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Often complex molded parts include undercuts, patches on the part boundaries 

that are not accessible along the main mold opening directions. Undercuts are molded by 

incorporating side actions in the molds. Side actions are mold pieces that are removed 

from the part using translation directions different than the main mold opening direction. 

However, side actions contribute to mold cost by resulting in an additional manufacturing 

and assembly cost as well as by increasing the molding cycle time. Therefore, generating 

shapes of side actions requires solving a complex geometric optimization problem. 

Different objective functions may be needed depending upon different molding scenarios 

(e.g., prototyping versus large production runs). Manually designing side actions is a 

challenging task and requires considerable expertise. Automated design of side actions 

will significantly reduce mold design lead times. This thesis describes algorithms for 

generating shapes of side actions to minimize a customizable molding cost function. 

Given a set of undercut facets on a polyhedral part and the main parting direction, 

the approach works in the following manner. First, candidate retraction space is 

computed for every undercut facet. This space represents the candidate set of translation 



vectors that can be used by the side action to completely disengage from the undercut 

facet. As the next step, a discrete set of feasible, non-dominated retractions is generated. 

Then the undercut facets are grouped into undercut regions by performing state space 

search over such retractions. This search step is performed by minimizing the 

customizable molding cost function. After identifying the undercut regions that can share 

a side action, the shapes of individual side actions are computed.  

The approach presented in this work leads to practically an optimal solution if 

every connected undercut region on the part requires three or fewer side actions. Results 

of computational experiments that have been conducted to assess the performance of the 

algorithms described in the thesis have also been presented. Computational results 

indicate that the algorithms have acceptable computational performance, are robust 

enough to handle complex part geometries, and are easy to implement. It is anticipated 

that the results shown here will provide the foundations for developing fully automated 

software for designing side actions in injection molding. 
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Chapter 1 

 

INTRODUCTION 

This Chapter is arranged in the following manner. Section 1.1 gives an overview of 

injection molding process, Section 1.2 describes single material injection molding 

process is greater details, Section 1.3 presents the motivation behind the research 

undertaken in this thesis, Section 1.4 briefly discusses the research issues and Section 1.5 

describes the outline of this thesis.  

 

1.1 Injection Molding Background 

Injection molding (IM) is one of the most widely used plastic manufacturing 

processes nowadays [Fu99b]. It is a near net-shape manufacturing process that can 

produce parts having good surface quality and accuracy. Moreover, this process is 

suitable for mass volume production due to fast cycle time. It combines the functionality 

of multiple parts into one, thereby enabling production of complex designed parts. 

Typical examples of products made by injection molding include appliance casings like 

computer monitors, CPUs, aircraft and automobile parts, utensils, toys and so on. 

Broadly, injection molding can be classified into two types: single material 

molding (SMM) and multi material molding (MMM). In essence, the SMM process is 

simple: plastic is melted and injected into a tool called mold where it then cools and re-

hardens to take the shape of the mold cavity. The cooled part can then be ejected, and the 

cycle repeats. But before going into the details of this process in the next Section, let us 

briefly discuss MMM.  
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Over the last few years, a wide variety of multi material injection molding 

processes have emerged for making multi material objects, which refer to the class of 

objects in which different portions are made of different materials. Due to fabrication and 

assembly steps being performed inside the molds, molded multi material objects allow 

significant reduction in assembly operations and production cycle times. Furthermore, the 

product quality can be improved, and the possibility of manufacturing defects, and total 

manufacturing costs can be reduced. In MMM, multiple different materials are injected 

into a multi-stage mold. The sections of the mold that are not to be filled during a 

molding stage are temporally blocked. After the first injected material sets, then one or 

more blocked portions of the mold are opened and the next material is injected.  This 

process continues until the required multi-material part is created. Nowadays, virtually 

every industry (e.g., automotive, consumer goods, toys, electronics, power tools, 

appliances) that makes use of traditional SMM process is beginning to use multi material 

molding processes. Some common applications include multi-color objects, skin-core 

arrangements, in-mold assembled objects, soft-touch components (with rigid substrate 

parts) and selective compliance objects. Typical examples of each class of application are 

shown in Figure 1.1.   

There are fundamentally three different types of multi material molding 

processes. Multi-component injection molding is perhaps the simplest and most common 

form of MMM.  It involves either simultaneous or sequential injection of two different 

materials through either the same or different gate locations in a single mold.  Multi-shot 

injection molding (MSM) is the most complex and versatile of the MMM processes. It 

involves injecting the different materials into the mold in a specified sequence, where the 
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mold cavity geometry may partially or completely change between sequences. Over-

molding simply involves molding a resin around a previously-made injection-molded 

plastic part. Each of the three classes of MMM is considerably different. Each specific 

MMM process requires its own set of specialized equipment; however, there are certain 

equipment requirements that are generally the same for all types of MMM. 

(a) – Taillight (multi-color 
MMO) (b) – Assorted brushes 

(skin/core arrangement) 

(c) – One-piece 
syringe (in-mold 

assembly) 
(d) – Cordless saw 

housing (soft-touch grip) 

component 1 – right half 

 

Figure 1.1: Different multi material molded objects 

 

component 2 – metal 

material A – rigid 

material B – compliant 
hinge component 3 – left 

half

Traditional Multi-material
(e) Compliance clips 

 3



1.2 Single Material Molding 

Although the concept behind single material molding is simple, the actual process 

must be carefully controlled to produce acceptable parts. Additionally, expensive and 

sophisticated equipment is required to produce even the simplest of parts. The basic 

equipment required is discussed below.  

 

1.2.1 Single Material Molding Equipment 

SMM is carried out on a molding machine. There are many different types of 

specialized molding machines, but they all share the same four basic components: 1) an 

injection unit, 2) a clamping unit, 3) a mold, and 4) a controller [Bryc96]. A schematic of 

a generalized SMM machine is illustrated in Figure 1.2, and a photo of an industrial 

SMM machine is shown in Figure 1.3. Note that there are two platens on a molding 

machine - one moving, and one stationary. These plates are located on the clamping side 

and injection side of the machine, respectively. 

Figure 1.2: Schematic of a typical injection molding machine 
Source: http://www.idsa-mp.org/proc/plastic/injection/injection_process.htm  
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 igure 1.3: Photo of a typical injection molding machine 
rce: http://www.arburg.com/english/products/po_a0001.htm
the injection unit is to force or inject the molten plastic into the mold 

e injection unit consists of a plastic-feeding hopper, a heated barrel 

 an injector, and an outlet nozzle. The injector is usually a 

, but can also be a simpler hydraulic plunger-type device [Bryc96]. 

nents work in conjunction to feed the plastic, melt it, and then inject it 

e are many different injection unit configurations available, based on 

ticular molding job. 

g unit works to hold the mold closed during injection and actuates the 

pens. The clamping mechanism is either a hydraulic press or a 

stem and must be strong enough to resist the large forces generated 

ressure on the mold walls. Additionally, the clamping unit must 

rt of ejector device to facilitate part removal from the mold [Bryc96]. 
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The mold is a complex tool that contains the cavity or cavities in which the plastic 

parts will cool. The present work will mainly deal with molds and ignore the other 

components of the SMM system. There are several different types of molds, including 

two-piece molds, three-piece molds and multi-piece molds (space puzzle molds). Two-

piece molds have only one primary parting surface and consist of two main mold pieces 

which are separated along a main mold opening direction (also known as parting 

direction) to eject the solidified part. On the other hand, multi-piece molds have many 

parting directions, more than one primary parting surface and consist of multiple main 

mold pieces. They can be visualized as 3D jigsaw puzzles where all the mold pieces fit 

together to form the mold cavity and then can be disassembled to eject the molded part 

[Priy02]. However, two-piece molds are used most commonly in industry and will be 

discussed in details hereafter. 

Essentially, two-piece molds consist of a cavity located inside a set of plates 

divided into two halves: 1) a moving half, and 2) a stationary half [Boot02]. The 

stationary half (cavity) is located on the injection side of the molding machine, bolted 

onto the stationary platen and connected to the injection unit. It is typically used to create 

the external faces of the part. The moving half of the mold (core) is bolted onto the 

clamping unit and moves with it during the mold opening and closing phases. Core 

creates the internal faces of the part. A highly simplified schematic of a two-plate mold 

and the part it would produce is illustrated in Figure 1.4. 

In reality, the mold is not simply two halves with a single cavity.  Rather, it is an 

intricate system of moving plates with a resin flow system (gates, runners, and a sprue) 

that feeds multiple cavities. Additionally, molds must have a network of hydraulic 
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cooling lines as well as some type of part ejection system. Figure 1.5 schematically 

illustrates a two-cavity, two-piece mold in greater detail than Figure 1.4. Note that the 

only components of the mold that actually contain the geometry of the molded part are 

the core and cavity. The rest of the components serve as a support infrastructure for these 

pieces and are collectively referred to as the mold base. In many cases, it is possible to 

produce a family of different (but similarly-sized) parts on the same mold base by using 

different cores and cavities [Fowl04].  

Core 

Internal 
face 

External 
face 

Part 

Cavity 
 

Figure 1.4: Part molded by a two-piece mold  

Several types of mold subsystems are sometimes employed in special molding 

situations. While not required for basic two-piece single material (SM) injection molding, 

they may serve to increase part quality, reduce costs, and/or produce features and 

geometries not normally realizable with standard equipment. Normally these devices 
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must be custom-built directly into the mold base. Two common subsystems are described 

below. 
Runner 

 

 

A very common type of optional mold subsystem is called a side action. Side 

actions are secondary mold pieces (core and cavity form the main mold pieces) which 

allow undercuts to be molded into the part. Undercuts are patches or regions on the part 

boundaries that are not accessible along the main mold opening directions. They prevent 

standard two-piece molds from opening after the molten plastic has solidified. For 

example, any kind of external depression or hole parallel to the parting surface is a type 

of undercut. Hence the most important point to be noted here is that side actions are 

removed from the part using translation directions different than the main mold opening 

direction. Use of side actions is illustrated in Figure 1.6. 

Cooling channel 

Support  
plate 

Ejector 
plate 

Core 
plate 

1st cavity 

Parting
line 

GateSprue 
2nd cavity 

Clamping 
plate Cavity 

Core  Cavity 
plate 

Ejector pin

Rear clamping 
plate Figure 1.5: Anatomy of a two-piece mold 

 8



Main mold 
opening 

directions 

+ d 

- d 

Mold piece touching facets on this 
hole cannot be moved in + d or – d. 

Facets in the hole are undercut facets 

Removal direction of 
side action is different 

from + d or - d Side 
action 

Part 

 

Figure 1.6: Side action removal in a direction different from the main mold opening 
direction  

 
Now side actions are typically actuated by some sort of sliding mechanisms. 

Figures 1.7a and 1.7b illustrate an undercut created by part geometry, and Figures 1.7c 

and 1.7d illustrate one way to produce undercuts without mold locking. After the part 

cools, the cam in Figure 1.7d is shifted to the right, allowing the mold to be opened. The 

sideways movement of the slide can be actuated by one of several different kinds of 

mechanism including a side-pull pin, or a hydraulic piston. It should be noted that such 

devices must be specifically made for each case, and can significantly drive up the cost of 

the mold base [Fowl04]. The current work specifically deals with automated design of 
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side actions for complex industrial parts so as to minimize the overall molding cost 

without taking into account the actual mechanism design. 

CoreUndercut 
faces Part

Cavity

Another comm

devices extend the nozz

resin molten through 

solidification of the spr

cases still attached to

operations, and general

1.8 illustrates two mold

resulting parts are show

to note is that the part 

in Figure 1.8d does not

Undercut 
face 

Cavity

Core
Part

Side action

(a) Part with undercut (b) Locked mold 

PL

(c) Part with undercut (d) Side action mold

F  

 

igure 1.7: Molds with and without side action
  

on type of mold subsystem is called a hot runner system. These 

le of the injection unit directly into the cavity gate by keeping the 

a system of heated channels. This eliminates the undesirable 

ue and runners, which are then ejected with the part (and in many 

 it). This cuts down on resin scrap, manual runner-removal 

ly improves the resin flow characteristics inside the mold.  Figure 

ing scenarios: one without a hot runner system and one with. The 

n below their respective mold configurations. The key difference 

in Figure 1.8b has the hardened sprue attached to it while the part 

. It would have to be later removed through grinding or some other 
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method.  The removed sprues would then either be discarded or recycled into resin pellets 

and re-used. As with side actions, hot runner systems must be custom-built into each 

mold and drive up the total cost of the tool. Figure 1.9 shows photos of typical hot runner 

systems. 

• Controller 

In order to operate the various machine components all molding machines must 

include a controller unit. The controller is a sophisticated programmable computer, 

responsible for a host of tasks. This includes: attaining and holding the desired process 

variables (e.g. injection pressure and temperature), controlling the cooling system, and 

actuating the clamp mechanism and any mold subsystems. It must be able to accurately 

control the process temperatures and time the various actions in order to produce decent 

molded parts. Typically, the controller is fully integrated with the molding press and can 

be specially configured to meet the specific needs of the molding job. Machine 

manufacturers are able to provide custom SMM machines with whatever combination of 

injection units, clamping units, controllers, and auxiliary equipment necessary for most 

particular molding applications. 
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Hot runner 

Cavity
Nozzle 

Core 

 

 

 

 

1.2.2 Single Material Molding Process 

The basic two-piece SMM process without presence of any side action, as illustrated in 

Figure 1.10, is outlined as follows: 

1) Closing the mold: The mold closes so the cycle can begin. 

(a) – Typical hot runner 
components 

(b) – Detail of hot runners 

Hardened sprue 

(a) – Mold without hot runners (c) – Mold with hot runners

(b) – Resulting part from (a) (d) – Resulting part from (c) 

Fixed platen 

(to injection unit) 
Moving 
platen 

Figure 1.8: Schematic of molds with and without hot runners 

Figure 1.9:  Photographs of hot runner systems 
Source: Husky Inc. product brochure 
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2) Plasticizing the resin: (Figure 1.10a) The hopper feeds solid pellets or grains of the 

plastic resin into the barrel where it becomes molten due to the heating bands and 

friction caused by the rotating screw. The molten plastic accumulates at the front of 

the barrel (the nozzle side) as the screw retracts to the rear of the barrel. 

3) umulated for 

a full shot, a valve in the nozzle is opened and the screw rapidly advances forward, 

quickly injecting the plastic into the mold cavity. 

4) ues to push plastic into the mold in 

order to create a holding pressure.  This ensures adequate filling. As this happens, the 

molten plastic begins to cool and solidify toward the inside. This natural cooling is 

expedited by convection due to coolant flowing through channels inside the mold. 

5) old 

is opened. Some sort of ejector device is actuated in this process and the part is 

ejected from the mold and collected. After this, the cycle repeats from step 1. 

fter part 

solidification if side actions are included. First, side actions retract (translate) as shown in 

Step (2). Then the part needs to be taken out along with the core without intersecting the 

retracted side actions. Since Step (3) involves a relative motion between the part and the 

side actions, this can also be modeled as the second translational motion that needs to be 

imparted to the side actions for complete disassembly. Step (4) is same as stage 5) 

mentioned above and then onwards the previous cycle is followed till we again come to 

part cooling.  

Injecting the resin: (Figure 1.10b) When enough molten plastic has acc

Cooling the part: (Figure 1.10c) The screw contin

Ejecting the part: (Figure 1.10d) After adequate cooling time has elapsed, the m

However, as shown in Figure 1.11, certain additional steps are required a
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Figure 1.11: Steps in injection molding after 

 

(a) – Step 2: Plasticizing (b) – Step 3: Injecting 

(c) – Step 3: Cooling (d) – Step 4: Ejecting 

Side actions 
retract 

Core s
the cav

p

Core 

Cavity 

Side action Core 

Mold assembly 
after part solidifies 

(1) (2) 

Part 

Figure 1.10: Schematic of the injection molding process 
Source: Hhttp://www.idsa-mp.org/proc/plastic/injection/injection_process.htmH

Core e

 14
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part solidification 

eparates fro
ity taking the 

art along 

 part is ejected out m The
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Cavity 

Undercut 

(3) (4) 



1.3 Motivation 

Automated mold design: In the field of manufacturing, productivity is achieved by 

transforming a product from the conceptual design stage to finished good in the market 

quickly and inexpensively. Due to increased competition in today’s global economy, 

shorter design and manufacturing lead times, enhanced quality and reliability and 

frequent design modifications are often desired. Typically, design phase is the bottleneck 

in any product development process since it is a complex and time-consuming task 

[Priy02]. Hence we need fast computers coupled with efficient algorithms to generate 

designs automatically in a very short period of time.  

Design changes become more costly at the later stages of production. So it is 

important to detect any design errors and inconsistencies at an early stage. This can now 

be done easily with the help of virtual prototyping; automating the design process is a 

pre-requisite for that.  

However, the importance of design automation does not end here. Let us consider 

a simple scenario where a company has been asked to design the entire mold system for a 

new product. The traditional approach is to the use the expertise of an experienced mold 

designer. Since the entire process will be done manually, it will take weeks to complete 

the design. The designer may not consider all possible designs. Moreover, the generated 

design may not be the optimum one. In addition, as there is no effective communication 

between the part designer and the mold designer, usually multiple iterations are required 

till the part and mold designs are finalized. Sometimes, it becomes very difficult even for 

a highly skilled designer to visualize the mold geometries for complex parts involving 

multiple undercuts that need to be split into smaller moldable regions. Keeping in view 
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all these issues, automated mold design is no longer a nice-to-have optional feature; it is a 

necessity.  

Although almost all the CAD systems such as ProEngineer, Unigraphics, Solid 

Edge, SolidWorks etc. provide mold design software packages, none of them can 

satisfactorily design all the mold pieces for injection moldable plastic parts fully 

automatically without any form of manual intervention. Given a parting direction, they 

may be able to design the core and cavity; but designing side actions and that too, 

optimally, is beyond their current capabilities. However, as discussed in the previous 

Section, side actions constitute an important part of the mold system. They contribute 

significantly to the overall molding cost by increasing the molding cycle time (due to 

actuation) and the mold manufacturing cost. Hence, it will be useful to have a system that 

can automatically accomplish this task for us. It must be capable of designing shapes of 

side action solids automatically from the geometrical information present in undercuts, 

without any inputs from the user. At the same time, by changing the operational 

parameters, the user must be able to obtain alternative designs which will satisfy his 

specific needs. In other words, the system should be flexible or customizable enough to 

allow the user to explore various design options and select the optimum one. This will 

also provide the user with a reasonable estimate of the final cost that will be incurred 

during the actual operational phase which will be beneficial to both the design and 

manufacturing groups.  

Another important application is in automated generation of feasible molding 

sequences in multi material molding [Bane06b]. Infeasibility of molding sequences 

implies that the multi-material object cannot be manufactured because the proposed 
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molding sequence is infeasible. Usually this problem is caused by the presence of deep 

undercut features and it manifests itself in different ways for different multi-material 

molding processes. The three common reasons are listed as follows.  

o The two components are made of different materials and one of them has a higher 

melting point than the other. Then this component has to be molded first and if it 

is non-moldable then multi material molding cannot be carried out. This scenario 

has been illustrated in Figure 1.12. The moldability of the other component and 

the gross object is immaterial in this case. 

o Let us now consider that the two components are made of same material (different 

colors) or different materials having comparable melting points. If none of the 

two components are separately moldable, then no feasible sequence exists as the 

molding process cannot be started at all. 

o If the faces that need to be demolded in the second stage create impossible to 

mold undercuts multi material molding is not possible. 
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Neither of the 
two components 
can be molded 

Component A 

Component B 

Impossible to 
mold undercuts 

Component A can be 
molded first provided it 
has a higher (or same) 
melting point as 
component B 

Component A 
(redesigned by 
removing undercuts) 

Component B 

 

Figure 1.12: Redesigning a component after identifying impossible to mold undercuts to 
create a feasible molding sequence 

 

1.4 Research Issues 

There are two key research issues for which efficient solutions need to be obtained in 

order to automate the process of designing side actions for complex industrial parts. They 

are discussed below.  
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1. Computing feasible retraction spaces: From the discussion in Sub-section 1.2.1 it is 

clear that side actions need to retract after the molten plastic solidifies in the mold 

cavity. Hence, sufficient space must be available in the mold free space (regularized 

Boolean difference between a rectangular bounding box and the part) to move the 

side actions along a direction different from the main mold opening direction and 

then to remove the part along with the core without resulting in any collision(s). The 

difference between regularized and non-regularized Boolean difference has been 

explained in Appendix A. In other words, the space available for intersection-free 

(feasible) retraction of side actions has to be computed in order to determine their 

shapes. So one can think of computing the feasible retraction spaces for all the 

undercut facets individually. By undercut facets, one means the triangular faces 

representing the undercut region that will be eventually molded by the side actions. A 

CAD model and its faceted representation are shown in Figure 1.13 below. The 

feasible retraction space for a particular undercut facet f is shown in Figure 1.14. It 

will be defined in a more mathematically rigorous manner in Section 3.4. However, 

the point to be noted here is that computing these spaces precisely and efficiently is a 

challenging task. Firstly, all other facets on the part that may potentially block free 

translations of the undercut facets need to be identified. Then, an approach similar to 

that adopted in motion planning of polyhedral robot in an environment occupied by 

many other polyhedral obstacles may be utilized to solve this problem. Although this 

is a well-known technique, existing methods try to avoid such computationally 

expensive procedure by using ray-accessibility or local concave region based 
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techniques. Since they often do not yield satisfactory results, a way for computing 

feasible retraction spaces has to be found out.  

(a) CAD model of 
part 

(b) Faceted 
representation of part  

Figure 1.13: Faceting (from [Priy02]) 

 

Undercut facet f 
∆Y 

(0, 0) ∆X 

 

Feasible retraction 
space for undercut 
facet f 

Translation 
space (in 2D) 

Figure 1.14: Feasible retraction space 

2. Forming optimum (or near-optimum) set of side actions: Once all the feasible 

retraction spaces are obtained, the next challenge is to obtain an optimum solution. 

Here optimum solution refers to a particular design of a set of side actions such that 

the molding cost is minimized and all of them have non-null feasible retraction spaces 

associated with them. So one first needs to frame an objective (cost) function using 
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geometrical parameters only. Then, one has to search for the optimum solution within 

the feasible domain, i.e. retraction spaces. Since every undercut facet has a feasible 

retraction space, the trick lies in combining them suitably so that many can be 

handled by a single side action and the amount of retraction needed is as small as 

possible. These are conflicting objectives and hence one is confronted by a 

combinatorial geometric optimization problem. An intelligent heuristics based search 

strategy needs to be devised to solve this problem in a reasonable amount of time.  

 

1.5 Thesis Outline 

The remaining part of the thesis is organized as follows. Chapter 2 describes the 

published literature concerning automated mold design. Chapter 3 presents the problem 

formulation, establishes the theoretical foundations behind the proposed technique and 

gives an overview of it. Chapter 4 describes the first major step of the proposed approach 

in details. Chapter 5 explains the remaining two major steps and presents implementation 

results. Most of the material covered in Chapters 3, 4 and 5 has been already published in 

[Bane06a]. Finally, Chapter 6 summarizes the conclusions reached from this research, 

highlights the anticipated benefits and provides suggestions for future extensions of this 

work.  
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Chapter 2 

 

LITERATURE SURVEY 

This chapter provides a survey of the state of the art in the field of automated 

mold design. However, attention will be restricted to design of mold pieces only. Design 

of sprue, runner and ejection systems are not discussed in this chapter. This is because the 

geometric aspect of side action design is almost entirely related to the design of mold 

pieces only. The arrangement of cooling and ejections systems can be analyzed by 

modeling the fluid flow and the resultant temperature and stress distribution using 

numerical techniques such as finite element analysis (FEA). This chapter is organized as 

follows. Section 2.1 reviews all the existing approaches in determining parting directions 

for a given plastic part. Section 2.2 surveys the popular techniques in determining parting 

line and parting surface. Once all these three geometric entities have been determined, it 

is possible to design the main mold pieces (core and cavity) for a 2-piece injection 

molding system. Section 2.3 then reviews the available methods for recognizing undercut 

features. Once such features have been identified, one can go ahead and actually design 

the side cores. Existing approaches to do that have been surveyed in Section 2.4. Section 

2.5 reviews the work done in other forms of injection molding, namely multi-piece and 

multi-stage or multi-material molding. Section 2.6 reviews some of the work done in 

related fields such as die design for other types of plastic processing technologies. 

Finally, Section 2.7 summarizes the findings and highlights the need for new algorithms 

to tackle the problems not adequately addressed by the existing approaches.  
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2.1 Determination of Parting Directions 

Significant progress has been made in the area of computing main parting 

direction. Pioneering work was done by Chen et al. [Chen95]. They first linked 

demoldability (i.e. the problem of ejecting all the mold pieces from the mold assembly 

such that they do not collide with each other and with the molded part) to a problem of 

partial and complete visibility as well as global and local interference. If a surface is not 

completely visible, then either it is blocked locally by parts of the same surface, or 

globally by other surfaces. They reduced global accessibility of undercuts (or sealed 

pockets that are the non-convex regions of a part) to a local problem and used the 

intersection of the visibility maps of all the pocket surfaces to find a plausible parting 

direction. Basically, a visibility map or VMap is the spherically convex region on the 

Gauss sphere on which any point corresponds to a direction from which the entire surface 

is locally visible. The sealed pockets are obtained as the regularized Boolean difference 

between the convex hull of an object and the object itself.   

Now as the set of directions from which a pocket surface is completely visible and 

thus demoldable is the VMap of the surface, the problem of finding an optimal pair of 

parting directions basically boils down to one of locating a pair of antipodal points such 

that they are contained in (or covered by) maximum number of pocket surface VMaps. 

All the other pocket surfaces corresponding to VMaps not covered by the pair of points 

will require side cores. The authors have proposed an O(nm log m) running time 

algorithm to solve this problem by traversing through the cells using certain adjacency 

relationships, where n is the number of faces in the polyhedral object and m is the number 
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of spherical polygons. Mathematical definition of O notation has been explained in 

Appendix B.  

However, this approach suffers from few limitations. One such limitation is that it 

assumes that a side core is used for a pocket which has an empty VMap and is thus not 

completely visible from any direction. However, the use of cores can be avoided by sub-

dividing a pocket based upon the notion of partial visibility. Chen et al. [Chen95] 

precisely address this issue in their subsequent work. The main hypothesis behind this 

paper is that if a surface is not completely visible and hence cannot be separated from the 

mold assembly along any direction, it can be decomposed into two portions: those that 

are separable and those that form undercuts. The separable portions are known as 

visibility polyhedra (VP).  

Now to subdivide such a surface, directions in which it is partially visible need to 

be considered. The directions along which a surface is partially visible are not equivalent 

because different portions of the surface are visible or invisible in different directions. In 

order to minimize the number of undercuts, the spherical polygon representing the 

viewing directions along which a surface is partially visible needs to be further 

partitioned into smaller regions. The spherical map thus obtained is called the augmented 

visibility map (AVM) of the surface.  

The authors have presented an O(n2) time algorithm known as the pocket 

decomposition algorithm to partition a sealed pocket into a set of visibility polyhedra and 

undercuts, where n is the number of faces in the pocket. To compute the AVM, firstly the 

set of directions in which a sealed pocked S is partially visible (known as the range of 

partial visibility PV(S)) is computed in O(m log m) time, where m is the number of lid 
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faces in S. Now appearance, disappearance and merging of undercuts are associated with 

certain topological changes in the walls constructed to form a VP. Only one type of 

critical event occurs- namely the projection of a vertex lies on the projection of a non-

adjacent edge (VE). Since the occurrence of VE event is represented by O(n2)  great 

circles, these O(n2) loci of critical directions partition the unit sphere into O(n4) regions. 

Each such partitioned region is then traversed and the pocket decomposition algorithm is 

applied to determine the number of undercuts for any arbitrary viewing direction in each 

region. Thus, overall the algorithm has an O(n6) running time.   

Hui and Tan [Hui92] heuristically generated a set of candidate parting directions 

that consisted of planar face normals and axes of cylindrical faces. Based on the 

observation that the face normals of the openings of the cavity solids (pockets in 

[Chen93]) also define a zone of possible directions for clearing the corresponding 

undercut, Hui [96] added these to the set of candidate parting directions. He also 

developed a partitioning scheme to sub-divide the pockets without destroying global 

accessibility. For a candidate parting direction , a pocket is partitioned into by a series 

of planes each containing an edge of the pocket and a vector parallel to . The elements 

obtained after partitioning are convex and are either completely blocked or free in . 

Each candidate parting direction is then evaluated and an optimum direction requiring 

minimum number of side and split cores is selected as the main mold opening direction. 

The primary limitation of this approach is that the heuristically found set of parting 

directions may not be complete.  

d
→

d
→

d
→

Chen [Chen97] has proposed an entirely different approach to determine the most 

promising parting direction based on fuzzy logics. For a given 3D CAD model, this 
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method first finds the minimum volume bounding box of the model. Then three pairs of 

possible parting directions are defined along the surface normals of the bounding box. 

Multiple criteria such as number of undercuts, draw depth, projected area and other 

designer preferences are encoded as fuzzy weighing factors for evaluating the optimal 

parting direction. Uncertainty inherently present in the assessment of the weights is 

accounted for by the suggested fuzzy heuristic. Although the technique is novel, only 

three different parting directions are compared here; this significantly restricts its 

practical usability.  

Dhaliwal et al. [Dhal03] have described algorithms (with exact mathematical 

conditions) for computing global accessibility cones for each face of a polyhedral object. 

Their work is significantly different from that done by Chen et al. because that have no 

longer restricted themselves to deal with local interference. The accessibility cones are 

represented in the form of a matrix so that useful information can be retrieved by queries 

easily later on. The boundary of the unit sphere is partitioned into a finite number of 

spherical triangles, each representing a set of directions. Rows of the matrix represent 

spherical triangles, whereas columns represent the planar, triangular facets. Each entry in 

the matrix indicates whether a facet is completely accessible from a spherical triangle or 

not. Since the global accessibility cone of a convex-hull facet is always a hemisphere, 

only non-convex-hull facets need to be considered.  

Another interesting aspect of their work is that they have proposed two alternative 

algorithms- one exact and the other approximate to generate the overall accessibility cone 

matrix. The approximate scheme has been devised to avoid the numerical accuracy 

problems that inevitably creep in any geometric computations, destroying their 
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robustness. This approximation works fine since it errs on the safer side and provides a 

more conservative result. Thus, this work not only improves upon the interference 

scheme originally proposed by Chen et al., it gives provably sound as well 

implementation friendly algorithms.   

Rappaport and Rosenbloom [Rapp94] first introduced the concepts of moldability 

and castability of simple polygons and related moldability to monotonicity. After 

determining all the forward maximal monotone chains of a simple polygon, they have 

utilized that to develop a simple optimal algorithm to determine 2-moldabililty in linear 

time and 2-castability in linear-logarithmic time. Although they have only considered the 

problem of 2-moldability in 2 dimensions (planes), their work is ground breaking in the 

sense that they have used principles of computational geometry extensively for the first 

time in such a real-world engineering application to ensure disassemblability of mold 

pieces.   

Inspired by this, a generalized and immensely significant result has been 

established by Ahn et al. [Ahn02]. They have given a comprehensive algorithm to test 

whether, given a mold and two opposite directions, the mold can be partitioned into two 

parts such that they can be removed along those two directions, without colliding with the 

object or the other mold part. Moreover, they have described an algorithm to find all such 

possible directions for polyhedral objects in polynomial time. Using a number of lemma 

and theorems dealing with the mathematical concepts of monotonicity, silhouettes and 

shadow curves, they have given necessary and sufficient conditions for both the 

problems. Some of the major contributions of this work can be summarized as follows: 

• An object is moldable if and only if it is vertically monotone.  
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• An object is vertically monotone, and therefore moldable, if and only if its 

reflex silhouette is empty and its shadow curves are non-crossing. 

• Given a polyhedron with n vertices, it can be tested in O(n log n) time whether 

the polyhedron is vertically monotone and, therefore, moldable. 

• All the possible directions to eject the two mold pieces can be computed in 

O(n4) or O((n2 + m) log n) time by traversing all the vertices, edges and faces 

in an arrangement A(L) of great circles and arcs of great circles that denote the 

critical events in a unit sphere S2. Here m is the combinatorial complexity of 

A(L). This algorithm is optimal in the worst case.  

Building on this, Elber et al. [Elbe05] have developed an algorithm to solve the 

problem of determining parting directions for general free-form shapes, represented by 

NURBS surfaces. Not only have they given an algorithm to find a separating direction, 

they have also found a valid parting line (i.e. the contact curves of the two mold pieces). 

Just like Ahn et al. they have also reduced this problem essentially to one pertaining to 

silhouettes and visibility. A relatively straightforward way to obtain a valid 2-piece mold 

design is to enumerate all the possible topologies of its silhouette under all orthographic 

viewing directions, and then to see whether any one of them has exactly g + 1 loops, each 

of which is non-singular. Here g is the genus of the compact surface under consideration. 

Since this is precisely the information that is contained in vision events and aspect 

graphs, the next important issue to how to compute them for NURBS surfaces. Although 

techniques to compute them for different kinds of surfaces like polyhedral, quadric, 

surfaces of revolution and general implicit surfaces exist in the available literature, Elber 
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et al. have presented the methodology to determine them in case of NURBS for the first 

time.  

They have given a four-step approach to solve this problem. Since vision events 

occur only when the viewing direction crosses the generating cones of the three 

developable ruled surfaces, namely axis cylinder developables, flecnodal scrolls and 

limiting bitangent developables, it is necessary to compute the intersection of their 

generating cones with the Gauss sphere. From the resulting partition of the Gauss sphere, 

a representative point may be selected and the silhouette corresponding to that viewing 

direction is evaluated to check whether it free from singularities and has g + 1 loops.  

Although this method presents a complete solution to the 2-moldability problem 

for a model bounded by C(3) surfaces such as NURBS, it cannot directly handle piecewise 

smooth surfaces. Moreover, this method needs to be extended to handle planar facets 

present in polyhedral models. Furthermore, this method is time-consuming; it may take 

several minutes to obtain results on practical parts. Hence, extraction of feature curves 

and detection of silhouette singularities need to be carried out in a more robust and 

optimum way.  

Recently, McMains and Chen [McMa06] have determined moldability and 

parting directions for polygons with curved (2D spline) edges using the concepts 

originally presented in [Rapp94]. They have proposed an efficient algorithm to solve the 

opposite direction moldability problem. They have introduced a new data structure called 

normal graph to represent the range of normals of the polygon edges along with their 

connectivity. It has been proved that this normal graph captures the directions of all lines 

corresponding to feasible parting lines. However, instead of building a full normal graph 
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which would take O(n log n) time for a polygon bounded by n possibly curved edges, 

they have built a summary structure in O(n) time and space, so that all feasible parting 

directions can be obtained in O(n) time.  

Although this method can handle both faceted polygons and those with curved 

edges using identical graph summary structure and computes all feasible parting 

directions so that eventually the optimum one can be chosen with respect to other 

manufacturing considerations such as mold flow, shrinkage, gate/runner placement, 

parting plane geometry etc. practical parts are always 3D geometries. Hence, this method 

is not very useful in the current form. In fact, the difficulty with 3D geometries is that 

there is no natural traversal order of the faces of the polyhedron and 3-moldability 

depends upon face geometry in addition to face orientation and connectivity. Hence, an 

alternative way may be to use the analysis for 2D input contours defining 3D extrusion, 

rotation, loft and sweep for incremental moldability analysis of 3D geometries as and 

when the user designs them.  

Such a scheme has been proposed by Chen and McMains [Chen06] for extrusion 

operations. They have built upon their previous result to find the exact set of undercut-

free parting directions in O(n log n) time, where n is the complexity of the 2D generator 

profile. However, another slightly conservative superset of the exact set can also be built 

in O(n) time.  The salient features of this approach is that the set of possible parting 

directions for a part containing multiple extruded features can be reduced based upon an 

analysis of each such feature, parts having no undercut-free parting directions can be 

efficiently identified and the search time for all possible parting directions is reduced in 

many cases. However, this still does not consider lofted, swept or revolved features and 
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does not take into account other factors such as planarity of parting surfaces and so on in 

coming up with an optimal parting direction.  

Before concluding this section, another new and novel technique suggested by 

Kharderkar et al. [Khar06] needs to be mentioned. They have presented new 

programmable graphics hardware accelerated algorithms to test the 2-moldability of 

parts. Their running times only grow linearly with respect to the number of facets in the 

CAD model, thereby enabling testing 2-moldability of tessellated CAD model in real 

time. Two different algorithms have been developed to obtain the set of candidate 

directions using Gauss maps, accessibility analysis and visibility detection techniques 

such as back face culling. The efficiency stems from the fact that groups of candidate 

directions can be identified such that if any one direction in a group is undercut-free all 

are, or if any one is not free, none are. 

The first algorithm is based upon the algorithm presented by Ahn et al. [Ahn02]. 

It projects all the Gaussian sphere great circles corresponding to combinatorially distinct 

parting directions on a plane tangent to the sphere to form an arrangement of lines. Then 

the line arrangement is sub-divided into a quadtree data structure with 32 lines per 

quadtree node. Each line is then allocated one color bit and randomly points having 

different colors (corresponding to distinct 2-cells in the arrangement) are retained. 

However, this does not guarantee that a direction will be tested in the interiors of all the 

2-cells. Moreover, it ignores all the 0 and 1-cells, which may sometimes contain the only 

undercut free parting directions. Furthermore, the speed of frame-buffer read-back is 

often too slow for practical applications on parts having large number of facets. 
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The second, more accurate algorithm uses spherical convex hulls on Gauss 

sphere. Based on some mathematically involved lemma and theorems, the authors have 

established that while moving over the Gaussian sphere that encompasses all possible 

parting directions, the only event that alters the 2-moldability of the current direction is 

when a pair of potentially interacting facets [see page 333 in Khar06 for definition] start 

or stop occluding (blocking) each other. Thus, 2-moldability will only change when the 

current direction crosses one of the arcs bounding the accessibility regions of the 

potentially interacting facets. These arcs divide the Gaussian sphere into connected 

regions. In other words, it suffices to test 2-moldability at the vertices of the connected 

regions to check whether any undercut free parting direction exists for the object. To sum 

up, it may be said that even though further work needs to be done to eliminate some 

redundant tests and extend this idea to design multi-piece molds, this work provides an 

excellent background for application of potent computer graphics technique to solve a 

manufacturing world problem.  

 

2.2 Determination of Parting Line and Parting Surface 

Vast amount of work has been in the field of determination of parting lines and 

parting surfaces of injection molded parts. Pioneering work was carried out by Tan et al. 

[Tan90]. Given a solid model of a part (winged-edge boundary representation (B-Rep) or 

constructive solid geometry (CSG)) and the preferred parting direction, their method 

automatically generates the parting line and parting surfaces, which would allow the 

resulting mold halves to be configured. This method also detects interlocking surfaces 

which will require side cores.  
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According to the authors, for a simply connected part, parting line is one which 

contains the outermost points surrounding the part when viewed in the parting direction. 

A simple and efficient algorithm has been presented to determine this through the 

evaluation of surface normals and dot products with the parting direction. It includes 

traversing part faces to classify them as tentatively visible and non-visible and then 

connecting a series of tentative parting edges (shared by tentatively visible and invisible 

faces) to form the desired parting line. On the other hand, parting surfaces are obtained 

by projecting the parting line along the parting direction on a 2D plane to obtain the outer 

and inner loops and then by taking the convex hull of the outer loop edges. The method 

then fills the sub-region between the convex hull and the parting edges of the outer loop 

by inserting some additional planar faces.  

However, in order to deal with protrusions, artifacts need to be introduced to form 

stepped parting surfaces. Moreover, a large number of approximated facets are required 

to ensure reasonable accuracy for an object with curved surfaces. Theoretically, this 

method can be extended to curved surfaces by evaluating silhouette curves instead of 

edge counting. The curved parting lines may need to be split into piece-wise segments 

and each of these segments will form a parting surface using the approach mentioned 

above.      

Ravi and Srinivasan [Ravi90] first presented a novel approach to enable computer 

aided design of parting surfaces using a number of design criteria, namely projected area, 

flatness, draw, draft, undercut features, dimensional stability, flash, machined surfaces 

and feeders. The correlation between parting surface and different design criteria can be 

listed as follows: 

 33



• Cross-sectional area should gradually decrease from the parting surface to points 

farthest from the parting surface. 

• A flat parting surface is preferred over an irregular one from dimensional stability, 

sealing off, flash and cost of tooling and mold-making aspects. 

• Draw should be as less as possible to minimize metallurgical problems such as grain 

flow in forgings; small draw also reduces cycle time and increases productivity. 

• Number of surfaces requiring drafting should be minimized. 

• Undercuts should be avoided wherever possible. 

• Parting surface should be so designed that any two points between which higher 

dimensional tolerance is required occur on the same side of it. 

• Parting surface should produce the least number of intersections with faces where 

occurrence of flash has to be avoided. 

• Critical surfaces of a molded part requiring machining should be preferably located as 

the bottom or vertical walls of the mold. 

• Parting surface should be so chosen that the hot spots (regions of mass concentration) 

are at the top of the molding.  

Although the authors have developed a simple optimization framework to design 

the best possible parting surface based on weights pre-assigned to all the decision criteria, 

a separate expert system needs to be built to perform this systematically. Moreover, this 

method is not capable of handling stepped, profiled or complex parting surfaces. 

  Ganter and Skoglund [Gant93] pointed out that the addition of side cores and 

core prints to an existing object will affect the placement of parting surface. In other 

words, side core and core print information must be available concurrently to the process 
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that develops the parting surface. They have presented a technique to allow automatic 

extraction of three types of side core features, namely, voids, single and multi-surface 

holes and boundary perturbations. A combination of solid modeling (B-Rep) and graph 

structures has been used in this technique. Appropriate local features are identified and 

extracted from the original object and are grouped into one or more new side core 

objects. Core prints are later added after augmenting the original part geometry by 

combining the extracted core geometry and its convex hull. Although the authors have 

dealt with the importance of side cores in parting surface design in details here, it does 

not take account the other factors.  

Weinstein and Manoochehri [Wein97] have presented a methodology to obtain an 

optimum parting line design for injection molded or die-cast parts based on two 

manufacturability considerations, namely, parting line complexity, draw depth, number 

of undercuts, number of unique side cores and mold complexity. In order to quantify 

these factors two design variables have been used: draw direction range and parting line 

location. These design variables can be extracted from the part geometry by dividing it 

into concave and convex regions since they determine the allowable draw range and 

parting line location for the part respectively. A non-linear programming scheme is then 

used to generate the optimal mold configuration. In other words, this work is the parting 

line analogue of the method originally proposed in [Ravi90].  

However, any review of the available literature will be incomplete without 

mentioning the method suggested by Wong et al. [Wong98] to form parting line and 

parting surface by slicing a CAD model. The salient feature of this work is that it can 

handle free-form surfaces in addition to planar and curved surfaces. It first selects a set of 
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possible draw directions (typically along the principal axes) and forms tentative parting 

lines based on the selected draw directions. Then the best parting line is chosen among 

the plausible candidates based on certain criteria. A slicing algorithm is used to locate the 

parting line for the model along the possible draw direction. Then an undercut detection 

algorithm is used locate all the undercuts along the selected draw directions. Finally, the 

flatness of the parting line, draw distance, projected area, undercut volume, undercut 

length and relative positions of external undercuts to the mold are used to choose the best 

parting line. Although this method is computationally efficient, works for all kinds of 

surfaces and considers all the factors while selecting the best parting line, it does not 

search all the draw directions exhaustively and hence cannot ensure global optimality.  

  

2.3 Undercut Feature Recognition 

Many people around the globe have worked on undercut feature recognition 

problem using concepts similar to those used for computing parting directions. Yin et al. 

[Yin01] have tried to recognize undercut features for near net-shape manufactured parts 

by using local freedom of sub-assemblies in directed blocking graphs (DBGs). They 

represented contact between two faces hindering accessibility as point constraints set at 

vertices of convex hull of contacting surface area. Thus, each constraint C cuts unit 

sphere S2 along a great circle and set of such great circles define an arrangement of cells 

(namely vertices, edges and faces) on S2. This unit sphere is obtained from the freedom 

cone (FC), which is nothing but the set of feasible translation directions in 3-D. This is 

basically an improvement or modification on VMaps that uses computationally better 
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schemes like J0 functions and central projections to reduce time-complexity of algorithm 

from O(n6) to O(n3).  

Another way of recognizing and especially categorizing undercuts was put 

forward by Fu et al. [Fu99b]. They classified undercuts further into outside and inside on 

top of external and internal types. They defined an undercut feature direction as one 

whereby the local tool can be withdrawn most effectively to avoid warpage of the 

molding. Although for internal undercuts they have used V-maps only, for outside 

external and outside internal features, they have considered individual cases in great 

details and come up with specific formulae based upon normals to the adjacent surfaces 

(Please see Table 1 in [Fu99b] for more details). However, no clear justification is given 

for choosing a particular direction in each of the individual cases. They have also 

suggested generating optimal parting direction by maximizing the undercut feature 

volumes in each undercut feature group in another closely related work [Fu99a]. 

A hybrid method for recognizing undercut features from moulded parts with 

planar, quadric and free-form surfaces has been proposed by Ye et al. [Ye01]. They have 

used a combination of graph-based and hint-based approaches. Undercut features are 

defined using extended attributed face-edge graphs (EAFEG) and are recognized by 

searching cut-sets of subgraphs instead of commonly used graph matching techniques. 

Face properties and parting lines are used as hints to guide the search of cut-sets. 

Different case studies show that the proposed method can recognize various undercut 

features successfully and efficiently by avoiding time consuming subgraph isomorphism. 

However, it is not able to determine the feature parameters, namely, volume and release 

direction; hence side actions for molding such features cannot be designed directly.  
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As already discussed in Section 2.1, Kharderkar et al. [Khar06] have presented 

programmable graphics hardware based algorithms to test the 2-moldability of parts. In 

addition to testing moldability, these algorithms also identify and graphically display 

undercuts so that parts can be redesigned immediately. The basic idea behind these 

algorithms is very simple: if the part is illuminated by two light sources located at infinity 

along the main mold opening directions, then undercut facets are those which lie in 

shadow. This is done in real time (of the order of milliseconds) using the depth texture 

(shadow texture) capability of existing graphics hardware. Thus, this novel approach 

opens up exciting avenues in detection of undercut features.  

Priyadarshi and Gupta [Priy06] have adopted a similar shadow mapping approach 

to identify all the different mold-piece regions (core, cavity, both meaning can be either 

molded by core or cavity, and undercut) on parts. They have handled near-vertical facets 

robustly by slightly perturbing the vertices on those facets and by using visibility 

sampling. They have also managed to overcome the problem of self-shadowing by 

adapting second depth techniques suitably. The algorithms are very efficient; the time-

complexity solely depends on the time to render the parts.  To sum up, it may be said that 

the last two methods using programmable Graphics Processor Units (GPUs) outperform 

the traditional software based methods both in terms of granularity (resolution or 

accuracy) and speed.  

 

2.4 Design of Side Cores 

Quite surprisingly, automatic design of side actions has not received a lot of 

attention to date. However, Shin and Lee [Shin93] developed a procedure by which side 
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cores (specific types of side actions) and the corresponding core and cavity plates are 

generated by identifying the mold faces that prevent interference free motion of the part 

after solidification. These interference faces (both primary and secondary) are derived 

directly from the core and cavity plates without any need for considering the part by 

splitting faces along silhouette curves and applying polygonal overlap tests. Since the 

algorithm uses Euler operations like kill edge and face, kill edge and vertex etc. directly 

rather than Boolean operations, they are inherently efficient. However, this method 

cannot represent all the normal vectors (required for later computations) of a free-form 

surface by selective sampling. Moreover, it is not fully automatic. Many faces need to be 

selected interactively and the retraction or sliding direction has to be specified by the 

designer. In short, although this method attempts to solve this challenging problem in 

mold design for the first time, it does not offer a comprehensive solution that can be 

readily used in the industry.  

In the more recent past, Ye et al. [Ye04] have extended their idea of using 

EAFEG to recognize undercut features  (as mentioned in Section 2.4) to generate side 

cores for each undercut region by using certain Boolean operations. They have also used 

VMaps to determine release directions. Then a bounding box is created to enclose the 

blockage portion of the undercut feature; it is trimmed with all the faces of the feature 

and then swept along the release direction to get a linkage portion. This linkage portion is 

finally unionized with the blockage portion to form the actual side core. Although this 

approach fails to consider all the possible release (retraction directions) directions, a 

similar sweep operation will be used in the current work to generate actual solid shapes.  
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2.5 Design of Multi-piece and Multi-Stage Molds 

As discussed briefly in sub-Section 1.2.1, multi-piece molds offer an alternative to 

two-piece molds involving side actions. Broadly speaking, they can be of two types- 

permanent and sacrificial. Some of the representative work in both types of multi-piece 

molding is briefly discussed below.  

Chen et al. [Chen02, Chen03] first provided an excellent groundwork for 

permanent multi-piece mold design that allowed three-dimensional mold decomposition.  

They subdivided the process into two subsequent processes: mold configuration design 

process and mold construction process. In the first step, object boundary is sub-divided 

into smaller regions (mold-piece regions) that will be created by different mold pieces. 

Parting direction is found for each mold piece region by solving a linear optimization 

problem. However, if it does not have a parting direction, then it is split into concave 

regions and convex faces. Then in the second step, an approach based on reverse glue 

operation is used. Selection of different glue faces and planar parting surfaces produce 

different mold pieces recursively. 

However, their work suffers from two major limitations. First, since a local 

approach has been followed to find the parting direction of a region, disassembly of mold 

pieces is not guaranteed. A separate interference test simulation module is required to 

verify the feasibility of mold design generated by this approach. Second, as a greedy 

heuristic is used to select the mold-piece regions, it may not always produce the optimum 

solution. 
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Priyadarshi and Gupta [Priy04] successfully tackled some of the problems in the 

previous work by proposing a 4-step approach for automated design of multi-piece 

permanent molds. The steps are listed as follows: 

• Finding candidate parting directions based on an initial set of heuristic 

directions followed by a more computationally intensive method of obtaining 

directions from global accessibility cones suggested by Dhaliwal et al. 

[Dhal03]. 

• Analyzing accessibility of every facet in the part along at least one direction 

belonging to the set of candidate parting directions by using separating axis 

condition. Special attention has been paid to robustly determine the 

accessibility of near-vertical facets. 

• Selecting near-optimal mold-piece regions from the set of candidate mold-

piece regions by applying depth-first branch and bound and set covering 

heuristics.  

• Constructing mold pieces by first computing the gross mold, then locating the 

parting line for a mold-piece region, creating parting surface for the mold-

piece region and finally splitting the gross mold along the parting surface 

recursively. 

Although this provides a significant improvement over the previous approaches 

with respect to various characteristics such as soundness, completeness, efficiency, 

solution quality and domain of applicability, it has two major limitations. It cannot handle 

free-form surfaces without prior faceting and is unable to deal with faces that can be 

molded using split cores.   
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Now coming to sacrificial multi-piece molds, Dhaliwal et al. [Dhal01] presented a 

feature-based approach. For those objects which cannot be represented by feature-based 

models, this approach provides a 3D partitioning scheme to solve this problem in a 

computationally efficient manner. However, it cannot be used to design molds for 

arbitrarily complex parts. 

Huang et al. [Huan03] describe an algorithm based on accessibility-driven 

partitioning approach to design multi-piece sacrificial molds. After performing 

accessibility analysis of the gross mold, it is partitioned using the accessibility 

information. During each partitioning, a set of mold components is produced. Since each 

mold component is accessible, it can be produced using milling and drilling operations. 

However, in both these methods although the mold pieces are manufacturable, they may 

not be disassemblable.  

As briefly mentioned in Section 1.1, multi-material (multi-stage) molding is 

rapidly becoming popular in industry due to its various benefits. Pioneering work in 

developing an algorithm for designing multi-stage molds was carried out by Kumar and 

Gupta [Kuma02]. In order to obtain a feasible molding sequence, this algorithm 

decomposes the multi-material object into a number of homogenous components that can 

be added sequentially to produce the desired overall product. Once an object-

decomposition scheme has been found, the gross mold for each stage is computed and 

split into two or more mold-pieces.  

Novel features of this algorithm include: (1) it finds multiple partitioning planes 

to perform partitioning of the mold pieces, (2) it performs object and mold 

decompositions needed to ensure assembly and disassembly of mold pieces during actual 
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molding operation and (3) it generates complete molding sequence for multi-stage molds. 

However, it has some limitations as well. First, the contact between homogenous 

components is assumed to take place through planar faces only. This restricts the type of 

material interfaces in the multi-material object that can be currently handled by this 

method. Second, the object decomposition algorithm does not always find a feasible 

object partitioning scheme because it only decomposes components along the material 

interfaces. 

Certain improvements over the last approach for automated design of rotary-

platen multi-shot molds were suggested by Li and Gupta [Li04]. First, this method 

classifies any given multi-material object into several basic types based on the 

relationships among different components in the object. Then for every basic type, a 

molding sequence is obtained depending upon the precedence constraints resulting from 

both accessibility and disassembly requirements. Then starting from the last mold stage, 

mold pieces are generated for every mold stage.   

The salient features of this work are: (1) constraints for the rotary-platen process 

are used in generating molding stages, such that the generated mold can be used in an 

industrial process, (2) significantly more complex curved interfaces can be handled by 

using the exact component geometry in generation of parting surfaces and (3) 

disassemblability of mold pieces is always guaranteed. However, there are a few 

limitations as well. First, the object cannot be made of more than two materials. Second, 

the mold pieces generated by this algorithm may not have the optimal shapes.  
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2.6 Die Design and Other Related Work 

For the sake of completeness, let us review a representative work in the field of 

die design. Die design broadly refers to the design of dies to produce desired part 

geometries in all near-net-shape manufacturing processes such as casting, forging and 

injection molding. The die must be designed such that it is reusable and can meet the 

manufacturing requirements strictly. To address these needs, use of virtual prototyping is 

becoming increasingly popular in the industry.  

An approach for virtual prototyping of die design has been proposed by Wuerger 

and Gadh [Wuer97a, Wuer97b]. It uses concavity features to determine the set of all 

possible die-open directions for a given part by first determining the convex hull of the 

part and then by performing Boolean subtraction between the convex hull and the solid 

model of the original part geometry. VMaps are used to display all the possible die-open 

directions for a given part. The user can then select a single direction, based upon which 

the parting line will be developed. Finally, taper and draft need to be added to the part. 

Although this method may well serve as the foundation for automated die-design process, 

it is currently unable to split a concavity feature so that it is produced by two die-halves.  

 

2.7 Summary 

To summarize it can be said that lot of work has been done in automated design of 

multi-piece and multi-stage molds. The problem of finding optimum parting direction has 

also been studied extensively and is very useful in casting applications. However, in case 

of two-piece SM injection molded plastic parts, most designers develop part designs with 

a mold opening direction in mind. This is because mold opening direction influences all 
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aspects of part design. Typically, plastic parts (few representative parts are shown in 

Figure 2.1) are either flat or hollow-box shaped and they need to have relatively thin 

sections. These shapes have an implied mold opening direction. Moreover, they cannot 

have vertical walls; and some amount of taper has to be imparted in order to remove them 

from the mold assembly. Therefore the main tasks in two-piece SM injection mold design 

automation are (1) determination of the main parting line and parting surface, (2) 

recognition of undercuts, and (3) design of side actions. Existing methods for the first two 

tasks provide satisfactory solutions. However, existing methods for side action design 

only appear to work for certain class of undercuts.  

 

Figure 2.1: Typical industrial parts 

Existing methods for side action design do not work satisfactorily (i.e. cannot 

guarantee an optimal solution from an exhaustive set of feasible solutions) if a complex 

undercut region (1) needs to be partitioned to generate side actions, or (2) has finite 

accessibility or (3) is impossible to mold, thereby requiring the part to be redesigned. 

Figure 2.2 shows three parts for which generating side actions is challenging due to these 
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reasons. In this work, new algorithms have been presented to handle these types of cases. 

Currently only those types of side actions are considered that are initially retracted from 

the undercut in a direction perpendicular to the main mold opening direction. In fact, 

majority of side actions used in industrial parts meet this restriction. Typically, a single 

side action produces a connected undercut region. Therefore, each connected undercut 

region is treated independently and appropriate number of side actions is generated for 

molding it. 

Undercut region has 
finite accessibility Connected undercut 

region needs partitioning 

(a) 
(b) 

Undercut region 
is non-moldable 

(c)  

Figure 2.2: Parts that pose challenges for existing side action design algorithms 
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Chapter 3 
 
 
PROBLEM FORMULATION AND THEORETICAL FOUNDATIONS  

This chapter formulates the problem of generating side actions and establishes the 

theoretical framework for coming up with efficient algorithms to do the same 

automatically. Section 3.1 introduces and defines certain basic terminologies which will 

be used extensively later on. Section 3.2 gives the input and output of the algorithm along 

with the input restrictions and output requirements. One of the output requirements is to 

minimize an objective function. Section 3.3 derives this objective (molding cost) function 

from ab initio. Finally Section 3.4 gives a detailed overview of the approach as well as 

mathematically verifiable lemmas and theorem to characterize it.   

 

3.1 Definitions 

Retraction is defined by a point (x, y) in 2D configuration space. We are 

interested in two types of retractions namely, core-retractions and cavity-retractions. 

Retraction length is defined as the length of the position vector of the 2D point 

that defines the corresponding retraction.  

A given retraction (x, y) is a candidate core retraction for an undercut facet f, if 

sweeping f first by a translation vector and then by another one , 

(where is a large positive number) does not result in any intersection with the part. 

Figure 3.1 shows examples of a candidate and a non-candidate core retraction.  

^ ^

1t x i y
→

= + j
^

2 at l k
→

=

al

 

 47



r1 is a candidate core retraction 

Undercut facet f r2 is a non-candidate core retraction 

 
 

Figure 3.1: Candidate and non-candidate core retractions 
 

A given retraction (x, y) is a candidate cavity retraction for an undercut facet f, if 

sweeping f first by a translation vector and then by another one , 

does not result in any intersection with the part.  

^ ^

1t x i y
→

= + j k
^

2 at l
→

= −

Candidate core retraction space (illustrated in Figure 3.2) for an undercut facet f 

is the set of all candidate core retractions for that particular facet. Candidate cavity 

retraction space is defined in a similar manner.  

A given retraction (x, y) is a feasible core retraction for an undercut facet f, if in 

addition to being a candidate core retraction it also satisfies the condition that the swept 

polyhedron SP does not intersect with the part where { : ,0 1}SP q t q fα α
→

= + ∈ ≤ ≤ and 

is the minimum length translation required to reach a point in the mold free space such 

that this point is accessible along +z.  Feasible cavity retraction is defined analogously by 

imposing this additional constraint on candidate cavity retraction.  

t
→

Feasible core retraction space (illustrated in Figure 3.3) for an undercut facet f is 

the set of all feasible core retractions for that particular facet. Similarly, feasible cavity 

(a) 

Apply r2

∆Y 
Retraction 
plane

r2Apply r1Face 
F1 r1 ∆X

Face F2
(b) 
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retraction space is defined as the set of all feasible cavity retractions for an undercut 

facet f.  

Boundary due to face F2∆Y 

Boundary due 
to face F1

 

Figure 3.2: Candidate core retraction space 

 

Figure 3.3: Feasible core retraction space 

∆X 

Retraction 
plane 

 
Boundary due to the 
other faces (side walls) 
of the undercut 

Candidate 
retraction space 

Boundary so that retraction 
comprises of a single horizontal 
translation vector along with 
another vertical translation vector 

∆Y 

∆X

Retraction 
plane 

 

Feasible retraction 
space (subset of 
candidate retraction 
set)
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3.2 Problem Statement 

blem: Given a polyhedral object, its mold enclosure 

ceted (triangulated) solid geometric model of a polyhedral connected part P 

• 

r labeled as undercuts (we use technique described in [Priy06]). 

of side actions, such that each set (SAS) is defined by a 4-tuple {s, F, (x, y), T}. 

Inp

 on the part P with a sufficient degree of resolution so that each 

undercut facet does not have any point on it, which is accessible along either +z or –z. 

Side action set generation pro

(bounding box enclosing the part), main mold opening directions and undercut facets, 

determine the side action(s). Side actions require two translational motions for complete 

disengagement from the part. The first one is assumed to lie in a plane orthogonal to the 

main mold opening directions and the second one coincides with the either of the two 

main mold opening directions. Furthermore, it also assumed that all the side actions can 

be actuated simultaneously, independent of one another.  

Input:  

• A fa

oriented such that the main mold opening directions are along +z and –z respectively.  

Mold enclosure. 

• n facets marked o

Output: 

• A set 

The first entity s represents a solid body corresponding to the side action. The second 

entity F represents the set of undercut facets that will be associated with this side 

action. The third entity (x, y) is a retraction and the fourth entity (an integer) describes 

whether this is a core or a cavity retraction (+1 for core and -1 for cavity). Sample 

output for a given part is shown in Figure 3.4. 

ut restrictions: 

• Faceting is done
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Output requirements: 

An undercut facet f must be included in one and only one side action facet set F. • 

d as undercuts must be associated with one of the side action 

• ide actions generated will minimize the following objective (molding cost) 

• All the facets marke

facet sets F. 

• (x, y) is a feasible core or cavity retraction for all facets in F based on the type defined 

in T. 

• Any two side action solids will not intersect. 

The s

function: 

^ ^ ^ ^
/

kN N

C x i y j NC x i y jγ χ= + + + +∑ ∑    (3.1) 

where N
1 1

i i i i
i i= =

       is the cardinality of the output set, ( ),i ix y is the retraction in the ith element 

of the set, and γ , k , /C , χ are molding parameters. Derivation of

ers is 

 this equation as well as 

the physical significance of molding paramet explained in Section 3.3. It is 

important to note that depending on the geographical region and the nature of the 

molding operation, values of these parameters will be significantly different for the same 

part. In other words, these parameters might have altogether different values for 

production-run molds and prototyping molds even for the same part. 
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Polyhedral part  

Translations 
corresponding to 

retraction Solid body 

Associated undercut facets 
 

Figure 3.4: Sample side action set (output)  

 
3.3 Derivation of Cost Function 
 

Several industries as well as academic researchers [Boot02, Poli01, Faga00, 

Bryc96, Rosa00] have propounded different models to estimate the total cost in plastic 

injection molding. The current work starts from a very simple model [Poli01] and 

develops a unique cost function that serves as the objective function for the problem of 

grouping the undercut facets into optimal number of groups. Since total cost = Molding 

cost + Operation cost + Material cost, symbolically, 

MO OP MC C C C A= + +      (3.2)  
where C, CMO, COP and CMA refer to the total cost, molding cost, operation cost and 

material cost respectively in dollars. 

Assuming that the injection molding shop floor is going to produce Q parts, each 

of these cost components can be broken down into sub-components which relate the 

overall cost function to certain input parameters and part properties (material and 
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geometry). As molding involves manufacturing and assembling the two main mold pieces 

as well as the side cores, CMO can be sub-divided as follows: 

MO MP SC C C C= +      (3.3) 
where CMP and CSC represent the individual costs of the main mold pieces and the side 

cores respectively. Since the mold pieces need to be manufactured and assembled only 

once, these costs are independent of the number of parts to be produced. In our model, 

CMP is taken as a constant and will be inputted by the mold manufacturer as the total cost 

of manufacturing (milling, grinding, EDM etc.) core and cavity. However, the side core 

cost is a variable one and has three components. Thus, 

SC mac act assC C C C= + +     (3.4) 
where Cmac, Cact and Cass denote the costs due to machining, actuating and assembling the 

side cores respectively. 

Actuation and assembly costs can be grouped together for the sake of simplicity 

and modeled as being proportional to the number of side cores being used. However, 

core-side side cores are typically actuated by solenoid based mechanisms, whereas 

cavity-side side cores are actuated by slider mechanisms. Thus, this cost varies depending 

upon the nature of side cores. The cost associated with core-side side cores is naturally 

much higher than that corresponding to cavity-side side cores. Hence, this can be 

mathematically formulated as follows: 

act ass Co Co Ca CaC C N C N C+ = +     (3.5) 
where NCo and NCa are the number of core-side and cavity-side side cores respectively. 

CCo and CCa are proportionality constants (in dollars) to relate the combined actuation and 

assembly cost with the number of core and cavity-side side cores respectively.  

Now coming to the machining cost Cmac, it comprises three major components- 

namely cost due to the size or volume of the machined part, cost due to machining the 
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cross-section and cost due to the complexity of the machined profile. Hence, Cmac can be 

mathematically represented as: 

    
1 1 1

N N N
CS

mac i i i
i i i

C V Aα β γ
= = =

= + + C∑ ∑ ∑    (3.6) 

where N = total number of side cores 

           Vi = volume of the ith side core 

          ACS
i = cross-sectional area of the ith side core 

          Ci = complexity of the profile of the ith side core 

          α, β and γ are proportionality constants 

Now going back to the second component on the right hand side of equation (1), it 

can be decomposed broadly into two parts- cost incurred due to time taken in injecting, 

cooling and resetting the mold and the extra cost arising due to retraction of the side 

cores. Pulling the side cores increases the mold cycle time and thereby raises the 

operation cost. Hence, COP may be rewritten as: 

( )
1.

1

N

i
i

OP OP inj cool reset

t
C c Q t t t

v

→

=

⎡ ⎤
⎢ ⎥
⎢ ⎥= + + +
⎢ ⎥
⎢ ⎥⎣ ⎦

∑
   (3.7) 

where = operation cost rate ($/hr-piece) 
.

OPc

            tinj = time required to inject the molten plastic in the cavity 

            tcool = time to cool the injected molten plastic 

            treset = time to reset the solidified plastic inside the cavity 

            v = speed of retracting the side cores  

            ti1 = horizontal pull (or translation vector) for the ith side core 
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Again the individual operating times can be expressed in terms of more fundamental 

process parameters as follows [Bo02]: 

2 inj shotshot
inj

avg inj

P VVt
q π

= =      (3.8a) 

( )
( )

max
2

4
ln inj mold

cool
ej mold

T Tht
T Tπ α π

⎛ ⎞−
⎜=
⎜ −⎝ ⎠

⎟
⎟

    (3.8b) 

7 21
4reset dry

5

stroke

dt t
L
+

= +     (3.8c) 

where Vshot = volume of molten plastic injected in a single shot 

           qavg = average molten plastic flow rate 

           Pinj = injection pressure  

           πinj = power output of the injection unit 

           hmax = maximum part wall thickness 

           α = coefficient of thermal diffusivity of the plastic 

           Tinj = recommended plastic injection temperature 

           Tmold = recommended mold wall temperature 

           Tej = temperature at which the part may be safely ejected 

           Tdry = time needed for machine to complete a dry run 

           d = part depth along mold opening direction 

           Lstroke = maximum stroke of clamp unit 

Since all these terms are fixed for a particular choice of injection molding process 

and a given part, the three time components can be combined together to simplify 

equation (3.7) as follows: 
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1.
1

N

i
i

OP OP tot

t
C c Q t

v

→

=

⎡ ⎤
⎢ ⎥
⎢ ⎥= +
⎢ ⎥
⎢ ⎥⎣ ⎦

∑
    (3.9) 

Finally, the last term in the RHS of equation (1) can be rewritten as the product of 

material cost per piece (cMA) and the number of pieces to be manufactured as follows: 

MA MAC c Q=       (3.10) 
Combing equations (1), (2), (3), (4), (5), (8) and (9) we have, 

.

1
1 1 1 1

( )
N N N N

CS
MP i i i Co Co Ca Ca OP tot i MA

i i i i

C C V A C N C N C c Q t v t c Qα β γ
→

= = = =

= + + + + + + + +∑ ∑ ∑ ∑  

            (3.11) 
Grouping terms, the final form of the cost function may be obtained as follows: 

1
1 1 1 1

N N N N
CS

i i i Co Co Ca Ca i
i i i i

C V A C N C N C tα β γ χ
→

= = = =

= + + + + +∑ ∑ ∑ ∑ λ+

Q

  (3.12) 

where the constants         (3.13a) 
.

OPc Qvχ =

                                       and      (3.13b) 
.

MP OP tot MAC c Qt cλ = + +
 

Since, this molding cost function will be used to compare between two solutions 

at a time, the term κ can be safely dropped. Moreover, comparisons will be made only 

between two feasible core or two feasible cavity retractions. Hence both CCo and CCa 

cannot be present in C simultaneously and a common symbol C/ can be used for them. 

Finally, the complexity of every side action can be related to the corresponding retraction 

length. It is assumed that 
k

i iCp t
→

= where the value of the exponent k will be suitably 

based on experimental data for that particular molding operation. Therefore, the cost 

function reduces to: 

/
1

1 1

kN N

i
i i

C t NCγ
→ →

= =

= + +∑ itχ∑      (3.14) 

which is identical to Equation (3.1).   
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3.4 Overview of Approach  

 
Before going into the technical details, it is important to understand why the 

concept of a candidate and a feasible retraction space has been introduced. Candidate 

retraction space gives the set of retractions such that the corresponding undercut facet can 

be retracted, first horizontally and then vertically, without intersecting with the part. 

However, a solid body (side action) of finite dimension is also going to be attached to 

every undercut facet at the time of retraction. This solid body will extend up to the core 

or cavity. Thus, it also needs to be ensured that this solid shape never intersects with the 

part during the process of retraction and that is taken care of in case of feasible retraction 

spaces. Figure 3.5 shows that if this solid shape s is not considered, then r is a feasible 

retraction for the undercut facet f. However, as soon as the effect of the attached side 

action s is incorporated, r becomes infeasible as it collides with face F2 at the time of 

retraction. This clearly establishes the difference between candidate retraction and 

feasible retraction and their corresponding spaces.  

Now as can be inferred from their names, for each undercut facet only its 

candidate retraction space will be computed (see Chapter 4 for details on this step) and 

not its feasible one. This space can be represented as a set of one or more disjoint 

polygons in 2D translation space (∆XY plane). This translation space can be bounded on 

all the four sides by the mold enclosure and is termed as the retraction plane. Eventually, 

one gets a set of candidate retraction spaces on the retraction plane. A simple 

arrangement of two candidate retraction spaces is shown in Figure 3.6.  
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Undercut facet f 

s 

Apply r r is a candidate retraction; 
however it is not a feasible 

retraction since side action solid s 
will collide with face F2 during 

retraction 

Side action solid 
 

Figure 3.5: Difference between candidate and feasible retractions 

 

 

Figure 3.6: Intersection of two candidate retraction spaces 

However, the point to be noted here is that feasible retraction space is a sub-set of 

the candidate retraction space (as proved in Lemma 1 below). It also satisfies some other 

unique property (again stated formally in Lemma 1) which makes it possible to compute 

an exhaustive and discrete set of candidate retractions (to be used for obtaining optimal 

solution) from the candidate set only. In other words, there is no need to generate the 

feasible retraction spaces. This clever strategy allows one to bypass many challenges of 

computing the feasible retraction spaces without compromising on the correctness and 

feasibility of the solution.   

(a) (b) (c) 

∆X 

∆Y 

∆X ∆X 

∆Y ∆Y
Retraction plane 

Face F2

Candidate retraction space 
for a facet f1

Concatenated candidate 
retraction space for 
both f1 and f2

Candidate retraction space 
for another facet f2

2D arrangement 
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Lemma 1: Feasible core (cavity) retraction space FS for an undercut facet f is a subset of 

the candidate core (cavity) retraction space CS. Moreover, every element (can be 0-face, 

1-face or 2-face) 1p FS∈ will include a portion of the boundary of a unique, 

corresponding element 2p CS∈ . 

 
Proof: This lemma will be proved only for feasible core retraction space. The proof 

for feasible cavity retraction space follows similarly. From the basic definitions, one 

can say that feasible core retraction space FS for a given undercut facet f needs to 

satisfy another constraint in addition to those satisfied by the candidate core retraction 

space CS for the same facet f. Hence, FS must be a subset of CS. The two sets will be 

identical if this additional constraint is satisfied for every retraction present in CS. For 

some elements of CS the corresponding element in FS will be a null element if none 

of the retractions present in that element satisfies the additional constraint. This 

proves the first part of the lemma. 

As shown in the previous paragraph, 1p will be a subset of 2p . However, 1p cannot lie 

entirely in the interior of 2p . It must include at least some points on the boundary of 

2p because if an interior point of 2p satisfies the extra constraint, then there will exist 

a corresponding boundary point which will also satisfy the extra constraint. This 

corresponding point is the intersection of the line joining the origin to the interior 

point with the boundary of 2p . Now it will be shown that this boundary point will also 

satisfy the extra constraint.  
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This follows from the fact that the retraction length associated with any interior point 

of 2p is greater than the length associated with the corresponding boundary point. 

Hence, if the swept polyhedron SP for the undercut facet f does not intersect the part 

while undergoing a retraction by an amount (length) specified by the interior point 

of 2p , then it can never intersect with the part while undergoing a smaller length 

retraction along the same direction as given by the corresponding boundary point 

of 2p . So the corresponding boundary point must also be feasible. This proves the 

second part of the lemma. 

 

Now, the objective function for this problem calls for minimizing the number of 

side actions as well as the retraction lengths. Therefore, usually a compromise needs to be 

worked out by identifying a suitable set of feasible retractions. The set of candidate 

retraction spaces can be partitioned into a set of cells and let A to be the spatial (planar) 

arrangement defined by them (shown in Figure 3.7). As usual, the arrangement consists 

of 0-faces (vertices), 1-faces (edges) and 2-faces (polygonal cells). This arrangement A is 

computed by intersecting and splitting the candidate retraction spaces for all the undercut 

facets. Hence, for each cell a in A, the set of undercut facets for which this cell will be a 

part of its corresponding candidate retraction space is known. This set of facets is termed 

as the retractable facets for the cell a. In other words, a subset of all retractions defined 

by points located within a are feasible retractions for all the retractable facets. Since by 

selecting such a retraction, one will be able to deal with a large number of retractable 

facets at one go, one can then perform a search over all cells and find the optimal 
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combination of retractions. Based on Lemma 1 and the discussion in this paragraph, one 

can state Observation 1.  

 
Observation 1: For every cell a A∈ , there exists a corresponding cell a/ (may be null 

(φ )) belonging to the feasible retraction spaces, such that and /a ⊆ a ( ) ( )/b a b a φ∩ ≠ , 

if /a φ≠ , where b (a/) and b (a) are the boundaries of a/ and a respectively.  
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frequently in geometric computations, leading to completely erroneous results. This has 

been illustrated in Figure 3.8. As reported by Kharderkar et al. [Khar05], although such 

problems can be avoided by using the MP_Float (multi-precision float) number type with 

Cartesian kernel provided by CGAL [2004], speed becomes very slow due to large 

overhead and often the application may run out of memory.  

∆Y 

 

Figure 3.8: Implementation challenges due to robustness problems 

Hence, the planar arrangement A is not computed explicitly. Instead, focus is 

given on finding a discrete set of promising retractions and performing search over them. 

In the following chapters methodology to do the same has been explained. But before 

proceeding any further, it is useful to establish some important foundations and 

properties.  

 
Lemma 2: Let r be a retraction used in the optimal solution and F be the set of facets 

associated with r. Then r will lie on the boundary of a cell in A.   

Proof: Since the objective (molding cost) function is being minimized, if retraction r 

belongs to the optimal solution, then it must be a feasible retraction and the retraction 

length must have the least possible value for the associated facet set F. Since F 

corresponds to a particular cell in A, r must lie on the boundary of that cell. As shown 
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in Figure 3.9, this is due to two reasons. First, the point having minimum distance 

from the origin (i.e. retraction length) for any polygonal cell will be a boundary point. 

Second, the corresponding cell in feasible retraction space will share a portion of the 

boundary (see Observation 1). Hence the assertion of lemma directly follows from 

these observations.  

Optimal retraction will lie on 
the boundary of this cell since a 
boundary point will always be 

present that has smaller distance 
from origin than any other 

interior point 

 

Figure 3.9: Illustration of Lemma 2 

This lemma clearly points out that only the boundary of the cells in A needs to be 

considered in order to obtain the least possible retraction lengths for all potential facet 

sets that may be present in the optimum solution. However, it also needs to be ensured 

that by considering the cell boundaries only, one does not fail to include maximum 

possible number of facets in every facet set for all promising retractions that may appear 

in the optimum solution. Now let us consider a set R that consists of two types of 

elements- the original corner vertices of all the candidate retraction space polygons and 

d2

∆Y 

Retraction 
plane 

d1

∆X 
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the intersection points obtained by pair-wise intersection of all edges in the feasible 

retraction space polygons. Thus, this set R includes all the vertices of the arrangement A. 

 

Lemma 3: Let F be a facet group in the optimal solution. Then there will exist a 

retraction r in R such that r is a feasible retraction for all facets in F.  

 
Proof: The set of retractable facets corresponding to a particular cell does not change 

within its interior. It definitely changes at the 0-faces, i.e. at the original corner 

vertices of the free space polygons or at the intersection points. The status of the 

edges is rather hard to determine. While the boundary edges (edges belonging to a 

single cell only) have the same set of facets as the respective cell interiors, edges that 

are common to multiple cells have an ambiguous status. However, this is immaterial 

here since any change in the retractable facet set along an edge is already accounted 

by the two vertices forming the edge.  

Since F is a facet group present in the optimal solution, if retraction r is a feasible 

retraction for all facets in F, then it must be contained (either on the boundary or 

within the interior) in the particular cell corresponding to F (see Observation 1). 

Combining this argument with the discussion in the preceding paragraph, one can 

conclude that r is bound to be present in R since set R encompasses all the 0-faces of 

the cells. Thus, the lemma follows.  

 

Based on Lemma 2 and 3, it is possible to reduce our search space considerably 

from the entire arrangement A to only the cell boundaries. Moreover, from Lemma 3, it 

can be inferred that by only utilizing R as the search space, the maximum possible 
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number of facets can be successfully included for all candidate retractions which may be 

present in the optimal solution. However, by ignoring the non-vertex points in the cell 

edges, the least possible retraction lengths may not be obtained. In order to minimize this 

error, the edges of the feasible retraction space polygons are sub-divided a priori (before 

computing the line segment intersections) so that no two neighboring vertices are more 

thanε apart from each other on any of the sides. Still the retraction lengths in the solution 

might be marginally greater than or equal to the optimum retraction lengths. However, 

Theorem 1 formalizes that such an error will be bounded. 

 
Theorem 1:  Let S* be the optimal solution and let S’ be a solution that has the same 

facet sets but each retraction length is increased by 0.5ε . Then the solution produced by 

the algorithm will be no worse than S’. 

 
Proof: As Figure 3.10 points out, maximum error in retraction length occurs when 

the optimum solution lies at the mid-point of an edge and the solution explored by the 

algorithm by searching over the set R, corresponding to the same facet set is 

obviously one of the edge vertices. If the optimum retraction corresponds to any other 

non-vertex point on the edge, then the closer neighboring vertex will be considered by 

the algorithm. In such a situation, there are two possibilities. First, the algorithm will 

return this closer neighbor solution, resulting in a small error. This error in retraction 

length is, of course, bounded by half the maximum possible edge length, i.e. by 0.5ε .  

Second, the algorithm will find a better overall solution (involving different facet sets 

and retractions) than this solution. 
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From the above argument, it easily follows that since solution S/ has identical facet 

sets as the optimum solution S*, but each retraction length is increased by 0.5ε , the 

algorithm will not generate solution worse than S/.  

 
 

Cell 

Figure 3.10: Maximum error in retraction length 
 

Choosing ε  to be equal to 1 mm, there is very little qualitative difference between 

the solution generated by the algorithm and the optimum one. Practically this error has no 

effect, since a discrepancy of 0.5 mm in the retraction length hardly matters due to use of 

fast actuators attached to side actions. Thus, this error is insignificant.  

After generating this set R, in order to make the optimization (e.g., depth-first 

branch and bound) algorithm more efficient, it is important to eliminate all the dominated  

retractions that are never going to produce the optimal solution. Then a test is carried out 

to determine whether every remaining retraction is a feasible one. The approach for 

pruning such redundant retractions, testing feasibility, and then arranging the non-

dominated, feasible retractions and their associated retractable facets in the form of 

efficient data structures is explained in Section 5.1.   

Finally, the retractions are treated as nodes to construct a search tree in a 

particular manner, described in details in Section 5.2. Certain heuristic rules have been 

developed to ensure that branching of the tree at any level is restricted within manageable 
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proportions. The maximum depth of the tree will also be restricted to 3 or 4 in most 

practical cases. A depth-first branch and bound strategy is then employed on this search 

tree to obtain the optimum set of undercut regions. These regions are then swept along 

the horizontal translation vectors corresponding to the retractions and additional planar 

patches are inserted to form compact side action solids. 
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Chapter 4 

 

COMPUTING CANDIDATE RETRACTION SPACES 

From the discussion in the previous chapter, it is clear that first of all the 

candidate retraction space needs to be constructed for every individual undercut facet. In 

order to describe the steps for doing that, certain definitions have been introduced in 

Section 4.1. The overall procedure can be decomposed into two stages. Initially, an 

candidate translation space needs to be computed on the retraction plane such that a 

single horizontal translation vector can pull the facet there without being obstructed by 

any other facet lying on the way. The algorithm for computing this has been explained in 

details in Section 4.2. To ensure that the horizontally translated undercut facet can also be 

pulled vertically, it is necessary to construct another candidate translation space on the 

retraction plane. Eventually, the two candidate translation spaces have to be concatenated 

to obtain a combined, candidate retraction space. All these steps have been described in 

Section 4.3. 

 

4.1 Related Definitions  

 Collision polyhedron for a facet f with respect to another facet f/ is defined as the 

set of points in 3D translation space such that if corresponding translations are applied to 

f, then the translated f intersects with f/. 

 Collision polygon for a facet f with respect to another facet f/ is defined as the set 

of points in 2D translation space such that if corresponding translations are applied to f, 

then the translated f intersects with f/. 
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 Sweep-based collision polygon for a facet f with respect to another facet f/ is 

defined as the set of points in 2D translation space such that if corresponding translations 

are applied to f, the swept polygon Pt
→

/ will intersect f/, where 

. / { : ,0P p t p fξ ξ
→

= + ∈ ≤ ≤1}

 Collision free 2D translation space for a facet f is defined as the set of points in 

2D translation space such that if corresponding translations are applied to f, the swept 

polygon P

t
→

/ (defined as before) will not intersect with any of the collision facets f/. 

Inaccessible polygon for a facet f refers to the set of points in 2D translation space 

such that if this translation is applied to f, then it is not accessible vertically upwards.  

2D translation space for upward vertical accessibility for a facet f is defined as 

the set of points in 2D translation space such that if this translation is applied to f, then it 

can be released vertically upwards. Similarly, a 2D translation space for downward 

vertical accessibility can also be defined for facet f. 

 
4.2 Computing Collision-free 2D Translation Spaces 

Firstly all the potential facets capable of causing obstruction need to be identified.  Since 

the translation vector in this case is restricted to lie in horizontal plane, it makes sense to 

consider all the facets lying partially or completely within the z-range of the undercut 

facet under consideration as potential obstacles. Z-range refers to the 3D space bounded 

by the maximum and the minimum z coordinate values of the facet vertices. In case a 

facet does not lie completely within the z-range, only the part of it lying inside is 

considered. This involves truncation of triangular facets to form convex polygons of 3, 4 

or 5 sides. 
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 According to Aronov et al [Aron97], 3D free configuration space FP of a convex 

“robot” B moving in space occupied by k/ obstacles {A1, …,  Ak
/} is given as the 

complement C of U, where  be the union of the so-called expanded obstacles P
/

1

k

i
i

U
=

=∪P

}

i. 

Here Pi is the Minkowski sum (illustrated in Figure 4.1) of Ai and – B, for i = 1,…, k/. 

  (4.1) ( ) { : ,i i iP A B a b a A b B= ⊕ − = − ∈ ∈
 

Y 
1 2S S⊕

S1

S2

X 

 
 

Figure 4.1: Minkowski sum of two convex polygons 
 
 In this case, replacing B by the undercut facet under consideration and Ai

s by the 

k/ facets falling within its z-range, set of collision polyhedrons are obtained. Since this 

Minkowski sum is computed easily by obtaining the convex hull of the vector differences 

of each pair of vertices, total process has  O(k/m/ log m/) worst-case asymptotic time 

complexity, where m/ is the maximum number of vertices in each of the expanded 

obstacles. The collision polyhedrons are then intersected by a horizontal plane located at 

∆ z = 0 to obtain collision polygons in the retraction plane.  
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 However, the fact that the facet must be able to reach this candidate space by 

means of a single translation vector also needs to be taken into account here. That is why, 

mere construction of Minkowski polyhedrons and then intersection with a horizontal 

plane do not give the final obstructed space.  

 The hard shadows (shown in Figure 4.2) of all the k/ collision polygons need to be 

computed in order to determine the sweep-based collision polygons. Alternatively, same 

thing is done by plane sweeping the collision polygons until they reach the retraction 

plane boundaries. Assuming that n/ is the maximum number of vertices present in a 

collision polygon, this has a worst-case asymptotic time complexity of O(k/n/ log n/). 

Lastly, the collision free 2D translation space is obtained by subtracting the union of the 

forbidden spaces from the bounded retraction plane. Each union and subtraction 

operation again takes O(n// log n// + I/ log n//) time [deBe00], where n// is the total number 

of vertices of two polygons and I/ is the complexity of the resulting polygon. All the steps 

mentioned so far have explained formally in the following algorithm COMPUTE-

MINKOWSKI-SINGLE-TRANSLATION-SPACE and illustrated in Figure 4.3. 

Y

 

Figure 4.2: Hard shadow of a polygon 
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Figure 4.3: Constructing collision-free 2D translation space 

Algorithm: COMPUTE-MINKOWSKI-SINGLE-TRANSLATION-SPACE 

Input: 

• N facets representing the part P and its mold enclosure B. 

• A set of n undercut facets Fu = {f1,…,fn}.  

Output: 

• A set of n collision free 2D translation spaces C1 = {c1,…,cn} 2R∈ , where ci 

corresponds to undercut facet fi.  

Steps: 
 
1. For every fi in Fu, do  
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i. Create a z-range by considering the overall vertical stretch or extent of  fi. 

ii. Form a new set Fs = {f1,…,fm}, such that all triangles fj ∈ Fs (each fj is a sub-

set of a particular facet forming the part) have vertical (z) extents situated 

partially or completely within the z-range defined for fi in the preceding step i.  

If a facet lies completely in the z-range, then the whole of it is included.  

Else only that part of facet, where the vertical extent lies within the z-range, is 

included and remaining part is truncated.  

iii. Set index j = 1. 

iv. While j <= m, do  

a) Determine the collision polyhedron for fi with respect to fj 

( )j j ip f f= ⊕ − , j sf F∈ , by calling the function COMPUTE-

MINKOWSKI-SUM (fj,  fi). 

b) Find the sweep-based collision polygon for fi with respect to fj, 

namely sj, by calling the function COMPUTE-SINGLE-

TRANSLATION (B, pj, fi).  

c) Increment  j by 1. 

v. Compute the union mi of all the 2-D convex polyhedra sj; 

   . 1
m

i jm s== ∪ j

vi. Determine ci by taking the complement of mi, i.e. . c
i ic m=

2. Output C1 = {c1,…,cn}. 

Function: COMPUTE-MINKOWSKI-SUM 

Input: 

• Two facets f1 and f2. 
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Output: 

• A 3-D convex polyhedron p1. 

Steps: 

1. For each pair v, w of vertices, with v ∈  f1 and w ∈  f2, compute v – w. 

2. Find out the convex hull p1 of the all these differences (3 for triangular facets) 

obtained in step 1.  

3. Output p1. 

Function: COMPUTE-SINGLE-TRANSLATION 

Input: 

• Mold enclosure B. 

• A 3-D convex polyhedron s1 and a facet f1. 

Output: 
 
• A 2-D convex polyhedron , lying in the horizontal plane. /

1s

Steps: 

1. Transform s1 into a convex polygon r1 lying in 2-D translation (∆ XY) space by 

intersecting s1 with the horizontal plane, lying at ∆ z = 0. 

2. Compute the hard shadow of r1 assuming there is a point source of light situated at 

the origin and label this shadow zone as b1. This zone is bound by the mold enclosure. 

Alternatively b1 can also be obtained by plane-sweeping r1 until it intersects the 

boundaries of B. 

3. Concatenate the two regions r1 and b1 to obtain another convex polyhedron ;  =  

r

/
1s

/
1s

1   ∪ b1 

4. Output . /
1s
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4.3 Computing 2D Translation Spaces for Vertical Accessibility  

To compute this space, the entire mold free space is first sub-divided into cubical 

voxels. The length of each side of the cube is of the order of the dimension of the 

triangular facets. The accessibility of all the voxels lying within the z-range for each facet 

in +z direction is determined and all the inaccessible voxels are grouped together. This is 

done by checking whether the swept volume of each voxel intersects with the part P. A 

voxel is reported as inaccessible even if there is partial intersection. These grouped 

voxels are transformed into a 2D plane by intersecting with a horizontal plane at z equal 

to the height of the facet centroid to form inaccessible polygons. Basically, any point 

within the z-extent of the facet can be chosen since its collision-free horizontal translation 

is already taken care of. Now, the Minkowski sum between all the inaccessible polygons 

and the reflection of the facet (also intersected by the same horizontal plane) needs to be 

computed and the final product subtracted from the retraction plane to obtain the exact 

2D translation space for upward vertical accessibility.  

Although the inaccessible polygon may not be convex, convex decomposition is 

easily carried out before computing Minkowski sums by identifying concave corners and 

constructing additional edges parallel to either of the two axes (X or Y), since the original 

edges will always be axis-aligned. For any polygon having ni vertices, this is done 

optimally in O(ni log log ni) time by using the maximum non-intersecting chords method 

described in [Liou90]. Finally, intersection of the collision-free 2D translation space and 

the 2D translation space for upward vertical accessibility is taken to identify the 

candidate core retraction space for every individual undercut facet. A similar approach is 

adopted to compute the candidate cavity retraction space by considering accessibility of 
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the voxels in –z direction. The steps are schematically shown in Figure 4.4. This step 

results in two different candidate retraction spaces: one for +z direction (core) and a 

second one for –z direction (cavity) and have been explained below in the algorithm 

COMPUTE-CANDIDATE-RETRACTION-SPACES. In the current implementation, 

steps described in Sections 5.1 and 5.2 are executed for both of these spaces separately.  

 

Figure 4.4: Constructing candidate core retraction space 

 
Algorithm: COMPUTE-CANDIDATE-RETRACTION-SPACES 

Input:  

• N facets representing the part  P and its mold enclosure B. 

• Set of n undercut facets Fu = {f1,…,fn}. 

• Set of n collision free 2D translation spaces C1 = {c1,…,cn} obtained as an output of 

the algorithm COMPUTE-MINKOWSKI-SINGLE-TRANSLATION-SPACE. 

Output: 

• Set of n candidate core retraction spaces  = { ,…, }. /
1C /

1c /
nc

• Set of n candidate cavity retraction spaces  = { ,…, }. //
1C //

1c //
nc
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1. Compute mold free space MS by taking the regularized Boolean difference between 

the mold enclosure and the part, i.e. *MS B P= − . 

2. Sub-divide MS into a large number of cubical voxels such that length of all the cubes 

is identical and is of the order of the part facet dimension.  Let V = {v1,…,vq} 

represent the set of voxels.  

3. Create two empty sets  and . /
1C //

1C

4. For every vi ∈V, do 

i. Create two swept volumes (solids) S1 and S2 by sweeping vi till it reaches the 

boundaries of B in +z and –z directions respectively.  

ii. Test whether S1 and S2 intersects with the polyhedral part P. If  S1 intersects P, 

then assign a label 1 to vi. On the other hand, if S2 intersects P, then assign a 

label 2 to vi.   

5. While the set V is not empty, do 

i. Start randomly from any seed voxel vi which has a label 1 and set i = 0.  

ii. Apply seed fill technique to find all other neighboring voxels sharing the same 

label. Unionize these voxels to form to a polyhedron  (i = i + 1) and then 

delete all these voxels from V. 

/
ip

iii. Start with any other seed voxel having label 1 randomly (as long as one exists) 

and follow previous step ii. 

iv. Start randomly from any voxel vj that has a label 2 and follow steps ii. and iii. 

to form polyhedrons  by grouping together all the voxels carrying label 2. //
ip

6. For every fi ∈  Fu, do 

 78



i. Transform all the polyhedrons  and  to retraction plane by intersecting 

them with the horizontal plane z equal to the z-coordinate of the centroid of f

/
ip //

ip

i. 

This operation results in the formation of two sets of inaccessible polygons po/ 

and po//, corresponding to  and  respectively.  /
ip //

ip

ii. Decompose each rectilinear polygon present in the two sets po/ and po// into 

minimum number of convex pieces; then compute Minkowski sum between 

every such convex polygon and –(fi(0,0)) and unionize all the Minkowski 

polygons for the sets individually. Finally, take the complement of both the 

unionized polygons separately to form 2D translation spaces for upward and 

downward vertical accessibility for facet fi respectively. Let these two spaces 

be denoted as ui and di. 

iii. Form the candidate core retraction space corresponding to f/
ic i by intersecting 

ci and ui, i.e. . Insert  in the set . /
i ic c u= ∩ i

/
ic /

1C

iv. Similarly insert an element  in the set  by using d//
ic //

1C i instead of ui. 

7. Output  and . /
1C //

1C

Using the lemmas and theorem presented in Section 3.4, the candidate retraction 

spaces thus obtained will be discretized to obtain a set of candidate retractions. Next a set 

of non-dominated retractions will be identified from this discretized set. Each non-

dominated retraction will then be tested to determine whether it is a feasible retraction. 

Finally, all the feasible retractions will be arranged in the form of data structures so that 

they can be queried efficiently at the time of generating the optimal solution from the 
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feasible search space. These steps have been discussed in details in the next chapter along 

with the results on a number of test parts.  
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Chapter 5 

 

FORMING SIDE ACTIONS  

The final goal of the current work is to generate a set of side actions which can be 

actuated simultaneously and independently of one another, such that each of them can 

mold a portion of the undercut region. This is equivalent to combining a set of undercut 

facets together when they share at least one common feasible retraction. At the same 

time, the given cost function needs to be minimized (see Sections 3.2 and 3.3). Hence, 

this grouping has to satisfy global optimum (or near-optimum) criterion. Sampling of the 

candidate retraction spaces computed in the previous chapter to obtain a discrete set of 

feasible retractions is explained in Section 5.1. Global search strategy has been described 

in Section 5.2. Finally the implementation details, including a discussion on the 

computational experiments, summary of results and figures of generated side action 

solids have been presented in Section 5.3. 

 

5.1 Computing Discrete Set of Feasible Retractions 

As discussed in Section 3.4, the aim is to obtain the discrete set of all possible 

retractions. Firstly, edge sub-division is carried out on all the candidate retraction space 

polygons if necessary and then all the line segment intersection points are computed. The 

corner points of all the retraction space polygons are also retained.  

Next the set of retractions needs to be pruned to obtain a so-called non-dominated 

set. Such a set will only consist of those retractions which are better than any other in the 

entire set with respect to either the retraction length or the number of associated facets. 
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This is done by first sorting all the retractions in order of increasing retraction lengths and 

is completed in O(m log m) time [Corm01], where m is the total number of retractions. 

Then all the retractions that have identical retraction lengths are listed and again sorted in 

order of their number of retractable facets. All the retractions that have lesser number of 

associated facets than the current maximum value are deleted. Initially, this current 

maximum is equal to zero and is progressively updated as one retraction length bucket is 

considered after another. Each deletion operation takes constant time and a binary 

searching is implemented in O(log m) time.  

After obtaining the non-dominated set, it needs to be tested whether each 

retraction is a feasible one, and if so, for which all retractable facets. A particular 

retraction may be a feasible one for certain facet(s) in its retractable facet set, whereas, it 

may not be so for the remaining facets in that set. Hence, this check has to be carried out 

individually for every retractable facet associated with all the q non-dominated 

retractions. Actual checking is quite straightforward; for a given undercut facet and a 

retraction, the minimum length of the side action solid is computed easily as the 2D 

translation space for vertical accessibility is known to us (see Chapter 4). Then, this 

minimum length has to be vectorially added to the horizontal translation (along the same 

direction) already associated with the given retraction. If the final retraction lies inside 

the candidate retraction space for the undercut facet, then it is a feasible retraction; 

otherwise not. Whenever the answer is no, that particular undercut facet is removed from 

the set of retractable facets. At the end, if any undercut facet has no feasible retraction 

associated with it, then it can be immediately concluded that the given undercut region is 

non-moldable and the part needs to be re-designed. In that case, the overall algorithm 
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terminates without entering into the optimization phase. This eliminates the need for 

costly simulation-based post-processing operations to deal with infeasible side action 

designs. 

A look-up table LT is then constructed to satisfy another output requirement: non-

intersection of generated side action solids. It needs to be ensured that different solids 

formed by sweeping individual undercut facets along the horizontal translational vectors 

associated with corresponding retractions do not intersect each other. If any two solids 

intersect for any two given feasible retractions, those retractions cannot occur in the same 

solution set. Any entry in the table has a value 1 if the two retractions corresponding to 

the particular row and column under consideration can be present in the same solution. 

Otherwise, it is assigned a value 0. Such an intersection check only needs to be carried 

out for the facets that are not present in both the retractable sets and lie within the z-range 

(defined in Section 4.2) of each other. Although this pre-processing step is 

computationally intensive, it ensures the correctness of our solution from the actual 

application (molding operation) point of view and saves considerable time in the 

optimization stage. For example, for the look-up table shown in Figure 5.1, side actions 

corresponding to 1st and qth retractions can be present in the same solution set, whereas 

2nd and qth retractions cannot be included in the same output set. 
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 1st 

retraction 

2nd 

retraction 
… qth 

retraction 

1st 

retraction 
NA 0 … 1 

2nd 

retraction 
0 NA … 0 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

qth 

retraction 
1 0 … NA 

 

Figure 5.1: Look-up table to ensure non-selection of intersecting side actions in the 
output set (NA means non-applicable) 

 
Once all the non-redundant feasible retractions have been computed, a tree is 

constructed to represent the feasible solution space. In order to do that, the undercut 

facets have to be sorted in a particular way, so that the process of placing the nodes gets 

facilitated. A heap H is built for the n undercut facets in linear (O(n)) time [Corm01]. 

This is going to arrange the facets depending upon their minimum retraction lengths 

(with maximum preference being given to those having maximum values of minimum 

retraction lengths) and break ties on the basis of lesser number of associated retractions. 

This heap is used as an efficient priority queue. Extracting the most critical or highest 

prioritized facet can be easily done in O(log n) time. Similarly after a vertex has been 

considered, deletion of each corresponding facet is done in O(log n) time, so that overall 
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process takes less than O(n log n) time even in the worst-case (since all facets can never 

be deleted from the heap).      

Moreover, a set of linked lists LL = {ll1, …, lln}is used so that access from 

undercut facets to retractions can be done easily in constant time (shown in Figure 5.2). 

For a particular element in the linked list, i.e. an undercut facet, all the associated 

retractions are maintained in a sorted order depending upon their lengths, with highest 

preference being given to the one(s) having least magnitude. This is utilized while 

placing the actual nodes in the search tree. All these data structures are created so that 

queries become efficient while traversing the search tree to obtain an optimal solution to 

the undercut region grouping problem. They ensure that no more than O(n log n) 

computations need to be performed at any node in any level of the tree, instead of the 

usual O(n2) calculations necessary if exhaustive comparisons and enumerations are 

carried out.  

Priority queue Linked list 

Elements are associated 
retractions (sorted in non-

descending order of 
retraction lengths) 

Elements are 
undercut facets 

 

Figure 5.2: Efficient arrangement of undercut facets and retractions 

 
5.2 Global Optimum Search Algorithm  

A depth-first branch and bound algorithm is used to determine the optimal set of 

undercut regions. This requires employment of intelligent heuristics to quickly steer 
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search to a good initial solution, limit branching, and prune as many search paths as 

possible. The notion of a bottleneck facet plays a key role in realizing these heuristics.  

It may be observed that certain facets become the main bottlenecks in generating 

a solution. These facets have very limited number of feasible solutions and they impose 

constraints on the goodness of the overall solution. The overall solution has to address 

these facets and hence it is desirable to process these facets first. These facets belong to 

the category such that the minimum retraction length for them is highest among all the 

facets. On top of this, they must have rather narrow feasible retraction spaces, which, in 

turn, will be reflected in the fact that they will have smaller number of retractions 

associated with them. Bottleneck facets for a given part are shown in Figure 5.3.  

Part

Y

Bottleneck facets having 
highest value of minimum 
retraction length and least 

no. of retractions 

X

Top view  

Figure 5.3: Bottleneck facets 

Once bottleneck facets have been identified, construction of search space is 

started with any one of them. An empty node is created as the root node and all the 
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retractions associated with the chosen bottleneck facet (highest priority element in our 

heap) are placed as top level nodes in the search space. Since retractions are accessed 

directly using the linked list, they will be placed in order of increasing retraction lengths. 

If a particular retraction is considered, its associated retractable facets form the first 

undercut region. In the next level, one needs to determine the bottleneck facets among the 

remaining ones and place the retractions attached to any one of them as nodes. This 

proceed is repeated until all facets are covered. Of course, one needs to be careful not to 

include two retractions such that the corresponding side actions intersect with each other 

in the final solution. Such a path, if encountered, will be termed as infeasible (by using 

our look-up table) and will be pruned. If some of the retractable facets associated with a 

retraction are already covered then they will not be added to this solution.  

Track is kept of the current best solution. If during the search, cost of a partial 

solution exceeds the cost of current best solution, then this path is pruned. If during the 

search a better solution than the current best solution is found then the current best 

solution is updated. However, improved forward-looking cost bounds can be easily 

derived as follows to prune more paths. Let C* be the current optimum solution and CN be 

the partial cost incurred so far along a particular path, after including N nodes 

(retractions). Then a path is pruned if it can be said certainly that CN+1 will be greater 

than or equal to C*. Mathematically this pruning condition is equivalent to: 

( )* /
min min

kg g
NC C C l lγ χ− < + +     (5.1) 

where min
gl is the minimum retraction length in the set of feasible retractions. This is pre-

computed once before starting depth-first branch and bound. This equation follows from 
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the fact that whenever another node is introduced, an additional side action is included 

which will, of course, have a retraction length greater than the minimum length possible.  

However, a tighter bound can be obtained as well. This can be mathematically 
stated as: 
   ( )* /

min min

kr
NC C C l lγ χ− < + + r     (5.2) 

where is the minimum retraction length for all the remaining undercut facets that have 

not been included in the current partial solution so far. Although this will prune larger 

number of nodes in the search space, it entails additional run-time computations as one 

needs to look up for the minimum value among all the elements placed at the beginning 

of the linked lists associated with all the undercut facets present in the updated priority 

queue.    

min
rl

 

Search can terminate in two ways. Firstly, it terminates when all promising nodes 

have been explored. In this case it produces a solution that is very close to the optimal 

solution. Secondly, it stops when the user specified time limit has been exceeded. In this 

case search returns the current best solution.  

The bottleneck facet scheme restricts the amount of branching (or number of 

nodes) at a particular search level. Now coming to the tree depth issue, it is rare to find 

parts in which a connected undercut region requires more than three side actions. Usually 

cost function parameters are such that solutions involving N + 1 side actions are more 

expensive than a solution involving N side actions. Our heuristics quickly locate feasible 

solutions and once a feasible solution has been found, very few nodes are explored at the 

next depth level. This characteristic ensures that tree depth is limited. For example, once 

a solution involving three side actions has been found, very few solutions involving four 

side actions appear promising enough to try. Solutions involving five side actions are 
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virtually never tried in such a case. Hence, for virtually all practical parts in which a 

single connected undercut needs to be partitioned into three undercut regions one should 

be able to find optimal solutions in a reasonable amount of time. As with any depth first 

branch and bound algorithm, the time complexity increases exponentially with the depth 

of the search tree. However, since practical cases involving more than three side actions 

are not expected for a single undercut region, the exponential growth is not much of a 

concern in this particular application.   

Once all the regions have been generated, they are swept along the associated 

horizontal translation vectors (corresponding to the retractions) and additional patches are 

included at the top, bottom and the arrow-tip end of the vector to form a compact, 2-

manifold solid. This is illustrated in Figure 5.4. These capping patches consist of planar 

faces only. The boundaries of these solids are then triangulated to represent them in a 

faceted format and they form the desired set of side actions. All these steps are described 

in the following algorithm called GENERATE-SIDE-ACTIONS. Only the simplest 

bounding strategy has been stated in the algorithm below. However, any of the other two 

bounding strategies can be used by slightly modifying Step 5 a iv. 

 

Figure 5.4: Sweeping undercut facets to form side act

 
Algorithm: GENERATE-SIDE-ACTIONS 

Undercut 
facets 

(thickened)

Translation 
vector 

Sweep the undercut 
facets and add capping 
planar surface patches 

d
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Input:  

• Set of n undercut facets Fu = {f1, …, fn}.  

• Collection of p sets {{{f11, …, fn1}, l1}, …, {f1p, …, fnp}, lp}}, each associated with a 

particular non-dominated retraction. Here, all fij ∈  Fu (though may be repeated in 

different sets) and all li
s are retraction lengths. The first entity in every set is the set of 

retractable facets for that particular retraction.  

• Look-up table LT, heap H and set of linked lists LL created during the pre-processing 

operations described in Section 5.1. 

• Maximum permissible time tmax in seconds. 

Output: 

• One or more SAS ai = {si, Fi, (xi, yi), Ti} (as defined in Section 3.2).  

Steps: 

1. Initialize a tree T by creating an empty root node. 

2. Initialize Cmin to be positive infinity (very high value).  

3. Populate the nodes in the next level by extracting the highest priority facet from the 

heap H and inserting all its associated retractions in order of increasing retraction 

lengths. Set LL is utilized to obtain this sorted retraction set directly. Color all the 

nodes as white. 

4. Initialize this second level as the current one. 

5. For every node u in the current level do 

a. If u is colored white or grey do 
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i. If u does not have a child node as yet, color the node as grey. Else if all the 

children nodes are colored black, color this node as black as well and unless the 

current level is the second one, decrement it by one.  

ii. Check whether the side action corresponding to the retraction present in u 

intersects with any of the other side actions associated with the nodes in this tree 

path by using the look-up table LT directly. If yes, then prune the path by 

coloring u as black and decrement the current level by one; moreover go to step 

b. directly. If no, then further test whether the retractable facet set associated 

with u has a non-null intersection with the facet sets of the other nodes in the 

path. If answer is yes, then delete the common facets from the facet set.  

iii. Estimate the incremental cost Cinc by considering all the facets associated with 

the retraction present in node u as a new undercut region Fi. Equation (3.1) is 

used to obtain Cinc. 

iv. If by including Fi, all the facets in Fu are covered, then terminate this 

particular tree path and color u as black and decrement the current level by one. 

Moreover, in this case if Cinc < Cmin, update Cmin as Cinc and construct a set of 

undercut regions by inserting all the Fi
s of this particular path (from second 

level downwards) along with their associated retractions (xi, yi). Each Fi will 

also have a value of Ti (+1 or -1) depending upon whether this algorithm is 

implemented for the feasible core or cavity retraction space.     

v. Else  

1. If Cinc < Cmin, temporarily delete all the facets of the set  Fi from the heap H, 

insert all the associated retractions of the facet currently having maximum 
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priority in H as the children nodes in the next level in sorted order, color 

them as white and increment the current level by one. 

2. Else prune this particular tree path in exactly the same way as in step ii.  

b. Else go the next node u in the current level.  

6. Once the recursive depth-first search loop 4 terminates after all the paths in T have 

been explored or after the user-defined time limit tmax has been exceeded, generate all 

the side core sets ai
s by applying algorithm GENERATE-SOLIDS on each Fi to 

obtain a solid si. 

7. Output all the ai
s. 

Algorithm: GENERATE-SOLIDS 

Input: 

• Undercut region Fi obtained in step 5 a iv. of the algorithm GENERATE-SIDE-

ACTIONS and its corresponding retraction (xi, yi).  

Output: 

• A compact, 2-manifold solid body si with a well-defined semi-analytical boundary. 

Steps: 

1. Sweep Fi along the translation vector defined by the retraction (xi, yi).   

2. Add additional planar faces at the top, bottom and arrow-tip end of the vector defined 

in step 1. to form a solid si. It should meet all the requirements specified in the output. 

3. Triangulate si to form an output file in .stl format which can later be used for display 

purposes.  

4. Output si. 
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5.3 Implementation 

All the algorithms were implemented in C++ using Visual Studio.NET 2003 in 

Windows XP Professional operating system. CGAL [Cgal04] version 3.0.1 was used as 

the geometric kernel to carry out all the basic operations like regularized Boolean, 

computing the convex hull, finding intersections by using plane sweep and so on.  In 

order to speed up computation, all the vertex coordinates were first converted into 

integral values and then the Cartesian kernel with int number type was used. OpenGL 

was used for displaying purposes. CAD model for every part was triangulated and 

converted into .stl format which was then taken as input by the program. The main mold 

opening direction was inputted separately. A preprocessor program was written to 

recognize all undercut facets. All the programs were run in a Pentium M processor 

machine having 512 MB of RAM and processor clock speed of 1.6 GHz. The overall 

system architecture is schematically shown in Figure 5.5.  

1) CAD model of part in 
.stl format 

2) Main mold opening 
directions 

 

Figure 5.5: System architecture 

3) List of undercut facets 
4) Cost function 

parameters 

1) One or more side 
action set (SAS) 
2) .stl file for each of 
the side action solids 

C++ application 
Compiler: Visual Studio.NET 2003 

Standard 
Template 
Library 
(STL) 

Computational 
Geometry 

Algorithms 
Library (CGAL) 

OpenGL 
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The algorithm for computing 2D translation space for upward/downward vertical 

accessibility was implemented in a simplified form. Minkowski sums were not explicitly 

computed and the complement of the inaccessible polygons was directly taken. This 

change did not make any difference in practice since large numbers of accessible voxels 

occur together and a conservative approach was followed in classifying them as 

accessible or inaccessible. 

 

Figure 5.6: Five test parts 

 

 

5.3.1 Computational Experiments 

Part B Part A 

Part D Part C

Undercut region 
formed due to a lip 
on the top Undercut region 

running around the part 

Annular undercut 
region  

Undercut region 
running along the 
circumference 

Deep undercut region 
caused by the protrusion 

Part E
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A series of computational experiments have been carried out on 5 parts (shown in 

Figure 5.6) to characterize the performance of the algorithms. Since time values cannot 

be compared across different parts, each part was faceted using four different levels of 

accuracy. The first two parts have same number of undercut facets in all the four models, 

while the total number of facets increases. However, both the number of undercut facets 

as well as the total number of facets increases across the four models in case of the latter 

two parts. Now comparisons with respect to computation time, number of nodes in search 

space and so on can be made for the same part having varying number of facets. Results 

of these experiments for γ  = 200 (in $/mm2), = 2, = 5,000 or 10,000 (in $) 

depending upon whether it is a cavity or core retraction, and

k /C

χ = 18.227 (in $/mm) are 

shown in Table 1 below in Section 5.3.2. These values are based on a specific injection 

molding scenario. The second bounding strategy (defined by Equation (5.1)) is used in 

this case. The undercut region in part E is non-moldable and hence computation stops 

before entering the optimization stage. The side action solids generated for the other four 

test parts have been displayed in Figure 5.7 in Section 5.3.3. 

Another series of computational experiments have been performed on the model 

containing highest number of facets for each of the first 4 test parts to estimate the 

relative performance of the three bounding strategies. This performance has been 

characterized on the basis of two parameters, namely, the number of pruned nodes and 

the overall computation time for depth-first branch and bound search. Results of these 

experiments have been summarized in Table 2 in Section 5.3.2. 

 

5.3.2 Summary of Results  
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Certain basic trends are discernible from the values in the table. Of course, 

computation times for both the candidate retraction space and discrete set of feasible 

retractions increase as one goes for higher number of facets to represent the part. 

However, for parts A and B where the numbers of undercut facets remain same, although 

the overall numbers of facets increase, this trend is markedly different from parts C, D 

and E. The retraction space computation time increases linearly, whereas feasible 

retraction set calculation time remains more or less constant in the former case. In the 

latter case, candidate retraction space construction time increases almost quadratically, 

while the feasible retraction set computation time increases at a rate slightly greater than 

linear, but less than quadratic, indicating possibly a linear-logarithmic growth. 

Computational results for the branch and bound algorithm (using second 

bounding cost function) reveal that the branching factor at any level in the search space 

tree does not change much with the increase in number of part facets. It increases only 

marginally, thereby demonstrating value of our heuristic rules on pruning the feasible 

retraction set, selecting the bottleneck facet etc. This clearly points out that the number of 

pruned, non-dominated retractions is not significantly affected by the part triangulation 

resolution, and hence, the number of nodes in the tree grows slowly in most practical 

cases. However, the overall computation time will increase somewhat if the parts are 

represented by higher number of facets. This is because of the fact that more time will be 

expended in carrying out all the operations in individual nodes. Based upon the given set 

of cost function parameter values, an optimal set of 2 or 3 side actions were generated for 

four sample parts in about 30-50s. This is a reasonably good performance and can serve 

as the foundation step towards our eventual goal of fully automatic side action design.  
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Table 5.1: Results of experiments to characterize algorithm performance  

 

Part Model 

Total 

# of 

facets 

# of 

undercut 

facets 

Candidate 

retraction 

space 

computation 

time (in s) 

Feasible 

retraction 

set 

generation 

time (in s) 

Total # of 

nodes in 

search space 

(in million) 

Average 

branching 

factor 

Depth-first 

branch and 

bound 

computation 

time (in s) 

# 1 224 36 3.5 5.2 13.4 99 12.0 

# 2 256 36 4.0 5.4 14.0 100 13.0 

# 3 336 36 4.8 5.9 15.6 102 15.2 
A 

# 4 568 36 6.1 6.4 18.9 106 18.0 

# 1 378 122 6.0 10.7 19.5 114 19.0 

# 2 570 122 7.4 11.1 19.8 115 19.1 

# 3 716 122 8.5 11.3 20.7 117 19.6 
B 

# 4 882 122 10.0 11.4 21.9 119 20.2 

# 1 414 175 5.9 12.5 0.36 150 1.1 

# 2 478 188 6.3 12.6 0.36 150 1.1 

# 3 576 194 7.1 12.8 0.37 151 1.2 
C 

# 4 882 249 12.2 13.7 0.38 153 1.3 

# 1 376 60 0.3 7.4 0.45 132 1.6 

# 2 814 122 1.0 9.8 0.46 134 1.7 

# 3 1324 156 2.1 12.9 0.49 137 2.0 
D 

# 4 2002 218 4.4 20.2 0.51 139 2.4 

#1 206 54 4.9 6.3 

#2 258 78 9.0 6.8 

#3 282 94 11.1 7.1 
E 

#4 390 126 16.8 8.9 

These steps have not been performed 
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Table 5.2: Results of experiments to compare bounding strategies 

Part Strategy 
# of pruned nodes 

(in million) 

Computation time 

(in s) 

# 1 17.5 29.0 

# 2 18.2 18.0 A 

# 3 18.6 25.7 

# 1 20.1 34.8 

# 2 21.0 20.2 B 

# 3 21.3 29.9 

# 1 0.34 2.2 

# 2 0.36 1.3 C 

# 3 0.36 2.1 

# 1 0.45 3.6 

# 2 0.47 2.4 D 

# 3 0.48 3.7 

 

It can be easily seen from Table 2 that the second strategy consistently 

outperforms the other two for all the 4 test parts. Although few more search space nodes 

are pruned by applying the last strategy, it always results in greater computation time 

than the second one, and sometimes even more than the first one. This is because another 

level in the current path is indirectly explored before deciding not to proceed any further. 

Although nodes are not actually inserted in the next level, the priority queue is updated 

by removing the included undercut facets and then recovering the first element from all 
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the associated linked lists to compute the minimum among them. Undoubtedly, this will 

prune more paths than either of the other two strategies. But already lot of computational 

time has been expended in obtaining this pruning cost. This turns out to be more than the 

time spent in exploring few additional paths.  

Such a situation arises in this case primarily because all industrial parts typically 

have 2 or 3 piece solutions. As the number of levels in our tree hardly goes beyond 3, the 

third strategy is not being to able to prune significantly higher number of nodes than the 

second one. Hence, such a tight bound may yield better results for parts requiring 4 or 

more side actions. However, such parts are hardly encountered in practice.  

The second strategy also takes lesser computational time as compared the first 

(basic) one since it successfully prunes many more nodes in the search space without 

incurring any significant overhead at all. At every step, it just needs to be checked 

whether the difference between the current minimum cost and the partial cost is lesser 

than a value that has been computed once before starting depth-first branch and bound. 

This simple test is computationally inexpensive and yet very effective.     

 

5.3.3 Generated Side Action Solids  

Side action solids have been shown in blue for the first 4 test parts in a retracted 

state in Figure 5.7 for easy understanding of how they will be actuated in reality. The 

undercut facets have been colored red. It can be easily observed from the figures that in 

all the 4 cases, the undercut facets forming complex undercut regions have been 

combined into 2 or 3 groups. Then each such group has been swept along different 

directions by fixed translation vectors lying on the horizontal plane to form regular solid 
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bodies. These solid bodies will eventually be actuated by suitable mechanisms such as 

sliders, hydraulic or pneumatic drives and so on to form the overall side action 

mechanism. The important point to be noted here is that the generated side actions never 

intersect with the part during its disengagement process. Moreover, after initial horizontal 

retraction, the part (or equivalently the side action) can be moved vertically upwards or 

downwards along one of the main mold opening directions without resulting in any 

intersection either. Thus, all the designs are correct and have been obtained automatically 

without any manual intervention.  

B A 

DC  

Figure 5.7: Side action solids for 4 different test parts (A, B, C, D) shown in retracted 
state 
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Another novel aspect of this work that has been illustrated in Figure 5.8 is the 

customizability of the molding cost function. By changing the parameters, one can get 

altogether different designs. For example, if the value of γ  is decreased by a factor of 10 

and the value of is increased by 10 times from the previous setting, 2 and 3 side action 

solids are obtained for the two parts instead of 4 and 4 respectively. In other words, if a 

higher cost is assigned to assembling and actuating side actions and less cost to 

manufacturing complex profiles, then lesser number of more complex-shaped side 

actions are obtained. This feature of the current system has many potential benefits. 

Depending upon the specifications of the injection molding operation, shop floor 

personnel simply need to input appropriate parameter values to come up with designs 

which will minimize the total operational cost for that particular plant or factory.    

/C

Changing relative costs 
of assembly and 
manufacturing 

operations in the 
customizable objective 
function gives different 

side action designs

 

Figure 5.8: Alternative designs obtained by modifying the cost function parameters 

 

4-region solution 2-region solution 

3-region solution 4-region solution 
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Chapter 6 

 

CONCLUSIONS 

This chapter has been arranged in the following manner. Section 6.1 summarizes 

the salient features of this research work. Section 6.2 presents the contributions of this 

work in greater details. Section 6.3 describes the benefits of the work presented in this 

thesis. Finally Section 6.4 describes the possible future work in this field.  

 

6.1 Summary 

 In a nutshell, this thesis describes algorithms to generate side action solids to 

minimize a customizable molding function. Some of the salient features of this approach 

include designing side actions for undercut regions that are finitely accessible, detecting 

non-moldable undercuts so that parts can be redesigned immediately, partitioning 

connected undercut regions into sub-regions that are separately moldable, estimating time 

complexities of different individual algorithms and showing acceptable performance on 

typical industrial parts. Although each of these features has been elaborately explained in 

the subsequent Section, few points need to be noted here. Firstly, the current work 

overcomes the three problems listed in Section 3.7 which have not been adequately 

addressed by the existing methods. Secondly, the pre-optimization (geometric) steps of 

the overall algorithm have a linear, linear-logarithmic or quadratic worst case asymptotic 

time complexity. This satisfies the desired characteristics of typical computational 

geometry based algorithms. Thirdly, output (side action set) is generated in a reasonable 
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amount of time (few seconds) for parts whose undercut regions can be molded by 3 or 

fewer no. of side actions.  

 However, there are certain shortcomings of this work as well. One of the main 

limitations is that only two translational motions (with the first one being perpendicular 

to the main mold opening directions) are considered in this thesis. Although some side 

actions such as lifters require 3 translational motions, very few industrial parts actually 

use such retraction mechanisms. Another prominent limitation is that the depth first 

branch and bound will have an exponential worst-case time complexity. Although this is 

not a major problem in cases where depth of tree is restricted to 3 or 4, it will definitely 

increase the running time significantly for undercut regions that need to be sub-divided 

into 4 or more regions. Alternative optimization strategy needs to be explored for such 

cases. Finally, another shortcoming of the current work is that uncertainties in cost 

function parameters have not been dealt with. It is almost impossible to obtain precise 

data from industrial houses and hence such uncertainties need to be incorporated. Some 

of these have been explained in details in Section 6.4. 

 

6.2 Contributions 

New algorithms to automatically generate shapes of side actions have been presented 

in this thesis. The major contributions of this work can be summarized as follows.  

1. Designing side actions for finitely accessible undercuts: As discussed in Chapter 2, 

existing methods do not address the problem of designing side actions for complex 

undercuts that are finitely accessible in a satisfactory way. The present work 

overcomes this serious limitation and successfully designs side actions in such cases. 
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Fundamentally, the problem with existing approaches was that they considered semi-

infinite accessibility in the form of VMaps constructed on Gaussian spheres. Since 

finite accessibility (feasible retraction spaces) has been computed here, current work 

does not suffer from this limitation.  

2. Reporting non-moldable undercuts: Another major issue not adequately addressed in 

existing methods was the detection of impossible to mold undercuts during the side 

action generation stage itself, without requiring costly simulation-based post 

processing operations. The algorithms presented in this thesis correctly reports that 

certain undercut regions may not have any feasible side action at an intermediate step 

(See Section 5.2). This ensures that time-consuming optimization step is avoided and 

the parts can be sent for significant re-design immediately. This is also useful in 

determining infeasible molding sequences in multi material injection molding as 

explained in Section 1.3.  

3. Partitioning undercut regions into moldable sub-regions: Another important problem 

mentioned in Chapter 2 is the partitioning of connected undercut regions (for which 

no single side action exists) into smaller regions, so that each sub-region can be 

molded by a separate side action. The current system accomplishes this task 

successfully. At the same time, it minimizes a customizable molding cost function. 

Thus, it serves two purposes simultaneously without any additional overhead.  

4. Estimating time complexities of different algorithms: Many of the steps in the 

computation of candidate retraction space and discrete set of candidate retractions 

have linear or linear-logarithmic worst-case asymptotic time complexities. Few grow 

quadratically with an increase in the total number of part facets as well the number of 
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undercut facets. This has been established theoretically and later validated by a series 

of computational experiments.  

5. Showing acceptable system performance on different parts: If a connected undercut 

region can be molded by 3 or fewer number of side actions, then empirical results 

suggest that this system is capable of finding a solution very close to the optimum in a 

reasonable amount of time for most practical parts. This is an acceptable performance 

which will hopefully provide the foundation for developing fully automated software 

for designing side actions in the near future.  

 

6.3 Benefits 

Currently, injection molding of complex, industrial parts is a time-consuming process 

and is mostly done manually. Although CAD systems like ProEngineer provide tools to 

automatically design two-piece molds for a given part, often it is unable to design side 

actions correctly without any form of manual intervention. Consequently, cost and lead-

time associated with new injection molded products is high. It is anticipated that the 

current work will significantly affect the manufacturing sector in the following ways: 

1. Estimating cost during design phase itself: In the age of concurrent engineering, the 

present system will go a long way in ensuring its success in the field of injection 

molding. Traditionally, design and manufacturing used to proceed along separate 

paths. In what is commonly known as “over the wall” manufacturing, designers and 

manufacturers rarely used to interact with each other. After finishing a design, 

designers used to hand it over to the manufacturing people. Usually, a product could 

never be manufactured defect-free in the first attempt. Manufacturing people would 
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then hand over this defective design back to the designers for suitable modifications. 

This cycle used to go on endlessly until both parties were totally satisfied. Naturally, 

lot of time, money and resources were wasted. So the concept of concurrent 

engineering was proposed to eliminate such wastage. Now, designers and 

manufacturers interact at the time of designing a component only to ensure that it can 

be manufactured easily. Of course, fast, automated design and subsequent testing by 

performing simulation in Virtual Environment (VE) or by fabricating prototypes by 

Rapid Prototyping (RP) technologies form an important part of concurrent 

engineering. However, on top of this, if the actual cost of manufacturing (molding) a 

part can be estimated with a reasonable degree of accuracy during the design phase 

itself in order to come up with designs that minimize it, the fruits of concurrent 

engineering can be realized in its totality. The current system precisely achieves this 

objective.    

2. Automating mold design to a large extent: Mold design in an extremely complex 

operation. It involves design of the mold pieces, the ejector system and the cooling 

system. The present work only addresses the issue of automatically designing a 

particular type of mold piece, namely side action. However, this has tremendous 

impact in a much broader sense. As briefly touched upon in the previous paragraph, 

automated design of molds is an essential cog in the wheel of concurrent engineering. 

Some of its manifold benefits are listed as follows: 

a. It allows us to explore various design options and select the best one. In fact, 

one can iteratively go on improving the design until a completely satisfactory 

one is obtained.  
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b. It completely eliminates the cost of manual labor since it only involves one-

time installation cost of the relevant software. 

c. It reduces the lead time for new plastic products in markets significantly since 

the multiple month-long cycles of design, fabrication, re-design and re-

fabrication are avoided. This enhances the competitiveness of injection 

molding industries.  

 

6.4 Future Work 

Although it is anticipated that the present work will provide the foundations for 

developing fully automated software for designing side actions in injection molding, 

further work needs to be done in the following areas to address this problem in its 

entirety.  

1. Handling side actions other than side cores: This research work focuses on a 

particular type of side action, commonly known as side core in molding terminology. 

Such an emphasis was put deliberately as side cores constitute majority of the side 

actions used in industry. However, further work needs to be done to generalize our 

method to design other kinds of side actions, namely, split cores, lifters etc. which 

may require more than two translational motions for complete disengagement.   

2. Improving edge sub-division scheme: Work will continue on improving the edge sub-

division scheme, so that one can come up with stronger theoretical results to rule out 

such operations for a majority of candidate retraction space polygonal edges. 

Essentially, such results will be based on the visibility of the edges from the origin. 
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Exploration of this idea has already been initiated and plan is to integrate it within the 

overall framework soon. This is expected to reduce the computation time further.  

3. Handling freeform surfaces without faceting: Another possible area of research is to 

extend these ideas to directly design side actions for parts represented by freeform 

surfaces such as Bezier, NURBS (Non-Uniform Rational B-Spline) etc. Right now, 

all surfaces (planar or curved) are faceted (triangulated) and then side actions are 

generated not for the original CAD model, but for its polyhedral version. However, 

this may not be always acceptable in the industry and hence alternative ways have to 

be explored to compute the feasible retraction spaces.  

4. Handling side actions where the first translation may not be horizontal: Theoretically 

all the algorithms can be extended to deal with cases where the side actions need not 

be necessarily retracted in a plane perpendicular to the mold opening directions. 

Instead of transforming the collision polyhedrons and inaccessible voxels into 2D 

plane, if a 3D collision-free and vertically accessible translation space are computed, 

then the same idea of carrying out state space search over all non-dominated 3D 

retractions can be used to solve the problem. This idea needs to be investigated in 

greater details before it can be implemented in future. 

5. Designing side action actuator mechanisms: As discussed briefly in Sub-section 

1.2.1, different mechanisms are used to actuate side actions. If the side action 

occupies an entire section of the mold, then a slide mechanism is typically used 

[Bryc98]. The face of the slide is an integral portion of the core or cavity image and it 

“shuts-off” or creates a sealing area to contain the incoming molten plastic. On the 

other hand, if the side action only includes a small portion of the mold section, that 
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activity is performed using a cam. Cams normally do not travel very far and often 

contain a core pin that would travel in and out of the sidewall in the core or cavity 

image. They are commonly actuated using either a tapered block or a small angled 

pin. Another activation system, known as lifter, is sometimes used to form features on 

the internal portion of the molded part. They are attached to the ejector system so that 

they not only move back and forth to form the internal feature, but also travel up with 

the part as the ejector system pushes it out of the mold and back as the ejector system 

is positioned for the next cycle. Thus, it can be easily concluded that the choice of 

actuation mechanism will depend upon the retraction length and the type of retraction 

(core or cavity). Further work needs to be done to automatically select and design 

such a mechanism based on these parameters. 

6. Handling uncertainties in cost function parameter values: The current work does not 

consider the uncertainties in cost function parameter values. However, real world 

industrial data will always have a significant amount of uncertainty associated with it. 

Hence, it may be useful to handle them appropriately in future. Different approaches 

have been suggested in literature to perform so-called robust optimization with 

respect to uncontrolled variations in environmental and operational parameters. They 

can be broadly classified into three categories. Stochastic approaches use probability 

information (mean and variance) of the parameters to minimize the solution 

sensitivities. Representative work in this field includes Parkinson et al [Park93], Yu 

and Ishii [Yu98], Jung and Lee [Jung02] for objective function robustness. However, 

the main shortcoming is that probability distributions need to be known or assumed. 

Deterministic methods form the second category. Most of them use gradient based 
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information, including the seminal work by Taguchi [Tagu78], Balling et al. [Ball86], 

Sundaresan et al. [Sund93], Lee and Park [Lee01] and so on. One of the main 

limitations of these methods is that the objective functions must be differentiable with 

respect to the parameters. To address these shortcomings, a non-gradient based 

method has been developed by Gunawan and Azarm [Guna05] and Li et al. [Li06]. 

Another class of methods has recently become popular in order to handle epistemic or 

subjective uncertainties where there is significant ignorance or lack of information 

about the parameters. Evidence theory [Ober02, Bae04, Mour06] is the most general 

form of this technique. Possibility theory [Klir98] handles a subset of problems where 

there is no conflicting evidence in the data. In almost all such cases, fuzzy set theory 

[Zad65] has been extensively used to characterize and propagate input uncertainties. 

The best approach for the current work needs to be explored in greater details.     
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Appendix 

A. Regularized and Non-regularized Boolean Operations  

Before explaining regularized Boolean operations, few mathematical terms need 

to be defined formally. Without going into the details of topological spaces, they can be 

stated simply as follows: 

• Interior: Given a set , 3X R⊆ p X∈ is an interior point of X, iff 0δ∈ > such that 

every point q lying with distance δ from p also belongs to X. Set of all interior points 

is called the interior of the set; it is denoted by i(X).   

• Closure: Closure of X is the set of all points p such that 0δ∀ > , there is at least one 

point in X within a distance δ of p. It is denoted as k(X).  

• Regular: A set X is regular if k(i(X)) = X.  

• Solid: A solid is a regular, connected and bounded set with semi-analytical (finite 

number of infinitely differentiable) boundaries. By bounded set, one refers to a set 

that can be enclosed by an open ball of finite radius.  

Hence, regularized Boolean operations are those Boolean operations such as 

union, intersection, difference etc. performed on two or more solids such that the above 

mentioned condition of regular set is satisfied for the output solid (set). Non-regularized 

Boolean operations do not satisfy this property; however, they are often more intuitive. 

Hence, both these types of operations are present in any commercial CAD system. 

However, the regularized operation is carried out by default since it preserves the strict 

mathematical definition of a solid at every stage. The differences in output after 
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performing these two types of intersection operations on identical solids A and B are 

shown in Figure A.1.   

B A 

Non-regularized 
intersection 

Regularized 
intersection 

A B∩*A B∩ Null set 
 

Figure A.1: Differences between regularized and non-regularized Boolean operations 

 

B. Worst-case Asymptotic Time Complexity (O-notation) 

The order of growth of the running time of an algorithm gives a simple 

characterization of the algorithm’s efficiency and also allows one to compare the relative 

performance of alternative algorithms [Corm01]. Although sometimes the exact running 

time of an algorithm can be obtained, it is sufficient to consider the worst-case running 

time. This is because the multiplicative constants and lower-order terms of an exact 

running time are dominated by the effects of the input size itself for large enough inputs.  

In other words, when one looks at input sizes large enough to make only the order 

of growth of the running time relevant, one is studying the asymptotic efficiency of 

algorithms. That is, one is concerned with how the running time of an algorithm increases 

with the size of the input in the limit, as the size of input increases without bound. 
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Usually, an algorithm that is asymptotically more efficient will be the best choice for all 

but small inputs.  

O-notation is used to denote only an asymptotically upper bound. For a given 

function g(n), O(g(n)) denotes the set of functions given by O(g(n)) = {f(n): there exist 

positive constants c and no such that ( ) ( ) 00 f n cg n n n≤ ≤ ∀ ≥ }. Using O-notation, the 

running time of an algorithm can often be described merely by inspecting its overall 

structure. For example, if any doubly nested for loop structure is present in an algorithm, 

it may be immediately concluded that there is an O(n2) upper bound on the worst-case 

asymptotic running time. The analysis is very simple. The cost of each iteration in the 

inner loop is bounded from above by O(1) (constant), the two loop indices, say i and j are 

both at most n, and the inner loop is executed at most once for each of the n2 pairs of 

values for i and j. Another important point to be noted here is that when O-notation is 

used to bound the worst-case running time of an algorithm, a bound is obtained on the 

running time of the algorithm for every input.  
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