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Abstract

Based on the ripple analysis model outlined in Part I of this paper, predictions
are made for the detection of shape changes in spectral peak profiles. Peak shape
is uniquely described in terms of two parameters: bandwidth factor (BWF) which
reflects the tuning or sharpness of a peak, and a symmetry factor (SF) which roughly
measures the local evenness or oddness of a peak. Using profile analysis methods,
thresholds to changes in these parameters (defined as BWF/BWF and 6SF) are
measured together with the effects of several manipulations such as using different
peak levels, varying spectral component densities, and randomizing the frequencies
of the peaks. The new ripple analysis model accounts well for the measured thresh-
olds. Predictions of the three previously published models for the same profiles are
also evaluated and discussed.

INTRODUCTION

The shape of the acoustic spectrum is a fundamental cue in the perception and
recognition of complex sounds. It is, however, uncertain how this spectrum is repre-
sented in the auditory system and what specific features are extracted and empha-
sized by such a representation. In Part I of this paper [ Vranié-Sowers and Shamma,
19xx], it is proposed that the auditory system transforms the spectral profile into a
weighted sum of sinusoidal spectra — called ripples. This ripple analysis is carried out
by a bank of filters tuned to ripples of different frequencies and phases. Perception
of the profile is then based on the ripple transform of the profile and not on the pro-
file itself. This hypothesis is partly supported by physiological data demonstrating
that the primary auditory cortex (Al) is indeed capable of carrying out the ripple
analysis implied by the model [Calhoun and Schreiner, 1993; Shamma, Versnel and
Kowalski, 1993].

To test this hypothesis, a computational model was developed and applied suc-
cessfully to the prediction of perceptual thresholds of several well known profile anal-
ysis experiments [ Vranié-Sowers and Shamma, 19xx]|. However, to distinguish this
model from other profile analysis models (e.g., the maximum difference [Bernstein
and Green, 1987] and the independent channels models [Durlach, Braida and Ito,
1986]), several predictions were made regarding the detection of complex changes
in arbitrary profiles [Vranié-Sowers and Shamma, 19xx]. The most important is
that sensitivity to shifts in the “magnitude” and “phase” of the ripple transform of
an arbitrary profile should be comparable, respectively, to the frequency-difference-
limen (fdl) and phase-difference-limen (pdl) thresholds measured with single ripple
profiles [Green, 1986; Hillier, 1991; Vranié-Sowers and Shamma, 19xx].

These predictions are tested here using a spectral peak profile similar to a vowel
formant. Subjects’ sensitivities to ripple transform shifts are estimated from their
perceptual thresholds to changes in several peak shape parameters. Results are then
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compared to predictions from the ripple analysis model and also from the indepen-
dent channels model [Durlach, Braida and Ito, 1986], the maximum difference model
[Bernstein and Green, 1987], and the Ewaif model [Stover and Feth, 1983].

In the following section (Sec. I), the acoustic stimuli are described in detail and
their ripple transforms are computed. In Sec. II, changes in peak’s bandwidth, sym-
metry, and amplitude are interpreted in the ripple transform domain, respectively,
as fdl-, pdl-, and pedestal-type experiments, in the sense defined in Part I of this
paper [Vranié-Sowers and Shamma, 19xx], and detection thresholds for these three
types of experiments are predicted for spectral peak profiles. In Sec. III, experimen-
tal results are reported and compared to predictions of the ripple analysis model.
Predictions of the three alternative models for the same experiments and further
general discussion of the results are presented in Secs. IV and V, respectively.

I. DESCRIPTION OF THE PEAK PROFILES

A. Spectral peak stimulus parameters

The peak profile was defined as the envelope of a broadband stimulus consisting
of N components equally spaced on a logarithmic frequency axis (w), where w =
log, (f/f,) octaves, f is the frequency (in kHz), and f, is the frequency of the largest
peak component (Fig. 1(a)). The stimulus spectrum consisted of two portions, the
base and the peak. The base components were all equal in amplitude and they were
added in phase to peak components of different symmetries and bandwidths to form
the peak profiles. The peak profile is defined in terms of the following parameters

(Fig. 1(a)):
® w, is the location of the peak’s maximum.

e S is the slope of the profile near the peak’s maximum (in dB/octave). For
w < wy, S = L (the left slope), and for w > w,, S = R (the right slope).

e b(w) = b is the flat base of the peak profile.

® a(w) = maz - 1035(#—w) is the amplitude of the peak portion of the profile.
Amaz 18 the maximum amplitude of the peak profile (at w = w,). It is also
defined in dB as Apq.e = 20 log;o(2ms=).
Therefore, the overall peak profile (on a linear scale) is given by:
Pw) = b(w) + a(w) = b+ Qg 105,
and on a dB scale:

PaB(w) = 20 10g10(b + Gmar105©@=4)) = 20 logo(b (1 + 1075 +s(w—wa)),
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Figure 1: (a) Peak profile plotted on a linear (top) and logarithmic (bottom) am-
plitude scale. Peak level (Anqz) is 15 dB, and BWF = 0.1 octave and SF = 0.



For example, the peak in Fig. 1(a) is 15 dB in level (An,.) with slopes L = 60
dB/octave and R = —60 dB/octave around the peak. Note that around w, the peak
profile can be approximated by:

de(UJ) ~ 20 loglo(b . 10-4%“4-2%(&)—(00)) = 20 loglob + Ama:}: + S(w - wo),

i.e., the peak has approximately a triangular profile as shown in Fig. 1(a) (lower
panel).

In all experimental conditions, standard and signal consisted of N = 11, 21, or 41
zero phase components equally spaced on a logarithmic scale between 0.2-5 kHz (w
in the range +2.32 octave), with the peak always centered at 1 kHz (w, = 0 octave).
The amplitude of each component p; in the stimulus can be computed from:

p;=b+ amamlOl(i_“), for 1 < 7,,

and -
pi=b+ amazlﬂr(’"“’), for 7 > 1,

where ¢ is the component index, i, is the index of the largest peak component,
I = (L/20) - (M/N), r = (R/20) - (M/N), and M is the frequency range of the
spectrum in octaves (M = 4.64 octave). For our centered peaks, i, = (N +1)/2.
No other (than zero) phase conditions were tested since numerous previous ex-
periments have shown that phase effects on signal detection are minimal ([Bernstein,

Richards and Green, 1987; Green and Mason, 1985]).

B. Peak shape parameters

In order to describe its shape efficiently, a peak profile was parametrized uniquely
in terms of a bandwidth factor (BWF) and a symmetry factor (SF). BWF is the
bandwidth of the peak (measured at 3 dB’s below the peak) and is defined as:
BWF = 3 (1/L - 1/R) octave. The SF represents the percentage difference of the
slopes around the peak and is defined as: SF = (L + R) / (L - R). For instance,
the peak in Fig. 1(a) has BWF = 0.1 octave and SF = 0. Peaks with various other
BWUF’s and SF’s are shown in Fig. 1(b) covering the full range of profiles used in our
experiments. Conversely, given any BWF and SF, the slopes around the peak can
be computed as: R = -6/(BWF (1 + SF)) dB/octave, and L = 6/(BWF (1 - SF))
dB/octave. A third parameter — the peak level (A,,,) is also required to define the
peak completely with respect to the baseline.

To make the spectral peaks asymmetric, they were always tilted towards higher
frequencies (or to the right). This, together with choosing the peak frequency at
1 kHz and limiting the range of BWF values under 0.4 octave, ensured that the spec-
tral peaks were located above 500 Hz where the cochlear frequency axis is assumed
largely logarithmic. This is an important consideration since the peak shapes used
were explicitly defined in terms of spectral slopes along such an axis. The largest

4



BWF=0.1 BWF=0.2 BWF=0.4
| 6
o 8 60l -0 30 )\ -30 6l 15 A\ .15
LE 4 4 4
o 2 2 2
0 0
-2 0 2 -2 0 2 0-2 0 2
o 6 6 6
c“> 4 75 -50 4 37.5 -25 4 18.7/\-12.5
& 2 2 2
0 0 0
-2 0 2 -2 0 2 -2 0 2
6 6 6
g, 4| 100 }-42.9 4| 50 [\-21.4 4| 25 -10.7
"
"c'ﬁ 2 2 2
0 0 0
-2 0 2 -2 0 2 -2 0 2
, octave o, octave , octave

Figure 1: (b) Various peak profiles plotted on a linear amplitude axis. Columns
share the same BWF’s and rows share the same SF’s. Corresponding left and right
slope values (in dB/octave) are shown for each case.



BWF and SF values were also constrained by the need to ensure that the profile
substantially decayed before reaching the edges of the base (at 0.2 and 5 kHz). Fi-
nally, the range of BWF and SF values tested corresponds to those that might be
computed from the spectral envelope of speech sounds, as shown in Fig. 1(c).
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Figure 1: (c) SF’s (top) and BWF’s (in octaves, bottom) for the spectral peaks of
a naturally spoken vowel “aw”.

C. Ripple transform of the peak profile

According to the ripple analysis model [ Vranié-Sowers and Shamma, 19xx], the
detection of peak shape changes is based on the ripple transform representation of the
peak. In order to predict perceptual thresholds for the fdl-, pdl-, and pedestal-type
experiments, we need to examine the peak’s ripple transform, r(.), and specifically
how BWF and SF are interpreted in this domain.

First, the ripple spectrum P(Q) of the peak profile is for > 0 cycle/octave
computed as:

Amez 20 BWF

P(Q) = i — :
() = 1P(@)le b 3In10 M

1
1+ 270 20/(3 In10) SF BWF + (7§ 20/(3In 10) BWF)2(1 — SF?)’

where the magnitude of the ripple spectrum is:

maz ¢ BWF 1
b mM /(1402 (c BWF)2(1 — SF?))? + 2(2c SF BWF)?’

|P(Q)] =




¢ =20 7/(3 In10) ~ 9.1 and |P(0)| = 1 + 2ms=CBWE (pig 9(2))! Using this
expression, the magnitude of the ripple transform, (Q ), is computed from Eq. (4)
in [Vranié-Sowers and Shamma, 19xx] and displayed in Fig. 2(b) for two symmetric
peaks with different BWF’s (0.1 and 0.4 octaves). Note that the steepest lowpass

edges of the ripple transforms (marked by the dashed lines) are located roughly at
2, = 0.85 and 3.3 cycle/octave.

II. THRESHOLD PREDICTIONS OF THE RIPPLE ANALYSIS MODEL

A. Predictions for fdl-type measurements (Dilation thresholds)

(W)

For a peak p(w), a relative change in BWF is equivalent to dilating

the peak by a factor o = H_—slIEWF“ to p(a w). In the ripple transform domain

this corresponds to translating the magnitudes of the ripple spectrum and ripple
transform of a peak (Sec. I B in [Vranié-Sowers and Shamma, 19xx]) by log, «
octave on the logarithmic §, axis (Figs. 2).

Since the locations of the steepest lowpass edges of the ripple transforms of all
peaks used here fall in the range 2, =0.85-7 cycle/octave, then the ripple analysis
model (A curve in Fig. 3(c) in [Vranié-Sowers and Shamma, 19xx]) predicts that
subjects should detect a 0.26 octave shift in r(£2,). Since we always increased BWF
in our experiments (i.e., BWF> 0 octave), then A = —0.26 octave (= log, «), i.e

o = 0.83. This corresponds to %3\}%?_ = 0.2, or a 20% increase in BWF regardless
of the standard peak’s bandwidth. This estimate is also independent of the peak’s
symmetry (SF) since the latter mostly reflects the phase (not the magnitude) of the
ripple transform (see discussion below).

!Note that these expressions can be simplified for the range of parameters used in our experi-
ments. For instance, for small SF’s (SF? < 0.5) the magnitude is independent of the SF:

Amaz ¢ BWF 1

PO~ = S T e e BWr)

For SF? < 1, the phase function is given by:

Q (2c BWF)
1+ Q2 (c BWF)?

tan(8(Q)) =~ 6(Q) = -SF
which becomes
6(Q) ~ SF

for @ ~ , l.e., around © = 0.3,0.5,1.1 cycle/octave for BWF= 0.4, 0.2, 0.1 octaves,
respectlvel K ote that these are the (s at which the magnitude of the npple transform of the
peak 7(£,) is maximum (Fig. 2(b)) and hence where the bulk of the profile energy lies. The
correspondence above between the §(Q2) and SF is more analytically established in Appendix A.
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Figure 2: (a) Ripple spectra of peak profiles with A,,,, = 15 dB, SF’s=0, and BWF’s
= 0.1 and 0.4 octaves. (b) Ripple transform magnitudes, r(€2,), of ripple spectra in
(a). The effect of a BWF change is a shift (and not a change in shape) of the ripple
transform along the logarithmic {2, axis. For example, a four-fold increase in BWF
(from 0.1 to 0.4 octaves), i.e., LEHE = 3 or a = 0.25 results in a (A = log, a =) 2
octave downward shift in r(£,).
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Figure 3: (a) The effect on a change in the symmetry of a peak profile (BWF
= 0.4 octave, SF = 0) due to adding constant phases (3°, 9°, 18°, or 0.05, 0.16,
0.31 radians) to its Fourier transform. (b) Changes in the symmetry of a peak
(BWF=0.4 octave, SF=0, dashed line) due to adding a constant phase 11.5° = 0.2
radians (dotted line) and due to changing the SF by §SF = 0.2 (solid line).



B. Predictions for pdl-type measurements (Ripple phase sensitivity)

Adding a small constant phase angle to all components of the peak ripple trans-
form r(-) translates the phase function of the ripple transform and changes the peak’s
symmetry or SF, as demonstrated in Figs. 3. In Appendix A it is shown that 6SF
is approximately equal to the ripple phase of the peak profile (in radians). Hence,
in all measurements reported here, the peak’s ripple phase was manipulated simply
by changing the SF directly (i.e., the slopes L and R around the peak) rather than
via forward-inverse ripple transform operations.

The ripple phase sensitivity for peak profiles can be predicted from the ripple
analysis model as follows. For the broader peaks (BWF > 0.1 octave) the bulk
of the ripple transform (Fig. 2(b)) lies in the low ripple range (< 1 cycle/octave).
Therefore, phase sensitivity is predicted to be constant at approximately 6° or 0.1
radians (Fig. 4(b) in Part I, the 25 dB curve). Equivalently, subjects should be able
to detect a SF change (6SF) of approximately 0.1. This threshold estimate would
increase for the narrowest peak (BWF = 0.1 octave) as the ripple transform shifts
upwards towards the range of £, > 1 cycle/octave. Note that, as for the fdl- type
tests, none of these predictions depend on the standard’s peak symmetry.

C. Predictions for pedestal-type measurements (Peak amplitude sensitiv-
ity)

The ripple analysis model is basically linear and hence pedestal-type experiments
should yield comparable thresholds regardless of the exact shape of the spectral pro-
file. The only data previously available for such experiments used a single component
pedestal profile (Fig. 5.4 in [Green, 1988]). Specifically, thresholds ranged between
-8 and -16 dB’s for pedestals up to 24 dB larger than the base. The variability is
attributed to masking effects depending on the spectral density in the vicinity of
the signal [Green, 1988].

III. MEASURED THRESHOLDS FOR PEAK SHAPE CHANGES

A. Methods

The experiments are similar in methodology to previously reported profile analy-
sis experiments ([Bernstein and Green, 1987; Bernstein, Richards and Green, 1987,
Green, Mason and Kidd, 1984; Kidd, Mason and Green, 1986]). The specifics
of the experimental procedures used are identical to those described in Part I
(Sec. II B.2(i)) of this paper [ Vranié-Sowers and Shamma, 19xx]. Again, the wave-
form was turned on 10 ms following the onset in order to suppress the large ampli-
tudes due to zero phases.

The step size was defined in terms of a change in the right slope of the peak and it
differed across the testing conditions, ranging from 0.3 dB/octave — 5.5 dB/octave.

Threshold measure was defined as the amount of change in BWF or SF needed for
detection (for, respectively, a constant SF or BWF testing condition), i.e., S(BWF or
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6SF. In the case of BWF change tests, the normalized by the peak’s BWF thresholds
were used (i.e., S(BWF/BWF).

The results reported are based on data from two to five normal hearing subjects,
depending on the particular test.

B. Detection of change in bandwidth (Dilation thresholds)

Experiments here measured detectability of a dilation (stretching) of the spectral
peak or, equivalently, of an increase in its BWF, while holding the peak symmetry
constant. To recognize the signal, subjects reported listening to several different
sound qualities, e.g., pitch and sharpness of sound. Some reported changing strate-
gies depending on the testing conditions.

In the parameter range tested, dilation thresholds remained relatively constant
at a = 0.8 (or SBWF/BWF =~ 0.22) regardless of standard’s peak shape (Figs. 4).
This result is consistent with predictions of the ripple analysis model discussed above
in Sec. IT A.

Thresholds only slightly decreased for higher peak amplitudes (i.e., > 15 dB in
level), but increased sharply for lower amplitudes perhaps due to masking effects of
the base upon the smaller peak profiles (Appendix B.1, Fig. B1). Thresholds were
also relatively independent of spectral component density (Fig. B2).

Two conclusions can be drawn from the above results. First, the constancy of
the dilation thresholds in the peak profiles is directly related to the constancy of the
fdl’s in the 0.85 — 7 cycle/octave range (A curve in Fig. 3(c) in [ Vranié-Sowers and
Shamma, 19xx]). Second, the measured dilation thresholds hold regardless of the
exact details of the peak shape since the thresholds depend only on the shift and
not on the shape of the ripple transform magnitude (Sec. II B.1 in [Vranié-Sowers
and Shamma, 19xx]).

C. Detection of change in symmetry (Ripple phase sensitivity)

These experiments measured subjects’ sensitivity to a change in peak symmetry
while holding its BWF constant or, equivalently, a shift in the phase of the ripple
transform of the peak profile. Subjects trained relatively quickly to distinguish signal
from standard, reportedly based on pitch-like cues. This “pitch” effect is further
explored in Sec. IV C.

In the parameter range tested, ripple phase sensitivity remained relatively con-
stant at approximately 6° (or §SF = 0.11) regardless of the peak shape (Figs. 5).
There was, however, a consistent small increase in threshold as a function of de-
creasing BWF (Fig. 5(b)), especially at the narrowest peaks (BWF= 0.1 octave)
where thresholds rose to 10° (6SF = 0.17).

Thresholds changed only slightly for different peak amplitudes and spectral com-
ponent densities (Figs. B3 and B4, Appendix B.2). The major exception was the
narrowest peak where decreasing spectral density caused detection thresholds to rise
significantly. '
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clearly), are averaged over three listeners and three BWF’s (0.1, 0.2, 0.4 octaves)
in (a) and five SF’s (0, 0.1, 0.15, 0.2, 0.4) in (b). The error bars are the standard
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Ripple phase sensitivity measurements shown here are similar to those previously
obtained with ripple profiles (Sec. I B.2(iii) in Part I [Vranié-Sowers and Shamma,
19xx]), in that both exhibit a constant minimum threshold of approximately 6° at
low ripple frequencies (or, equivalently, for broad peaks) which gradually rises at
higher ripples (or narrow peaks). These results, therefore, are consistent with the
predictions of the ripple analysis model.

D. Detection of change in peak amplitude (Peak amplitude sensitivity)

Thresholds for a change in the amplitude of the peak (test A in Fig. 6) were
measured in the range —7 to 10 dB’s (values are given in the parentheses in Fig. 6)
for all peak standards. While they were independent of the SF’s, thresholds were
slightly lower for the narrowest peaks (BWF = 0.1 octave). These thresholds are
comparable to those obtained with single component pedestals. They are also con-
sistent with the notion that this linear ripple analysis model (which does not take
into account explicitly the masking effects) may be an adequate first-order approx-
imation for pedestal-type experiments with larger-than-base pedestal profiles.

This experiment also serves in a different way as a control to rebut the argument
that dilation thresholds may simply reflect the detection of a change of total peak
profile energy, rather than of bandwidth per se. This is because in all dilation tests
(Sec. I1I B) the energy was not equalized as the peak bandwidth was altered. In this
experiment, BWF was kept constant as the peak amplitude increased. So, if the two
tasks were based on energy change, then the rms-thresholds should be comparable.
The plots in Fig. 6 demonstrate that this is not the case, since rms-thresholds
for dilation tests are uniformly lower by approximately 6 dB’s, i.e., subjects are
specifically sensitive to a change in peak bandwidth.

IV. THRESHOLD PREDICTIONS BY OTHER PROFILE ANALYSIS
MODELS

In this section detection thresholds measured for peak and ripple profiles are
compared to predictions from three different models of profile analysis: the inde-
pendent channels model [Durlach, Braida and Ito, 1986], the maximum difference
model [Bernstein and Green, 1987), and the Ewaif model [Feth, O’Malley and Ram-
sey, 1982; Stover and Feth, 1983]. The first two models operate on the profile directly
and assume that profile changes are conveyed by independent channels distributed
across the spectrum. The third model bases detection on a derived “pitch-like”
measure (the Ewaif pitch) from the profile. The validity of predicted thresholds is
judged based on the constancy of the d’c index (o is the variance of the channels,
see below) and the Ewaif pitch computed at perceptual thresholds.

A. The channel model
This model is described in detail in [Durlach, Braida and Ito, 1986; Green, 1988].

It combines information from N independent noisy channels whose variances (o)
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a BWF change (test B). The rms—threshold for the two tests is defined as

20 log \/Zfil(Api/ p:)?, where Ap; is the change in the amplitude of the i** com-
ponent at threshold, p; is the amplitude of the ¢** component in the standard, and
N is the number of components. The values in the parentheses are computed as
20 log Apn41/2/PN+1/2, where py.1/2 is the central component of the pedestal stan-
dard. Three subjects participated in this series and were tested at two SF’s (0, 0.4)

and three BWF’s (0.1, 0.2, 0.4 octaves), for a 41 component complex and at 15 dB
standard peak level.
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are assumed to be constant. Some interdependence between the channel outputs
is introduced because of the level randomization in the experiments. The uniform
roving level distribution over a 20 dB range (cr = 5.6) is approximated by a normal
distribution of og = 5. Furthermore, it is assumed that the channel variances are
such that op - N > o. The level difference between the standard’s and signal’s
i** component is defined as A; = 20 log((p:)signat/ (Pi)standard). These assumptions

lead to d' = \/(Z A? — L( A:)?)/o. The numerator (or d'c) was computed at
perceptual thresholds for different testing conditions (Tables I) and at the limits of
the error bars, in order to determine its sensitivity to threshold changes. Since no
explicit o values are used, absolute threshold values will not be predicted. Instead,
we shall be mostly concerned with the trends in the data and with the relative
threshold values for different profiles.

For 6BWF tests all d'o’s (with one exception) are comparable when considering
the significant overlap due to the error bars (Table I(a)). Thus, the model predicts
that dilation thresholds for peak profiles are constant regardless of the shape of the
standard peak. This is consistent with the measured thresholds.

For é6SF tests the stimuli are “balanced” (see [Durlach, Braida and Ito, 1986))
in that 3" A; &~ 0 or at least (3 A;)? < NY. A?. Here, the channel model makes
two erroneous predictions (Table I(b)): (1) As a function of SF it predicts a small
consistent decrease in thresholds that is not evident in the data; (2) As a function of
BWF it predicts that phase sensitivity improves with increasing BWF’s, rather than
being constant for broad peaks (BWF=0.2 and 0.4 octaves) as the data indicate.

Interestingly, the model is able to predict a constant phase sensitivity (Table I(c))
for low frequency ripples (< 1 cycle/octave) when applied to single ripple profiles
discussed in Sec. II B.2 in [Vranié-Sowers and Shamma, 19xx]. It is unclear why
this constancy of thresholds is not seen with the peak profile predictions?.

B. The maximum difference model

The maximum difference model described in [Bernstein and Green, 1987] is
based on detecting the largest difference between any pair of components in the
signal, i.e., it uses only two channels in computing the thresholds. The model
was derived from experimental results with flat standards and was defined ac-
cordingly for such tests. It predicts well the thresholds in a number of profile
analysis tasks [Bernstein and Green, 1987]. In order to apply the model to the
peak stimuli the computational scheme was slightly modified. For instance, we
define the level difference between the :** and j™ frequency component as A,; =

20 log((pi)signal/(pi)standard) - 20 log((pj)signal/(pj)standard)- AlSO, Contrary to the
assumption of the original model ([Bernstein and Green, 1987]), we take the o’s to

2The d o' values were also computed using only 41 components, or in effect 41 independent
channels. They were about half of the values reported in Table I(c) for 161 components and are,
therefore, comparable to those for peak profiles.
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d'o for SBWI test

BWI (octave)
0.2

Sp 0.1 0.4 average

0 311 £0214 302 £0.19 238 £0.21 2.90

0.1 12 £023  3.16 £0.20  3.27 £0.25 3.18

average 311 3.09 2.92

SBWE/BWY 213 £1.8% 20,0 £1.4% 23.6 £2.1%
threshold

d'o for SSI test

BWI {octave)
S 0.1 0.2 0.4 average

0 2.96 £0.19 288 £0.13  3.97 £0.18 3.

3
<1

0.4 336 £0.22 322 2015 133 £0.20 3.61

average 3.16 3.03 113

51 0.16 £0.00  0.11 £0 003 0.11 £0.005
threshold

d'o for phase-ripple experiment

ripple frequency (cycle/octave)
025 05 1 2 1

d'o 9.59 1041 8.89 9.7 19.0 1958

pdl 13 dB 8.00° 9.08° V.33 81 1622 34T

d'e 10.67 10,20 1008 1132 28.39

pdl. 25 dB R A 1 § R Y S © L B % i

Table I: d'c (dB) values for the “independent channels model” (Sec. IV A). (a)
d'o for SBWF tests are evaluated at threshold and error bar limit values which are
given at the bottom of each table. (For example, for BWF = 0.1 octave and SF=
0, 6(BWF/BWF = 21.5% with error bar limits of £ 1.8%, and the corresponding
d'o = 3.11 £ 0.24.) Thresholds are taken from Fig. 4(b) (41 components and 15 dB
peak level). (b) d'c values for §SF tests. The table is organized as Table I(a) with
threshold values from Fig. 5(b) (41 components and 15 dB peak level). (¢) d'o for
pdl tests with ripple profiles for 15 dB and 25 dB ripple levels and thresholds from
Fig. 4(b) in Part I (161 components). (The d'c values for 41 components, for ripple
frequencies between 0.25 — 4 cycle/octave, are half of the values reported here for
161 components.)
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be constant for all channels and, hence, the largest d’ is defined by the largest A; ;
(defined as A).

For §BWF tests A is approximately constant for all SF’s and BWF’s (Table
II(a)). Therefore, the model predicts well the perceptual trends assuming constant
o’s across all spectral regions. If o’s are allowed to increase towards the edges (as
in [Bernstein and Green, 1987]), d' would decrease with increasing BWF predicting
erroneously higher thresholds for these conditions.

For é6SF tests the model makes two erroneous predictions (Table II(b)): (1) Like
the channel model it predicts a small consistent decrease in thresholds as a function
of SF that is not evident in the data; (2) It predicts a constant phase sensitivity as
a function of BWF for all peaks, i.e., it does not account for the increase in §SF
thresholds for the narrowest peaks (BWF = 0.1 octave).

The model is also able to predict a constant phase sensitivity for low frequency
ripples (< 1 cycle/octave) when applied to the single ripple (Table II(c)). Therefore,
unlike the channel model above, this model consistently predicts the constant phase
property for both the ripple and peak profiles. The failure of the model to predict
the declining phase sensitivity at high ripple frequencies is likely because it does not
explicitly incorporate data such as the ripple-pdl in Fig. 4(b) in [ Vranié-Sowers and
Shamma, 19xx].

C. The Ewaif model

Numerous experimental results have suggested that the detection of spectral
shape changes may in some cases be effectively mediated by pitch cues associated
with these spectral changes ([Berg, Nguyen and Green, 1992; Feth, O’Malley and
Ramsey, 1982; Richards, Onsan and Green, 1989; Stover and Feth, 1983]). In order
to assess the possible contribution of such a pitch cue in our tests, we measured
the effect on thresholds of randomizing peak locations - a procedure which in effect
destroys the pitch cue. The change in thresholds was then compared to what would
be predicted from the theoretical strength of the pitch cue computed for each test
using the so-called Ewaif model [Stover and Feth, 1983].

1. Stimulus

The entire spectral content was randomly shifted in order to prevent listeners
from using standard’s and signal’s complex pitches for spectral shape change de-
tection. Frequency shift was achieved by randomly changing the sampling time in
a range of 40 us to 45 us in steps of 0.5 us. This amounts to shifting the central
component from 1000 Hz to 889 Hz and all the other components accordingly to
preserve the frequency spacing.

The measured thresholds and the corresponding Ewaif pitches are presented in
Tables III. The Ewaif pitches were computed for zero phases which corresponds to
our stimulus condition.
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A for SBWI test

BWI (octave)
S 01 02 0.1 average

0 L3 L3719 116

0.4 L1s L3T L339 147

average L1 137 L39

SBWI/BWE 20.53% 20% 23.6%
threshold

A for 8SI test

BWI* (octave)
S 0l 02 04 average

0.1 307 201 209 2.10

average 273 181 L1.87

&5 0.6 011 0.1l
threshold

A for phase-ripple experiment

ripple frequency {cycle/octave)
025 0.5 ! 2 1

RY 212 238 197

©
e
53

123 1Ll

pdl. 13 dB 8.00° 9.08° 733 8.4° 1622 1317

A 2.3

[3-2
-
39
(32
by
=

316 632

pdl. 25 dBB 3300 3310 501 T 1438

Table II: Maximal difference levels, A (dB), for the “maximal difference model”
(Sec. IV B). Tables are organized as Tables I.
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2. Assessing the data using the Ewaif model

In order to assess the amount of a pitch cue contribution to the detection of
changes in our stimulus, the following two arguments (from [Richards, Onsan and
Green, 1989]) are used: 1) If the detection process relies primarily on a pitch cue
(as defined by the Ewaif model), then some minimal pitch difference, AF ([Feth and
Stover, 1987]), or relative pitch difference, AF/Fg, ([Richards, Onsan and Green,
1989)), is necessary for detection. Therefore, AF or AF/Fy;, at perceptual thresholds
should remain relatively constant.

2) If a threshold deterioration occurs due to the uncertainty in the randomized
signal and not due to the pitch differences across the testing conditions, then it
should be uniform across all conditions. Otherwise, the deterioration probably re-
flects the effective contribution of the pitch cue. This is evaluated by the change in

values of the NR-R in Tables III.
3. Results and discussion

(1) Effects on detection of BWF changes (Table Ill(a))

The AF and AF/F, values vary greatly (approximately 7-fold) across the SF’s
and BWF’s. Note also a change in sign of AF across various testing conditions.
This strongly suggests that the pitch cue plays a minimal role in this discrimination
task. Furthermore, a near uniform increase of the thresholds when the signal is
randomized supports the notion that it is due to an uncertainty effect rather than
an abolishment of a pitch cue.

(it) Effects on detection of SF changes (Table III(b))

With respect to the first argument above, it is clear from the AF and AF/F;,
values in Table ITI(b) that not all pitch cues are equal at threshold, since both in-
crease approximately 4-fold over the SF’s and BWF’s tested. However, the rise in
OSF for the narrowest peak might be due to decreasing pitch cue. This is further
supported by the data with respect to the second argument, namely that the ran-
domization affects only the §SF thresholds of the narrower peaks. Therefore, the
evidence here suggest that the pitch cue may be effective only for these peaks.

V. DISCUSSION

We measured subjects’ ability to detect changes in the shape of peak profiles
under various conditions. Specifically, our goal was to demonstrate that, for profiles
that satisfy the two constraints outlined in Sec. IV B of [ Vranié-Sowers and Shamma,
19xx], thresholds for dilating the profile, shifting its ripple phase, or changing its
overall amplitude, are rather independent of the details of the profile. More gen-
erally, these manipulations can be interpreted and thresholds predicted within the
unified framework of the ripple analysis model.
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BWF (octavc)

01 0.2 0.4
SF

SBWF test 0 0.4 0 0.4 0 0.4

NR 0.30 0.31 0.32 0.25 0.23 0.23
R 0.43 0.42 0.62 0.53 0.37 0.36
-(NR R) 0.13 0.11 0.30 0.28 0.14 0.13
| 1290.52  1327.40 122778 1329.10 122327 1430.39
F.. 1243.44  1318.03 1216.00 1377.66 1235.29  1305.61
AF=F,iu-F oy 38.65 9.66 11.69  -49.96 -20.78  -T3.16
AF/F,, - 100 2.99 0.73 0.95 376 -2.19 -3.11

BWF (octave)

0.1 02 0.4
SF
88F test 0 04 0 04 0 04
NR 027 0.27 0.13 0.15 0.13 0.1t
R 036 0.44 0.27 0.23 017 0.12
{NR R) 0.09 0.17 0.14 0.08 0.04 0.01
Foa 1290 52 1327.40 1227.73  1329.10 122327 1430.59
| 131358 1345.59 1258.54  1369.30 129342 1495.99
AF=F,,-F., 2504 -18.19 -30.83  -40.25 -70.13  -65.39
AF [F,, - 100 -1.94 -137 <251 -3.03 -3.73 -4.57

Table III: (a) 6BWF/BWF and (b) 8SF detection thresholds for non-randomized
(NR) and randomized (R) spectra (Sec. IV C). The tables are organized in the
same way. The first two rows are the NR and R thresholds. The third row is the
difference of the first two. The forth and fifth rows are the computed Ewaif pitches
of standard (F,,) and signal (F,;,) at perceptual threshold levels for NR condition
and zero-phase components. The AF row is AF = Fg,—~F,;;. The last row is the
relative pitch difference, AF/F,;, in percentage. Note in (a) a change in sign of AF
across various testing conditions, which may explain the change in strategies that
our subjects reported in performing éBWF task.

Three subjects participated in BWF and two in §SF series. They were tested at
two SF’s (0, 0.4) and three BWF’s (0.1, 0.2, 0.4 octaves) for 41 spectral density
complexes and at 15 dB peak level.
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The results obtained seem on the whole to confirm these hypotheses. Thus, dila-
tion thresholds for peak and single ripple profiles (fdl’s ) are similar (Secs. III B and
IT A, respectively). Thresholds for changes in peak symmetry are also readily inter-
pretable as ripple phase sensitivity and are close to those obtained from changing
the phase of ripple profiles (Secs. III C and II B, respectively).

Also examined in this paper is the ability of other profile analysis models to ac-
count for the measured threshold values and trends. The channel model fails mostly
in the phase sensitivity tests (§SF and pdl test for ripple profiles), where its predic-
tion of trends are at variance with the measured results. The maximum difference
model faired the best among the three alternatives considered. On the whole it pre-
dicts correctly the trends in all dilation thresholds and most phase sensitivity tests.
The most obvious flaw is its inability to predict the deterioration of phase sensitiv-
ity for higher ripple frequencies and narrow peak profiles. It is conceivable that the
model can be modified to take these measurements into account. For example, a
suitable smoothing of the spectral profile may reduce the effective amplitude of the
higher ripple components, in effect raising their thresholds. Finally, the Ewaif model
cannot account for the §BWF thresholds and accounts only partially for the éSF
measurements. Clearly, these criticisms apply only to the specific formulations of
the models considered here and it is possible that future modifications will improve
their predictions significantly.

Note, however, that the maximum difference model was originally developed
specifically to predict idl-type tests and not the fdl- and pdl-type tests discussed
here. Therefore, a better comparison of the ripple analysis and the maximum differ-
ence models might be to account for the detection threshold of a profile composed
of several ripples that do not appreciably interact within the same filter (e.g., sep-
arated by more than an octave). For different phases of the ripples the shape of
the profile changes and so too the predicted thresholds of the maximum difference
model. In contrast, the ripple analysis model predicts that detection thresholds are
independent of the relative phases of the ripples. A specific example of such a pro-
file is the square wave which is composed of a large fundamental ripple and smaller
odd harmonics. The maximum difference model predicts the threshold based on the
amplitude of the square wave, whereas the ripple analysis model predicts it based on
the amplitude of the fundamental (largest) ripple component. The two amplitudes
differ by a small (hopefully measurable) factor of 4/.

In summary, the ripple analysis model is able to integrate efficiently data from
a diverse set of profile analysis tests. It also provides a descriptive framework and a
computationally tractable formulation to conceive of and test new hypotheses. But
perhaps the most important impetus for pursuing this type of profile analysis model
is the recent physiological findings on the functional organization of the auditory
cortex [Calhoun and Schreiner, 1993; Shamma, Versnel and Kowalski, 1993]. These
results support the notion that the auditory system performs a ripple analysis of
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the spectral profile via ripple frequency and phase selective filters. The linear ripple
analysis model presented here is a simplified formulation of this type of auditory
processing.
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Appendix A Adding a constant phase to the rip-
ple spectrum of the profile

Consider the profile p(w) whose Fourier transform is P({2):

p(w) = — " P@)ed(ans).

T 2 oo

Adding a constant phase angle 8, to all the transform components changes the profile
to:

poo(w) = /oo P(Q)ejooeﬂﬂ'ﬂwdﬂ +A P(Q)e—geoeﬂwﬂwdﬂ’

where the integral is split to emphasize that the phase function (added to negative
frequencies and subtracted from positive frequencies) must be odd as a function
of  in order for py, to remain real. This expression can be simplified further by
substituting e*% = cos(,) % j sin(6,), and collecting terms:

poo(w) = cos(ao) /°° P(Q)eﬂrﬂwdﬂ —_ Sin(ao) /oo ]P(Q) . Szgn(g) . 6]‘21\'de9‘

-0 —_

Therefore,
ps,(w) = cos(6,)p(w) + sin(6,)H(p(w)),

where H(p(w)) is the so-called Hilbert transform of p(w). This is the expression
used in computing the profiles in Fig. 3(a). A simpler expression can be used for
the case of small 4, (cos(8,) =~ 1 and sin(f,) = 6,):

po,(w) = p(w) + 6. H(p(w))- (A1)

Another way of changing the symmetry of the peak p(w) is by changing its SF
by some 6SF. The new tilted peak is:

_ R (w—wo)
pssF(w) = b+ amay 102 BWF rSFresF (V=) — b+ amaz 10%° (1+1+2;)

bt e 1050

where w > w, and the approximation holds for éSF <« 1 + SF. To simplify the
algebra, let the peak be centered at w, = 0 with b = 1, and let the starting peak be
symmetric (SF = 0) with slopes S (defined in Sec. I A). Then:

pos(w) = p(w) + dmas 105¢ (10 SF @ _ 1)
= p(w) + (p(w) — 1) (eF 5SF w W10 _q)
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~ p(w) + 6SF - [(p(w) — 1) - (|S]| w) - In 10/20]. (A2)

Comparing the Eqs. (A1) and (A2), it is evident that to interpret 6SF as equal to
the ripple phase shift 6,, we must have:

H(p(w)) = (pw) — 1) - (IS| w) - In10/20. (A3)

This equivalence is demonstrated in Fig. A1 where the two expressions are plotted
together. The correspondence between pssp(w) and pg,(w) is further illustrated in
Figs. 3 (text).

5 45 1 05 0 05 1 15 2

Figure Al: Comparing the two sides of Eq. (A3) for a peak with SF=0, BWF=0.2
octave, and A.; = 15 dB amplitude (or b + @pq; = 6.62). The solid line is the
Hilbert transform and the dashed line is the right-hand side of the Eq. (A3).

25



Appendix B Dependence on peak amplitude and
spectral density

1. Detection of change in bandwidth

(i) Dependence on peak amplitude

The dependence of SBWF/BWF thresholds on peak levels was examined using
10 dB, 15 dB, and 20 dB peak amplitudes. The average results of three subjects are
shown as a function of SF and then as a function of BWF in Figs. Bl(a) and (b),
respectively. (One of the three subjects also participated in SBWF tests reported in
Sec. III B.)

The plots confirm that, at a particular level, the SBWF/BWF threshold is largely
independent of peak shape. However, thresholds do vary as a function of peak level
but mostly at lower peak levels. For instance, on average, the rate of threshold rise
in going from 20 dB to 15 dB peaks is less than half of that seen between 15 dB and
10 dB peaks.

(11) Spectral density dependence

These experiments explored threshold dependence on the spectral density of the
complex while keeping total base bandwidth constant (0.2-5 kHz). Peak level was
kept at 15 dB level and 11, 21, and 41 component complexes were used. The average
results of three subjects are presented in Figs. B2 as a function of SF in (a) and
BWF in (b).

The §BWF/BWF thresholds remain constant for almost all conditions tested,
i.e., regardless of peak shape and spectral density. The one obvious exception is at
the broadest peak for the 11 component case, where thresholds increase significantly.

2. Detection of change in symmetry
(i) Dependence on peak amplitude

These experiments tested §SF threshold dependence on peak amplitude for var-
ious testing conditions (Figs. B3). The data are averaged over the BWF’s in
Fig. B3(a) and over the SF’s in Fig. B3(b) for each of the peak levels.

Two conclusions can be derived from these data: (1) The same trends described
earlier hold regardless of peak levels. Thus, except for the narrowest peak, all 6SF
thresholds are the same regardless of peak shapes studied. Note that on average, the
three subjects tested here exhibited uniformly higher thresholds than the earlier five
in Sec. III C. (One of the subjects participated in 8SF tests reported in Sec. III C.)
(2) 8SF thresholds (as a function of BWF) deteriorate faster at the narrowest than
other peaks with decreasing peak level (Fig. B3(b)). This rise is largely responsible
for the upward shift in the mean of §SF’s (as a function of SF, Fig. 3(a)) for smaller
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Figure B1: Bandwidth factor change detection thresholds, §BWF/BWF, for 41
component complex were measured for three subjects over the following conditions:
three SF’s (0, 0.2, 0.4), three BWF’s (0.1, 0.2, 0.4 octaves), and at three peak levels
(Amaez = 10 dB, 15 dB, 20 dB). The BWF/BWTF thresholds are shown as a function
of SF in (a) and BWF in (b). Points are offset along the abscissa for clarity.
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Figure B2: §BWF/BWF thresholds for 41, 21, and 11 component complexes and
15 dB peak level are averaged over three subjects and three BWF’s (0.1, 0.2, 0.4
octaves) in (a) and two SF’s (0, 0.4) in (b). Threshold is independent of spectral
density for all but the broadest BWF, where it increases for the 11 component, case.
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Figure B3: Symmetry factor change detection thresholds, §SF, for 41 component
complex and three peak amplitudes (10 dB, 15 dB, 20 dB). At each peak level the
data are averaged over three subjects and three BWF’s (0.1, 0.2, 0.4 octaves) in (a)
and three SF’s (0, 0.2, 0.4) in (b). The large error bars in (a) are due to the §SF
threshold increase for the narrowest peak (BWF=0.1 octave) seen in (b). Points are
slightly offset along the abscissa for clarity.
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peak levels. The overall slight rise in thresholds may reflect the masking of the peak
by the base, which presumably increases for lower peak levels.

(it) Spectral density dependence

Once again, all §SF values and trends described earlier largely hold regardless of
spectral densities (Figs. B4). The most prominent change in §SF thresholds occurs
as a function of spectral density at the narrowest peak (Fig. B4(b)). The threshold
here deteriorates rapidly as the spectral density decreases and, as in Fig. B3(a), it
is largely this accelerated rise that is responsible for the upward shifts in the mean

of 6SF in Fig. B4(a).
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Figure B4: §SF thresholds for 41, 21, and 11 component complexes and 15 dB peak
level are averaged over four subjects and three BWF’s (0.1, 0.2, 0.4 octaves) in (a)
and three SF’s (0, 0.2, 0.4) for 41 and 21 component tests and two SF’s (0, 0.4) for
11 component case in (b). As in Fig. B3, the large error bars in (a) are due to §SF
increase for the narrowest peak seen in (b). Note that in (b), most 6SF changes
with spectral density occur at the narrowest peak.
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