
ABSTRACT

Title of Thesis: Computer Aided Design of Side Actions for Injection

 Molding of Complex Parts

 Ashis Gopal Banerjee, Master of Science, 2006

Thesis directed by: Associate Professor Satyandra K. Gupta

 Department of Mechanical Engineering

Often complex molded parts include undercuts, patches on the part boundaries

that are not accessible along the main mold opening directions. Undercuts are molded by

incorporating side actions in the molds. Side actions are mold pieces that are removed

from the part using translation directions different than the main mold opening direction.

However, side actions contribute to mold cost by resulting in an additional manufacturing

and assembly cost as well as by increasing the molding cycle time. Therefore, generating

shapes of side actions requires solving a complex geometric optimization problem.

Different objective functions may be needed depending upon different molding scenarios

(e.g., prototyping versus large production runs). Manually designing side actions is a

challenging task and requires considerable expertise. Automated design of side actions

will significantly reduce mold design lead times. This thesis describes algorithms for

generating shapes of side actions to minimize a customizable molding cost function.

Given a set of undercut facets on a polyhedral part and the main parting direction,

the approach works in the following manner. First, candidate retraction space is

computed for every undercut facet. This space represents the candidate set of translation

vectors that can be used by the side action to completely disengage from the undercut

facet. As the next step, a discrete set of feasible, non-dominated retractions is generated.

Then the undercut facets are grouped into undercut regions by performing state space

search over such retractions. This search step is performed by minimizing the

customizable molding cost function. After identifying the undercut regions that can share

a side action, the shapes of individual side actions are computed.

The approach presented in this work leads to practically an optimal solution if

every connected undercut region on the part requires three or fewer side actions. Results

of computational experiments that have been conducted to assess the performance of the

algorithms described in the thesis have also been presented. Computational results

indicate that the algorithms have acceptable computational performance, are robust

enough to handle complex part geometries, and are easy to implement. It is anticipated

that the results shown here will provide the foundations for developing fully automated

software for designing side actions in injection molding.

Computer Aided Design of Side Actions in Injection Molding of
Complex Parts

by

Ashis Gopal Banerjee

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Master of Science

2006

Advisory Committee:

 Associate Professor Satyandra K. Gupta, Chair/Advisor
 Professor Abhijit Dasgupta
 Professor Shapour Azarm

© Copyright by
Ashis Gopal Banerjee

2006

DEDICATION

To my parents and all those who made it possible

 ii

ACKNOWLEDGEMENTS

First and foremost I would like to express heartfelt appreciation and sincere

gratitude to Dr. Satyandra K. Gupta for providing me this wonderful opportunity to

conduct research under his astute guidance. His boundless energy, wonderful analytical

skills, cool and calm composure and motivational power has made this experience an

invaluable one. I am sure this will stand me in good stead in my future research and

professional career as well. I would also like to thank Prof. Abhijit Dasgupta and Prof.

Shapour Azarm for readily accepting to be in my thesis committee.

Then I am thankful to University of Maryland, College Park, Department of

Mechanical Engineering and The Institute for Systems Research for their support and

facilities. I also want to express my appreciation to all my CIM lab friends, namely, Alok,

Abhijit, Tao, Antonio and Xin for their help. Special thanks go to Alok for his invaluable

advice on C++ and geometric kernel programming and to Abhijit for proof-reading my

thesis and providing constant words of encouragement.

Of course, all this has been made possible by my parents and other family

members. I can never thank Mom and Dad enough; they are the most wonderful parents

one can ever hope to have. Their unfailing emotional support, love and affection have

carried me through trying circumstances. I would not have been able to enjoy this

achievement fully without them.

Last but not the least I want to thank all my dear friends: Arvind, Max, Mukul,

Basu, Sahoo, Vipul, Rajat, Singhal, Ma, Srini, Avik, Sourav, Jignesh, Ramakanth,

Milind, Tejas, Srilatha, Shivani, Raee, Madhura and many others for advice, friendly

rebukes and loads of affection.

 iii

TABLE OF CONTENTS

List of Figures vi

List of Tables viii

1 INTRODUCTION 1

 1.1 Injection Molding Background ……………………………………. 1

 1.2 Single Material Molding …………………………………………... 4

 1.2.1 Single Material Molding Equipment ……………………… 4

 1.2.2 Single Material Molding Process ………………………….. 12

 1.3 Motivation …………………………………………………………. 15

 1.4 Research Issues ……………………………………………………. 18

 1.5 Thesis Outline ……………………………………………………... 21

2 LITERATURE SURVEY 22

 2.1 Determination of Parting Directions ……………………………… 23

 2.2 Determination of Parting Line and Parting Surface ………………. 32

 2.3 Undercut Feature Recognition …………………………………….. 36

 3.4 Design of Side Cores ……………………………………………… 38

 3.5 Design of Multi-piece and Multi-Stage Molds ……………………. 40

 3.6 Die Design and Other Related Work ……………………………… 44

 3.7 Summary …………………………………………………………... 44

3 PROBLEM FORMULATION AND THEORETICAL FOUNDATIONS 47

 3.1 Definitions ………………………………………………………… 47

 3.2 Problem Statement ………………………………………………… 50

 iv

 3.3 Derivation of Cost Function ………………………………………. 52

 3.4 Overview of Approach ……………………………………………. 57

4 COMPUTING CANDIDATE RETRACTION SPACES 68

 4.1 Related Definitions ………………………………………………... 68

 4.2 Computing Collision-free 2D Translation Spaces ………………… 69

 4.3 Computing 2D Translation Spaces for Vertical Accessibility …….. 76

5 GENERATING SIDE ACTIONS 81

 5.1 Computing Discrete Set of Feasible Retractions ………………….. 81

 5.2 Global Optimum Search Algorithm ………………………………. 85

 5.3 Implementation …………………………………………………… 93

 5.3.1 Computational Experiments ………………………………. 94

 5.3.2 Summary of Results ………………………………………. 95

 5.3.3 Generated Side Action Solids …………………………….. 99

6 CONCLUSIONS 102

 6.1 Summary ………………………………………………………….. 102

6.1 Contributions ……………………………………………………… 103

 6.2 Benefits …………………………………………………………… 105

 6.3 Future Work ………………………………………………………. 107

Appendix 111

 A. Regularized and Non-regularized Boolean Operations …………… 111

 B. Worst-case Asymptotic Time Complexity (O-notation) ………….. 112

Bibliography 114

 v

List of Figures

1.1 Different multi material molded objects …………………………………. 3

1.2 Schematic of a typical injection molding machine ………………………. 4

1.3 Photo of a typical injection molding machine ……………………………. 5

1.4 Part molded by a two-piece mold ………………………………………… 7

1.5 Anatomy of a two-piece mold ……………………………………………. 8

1.6 Side action removal in a direction different from the main mold opening

direction …………………………………………………………………... 9

1.7 Molds with and without side action ………………………………………. 10

1.8 Schematic of molds with and without hot runners ………………………... 12

1.9 Photographs of hot runner systems ……………………………………….. 12

1.10 Schematic of the injection molding process ……………………………… 14

1.11 Steps in injection molding after part solidification ………………………. 14

1.12 Redesigning a component after identifying impossible to mold undercuts

to create a feasible molding sequence ……………………………………. 18

1.13 Faceting …………………………………………………………………… 20

1.14 Feasible retraction space ………………………………………………….. 20

2.1 Typical industrial parts …………………………………………………… 45

2.2 Parts that pose challenges for existing side action design algorithms ……. 46

3.1 Candidate and non-candidate core retractions ……………………………. 48

3.2 Candidate core retraction space …………………………………………... 49

3.3 Feasible core retraction space …………………………………………….. 49

3.4 Sample side action set (output) …………………………………………… 52

 vi

3.5 Difference between candidate and feasible retractions …………………… 58

3.6 Intersection of two candidate retraction spaces …………………………… 58

3.7 Cellular planar arrangement ………………………………………………. 61

3.8 Implementation challenges due to robustness problems ………………….. 62

3.9 Illustration of Lemma 2 …………………………………………………… 63

3.10 Maximum error in retraction length ………………………………………. 66

4.1 Minkowski sum of two convex polygons ………………………………… 70

4.2 Hard shadow of a polygon ………………………………………………... 71

4.3 Constructing collision-free 2D translation space …………………………. 72

4.4 Constructing candidate core retraction space …………………………….. 77

5.1 Look-up table to ensure non-selection of intersecting side actions in the

output set (NA means non-applicable) …………………………………… 84

5.2 Efficient arrangement of undercut facets and retractions ………………… 85

5.3 Bottleneck facets …………………………………………………………. 86

5.4 Sweeping undercut facets to form side action solids …………………….. 89

5.5 System architecture ………………………………………………………. 93

5.6 Five test parts ……………………………………………………………. 94

5.7 Side action solids for 4 different test parts (A, B, C, D) shown in retracted

state ………………………………………………………………………. 100

5.8 Alternative designs obtained by modifying the cost function parameters .. 101

A.1: Differences between regularized and non-regularized Boolean operations . 119

 vii

List of Tables

5.1 Results of experiments to characterize algorithm performance …………... 97

5.2 Results of experiments to compare bounding strategies ………………….. 98

 viii

Chapter 1

INTRODUCTION

This Chapter is arranged in the following manner. Section 1.1 gives an overview of

injection molding process, Section 1.2 describes single material injection molding

process is greater details, Section 1.3 presents the motivation behind the research

undertaken in this thesis, Section 1.4 briefly discusses the research issues and Section 1.5

describes the outline of this thesis.

1.1 Injection Molding Background

Injection molding (IM) is one of the most widely used plastic manufacturing

processes nowadays [Fu99b]. It is a near net-shape manufacturing process that can

produce parts having good surface quality and accuracy. Moreover, this process is

suitable for mass volume production due to fast cycle time. It combines the functionality

of multiple parts into one, thereby enabling production of complex designed parts.

Typical examples of products made by injection molding include appliance casings like

computer monitors, CPUs, aircraft and automobile parts, utensils, toys and so on.

Broadly, injection molding can be classified into two types: single material

molding (SMM) and multi material molding (MMM). In essence, the SMM process is

simple: plastic is melted and injected into a tool called mold where it then cools and re-

hardens to take the shape of the mold cavity. The cooled part can then be ejected, and the

cycle repeats. But before going into the details of this process in the next Section, let us

briefly discuss MMM.

 1

Over the last few years, a wide variety of multi material injection molding

processes have emerged for making multi material objects, which refer to the class of

objects in which different portions are made of different materials. Due to fabrication and

assembly steps being performed inside the molds, molded multi material objects allow

significant reduction in assembly operations and production cycle times. Furthermore, the

product quality can be improved, and the possibility of manufacturing defects, and total

manufacturing costs can be reduced. In MMM, multiple different materials are injected

into a multi-stage mold. The sections of the mold that are not to be filled during a

molding stage are temporally blocked. After the first injected material sets, then one or

more blocked portions of the mold are opened and the next material is injected. This

process continues until the required multi-material part is created. Nowadays, virtually

every industry (e.g., automotive, consumer goods, toys, electronics, power tools,

appliances) that makes use of traditional SMM process is beginning to use multi material

molding processes. Some common applications include multi-color objects, skin-core

arrangements, in-mold assembled objects, soft-touch components (with rigid substrate

parts) and selective compliance objects. Typical examples of each class of application are

shown in Figure 1.1.

There are fundamentally three different types of multi material molding

processes. Multi-component injection molding is perhaps the simplest and most common

form of MMM. It involves either simultaneous or sequential injection of two different

materials through either the same or different gate locations in a single mold. Multi-shot

injection molding (MSM) is the most complex and versatile of the MMM processes. It

involves injecting the different materials into the mold in a specified sequence, where the

 2

mold cavity geometry may partially or completely change between sequences. Over-

molding simply involves molding a resin around a previously-made injection-molded

plastic part. Each of the three classes of MMM is considerably different. Each specific

MMM process requires its own set of specialized equipment; however, there are certain

equipment requirements that are generally the same for all types of MMM.

(a) – Taillight (multi-color
MMO) (b) – Assorted brushes

(skin/core arrangement)

(c) – One-piece
syringe (in-mold

assembly)
(d) – Cordless saw

housing (soft-touch grip)

component 1 – right half

Figure 1.1: Different multi material molded objects

component 2 – metal

material A – rigid

material B – compliant
hinge component 3 – left

half

Traditional Multi-material
(e) Compliance clips

 3

1.2 Single Material Molding

Although the concept behind single material molding is simple, the actual process

must be carefully controlled to produce acceptable parts. Additionally, expensive and

sophisticated equipment is required to produce even the simplest of parts. The basic

equipment required is discussed below.

1.2.1 Single Material Molding Equipment

SMM is carried out on a molding machine. There are many different types of

specialized molding machines, but they all share the same four basic components: 1) an

injection unit, 2) a clamping unit, 3) a mold, and 4) a controller [Bryc96]. A schematic of

a generalized SMM machine is illustrated in Figure 1.2, and a photo of an industrial

SMM machine is shown in Figure 1.3. Note that there are two platens on a molding

machine - one moving, and one stationary. These plates are located on the clamping side

and injection side of the machine, respectively.

Figure 1.2: Schematic of a typical injection molding machine
Source: http://www.idsa-mp.org/proc/plastic/injection/injection_process.htm

 4

http://www.idsa-mp.org/proc/plastic/injection/injection_process.htm

F
Sou

• Injection unit

The purpose of

under pressure. Th

(heating cylinder),

reciprocating screw

All of these compo

into the mold. Ther

the needs of the par

• Clamping unit

The clampin

ejector when it o

mechanical lever sy

by the injection p

incorporate some so

• Mold

 igure 1.3: Photo of a typical injection molding machine
rce: http://www.arburg.com/english/products/po_a0001.htm
the injection unit is to force or inject the molten plastic into the mold

e injection unit consists of a plastic-feeding hopper, a heated barrel

 an injector, and an outlet nozzle. The injector is usually a

, but can also be a simpler hydraulic plunger-type device [Bryc96].

nents work in conjunction to feed the plastic, melt it, and then inject it

e are many different injection unit configurations available, based on

ticular molding job.

g unit works to hold the mold closed during injection and actuates the

pens. The clamping mechanism is either a hydraulic press or a

stem and must be strong enough to resist the large forces generated

ressure on the mold walls. Additionally, the clamping unit must

rt of ejector device to facilitate part removal from the mold [Bryc96].

5

http://www.arburg.com/english/products/po_a0001.htm

The mold is a complex tool that contains the cavity or cavities in which the plastic

parts will cool. The present work will mainly deal with molds and ignore the other

components of the SMM system. There are several different types of molds, including

two-piece molds, three-piece molds and multi-piece molds (space puzzle molds). Two-

piece molds have only one primary parting surface and consist of two main mold pieces

which are separated along a main mold opening direction (also known as parting

direction) to eject the solidified part. On the other hand, multi-piece molds have many

parting directions, more than one primary parting surface and consist of multiple main

mold pieces. They can be visualized as 3D jigsaw puzzles where all the mold pieces fit

together to form the mold cavity and then can be disassembled to eject the molded part

[Priy02]. However, two-piece molds are used most commonly in industry and will be

discussed in details hereafter.

Essentially, two-piece molds consist of a cavity located inside a set of plates

divided into two halves: 1) a moving half, and 2) a stationary half [Boot02]. The

stationary half (cavity) is located on the injection side of the molding machine, bolted

onto the stationary platen and connected to the injection unit. It is typically used to create

the external faces of the part. The moving half of the mold (core) is bolted onto the

clamping unit and moves with it during the mold opening and closing phases. Core

creates the internal faces of the part. A highly simplified schematic of a two-plate mold

and the part it would produce is illustrated in Figure 1.4.

In reality, the mold is not simply two halves with a single cavity. Rather, it is an

intricate system of moving plates with a resin flow system (gates, runners, and a sprue)

that feeds multiple cavities. Additionally, molds must have a network of hydraulic

 6

cooling lines as well as some type of part ejection system. Figure 1.5 schematically

illustrates a two-cavity, two-piece mold in greater detail than Figure 1.4. Note that the

only components of the mold that actually contain the geometry of the molded part are

the core and cavity. The rest of the components serve as a support infrastructure for these

pieces and are collectively referred to as the mold base. In many cases, it is possible to

produce a family of different (but similarly-sized) parts on the same mold base by using

different cores and cavities [Fowl04].

Core

Internal
face

External
face

Part

Cavity

Figure 1.4: Part molded by a two-piece mold

Several types of mold subsystems are sometimes employed in special molding

situations. While not required for basic two-piece single material (SM) injection molding,

they may serve to increase part quality, reduce costs, and/or produce features and

geometries not normally realizable with standard equipment. Normally these devices

 7

must be custom-built directly into the mold base. Two common subsystems are described

below.
Runner

A very common type of optional mold subsystem is called a side action. Side

actions are secondary mold pieces (core and cavity form the main mold pieces) which

allow undercuts to be molded into the part. Undercuts are patches or regions on the part

boundaries that are not accessible along the main mold opening directions. They prevent

standard two-piece molds from opening after the molten plastic has solidified. For

example, any kind of external depression or hole parallel to the parting surface is a type

of undercut. Hence the most important point to be noted here is that side actions are

removed from the part using translation directions different than the main mold opening

direction. Use of side actions is illustrated in Figure 1.6.

Cooling channel

Support
plate

Ejector
plate

Core
plate

1st cavity

Parting
line

GateSprue
2nd cavity

Clamping
plate Cavity

Core Cavity
plate

Ejector pin

Rear clamping
plate Figure 1.5: Anatomy of a two-piece mold

 8

Main mold
opening

directions

+ d

- d

Mold piece touching facets on this
hole cannot be moved in + d or – d.

Facets in the hole are undercut facets

Removal direction of
side action is different

from + d or - d Side
action

Part

Figure 1.6: Side action removal in a direction different from the main mold opening
direction

Now side actions are typically actuated by some sort of sliding mechanisms.

Figures 1.7a and 1.7b illustrate an undercut created by part geometry, and Figures 1.7c

and 1.7d illustrate one way to produce undercuts without mold locking. After the part

cools, the cam in Figure 1.7d is shifted to the right, allowing the mold to be opened. The

sideways movement of the slide can be actuated by one of several different kinds of

mechanism including a side-pull pin, or a hydraulic piston. It should be noted that such

devices must be specifically made for each case, and can significantly drive up the cost of

the mold base [Fowl04]. The current work specifically deals with automated design of

 9

side actions for complex industrial parts so as to minimize the overall molding cost

without taking into account the actual mechanism design.

CoreUndercut
faces Part

Cavity

Another comm

devices extend the nozz

resin molten through

solidification of the spr

cases still attached to

operations, and general

1.8 illustrates two mold

resulting parts are show

to note is that the part

in Figure 1.8d does not

Undercut
face

Cavity

Core
Part

Side action

(a) Part with undercut (b) Locked mold

PL

(c) Part with undercut (d) Side action mold

F

igure 1.7: Molds with and without side action

on type of mold subsystem is called a hot runner system. These

le of the injection unit directly into the cavity gate by keeping the

a system of heated channels. This eliminates the undesirable

ue and runners, which are then ejected with the part (and in many

 it). This cuts down on resin scrap, manual runner-removal

ly improves the resin flow characteristics inside the mold. Figure

ing scenarios: one without a hot runner system and one with. The

n below their respective mold configurations. The key difference

in Figure 1.8b has the hardened sprue attached to it while the part

. It would have to be later removed through grinding or some other

10

method. The removed sprues would then either be discarded or recycled into resin pellets

and re-used. As with side actions, hot runner systems must be custom-built into each

mold and drive up the total cost of the tool. Figure 1.9 shows photos of typical hot runner

systems.

• Controller

In order to operate the various machine components all molding machines must

include a controller unit. The controller is a sophisticated programmable computer,

responsible for a host of tasks. This includes: attaining and holding the desired process

variables (e.g. injection pressure and temperature), controlling the cooling system, and

actuating the clamp mechanism and any mold subsystems. It must be able to accurately

control the process temperatures and time the various actions in order to produce decent

molded parts. Typically, the controller is fully integrated with the molding press and can

be specially configured to meet the specific needs of the molding job. Machine

manufacturers are able to provide custom SMM machines with whatever combination of

injection units, clamping units, controllers, and auxiliary equipment necessary for most

particular molding applications.

 11

Hot runner

Cavity
Nozzle

Core

1.2.2 Single Material Molding Process

The basic two-piece SMM process without presence of any side action, as illustrated in

Figure 1.10, is outlined as follows:

1) Closing the mold: The mold closes so the cycle can begin.

(a) – Typical hot runner
components

(b) – Detail of hot runners

Hardened sprue

(a) – Mold without hot runners (c) – Mold with hot runners

(b) – Resulting part from (a) (d) – Resulting part from (c)

Fixed platen

(to injection unit)
Moving
platen

Figure 1.8: Schematic of molds with and without hot runners

Figure 1.9: Photographs of hot runner systems
Source: Husky Inc. product brochure

 12

2) Plasticizing the resin: (Figure 1.10a) The hopper feeds solid pellets or grains of the

plastic resin into the barrel where it becomes molten due to the heating bands and

friction caused by the rotating screw. The molten plastic accumulates at the front of

the barrel (the nozzle side) as the screw retracts to the rear of the barrel.

3) umulated for

a full shot, a valve in the nozzle is opened and the screw rapidly advances forward,

quickly injecting the plastic into the mold cavity.

4) ues to push plastic into the mold in

order to create a holding pressure. This ensures adequate filling. As this happens, the

molten plastic begins to cool and solidify toward the inside. This natural cooling is

expedited by convection due to coolant flowing through channels inside the mold.

5) old

is opened. Some sort of ejector device is actuated in this process and the part is

ejected from the mold and collected. After this, the cycle repeats from step 1.

fter part

solidification if side actions are included. First, side actions retract (translate) as shown in

Step (2). Then the part needs to be taken out along with the core without intersecting the

retracted side actions. Since Step (3) involves a relative motion between the part and the

side actions, this can also be modeled as the second translational motion that needs to be

imparted to the side actions for complete disassembly. Step (4) is same as stage 5)

mentioned above and then onwards the previous cycle is followed till we again come to

part cooling.

Injecting the resin: (Figure 1.10b) When enough molten plastic has acc

Cooling the part: (Figure 1.10c) The screw contin

Ejecting the part: (Figure 1.10d) After adequate cooling time has elapsed, the m

However, as shown in Figure 1.11, certain additional steps are required a

 13

Figure 1.11: Steps in injection molding after

(a) – Step 2: Plasticizing (b) – Step 3: Injecting

(c) – Step 3: Cooling (d) – Step 4: Ejecting

Side actions
retract

Core s
the cav

p

Core

Cavity

Side action Core

Mold assembly
after part solidifies

(1) (2)

Part

Figure 1.10: Schematic of the injection molding process
Source: Hhttp://www.idsa-mp.org/proc/plastic/injection/injection_process.htmH

Core e

 14
Cor

part solidification

eparates fro
ity taking the

art along

 part is ejected out m The
of the core

Cavity

Undercut

(3) (4)

1.3 Motivation

Automated mold design: In the field of manufacturing, productivity is achieved by

transforming a product from the conceptual design stage to finished good in the market

quickly and inexpensively. Due to increased competition in today’s global economy,

shorter design and manufacturing lead times, enhanced quality and reliability and

frequent design modifications are often desired. Typically, design phase is the bottleneck

in any product development process since it is a complex and time-consuming task

[Priy02]. Hence we need fast computers coupled with efficient algorithms to generate

designs automatically in a very short period of time.

Design changes become more costly at the later stages of production. So it is

important to detect any design errors and inconsistencies at an early stage. This can now

be done easily with the help of virtual prototyping; automating the design process is a

pre-requisite for that.

However, the importance of design automation does not end here. Let us consider

a simple scenario where a company has been asked to design the entire mold system for a

new product. The traditional approach is to the use the expertise of an experienced mold

designer. Since the entire process will be done manually, it will take weeks to complete

the design. The designer may not consider all possible designs. Moreover, the generated

design may not be the optimum one. In addition, as there is no effective communication

between the part designer and the mold designer, usually multiple iterations are required

till the part and mold designs are finalized. Sometimes, it becomes very difficult even for

a highly skilled designer to visualize the mold geometries for complex parts involving

multiple undercuts that need to be split into smaller moldable regions. Keeping in view

 15

all these issues, automated mold design is no longer a nice-to-have optional feature; it is a

necessity.

Although almost all the CAD systems such as ProEngineer, Unigraphics, Solid

Edge, SolidWorks etc. provide mold design software packages, none of them can

satisfactorily design all the mold pieces for injection moldable plastic parts fully

automatically without any form of manual intervention. Given a parting direction, they

may be able to design the core and cavity; but designing side actions and that too,

optimally, is beyond their current capabilities. However, as discussed in the previous

Section, side actions constitute an important part of the mold system. They contribute

significantly to the overall molding cost by increasing the molding cycle time (due to

actuation) and the mold manufacturing cost. Hence, it will be useful to have a system that

can automatically accomplish this task for us. It must be capable of designing shapes of

side action solids automatically from the geometrical information present in undercuts,

without any inputs from the user. At the same time, by changing the operational

parameters, the user must be able to obtain alternative designs which will satisfy his

specific needs. In other words, the system should be flexible or customizable enough to

allow the user to explore various design options and select the optimum one. This will

also provide the user with a reasonable estimate of the final cost that will be incurred

during the actual operational phase which will be beneficial to both the design and

manufacturing groups.

Another important application is in automated generation of feasible molding

sequences in multi material molding [Bane06b]. Infeasibility of molding sequences

implies that the multi-material object cannot be manufactured because the proposed

 16

molding sequence is infeasible. Usually this problem is caused by the presence of deep

undercut features and it manifests itself in different ways for different multi-material

molding processes. The three common reasons are listed as follows.

o The two components are made of different materials and one of them has a higher

melting point than the other. Then this component has to be molded first and if it

is non-moldable then multi material molding cannot be carried out. This scenario

has been illustrated in Figure 1.12. The moldability of the other component and

the gross object is immaterial in this case.

o Let us now consider that the two components are made of same material (different

colors) or different materials having comparable melting points. If none of the

two components are separately moldable, then no feasible sequence exists as the

molding process cannot be started at all.

o If the faces that need to be demolded in the second stage create impossible to

mold undercuts multi material molding is not possible.

 17

Neither of the
two components
can be molded

Component A

Component B

Impossible to
mold undercuts

Component A can be
molded first provided it
has a higher (or same)
melting point as
component B

Component A
(redesigned by
removing undercuts)

Component B

Figure 1.12: Redesigning a component after identifying impossible to mold undercuts to
create a feasible molding sequence

1.4 Research Issues

There are two key research issues for which efficient solutions need to be obtained in

order to automate the process of designing side actions for complex industrial parts. They

are discussed below.

 18

1. Computing feasible retraction spaces: From the discussion in Sub-section 1.2.1 it is

clear that side actions need to retract after the molten plastic solidifies in the mold

cavity. Hence, sufficient space must be available in the mold free space (regularized

Boolean difference between a rectangular bounding box and the part) to move the

side actions along a direction different from the main mold opening direction and

then to remove the part along with the core without resulting in any collision(s). The

difference between regularized and non-regularized Boolean difference has been

explained in Appendix A. In other words, the space available for intersection-free

(feasible) retraction of side actions has to be computed in order to determine their

shapes. So one can think of computing the feasible retraction spaces for all the

undercut facets individually. By undercut facets, one means the triangular faces

representing the undercut region that will be eventually molded by the side actions. A

CAD model and its faceted representation are shown in Figure 1.13 below. The

feasible retraction space for a particular undercut facet f is shown in Figure 1.14. It

will be defined in a more mathematically rigorous manner in Section 3.4. However,

the point to be noted here is that computing these spaces precisely and efficiently is a

challenging task. Firstly, all other facets on the part that may potentially block free

translations of the undercut facets need to be identified. Then, an approach similar to

that adopted in motion planning of polyhedral robot in an environment occupied by

many other polyhedral obstacles may be utilized to solve this problem. Although this

is a well-known technique, existing methods try to avoid such computationally

expensive procedure by using ray-accessibility or local concave region based

 19

techniques. Since they often do not yield satisfactory results, a way for computing

feasible retraction spaces has to be found out.

(a) CAD model of
part

(b) Faceted
representation of part

Figure 1.13: Faceting (from [Priy02])

Undercut facet f
∆Y

(0, 0) ∆X

Feasible retraction
space for undercut
facet f

Translation
space (in 2D)

Figure 1.14: Feasible retraction space

2. Forming optimum (or near-optimum) set of side actions: Once all the feasible

retraction spaces are obtained, the next challenge is to obtain an optimum solution.

Here optimum solution refers to a particular design of a set of side actions such that

the molding cost is minimized and all of them have non-null feasible retraction spaces

associated with them. So one first needs to frame an objective (cost) function using

 20

geometrical parameters only. Then, one has to search for the optimum solution within

the feasible domain, i.e. retraction spaces. Since every undercut facet has a feasible

retraction space, the trick lies in combining them suitably so that many can be

handled by a single side action and the amount of retraction needed is as small as

possible. These are conflicting objectives and hence one is confronted by a

combinatorial geometric optimization problem. An intelligent heuristics based search

strategy needs to be devised to solve this problem in a reasonable amount of time.

1.5 Thesis Outline

The remaining part of the thesis is organized as follows. Chapter 2 describes the

published literature concerning automated mold design. Chapter 3 presents the problem

formulation, establishes the theoretical foundations behind the proposed technique and

gives an overview of it. Chapter 4 describes the first major step of the proposed approach

in details. Chapter 5 explains the remaining two major steps and presents implementation

results. Most of the material covered in Chapters 3, 4 and 5 has been already published in

[Bane06a]. Finally, Chapter 6 summarizes the conclusions reached from this research,

highlights the anticipated benefits and provides suggestions for future extensions of this

work.

 21

Chapter 2

LITERATURE SURVEY

This chapter provides a survey of the state of the art in the field of automated

mold design. However, attention will be restricted to design of mold pieces only. Design

of sprue, runner and ejection systems are not discussed in this chapter. This is because the

geometric aspect of side action design is almost entirely related to the design of mold

pieces only. The arrangement of cooling and ejections systems can be analyzed by

modeling the fluid flow and the resultant temperature and stress distribution using

numerical techniques such as finite element analysis (FEA). This chapter is organized as

follows. Section 2.1 reviews all the existing approaches in determining parting directions

for a given plastic part. Section 2.2 surveys the popular techniques in determining parting

line and parting surface. Once all these three geometric entities have been determined, it

is possible to design the main mold pieces (core and cavity) for a 2-piece injection

molding system. Section 2.3 then reviews the available methods for recognizing undercut

features. Once such features have been identified, one can go ahead and actually design

the side cores. Existing approaches to do that have been surveyed in Section 2.4. Section

2.5 reviews the work done in other forms of injection molding, namely multi-piece and

multi-stage or multi-material molding. Section 2.6 reviews some of the work done in

related fields such as die design for other types of plastic processing technologies.

Finally, Section 2.7 summarizes the findings and highlights the need for new algorithms

to tackle the problems not adequately addressed by the existing approaches.

 22

2.1 Determination of Parting Directions

Significant progress has been made in the area of computing main parting

direction. Pioneering work was done by Chen et al. [Chen95]. They first linked

demoldability (i.e. the problem of ejecting all the mold pieces from the mold assembly

such that they do not collide with each other and with the molded part) to a problem of

partial and complete visibility as well as global and local interference. If a surface is not

completely visible, then either it is blocked locally by parts of the same surface, or

globally by other surfaces. They reduced global accessibility of undercuts (or sealed

pockets that are the non-convex regions of a part) to a local problem and used the

intersection of the visibility maps of all the pocket surfaces to find a plausible parting

direction. Basically, a visibility map or VMap is the spherically convex region on the

Gauss sphere on which any point corresponds to a direction from which the entire surface

is locally visible. The sealed pockets are obtained as the regularized Boolean difference

between the convex hull of an object and the object itself.

Now as the set of directions from which a pocket surface is completely visible and

thus demoldable is the VMap of the surface, the problem of finding an optimal pair of

parting directions basically boils down to one of locating a pair of antipodal points such

that they are contained in (or covered by) maximum number of pocket surface VMaps.

All the other pocket surfaces corresponding to VMaps not covered by the pair of points

will require side cores. The authors have proposed an O(nm log m) running time

algorithm to solve this problem by traversing through the cells using certain adjacency

relationships, where n is the number of faces in the polyhedral object and m is the number

 23

of spherical polygons. Mathematical definition of O notation has been explained in

Appendix B.

However, this approach suffers from few limitations. One such limitation is that it

assumes that a side core is used for a pocket which has an empty VMap and is thus not

completely visible from any direction. However, the use of cores can be avoided by sub-

dividing a pocket based upon the notion of partial visibility. Chen et al. [Chen95]

precisely address this issue in their subsequent work. The main hypothesis behind this

paper is that if a surface is not completely visible and hence cannot be separated from the

mold assembly along any direction, it can be decomposed into two portions: those that

are separable and those that form undercuts. The separable portions are known as

visibility polyhedra (VP).

Now to subdivide such a surface, directions in which it is partially visible need to

be considered. The directions along which a surface is partially visible are not equivalent

because different portions of the surface are visible or invisible in different directions. In

order to minimize the number of undercuts, the spherical polygon representing the

viewing directions along which a surface is partially visible needs to be further

partitioned into smaller regions. The spherical map thus obtained is called the augmented

visibility map (AVM) of the surface.

The authors have presented an O(n2) time algorithm known as the pocket

decomposition algorithm to partition a sealed pocket into a set of visibility polyhedra and

undercuts, where n is the number of faces in the pocket. To compute the AVM, firstly the

set of directions in which a sealed pocked S is partially visible (known as the range of

partial visibility PV(S)) is computed in O(m log m) time, where m is the number of lid

 24

faces in S. Now appearance, disappearance and merging of undercuts are associated with

certain topological changes in the walls constructed to form a VP. Only one type of

critical event occurs- namely the projection of a vertex lies on the projection of a non-

adjacent edge (VE). Since the occurrence of VE event is represented by O(n2) great

circles, these O(n2) loci of critical directions partition the unit sphere into O(n4) regions.

Each such partitioned region is then traversed and the pocket decomposition algorithm is

applied to determine the number of undercuts for any arbitrary viewing direction in each

region. Thus, overall the algorithm has an O(n6) running time.

Hui and Tan [Hui92] heuristically generated a set of candidate parting directions

that consisted of planar face normals and axes of cylindrical faces. Based on the

observation that the face normals of the openings of the cavity solids (pockets in

[Chen93]) also define a zone of possible directions for clearing the corresponding

undercut, Hui [96] added these to the set of candidate parting directions. He also

developed a partitioning scheme to sub-divide the pockets without destroying global

accessibility. For a candidate parting direction , a pocket is partitioned into by a series

of planes each containing an edge of the pocket and a vector parallel to . The elements

obtained after partitioning are convex and are either completely blocked or free in .

Each candidate parting direction is then evaluated and an optimum direction requiring

minimum number of side and split cores is selected as the main mold opening direction.

The primary limitation of this approach is that the heuristically found set of parting

directions may not be complete.

d
→

d
→

d
→

Chen [Chen97] has proposed an entirely different approach to determine the most

promising parting direction based on fuzzy logics. For a given 3D CAD model, this

 25

method first finds the minimum volume bounding box of the model. Then three pairs of

possible parting directions are defined along the surface normals of the bounding box.

Multiple criteria such as number of undercuts, draw depth, projected area and other

designer preferences are encoded as fuzzy weighing factors for evaluating the optimal

parting direction. Uncertainty inherently present in the assessment of the weights is

accounted for by the suggested fuzzy heuristic. Although the technique is novel, only

three different parting directions are compared here; this significantly restricts its

practical usability.

Dhaliwal et al. [Dhal03] have described algorithms (with exact mathematical

conditions) for computing global accessibility cones for each face of a polyhedral object.

Their work is significantly different from that done by Chen et al. because that have no

longer restricted themselves to deal with local interference. The accessibility cones are

represented in the form of a matrix so that useful information can be retrieved by queries

easily later on. The boundary of the unit sphere is partitioned into a finite number of

spherical triangles, each representing a set of directions. Rows of the matrix represent

spherical triangles, whereas columns represent the planar, triangular facets. Each entry in

the matrix indicates whether a facet is completely accessible from a spherical triangle or

not. Since the global accessibility cone of a convex-hull facet is always a hemisphere,

only non-convex-hull facets need to be considered.

Another interesting aspect of their work is that they have proposed two alternative

algorithms- one exact and the other approximate to generate the overall accessibility cone

matrix. The approximate scheme has been devised to avoid the numerical accuracy

problems that inevitably creep in any geometric computations, destroying their

 26

robustness. This approximation works fine since it errs on the safer side and provides a

more conservative result. Thus, this work not only improves upon the interference

scheme originally proposed by Chen et al., it gives provably sound as well

implementation friendly algorithms.

Rappaport and Rosenbloom [Rapp94] first introduced the concepts of moldability

and castability of simple polygons and related moldability to monotonicity. After

determining all the forward maximal monotone chains of a simple polygon, they have

utilized that to develop a simple optimal algorithm to determine 2-moldabililty in linear

time and 2-castability in linear-logarithmic time. Although they have only considered the

problem of 2-moldability in 2 dimensions (planes), their work is ground breaking in the

sense that they have used principles of computational geometry extensively for the first

time in such a real-world engineering application to ensure disassemblability of mold

pieces.

Inspired by this, a generalized and immensely significant result has been

established by Ahn et al. [Ahn02]. They have given a comprehensive algorithm to test

whether, given a mold and two opposite directions, the mold can be partitioned into two

parts such that they can be removed along those two directions, without colliding with the

object or the other mold part. Moreover, they have described an algorithm to find all such

possible directions for polyhedral objects in polynomial time. Using a number of lemma

and theorems dealing with the mathematical concepts of monotonicity, silhouettes and

shadow curves, they have given necessary and sufficient conditions for both the

problems. Some of the major contributions of this work can be summarized as follows:

• An object is moldable if and only if it is vertically monotone.

 27

• An object is vertically monotone, and therefore moldable, if and only if its

reflex silhouette is empty and its shadow curves are non-crossing.

• Given a polyhedron with n vertices, it can be tested in O(n log n) time whether

the polyhedron is vertically monotone and, therefore, moldable.

• All the possible directions to eject the two mold pieces can be computed in

O(n4) or O((n2 + m) log n) time by traversing all the vertices, edges and faces

in an arrangement A(L) of great circles and arcs of great circles that denote the

critical events in a unit sphere S2. Here m is the combinatorial complexity of

A(L). This algorithm is optimal in the worst case.

Building on this, Elber et al. [Elbe05] have developed an algorithm to solve the

problem of determining parting directions for general free-form shapes, represented by

NURBS surfaces. Not only have they given an algorithm to find a separating direction,

they have also found a valid parting line (i.e. the contact curves of the two mold pieces).

Just like Ahn et al. they have also reduced this problem essentially to one pertaining to

silhouettes and visibility. A relatively straightforward way to obtain a valid 2-piece mold

design is to enumerate all the possible topologies of its silhouette under all orthographic

viewing directions, and then to see whether any one of them has exactly g + 1 loops, each

of which is non-singular. Here g is the genus of the compact surface under consideration.

Since this is precisely the information that is contained in vision events and aspect

graphs, the next important issue to how to compute them for NURBS surfaces. Although

techniques to compute them for different kinds of surfaces like polyhedral, quadric,

surfaces of revolution and general implicit surfaces exist in the available literature, Elber

 28

et al. have presented the methodology to determine them in case of NURBS for the first

time.

They have given a four-step approach to solve this problem. Since vision events

occur only when the viewing direction crosses the generating cones of the three

developable ruled surfaces, namely axis cylinder developables, flecnodal scrolls and

limiting bitangent developables, it is necessary to compute the intersection of their

generating cones with the Gauss sphere. From the resulting partition of the Gauss sphere,

a representative point may be selected and the silhouette corresponding to that viewing

direction is evaluated to check whether it free from singularities and has g + 1 loops.

Although this method presents a complete solution to the 2-moldability problem

for a model bounded by C(3) surfaces such as NURBS, it cannot directly handle piecewise

smooth surfaces. Moreover, this method needs to be extended to handle planar facets

present in polyhedral models. Furthermore, this method is time-consuming; it may take

several minutes to obtain results on practical parts. Hence, extraction of feature curves

and detection of silhouette singularities need to be carried out in a more robust and

optimum way.

Recently, McMains and Chen [McMa06] have determined moldability and

parting directions for polygons with curved (2D spline) edges using the concepts

originally presented in [Rapp94]. They have proposed an efficient algorithm to solve the

opposite direction moldability problem. They have introduced a new data structure called

normal graph to represent the range of normals of the polygon edges along with their

connectivity. It has been proved that this normal graph captures the directions of all lines

corresponding to feasible parting lines. However, instead of building a full normal graph

 29

which would take O(n log n) time for a polygon bounded by n possibly curved edges,

they have built a summary structure in O(n) time and space, so that all feasible parting

directions can be obtained in O(n) time.

Although this method can handle both faceted polygons and those with curved

edges using identical graph summary structure and computes all feasible parting

directions so that eventually the optimum one can be chosen with respect to other

manufacturing considerations such as mold flow, shrinkage, gate/runner placement,

parting plane geometry etc. practical parts are always 3D geometries. Hence, this method

is not very useful in the current form. In fact, the difficulty with 3D geometries is that

there is no natural traversal order of the faces of the polyhedron and 3-moldability

depends upon face geometry in addition to face orientation and connectivity. Hence, an

alternative way may be to use the analysis for 2D input contours defining 3D extrusion,

rotation, loft and sweep for incremental moldability analysis of 3D geometries as and

when the user designs them.

Such a scheme has been proposed by Chen and McMains [Chen06] for extrusion

operations. They have built upon their previous result to find the exact set of undercut-

free parting directions in O(n log n) time, where n is the complexity of the 2D generator

profile. However, another slightly conservative superset of the exact set can also be built

in O(n) time. The salient features of this approach is that the set of possible parting

directions for a part containing multiple extruded features can be reduced based upon an

analysis of each such feature, parts having no undercut-free parting directions can be

efficiently identified and the search time for all possible parting directions is reduced in

many cases. However, this still does not consider lofted, swept or revolved features and

 30

does not take into account other factors such as planarity of parting surfaces and so on in

coming up with an optimal parting direction.

Before concluding this section, another new and novel technique suggested by

Kharderkar et al. [Khar06] needs to be mentioned. They have presented new

programmable graphics hardware accelerated algorithms to test the 2-moldability of

parts. Their running times only grow linearly with respect to the number of facets in the

CAD model, thereby enabling testing 2-moldability of tessellated CAD model in real

time. Two different algorithms have been developed to obtain the set of candidate

directions using Gauss maps, accessibility analysis and visibility detection techniques

such as back face culling. The efficiency stems from the fact that groups of candidate

directions can be identified such that if any one direction in a group is undercut-free all

are, or if any one is not free, none are.

The first algorithm is based upon the algorithm presented by Ahn et al. [Ahn02].

It projects all the Gaussian sphere great circles corresponding to combinatorially distinct

parting directions on a plane tangent to the sphere to form an arrangement of lines. Then

the line arrangement is sub-divided into a quadtree data structure with 32 lines per

quadtree node. Each line is then allocated one color bit and randomly points having

different colors (corresponding to distinct 2-cells in the arrangement) are retained.

However, this does not guarantee that a direction will be tested in the interiors of all the

2-cells. Moreover, it ignores all the 0 and 1-cells, which may sometimes contain the only

undercut free parting directions. Furthermore, the speed of frame-buffer read-back is

often too slow for practical applications on parts having large number of facets.

 31

The second, more accurate algorithm uses spherical convex hulls on Gauss

sphere. Based on some mathematically involved lemma and theorems, the authors have

established that while moving over the Gaussian sphere that encompasses all possible

parting directions, the only event that alters the 2-moldability of the current direction is

when a pair of potentially interacting facets [see page 333 in Khar06 for definition] start

or stop occluding (blocking) each other. Thus, 2-moldability will only change when the

current direction crosses one of the arcs bounding the accessibility regions of the

potentially interacting facets. These arcs divide the Gaussian sphere into connected

regions. In other words, it suffices to test 2-moldability at the vertices of the connected

regions to check whether any undercut free parting direction exists for the object. To sum

up, it may be said that even though further work needs to be done to eliminate some

redundant tests and extend this idea to design multi-piece molds, this work provides an

excellent background for application of potent computer graphics technique to solve a

manufacturing world problem.

2.2 Determination of Parting Line and Parting Surface

Vast amount of work has been in the field of determination of parting lines and

parting surfaces of injection molded parts. Pioneering work was carried out by Tan et al.

[Tan90]. Given a solid model of a part (winged-edge boundary representation (B-Rep) or

constructive solid geometry (CSG)) and the preferred parting direction, their method

automatically generates the parting line and parting surfaces, which would allow the

resulting mold halves to be configured. This method also detects interlocking surfaces

which will require side cores.

 32

According to the authors, for a simply connected part, parting line is one which

contains the outermost points surrounding the part when viewed in the parting direction.

A simple and efficient algorithm has been presented to determine this through the

evaluation of surface normals and dot products with the parting direction. It includes

traversing part faces to classify them as tentatively visible and non-visible and then

connecting a series of tentative parting edges (shared by tentatively visible and invisible

faces) to form the desired parting line. On the other hand, parting surfaces are obtained

by projecting the parting line along the parting direction on a 2D plane to obtain the outer

and inner loops and then by taking the convex hull of the outer loop edges. The method

then fills the sub-region between the convex hull and the parting edges of the outer loop

by inserting some additional planar faces.

However, in order to deal with protrusions, artifacts need to be introduced to form

stepped parting surfaces. Moreover, a large number of approximated facets are required

to ensure reasonable accuracy for an object with curved surfaces. Theoretically, this

method can be extended to curved surfaces by evaluating silhouette curves instead of

edge counting. The curved parting lines may need to be split into piece-wise segments

and each of these segments will form a parting surface using the approach mentioned

above.

Ravi and Srinivasan [Ravi90] first presented a novel approach to enable computer

aided design of parting surfaces using a number of design criteria, namely projected area,

flatness, draw, draft, undercut features, dimensional stability, flash, machined surfaces

and feeders. The correlation between parting surface and different design criteria can be

listed as follows:

 33

• Cross-sectional area should gradually decrease from the parting surface to points

farthest from the parting surface.

• A flat parting surface is preferred over an irregular one from dimensional stability,

sealing off, flash and cost of tooling and mold-making aspects.

• Draw should be as less as possible to minimize metallurgical problems such as grain

flow in forgings; small draw also reduces cycle time and increases productivity.

• Number of surfaces requiring drafting should be minimized.

• Undercuts should be avoided wherever possible.

• Parting surface should be so designed that any two points between which higher

dimensional tolerance is required occur on the same side of it.

• Parting surface should produce the least number of intersections with faces where

occurrence of flash has to be avoided.

• Critical surfaces of a molded part requiring machining should be preferably located as

the bottom or vertical walls of the mold.

• Parting surface should be so chosen that the hot spots (regions of mass concentration)

are at the top of the molding.

Although the authors have developed a simple optimization framework to design

the best possible parting surface based on weights pre-assigned to all the decision criteria,

a separate expert system needs to be built to perform this systematically. Moreover, this

method is not capable of handling stepped, profiled or complex parting surfaces.

 Ganter and Skoglund [Gant93] pointed out that the addition of side cores and

core prints to an existing object will affect the placement of parting surface. In other

words, side core and core print information must be available concurrently to the process

 34

that develops the parting surface. They have presented a technique to allow automatic

extraction of three types of side core features, namely, voids, single and multi-surface

holes and boundary perturbations. A combination of solid modeling (B-Rep) and graph

structures has been used in this technique. Appropriate local features are identified and

extracted from the original object and are grouped into one or more new side core

objects. Core prints are later added after augmenting the original part geometry by

combining the extracted core geometry and its convex hull. Although the authors have

dealt with the importance of side cores in parting surface design in details here, it does

not take account the other factors.

Weinstein and Manoochehri [Wein97] have presented a methodology to obtain an

optimum parting line design for injection molded or die-cast parts based on two

manufacturability considerations, namely, parting line complexity, draw depth, number

of undercuts, number of unique side cores and mold complexity. In order to quantify

these factors two design variables have been used: draw direction range and parting line

location. These design variables can be extracted from the part geometry by dividing it

into concave and convex regions since they determine the allowable draw range and

parting line location for the part respectively. A non-linear programming scheme is then

used to generate the optimal mold configuration. In other words, this work is the parting

line analogue of the method originally proposed in [Ravi90].

However, any review of the available literature will be incomplete without

mentioning the method suggested by Wong et al. [Wong98] to form parting line and

parting surface by slicing a CAD model. The salient feature of this work is that it can

handle free-form surfaces in addition to planar and curved surfaces. It first selects a set of

 35

possible draw directions (typically along the principal axes) and forms tentative parting

lines based on the selected draw directions. Then the best parting line is chosen among

the plausible candidates based on certain criteria. A slicing algorithm is used to locate the

parting line for the model along the possible draw direction. Then an undercut detection

algorithm is used locate all the undercuts along the selected draw directions. Finally, the

flatness of the parting line, draw distance, projected area, undercut volume, undercut

length and relative positions of external undercuts to the mold are used to choose the best

parting line. Although this method is computationally efficient, works for all kinds of

surfaces and considers all the factors while selecting the best parting line, it does not

search all the draw directions exhaustively and hence cannot ensure global optimality.

2.3 Undercut Feature Recognition

Many people around the globe have worked on undercut feature recognition

problem using concepts similar to those used for computing parting directions. Yin et al.

[Yin01] have tried to recognize undercut features for near net-shape manufactured parts

by using local freedom of sub-assemblies in directed blocking graphs (DBGs). They

represented contact between two faces hindering accessibility as point constraints set at

vertices of convex hull of contacting surface area. Thus, each constraint C cuts unit

sphere S2 along a great circle and set of such great circles define an arrangement of cells

(namely vertices, edges and faces) on S2. This unit sphere is obtained from the freedom

cone (FC), which is nothing but the set of feasible translation directions in 3-D. This is

basically an improvement or modification on VMaps that uses computationally better

 36

schemes like J0 functions and central projections to reduce time-complexity of algorithm

from O(n6) to O(n3).

Another way of recognizing and especially categorizing undercuts was put

forward by Fu et al. [Fu99b]. They classified undercuts further into outside and inside on

top of external and internal types. They defined an undercut feature direction as one

whereby the local tool can be withdrawn most effectively to avoid warpage of the

molding. Although for internal undercuts they have used V-maps only, for outside

external and outside internal features, they have considered individual cases in great

details and come up with specific formulae based upon normals to the adjacent surfaces

(Please see Table 1 in [Fu99b] for more details). However, no clear justification is given

for choosing a particular direction in each of the individual cases. They have also

suggested generating optimal parting direction by maximizing the undercut feature

volumes in each undercut feature group in another closely related work [Fu99a].

A hybrid method for recognizing undercut features from moulded parts with

planar, quadric and free-form surfaces has been proposed by Ye et al. [Ye01]. They have

used a combination of graph-based and hint-based approaches. Undercut features are

defined using extended attributed face-edge graphs (EAFEG) and are recognized by

searching cut-sets of subgraphs instead of commonly used graph matching techniques.

Face properties and parting lines are used as hints to guide the search of cut-sets.

Different case studies show that the proposed method can recognize various undercut

features successfully and efficiently by avoiding time consuming subgraph isomorphism.

However, it is not able to determine the feature parameters, namely, volume and release

direction; hence side actions for molding such features cannot be designed directly.

 37

As already discussed in Section 2.1, Kharderkar et al. [Khar06] have presented

programmable graphics hardware based algorithms to test the 2-moldability of parts. In

addition to testing moldability, these algorithms also identify and graphically display

undercuts so that parts can be redesigned immediately. The basic idea behind these

algorithms is very simple: if the part is illuminated by two light sources located at infinity

along the main mold opening directions, then undercut facets are those which lie in

shadow. This is done in real time (of the order of milliseconds) using the depth texture

(shadow texture) capability of existing graphics hardware. Thus, this novel approach

opens up exciting avenues in detection of undercut features.

Priyadarshi and Gupta [Priy06] have adopted a similar shadow mapping approach

to identify all the different mold-piece regions (core, cavity, both meaning can be either

molded by core or cavity, and undercut) on parts. They have handled near-vertical facets

robustly by slightly perturbing the vertices on those facets and by using visibility

sampling. They have also managed to overcome the problem of self-shadowing by

adapting second depth techniques suitably. The algorithms are very efficient; the time-

complexity solely depends on the time to render the parts. To sum up, it may be said that

the last two methods using programmable Graphics Processor Units (GPUs) outperform

the traditional software based methods both in terms of granularity (resolution or

accuracy) and speed.

2.4 Design of Side Cores

Quite surprisingly, automatic design of side actions has not received a lot of

attention to date. However, Shin and Lee [Shin93] developed a procedure by which side

 38

cores (specific types of side actions) and the corresponding core and cavity plates are

generated by identifying the mold faces that prevent interference free motion of the part

after solidification. These interference faces (both primary and secondary) are derived

directly from the core and cavity plates without any need for considering the part by

splitting faces along silhouette curves and applying polygonal overlap tests. Since the

algorithm uses Euler operations like kill edge and face, kill edge and vertex etc. directly

rather than Boolean operations, they are inherently efficient. However, this method

cannot represent all the normal vectors (required for later computations) of a free-form

surface by selective sampling. Moreover, it is not fully automatic. Many faces need to be

selected interactively and the retraction or sliding direction has to be specified by the

designer. In short, although this method attempts to solve this challenging problem in

mold design for the first time, it does not offer a comprehensive solution that can be

readily used in the industry.

In the more recent past, Ye et al. [Ye04] have extended their idea of using

EAFEG to recognize undercut features (as mentioned in Section 2.4) to generate side

cores for each undercut region by using certain Boolean operations. They have also used

VMaps to determine release directions. Then a bounding box is created to enclose the

blockage portion of the undercut feature; it is trimmed with all the faces of the feature

and then swept along the release direction to get a linkage portion. This linkage portion is

finally unionized with the blockage portion to form the actual side core. Although this

approach fails to consider all the possible release (retraction directions) directions, a

similar sweep operation will be used in the current work to generate actual solid shapes.

 39

2.5 Design of Multi-piece and Multi-Stage Molds

As discussed briefly in sub-Section 1.2.1, multi-piece molds offer an alternative to

two-piece molds involving side actions. Broadly speaking, they can be of two types-

permanent and sacrificial. Some of the representative work in both types of multi-piece

molding is briefly discussed below.

Chen et al. [Chen02, Chen03] first provided an excellent groundwork for

permanent multi-piece mold design that allowed three-dimensional mold decomposition.

They subdivided the process into two subsequent processes: mold configuration design

process and mold construction process. In the first step, object boundary is sub-divided

into smaller regions (mold-piece regions) that will be created by different mold pieces.

Parting direction is found for each mold piece region by solving a linear optimization

problem. However, if it does not have a parting direction, then it is split into concave

regions and convex faces. Then in the second step, an approach based on reverse glue

operation is used. Selection of different glue faces and planar parting surfaces produce

different mold pieces recursively.

However, their work suffers from two major limitations. First, since a local

approach has been followed to find the parting direction of a region, disassembly of mold

pieces is not guaranteed. A separate interference test simulation module is required to

verify the feasibility of mold design generated by this approach. Second, as a greedy

heuristic is used to select the mold-piece regions, it may not always produce the optimum

solution.

 40

Priyadarshi and Gupta [Priy04] successfully tackled some of the problems in the

previous work by proposing a 4-step approach for automated design of multi-piece

permanent molds. The steps are listed as follows:

• Finding candidate parting directions based on an initial set of heuristic

directions followed by a more computationally intensive method of obtaining

directions from global accessibility cones suggested by Dhaliwal et al.

[Dhal03].

• Analyzing accessibility of every facet in the part along at least one direction

belonging to the set of candidate parting directions by using separating axis

condition. Special attention has been paid to robustly determine the

accessibility of near-vertical facets.

• Selecting near-optimal mold-piece regions from the set of candidate mold-

piece regions by applying depth-first branch and bound and set covering

heuristics.

• Constructing mold pieces by first computing the gross mold, then locating the

parting line for a mold-piece region, creating parting surface for the mold-

piece region and finally splitting the gross mold along the parting surface

recursively.

Although this provides a significant improvement over the previous approaches

with respect to various characteristics such as soundness, completeness, efficiency,

solution quality and domain of applicability, it has two major limitations. It cannot handle

free-form surfaces without prior faceting and is unable to deal with faces that can be

molded using split cores.

 41

Now coming to sacrificial multi-piece molds, Dhaliwal et al. [Dhal01] presented a

feature-based approach. For those objects which cannot be represented by feature-based

models, this approach provides a 3D partitioning scheme to solve this problem in a

computationally efficient manner. However, it cannot be used to design molds for

arbitrarily complex parts.

Huang et al. [Huan03] describe an algorithm based on accessibility-driven

partitioning approach to design multi-piece sacrificial molds. After performing

accessibility analysis of the gross mold, it is partitioned using the accessibility

information. During each partitioning, a set of mold components is produced. Since each

mold component is accessible, it can be produced using milling and drilling operations.

However, in both these methods although the mold pieces are manufacturable, they may

not be disassemblable.

As briefly mentioned in Section 1.1, multi-material (multi-stage) molding is

rapidly becoming popular in industry due to its various benefits. Pioneering work in

developing an algorithm for designing multi-stage molds was carried out by Kumar and

Gupta [Kuma02]. In order to obtain a feasible molding sequence, this algorithm

decomposes the multi-material object into a number of homogenous components that can

be added sequentially to produce the desired overall product. Once an object-

decomposition scheme has been found, the gross mold for each stage is computed and

split into two or more mold-pieces.

Novel features of this algorithm include: (1) it finds multiple partitioning planes

to perform partitioning of the mold pieces, (2) it performs object and mold

decompositions needed to ensure assembly and disassembly of mold pieces during actual

 42

molding operation and (3) it generates complete molding sequence for multi-stage molds.

However, it has some limitations as well. First, the contact between homogenous

components is assumed to take place through planar faces only. This restricts the type of

material interfaces in the multi-material object that can be currently handled by this

method. Second, the object decomposition algorithm does not always find a feasible

object partitioning scheme because it only decomposes components along the material

interfaces.

Certain improvements over the last approach for automated design of rotary-

platen multi-shot molds were suggested by Li and Gupta [Li04]. First, this method

classifies any given multi-material object into several basic types based on the

relationships among different components in the object. Then for every basic type, a

molding sequence is obtained depending upon the precedence constraints resulting from

both accessibility and disassembly requirements. Then starting from the last mold stage,

mold pieces are generated for every mold stage.

The salient features of this work are: (1) constraints for the rotary-platen process

are used in generating molding stages, such that the generated mold can be used in an

industrial process, (2) significantly more complex curved interfaces can be handled by

using the exact component geometry in generation of parting surfaces and (3)

disassemblability of mold pieces is always guaranteed. However, there are a few

limitations as well. First, the object cannot be made of more than two materials. Second,

the mold pieces generated by this algorithm may not have the optimal shapes.

 43

2.6 Die Design and Other Related Work

For the sake of completeness, let us review a representative work in the field of

die design. Die design broadly refers to the design of dies to produce desired part

geometries in all near-net-shape manufacturing processes such as casting, forging and

injection molding. The die must be designed such that it is reusable and can meet the

manufacturing requirements strictly. To address these needs, use of virtual prototyping is

becoming increasingly popular in the industry.

An approach for virtual prototyping of die design has been proposed by Wuerger

and Gadh [Wuer97a, Wuer97b]. It uses concavity features to determine the set of all

possible die-open directions for a given part by first determining the convex hull of the

part and then by performing Boolean subtraction between the convex hull and the solid

model of the original part geometry. VMaps are used to display all the possible die-open

directions for a given part. The user can then select a single direction, based upon which

the parting line will be developed. Finally, taper and draft need to be added to the part.

Although this method may well serve as the foundation for automated die-design process,

it is currently unable to split a concavity feature so that it is produced by two die-halves.

2.7 Summary

To summarize it can be said that lot of work has been done in automated design of

multi-piece and multi-stage molds. The problem of finding optimum parting direction has

also been studied extensively and is very useful in casting applications. However, in case

of two-piece SM injection molded plastic parts, most designers develop part designs with

a mold opening direction in mind. This is because mold opening direction influences all

 44

aspects of part design. Typically, plastic parts (few representative parts are shown in

Figure 2.1) are either flat or hollow-box shaped and they need to have relatively thin

sections. These shapes have an implied mold opening direction. Moreover, they cannot

have vertical walls; and some amount of taper has to be imparted in order to remove them

from the mold assembly. Therefore the main tasks in two-piece SM injection mold design

automation are (1) determination of the main parting line and parting surface, (2)

recognition of undercuts, and (3) design of side actions. Existing methods for the first two

tasks provide satisfactory solutions. However, existing methods for side action design

only appear to work for certain class of undercuts.

Figure 2.1: Typical industrial parts

Existing methods for side action design do not work satisfactorily (i.e. cannot

guarantee an optimal solution from an exhaustive set of feasible solutions) if a complex

undercut region (1) needs to be partitioned to generate side actions, or (2) has finite

accessibility or (3) is impossible to mold, thereby requiring the part to be redesigned.

Figure 2.2 shows three parts for which generating side actions is challenging due to these

 45

reasons. In this work, new algorithms have been presented to handle these types of cases.

Currently only those types of side actions are considered that are initially retracted from

the undercut in a direction perpendicular to the main mold opening direction. In fact,

majority of side actions used in industrial parts meet this restriction. Typically, a single

side action produces a connected undercut region. Therefore, each connected undercut

region is treated independently and appropriate number of side actions is generated for

molding it.

Undercut region has
finite accessibility Connected undercut

region needs partitioning

(a)
(b)

Undercut region
is non-moldable

(c)

Figure 2.2: Parts that pose challenges for existing side action design algorithms

 46

Chapter 3

PROBLEM FORMULATION AND THEORETICAL FOUNDATIONS

This chapter formulates the problem of generating side actions and establishes the

theoretical framework for coming up with efficient algorithms to do the same

automatically. Section 3.1 introduces and defines certain basic terminologies which will

be used extensively later on. Section 3.2 gives the input and output of the algorithm along

with the input restrictions and output requirements. One of the output requirements is to

minimize an objective function. Section 3.3 derives this objective (molding cost) function

from ab initio. Finally Section 3.4 gives a detailed overview of the approach as well as

mathematically verifiable lemmas and theorem to characterize it.

3.1 Definitions

Retraction is defined by a point (x, y) in 2D configuration space. We are

interested in two types of retractions namely, core-retractions and cavity-retractions.

Retraction length is defined as the length of the position vector of the 2D point

that defines the corresponding retraction.

A given retraction (x, y) is a candidate core retraction for an undercut facet f, if

sweeping f first by a translation vector and then by another one ,

(where is a large positive number) does not result in any intersection with the part.

Figure 3.1 shows examples of a candidate and a non-candidate core retraction.

^ ^

1t x i y
→

= + j
^

2 at l k
→

=

al

 47

r1 is a candidate core retraction

Undercut facet f r2 is a non-candidate core retraction

Figure 3.1: Candidate and non-candidate core retractions

A given retraction (x, y) is a candidate cavity retraction for an undercut facet f, if

sweeping f first by a translation vector and then by another one ,

does not result in any intersection with the part.

^ ^

1t x i y
→

= + j k
^

2 at l
→

= −

Candidate core retraction space (illustrated in Figure 3.2) for an undercut facet f

is the set of all candidate core retractions for that particular facet. Candidate cavity

retraction space is defined in a similar manner.

A given retraction (x, y) is a feasible core retraction for an undercut facet f, if in

addition to being a candidate core retraction it also satisfies the condition that the swept

polyhedron SP does not intersect with the part where { : ,0 1}SP q t q fα α
→

= + ∈ ≤ ≤ and

is the minimum length translation required to reach a point in the mold free space such

that this point is accessible along +z. Feasible cavity retraction is defined analogously by

imposing this additional constraint on candidate cavity retraction.

t
→

Feasible core retraction space (illustrated in Figure 3.3) for an undercut facet f is

the set of all feasible core retractions for that particular facet. Similarly, feasible cavity

(a)

Apply r2

∆Y
Retraction
plane

r2Apply r1Face
F1 r1 ∆X

Face F2
(b)

 48

retraction space is defined as the set of all feasible cavity retractions for an undercut

facet f.

Boundary due to face F2∆Y

Boundary due
to face F1

Figure 3.2: Candidate core retraction space

Figure 3.3: Feasible core retraction space

∆X

Retraction
plane

Boundary due to the
other faces (side walls)
of the undercut

Candidate
retraction space

Boundary so that retraction
comprises of a single horizontal
translation vector along with
another vertical translation vector

∆Y

∆X

Retraction
plane

Feasible retraction
space (subset of
candidate retraction
set)

 49

3.2 Problem Statement

blem: Given a polyhedral object, its mold enclosure

ceted (triangulated) solid geometric model of a polyhedral connected part P

•

r labeled as undercuts (we use technique described in [Priy06]).

of side actions, such that each set (SAS) is defined by a 4-tuple {s, F, (x, y), T}.

Inp

 on the part P with a sufficient degree of resolution so that each

undercut facet does not have any point on it, which is accessible along either +z or –z.

Side action set generation pro

(bounding box enclosing the part), main mold opening directions and undercut facets,

determine the side action(s). Side actions require two translational motions for complete

disengagement from the part. The first one is assumed to lie in a plane orthogonal to the

main mold opening directions and the second one coincides with the either of the two

main mold opening directions. Furthermore, it also assumed that all the side actions can

be actuated simultaneously, independent of one another.

Input:

• A fa

oriented such that the main mold opening directions are along +z and –z respectively.

Mold enclosure.

• n facets marked o

Output:

• A set

The first entity s represents a solid body corresponding to the side action. The second

entity F represents the set of undercut facets that will be associated with this side

action. The third entity (x, y) is a retraction and the fourth entity (an integer) describes

whether this is a core or a cavity retraction (+1 for core and -1 for cavity). Sample

output for a given part is shown in Figure 3.4.

ut restrictions:

• Faceting is done

 50

Output requirements:

An undercut facet f must be included in one and only one side action facet set F. •

d as undercuts must be associated with one of the side action

• ide actions generated will minimize the following objective (molding cost)

• All the facets marke

facet sets F.

• (x, y) is a feasible core or cavity retraction for all facets in F based on the type defined

in T.

• Any two side action solids will not intersect.

The s

function:

^ ^ ^ ^
/

kN N

C x i y j NC x i y jγ χ= + + + +∑ ∑ (3.1)

where N
1 1

i i i i
i i= =

 is the cardinality of the output set, (),i ix y is the retraction in the ith element

of the set, and γ , k , /C , χ are molding parameters. Derivation of

ers is

 this equation as well as

the physical significance of molding paramet explained in Section 3.3. It is

important to note that depending on the geographical region and the nature of the

molding operation, values of these parameters will be significantly different for the same

part. In other words, these parameters might have altogether different values for

production-run molds and prototyping molds even for the same part.

 51

Polyhedral part

Translations
corresponding to

retraction Solid body

Associated undercut facets

Figure 3.4: Sample side action set (output)

3.3 Derivation of Cost Function

Several industries as well as academic researchers [Boot02, Poli01, Faga00,

Bryc96, Rosa00] have propounded different models to estimate the total cost in plastic

injection molding. The current work starts from a very simple model [Poli01] and

develops a unique cost function that serves as the objective function for the problem of

grouping the undercut facets into optimal number of groups. Since total cost = Molding

cost + Operation cost + Material cost, symbolically,

MO OP MC C C C A= + + (3.2)
where C, CMO, COP and CMA refer to the total cost, molding cost, operation cost and

material cost respectively in dollars.

Assuming that the injection molding shop floor is going to produce Q parts, each

of these cost components can be broken down into sub-components which relate the

overall cost function to certain input parameters and part properties (material and

 52

geometry). As molding involves manufacturing and assembling the two main mold pieces

as well as the side cores, CMO can be sub-divided as follows:

MO MP SC C C C= + (3.3)
where CMP and CSC represent the individual costs of the main mold pieces and the side

cores respectively. Since the mold pieces need to be manufactured and assembled only

once, these costs are independent of the number of parts to be produced. In our model,

CMP is taken as a constant and will be inputted by the mold manufacturer as the total cost

of manufacturing (milling, grinding, EDM etc.) core and cavity. However, the side core

cost is a variable one and has three components. Thus,

SC mac act assC C C C= + + (3.4)
where Cmac, Cact and Cass denote the costs due to machining, actuating and assembling the

side cores respectively.

Actuation and assembly costs can be grouped together for the sake of simplicity

and modeled as being proportional to the number of side cores being used. However,

core-side side cores are typically actuated by solenoid based mechanisms, whereas

cavity-side side cores are actuated by slider mechanisms. Thus, this cost varies depending

upon the nature of side cores. The cost associated with core-side side cores is naturally

much higher than that corresponding to cavity-side side cores. Hence, this can be

mathematically formulated as follows:

act ass Co Co Ca CaC C N C N C+ = + (3.5)
where NCo and NCa are the number of core-side and cavity-side side cores respectively.

CCo and CCa are proportionality constants (in dollars) to relate the combined actuation and

assembly cost with the number of core and cavity-side side cores respectively.

Now coming to the machining cost Cmac, it comprises three major components-

namely cost due to the size or volume of the machined part, cost due to machining the

 53

cross-section and cost due to the complexity of the machined profile. Hence, Cmac can be

mathematically represented as:

1 1 1

N N N
CS

mac i i i
i i i

C V Aα β γ
= = =

= + + C∑ ∑ ∑ (3.6)

where N = total number of side cores

 Vi = volume of the ith side core

 ACS
i = cross-sectional area of the ith side core

 Ci = complexity of the profile of the ith side core

 α, β and γ are proportionality constants

Now going back to the second component on the right hand side of equation (1), it

can be decomposed broadly into two parts- cost incurred due to time taken in injecting,

cooling and resetting the mold and the extra cost arising due to retraction of the side

cores. Pulling the side cores increases the mold cycle time and thereby raises the

operation cost. Hence, COP may be rewritten as:

()
1.

1

N

i
i

OP OP inj cool reset

t
C c Q t t t

v

→

=

⎡ ⎤
⎢ ⎥
⎢ ⎥= + + +
⎢ ⎥
⎢ ⎥⎣ ⎦

∑
 (3.7)

where = operation cost rate ($/hr-piece)
.

OPc

 tinj = time required to inject the molten plastic in the cavity

 tcool = time to cool the injected molten plastic

 treset = time to reset the solidified plastic inside the cavity

 v = speed of retracting the side cores

 ti1 = horizontal pull (or translation vector) for the ith side core

 54

Again the individual operating times can be expressed in terms of more fundamental

process parameters as follows [Bo02]:

2 inj shotshot
inj

avg inj

P VVt
q π

= = (3.8a)

()
()

max
2

4
ln inj mold

cool
ej mold

T Tht
T Tπ α π

⎛ ⎞−
⎜=
⎜ −⎝ ⎠

⎟
⎟

 (3.8b)

7 21
4reset dry

5

stroke

dt t
L
+

= + (3.8c)

where Vshot = volume of molten plastic injected in a single shot

 qavg = average molten plastic flow rate

 Pinj = injection pressure

 πinj = power output of the injection unit

 hmax = maximum part wall thickness

 α = coefficient of thermal diffusivity of the plastic

 Tinj = recommended plastic injection temperature

 Tmold = recommended mold wall temperature

 Tej = temperature at which the part may be safely ejected

 Tdry = time needed for machine to complete a dry run

 d = part depth along mold opening direction

 Lstroke = maximum stroke of clamp unit

Since all these terms are fixed for a particular choice of injection molding process

and a given part, the three time components can be combined together to simplify

equation (3.7) as follows:

 55

1.
1

N

i
i

OP OP tot

t
C c Q t

v

→

=

⎡ ⎤
⎢ ⎥
⎢ ⎥= +
⎢ ⎥
⎢ ⎥⎣ ⎦

∑
 (3.9)

Finally, the last term in the RHS of equation (1) can be rewritten as the product of

material cost per piece (cMA) and the number of pieces to be manufactured as follows:

MA MAC c Q= (3.10)
Combing equations (1), (2), (3), (4), (5), (8) and (9) we have,

.

1
1 1 1 1

()
N N N N

CS
MP i i i Co Co Ca Ca OP tot i MA

i i i i

C C V A C N C N C c Q t v t c Qα β γ
→

= = = =

= + + + + + + + +∑ ∑ ∑ ∑

 (3.11)
Grouping terms, the final form of the cost function may be obtained as follows:

1
1 1 1 1

N N N N
CS

i i i Co Co Ca Ca i
i i i i

C V A C N C N C tα β γ χ
→

= = = =

= + + + + +∑ ∑ ∑ ∑ λ+

Q

 (3.12)

where the constants (3.13a)
.

OPc Qvχ =

 and (3.13b)
.

MP OP tot MAC c Qt cλ = + +

Since, this molding cost function will be used to compare between two solutions

at a time, the term κ can be safely dropped. Moreover, comparisons will be made only

between two feasible core or two feasible cavity retractions. Hence both CCo and CCa

cannot be present in C simultaneously and a common symbol C/ can be used for them.

Finally, the complexity of every side action can be related to the corresponding retraction

length. It is assumed that
k

i iCp t
→

= where the value of the exponent k will be suitably

based on experimental data for that particular molding operation. Therefore, the cost

function reduces to:

/
1

1 1

kN N

i
i i

C t NCγ
→ →

= =

= + +∑ itχ∑ (3.14)

which is identical to Equation (3.1).

 56

3.4 Overview of Approach

Before going into the technical details, it is important to understand why the

concept of a candidate and a feasible retraction space has been introduced. Candidate

retraction space gives the set of retractions such that the corresponding undercut facet can

be retracted, first horizontally and then vertically, without intersecting with the part.

However, a solid body (side action) of finite dimension is also going to be attached to

every undercut facet at the time of retraction. This solid body will extend up to the core

or cavity. Thus, it also needs to be ensured that this solid shape never intersects with the

part during the process of retraction and that is taken care of in case of feasible retraction

spaces. Figure 3.5 shows that if this solid shape s is not considered, then r is a feasible

retraction for the undercut facet f. However, as soon as the effect of the attached side

action s is incorporated, r becomes infeasible as it collides with face F2 at the time of

retraction. This clearly establishes the difference between candidate retraction and

feasible retraction and their corresponding spaces.

Now as can be inferred from their names, for each undercut facet only its

candidate retraction space will be computed (see Chapter 4 for details on this step) and

not its feasible one. This space can be represented as a set of one or more disjoint

polygons in 2D translation space (∆XY plane). This translation space can be bounded on

all the four sides by the mold enclosure and is termed as the retraction plane. Eventually,

one gets a set of candidate retraction spaces on the retraction plane. A simple

arrangement of two candidate retraction spaces is shown in Figure 3.6.

 57

Undercut facet f

s

Apply r r is a candidate retraction;
however it is not a feasible

retraction since side action solid s
will collide with face F2 during

retraction

Side action solid

Figure 3.5: Difference between candidate and feasible retractions

Figure 3.6: Intersection of two candidate retraction spaces

However, the point to be noted here is that feasible retraction space is a sub-set of

the candidate retraction space (as proved in Lemma 1 below). It also satisfies some other

unique property (again stated formally in Lemma 1) which makes it possible to compute

an exhaustive and discrete set of candidate retractions (to be used for obtaining optimal

solution) from the candidate set only. In other words, there is no need to generate the

feasible retraction spaces. This clever strategy allows one to bypass many challenges of

computing the feasible retraction spaces without compromising on the correctness and

feasibility of the solution.

(a) (b) (c)

∆X

∆Y

∆X ∆X

∆Y ∆Y
Retraction plane

Face F2

Candidate retraction space
for a facet f1

Concatenated candidate
retraction space for
both f1 and f2

Candidate retraction space
for another facet f2

2D arrangement

 58

Lemma 1: Feasible core (cavity) retraction space FS for an undercut facet f is a subset of

the candidate core (cavity) retraction space CS. Moreover, every element (can be 0-face,

1-face or 2-face) 1p FS∈ will include a portion of the boundary of a unique,

corresponding element 2p CS∈ .

Proof: This lemma will be proved only for feasible core retraction space. The proof

for feasible cavity retraction space follows similarly. From the basic definitions, one

can say that feasible core retraction space FS for a given undercut facet f needs to

satisfy another constraint in addition to those satisfied by the candidate core retraction

space CS for the same facet f. Hence, FS must be a subset of CS. The two sets will be

identical if this additional constraint is satisfied for every retraction present in CS. For

some elements of CS the corresponding element in FS will be a null element if none

of the retractions present in that element satisfies the additional constraint. This

proves the first part of the lemma.

As shown in the previous paragraph, 1p will be a subset of 2p . However, 1p cannot lie

entirely in the interior of 2p . It must include at least some points on the boundary of

2p because if an interior point of 2p satisfies the extra constraint, then there will exist

a corresponding boundary point which will also satisfy the extra constraint. This

corresponding point is the intersection of the line joining the origin to the interior

point with the boundary of 2p . Now it will be shown that this boundary point will also

satisfy the extra constraint.

 59

This follows from the fact that the retraction length associated with any interior point

of 2p is greater than the length associated with the corresponding boundary point.

Hence, if the swept polyhedron SP for the undercut facet f does not intersect the part

while undergoing a retraction by an amount (length) specified by the interior point

of 2p , then it can never intersect with the part while undergoing a smaller length

retraction along the same direction as given by the corresponding boundary point

of 2p . So the corresponding boundary point must also be feasible. This proves the

second part of the lemma.

Now, the objective function for this problem calls for minimizing the number of

side actions as well as the retraction lengths. Therefore, usually a compromise needs to be

worked out by identifying a suitable set of feasible retractions. The set of candidate

retraction spaces can be partitioned into a set of cells and let A to be the spatial (planar)

arrangement defined by them (shown in Figure 3.7). As usual, the arrangement consists

of 0-faces (vertices), 1-faces (edges) and 2-faces (polygonal cells). This arrangement A is

computed by intersecting and splitting the candidate retraction spaces for all the undercut

facets. Hence, for each cell a in A, the set of undercut facets for which this cell will be a

part of its corresponding candidate retraction space is known. This set of facets is termed

as the retractable facets for the cell a. In other words, a subset of all retractions defined

by points located within a are feasible retractions for all the retractable facets. Since by

selecting such a retraction, one will be able to deal with a large number of retractable

facets at one go, one can then perform a search over all cells and find the optimal

 60

combination of retractions. Based on Lemma 1 and the discussion in this paragraph, one

can state Observation 1.

Observation 1: For every cell a A∈ , there exists a corresponding cell a/ (may be null

(φ)) belonging to the feasible retraction spaces, such that and /a ⊆ a () ()/b a b a φ∩ ≠ ,

if /a φ≠ , where b (a/) and b (a) are the boundaries of a/ and a respectively.

Figure 3.7: Ce

Although, the described method

generate A leads to many implementa

edge list data structure for A is a rather

al. [deBe00] point out, it takes O(l2) tim

On the other hand, all pair-wise edge in

time, where I is the number of intersec

will prove significant since a large num

practice. Moreover, there is the prob

narrow or thin cells intersect to create

lie so close to one another that pract

among them using typical floating-poin

0-faces

Retraction plane

No. of retractable facets
remains constant within a
particular cell

1-faces (Edges)

∆Y

No. of retractable facets
change at the cell corners
or intersection vertices

llular planar arrangement

ology is followed in spirit, an attempt to explicitly

tion challenges. Maintaining a doubly-connected

 difficult and time-consuming task. As de Berg et

e, where l is the total number of lines in the plane.

tersections can be reported in O(l log l + I log l)

tion points. This difference in time-complexities

ber of small cells are expected to be present in

lem of implementation robustness. If two very

a very small cell, all the neighboring vertices will

ically it becomes extremely hard to distinguish

t arithmetic. Such numerical inaccuracies occur

∆X 2-faces (Cells) formed by
superposing all the
candidate retraction spaces
for individual facets

61

frequently in geometric computations, leading to completely erroneous results. This has

been illustrated in Figure 3.8. As reported by Kharderkar et al. [Khar05], although such

problems can be avoided by using the MP_Float (multi-precision float) number type with

Cartesian kernel provided by CGAL [2004], speed becomes very slow due to large

overhead and often the application may run out of memory.

∆Y

Figure 3.8: Implementation challenges due to robustness problems

Hence, the planar arrangement A is not computed explicitly. Instead, focus is

given on finding a discrete set of promising retractions and performing search over them.

In the following chapters methodology to do the same has been explained. But before

proceeding any further, it is useful to establish some important foundations and

properties.

Lemma 2: Let r be a retraction used in the optimal solution and F be the set of facets

associated with r. Then r will lie on the boundary of a cell in A.

Proof: Since the objective (molding cost) function is being minimized, if retraction r

belongs to the optimal solution, then it must be a feasible retraction and the retraction

length must have the least possible value for the associated facet set F. Since F

corresponds to a particular cell in A, r must lie on the boundary of that cell. As shown

∆X

Retraction plane

Numerical errors due to presence of
such small cells

Hard to distinguish among neighboring vertices
to maintain exact cellular arrangement such
that all topological relationships are preserved

 62

in Figure 3.9, this is due to two reasons. First, the point having minimum distance

from the origin (i.e. retraction length) for any polygonal cell will be a boundary point.

Second, the corresponding cell in feasible retraction space will share a portion of the

boundary (see Observation 1). Hence the assertion of lemma directly follows from

these observations.

Optimal retraction will lie on
the boundary of this cell since a
boundary point will always be

present that has smaller distance
from origin than any other

interior point

Figure 3.9: Illustration of Lemma 2

This lemma clearly points out that only the boundary of the cells in A needs to be

considered in order to obtain the least possible retraction lengths for all potential facet

sets that may be present in the optimum solution. However, it also needs to be ensured

that by considering the cell boundaries only, one does not fail to include maximum

possible number of facets in every facet set for all promising retractions that may appear

in the optimum solution. Now let us consider a set R that consists of two types of

elements- the original corner vertices of all the candidate retraction space polygons and

d2

∆Y

Retraction
plane

d1

∆X

d1 < d2

 63

the intersection points obtained by pair-wise intersection of all edges in the feasible

retraction space polygons. Thus, this set R includes all the vertices of the arrangement A.

Lemma 3: Let F be a facet group in the optimal solution. Then there will exist a

retraction r in R such that r is a feasible retraction for all facets in F.

Proof: The set of retractable facets corresponding to a particular cell does not change

within its interior. It definitely changes at the 0-faces, i.e. at the original corner

vertices of the free space polygons or at the intersection points. The status of the

edges is rather hard to determine. While the boundary edges (edges belonging to a

single cell only) have the same set of facets as the respective cell interiors, edges that

are common to multiple cells have an ambiguous status. However, this is immaterial

here since any change in the retractable facet set along an edge is already accounted

by the two vertices forming the edge.

Since F is a facet group present in the optimal solution, if retraction r is a feasible

retraction for all facets in F, then it must be contained (either on the boundary or

within the interior) in the particular cell corresponding to F (see Observation 1).

Combining this argument with the discussion in the preceding paragraph, one can

conclude that r is bound to be present in R since set R encompasses all the 0-faces of

the cells. Thus, the lemma follows.

Based on Lemma 2 and 3, it is possible to reduce our search space considerably

from the entire arrangement A to only the cell boundaries. Moreover, from Lemma 3, it

can be inferred that by only utilizing R as the search space, the maximum possible

 64

number of facets can be successfully included for all candidate retractions which may be

present in the optimal solution. However, by ignoring the non-vertex points in the cell

edges, the least possible retraction lengths may not be obtained. In order to minimize this

error, the edges of the feasible retraction space polygons are sub-divided a priori (before

computing the line segment intersections) so that no two neighboring vertices are more

thanε apart from each other on any of the sides. Still the retraction lengths in the solution

might be marginally greater than or equal to the optimum retraction lengths. However,

Theorem 1 formalizes that such an error will be bounded.

Theorem 1: Let S* be the optimal solution and let S’ be a solution that has the same

facet sets but each retraction length is increased by 0.5ε . Then the solution produced by

the algorithm will be no worse than S’.

Proof: As Figure 3.10 points out, maximum error in retraction length occurs when

the optimum solution lies at the mid-point of an edge and the solution explored by the

algorithm by searching over the set R, corresponding to the same facet set is

obviously one of the edge vertices. If the optimum retraction corresponds to any other

non-vertex point on the edge, then the closer neighboring vertex will be considered by

the algorithm. In such a situation, there are two possibilities. First, the algorithm will

return this closer neighbor solution, resulting in a small error. This error in retraction

length is, of course, bounded by half the maximum possible edge length, i.e. by 0.5ε .

Second, the algorithm will find a better overall solution (involving different facet sets

and retractions) than this solution.

 65

From the above argument, it easily follows that since solution S/ has identical facet

sets as the optimum solution S*, but each retraction length is increased by 0.5ε , the

algorithm will not generate solution worse than S/.

Cell

Figure 3.10: Maximum error in retraction length

Choosing ε to be equal to 1 mm, there is very little qualitative difference between

the solution generated by the algorithm and the optimum one. Practically this error has no

effect, since a discrepancy of 0.5 mm in the retraction length hardly matters due to use of

fast actuators attached to side actions. Thus, this error is insignificant.

After generating this set R, in order to make the optimization (e.g., depth-first

branch and bound) algorithm more efficient, it is important to eliminate all the dominated

retractions that are never going to produce the optimal solution. Then a test is carried out

to determine whether every remaining retraction is a feasible one. The approach for

pruning such redundant retractions, testing feasibility, and then arranging the non-

dominated, feasible retractions and their associated retractable facets in the form of

efficient data structures is explained in Section 5.1.

Finally, the retractions are treated as nodes to construct a search tree in a

particular manner, described in details in Section 5.2. Certain heuristic rules have been

developed to ensure that branching of the tree at any level is restricted within manageable

Maximum error is equal
to half the greatest length
possible for any cell edge Optimum

retraction

∆Y

∆X

Retraction returned
by our algorithm

 66

proportions. The maximum depth of the tree will also be restricted to 3 or 4 in most

practical cases. A depth-first branch and bound strategy is then employed on this search

tree to obtain the optimum set of undercut regions. These regions are then swept along

the horizontal translation vectors corresponding to the retractions and additional planar

patches are inserted to form compact side action solids.

 67

Chapter 4

COMPUTING CANDIDATE RETRACTION SPACES

From the discussion in the previous chapter, it is clear that first of all the

candidate retraction space needs to be constructed for every individual undercut facet. In

order to describe the steps for doing that, certain definitions have been introduced in

Section 4.1. The overall procedure can be decomposed into two stages. Initially, an

candidate translation space needs to be computed on the retraction plane such that a

single horizontal translation vector can pull the facet there without being obstructed by

any other facet lying on the way. The algorithm for computing this has been explained in

details in Section 4.2. To ensure that the horizontally translated undercut facet can also be

pulled vertically, it is necessary to construct another candidate translation space on the

retraction plane. Eventually, the two candidate translation spaces have to be concatenated

to obtain a combined, candidate retraction space. All these steps have been described in

Section 4.3.

4.1 Related Definitions

 Collision polyhedron for a facet f with respect to another facet f/ is defined as the

set of points in 3D translation space such that if corresponding translations are applied to

f, then the translated f intersects with f/.

 Collision polygon for a facet f with respect to another facet f/ is defined as the set

of points in 2D translation space such that if corresponding translations are applied to f,

then the translated f intersects with f/.

 68

 Sweep-based collision polygon for a facet f with respect to another facet f/ is

defined as the set of points in 2D translation space such that if corresponding translations

are applied to f, the swept polygon Pt
→

/ will intersect f/, where

. / { : ,0P p t p fξ ξ
→

= + ∈ ≤ ≤1}

 Collision free 2D translation space for a facet f is defined as the set of points in

2D translation space such that if corresponding translations are applied to f, the swept

polygon P

t
→

/ (defined as before) will not intersect with any of the collision facets f/.

Inaccessible polygon for a facet f refers to the set of points in 2D translation space

such that if this translation is applied to f, then it is not accessible vertically upwards.

2D translation space for upward vertical accessibility for a facet f is defined as

the set of points in 2D translation space such that if this translation is applied to f, then it

can be released vertically upwards. Similarly, a 2D translation space for downward

vertical accessibility can also be defined for facet f.

4.2 Computing Collision-free 2D Translation Spaces

Firstly all the potential facets capable of causing obstruction need to be identified. Since

the translation vector in this case is restricted to lie in horizontal plane, it makes sense to

consider all the facets lying partially or completely within the z-range of the undercut

facet under consideration as potential obstacles. Z-range refers to the 3D space bounded

by the maximum and the minimum z coordinate values of the facet vertices. In case a

facet does not lie completely within the z-range, only the part of it lying inside is

considered. This involves truncation of triangular facets to form convex polygons of 3, 4

or 5 sides.

 69

 According to Aronov et al [Aron97], 3D free configuration space FP of a convex

“robot” B moving in space occupied by k/ obstacles {A1, …, Ak
/} is given as the

complement C of U, where be the union of the so-called expanded obstacles P
/

1

k

i
i

U
=

=∪P

}

i.

Here Pi is the Minkowski sum (illustrated in Figure 4.1) of Ai and – B, for i = 1,…, k/.

 (4.1) () { : ,i i iP A B a b a A b B= ⊕ − = − ∈ ∈

Y
1 2S S⊕

S1

S2

X

Figure 4.1: Minkowski sum of two convex polygons

 In this case, replacing B by the undercut facet under consideration and Ai

s by the

k/ facets falling within its z-range, set of collision polyhedrons are obtained. Since this

Minkowski sum is computed easily by obtaining the convex hull of the vector differences

of each pair of vertices, total process has O(k/m/ log m/) worst-case asymptotic time

complexity, where m/ is the maximum number of vertices in each of the expanded

obstacles. The collision polyhedrons are then intersected by a horizontal plane located at

∆ z = 0 to obtain collision polygons in the retraction plane.

 70

 However, the fact that the facet must be able to reach this candidate space by

means of a single translation vector also needs to be taken into account here. That is why,

mere construction of Minkowski polyhedrons and then intersection with a horizontal

plane do not give the final obstructed space.

 The hard shadows (shown in Figure 4.2) of all the k/ collision polygons need to be

computed in order to determine the sweep-based collision polygons. Alternatively, same

thing is done by plane sweeping the collision polygons until they reach the retraction

plane boundaries. Assuming that n/ is the maximum number of vertices present in a

collision polygon, this has a worst-case asymptotic time complexity of O(k/n/ log n/).

Lastly, the collision free 2D translation space is obtained by subtracting the union of the

forbidden spaces from the bounded retraction plane. Each union and subtraction

operation again takes O(n// log n// + I/ log n//) time [deBe00], where n// is the total number

of vertices of two polygons and I/ is the complexity of the resulting polygon. All the steps

mentioned so far have explained formally in the following algorithm COMPUTE-

MINKOWSKI-SINGLE-TRANSLATION-SPACE and illustrated in Figure 4.3.

Y

Figure 4.2: Hard shadow of a polygon

X

Hard
shadow of S S

(0, 0)

Point source of light
located at the origin

 71

Part (a)
Undercut facet

under consideration
(f1)

+z
Main mold

opening
directions

- z (b) f1

Cross-sectional view

Find facets lying
within z-range of f1

f2f1

(c)

Find Minkowski sum, transform
to retraction plane and sweep it

 72

Sweep-based
blocking polygon

∆Y

Figure 4.3: Constructing collision-free 2D translation space

Algorithm: COMPUTE-MINKOWSKI-SINGLE-TRANSLATION-SPACE

Input:

• N facets representing the part P and its mold enclosure B.

• A set of n undercut facets Fu = {f1,…,fn}.

Output:

• A set of n collision free 2D translation spaces C1 = {c1,…,cn} 2R∈ , where ci

corresponds to undercut facet fi.

Steps:

1. For every fi in Fu, do

Collision-free 2D
translation space

∆X

Retraction
plane

Blocking polygon (shown
by dotted lines)

(d)

Compute the union of all
sweep-based blocking polygons

and take complement
Repeat steps (b) to (e) for

all the undercut facets ∆Y

(e) ∆X

 73

i. Create a z-range by considering the overall vertical stretch or extent of fi.

ii. Form a new set Fs = {f1,…,fm}, such that all triangles fj ∈ Fs (each fj is a sub-

set of a particular facet forming the part) have vertical (z) extents situated

partially or completely within the z-range defined for fi in the preceding step i.

If a facet lies completely in the z-range, then the whole of it is included.

Else only that part of facet, where the vertical extent lies within the z-range, is

included and remaining part is truncated.

iii. Set index j = 1.

iv. While j <= m, do

a) Determine the collision polyhedron for fi with respect to fj

()j j ip f f= ⊕ − , j sf F∈ , by calling the function COMPUTE-

MINKOWSKI-SUM (fj, fi).

b) Find the sweep-based collision polygon for fi with respect to fj,

namely sj, by calling the function COMPUTE-SINGLE-

TRANSLATION (B, pj, fi).

c) Increment j by 1.

v. Compute the union mi of all the 2-D convex polyhedra sj;

 . 1
m

i jm s== ∪ j

vi. Determine ci by taking the complement of mi, i.e. . c
i ic m=

2. Output C1 = {c1,…,cn}.

Function: COMPUTE-MINKOWSKI-SUM

Input:

• Two facets f1 and f2.

 74

Output:

• A 3-D convex polyhedron p1.

Steps:

1. For each pair v, w of vertices, with v ∈ f1 and w ∈ f2, compute v – w.

2. Find out the convex hull p1 of the all these differences (3 for triangular facets)

obtained in step 1.

3. Output p1.

Function: COMPUTE-SINGLE-TRANSLATION

Input:

• Mold enclosure B.

• A 3-D convex polyhedron s1 and a facet f1.

Output:

• A 2-D convex polyhedron , lying in the horizontal plane. /

1s

Steps:

1. Transform s1 into a convex polygon r1 lying in 2-D translation (∆ XY) space by

intersecting s1 with the horizontal plane, lying at ∆ z = 0.

2. Compute the hard shadow of r1 assuming there is a point source of light situated at

the origin and label this shadow zone as b1. This zone is bound by the mold enclosure.

Alternatively b1 can also be obtained by plane-sweeping r1 until it intersects the

boundaries of B.

3. Concatenate the two regions r1 and b1 to obtain another convex polyhedron ; =

r

/
1s

/
1s

1 ∪ b1

4. Output . /
1s

 75

4.3 Computing 2D Translation Spaces for Vertical Accessibility

To compute this space, the entire mold free space is first sub-divided into cubical

voxels. The length of each side of the cube is of the order of the dimension of the

triangular facets. The accessibility of all the voxels lying within the z-range for each facet

in +z direction is determined and all the inaccessible voxels are grouped together. This is

done by checking whether the swept volume of each voxel intersects with the part P. A

voxel is reported as inaccessible even if there is partial intersection. These grouped

voxels are transformed into a 2D plane by intersecting with a horizontal plane at z equal

to the height of the facet centroid to form inaccessible polygons. Basically, any point

within the z-extent of the facet can be chosen since its collision-free horizontal translation

is already taken care of. Now, the Minkowski sum between all the inaccessible polygons

and the reflection of the facet (also intersected by the same horizontal plane) needs to be

computed and the final product subtracted from the retraction plane to obtain the exact

2D translation space for upward vertical accessibility.

Although the inaccessible polygon may not be convex, convex decomposition is

easily carried out before computing Minkowski sums by identifying concave corners and

constructing additional edges parallel to either of the two axes (X or Y), since the original

edges will always be axis-aligned. For any polygon having ni vertices, this is done

optimally in O(ni log log ni) time by using the maximum non-intersecting chords method

described in [Liou90]. Finally, intersection of the collision-free 2D translation space and

the 2D translation space for upward vertical accessibility is taken to identify the

candidate core retraction space for every individual undercut facet. A similar approach is

adopted to compute the candidate cavity retraction space by considering accessibility of

 76

the voxels in –z direction. The steps are schematically shown in Figure 4.4. This step

results in two different candidate retraction spaces: one for +z direction (core) and a

second one for –z direction (cavity) and have been explained below in the algorithm

COMPUTE-CANDIDATE-RETRACTION-SPACES. In the current implementation,

steps described in Sections 5.1 and 5.2 are executed for both of these spaces separately.

Figure 4.4: Constructing candidate core retraction space

Algorithm: COMPUTE-CANDIDATE-RETRACTION-SPACES

Input:

• N facets representing the part P and its mold enclosure B.

• Set of n undercut facets Fu = {f1,…,fn}.

• Set of n collision free 2D translation spaces C1 = {c1,…,cn} obtained as an output of

the algorithm COMPUTE-MINKOWSKI-SINGLE-TRANSLATION-SPACE.

Output:

• Set of n candidate core retraction spaces = { ,…, }. /
1C /

1c /
nc

• Set of n candidate cavity retraction spaces = { ,…, }. //
1C //

1c //
nc

Steps:

Cross-sectional view

∆X

∆Y
Voxel accessible along

+ z but not along -z

Retraction
plane

Obtain inaccessible polygons,
compute Minkowski sum, take
complement and intersect with

collision-free 2D translation
space Candidate core

retraction space

 77

1. Compute mold free space MS by taking the regularized Boolean difference between

the mold enclosure and the part, i.e. *MS B P= − .

2. Sub-divide MS into a large number of cubical voxels such that length of all the cubes

is identical and is of the order of the part facet dimension. Let V = {v1,…,vq}

represent the set of voxels.

3. Create two empty sets and . /
1C //

1C

4. For every vi ∈V, do

i. Create two swept volumes (solids) S1 and S2 by sweeping vi till it reaches the

boundaries of B in +z and –z directions respectively.

ii. Test whether S1 and S2 intersects with the polyhedral part P. If S1 intersects P,

then assign a label 1 to vi. On the other hand, if S2 intersects P, then assign a

label 2 to vi.

5. While the set V is not empty, do

i. Start randomly from any seed voxel vi which has a label 1 and set i = 0.

ii. Apply seed fill technique to find all other neighboring voxels sharing the same

label. Unionize these voxels to form to a polyhedron (i = i + 1) and then

delete all these voxels from V.

/
ip

iii. Start with any other seed voxel having label 1 randomly (as long as one exists)

and follow previous step ii.

iv. Start randomly from any voxel vj that has a label 2 and follow steps ii. and iii.

to form polyhedrons by grouping together all the voxels carrying label 2. //
ip

6. For every fi ∈ Fu, do

 78

i. Transform all the polyhedrons and to retraction plane by intersecting

them with the horizontal plane z equal to the z-coordinate of the centroid of f

/
ip //

ip

i.

This operation results in the formation of two sets of inaccessible polygons po/

and po//, corresponding to and respectively. /
ip //

ip

ii. Decompose each rectilinear polygon present in the two sets po/ and po// into

minimum number of convex pieces; then compute Minkowski sum between

every such convex polygon and –(fi(0,0)) and unionize all the Minkowski

polygons for the sets individually. Finally, take the complement of both the

unionized polygons separately to form 2D translation spaces for upward and

downward vertical accessibility for facet fi respectively. Let these two spaces

be denoted as ui and di.

iii. Form the candidate core retraction space corresponding to f/
ic i by intersecting

ci and ui, i.e. . Insert in the set . /
i ic c u= ∩ i

/
ic /

1C

iv. Similarly insert an element in the set by using d//
ic //

1C i instead of ui.

7. Output and . /
1C //

1C

Using the lemmas and theorem presented in Section 3.4, the candidate retraction

spaces thus obtained will be discretized to obtain a set of candidate retractions. Next a set

of non-dominated retractions will be identified from this discretized set. Each non-

dominated retraction will then be tested to determine whether it is a feasible retraction.

Finally, all the feasible retractions will be arranged in the form of data structures so that

they can be queried efficiently at the time of generating the optimal solution from the

 79

feasible search space. These steps have been discussed in details in the next chapter along

with the results on a number of test parts.

 80

Chapter 5

FORMING SIDE ACTIONS

The final goal of the current work is to generate a set of side actions which can be

actuated simultaneously and independently of one another, such that each of them can

mold a portion of the undercut region. This is equivalent to combining a set of undercut

facets together when they share at least one common feasible retraction. At the same

time, the given cost function needs to be minimized (see Sections 3.2 and 3.3). Hence,

this grouping has to satisfy global optimum (or near-optimum) criterion. Sampling of the

candidate retraction spaces computed in the previous chapter to obtain a discrete set of

feasible retractions is explained in Section 5.1. Global search strategy has been described

in Section 5.2. Finally the implementation details, including a discussion on the

computational experiments, summary of results and figures of generated side action

solids have been presented in Section 5.3.

5.1 Computing Discrete Set of Feasible Retractions

As discussed in Section 3.4, the aim is to obtain the discrete set of all possible

retractions. Firstly, edge sub-division is carried out on all the candidate retraction space

polygons if necessary and then all the line segment intersection points are computed. The

corner points of all the retraction space polygons are also retained.

Next the set of retractions needs to be pruned to obtain a so-called non-dominated

set. Such a set will only consist of those retractions which are better than any other in the

entire set with respect to either the retraction length or the number of associated facets.

 81

This is done by first sorting all the retractions in order of increasing retraction lengths and

is completed in O(m log m) time [Corm01], where m is the total number of retractions.

Then all the retractions that have identical retraction lengths are listed and again sorted in

order of their number of retractable facets. All the retractions that have lesser number of

associated facets than the current maximum value are deleted. Initially, this current

maximum is equal to zero and is progressively updated as one retraction length bucket is

considered after another. Each deletion operation takes constant time and a binary

searching is implemented in O(log m) time.

After obtaining the non-dominated set, it needs to be tested whether each

retraction is a feasible one, and if so, for which all retractable facets. A particular

retraction may be a feasible one for certain facet(s) in its retractable facet set, whereas, it

may not be so for the remaining facets in that set. Hence, this check has to be carried out

individually for every retractable facet associated with all the q non-dominated

retractions. Actual checking is quite straightforward; for a given undercut facet and a

retraction, the minimum length of the side action solid is computed easily as the 2D

translation space for vertical accessibility is known to us (see Chapter 4). Then, this

minimum length has to be vectorially added to the horizontal translation (along the same

direction) already associated with the given retraction. If the final retraction lies inside

the candidate retraction space for the undercut facet, then it is a feasible retraction;

otherwise not. Whenever the answer is no, that particular undercut facet is removed from

the set of retractable facets. At the end, if any undercut facet has no feasible retraction

associated with it, then it can be immediately concluded that the given undercut region is

non-moldable and the part needs to be re-designed. In that case, the overall algorithm

 82

terminates without entering into the optimization phase. This eliminates the need for

costly simulation-based post-processing operations to deal with infeasible side action

designs.

A look-up table LT is then constructed to satisfy another output requirement: non-

intersection of generated side action solids. It needs to be ensured that different solids

formed by sweeping individual undercut facets along the horizontal translational vectors

associated with corresponding retractions do not intersect each other. If any two solids

intersect for any two given feasible retractions, those retractions cannot occur in the same

solution set. Any entry in the table has a value 1 if the two retractions corresponding to

the particular row and column under consideration can be present in the same solution.

Otherwise, it is assigned a value 0. Such an intersection check only needs to be carried

out for the facets that are not present in both the retractable sets and lie within the z-range

(defined in Section 4.2) of each other. Although this pre-processing step is

computationally intensive, it ensures the correctness of our solution from the actual

application (molding operation) point of view and saves considerable time in the

optimization stage. For example, for the look-up table shown in Figure 5.1, side actions

corresponding to 1st and qth retractions can be present in the same solution set, whereas

2nd and qth retractions cannot be included in the same output set.

 83

 1st

retraction

2nd

retraction
… qth

retraction

1st

retraction
NA 0 … 1

2nd

retraction
0 NA … 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

qth

retraction
1 0 … NA

Figure 5.1: Look-up table to ensure non-selection of intersecting side actions in the
output set (NA means non-applicable)

Once all the non-redundant feasible retractions have been computed, a tree is

constructed to represent the feasible solution space. In order to do that, the undercut

facets have to be sorted in a particular way, so that the process of placing the nodes gets

facilitated. A heap H is built for the n undercut facets in linear (O(n)) time [Corm01].

This is going to arrange the facets depending upon their minimum retraction lengths

(with maximum preference being given to those having maximum values of minimum

retraction lengths) and break ties on the basis of lesser number of associated retractions.

This heap is used as an efficient priority queue. Extracting the most critical or highest

prioritized facet can be easily done in O(log n) time. Similarly after a vertex has been

considered, deletion of each corresponding facet is done in O(log n) time, so that overall

 84

process takes less than O(n log n) time even in the worst-case (since all facets can never

be deleted from the heap).

Moreover, a set of linked lists LL = {ll1, …, lln}is used so that access from

undercut facets to retractions can be done easily in constant time (shown in Figure 5.2).

For a particular element in the linked list, i.e. an undercut facet, all the associated

retractions are maintained in a sorted order depending upon their lengths, with highest

preference being given to the one(s) having least magnitude. This is utilized while

placing the actual nodes in the search tree. All these data structures are created so that

queries become efficient while traversing the search tree to obtain an optimal solution to

the undercut region grouping problem. They ensure that no more than O(n log n)

computations need to be performed at any node in any level of the tree, instead of the

usual O(n2) calculations necessary if exhaustive comparisons and enumerations are

carried out.

Priority queue Linked list

Elements are associated
retractions (sorted in non-

descending order of
retraction lengths)

Elements are
undercut facets

Figure 5.2: Efficient arrangement of undercut facets and retractions

5.2 Global Optimum Search Algorithm

A depth-first branch and bound algorithm is used to determine the optimal set of

undercut regions. This requires employment of intelligent heuristics to quickly steer

 85

search to a good initial solution, limit branching, and prune as many search paths as

possible. The notion of a bottleneck facet plays a key role in realizing these heuristics.

It may be observed that certain facets become the main bottlenecks in generating

a solution. These facets have very limited number of feasible solutions and they impose

constraints on the goodness of the overall solution. The overall solution has to address

these facets and hence it is desirable to process these facets first. These facets belong to

the category such that the minimum retraction length for them is highest among all the

facets. On top of this, they must have rather narrow feasible retraction spaces, which, in

turn, will be reflected in the fact that they will have smaller number of retractions

associated with them. Bottleneck facets for a given part are shown in Figure 5.3.

Part

Y

Bottleneck facets having
highest value of minimum
retraction length and least

no. of retractions

X

Top view

Figure 5.3: Bottleneck facets

Once bottleneck facets have been identified, construction of search space is

started with any one of them. An empty node is created as the root node and all the

 86

retractions associated with the chosen bottleneck facet (highest priority element in our

heap) are placed as top level nodes in the search space. Since retractions are accessed

directly using the linked list, they will be placed in order of increasing retraction lengths.

If a particular retraction is considered, its associated retractable facets form the first

undercut region. In the next level, one needs to determine the bottleneck facets among the

remaining ones and place the retractions attached to any one of them as nodes. This

proceed is repeated until all facets are covered. Of course, one needs to be careful not to

include two retractions such that the corresponding side actions intersect with each other

in the final solution. Such a path, if encountered, will be termed as infeasible (by using

our look-up table) and will be pruned. If some of the retractable facets associated with a

retraction are already covered then they will not be added to this solution.

Track is kept of the current best solution. If during the search, cost of a partial

solution exceeds the cost of current best solution, then this path is pruned. If during the

search a better solution than the current best solution is found then the current best

solution is updated. However, improved forward-looking cost bounds can be easily

derived as follows to prune more paths. Let C* be the current optimum solution and CN be

the partial cost incurred so far along a particular path, after including N nodes

(retractions). Then a path is pruned if it can be said certainly that CN+1 will be greater

than or equal to C*. Mathematically this pruning condition is equivalent to:

()* /
min min

kg g
NC C C l lγ χ− < + + (5.1)

where min
gl is the minimum retraction length in the set of feasible retractions. This is pre-

computed once before starting depth-first branch and bound. This equation follows from

 87

the fact that whenever another node is introduced, an additional side action is included

which will, of course, have a retraction length greater than the minimum length possible.

However, a tighter bound can be obtained as well. This can be mathematically
stated as:
 ()* /

min min

kr
NC C C l lγ χ− < + + r (5.2)

where is the minimum retraction length for all the remaining undercut facets that have

not been included in the current partial solution so far. Although this will prune larger

number of nodes in the search space, it entails additional run-time computations as one

needs to look up for the minimum value among all the elements placed at the beginning

of the linked lists associated with all the undercut facets present in the updated priority

queue.

min
rl

Search can terminate in two ways. Firstly, it terminates when all promising nodes

have been explored. In this case it produces a solution that is very close to the optimal

solution. Secondly, it stops when the user specified time limit has been exceeded. In this

case search returns the current best solution.

The bottleneck facet scheme restricts the amount of branching (or number of

nodes) at a particular search level. Now coming to the tree depth issue, it is rare to find

parts in which a connected undercut region requires more than three side actions. Usually

cost function parameters are such that solutions involving N + 1 side actions are more

expensive than a solution involving N side actions. Our heuristics quickly locate feasible

solutions and once a feasible solution has been found, very few nodes are explored at the

next depth level. This characteristic ensures that tree depth is limited. For example, once

a solution involving three side actions has been found, very few solutions involving four

side actions appear promising enough to try. Solutions involving five side actions are

 88

virtually never tried in such a case. Hence, for virtually all practical parts in which a

single connected undercut needs to be partitioned into three undercut regions one should

be able to find optimal solutions in a reasonable amount of time. As with any depth first

branch and bound algorithm, the time complexity increases exponentially with the depth

of the search tree. However, since practical cases involving more than three side actions

are not expected for a single undercut region, the exponential growth is not much of a

concern in this particular application.

Once all the regions have been generated, they are swept along the associated

horizontal translation vectors (corresponding to the retractions) and additional patches are

included at the top, bottom and the arrow-tip end of the vector to form a compact, 2-

manifold solid. This is illustrated in Figure 5.4. These capping patches consist of planar

faces only. The boundaries of these solids are then triangulated to represent them in a

faceted format and they form the desired set of side actions. All these steps are described

in the following algorithm called GENERATE-SIDE-ACTIONS. Only the simplest

bounding strategy has been stated in the algorithm below. However, any of the other two

bounding strategies can be used by slightly modifying Step 5 a iv.

Figure 5.4: Sweeping undercut facets to form side act

Algorithm: GENERATE-SIDE-ACTIONS

Undercut
facets

(thickened)

Translation
vector

Sweep the undercut
facets and add capping
planar surface patches

d

 89
Side action soli
ion solids

Input:

• Set of n undercut facets Fu = {f1, …, fn}.

• Collection of p sets {{{f11, …, fn1}, l1}, …, {f1p, …, fnp}, lp}}, each associated with a

particular non-dominated retraction. Here, all fij ∈ Fu (though may be repeated in

different sets) and all li
s are retraction lengths. The first entity in every set is the set of

retractable facets for that particular retraction.

• Look-up table LT, heap H and set of linked lists LL created during the pre-processing

operations described in Section 5.1.

• Maximum permissible time tmax in seconds.

Output:

• One or more SAS ai = {si, Fi, (xi, yi), Ti} (as defined in Section 3.2).

Steps:

1. Initialize a tree T by creating an empty root node.

2. Initialize Cmin to be positive infinity (very high value).

3. Populate the nodes in the next level by extracting the highest priority facet from the

heap H and inserting all its associated retractions in order of increasing retraction

lengths. Set LL is utilized to obtain this sorted retraction set directly. Color all the

nodes as white.

4. Initialize this second level as the current one.

5. For every node u in the current level do

a. If u is colored white or grey do

 90

i. If u does not have a child node as yet, color the node as grey. Else if all the

children nodes are colored black, color this node as black as well and unless the

current level is the second one, decrement it by one.

ii. Check whether the side action corresponding to the retraction present in u

intersects with any of the other side actions associated with the nodes in this tree

path by using the look-up table LT directly. If yes, then prune the path by

coloring u as black and decrement the current level by one; moreover go to step

b. directly. If no, then further test whether the retractable facet set associated

with u has a non-null intersection with the facet sets of the other nodes in the

path. If answer is yes, then delete the common facets from the facet set.

iii. Estimate the incremental cost Cinc by considering all the facets associated with

the retraction present in node u as a new undercut region Fi. Equation (3.1) is

used to obtain Cinc.

iv. If by including Fi, all the facets in Fu are covered, then terminate this

particular tree path and color u as black and decrement the current level by one.

Moreover, in this case if Cinc < Cmin, update Cmin as Cinc and construct a set of

undercut regions by inserting all the Fi
s of this particular path (from second

level downwards) along with their associated retractions (xi, yi). Each Fi will

also have a value of Ti (+1 or -1) depending upon whether this algorithm is

implemented for the feasible core or cavity retraction space.

v. Else

1. If Cinc < Cmin, temporarily delete all the facets of the set Fi from the heap H,

insert all the associated retractions of the facet currently having maximum

 91

priority in H as the children nodes in the next level in sorted order, color

them as white and increment the current level by one.

2. Else prune this particular tree path in exactly the same way as in step ii.

b. Else go the next node u in the current level.

6. Once the recursive depth-first search loop 4 terminates after all the paths in T have

been explored or after the user-defined time limit tmax has been exceeded, generate all

the side core sets ai
s by applying algorithm GENERATE-SOLIDS on each Fi to

obtain a solid si.

7. Output all the ai
s.

Algorithm: GENERATE-SOLIDS

Input:

• Undercut region Fi obtained in step 5 a iv. of the algorithm GENERATE-SIDE-

ACTIONS and its corresponding retraction (xi, yi).

Output:

• A compact, 2-manifold solid body si with a well-defined semi-analytical boundary.

Steps:

1. Sweep Fi along the translation vector defined by the retraction (xi, yi).

2. Add additional planar faces at the top, bottom and arrow-tip end of the vector defined

in step 1. to form a solid si. It should meet all the requirements specified in the output.

3. Triangulate si to form an output file in .stl format which can later be used for display

purposes.

4. Output si.

 92

5.3 Implementation

All the algorithms were implemented in C++ using Visual Studio.NET 2003 in

Windows XP Professional operating system. CGAL [Cgal04] version 3.0.1 was used as

the geometric kernel to carry out all the basic operations like regularized Boolean,

computing the convex hull, finding intersections by using plane sweep and so on. In

order to speed up computation, all the vertex coordinates were first converted into

integral values and then the Cartesian kernel with int number type was used. OpenGL

was used for displaying purposes. CAD model for every part was triangulated and

converted into .stl format which was then taken as input by the program. The main mold

opening direction was inputted separately. A preprocessor program was written to

recognize all undercut facets. All the programs were run in a Pentium M processor

machine having 512 MB of RAM and processor clock speed of 1.6 GHz. The overall

system architecture is schematically shown in Figure 5.5.

1) CAD model of part in
.stl format

2) Main mold opening
directions

Figure 5.5: System architecture

3) List of undercut facets
4) Cost function

parameters

1) One or more side
action set (SAS)
2) .stl file for each of
the side action solids

C++ application
Compiler: Visual Studio.NET 2003

Standard
Template
Library
(STL)

Computational
Geometry

Algorithms
Library (CGAL)

OpenGL

 93

The algorithm for computing 2D translation space for upward/downward vertical

accessibility was implemented in a simplified form. Minkowski sums were not explicitly

computed and the complement of the inaccessible polygons was directly taken. This

change did not make any difference in practice since large numbers of accessible voxels

occur together and a conservative approach was followed in classifying them as

accessible or inaccessible.

Figure 5.6: Five test parts

5.3.1 Computational Experiments

Part B Part A

Part D Part C

Undercut region
formed due to a lip
on the top Undercut region

running around the part

Annular undercut
region

Undercut region
running along the
circumference

Deep undercut region
caused by the protrusion

Part E

 94

A series of computational experiments have been carried out on 5 parts (shown in

Figure 5.6) to characterize the performance of the algorithms. Since time values cannot

be compared across different parts, each part was faceted using four different levels of

accuracy. The first two parts have same number of undercut facets in all the four models,

while the total number of facets increases. However, both the number of undercut facets

as well as the total number of facets increases across the four models in case of the latter

two parts. Now comparisons with respect to computation time, number of nodes in search

space and so on can be made for the same part having varying number of facets. Results

of these experiments for γ = 200 (in $/mm2), = 2, = 5,000 or 10,000 (in $)

depending upon whether it is a cavity or core retraction, and

k /C

χ = 18.227 (in $/mm) are

shown in Table 1 below in Section 5.3.2. These values are based on a specific injection

molding scenario. The second bounding strategy (defined by Equation (5.1)) is used in

this case. The undercut region in part E is non-moldable and hence computation stops

before entering the optimization stage. The side action solids generated for the other four

test parts have been displayed in Figure 5.7 in Section 5.3.3.

Another series of computational experiments have been performed on the model

containing highest number of facets for each of the first 4 test parts to estimate the

relative performance of the three bounding strategies. This performance has been

characterized on the basis of two parameters, namely, the number of pruned nodes and

the overall computation time for depth-first branch and bound search. Results of these

experiments have been summarized in Table 2 in Section 5.3.2.

5.3.2 Summary of Results

 95

Certain basic trends are discernible from the values in the table. Of course,

computation times for both the candidate retraction space and discrete set of feasible

retractions increase as one goes for higher number of facets to represent the part.

However, for parts A and B where the numbers of undercut facets remain same, although

the overall numbers of facets increase, this trend is markedly different from parts C, D

and E. The retraction space computation time increases linearly, whereas feasible

retraction set calculation time remains more or less constant in the former case. In the

latter case, candidate retraction space construction time increases almost quadratically,

while the feasible retraction set computation time increases at a rate slightly greater than

linear, but less than quadratic, indicating possibly a linear-logarithmic growth.

Computational results for the branch and bound algorithm (using second

bounding cost function) reveal that the branching factor at any level in the search space

tree does not change much with the increase in number of part facets. It increases only

marginally, thereby demonstrating value of our heuristic rules on pruning the feasible

retraction set, selecting the bottleneck facet etc. This clearly points out that the number of

pruned, non-dominated retractions is not significantly affected by the part triangulation

resolution, and hence, the number of nodes in the tree grows slowly in most practical

cases. However, the overall computation time will increase somewhat if the parts are

represented by higher number of facets. This is because of the fact that more time will be

expended in carrying out all the operations in individual nodes. Based upon the given set

of cost function parameter values, an optimal set of 2 or 3 side actions were generated for

four sample parts in about 30-50s. This is a reasonably good performance and can serve

as the foundation step towards our eventual goal of fully automatic side action design.

 96

Table 5.1: Results of experiments to characterize algorithm performance

Part Model

Total

of

facets

of

undercut

facets

Candidate

retraction

space

computation

time (in s)

Feasible

retraction

set

generation

time (in s)

Total # of

nodes in

search space

(in million)

Average

branching

factor

Depth-first

branch and

bound

computation

time (in s)

1 224 36 3.5 5.2 13.4 99 12.0

2 256 36 4.0 5.4 14.0 100 13.0

3 336 36 4.8 5.9 15.6 102 15.2
A

4 568 36 6.1 6.4 18.9 106 18.0

1 378 122 6.0 10.7 19.5 114 19.0

2 570 122 7.4 11.1 19.8 115 19.1

3 716 122 8.5 11.3 20.7 117 19.6
B

4 882 122 10.0 11.4 21.9 119 20.2

1 414 175 5.9 12.5 0.36 150 1.1

2 478 188 6.3 12.6 0.36 150 1.1

3 576 194 7.1 12.8 0.37 151 1.2
C

4 882 249 12.2 13.7 0.38 153 1.3

1 376 60 0.3 7.4 0.45 132 1.6

2 814 122 1.0 9.8 0.46 134 1.7

3 1324 156 2.1 12.9 0.49 137 2.0
D

4 2002 218 4.4 20.2 0.51 139 2.4

#1 206 54 4.9 6.3

#2 258 78 9.0 6.8

#3 282 94 11.1 7.1
E

#4 390 126 16.8 8.9

These steps have not been performed

 97

Table 5.2: Results of experiments to compare bounding strategies

Part Strategy
of pruned nodes

(in million)

Computation time

(in s)

1 17.5 29.0

2 18.2 18.0 A

3 18.6 25.7

1 20.1 34.8

2 21.0 20.2 B

3 21.3 29.9

1 0.34 2.2

2 0.36 1.3 C

3 0.36 2.1

1 0.45 3.6

2 0.47 2.4 D

3 0.48 3.7

It can be easily seen from Table 2 that the second strategy consistently

outperforms the other two for all the 4 test parts. Although few more search space nodes

are pruned by applying the last strategy, it always results in greater computation time

than the second one, and sometimes even more than the first one. This is because another

level in the current path is indirectly explored before deciding not to proceed any further.

Although nodes are not actually inserted in the next level, the priority queue is updated

by removing the included undercut facets and then recovering the first element from all

 98

the associated linked lists to compute the minimum among them. Undoubtedly, this will

prune more paths than either of the other two strategies. But already lot of computational

time has been expended in obtaining this pruning cost. This turns out to be more than the

time spent in exploring few additional paths.

Such a situation arises in this case primarily because all industrial parts typically

have 2 or 3 piece solutions. As the number of levels in our tree hardly goes beyond 3, the

third strategy is not being to able to prune significantly higher number of nodes than the

second one. Hence, such a tight bound may yield better results for parts requiring 4 or

more side actions. However, such parts are hardly encountered in practice.

The second strategy also takes lesser computational time as compared the first

(basic) one since it successfully prunes many more nodes in the search space without

incurring any significant overhead at all. At every step, it just needs to be checked

whether the difference between the current minimum cost and the partial cost is lesser

than a value that has been computed once before starting depth-first branch and bound.

This simple test is computationally inexpensive and yet very effective.

5.3.3 Generated Side Action Solids

Side action solids have been shown in blue for the first 4 test parts in a retracted

state in Figure 5.7 for easy understanding of how they will be actuated in reality. The

undercut facets have been colored red. It can be easily observed from the figures that in

all the 4 cases, the undercut facets forming complex undercut regions have been

combined into 2 or 3 groups. Then each such group has been swept along different

directions by fixed translation vectors lying on the horizontal plane to form regular solid

 99

bodies. These solid bodies will eventually be actuated by suitable mechanisms such as

sliders, hydraulic or pneumatic drives and so on to form the overall side action

mechanism. The important point to be noted here is that the generated side actions never

intersect with the part during its disengagement process. Moreover, after initial horizontal

retraction, the part (or equivalently the side action) can be moved vertically upwards or

downwards along one of the main mold opening directions without resulting in any

intersection either. Thus, all the designs are correct and have been obtained automatically

without any manual intervention.

B A

DC

Figure 5.7: Side action solids for 4 different test parts (A, B, C, D) shown in retracted
state

 100

Another novel aspect of this work that has been illustrated in Figure 5.8 is the

customizability of the molding cost function. By changing the parameters, one can get

altogether different designs. For example, if the value of γ is decreased by a factor of 10

and the value of is increased by 10 times from the previous setting, 2 and 3 side action

solids are obtained for the two parts instead of 4 and 4 respectively. In other words, if a

higher cost is assigned to assembling and actuating side actions and less cost to

manufacturing complex profiles, then lesser number of more complex-shaped side

actions are obtained. This feature of the current system has many potential benefits.

Depending upon the specifications of the injection molding operation, shop floor

personnel simply need to input appropriate parameter values to come up with designs

which will minimize the total operational cost for that particular plant or factory.

/C

Changing relative costs
of assembly and
manufacturing

operations in the
customizable objective
function gives different

side action designs

Figure 5.8: Alternative designs obtained by modifying the cost function parameters

4-region solution 2-region solution

3-region solution 4-region solution

 101

Chapter 6

CONCLUSIONS

This chapter has been arranged in the following manner. Section 6.1 summarizes

the salient features of this research work. Section 6.2 presents the contributions of this

work in greater details. Section 6.3 describes the benefits of the work presented in this

thesis. Finally Section 6.4 describes the possible future work in this field.

6.1 Summary

 In a nutshell, this thesis describes algorithms to generate side action solids to

minimize a customizable molding function. Some of the salient features of this approach

include designing side actions for undercut regions that are finitely accessible, detecting

non-moldable undercuts so that parts can be redesigned immediately, partitioning

connected undercut regions into sub-regions that are separately moldable, estimating time

complexities of different individual algorithms and showing acceptable performance on

typical industrial parts. Although each of these features has been elaborately explained in

the subsequent Section, few points need to be noted here. Firstly, the current work

overcomes the three problems listed in Section 3.7 which have not been adequately

addressed by the existing methods. Secondly, the pre-optimization (geometric) steps of

the overall algorithm have a linear, linear-logarithmic or quadratic worst case asymptotic

time complexity. This satisfies the desired characteristics of typical computational

geometry based algorithms. Thirdly, output (side action set) is generated in a reasonable

 102

amount of time (few seconds) for parts whose undercut regions can be molded by 3 or

fewer no. of side actions.

 However, there are certain shortcomings of this work as well. One of the main

limitations is that only two translational motions (with the first one being perpendicular

to the main mold opening directions) are considered in this thesis. Although some side

actions such as lifters require 3 translational motions, very few industrial parts actually

use such retraction mechanisms. Another prominent limitation is that the depth first

branch and bound will have an exponential worst-case time complexity. Although this is

not a major problem in cases where depth of tree is restricted to 3 or 4, it will definitely

increase the running time significantly for undercut regions that need to be sub-divided

into 4 or more regions. Alternative optimization strategy needs to be explored for such

cases. Finally, another shortcoming of the current work is that uncertainties in cost

function parameters have not been dealt with. It is almost impossible to obtain precise

data from industrial houses and hence such uncertainties need to be incorporated. Some

of these have been explained in details in Section 6.4.

6.2 Contributions

New algorithms to automatically generate shapes of side actions have been presented

in this thesis. The major contributions of this work can be summarized as follows.

1. Designing side actions for finitely accessible undercuts: As discussed in Chapter 2,

existing methods do not address the problem of designing side actions for complex

undercuts that are finitely accessible in a satisfactory way. The present work

overcomes this serious limitation and successfully designs side actions in such cases.

 103

Fundamentally, the problem with existing approaches was that they considered semi-

infinite accessibility in the form of VMaps constructed on Gaussian spheres. Since

finite accessibility (feasible retraction spaces) has been computed here, current work

does not suffer from this limitation.

2. Reporting non-moldable undercuts: Another major issue not adequately addressed in

existing methods was the detection of impossible to mold undercuts during the side

action generation stage itself, without requiring costly simulation-based post

processing operations. The algorithms presented in this thesis correctly reports that

certain undercut regions may not have any feasible side action at an intermediate step

(See Section 5.2). This ensures that time-consuming optimization step is avoided and

the parts can be sent for significant re-design immediately. This is also useful in

determining infeasible molding sequences in multi material injection molding as

explained in Section 1.3.

3. Partitioning undercut regions into moldable sub-regions: Another important problem

mentioned in Chapter 2 is the partitioning of connected undercut regions (for which

no single side action exists) into smaller regions, so that each sub-region can be

molded by a separate side action. The current system accomplishes this task

successfully. At the same time, it minimizes a customizable molding cost function.

Thus, it serves two purposes simultaneously without any additional overhead.

4. Estimating time complexities of different algorithms: Many of the steps in the

computation of candidate retraction space and discrete set of candidate retractions

have linear or linear-logarithmic worst-case asymptotic time complexities. Few grow

quadratically with an increase in the total number of part facets as well the number of

 104

undercut facets. This has been established theoretically and later validated by a series

of computational experiments.

5. Showing acceptable system performance on different parts: If a connected undercut

region can be molded by 3 or fewer number of side actions, then empirical results

suggest that this system is capable of finding a solution very close to the optimum in a

reasonable amount of time for most practical parts. This is an acceptable performance

which will hopefully provide the foundation for developing fully automated software

for designing side actions in the near future.

6.3 Benefits

Currently, injection molding of complex, industrial parts is a time-consuming process

and is mostly done manually. Although CAD systems like ProEngineer provide tools to

automatically design two-piece molds for a given part, often it is unable to design side

actions correctly without any form of manual intervention. Consequently, cost and lead-

time associated with new injection molded products is high. It is anticipated that the

current work will significantly affect the manufacturing sector in the following ways:

1. Estimating cost during design phase itself: In the age of concurrent engineering, the

present system will go a long way in ensuring its success in the field of injection

molding. Traditionally, design and manufacturing used to proceed along separate

paths. In what is commonly known as “over the wall” manufacturing, designers and

manufacturers rarely used to interact with each other. After finishing a design,

designers used to hand it over to the manufacturing people. Usually, a product could

never be manufactured defect-free in the first attempt. Manufacturing people would

 105

then hand over this defective design back to the designers for suitable modifications.

This cycle used to go on endlessly until both parties were totally satisfied. Naturally,

lot of time, money and resources were wasted. So the concept of concurrent

engineering was proposed to eliminate such wastage. Now, designers and

manufacturers interact at the time of designing a component only to ensure that it can

be manufactured easily. Of course, fast, automated design and subsequent testing by

performing simulation in Virtual Environment (VE) or by fabricating prototypes by

Rapid Prototyping (RP) technologies form an important part of concurrent

engineering. However, on top of this, if the actual cost of manufacturing (molding) a

part can be estimated with a reasonable degree of accuracy during the design phase

itself in order to come up with designs that minimize it, the fruits of concurrent

engineering can be realized in its totality. The current system precisely achieves this

objective.

2. Automating mold design to a large extent: Mold design in an extremely complex

operation. It involves design of the mold pieces, the ejector system and the cooling

system. The present work only addresses the issue of automatically designing a

particular type of mold piece, namely side action. However, this has tremendous

impact in a much broader sense. As briefly touched upon in the previous paragraph,

automated design of molds is an essential cog in the wheel of concurrent engineering.

Some of its manifold benefits are listed as follows:

a. It allows us to explore various design options and select the best one. In fact,

one can iteratively go on improving the design until a completely satisfactory

one is obtained.

 106

b. It completely eliminates the cost of manual labor since it only involves one-

time installation cost of the relevant software.

c. It reduces the lead time for new plastic products in markets significantly since

the multiple month-long cycles of design, fabrication, re-design and re-

fabrication are avoided. This enhances the competitiveness of injection

molding industries.

6.4 Future Work

Although it is anticipated that the present work will provide the foundations for

developing fully automated software for designing side actions in injection molding,

further work needs to be done in the following areas to address this problem in its

entirety.

1. Handling side actions other than side cores: This research work focuses on a

particular type of side action, commonly known as side core in molding terminology.

Such an emphasis was put deliberately as side cores constitute majority of the side

actions used in industry. However, further work needs to be done to generalize our

method to design other kinds of side actions, namely, split cores, lifters etc. which

may require more than two translational motions for complete disengagement.

2. Improving edge sub-division scheme: Work will continue on improving the edge sub-

division scheme, so that one can come up with stronger theoretical results to rule out

such operations for a majority of candidate retraction space polygonal edges.

Essentially, such results will be based on the visibility of the edges from the origin.

 107

Exploration of this idea has already been initiated and plan is to integrate it within the

overall framework soon. This is expected to reduce the computation time further.

3. Handling freeform surfaces without faceting: Another possible area of research is to

extend these ideas to directly design side actions for parts represented by freeform

surfaces such as Bezier, NURBS (Non-Uniform Rational B-Spline) etc. Right now,

all surfaces (planar or curved) are faceted (triangulated) and then side actions are

generated not for the original CAD model, but for its polyhedral version. However,

this may not be always acceptable in the industry and hence alternative ways have to

be explored to compute the feasible retraction spaces.

4. Handling side actions where the first translation may not be horizontal: Theoretically

all the algorithms can be extended to deal with cases where the side actions need not

be necessarily retracted in a plane perpendicular to the mold opening directions.

Instead of transforming the collision polyhedrons and inaccessible voxels into 2D

plane, if a 3D collision-free and vertically accessible translation space are computed,

then the same idea of carrying out state space search over all non-dominated 3D

retractions can be used to solve the problem. This idea needs to be investigated in

greater details before it can be implemented in future.

5. Designing side action actuator mechanisms: As discussed briefly in Sub-section

1.2.1, different mechanisms are used to actuate side actions. If the side action

occupies an entire section of the mold, then a slide mechanism is typically used

[Bryc98]. The face of the slide is an integral portion of the core or cavity image and it

“shuts-off” or creates a sealing area to contain the incoming molten plastic. On the

other hand, if the side action only includes a small portion of the mold section, that

 108

activity is performed using a cam. Cams normally do not travel very far and often

contain a core pin that would travel in and out of the sidewall in the core or cavity

image. They are commonly actuated using either a tapered block or a small angled

pin. Another activation system, known as lifter, is sometimes used to form features on

the internal portion of the molded part. They are attached to the ejector system so that

they not only move back and forth to form the internal feature, but also travel up with

the part as the ejector system pushes it out of the mold and back as the ejector system

is positioned for the next cycle. Thus, it can be easily concluded that the choice of

actuation mechanism will depend upon the retraction length and the type of retraction

(core or cavity). Further work needs to be done to automatically select and design

such a mechanism based on these parameters.

6. Handling uncertainties in cost function parameter values: The current work does not

consider the uncertainties in cost function parameter values. However, real world

industrial data will always have a significant amount of uncertainty associated with it.

Hence, it may be useful to handle them appropriately in future. Different approaches

have been suggested in literature to perform so-called robust optimization with

respect to uncontrolled variations in environmental and operational parameters. They

can be broadly classified into three categories. Stochastic approaches use probability

information (mean and variance) of the parameters to minimize the solution

sensitivities. Representative work in this field includes Parkinson et al [Park93], Yu

and Ishii [Yu98], Jung and Lee [Jung02] for objective function robustness. However,

the main shortcoming is that probability distributions need to be known or assumed.

Deterministic methods form the second category. Most of them use gradient based

 109

information, including the seminal work by Taguchi [Tagu78], Balling et al. [Ball86],

Sundaresan et al. [Sund93], Lee and Park [Lee01] and so on. One of the main

limitations of these methods is that the objective functions must be differentiable with

respect to the parameters. To address these shortcomings, a non-gradient based

method has been developed by Gunawan and Azarm [Guna05] and Li et al. [Li06].

Another class of methods has recently become popular in order to handle epistemic or

subjective uncertainties where there is significant ignorance or lack of information

about the parameters. Evidence theory [Ober02, Bae04, Mour06] is the most general

form of this technique. Possibility theory [Klir98] handles a subset of problems where

there is no conflicting evidence in the data. In almost all such cases, fuzzy set theory

[Zad65] has been extensively used to characterize and propagate input uncertainties.

The best approach for the current work needs to be explored in greater details.

 110

Appendix

A. Regularized and Non-regularized Boolean Operations

Before explaining regularized Boolean operations, few mathematical terms need

to be defined formally. Without going into the details of topological spaces, they can be

stated simply as follows:

• Interior: Given a set , 3X R⊆ p X∈ is an interior point of X, iff 0δ∈ > such that

every point q lying with distance δ from p also belongs to X. Set of all interior points

is called the interior of the set; it is denoted by i(X).

• Closure: Closure of X is the set of all points p such that 0δ∀ > , there is at least one

point in X within a distance δ of p. It is denoted as k(X).

• Regular: A set X is regular if k(i(X)) = X.

• Solid: A solid is a regular, connected and bounded set with semi-analytical (finite

number of infinitely differentiable) boundaries. By bounded set, one refers to a set

that can be enclosed by an open ball of finite radius.

Hence, regularized Boolean operations are those Boolean operations such as

union, intersection, difference etc. performed on two or more solids such that the above

mentioned condition of regular set is satisfied for the output solid (set). Non-regularized

Boolean operations do not satisfy this property; however, they are often more intuitive.

Hence, both these types of operations are present in any commercial CAD system.

However, the regularized operation is carried out by default since it preserves the strict

mathematical definition of a solid at every stage. The differences in output after

 111

performing these two types of intersection operations on identical solids A and B are

shown in Figure A.1.

B A

Non-regularized
intersection

Regularized
intersection

A B∩*A B∩ Null set

Figure A.1: Differences between regularized and non-regularized Boolean operations

B. Worst-case Asymptotic Time Complexity (O-notation)

The order of growth of the running time of an algorithm gives a simple

characterization of the algorithm’s efficiency and also allows one to compare the relative

performance of alternative algorithms [Corm01]. Although sometimes the exact running

time of an algorithm can be obtained, it is sufficient to consider the worst-case running

time. This is because the multiplicative constants and lower-order terms of an exact

running time are dominated by the effects of the input size itself for large enough inputs.

In other words, when one looks at input sizes large enough to make only the order

of growth of the running time relevant, one is studying the asymptotic efficiency of

algorithms. That is, one is concerned with how the running time of an algorithm increases

with the size of the input in the limit, as the size of input increases without bound.

 112

Usually, an algorithm that is asymptotically more efficient will be the best choice for all

but small inputs.

O-notation is used to denote only an asymptotically upper bound. For a given

function g(n), O(g(n)) denotes the set of functions given by O(g(n)) = {f(n): there exist

positive constants c and no such that () () 00 f n cg n n n≤ ≤ ∀ ≥ }. Using O-notation, the

running time of an algorithm can often be described merely by inspecting its overall

structure. For example, if any doubly nested for loop structure is present in an algorithm,

it may be immediately concluded that there is an O(n2) upper bound on the worst-case

asymptotic running time. The analysis is very simple. The cost of each iteration in the

inner loop is bounded from above by O(1) (constant), the two loop indices, say i and j are

both at most n, and the inner loop is executed at most once for each of the n2 pairs of

values for i and j. Another important point to be noted here is that when O-notation is

used to bound the worst-case running time of an algorithm, a bound is obtained on the

running time of the algorithm for every input.

 113

BIBLIOGRAPHY

[Ahn02] H.K. Ahn, M. Berg, P. Bose, S.W Cheng, D. Halperin, J. Matou ek, and O.

Schwarzkopf. Separating an Object from Its Cast. Computer Aided Design, Vol. 34, No.

8, pp. 547-559, 2002.

[Aron97] B. Aronov, and M. Sharir. On Translational Motion Planning of a Convex

Polyhedron in 3-Space. Siam Journal of Computing, Vol. 26, No. 6, pp. 1785-1803, 1997.

[Bae04] H. R. Bae, R. V. Gandhi and R. A. Canfield. An Approximation Approach for

Uncertainty Quantification Using Evidence Theory. Reliability Engineering & System

Safety, Vol. 86, pp. 215-225, 2004.

[Ball86] R. J. Balling, J. C. Free and A. R. Parkinson. Consideration of Worst-Case

Manufacturing Tolerances in Design Optimization. ASME Journal of Mechanical Design,

Vol. 108, pp. 438-441.

[Bane06a] A. G. Banerjee, and S. K. Gupta. A Step Towards Automated Design of Side

Actions for Injection Molding of Complex Parts. Geometric Modeling and Processing,

2006, Lecture Notes in Computer Science, Vol. 4077, pp. 500-513, 2006.

[Bane06b] S. K. Gupta, A. G. Banerjee, X. Li, and G. Fowler. Development of a

Manufacturability Analysis Framework for Injection Molded Multi-Material Objects. In

NSF Design, Service, and Manufacturing Grantees and Research Conference, St. Louis,

MO, 2006.

 114

[Boot02] G. Boothroyd, P. Dewhurst, and W. Knight. Product Design for Manufacture

and Assembly, 2nd Edition. Marcel Dekker, Inc.: New York, New York, 2002.

[Bryc96] D. M Bryce. Plastic Injection Molding, Vol. I: Manufacturing Process

Fundamentals. Society of Manufacturing Engineers: Dearborn, Michigan, 1996.

[Bryc98] D. M Bryce. Plastic Injection Molding, Vol. III: …mold design and

construction fundamentals. Society of Manufacturing Engineers: Dearborn, Michigan,

1998.

[Cgal04] Cgal.org. Computational Geometry Algorithms Library. http://www.cgal.org,

2004.

[Corm01] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to

Algorithms, The MIT Press, 2001.

[Chen93] L.L. Chen, S.Y. Chou, and T.C. Woo. Parting Directions for Mould and Die

Design. Computer Aided Design, Vol. 25, No. 12, pp. 762-768, 1993.

[Chen95] L.L. Chen, S. Y. Chou, and T. C. Woo. Partial Visibility for Selecting a Parting

Direction in Mould and Die Design. Journal of Manufacturing Systems, Vol. 14, No. 5,

pp. 319-330, 1995.

[Chen97] Y. H. Chen. Determining parting direction based on minimum bounding box

and fuzzy logics. International Journal of Machine Tools and Manufacture, Vol. 37, No.

9, pp. 1187-1199, 1997.

 115

http://www.cgal.org/

[Chen02] Y. Chen and D.W. Rosen. A Region Based Method to Automated Design of

Multi-Piece Molds with Application to Rapid Tooling, Journal of Computing and

Information Science in Engineering, Vol. 2, No. 2, pp. 86-97, 2002.

[Chen03] Y. Chen and D.W. Rosen. A reverse glue approach to automated construction

of multi-piece molds, Journal of Computing and Information Science in Engineering,

Vol. 3, No. 3, pp. 219-230, 2003.

[Chen06] X. Chen and S. McMains. Finding All Undercut-free Parting Directions for

Extrusions. Geometric Modeling and Processing, 2006, Lecture Notes in Computer

Science, Vol. 4077, pp. 514-527, 2006.

[deBe00] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf.

Computational geometry: algorithms and applications, Second Edition. Springer-Verlag,

Berlin, 2000.

[Dhal01] S. Dhaliwal, S.K. Gupta, J. Huang, and M. Kumar. A feature based approach to

automated design of multi-piece sacrificial molds. ASME Journal of Computing and

Information Science in Engineering, Vol. 1, No. 3, pp. 225--234, 2001.

[Dhal03] S. Dhaliwal, S.K. Gupta, J. Huang, and A. Priyadarshi. Algorithms for

Computing Global Accessibility Cones. Journal of Computing and Information Science

in Engineering, Vol. 3, No. 3, pp. 200-209, 2003.

[Elbe05] G. Elber, X. Chen, and E. Cohen. Mold Accessibility via Gauss Map Analysis.

Journal of Computing and Information Science in Engineering, Vol. 5, No. 2, pp. 79-85,

2005.

 116

[Faga00] A. Fagade, and D. O. Kazmer. Early Cost Estimation for Injection Molded

Components. Journal of Injection Molding Technology, Vol. 4, No. 3, pp.97-106, 2000.

[Fowl04] G. Fowler. Cost and Performance Evaluation Models For Comparing

Traditional and Multi-Shot Injection Molding. Master of Science Thesis, University of

Maryland, College Park, 2004.

[Fu99a] M. W. Fu, J. Y. H. Fuh, and A. Y. C. Nee. Generation of optimal parting

direction based on undercut features in injection molded parts. IIE Transactions Vol. 31,

pp. 947-955, 1999.

[Fu99b] M.W. Fu, J.Y.H. Fuh, and A.Y.C. Nee, Undercut Feature Recognition in an

Injection Mould Design System. Computer Aided Design, Vol. 31, No. 12, pp. 777-790,

1999.

[Gant93] M. A. Ganter, and P. A. Skoglund. Feature extraction for casting core

development. ASME Journal of Mechanical Design, Vol. 115, No. 4, pp. 744-750, 1993.

[Guna05] S. Gunawan and S. Azarm. Multi-Objective Robust Optimization Using a

Sensitivity Region Concept. Structural and Multidisciplinary Optimization, Vol. 29, No.

1, pp. 50 – 60, 2005.

[Huan03] J. Huang, S. K. Gupta, and K. Stoppel. Generating sacrificial multi-piece molds

using accessibility driven spatial partitioning. Computer Aided Design, Vol. 35 No. 3, pp.

1147-1160, 2003.

[Hui92] K. C. Hui, and S. T. Tan. Mould design with sweep operations-a heuristic search

approach. Computer Aided Design, Vol. 24, No. 2, pp. 81-91, 1992.

 117

[Hui97] K C Hui. Geometric Aspects of the Mouldability of Parts. Computer Aided

Design, Vol. 29, No. 3, pp. 197-208, 1997.

[Jung02] D. H. Jung and B. C. Lee. Development of a Simple and Efficient Method for

Robust Optimization. International Journal of Numerical Methods in Engineering, Vol.

23, pp. 2201-2215, 2002.

[Khar06] R. Kharderkar, G. Burton, and S. McMains. Finding feasible mold parting

directions using graphics hardware. Computer Aided Design, Vol. 38, No. 4, pp. 327-341,

2006.

[Klir98] G. L. Klir and T. A. Filger. Fuzzy Sets, Uncertainty, and Information. Prentice-

Hall: Englewood Cliffs, New Jersey, 1998.

[Kuma02] M. Kumar and S.K. Gupta. Automated design of multi-stage molds for

manufacturing multi-material objects. ASME Journal of Mechanical Design, Vol. 124,

No. 3, pp. 399-407, 2002.

[Lee01] K. Lee and G. Park. Robust Optimization Considering Tolerances of Design

Variables. Computers and Structures, Vol. 79, pp. 77-86.

[Li04] X. Li and S.K. Gupta. Geometric Algorithms for Automated Design of Rotary-

Platen Multi-Shot Molds. Computer Aided Design, Vol. 36, No. 12, pp. 1171-1187, 2004.

[Li06] M. Li, S. Azarm and A. Boyars. A New Deterministic Approach Using Sensitivity

Region Measures for Multi-Objective Robust and Feasibility Robust Design

Optimization. ASME Journal of Mechanical Design, Vol. 128, pp. 874-883, 2006.

 118

[Liou90] W. T. Liou, J. J-M. Tan, and R. C. T. Lee. Minimum Rectangular Partition

Problem for Simple Rectilinear Polygons. IEEE Transactions on Computer-Aided

Design, Vol. 9, No. 7, pp. 720-733, 1990.

[Lu00] H.Y. Lu and W.B. Lee. Detection of Interference Elements and Release

Directions in Die-cast and Injection-moulded Components. Proceedings of the Institution

of Mechanical Engineers, Vol. 214, No. B6, pp. 431-441, 2000.

[McMa06] S. McMains and X. Chen. Finding Undercut-Free Parting Directions for

Polygons with Curved Edges. Journal of Computing and Information Science in

Engineering, Vol. 6, No. 1, pp. 60-68, 2006.

[Mour06] Z. P. Mourelatos and J. Zhou. A Design Optimization Method Using Evidence

Theory. ASME Journal of Mechanical Design, Vol. 128, pp. 901-908, 2006.

[Ober02] W. L. Oberkampf and J. C. Helton. Investigation of Evidence Theory for

Engineering Applications. AIAA Non-Deterministic Approaches Forum, No. AIAA 2002-

1569, Denver, Colorado, 2002.

[Park93] A. Parkinson, C. Sorensen and N. A. Pourhassan. General Approach to Robust

Optimal Design. ASME Journal of Mechanical Design, Vol. 115, pp. 74 – 80, 1993.

[Poli01] C. Poli. Design for Manufacturing, A Structured Approach. Butterworth-

Heinemann: Boston, Massachusetts, 2001.

[Priy02] A. K. Priyadarshi. Geometric Algorithms for Automated Design of Multi-Piece

Permanent Molds. Master of Science Thesis, University of Maryland, College Park,

2002.

 119

[Priy04] A.K. Priyadarshi and S.K. Gupta. Geometric algorithms for automated design of

multi-piece permanent molds. Computer Aided Design, Vol. 36, No. 3, pp. 241-260,

2004.

[Priy06] A. K. Priyadarshi, and S. K. Gupta. Finding Mold-Piece Regions Using

Computer Graphics Hardware. Geometric Modeling and Processing, 2006, Lecture Notes

in Computer Science, Vol. 4077, pp. 655-662, 2006.

[Rapp94] D. Rappaport, and A. Rosenbloom. Moldable and castable polygons.

Computational Geometry: Theory and Applications, Vol. 4, No. 4, pp. 219-233, 1994.

[Ravi90] B. Ravi, and M. N. Srinivasan. Decision criteria for computer-aided parting

surface design. Computer Aided Design, Vol. 22, No. 1, pp. 11-18, 1990.

[Rosa00] D. V. Rosato, D. V. Rosato, and M. G. Rosato. Injection Molding Handbook,

Third Edition. Kluwer Academic Publishers: Boston, Massachusetts, 2000.

[Shin93] K. H. Shin, and K. Lee. Design of Side Cores of Injection Mold from Automatic

Detection of Interference Faces. Journal of Design and Manufacturing, Vol. 3, No. 4, pp.

225-236, 1993.

[Sund93] S. Sundaresan, K. Ishii and D. R. Houser. A Robust Optimization Procedure

with Variation on Design Variables and Constraints. Advances in Design Automation,

Vol. 65, No. 1, pp. 379-386.

[Tagu78] G. Taguchi. Performance Analysis Design. International Journal of Production

Research, Vol. 16, pp. 521-530, 1978.

[Wein97] M. Weinstein, and S. Manoocheri. Optimum Parting Line Design of Molded

and Cast Parts for Manufacturability. Journal of Manufacturing Systems, Vol. 16, No. 1,

pp. 1-12, 1997.

 120

[Wong98] T. Wong, S.T. Tan, and W.S. Sze. Parting line formation by slicing a 3D CAD

model. Engineering with Computers, Vol. 14, No. 4, pp. 330-343, 1998.

[Wuer97a] D. Wuerger, and R. Gadh. Virtual Prototyping of Die Design Part One:

Theory and Formulation. Concurrent Engineering: Research and Applications, Vol. 5,

No. 4, pp. 307-315, 1997.

[Wuer97b] D. Wuerger, and R. Gadh. Virtual Prototyping of Die Design Part Two:

Algorithmic, Computational and Practical Considerations. Concurrent Engineering:

Research and Applications, Vol. 5, No. 4, pp. 317-326, 1997.

[Ye01] X. G. Ye, J. Y. H. Fuh, and K. S. Lee. A hybrid method for recognition of

undercut features from moulded parts. Computer Aided Design, Vol. 33, No. 14, pp.

1023-1034, 2001.

[Ye04] X. G. Ye, J. Y. H. Fuh, and K. S. Lee. Automatic Undercut Feature Recognition

for Side Core Design of Injection Molds. Journal of Mechanical Design, Vol. 126, pp.

519-526, 2004.

[Yin01] Z. Yin, H. Ding, and Y. Xiong. Virtual Prototyping of Mold Design: Geometric

Mouldability Analysis for Near-net-shape Manufactured Parts by Feature Recognition

and Geometric Reasoning. Computer Aided Design, Vol. 33, No. 2, pp. 137-154, 2001.

[Yu98] J. C. Yu and K. Ishii. Design for Robustness Based on Manufacturing Variation

Patterns. ASME Journal of Mechanical Design, Vol. 120, pp. 196-202, 1998.

[Zade65] L. A. Zadeh. Fuzzy Sets. Information and Control, Vol. 8, pp. 338-353, 1965.

 121

