience will vary directly with age, whereas in other cases 

experience derives from particularly fortuitous social interactions. In either case, these 

models emphasize that a small number of individuals with particular trait values (here, 

experience level) can have outsized conservation relevance.  These results are intriguing 

because they parallel findings from other systems of conservation interest.  For example, 

a few robust, mature males may contribute differentially to the reproductive health of 

wildlife populations, but these same males are desired as hunting trophies (Coltmann et 

al. 2003). Likewise, in marine fisheries, a few females of extraordinary size may have 
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massively disproportional impacts on recruitment rates on when reproductive potential 

scales nonlinearly with size (Trippell 1995, Baskett et al. 2005). 

 One limitation of our model is that we generally assume that uniformed migrants 

die because they fail to migrate successfully to the correct destination. While migratory 

pathways for obligate species may remain consistent over long periods of time, straying 

(i.e, deviating from an established migratory route) is certainly not an exclusively fatal 

behavior.  Indeed, within the framework of the “adopted-migrant hypothesis” (McQuinn 

1997), novel breeding grounds may arise in years of high reproductive output where 

many naive individuals migrate without learned individuals but nonetheless arrive in 

suitable habitats (Huse et al. 2002, Huse et al. 2010).  However, in the context of our 

model, reducing the penalties for uninformed movement should not qualitatively alter our 

conclusions.  Overall, our findings suggest that rare, large migratory groups and regular 

mixing between groups are key to the persistence of learned migratory behavior in small 

populations.  The opportunity for “quick learners,” even if rare, can provide a vital 

mechanism for sustaining migratory behavior in small populations.  Species with short 

lifespans appear to be at particular risk of migratory loss when faced with declining 

numbers.   

 

 

 

 

 

 



58 

 

Chapter 3: The rescue of animal migration using memory-based movement 
on sparse resource landscapes 

Abstract 

 Animal migration is an important mechanism in maintaining population integrity, 

yet is a globally at-risk behavior.  Partial differential equations provide a good system for 

modelling this movement and the resource landscape that it is driven by.  We use a 

system of reaction-diffusion equations to investigate the interplay between behavior types 

and ability to follow resources that are increasingly sparse in space and time.  We look at 

parameterizations where populations exhibiting advection, or the following of a resource 

gradient, and diffusion are unable to persist, and investigate the effect that memory has 

on their survival.  We model memory as a form of advection responding to the resource 

landscape at a previous point in time.  We also investigate a combined approach, 

including advection on local and previous time scales.  We find that when resources 

become scarce, resource-following becomes increasingly important for the survival of 

populations.  However, in resource scenarios where advection fails to maintain migration, 

and therefore sufficient population size, we find that memory will, in certain scenarios, 

provide a rescuing effect.  Furthermore, allowing a population to react to the resource 

landscape based on memory and local observation produced the largest final populations, 

as information leading towards a resource was available for the longest period of time in 

this scenario. 

Introduction 

 The migration of animals over long distances is a globally threatened 

phenomenon (Wilcove and Wikelski 2008), and the loss of migratory behavior often 



59 

 

results in the drastic reduction of the population size (Bolger et al. 2008).  Even when the 

cause of the cessation of migration is removed, such as the removal of fencing for 

overland migration, migratory behavior does not always resume (Boone and Hobbs 

2004).  Yet, our understanding of the behavioral mechanisms leading to the development 

of migration is still incomplete.  Depending on the information present, animals may be 

able to sense environmental clues and adjust migratory behavior in-transit, or they may 

be forced to rely on individual memory or ancestral knowledge (Winkler et al. 2014).  

The migratory behavior of species relying on memory may be especially threatened with 

a rapidly changing environment.  An understanding of how migration develops in 

response to an information-poor environment is therefore important for the conservation 

of species whose migration has come under threat.  Specifically, determining the 

interplay between behavior types and resource distributions is vital to understanding what 

features are important towards maintaining the migratory phenomenon when resource-

tracking alone is not enough to explain migratory formation. 

From a modeling standpoint, partial differential equation (PDE) systems allow for 

a useful amount of variation in both the distribution of resources and the type of animal 

behaviors modeled.  Due to this versatility, PDE frameworks have been used to model 

ecological processes that include dispersal and invasion, the spread of disease, critical 

patch size, and species coexistence (Holmes et al. 1994, Garlick et al. 2011).   By 

allowing a continuously changing resource landscape, PDEs provide an ideal modeling 

framework for studying drivers of migration.  Through the application of reaction-

diffusion equations, a specific form of PDE, to animal movement (Skellam 1951), we 

also allow movement behavior to be broken down into two components: diffusion and 
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advection.  Diffusion is a random, Brownian motion that ecologically represents random 

searching or dispersal.  Advection, however, represents a directed movement along a 

gradient, representing the perception and processing of environmental data by the 

individual followed by reactive movement. 

However, variations in model formulation expand these reaction-diffusion models 

away from their limitation that individuals respond only to information that is local in 

space and time.  In one deviation, studies have used non-local information to model 

perceptual ranges of animals, where dispersal is determined by a range of surrounding 

information (Pe’er & Kramer-Schadt 2008, Fagan et al. 2017).  Also useful, and key to 

this study, is the addition of memory to animal movement models.  Agent-based models 

have been a popular choice for modeling spatial memory (Börger et al. 2008, Fagan et al. 

2013), as including memory can help individuals avoid areas they have previously visited 

(Fronhofer et al. 2013, Schlägel & Lewis 2014) or seek out high-quality patches as return 

points (Van Moorter et al. 2009, Boyer & Walsh 2010, Berger-Tal & Avgar 2012, Riotte-

Lambert et al. 2015).  However, only a few ecological studies (e.g. Potts et al. 2014, Potts 

and Lewis 2016) have looked at memory in an Eulerian system, such as a reaction-

diffusion formulation.  We propose here a method to allow populations to also react to 

resource and population distributions at a previous time step.  This will allow for 

populations to follow gradients of resources from their collective memory, potentially 

providing useful movement cues when information about the resource is scarce.  

 Here we investigate how memory interacts with advective movement and the role 

that memory plays in low-information resource environments.  We first look at 

competing populations exhibiting advective-diffusive movement without memory to see 
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how the competitive outcomes and stable population sizes change across parameter 

space.  We then, using parameterizations where advection fails, investigate the effects of 

memory as a potential rescue mechanism.  We hypothesize that populations using both 

advection and diffusion will, on all resource landscapes, outcompete populations using 

just diffusion and that, in cases where advection and diffusion alone cannot maintain a 

migratory population, memory will serve as a successful behavior to increase equilibrium 

population size. 

Methods 

Reaction-diffusion equations 

To do so, we will look at two competing populations using the following set of 

reaction-diffusion equations: 

(1)         klm//n −  Ilm/nm/o(p, q − Al) + (o(p, q) − n − r)n = m�n 

ksm//r − Ism/rm/o(p, q − As) + (o(p, q) − r − n)r = m�r 

on t = (−15,15) 

klm/n − Ilnm/o(p, q − Al) = 0 

ksm/r − Isrm/o(p, q − As) = 0 

on mt 

Here, the first terms, of the form k�m//S, represent the diffusive process in the equation.  

The value of k� for each population u and v determines the strength of the diffusion for 
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that population.  The term I�m/Sm/o(p, q − A�) gives both our advection and memory 

components, where the parameter I� determines the strength of advection.  The parameter 

A� determines the time scale at which the memory component of advection acts.  The 

resource, o(p, q), is given as a function of both position on our axis and time.  The term 

(o(p, q) − r − n)S describes the response of the population to the resource level as well 

as the population levels of both the u and v populations 

 When I� = 0 and k� is nonzero, these equations give the behavior class of pure 

diffusion.  When both k� and I� are nonzero and A� = 0 the population exhibits the 

behavior of diffusion with advection.  Finally, when A� ≠ 0, a memory component is 

added to advective behavior, where the population responds to the location of a resource 

A� amount of time in the past. 

Resource landscapes 

 We consider three dynamic, one-dimensional resource landscapes.  These time-

varying functions are a Gaussian distribution that translates between two endpoints, a 

Gaussian distribution that pulses between two poles, and an approximately uniform 

distribution that pulses between two poles. 

 The translating Gaussian distribution can be written as 

(2)                   o(p, q) = �v2wxy 
�(/�/z(��{y|}~ (w��� )))� (2xy�)�  

where &/ is the standard deviation of the Gaussian resource distribution, p6 is the mean 

position of the resource distribution, p6�/ is the maximum deviation of the distribution 
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away from the mean position, and � is the length of each oscillatory period.  For our analyses 

&/ = 1; p6 = 15; �/ = 5 and � is variable. 

Similarly, we write the pulsing Gaussian distribution as 

(3)        o(p, q) = �v2wxy 
�(/�/z)� (2xy�)⁄ ∑ 
�(���C)� (2x��)⁄U��56 +
                                  �v2wxy 
�(/�/z)� (2xy�)⁄ ∑ 
�(��)����*C)� (2x��)�U��56  

where PC is the number of oscillatory periods in the length of our model, � is the length of each 

oscillatory period, and &� is the standard deviation of the normal distribution describing the pulse.  

These values vary by analysis. &/ remains the standard deviation of the Gaussian resource 

distribution while p6 now represents the mean position of each resource pulse, located 

symmetrically around p = 0. 

 Finally, we approximate the uniform distribution using the Fourier series of a 

rectangular pulse wave 

(4)                   ℎ/z(p) = �� + ∑ 2Uw sin )wU�� * cos �2wU� (p ± p6)� �1 −�U5�

)U�*2� 

where � represents the width of the pulse, 3 is the spatial period between pulses, � is the 

number of series coefficiences used, and p6 represents the locations, positive and negative, or 

our two pulses.  Here, � = 2, 3 = 30, the length of our simulated space, � = 100, and p6 = 5.  

Adding in our time variation, we get the formulation of our resource function 
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(5)              o(p, q) = ℎ�(p) ∑ 
�(���C)� (2x��)⁄U��56 +
ℎ��(p) ∑ 
�(��)����*C)� (2x��)�U��56  

where PC, �, and &� are the same as in the pulsing Gaussian distribution.  These values vary by 

analysis. 

Symbol Name Description 

u, v Populations The two competing populations in our model 

k� Diffusion Rate The rate of random movement for population S 
I� Advection Rate The rate that a population S moves up a resource 

gradient 

A� Memory Time 

Scale 

The time before present at which population S senses 

the landscape 

o(p, q) Resource 

Landscape 

Resources changing both in space and time 

&/ Std. Dev. - Space Standard deviation of the resource along x 

p6 Mean position Mean position of translating Gaussian resource 

function 

p6�/ Max. Deviation Maximum deviation away from p6 for translating 

Gaussian resource function 

� Oscillatory Period The length of time required for one full resource 

cycle 

PC Total No. of The number of periods in our modelled length of 
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Periods time 

&� Std. Dev. - Time  The standard deviation describing the normal 

distribution of our two pulsing resource functions 

� Width of Pulse The width of the non-zero part of our uniform 

resource function 

3 Spatial Period 

between Pulses 

The space between pulses in a pulse wave Fourier 

transform, trivial in this case, as each end of the 

function has only one pulse 

� Series coefficients The number of series coefficients used for our 

Fourier approximation 

 

Table 3.1.  Names and descriptions of symbols used in this study. 

Solutions 

 We solve the reaction diffusion equations numerically for each scenario using 

Mathematica’s built in NDSolve function.  We find numeric solutions modeling both one 

diffusion-only population and one diffusion and advection population. We run this 

formulation for each resource function at three different period lengths (� ∈ g20,40,60i), 

for three diffusion parameterizations (k ∈ g0.2,0.5,1.0i), and across ratios of advection to 

diffusion (I/k) ranging from 0 (no advection) to 25 (heavy advective movement). 

Memory 

 After identifying a resource parameterization where advection and diffusion fail 

to maintain a strong population, we also find numeric solutions for populations that use 
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memory-based advection.  Initially, we look at our original formulation for memory (1).  

As a final complexity, we also include a population that advects to both the current 

resource landscape and the resource landscape at a previous time.  This modifies (1) to 

now read 

(6)                 klm//n − Ilm/nm/o(p, q) − Ilm/nm/o(p, q − Al) +
                      (o(p, q) − n − r)n = m�n 

we vary the time scale upon which memory is acting from A� = 0 to  A� = �. 

Results 

Translating Gaussian Resource Function 

 On the translating Gaussian resource landscape we found that as we increased the 

ratio of advection to diffusion we crossed a threshold from the advective population 

having an extremely high population level at the end of our time period (>1.7 at  I k� =
 2.5) to the final population crashing (< 0.4 at  I k� = 25) (Fig. 3.1).  This trend was 

consistent between all resource translation speeds (� ∈ g20,40,60i) and all diffusion 

parameterizations (k ∈ g0.2,0.5,1.0i).  Consistently, advective populations with higher 

diffusion rates, and therefore higher advection rates, had higher ending populations than 

populations with the same I k�  ratio (Fig. 3.1).  The transition to declining ending 

populations in our model corresponded with a transition between the advective 

population excluding the purely diffusive population and coexistence between the two 

(Fig. 3.2).  Results were similar for all other resource translation speeds (not shown).
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Figure 3.1. An advective-diffusive population competing against a purely diffusive population.  Y-axis values give the 

final total population of the advective-diffusive population after 600 time steps.  Y-axis ranges are preserved within, but not 

between columns.  Each column represents one of the three resource landscapes used in this study. The x-axis represents the 
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ratio between the advective and diffusive parameter values,  with increasing value of I/k representing increasing advective 

behavior.  Each plot contains three lines, representing different values of diffusive parameters, k = 0.2 (solid grey line), k =
0.5 (dashed line), and k = 1.0 (black, dotted line). 
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Figure 3.2.  The ratio of the population at the numerically solved period’s end to the 

population at the halfway point (tf/tf/2) shown for parameterizations between a population 

undergoing diffusion with advection (dashed lines) and a population undergoing pure 

diffusion (solid lines) at different diffusion strengths.  A growth ratio of 1.0 indicates a 

stable population size while anything less indicates a population being outcompeted and 

anything greater represents a growing population.  Analyses were run for 600 time steps, 

or 30 migration cycles with a resource translation period of 20 time steps.  

Ecological Interpretation 

 In an environment where resources are consistently available and individuals can 

move freely, low levels of resource-tracking (advection), in concert with random 

searching (diffusion), greatly outcompetes exclusive random searching.  This is 
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independent of the rate that the location of the resource changes (Fig. 3.1).  However, 

populations with higher affinity for resource-tracking, while still successful, fail to 

exclude species dependent on random searching (Fig. 3.2).  Instead, we see coexistence 

which is possibly explained as resource partitioning.  This would occur if the two species 

end up differentially occupying the resource space, with the resource-tracking population 

occupying the highest-quality habitat while the random searching population has higher 

abundances in lower quality habitat.  

Pulsing Gaussian Resource Function 

 When the Gaussian resource function pulsed between two poles instead of 

translating, we found that our final population levels were much smaller (all less than 0.5) 

(Fig. 3.1).  For both our � = 20 and � = 40 scenarios, as we increased the ratio of 

advection to diffusion, our advective population consistently performed better, leveling 

off at a maximum final population.  The increase in final population size for the � = 40 

scenario corresponded with the exclusion of the diffusive-only population (not shown).  

However, for the panel where the period between resource pulses was 60 time steps, all 

parameterizations failed to maintain populations (Fig. 3.1). 

Ecological Interpretation 

 When resources are found seasonally only at two poles, populations must be able 

to span the low-resource gap between them to survive.  Here, the drive to move along 

even faint resource gradients has an important advantage over populations employing 

only random searching.  As the tendency to follow resource gradients increases, the final 

population size of our resource-tracking population increases to a plateau where added 
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gradient-following does not increase the population size.  However, once the gap between 

resource availability becomes too great (� = 60), all behavior types are unable to persist 

(Fig. 3.1). 

Pulsing Uniform resource function 

 In a resource environment with a relatively flat resource landscape that pulses in 

and out with time between poles, the success of advective behavior is similar to that in a 

pulsing Gaussian function.  Again, upon reaching a certain threshold of I k� , final 

population sizes increased to a stable plateau.  However, population sizes in general were 

much larger than those found in our Gaussian resource function (Fig. 3.1).  Advective 

populations were also able to become stable at all three values of �.  The primary 

difference in this resource function is the uniformity of resource quality, making it 

unlikely that this habitat would be susceptible to spatial resource partitioning. 

Addition of Memory 

 We found a parameterization from Figure 3.1 where advective behavior failed to 

maintain a substantial population size on one of our resource functions.  The 

parameterization � = 40, k = 0.5,  I k� = 2.5 was selected for its proximity to a more 

successful advective population (I k� = 5), indicating a possibility of rescue through the 

addition of memory.  We found that substituting memory-based advection for advection 

increased the total population size, but only at values of A close to one full resource 

period (Fig. 3.3).  In a completely periodic resource landscape, these values of A equate 

to advection along what the resource gradient will be in a the coming time steps.  At all 
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other values of A, population performance decreased, as unsynchronized memory-based 

advection led individuals in directions where resources would not soon appear. 

 However, when a population was allowed to balance both memory-based 

advection and real-time advection, final population size increased at a wider range of 

memory time scales (Fig. 3.3).  This combination of two time scales allows for an 

individual to weigh both memory and local perception of the landscape when making 

movement decisions.  By having this increased deductive power, there is likely to be a 

greater proportion of each period where the individual has a strong gradient, either in 

real-time or using memory, off which to advect. 

 

Figure 3.3a. The effect of memory-based advection (dashed, black line) and both 

memory-based and real-time advection (solid, grey line) on final population sizes when 
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compared to an advective population without memory.  Values above the y=0 line 

indicate increased population sizes as a result of memory, whereas values below the line 

indicate decreased population sizes.  � = 40, k = 0.5, and I k� = 2.5 

 

Figure 3.3b. A higher-resolution version of Figure 3.3a from q����W� = 36 to q����W� =
40 

Discussion 

 When we analyze the success of advective behavior across our three resource 

landscapes we find, when resources are continually abundant, like in our translating 

Gaussian resource distribution, that advective behavior beyond a small I k�  ratio reduces 

the size of the population (Fig. 3.1).  We find that this reduction in population size 
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corresponds with a transition in our competitive outcome, as at low values of I k� , the 

advective population outcompetes the diffusive population, causing its exclusion.  

However, at I k� ≈ 12.5, these two species begin to coexist, both maintaining stable 

populations (Fig. 3.2).  We see evidence of resource partitioning in this scenario, as there 

is a higher advective population at the highest quality parts of the resource patch, and a 

greater diffusive population at many of the lower quality resources.  A similar result was 

found in Fagan et al. (2017), where, as advection strength increases, diffusion switches 

from inhibiting foraging success to enhancing it.  In an ecological framework, it 

behooves an individual to make use of available lower value habitat when competition 

for resources is high.  In this case, movement strategies that allow for both directed 

movement and searching give rise to higher populations.  We see the benefit of 

combining directed movement with random searching occur in populations as diverse as 

marine predators (Humphries et al. 2010), birds (Roshier et al. 2008), and insects 

(Reynolds and Frye 2007), indicating that this sort of combined movement approach is 

successful in a wide range of systems. 

 In contrast, as resource gradients become scarcer, populations become more 

reliant on advective behavior to find these resources.  In Figure 3.1, we see that when the 

resource landscape changes from being a translating Gaussian distribution to a Gaussian 

distribution pulsing between two poles, strong advection goes from being a hindrance 

towards maintaining large population sizes to being a requirement.  Furthermore, in this 

second resource distribution (pulsing Gaussian), when advection levels are high enough 

to provide sufficient tracking of the resource, increasing the diffusion coefficient while 

maintaining the ratio of I k�  further increases maximum population size.  It seems likely 
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that this outcome is due to the increased strength of diffusion and advection promoting a 

faster acquisition of resources as they appear. 

 Both advective and diffusive behaviors become insufficient to maintain a 

population when the distance between resources in space and time becomes too large.  

When our Gaussian pulse resource distribution reached � = 60, no populations were able 

to sustain any notable population after 600 time steps (Fig. 3.1).  In purely diffusive 

systems, when boundaries between patches are inhospitable, the size of the patch required 

to maintain a stable population increases in comparison to when those conditions are 

relaxed (Ludwig et al. 1979).  In our case, resource patches have boundaries in both space 

and time, implying that as barriers to movement between patches are increased diffusion, 

and eventually advection, will fail to maintain a viable population.  However, this is also 

a scenario when memory could serve a role to strengthen migratory behavior between 

resource patches.  We found that, in a parameterization where advective-diffusive 

behavior failed, advecting behavior acting at a time scale of almost one resource pulse 

prior (A → �) caused an increase in final population size (Fig. 3.3).    This should be 

expected, as, when resources are predictable, acting on environmental cues prior to their 

arrival through the usage of memory should increase a population’s ability to find 

resources.  This usage of memory is consistent with the concept of return points, where 

individuals might seek out a location where they have prior knowledge of favorable 

resources (Fagan et al. 2013).  Depending on scale, this concept can be used as a way of 

building a home range, efficiently searching a landscape, or developing a migratory 

pattern.  But, this form of memory benefitted the population only up to a point.  Memory 

time scales between 0-37 time steps (out of the 40 time steps in a period) decreased 
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population size compared to advection alone (Fig. 3.3).  This is far from surprising, as 

acting on memory time scales near half of the resource’s period will lead to a population 

being completely out of synch with the resource, consistently following cues towards 

locations where resources will not remerge for some time.  This is related to phenological 

mismatches, where changes in environmental cues cause errors in timing of important 

events.  Whether describing emergence (Kudo & Ida 2013), development timing (Miller-

Rushing et al. 2010), or migration (Visser et al. 2012), errors in timing can have 

disastrous effects.  This suggests that timing-based memory, while beneficial in a stable 

environment, might also carry risks in a changing environment. 

 With the addition of our final complexity, we found that populations exhibiting all 

of diffusion, real-time advection, and memory-based advection maintained the largest 

population sizes, independent of memory time scales (Fig. 3.3).  As this behavior was not 

as reliant on exact timing of memory, it would carry fewer risks related to environmental 

change.  However, the greatest improvement in performance still occurred in a similar 

range to only memory-based advection (A → �).  This memory strategy ends up 

providing the benefits of both pure advection and memory-based advective movment.  A 

population displaying this behavior can move towards remembered high-quality patches, 

but will not be as likely to leave abundant resources early. 

 We conclude that, while the ability to detect and move along a resource gradient 

is often more successful of a movement strategy than random searching, diffusion can 

become beneficial in concert with advection.  Furthermore, in scenarios where gradients 

are too faint or distant to be followed, reliance on memory can help develop and maintain 

migratory behavior.  We also presented a new parameterization of advective memory, 
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where individuals balance abilities to navigate both by memory of previous resource 

gradients as well as along a current gradient.  This strategy, while complex, eventually 

provides the individuals with better information with which to guide their movement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



79 

 

Appendices 

Appendices 1.A-1.B are considered too large for this document and are available online 
in the Ecological Archives associated with the publication of the first chapter at 
http://onlinelibrary.wiley.com/doi/10.1890/15-0733.1/full 

Appendix 1.C 

The following plots are included as indicators of fit, variability, and contrast in our data 
and results. 

 

Figure 1.C1. Plots of the data for all 254 populations and the Shepherd model fit for 
those data using the median values for alpha, beta, and delta from the posterior 
distributions.  This figure gives a visual for the fit of our model posterior parameters to 
the stock-recruitment data. 
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Figure 1.C2.  Population-specific standard deviation around the mean recruitment value, &9�, compared to median posterior delta values for each population.  Symbols represent 
the taxonomic order for each population. 
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Appendix 1.D 

Figures showing the prior distributions for δ, α, and the relationship between α and 

maximum body length for each order.  Priors are estimated by running the model with no 

data and then plotting the resulting (uniformed) posterior distributions for each 

parameter.  Open circles represent median values and the lines indicate the 50% (thick 

lines) and 95% (thin lines) credible intervals. 
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Appendix 1.E 

 Figure showing covariate estimates for the relationship between δ and maximum body 

length for each order.  These results were obtained from a separate model in which we 

estimated the effect of maximum body length on δ (rather than on α, as is presented in the 

main text).  A value of 0 indicates no relationship while positive and negative values 

indicate positive and negative correlations, respectively.  Open circles represent median 

values and the lines indicate the 50% (thick lines) and 95% (thin lines) credible intervals. 
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Appendix 2.A – Derivation of Transition Matrices For Different Learning 

Mechanisms  

Below are the transition matrices that describe the different Learning Mechanisms 

described in our multi-level model.  These examples use a four-level model, but can be 

generalized for any number of levels.  Rows represent the current and potential 

experience levels of the individual, columns represent the levels of the leader within the 

group, and the values represent the probabilities of those transitions. 

a) 1-step learning  

1  2 3 4 

1 → 11 → 21 → 31 → 42 → 22 → 32 → 43 → 33 → 44 → 4 �
��
��
��
�

1 00 10 0
0 01 10 00 00 1 0 00 00 00 0000

000

101
1000 10 1�

��
��
��
 

 

 

b) 1-step stochastic learning 

1     2     3  4 

1 → 11 → 21 → 31 → 42 → 22 → 32 → 43 → 33 → 44 → 4 �
��
��
��
�

1 0.50 0.50 0
0.5 0.50.5 0.50 00 00 1 0 00.5 0.50 00 0000

000

0.501
0.500.50 0.50 1 �

��
��
��
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c) stochastic multi-step learning 

1     2     3   4  

1 → 11 → 21 → 31 → 42 → 22 → 32 → 43 → 33 → 44 → 4 �
��
��
��
�1 0.50 0.50 0

0. 3¡ 0.250. 3¡ 0.250. 3¡ 0.250 00 1 0 0.250.5 0. 3¡0 00 0000
000

0.501
0. 3¡0. 3¡0.50 0.50 1 �

��
��
��
 

 

 

d) jump-to-leader 

1 2 3 4 

1 → 11 → 21 → 31 → 42 → 22 → 32 → 43 → 33 → 44 → 4 �
��
��
��
�

1 00 10 0
0 00 01 00 00 1 0 10 00 00 0000

000

101
0100 10 1�

��
��
��
 

 

 

e) jump-to-leader stochastic learning 

 

1   2    3     4 

1 → 11 → 21 → 31 → 42 → 22 → 32 → 43 → 33 → 44 → 4 �
��
��
��
�

1 0.50 0.50 0
0.5 0.50 00.5 00 00 1 0 0.50.5 0.50 00 0000

000

0.501
00.50.50 0.50 1 �

��
��
��
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Appendix 2.B – Validation of simulations 

Suppose that there are ' individuals in the population and that they form groups of size G 
to migrate.  If, prior to migration, there are ,C learned individuals, then we define the 
following probability 

¢l�/£� = ?��¤/¥l� �
) ¤¤�£�*      (1.a) 

where n� = floor )¤�£�¥ * − S is the number of groups without a learned individual and 

�� = � ' − Gn�' − ,C − Gn�� − ∑ �� E¤¥ − n�S − ¨ H����56   

 (1.b) 

In (1), ¢l�/£� is the probability that there will be n� groups without a learned individual, 

given that there were a total of ,� learned individuals in the population.  If there are n� 
groups without a learned individual, then ©� = Gn� individuals did not have an 
opportunity to learn and  

�� = ' − ©� − ,� = ' − G )floor )¤�£�¥ * − S* − ,C  

 (2) 

individuals were newly exposed to the route.  Consequently, ¢l�/£� = Ω��/£� where Ω��/£� 
is the probability of having �� newly exposed individuals, given that there were ,� 
learned individuals prior to migration.  However, not all exposed individuals will learn 
the route.  If the probability of learning is &, then we define the following probability 

«¬/�� = )��­* &¬(1 − &)���¬    (3) 

where «¬/�� is the probability of having ­ newly learned individuals given that �� 
individuals were exposed.  From (1-3) we define the probability of having ,��� learned 
individuals after migration, given that there were ,� learned individuals before migration 
as 

3£�®�/£� = ∑ «£�®��£�/��Ω��/£�
¯°}}±)²³´�µ *�56   

 (4) 

3£�®�/£� = ∑ E' − G )floor )¤�£�¥ * − S* − ,�,C�� − ,C H &£�®��£�(1 −¯°}}±)²³´�µ *�56

&)¤�¥)¯°}}±)²³´�µ *��*�£�®� ?�¶ ¤/¥
¯°}}±)²³´�µ *��·

) ¤¤�£�*         

    (5)   
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This defines the transition matrix for the migration step. 

Suppose that death happens after migration.  If the probability of dying after migration is A and keeping the total population fixed, the probability that there are ,��2 learned 
individuals after death given that there were ,��� learned individuals prior to death is 

k£�®�/£�®� = � ,C��,C�� − ,C�2� A£�®��£�®�(1 − A)£�®� 

 (6) 

This defines the transition matrix for the death step. 

The probability of having a specific number of learned individuals after � time-steps is 
then given by 

¸¹ = (º»)C¸¼   (7) 

where ¸¼ is a vector defining the probability of having a certain number of learned 
individuals at the initial time and ¸¹ is a vector defining the probability of having a 
certain number of learned individuals at time q = �. 

The previous derivation assumed that groups formed completely at random.  At the other 
extreme, there may be perfect affinity to a single group (i.e., individuals are born into a 
group and remain with the group until death).  To model this scenario, we can use the 
previous derivation, modified slightly.  For ½ individuals that form groups of size G, we 
can calculate the probability of having a certain number of learned individuals, assuming 
perfect affinity to a group, as 

¸¹ =  8¸¹,½/¾:½/¾
   

 (7) 

where ¸¹,½/¾ is ¸¹ calculated for a population of size '/G assuming evenly distributed 

learned individuals, i.e. – ,6/G learned individuals per group. 

Below we present results: 
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Fig. 2.B1 Probability of culture loss for three different population sizes and 
assuming random grouping.  Red lines are simulations (average of 5000 trials), black 
lines are exact results. 

 

 

Fig. 2.B2 Probability of culture loss for four different group sizes and assuming 
random grouping.  Red lines are simulations (average of 5000 trials), black lines are exact 
results. 

 

 

 

Fig. 2.B3 Probability of culture loss for four different learning probabilities and 
assuming random groupings.  Red lines are simulations (average of 5000 trials), black 
lines are exact results. 
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Fig. 2.B4 Probability of culture loss for random vs. fixed-association groupings.  
Red lines are simulations (average of 5000 trials), black lines are exact results.  One 
would expect that associations between fully random and fully fixed would lie between 
these two curves. 
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