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Analyzing human faces from visual data has been one of the most active re-

search areas in the computer vision community. However, it is a very challenging

problem in unconstrained environments due to variations in pose, illumination, ex-

pression, occlusion and blur between training and testing images. The task becomes

even more difficult when only a limited number of images per subject is available for

modeling these variations. In this dissertation, different techniques for performing

classification of human faces as well as other facial attributes such as expression,

age, gender, and head pose in uncontrolled settings are investigated.

In the first part of the dissertation, a method for reconstructing the virtual

frontal view from a given non-frontal face image using Markov Random Fields

(MRFs) and an efficient variant of the Belief Propagation (BP) algorithm is in-

troduced. In the proposed approach, the input face image is divided into a grid of

overlapping patches and a globally optimal set of local warps is estimated to syn-

thesize the patches at the frontal view. A set of possible warps for each patch is



obtained by aligning it with images from a training database of frontal faces. The

alignments are performed efficiently in the Fourier domain using an extension of the

Lucas-Kanade (LK) algorithm that can handle illumination variations. The prob-

lem of finding the optimal warps is then formulated as a discrete labeling problem

using an MRF. The reconstructed frontal face image can then be used with any face

recognition technique. The two main advantages of our method are that it does

not require manually selected facial landmarks as well as no head pose estimation

is needed.

In the second part, the task of face recognition in unconstrained settings is

formulated as a domain adaptation problem. The domain shift is accounted for by

deriving a latent subspace or domain, which jointly characterizes the multifactor

variations using appropriate image formation models for each factor. The latent

domain is defined as a product of Grassmann manifolds based on the underlying

geometry of the tensor space, and recognition is performed across domain shift

using statistics consistent with the tensor geometry. More specifically, given a face

image from the source or target domain, multiple images of that subject are first

synthesized under different illuminations, blur conditions, and 2D perturbations to

form a tensor representation of the face. The orthogonal matrices obtained from the

decomposition of this tensor, where each matrix corresponds to a factor variation, are

used to characterize the subject as a point on a product of Grassmann manifolds.

For cases with only one image per subject in the source domain, the identity of

target domain faces is estimated using the geodesic distance on product manifolds.

When multiple images per subject are available, an extension of kernel discriminant



analysis is developed using a novel kernel based on the projection metric on product

spaces. Furthermore, a probabilistic approach to the problem of classifying image

sets on product manifolds is introduced.

Understanding attributes such as expression, age class, and gender from face

images has many applications in multimedia processing including content person-

alization, human-computer interaction, and facial identification. To achieve good

performance in these tasks, it is important to be able to extract pertinent visual

structures from the input data. In the third part of the dissertation, a fully auto-

matic approach for performing classification of facial attributes based on hierarchical

feature learning using sparse coding is presented. The proposed approach is gener-

ative in the sense that it does not use label information in the process of feature

learning. As a result, the same feature representation can be applied for differ-

ent tasks such as expression, age, and gender classification. Final classification is

performed by linear SVM trained with the corresponding labels for each task.

The last part of the dissertation presents an automatic algorithm for deter-

mining the head pose from a given face image. The face image is divided into

a regular grid and represented by dense SIFT descriptors extracted from the grid

points. Random Projection (RP) is then applied to reduce the dimension of the

concatenated SIFT descriptor vector. Classification and regression using Support

Vector Machine (SVM) are combined in order to obtain an accurate estimate of the

head pose. The advantage of the proposed approach is that it does not require facial

landmarks such as the eye and mouth corners, the nose tip to be extracted from the

input face image as in many other methods.
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Chapter 1: Introduction

Face recognition and facial attribute analysis have been key research areas in

computer vision and pattern recognition for more than two decades. Their applica-

tions can be found in multimedia, telecommunications, law enforcement, biometrics

and surveillance. Although there have been some early successes in automatic face

recognition and classification of facial attributes such as expression, age, gender,

and head pose from visual data, these problems are still far from being completely

solved, especially in uncontrolled environments. In fact, the performance of exist-

ing automatic facial analysis systems drops significantly when there are variations

in pose, illumination, expression and blur conditions [10]. The tasks become even

more challenging when only a limited number of images per subject is available for

modeling these variations.

In this dissertation, different approaches to the problems of face recognition

and facial attribute analysis in unconstrained settings are investigated. First, a

method for synthesizing the virtual frontal view from a given non-frontal face image

using Markov Random Fields (MRFs) and an efficient variant of Belief Propagation

(BP) is proposed. It can be combined with any face recognition technique in order

to handle the case where the probe face image is non-frontal. In the second part of

1



the dissertation, the task of face recognition in unconstrained settings is formulated

as a domain adaptation problem where domain shifts are due to multiple factor

variations such as illumination, blur and alignment between the probe and gallery

images. Rather than ignoring the geometrical structures of the image space as in

many traditional approaches, the proposed algorithm constructs the latent domain

as a product of Grassmann manifolds based on the underlying geometry of the tensor

space. The third part of the dissertation presents a hierarchical feature learning

approach for performing classification of facial attributes including expression, age

class, and gender. Rather than using hand-crafted features such as SIFT [11] or

LBP [12], feature representations are obtained using dictionary learning, sparse

coding, and spatial pooling over a hierarchical network on the training images.

Obtaining the information about the head orientation has become a crucial pre-

processing step in many pose-invariant face recognition algorithms [13]. In the last

part of the dissertation, a technique for automatically estimating the head pose from

an input face image is presented.

The above topics are briefly discussed in the remaining of this chapter.

1.1 Pose-Invariant Face Recognition using Markov Random Fields

In the first part of the dissertation, a patch-based method for synthesizing the

virtual frontal view from a given non-frontal face image using MRFs and an efficient

variant of the BP algorithm is investigated. By aligning each patch in the input

image with images from a training database of frontal faces, a set of possible warps

2



is obtained for that patch. The alignments are then carried out efficiently using an

illumination insensitive extension of the Lucas-Kanade (LK) algorithm [14] in the

frequency domain. The objective of the algorithm is to find the globally optimal

set of local warps that can be used to predict the image patches at the frontal view.

This goal is achieved by considering the problem as a discrete labeling problem using

an MRF. In our approach, the cost functions of the MRF are not just the simple

sum of squared differences (SSD) between patches but are modified to reduce the

effect of illumination variations. The optimal labels are obtained using a variant of

the BP algorithm with message scheduling and dynamic label pruning [15]. The two

main advantages of our approach over other state-of-the-art algorithms are that:

(1) it does not require manually selected landmarks, and (2) no global geometric

transformation is needed.

1.2 Model-Driven Domain Adaptation on Product Manifolds for Un-

constrained Face Recognition

In the second part, a domain adaptive approach for face recognition using

tensor geometry corresponding to models explaining facial variations, with as few

as a single image per subject in the source domain, is discussed. In the proposed

method, a latent domain where multifactor facial variations across the source and

target domains can be captured together is constructed instead of finding linear

transformations representing domain shifts as in [16, 17]. This latent domain is de-

fined as a product of Grassmann manifolds based on the underlying geometry of

3



the tensor space. More specifically, multiple images of the same subject are syn-

thesized from a given face image under different illuminations, blur conditions, and

2D perturbations to form a tensor representation of the face. The subject is then

characterized as a point on a product of Grassmann manifolds by mapping the

orthogonal matrices obtained from the decomposition of the tensor to the factor

manifolds. Geodesic distance on product manifolds is used to perform face recog-

nition for cases with only one image per subject available in the training. When

multiple images per subject are available, an extension of kernel discriminant anal-

ysis is developed using a novel kernel based on the projection metric on product

spaces. Furthermore, a probabilistic approach for performing image set classifica-

tion using the Kullback-Leibler divergence as a distance measure in the projection

space is also presented.

1.3 Hierarchical Feature Learning using Sparse Coding for Facial Se-

mantic Analysis

In the third part of the dissertation, a fully automatic approach for performing

classification of different attributes including expression, age class, and gender from

face images using hierarchical feature learning is presented. The feature representa-

tions are obtained from the training data using dictionary learning, sparse coding,

and spatial pooling. As label information is not used in the process of feature learn-

ing, the learned feature representation is generative and can be used for different

classification tasks. Final classification is performed by linear SVM trained with the
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corresponding labels for each task. As the features are learned using a network of

multiple layers with spatial pooling at different neighborhood sizes, the proposed

method is able to better capture the richness of visual data at multiple scales. Fur-

thermore, the proposed method is fully automatic requiring no human intervention,

and a single set of configuration parameters was used for all experiments.

1.4 Head Pose Estimation using Randomly Projected Dense SIFT

Descriptors

Finally, an automatic method for estimating the head pose from a single 2D

face image is presented. Dense SIFT descriptors [18] are extracted from image grid

points in order to obtain a representation that is robust to noise and illumination

variations. Random Projection (RP) is used to reduce the dimension of the con-

catenated descriptor vector for efficient processing. In order to better approximate

the head pose, a combination of Support Vector Machine (SVM) [19] and Support

Vector Regression (SVR) [20] is employed to infer a continuous mapping function

from the image to the pose space. The advantage of the proposed approach is that

it does not depend on the extraction of facial feature points such as the mouth and

eye corners and the nose tip, which by itself is a challenging process.

1.5 Organization of the Dissertation

The dissertation is organized as follows. Chapter 2 discusses the patch-based

method for frontal face reconstruction from non-frontal face images. The model-
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driven domain adaptation approach for unconstrained face recognition on product

manifolds is described in Chapter 3. In Chapter 4, the hierarchical feature learning

method for facial attribute analysis is presented. The automatic head pose estima-

tion method using dense SIFT descriptors and random projection is discussed in

Chapter 5. Finally, directions for future work are given in Chapter 6.
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Chapter 2: Pose-Invariant Face Recognition using Markov Random

Fields

2.1 Introduction

Pose variations can be considered as one of the most important and challenging

problems in face recognition. As the viewpoint varies, the 2D facial appearance will

change because the human head has a complex non-planar geometry. Magnitudes

of variations of innate characteristics, which distinguish one face from another, are

often smaller than magnitudes of image variations caused by pose variations [21].

Popular frontal face recognition algorithms, such as Eigenfaces [22] or Fisherfaces

[23, 24], usually have low recognition rates under pose changes as they do not take

into account the 3D alignment issue when creating the feature vectors for matching.

In this chapter, a patch-based method for synthesizing the virtual frontal view

from a given non-frontal face image using MRFs and an efficient variant of the

BP algorithm is proposed. By aligning each patch in the input image with images

from a training database of frontal faces, a set of possible warps is obtained for that

patch. The alignments are then carried out efficiently using an illumination invariant

extension of the Lucas-Kanade (LK) algorithm [14] in the frequency domain. The
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objective of the algorithm is to find the globally optimal set of local warps that

can be used to predict the image patches at the frontal view. This goal is achieved

by considering the problem as a discrete labeling problem using an MRF. In the

proposed approach, the cost functions of the MRF are not just the simple sum of

squared differences (SSD) between patches but are modified to reduce the effect

of illumination variations. The optimal labels are obtained using a variant of the

BP algorithm with message scheduling and dynamic label pruning [15]. The two

main advantages of our approach over other state-of-the-art algorithms are that:

(1) it does not require manually selected landmarks, and (2) no global geometric

transformation is needed. Experimental results on the FERET [1], CMU-PIE [2]

and Multi-PIE [3] databases are presented to demonstrate the effectiveness of the

proposed algorithm.

Organization of the chapter: Related works are discussed in Section 2.2.

Section 2.3 describes the illumination-insensitive alignment method based on the

LK algorithm. The reconstruction of the virtual frontal view using MRFs and BP

is discussed in Section 2.4. Finally, in Section 2.5, we present experimental results

in both frontal face reconstruction and pose-invariant face recognition.

2.2 Related Work

Existing methods for face recognition across pose can be roughly divided into

two broad categories: (1) techniques that rely on 3D models and (2) 2D techniques.

In the first type of approaches, the morphable model proposed by Blanz and Vet-
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ter [25] fits a 3D model to an input face using the prior knowledge of human faces

and image-based reconstruction. The main drawback of this algorithm is that it

requires many manually selected landmarks for initialization. Furthermore, the op-

timization process is computationally expensive and often converges to local minima

due to a large number of parameters that need to be determined. Another recently

proposed method by Biswas and Chellappa [26] estimates the facial albedo and pose

at the same time using a stochastic filtering framework and performs recognition on

the reconstructed frontal faces. The disadvantage of this approach lies in the use of

an iterative algorithm for updating the albedo and pose estimates leading to accu-

mulation of errors from step to step. Given a non-frontal face image, the 3D pose

normalization algorithm proposed by Asthana et al. [27] uses the pose-dependent

correspondences between 2D landmark points and 3D model vertices in order to

synthesize the frontal view. The main drawback of this method is the dependence

on the fitting of landmarks using the Active Appearance Model (AAM) [28].

On the other hand, 2D techniques do not require the 3D prior information

for performing pose-invariant face recognition. The AAM algorithm proposed by

Cootes et al. [28] fits a statistical appearance model to the input image by learning

the relationship between perturbations in the model parameters and the induced

image errors. The main disadvantage of this approach is that each training image

requires a large number of manually annotated landmarks. Gross et al. [29] proposed

the eigen light-field (ELF) method that unifies all possible appearances of faces in

different poses within a 4D space (two viewing directions and two pixel positions).

However, this method discards shape variations due to different identity as it requires
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a restricted alignment of the image to the light field space. Recently, Prince et.

al. [30] use an affine mapping and pose information to generate the observation

space from the identity space. In the approach proposed by Castillo and Jacobs

[31], the cost of stereo matching was used in face recognition across pose without

performing 3D reconstruction. Sarfraz and Hellwich [32] try to solve the problem by

modeling the joint appearance of gallery and probe images across pose in a Bayesian

framework.

Patch-based approaches for face recognition under varying poses have received

significant attention from the research community. The main motivation in these

approaches is that a 3D face is composed of many planar local surfaces and thus,

an out-of-plane rotation, although non-linear under 2D imaging projection, can be

approximated by linear transformations of 2D image patches. As a result, modeling

a face as a collection of subregions/patches is more robust to pose variations than

the holistic appearance. In the method proposed by Kanade and Yamada [33], each

patch has a utility score based on pixel differences, and the recognition is performed

using a Gaussian probabilistic model and a Bayesian classifier. Ashraf et al. [34]

extended this approach by learning the patch correspondences based on 2D affine

transforms. The problem with these approaches is that the transformations are op-

timized locally without taking into account the global consistency of the patches.

In [35], linear regressions are performed on local patches in order to synthesize the

virtual frontal view. Another approach proposed by [36] measures the similarities

of local patches by correlations in a subspace constructed by Canonical Correlation

Analysis (CCA). However, the common drawback of these two algorithms is that
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the head pose of the input face image needs to be known a priori. Arashloo and

Kittler [37] present a method for estimating the deformation parameters of local

patches using Markov Random Fields (MRFs). The disadvantage of this approach

is that it depends on estimating the global geometric transformation between the

template and the target images. Although designed specifically for handling expres-

sion variations in face recognition, another related work is the method proposed by

Liao and Chung [38], which formulates the face recognition problem as a deformable

image registration problem using MRFs. However, this approach also depends on

the extraction of salient regions from face images.

2.3 Illumination Insensitive Patch Alignment

2.3.1 Alignment of Local Patches using Weighted Lucas-Kanade

Assume that we have two images, the probe image I and the gallery image

T , captured at two different viewpoints. The images are divided into M blocks

(rectangle patches) and for each pair of corresponding patches, Ii and Ti, a local warp

Wi is estimated to align them using the weighted Lucas-Kanade (LK) algorithm [39].

The warp Wi, parameterized by the vector pi, minimizes the following error function

Ei(pi) = ||Ii(pi)− Ti(0)||2Q = [Ii(pi)− Ti(0)]TQ[Ii(pi)− Ti(0)] (2.1)

where Q is a symmetric, positive semi-definite weighting matrix. Note that Ii(pi)

and Ti(0) are both vectorized image patches. Equation (2.1) becomes the standard

LK objective function [40] when Q is an identity matrix. If W (p) is an affine warp
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with parameters p = (p1, p2, p3, p4, p5, p6)T , it can be written as

W (p) =

 1 + p1 p3 p5

p2 1 + p4 p6

 .

The transformed image patch Ii(pi) is obtained by applying the warp to all the

pixels in Ii.

Equation (2.1) is highly non-linear and thus, can be linearized by performing

the first order Taylor expansion on Ii(pi + ∆pi)

Ei(pi) ≈ ||Ii(pi) + Ji∆pi − Ti(0)||2Q (2.2)

where Ji =
(
∂Ii(pi)
∂pi

)T
is the Jacobian of Ii(pi). The value of ∆pi that minimizes

(2.2) is given by

∆pi = H−1
i JTi Q[Ti(0)− Ii(pi)] (2.3)

where the pseudo-Hessian matrix is defined as

Hi = JTi QJi =
∂Ii(pi)

∂pi
Q
∂Ii(pi)

∂pi

T

. (2.4)

An iterative solution to (2.1) can be obtained by iteratively solving for ∆pi and

updating the warp parameters pi = pi + ∆pi until convergence.

2.3.2 Illumination Insensitive Alignment based on Gabor Features

It is known that the original LK algorithm is very sensitive to changes in illu-

mination [41]. The main advantage of the weighted LK algorithm over the original

method is that illumination variations can be handled by encoding the prior knowl-

edge of the correlation and salience of image pixels into Q. As a result, choosing
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an appropriate weighting matrix Q is an important problem with the weighted LK

algorithm. In a recently proposed method [14], it is shown that robustness against

illumination changes as well as low computational complexity can be achieved by

constructing Q from the Fourier transforms of a bank of Gabor filters [42].

A two dimensional Gabor filter gµ,ν(z) where z = (x, y) is defined as the

product of an elliptical Gaussian envelope and a complex plane wave [42]

gµ,ν(z) =
||kµ,ν ||2

σ2
e−
||kµ,ν ||2||z||2

2σ2

[
eikµ,ν .z − e−

σ2

2

]
(2.5)

where ν and µ denote the scale and orientation of the Gabor filter, respectively.

σ is the parameter determining the ratio of the Gaussian window width to the

wavelength. The wave vector kµ,ν is defined as

kµ,ν = kνe
iφµ (2.6)

where kν = kmax
fν

and φµ = πµ
8

. f is the spacing factor between kernels in the

frequency domain and kmax is the maximum frequency. The term e−
σ2

2 is subtracted

in order to make the filter invariant to illumination changes. In this dissertation,

a bank of 40 Gabor filters corresponding to five different scales, ν = 0, . . . , 4, and

eight orientations, µ = 0, . . . , 7, was used in the experiments. The values of other

parameters were set as follow: σ = 2π, kmax = π
2

and f =
√

2 [42].

Assume that gk (k = 1, . . . , K) is the k-th impulse response of a bank of K

Gabor filters, the alignment error can be written as the sum of squared differences

(SSD) across all filter responses of the warped probe patch and the gallery patch

Ei(pi) = ||{gk ∗ Ii(pi)}Kk=1 − {gk ∗ Ti(0)}Kk=1||2 (2.7)
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where {.}Kk=1 denotes the concatenation operation, i.e. {xk}Kk=1 = [xT1 , . . . ,x
T
K ]T ,

and ∗ represents the 2D convolution operation. Using Parseval’s relation [43], the

error in (2.7) can be estimated in the Fourier domain as

Ei(pi) = ||Îi(pi)− T̂i(0)||2S (2.8)

where S =
∑K

k=1(diag(ĝk))
Tdiag(ĝk) and Îi, T̂i, ĝk are the 2D Fourier transforms of

Ii, Ti, gk, respectively. It is worth noting that S is a diagonal matrix and can be

precomputed. As the 2D Fourier transform of a signal of length L is computed by

pre-multiplying it by the L× L Fourier matrix F, (2.8) is equivalent to

Ei(pi) = ||Ii(pi)− Ti(0)||2FTSF . (2.9)

From (2.3), the update ∆pi is obtained as

∆pi = H−1
flk(FJi)

TSF[Ti(0)− Ii(pi)] (2.10)

where Hflk = (FJi)
TS(FJi) is the pseudo-Hessian. In order to perform the update

efficiently, the FFT algorithm [43] is applied to estimate the Fourier transforms of

the columns of the Jacobian matrix J and the error image Ti(0) − Ii(pi) at each

iteration.

The above formulation of the LK algorithm is known as the forward additive

(FA) algorithm. In order to improve the computational efficiency, an extension

to the forward additive LK called the inverse compositional (IC) algorithm was

proposed in [44]. In this approach, the error function is formulated by linearizing

Ti(∆p) rather than Ii(pi + ∆pi)

E ≈ ||Ti(0) + Ji(ic)∆pi − Ii(pi)|| (2.11)
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where Ji(ic) =
(
∂Ti(0)
∂pi

)T
. The update ∆pi is can be solved as [14]

∆pi = B[Ii(pi)− Ti(0)] (2.12)

where B = H−1
flk(ic)(FJi(ic))

TSF. It is worth noting that the pseudo-Hessian

Hflk(ic) = JTi(ic)F
TSFJi(ic) is computed only once for all iterations.

If N and n are the number of pixels in an image patch and the number of warp

parameters, respectively, the computational complexity of the inverse compositional

algorithm is O(n2 +nN) per iteration [14]. This is significantly better than the case

of the forward additive approach where the computational complexity is O(n3 +

n2N + nN logN) per iteration.

2.4 Frontal Face Reconstruction using Markov Random Fields

Given an input image I of a non-frontal face and M training face images T (k),

k = 1, . . . ,M captured at the frontal pose, all of them are divided into the same

regular grid of N overlapping patches of size w×h. A set of M possible local warps

Pi = {p(k)
i : k = 1, . . . ,M} can be estimated for each patch Ii, by aligning it with the

corresponding patches of the training images using the method presented in Section

2.3.2. By aligning the patches in the non-frontal views with the ones in the frontal

views, we can obtain the information about how the local patches are transformed

as a result of the 3D rotation of the face. The goal of our algorithm is to find a

globally optimal set of warps for all the patches in the input image such that we can

predict the input face at the frontal pose by transforming these patches using the

obtained warps. This problem can be turned into a discrete labeling problem with
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Figure 2.1: Two neighboring MRF nodes with overlapping patches.

a well defined objective function using a discrete MRF. Note that in our approach,

the training database need not contain the frontal images of the person in the input

image I.

2.4.1 Markov Random Fields

In the proposed algorithm, lattice points whose local patches are inside the

image form a set of MRF nodes V (Figure 2.1). The set of warps Pi can be considered

as the set of possible labels for node i. A 4-connected neighborhood system is then

created by edges E of the MRF.

The single node potential Ei(pi) penalizes the cost of assigning the warp p
(k)
i

to node i. It can be defined using (2.9) as

Ei(pi) = ||Ii(pi)− T (k)
i (0)||2FTSF (2.13)

where pi ∈ Pi and k is the index of the training image that corresponds to the warp

pi. The pairwise potential Eij(pi,pj) is the cost of label discrepancy between two
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neighboring nodes i and j. In other words, this smoothness term measures how well

neighboring labels agree at the region of overlap. In order to reduce the effect of

illumination changes, the local patches are normalized by subtracting the means and

dividing by the standard deviations before estimating the sum of squared difference

in the overlapping region. Eij(pi,pj) can be written as

Eij(pi,pj) =
∑

x∈node i∩node j

(
Îi(x; pi)− Îj(x; pj)

)2

(2.14)

where pi ∈ Pi, pj ∈ Pj and Îi(x; pi) denotes the intensity value at the location x in

Îi(pi). The intensity at x of the normalized patch Îi(pi) is obtained as

Îi(x; pi) =
Ii(x; pi)− µi

σi
(2.15)

where µi and σi are the mean and standard deviation of the intensities, respectively,

of the local patch Ii without applying any warping function. As local deformations

do not affect the intensities of image pixels, the values of µi and σi can be precom-

puted to improve the speed of the algorithm. The optimal labeling or the optimal

set of warps {p̂i}Mi=1 can be found by minimizing the following energy function

E({pi}Mi=1) =
∑
i∈V

Ei(pi) + λ
∑

(i,j)∈E

Eij(pi,pj) (2.16)

where λ is a regularization parameter that controls the interaction between the single

node potentials and pairwise potentials.

2.4.2 Priority Belief Propagation and Label Pruning

The minimization of (2.16) can be performed by using an optimization method

for MRFs known as Belief Propagation (BP) [45]. It is an inference technique that
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works by passing local messages along the nodes of a MRF. In the case of Markov

networks without loops, BP is an exact inference method. Even in networks with

loops, it often leads to good approximate results [46]. Using negative logarithmic

probabilities, a message from node i to node j at time t is defined as

mt
ij(pj) = min

pi∈Pi
{Ei(pi) + λEij(pi,pj) +

∑
k:k 6=j,(k,i)∈E

mt−1
ki (pi)} . (2.17)

Assume that all messages converge after s iterations, the belief of node i for pi ∈ Pi,

bi(pi) is computed as

bi(pi) = −Ei(pi)−
∑

k:(k,i)∈E

ms
ki(pi) . (2.18)

The warp p̂i = argmax
pi∈Pi

bi(pi) is selected as the optimal label for node i.

It is known that the standard BP is slow and requires many iterations to

converge [47]. In [15], two extensions to the standard BP were proposed in order

to improve the speed and make the algorithm converge after a small number of

iterations.

The first extension to the standard BP is the use of dynamic label pruning. If

the number of active labels for a node is greater than Lmax, a user specified constant,

label pruning will be applied to the node. The labels of a visited node are traversed

in the descending order of relative belief breli (pi), where the relative belief is defined

as breli (pi) = bi(pi) − bmaxi and bmaxi is the maximum belief of node i. Those labels

pi ∈ Pi with breli (pi) > bprune are selected as active labels for node i. bprune is the

label pruning threshold belief. Furthermore, a label is declared as active only if

it is not too similar to any of the already active labels in order to avoid choosing

many similar labels and wasting a large part of the active label set. Two labels are
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considered similar if their normalized cross correlation is greater than a threshold

Tsimilar. Note that a minimum number of labels Lmin is always kept for each node.

The complexity of updating the messages is reduced from O(|L|2) to O(|Lmax|2)

by applying label pruning to BP [15]. In addition, the speed of BP can also be

improved by precomputing the reduced matrices of pairwise potentials.

The second improvement is the use of message scheduling to determine the

transmitting order for a node based on the confidence of that node about its labels.

The node most confident about its label should be the first one to transmit outgoing

messages to its neighbors [15].The priority of a node is defined as priority(i) = 1
|Qi|

where |Qi| is the cardinality of the set Qi = {pi ∈ Pi : breli (pi) ≥ bconf}. bconf is the

confidence threshold belief. By employing this message scheduling in BP, the node

that has the most informative messages will transmit first in order to increase the

confidence of its neighbors. This helps the algorithm to converge only after only a

small, fixed number of iterations. Furthermore, message scheduling also makes the

neighbors of the transmitting node more tolerant to label pruning.

2.5 Experimental Results

2.5.1 Frontal-View Classification using Dense SIFT Descriptors

In order to avoid degrading performance when applying the proposed pose

compensation technique to face recognition, it is important to be able to automat-

ically decide if the input face image is frontal or non-frontal. In our approach, the

frontal-view classification is performed using a modified version of the algorithm
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presented in Chapter 5. First, dense SIFT descriptors are extracted from image

grid points in order to obtain a representation that is robust to noise and illumi-

nation variations. The dimension of the concatenated descriptor vector is reduced

for efficient processing by using the Random Projection (RP). Finally, an SVM is

employed to decide whether the face image is at the frontal pose or not.

The proposed frontal-view classification algorithm was trained using an SVM

on 2D images generated from the 3D faces in the USF 3D database [25]. By rotating

the 3D models and projecting them onto the image plane, we can synthesize the 2D

face images at different viewing angles. Face images with less than ±5◦ in both the

yaw and pitch angles are labeled as frontal. Figure 2.2 shows the 2D face images of

a person in the database generated at different poses and the visualization of their

corresponding dense SIFT descriptors.

The proposed frontal-view classification algorithm was tested on four different

databases including the USF 3D database [25], FERET [1], CMU-PIE [2] and Multi-

PIE [3]. For the USF 3D database, the synthesized face images were divided into

five subsets. Four of them were used for training and the remaining subset was used

for testing. It takes less than 4 seconds to perform the frontal-view classification for

an input face image of size 130× 150 on an Intel Xeon 2.13 GHz desktop.

Table 2.1 shows the classification rates for the four datasets. The results

obtained using dense SIFT descriptors with PCA are also included for a comparison.

It can be seen from the table that, although the classification rates are high for both

approaches, the one using dense SIFT and RP achieves better results.
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(a) (b) (c)

(d) (e) (f)

Figure 2.2: First row: the 3D face model of a person in the USF 3D database at

different viewing angles. Second row: visualization of the corresponding dense SIFT

descriptors.

2.5.2 Frontal Face Reconstruction

In this section, we present the results of reconstructing frontal views from non-

frontal face images using the proposed approach. Given an input face image, it is

roughly aligned to the frontal faces in the training database using the coordinates

of the two eyes. The input face and eye locations are detected automatically using

the Viola-Jones object detection framework [8]. Similar to [27], different cascade

classifiers are trained to locate the faces and eyes for the three rough pose classes

(left half-profile, frontal and right half-profile). Each classifier can also handle pitch

angles ranging from −30◦ to 30◦. Positive training samples were cropped from the
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Table 2.1: Frontal-view classification rates for different datasets.

Method USF 3D FERET CMU-PIE Multi-PIE

Dense SIFT + PCA 96.6% 95.7% 94.7% 94.3%

Our approach (Dense SIFT + RP) 98.3% 97.2% 96.9% 94.9%

annotated face images of the first two hundred subjects of the Multi-PIE dataset [3]

as well as from other datasets such as the USF 3D database [25], Pointing ’04 [48],

FacePix(30) [49] and LFW [50]. Negative samples were collected from a large number

of random images on the Web. The input face image is translated, rotated and scaled

so that the eyes map to canonical eye positions. Although this initial alignment

process results in the difference in scale between the frontal and non-frontal faces,

the local warps of image patches are able to compensate for this variation, given the

pose of the non-frontal face is not too severe. Both the input and training images

are smoothed by a 2D Gaussian filter in order to remove the noise as well as improve

the accuracy of the estimation of image gradients in the alignment step.

The first dataset used in the experiments is the FERET dataset [1] that con-

sists of images from two hundred subjects. Each subject in this database was cap-

tured at nine different view-points ba, bb, bc, bd, be, bf , bg, bh, bi which roughly

correspond to nine viewing angles of 0◦, 60◦, 40◦, 25◦, 15◦, −15◦, −25◦, −40◦, −60◦,

respectively. The database also contains images denoted as bk which are frontal

images corresponding to ba, but taken under different lighting. Figure 2.3 shows

different face images of a subject in the FERET database with varying pose and

illumination.
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(a) ba (b) bb (c) bc (d) bd (e) be

(f) bf (g) bg (h) bh (i) bi (j) bk

Figure 2.3: Face images of a subject in the FERET database with varying viewpoints

and illumination.

One of the most important parameters in our method is the patch size. It

should not be either too large or too small. If the patches are too small, they do

not contain sufficient information for estimating the alignment parameters, espe-

cially when there are large displacements. A good patch size must provide enough

overlapping in order to align corresponding patches between different views. On the

other hand, if the patch size is too big, alignment parameters may not be estimated

accurately [51] and blocking effects also appear. Figure 2.4 shows the reconstructed

frontal faces from a non-frontal face image using different patch sizes. It can be

seen from the figure that if the patch size is too small or too large, there are many

artifacts in the outputs. The patch size of 15×15 (Figure 2.4d) gave the best virtual

frontal view when compared to the ground truth in Figure 2.4f.

In all the experiments reported in this chapter, the patch size was set at 15×15
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(a) Input (b) 7× 7 (c) 9× 9

(d) 15× 15 (e) 21× 21 (f) Ground-

truth

Figure 2.4: Reconstructed frontal faces with various patch sizes.

and the gap between two neighboring MRF nodes was selected at ten pixels in order

to have a sufficient amount of overlap between the neighboring patches. λ = 1 was

chosen to be the value of the regularization parameter. Two hundred frontal images

denoted as ba from the FERET database were taken as the training set for guiding

the alignment process. We observed that the number of iterations required for the

priority BP algorithm with label pruning to converge is around five iterations. It

takes less than two minutes to synthesize the frontal view for an input face image

of size 130× 150 on an Intel Xeon 2.13 GHz desktop.

In order to evaluate the performance of our approach in the case of varying

illumination, another training set was formed from two hundred frontal face images

of the FERET database taken under different lighting (those denoted as bk). The

reconstructed frontal faces using two training sets ba and bk are shown in Figure
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2.5. It can be seen from the figure that the difference in illumination between the

input image and the training set does not affect the robustness of our algorithm.

Both results obtained using ba and bk look very similar to each other and are close

to the ground truths (Figures 2.5m and 2.5n).

The proposed algorithm was also tested on the CMU PIE database [2]. This

database consists of face images taken from sixty eight subjects under thirteen dif-

ferent poses. The poses are denoted as c05 and c29 (the yawn angle about ±22.5◦),

c37 and c11 (the yawn angle about ±45◦), and c07 and c09 (the pitch angle about

±20◦). Figure 2.6 shows the synthesized frontal views of the same subject from

the CMU PIE database at different poses. It can be seen from the figure that the

proposed approach was able to reconstruct the frontal views very well regardless of

the viewing angles.

In order to evaluate the range of poses that can be handled by the method, we

synthesized the frontal views of 2D face images generated from the USF 3D models

at various viewing angles. The proposed approach can handle up to ±30◦ in the

pitch angle and ±45◦ in the yaw angle. Figure 2.7 shows the synthesized frontal

views for face images of the same person at four different poses. It can be seen from

Figure 2.7h that the algorithm failed to reconstruct the frontal face image at the

extreme pose. This is because most of the information on one half of the face is

occluded due to the viewing angle. Another reason is that the extreme pose results

in large image transformations that can not be handled by local warps of image

patches.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) Ground

truth

(n) Ground

truth

Figure 2.5: Reconstructed frontal faces using training sets under different lighting.

First row: input images, second row: results obtained using ba training set, third

row: results obtained using bk training set, last row: ground truths.
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(a) c05 (b) c07 (c) c29 (d) c37

(e) c05 (f) c07 (g) c29 (h) c37

Figure 2.6: Some examples of reconstructed frontal faces of the same subject from

the CMU PIE database. First row: input images, second row: reconstructed frontal

views.

2.5.3 Pose Invariant Face Recognition

As presented in the above sections, it is more computationally efficient to clas-

sify whether a face image is frontal than to synthesize its frontal view (four seconds

compared to two minutes). Thus, the frontal-view classifier is an important com-

ponent of the proposed pose-invariant face recognition system. Before performing

the recognition, the probe image was fed to the frontal-view classifier. If the im-

age was classified as non-frontal, it was transformed to the frontal view using the

proposed algorithm. As a result, it is possible to perform recognition by combining

our algorithm and any frontal face recognition technique. As we do not require the

reference set to include an example of the person in the test image, the same two
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(a) Pitch: +30◦ (b) Pitch: −30◦ (c) Yaw: −45◦ (d) Yaw: −55◦

(e) Pitch: +30◦ (f) Pitch: −30◦ (g) Yaw: −45◦ (h) Yaw: −55◦

Figure 2.7: Reconstructed frontal faces for input images at different poses from the

USF 3D database. First row: the 3D face model of a person in the USF 3D database

at different viewing angles. Second row: 2D frontal images synthesized using the

proposed method.

hundred ba frontal images from the FERET database were used as the training set

for synthesizing frontal views in all the three face recognition experiments.

As in [27], if the face and both eyes cannot be detected using the cascade

classifiers, a Failure to Acquire (FTA) has occurred. In this case, the frontal recon-

struction is not carried out and the test image is not counted as a recognition error.

The FTA rate is reported for each dataset in the recognition experiments below.

In our experiments, the Local Gabor Binary Pattern (LGBP) [52] was selected

as the face recognizer due to its effectiveness. In this method, a feature vector is

formed by concatenating the histograms of all the local Gabor magnitude pattern
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Table 2.2: Recognition rates of different approaches on the FERET database [1].

The frontal faces ba were used as the gallery images.

bh bg bf be bd bc

Method −40◦ −25◦ −15◦ +15◦ +25◦ +40◦ Avg.

LGBP [52] 62.0% 91.0% 98.0% 96.0% 84.0% 51.0% 80.5%

LLR [35] 55.0% 89.5% 93.0% 89.0% 77.0% 53.0% 76.1%

PAN [53] 78.5% 91.5% 98.5% 97.0% 93.0% 81.5% 90.0%

3D Pose Norm. [27] 90.5% 98.0% 98.5% 97.5% 97.0% 91.9% 95.6%

Our approach 91.0% 97.3% 98.0% 98.5% 96.5% 91.5% 95.5%

maps over an input image. The histogram intersection is used as the similarity

measurement in order to compare two feature vectors. More details about the

application of the LGBP algorithm for face recognition can be found in [52].

FERET Database: First, the recognition performance of our method on the

FERET database is reported. We also compare our approach with the Local Gabor

Binary Pattern (LGBP) [52], the Locally Linear Regression (LLR) method [35], the

Piecewise Affine warping No stretch (PAN) approach [53], and a recent method

based on 3D pose normalization [27]. The frontal faces ba were used as the gallery

images. Table 2.2 shows the recognition rates of different methods for two hundred

subjects at seven poses ranging from −40◦ to +40◦. It can be seen that the proposed

approach outperformed the methods proposed in [35, 52, 53]. The average rank-1

recognition rate of our algorithm was 95.5%, comparable to the result presented

in [27] (95.6%). The FTA rate for the FERET dataset was 1.36%.

CMU-PIE Database: Next, we present the recognition results on the CMU
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PIE database. We compare our results with the ones presented in [31, 35] and [29]

for thirty four faces using the same set-up where the gallery pose is frontal (c27)

and the probe poses are c05, c07, c09, c11, c29 and c37. It can be seen from Table

2.3a that the proposed approach outperformed [35] and [29]. However, it was not as

good as the stereo matching method presented in [31] (98.5% compared to 99.5%)

which requires four landmark points. The proposed algorithm is also compared with

the methods in [52] and [27] using all sixty eight faces in the CMU-PIE database.

Table 2.3b shows that our recognition rate (98.8%) is better than the ones obtained

by [52] (82.4%) and comparable to [27] (99.0%). For the this dataset, the FTA was

0.84%.

Multi-PIE Database: We also performed face recognition experiments on

one hundred and thirty seven subjects (Subject ID 201 to 346) with neutral expres-

sions and frontal illumination from the Multi-PIE database [3]. One hundred and

thirty seven frontal images from the earliest session (Pose ID 051) were used as the

gallery images. The probe set included the remaining images of both frontal (from

other sessions) and non-frontal views. The comparisons between our approach and

the methods proposed in [52] and [27] on the Multi-PIE dataset are shown in Table

2.4. The average recognition rate achieved by our algorithm was better than the

ones obtained by using the other two methods (89.4% compared to 64% and 87.7%).

The FTA rate was 1.6%.
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Table 2.3: Recognition rates of different approaches on the CMU-PIE database [2].

The frontal faces c27 were used as the gallery images.

(a) 34 Faces

c11 c29 c05 c37 c07 c09

Method −45◦ −22.5◦ +22.5◦ +45◦ up 22.5◦ down 22.5◦ Avg.

ELF (Complex) [29] 78.0% 91.0% 93.0% 89.0% 95.0% 93.0% 89.8%

LLR [35] 89.7% 100.0% 98.5% 82.4% 98.5% 98.5% 94.0%

3ptSMD [31] 97.0% 100.0% 100.0% 100.0% 100.0% 100.0% 99.5%

Our approach 97.0% 100.0% 100.0% 97.0% 97.1% 100.0% 98.5%

(b) 68 Faces

c11 c29 c05 c37 c07 c09

Method −45◦ −22.5◦ +22.5◦ +45◦ up 22.5◦ down 22.5◦ Avg.

LGBP [52] 71.6% 87.9% 86.4% 75.8% 78.8% 93.9% 82.4%

3D Pose Norm. [27] 98.5% 100.0% 100.0% 97.0% 98.5% 100.0% 99.0%

Our approach 97.0% 100.0% 100.0% 97.0% 98.5% 100.0% 98.8%

2.6 Conclusions

In this chapter, a method for synthesizing the virtual frontal view from a

non-frontal face image was presented. By dividing the input image into overlapping

patches, a globally optimal set of local warps was estimated to transform the patches

to the frontal view. Each patch was aligned with images from a training database

of frontal faces in order to obtain a set of possible warps for that node. It is

worth noting that we do not require the training database to include the frontal
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Table 2.4: Recognition rates of different approaches on one hundred and thirty seven

subjects (Subject ID 201 to 346) with neutral expressions and frontal illumination

from the Multi-PIE database [3]. The frontal images from the earliest session (Pose

ID 051) were used as the gallery images.

080 05 130 06 140 06 051 07 051 08 041 08 190 08

Method −45◦ −30◦ −15◦ 0◦ +15◦ +30◦ +45◦ Avg.

LGBP [52] 37.7% 62.5% 77.0% 92.6% 83.0% 59.2% 36.1% 64.0%

3D Pose Norm. [27] 74.1% 91.0% 95.7% 96.9% 95.7% 89.5% 74.8% 87.7%

Our approach 86.3% 89.7% 91.7% 92.5% 91.0% 89.0% 85.7% 89.4%

images of the person in the test image. By using an extension of the LK algorithm

that accounts for substantial illumination variations, the alignment parameters were

calculated efficiently in the Fourier domain. The set of optimal warps was obtained

by formulating the optimization problem as a discrete labeling algorithm using a

discrete MRF and an efficient variant of the BP algorithm. The energy function of

the MRF was constructed to handle illumination variations between different image

patches. Furthermore, based on the sparsity of local SIFT descriptors, an efficient

algorithm was also designed to classify whether the pose of the input face image

is frontal or non-frontal. Experimental results using the FERET, CMU PIE and

Multi-PIE databases validate the effectiveness of the proposed approach.
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Chapter 3: Model-Driven Domain Adaptation on Product Manifolds

for Unconstrained Face Recognition

3.1 Introduction

Unconstrained face recognition is a very difficult problem due to appearance

variations between the probe and gallery images caused by multiple factors such

as blur, expression, illumination, pose and resolution. As a result, face classifiers

trained with the assumption that the training and testing data are drawn from

similar distributions usually have very poor performance, especially when applied

to uncontrolled environments. For instance, face recognition algorithms trained on

samples from a source domain containing sharp, well-illuminated face images do

not often perform well when used on a target domain containing blurred, poorly-

illuminated face images [54]. The performance of these algorithms further degrades

when only a limited number of images per subject is available due to the cost and

other challenges in data acquisition.

While there have been several studies addressing pre-specified facial variations

across source and target domains [10], such as the nine points of light study for

illumination [55], analyzing domain shifts caused by multiple, unknown factors has
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not received much attention. Domain adaptation is a recent paradigm for address-

ing such transformations in a broader setting, where given labeled data from the

source domain and few (resp. no) labeled data from target domain probe images,

semi-supervised (resp. unsupervised) approaches have been devised to account for

variations in data across domains [16, 56, 57]. Most of these techniques address do-

main shifts in a statistical sense as models causing variations in data are not known.

This limits their application to the particular problem of face recognition where

there is a rich literature on models for pose, lighting, blur, expression and aging. As

a result, it is important to understand domain shifts with respect to the underlying

constraints pertaining to models that generate the observed data. Such an analysis

would necessitate the study of geometrical properties of the image space induced by

these models.

Many traditional approaches, however, often either ignore the geometric struc-

tures of the space or naively treat the space as Euclidean [58]. While non-linear

manifold learning algorithms such as ISOMAP [59] or Locally Linear Embedding

(LLE) [60] offer alternatives, they require large amounts of training data to esti-

mate the underlying non-linear manifold structure of the data. Such a requirement

on data may not always be satisfied in many real-world applications. One possi-

ble solution for handling facial variations due to multiple factors is by employing a

mathematical framework called multilinear algebra - the algebra of higher-order ten-

sors. As matrices represent linear operators over a vector space, their generalization,

tensors, define multilinear operators over a set of vector spaces [61]. While there

have been studies using multilinear algebraic framework for face recognition [61,62],
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such approaches ignore the curved geometry of the image space and resort to an Eu-

clidean treatment. Attempts to incorporate non-linear geometrical structures into

the tensor computing framework have been reported in [63–65], but they again need

large training data.

We present a domain adaptive solution for face recognition using the tensor ge-

ometry corresponding to models explaining facial variations, with as few as a single

image per subject in the source domain. Instead of finding linear transformations

representing the shift across domains as in [16, 17], we propose a model-driven ap-

proach to construct a latent domain where multifactor facial variations across the

source and target domains can be captured together. One main advantage of such

an approach is even if data within the source domain and/or the target domain is

heterogeneous, for instance when the domain shift is due to blur and both source

and target data contain a mix of sharp and blurred faces, the process of accounting

for domain shift remains unaltered unlike other techniques that expect the domains

to be more or less homogeneous [16, 17, 57]. Furthermore, the proposed method

overcomes the data requirement constraint for modeling domain variations by syn-

thesizing multiple face images under different illumination, blur and 2D alignment

from a single input image on the source or target domain, and uses them to formulate

a multidimensional tensor unlike other methods like [63] that places more stringent

data-requirement constraints. The tensor obtained from the set of synthesized im-

ages can then be represented on a product manifold by performing Higher-Order

Singular Value Decomposition (HOSVD) and mapping each orthogonal factored

matrix to a point on a Grassmann manifold. The order of the tensors is the num-
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Figure 3.1: An illustration of the approach. Face images from different domains

are mapped to a latent domain using the multifactor analysis framework. First,

a tensor Ai is obtained from each face image by synthesizing it under multifactor

variations. The tensors are then mapped to a product manifold, the collection of

Gd̄j×dj ’s (j = 1, . . . , N), that acts as a latent domain. Subsequent computations are

performed in the latent domain using geometric and statistical tools with which the

identity of target domain faces are inferred. (This figure is best viewed in color.)

ber of factors used in the synthesis process. We then recognize the target domain

face labels by performing computations pertaining to the tensor geometry for cases

where the source domain either contains only one image per subject, or has multiple

images per subject. We also address the problem of image set matching which is

relevant to video-based face recognition where multiple frames in a video provide

evidence related to the facial identity. An illustration of the proposed approach is

shown in Figure 3.1.
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Contributions:

• We propose a model-driven domain adaptation approach for face recognition

with multiple factor variations, using multilinear algebraic principles. Unlike

many other methods that require a large training set, the proposed algorithm

uses as little as one face image per subject to characterize the underlying

geometry of the latent domain as a product of Grassmannian manifolds.

• We then introduce a novel kernel derived from the projection metric on product

spaces. When there are sufficient samples available for each subject in the

source domain, this projection kernel can be employed to extend any kernelized

learning algorithms to product manifolds, which enables us to account for facial

variations such as 3D pose and expression that are not explicitly modeled.

• We also present a probabilistic approach for performing image set classifica-

tion. The classification algorithm is then implemented in the projection space

using the Kullback-Leibler divergence as a distance measure.

Organization of the chapter: Section 3.2 discusses related works. The for-

mulation of the proposed approach is given in Section 3.3, along with an introduction

to related mathematical details. Details about computations on product manifolds

for performing face recognition are presented in Section 3.4. Section 3.5 focuses on

the synthesis of face images under multiple factor variations. Experimental results

for constrained and unconstrained face recognition on still-images as well as video

datasets are provided in Section 3.6. Section 3.7 concludes the chapter.
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3.2 Related Work

This section summarizes some previous works on domain adaptation as well as

tensor and manifold learning that are relevant to the proposed method. More com-

prehensive surveys on general face recognition as well as the use of matrix manifolds

in computer vision are available from [10] and [58], respectively.

With face recognition making a gradual transition from constrained acquisition

scenarios that were prevalent until early 2000’s, to the more recent unconstrained

real-world settings, we are faced with the challenging problem of accounting for mul-

tiple facial variations across the source domain training data and the target domain

testing data. Domain adaptation is one promising methodology for addressing such

issues. While first investigated by the natural language processing community [66],

adaptation in the context of visual object recognition has been receiving attention

over the last three years. For instance, Saenko et al. [16] proposed a semi-supervised

approach that leverages partially labeled data from the target domain to learn a

domain shifting transformation on the labeled source domain data using metric

learning. Kulis et al. [17] extended this work to handle asymmetric transformation

across the source and target domains. Hoffman et al. [67] addressed multi-domain

adaptation by using a hierarchical clustering type approach to select domains that

are most informative to perform recognition. Unsupervised adaptation, where there

is no availability of labels from the target domain, was addressed by Gopalan et.

al. [57] through an incremental approach based on Grassmann manifold interpreta-

tion that could handle both single and multi-domain adaptation. Gong et al. [68]
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extended this approach by proposing an elegant solution to learn incremental in-

formation along the manifold by formulating a geodesic flow kernel. Independent

of [68], a similar extension was developed by Zheng et al. [69]. Subsequently, Shi and

Sha [70] proposed an information-theoretical approach for joint learning of domain

shift features and classifiers, and Jhuo et al. [71] proposed a low-rank, sparsity-driven

regularization approach that is robust to noise or outliers. Recent approaches such

as [72–74] attempted to find domain shifts by using dictionary learning and sparse

coding. While the above-mentioned techniques address the problem of domain adap-

tation by learning an appropriate domain shifting transformation, another class of

techniques advocate a classifier-based approach that directly seeks to learn a target

domain classifier from the classifiers trained on source domain(s) [75–77].

These techniques perform adaptation in a statistical sense by minimizing data-

dependent mismatch in domain properties. Most facial variations, however, result

from changes in image formation mechanisms, and hence it is important to analyze

domain shifts for face recognition by taking these imaging models, which often give

rise to the notion of manifolds, into account. There have been some attempts in this

direction. In order to directly model non-linear image manifolds, many approaches

formed a set of synthesized face images from a single face [78–82]. However, in these

methods, the synthesized images were simply generated by 2D perturbations [79,80]

or extracting patches from the original image [81, 82]. As a result, the manifolds

constructed by these approaches may not capture the variations introduced by mul-

tiple factors such as illumination, pose or blur. Although the approach in [81] tried

to reduce the effect of illumination by performing photometric normalization on the
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image patches, this factor was not modeled explicitly on the image manifold.

To capture the variations created by multiple factors, the multilinear alge-

braic framework was introduced into the field of computer vision by Vasilescu and

Terzopoulos [61]. In that paper, they proposed an extension of Principal Compo-

nent Analysis (PCA) [83] called Multilinear PCA (MPCA) or Tensorfaces in order

to handle multiple factor variations in face recognition. A kernel extension of the

MPCA framework was developed in [84]. However, this approach ignored the curved

geometry of the image space as it estimated the distance metric in the Euclidean

space.

In order to incorporate the geometrical structures of the image space into the

multilinear algebraic framework, Lui et. al. [63] characterized actions as tensors and

mapped them to points on a product manifold for action classification from videos.

In [85], Park and Savvides combined MPCA with ISOMAP [59] to preserve the

local neighborhood structures. The drawback of this approach is that it required

a dense sampling of the training dataset to construct the manifold. To avoid this

drawback, the same authors proposed to use a Grassmannian instead of ISOMAP

as the manifold representation [64]. However, as only a single Grassmann manifold

was employed to model the non-linear structures, this may not capture the complex

variations created by multiple factors. Another work by Park and Savvides [65]

decomposed the manifold in the data space into factor-dependent sub-manifolds.

However, this approach, together with [63] and [64], required multiple images for the

manifold learning which may not be practical in the case of limited training samples.

As a more systematic alternative, our method formulates a product manifold as a
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latent domain by analytically characterizing multiple factor variations with as few

as one face image.

3.3 Problem Formulation

Given an input face image I of a subject, we analytically characterize domain

shifts due to changes in illumination, blur and 2D perturbations of face images

in different domains. First, the face is illuminated using the albedo estimated by

applying the method of [6] and the universal configuration of lighting directions

presented in [55]. The span of these relighted images approximates the subspace

of illumination variation for this subject. Each relighted image is then blurred by

convolving with a complete set of orthonormal basis functions in order to obtain

a blur-invariant representation [86]. The relighted and blurred images are further

perturbed by applying 2D similarity transformations in order to characterize the

registration manifold. The set of synthesized images obtained after the last step are

represented by a 4th-order tensor A ∈ Rd1×d2×d3×d4 , where d1 is the number of pixels

in the face, d2 is the number of light sources used for relighting, d3 is the number

of orthonormal basis vectors used to get the blur-invariant representation, and d4

is the number of 2D similarity transformations. As a result of applying HOSVD on

the tensor, we obtain a set of orthogonal matrices, where each matrix represents a

variation factor and can be handled as a linear term. The tensor is then mapped to

a point on a product of Grassmann manifolds using these orthogonal matrices. This

product manifold acts as a latent domain for comparing projected data points from
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Figure 3.2: Mode-1 flattening of a 3rd-order tensor.

different domains. For instance, if only one sample is available per subject in the

source domain, recognition of target domain faces is performed using the geodesic

distance on the product manifold. In the case when there are multiple source domain

samples per subject, a novel kernel on product spaces is proposed. This kernel can

be used with any kernelized learning techniques in order to capture other variations

such as 3D pose or expression that are not explicitly modeled.

Next, we will provide a brief review of the background mathematics used in

the chapter regarding tensors and how to represent tensors on product manifolds.

3.3.1 Tensors and Tensor Decomposition

Tensors are the natural generalization of matrices to multidimensional spaces.

Let A ∈ Rd1×d2×...×dN be an N -order tensor, an element of A is denoted as Ai1...in...iN .

The mode-n flattening (or unfolding) of A maps the tensor to a 2D matrix A(n) ∈

Rdn×d̄n where d̄n = d1 × . . . × dn−1 × dn+1 × . . . × dN . Each column vector of A(n)

is obtained by varying the n-th index in of A while keeping the other indices fixed.

An example of mode-1 flattening of a 3rd-order tensor is shown in Figure 3.2.

Another important operation on tensors that is worth mentioning is the mode-
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n product of a tensor A ∈ Rd1×d2×...×dn×...×dN and a 2D matrix M ∈ Rln×dn . The

product, denoted by A ×n M, returns a tensor B ∈ Rd1×d2×...×dn−1×ln×dn+1×...×dN

which can be computed in terms of flattened matrices as

B(n) = MA(n). (3.1)

Similar to Singular Value Decomposition (SVD) for matrices, a tensor can be

factorized using an extension of SVD, called HOSVD [63], as

A = Z ×1 U1 ×2 U2 × . . .×N UN , (3.2)

where Z ∈ Rd1×d2×...×dN is the core tensor, Un ∈ Rdn×dn , 1 ≤ n ≤ N , are the mode-

n orthogonal matrices spanning the column space of A(n). Un can be obtained by

performing SVD on A(n)

A(n) = UnΣnV
>
n , (3.3)

where Σn ∈ Rdn×d̄n is a rectangular diagonal matrix of singular values of A(n), and

Vn ∈ Rd̄n×d̄n is an orthogonal matrix spanning the row space of A(n).

The core tensor Z captures the interaction between the mode matrices U1, . . . ,UN .

It is analogous to the diagonal singular value matrix in conventional SVD. However,

it is worth noting that Z does not have the diagonal structure [61].

3.3.2 Grassmann Manifolds

Given an n-dimensional real vector space V , the Grassmann manifold (or

simply Grassmannian) Gd(V) (with 0 ≤ d ≤ n) is a set of all d-dimensional linear

subspaces of V [87]. In the special case where V = Rn, the Grassmannian Gd(Rn) is
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denoted as Gn,d. Each point on Gn,d represents a subspace spanned by the column

space of an n × d orthogonal matrix. Thus, all orthogonal matrices Y ∈ Rn×d

spanning the same linear subspace are considered equivalent, i.e.

bYc = {YR|R ∈ O(d)}, (3.4)

where O(d) = {R ∈ Rd×d|R>R = RR> = Id} is the orthogonal group.

We use the projection metric [87] as the measure of the geodesic distance

between two points on a Grassmann manifold. Let θ = (θ1, . . . , θd)
> be the principal

angles between the two linear subspaces Y1 and Y2, the geodesic distance based on

the projection metric is computed as

dc(Y1,Y2) = ||sin(θ)||2, (3.5)

where sin(θ) is the vector of sines of the principal angles.

If Y1,Y2 ∈ Rn×d are the orthogonal basis of Y1 and Y2, respectively, the

principal angles between the subspaces can be numerically computed by performing

SVD on Y>1 Y2 [88]. The singular values of this SVD are the cosines of the principal

angles.

The projection metric can be understood as the Euclidean distance in Rn×n

by defining an embedding ΨP (Gn,d) as

ΨP : Gn,d → Rn×n, span(Y) 7→ YY>. (3.6)

Thus, the corresponding inner product or projection kernel of the space can be

obtained as

kP (Y1,Y2) = tr
[
(Y1Y

>
1 )(Y2Y

>
2 )
]

= ||Y>1 Y2||2F , (3.7)
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where tr is the matrix trace operator and ||.||F is the Frobenius norm. As kP (Y1,Y2) =

kP (Y1R1,Y1R2) for any R1,R2 ∈ O(d), this kernel is well defined. The proof that

kP (Y1,Y2) is positive definite is given in [89].

3.3.3 Representing Tensors on Product Manifolds

As a result of performing SVD on the flattening matrix A(n), we obtain two

orthogonal matrices Un and Vn. The reason for not choosing Un to represent the

geometry of the tensor is that each Un is a point on a special orthogonal group

SO(dn). The geodesic distance on SO(dn) cannot be obtained as a closed form.

Furthermore, if points on SO(dn) are mapped to a Grassmann manifold, the geodesic

distance would always be zero [63].

The matrix Vn in (3.3) spans the row space of A(n). As it is usually the case

that dn < d̄n, where d̄n is defined in Section 3.3.1, Vn can be substituted by an d̄n×dn

orthogonal matrix Ṽn by selecting the columns of Vn corresponding to the non-zeros

singular values. Hence, the tensor A can be represented geometrically as a Cartesian

product of the mappings of each Ṽn to a point on the Grassmann (factor) manifold

Gd̄n,dn . Furthermore, it is known that the Cartesian productM = Gd̄1,d1×. . .×Gd̄N ,dN

is also a smooth manifold with the manifold topology equivalent to the product

topology [90]. Thus, the tensor A can be represented as a point on this product

manifold.
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3.4 Computations on Product Manifolds

To account for domain shifts in face recognition, we characterize the tensor

by synthesizing facial variations due to illumination, blur and 2D alignment from a

single face image. While we defer the details on the synthesis process to the next

section, here we focus on performing computations on the latent domain, the prod-

uct of Grassmannians, where tensors corresponding to source domain face images

are modeled to infer the identity of tensors derived from target domain faces. More

specifically, we first present details on estimating the geodesic distance on product

manifolds, which can accommodate cases where the source domain has only one face

image per subject. We then derive a positive definite kernel for product manifolds

based on an extension of the projection metric to product spaces. With multiple

images per subject in the source domain, this kernel can be used in any kernelized

learning algorithm to account for domain shifts due to other factors, such as 3D pose

and expression, that are not explicitly synthesized in Section 3.5. As an illustra-

tion, by extending the kernel linear discriminant analysis (KLDA) on Grassmann

manifolds [89] to product spaces using the proposed kernel, we can find projec-

tion directions maximizing inter-class variations (such as due to identities) while

minimizing intra-class variations (such as due to pose, expression, occlusion, etc.).

Finally, we present a probabilistic approach for performing classification of image

sets on product spaces, with applications to video-based face recognition.
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3.4.1 Geodesics and Projection Kernels on Product Manifolds

The geodesic in the product manifoldM = Gd̄1,d1×. . .×Gd̄N ,dN is the Cartesian

product of the geodesics in Gd̄1,d1 , . . . ,Gd̄N ,dN [91]. As a result, the geodesic distance

based on the projection metric on the product manifold can be estimated as

dMc (A(1),A(2)) = ||sin(Θ)||2, (3.8)

where A(1) and A(2) are N -order tensors, and Θ = (θ>1 , . . . ,θ
>
N)> with θn is the

vector of principal angles computed on the factor manifold Gd̄n,dn .

In the case where there are only limited training samples, even with just one

sample per subject, the above distance can be used to perform nearest-neighbor

classification on the latent domain. As the geodesic distance between two points is

the shortest distance on a curved space, it provides a meaningful similarity measure

that takes into account the underlying geometry of the latent domain. Next, a

positive definite kernel on product manifolds is introduced. When there are sufficient

training samples, this kernel function can be used with any kernelized learning

technique to statistically account for variations such as 3D pose and expression

on the latent domain.

The extension of the embedding in (3.6) to the product of Grassmann mani-

folds M can be written as:

ΨMP : Gd̄1,d1 × . . .× Gd̄N ,dN → Rd̄1×d̄1 × . . .× Rd̄N×d̄N ,

(span(Y1), . . . , span(YN)) 7→
(
Y1Y

>
1 , . . . ,YNY>N

)
(3.9)

Thus, the projection kernel function on the product manifold can be defined as the
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inner product of this product space:

kMP (C(1), C(2)) = tr

[
N∑
i=1

(
Y

(1)
i Y

(1)>
i )(Y

(2)
i Y

(2)>
i

)]
, (3.10)

where C(m) =
{

Y
(m)
1 , . . . ,Y

(m)
N

}
, Y

(m)
i ∈ Rd̄i×di with i = 1, . . . , N , and(

span(Y
(m)
1 ), . . . , span(Y

(m)
N )

)
∈M with m = 1, 2.

This leads to the following proposition for the projection kernel on product

manifolds:

Proposition 3.4.1. The projection kernel kMP (C(1), C(2)), defined in (3.10), is a

positive definite kernel.

Proof. For all Y
(m)
i ∈ Rd̄i×di with i = 1, . . . , N and m = 1, 2, we have

kMP (C(1), C(2)) = tr

[
N∑
i=1

(
Y

(1)
i Y

(1)>
i

)(
Y

(2)
i Y

(2)>
i

)]

=
N∑
i=1

tr
[(

Y
(1)
i Y

(1)>
i

)(
Y

(2)
i Y

(2)>
i

)]
=

N∑
i=1

kP

(
Y

(1)
i ,Y

(2)
i

)
Thus, kMP (C(1), C(2)) is the sum of the positive definite kernels defined in (3.7) on

each factor manifold. Thus, it is a well-defined and positive definite kernel.

The proposed projection kernel between two tensors, A(1) and A(2), can be

computed by setting Y
(m)
i = Ṽ

(m)
i , for i = 1, . . . , N and m = 1, 2, where Ṽ

(m)
i are

defined as in Section 3.3.1.

Equipped with the above notation of the projection kernel on product mani-

folds, we can adapt any kernelized algorithms to perform the learning on the latent

domain. In this work, we chose the KLDA algorithm on Grassmann manifolds [89]
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since its utility for face recognition has been demonstrated before. When there are

sufficient training data available, the projection directions computed by using KLDA

on product spaces help better separate samples from different people as they maxi-

mize inter-class variations due to identities, while minimize intra-class variations due

to factors such as pose, expression, occlusion, etc. The extension is straight forward

as we only need to replace the kernel function kP (Y1,Y2) with kMP (C(1), C(2)). The

detailed implementation of KLDA on Grassmannians can be found in [89].

3.4.2 Image Set Classification on Product Manifolds

In this section, we present a probabilistic approach to perform domain adap-

tation for the problem of image set classification. Such a setting occurs naturally in

video-based face recognition where several frames in a video sequence are representa-

tive of the facial identity. Given a set of images of a subject, it can be characterized

as a set of points on a latent domain by projecting the points to a product manifold.

For a classification problem with C different subjects, these points can be further

mapped to vectors on a (C − 1)-dimensional space obtained by performing KLDA

on the latent domain using the projection kernel proposed in Section 3.4.1.

Assume that the distribution of points in the set S = {x1, . . . ,xM |xi ∈

R(C−1), i = 1, . . . ,M} can be approximated by a multivariate Gaussian distribu-

tion π ∼ N (µ,Σ), the maximum likelihood estimates of (µ,Σ) can be written

as

µ̂ML =
1

M

M∑
i=1

xi and Σ̂ML =
1

M

M∑
i=1

(xi − µ)(xi − µ)T .
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Given two sets of points S(1) and S(2) represented by the distributions π1 ∼ N (µ1,Σ1)

and π2 ∼ N (µ2,Σ2), respectively, a distance measure between the sets can be es-

timated by using the Kullback-Leibler (KL) divergence, which can be obtained in

closed form as [92,93]:

dKL(π1||π2) =
1

2

(
tr(Σ−1

2 Σ1)− ln
(
det(Σ1)

det(Σ2)

)
+(µ2−µ1)>Σ−1

2 (µ2−µ1)−(C−1)
)
.

(3.11)

where det(Σ) denotes the determinant of Σ. It is worth noting that the Kullback-

Leibler divergence is a positive but non-symmetric measure. As a result, we estimate

the KL divergences of the distribution of a probe set from the distributions of all

the gallery sets, and select the gallery set that produces the minimum distance as

the best match.

3.5 Multifactor Synthesis

Domain shifts caused by variations in factors such as illumination, blur, pose

or expression can result in images of the same person having significantly different

appearance in different domains. Furthermore, domain shifts can also be caused

by localization errors of face detection algorithms when finding the facial bounding

boxes and thus, reduce the accuracy of many existing face recognition algorithms.

In this section, we discuss how to synthesize faces of the same subject with varying

lighting and blur conditions from a single input image. We also present the details

of how to characterize the registration manifold [80] using 2D perturbed images

in order to account for the in-plane alignment issue. The synthesis process helps
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to characterizes domain shifts caused by factors such as illumination, blur and 2D

alignment without the need for a large training dataset. Domain shifts due to other

factors such as 3D pose and expression, that are not explicitly synthesized, are

handled by the kernel learning technique on product manifolds presented in the

previous section.

3.5.1 Illumination

By restricting to convex objects with the Lambertian reflectance model, the

diffused component of the surface reflection is given by

Ii,j = ρi,j max(ni,j · s, 0), (3.12)

where Ii,j is the pixel intensity at position (i, j), ρi,j and ni,j are the albedo and

surface normal at the corresponding surface point, and s is the light source direction

[6]. From (3.12), the initial estimate of the albedo ρ
(0)
i,j can be obtained as

ρ
(0)
i,j =

Ii,j

n
(0)
i,j · s(0)

, (3.13)

where n
(0)
i,j and s(0) are the initial values of the surface normal and illuminant di-

rection. The values of n
(0)
i,j are obtained from an average 3D face in the USF 3D

database [25]. The initial lighting direction s(0) is estimated using the approach

presented in [94].

The initial estimate of the albedo ρ
(0)
i,j can be related to the true albedo ρi,j as:

ρ
(0)
i,j = ρi,j

ni,j · s
n

(0)
i,j · s(0)

= ρi,j +
ni,j · s− n

(0)
i,j · s(0)

n
(0)
i,j · s(0)

ρi,j

= ρi,j + wi,j, (3.14)
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(a) (b) (c)

Figure 3.3: From left to right : (a) input face image, (b) the albedo estimated

using [6], and (c) images of the same person illuminated by using nine different light

sources .

where wi,j =
ni,j ·s−n

(0)
i,j ·s

(0)

n
(0)
i,j ·s(0)

ρi,j is the signal-dependent additive noise. ni,j is the true

surface normal at (i, j) and si,j is the true lighting direction.

By considering (3.14) as a signal estimation problem where ρi,j is the original

signal and ρ
(0)
i,j is the noisy observation, the albedo image can be solved by using the

Linear Minimum Mean Square Error (LMMSE) method as in [6]. Figures 3.3a and

3.3b shows a face image and its albedo estimated using [6], respectively.

It has been shown that the set of all images of a convex, Lambertian object

under different lighting conditions can be approximated by a nine-dimensional linear

subspace [95]. This linear subspace can be characterized by illuminating the object
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using nine pre-specified light sources given in [55]

φ = {0, 68, 74, 80, 85, 85, 85, 85, 51}◦

θ = {0,−90, 108, 52,−42,−137, 146,−4, 67}◦.

where φ and θ denote the azimuth and elevation angles, respectively. Figure 3.3c

shows nine images of the same person illuminated by lights from the above config-

ureation. The face image of this person at an arbitrary illumination condition can

be written as a linear combination of these nine basis images

I =
9∑
i=1

αiIi. (3.15)

As a result, given a single face image, we can estimate the albedo and relight the face

at the nine different light sources using the approach in [6] in order to approximate

the subspace of illumination variations of this person.

3.5.2 Blur

The blurring process can be modeled by the image formulation equation as [86]

Ĩ = I ∗ k + η, (3.16)

where ∗ denotes the 2D convolution between a clean image I(n1×n2) and an unknown

blur Point Spread Function (PSF) k(b1×b2). Ĩ(n1×n2) is the blurred image and η(n1×n2)

represents the noise introduced by the system (i.e. quantization or other sensor

induced errors).

It can be seen that, given {φi}Ki=1 as a complete set of orthonormal basis

functions for Rb1×b2 with K = b1 × b2, any square-integrable, shift-invariant kernel
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k(b1×b2) can be written as

k =
K∑
i=1

αiφi, (3.17)

where {αi}Ni=1 are the combining coefficients. Without noise, (3.16) can be rewritten

as

Ĩ = I ∗
K∑
i=1

αiφi =
K∑
i=1

αi(I ∗ φi). (3.18)

Let D(I) = [(I ∗ φ1)v (I ∗ φ2)v . . . (I ∗ φK)v] be a dictionary of size d ×K, where

d = n1 × n2 with d > K, and (.)v denotes the vectorization operation. The column

span of D(I), i.e. span(D(I)) = {I ∗ k|k ∈ Rb1×b2}, is a subspace containing the set

of convolutions of I with arbitrary kernels of maximum size b1 × b2. Under certain

assumptions, the span(D(I)) allows us to obtain a representation of the image I

that is invariant to blurring with an arbitrary k.

Proposition 3.5.1. Under three assumptions: (i) there is no noise in the system

(η = 0), (ii) the maximum size of the blur kernel b1×b2 = K is known, and (iii) the

K ×K Block-Toeplitz-Toeplitz-Block (BTTB) matrix corresponding to the unknown

blur PSF, under zero boundary conditions for convolution, is full rank, span(D(I))

is a blur-invariant of I. In other words, span(D(I)) = span(D(Ĩ)), where Ĩ is a

blurred version of I.

Proof. See the proof of Proposition 2.1 in [86].

The main advantage of this representation is that there are no constraints

on the shape of the blur kernels that can be handled, as long as the blur kernels

satisfy the above assumptions. In the chapter, all the face images are resized to
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40× 48 and the maximum kernel size is set at b1 × b2 = 7× 7. As a result, for each

relighted face image, a set of K = 49 basis vectors is obtained by convolving the

image with {φi}49
i=1. In our experiments, the set of basis vectors {φi}49

i=1 is selected

as the columns of a 49× 49 identity matrix.

3.5.3 2D Registration

In practice, it may be unrealistic to expect that a face detection system can lo-

cate faces with many appearance variations with high precision. Thus, the extracted

bounding boxes of faces with varying illumination or blur conditions may not align

perfectly. In order to account for the alignment errors during the face localization

process, a set of perturbed images using 2D similarity transformations is obtained

for each face image in order to characterize the registration subspace [80].

A similarity transformation mapping an image coordinate (i, j) to the new

coordinate (u, v) can be written in the homogeneous form as
u

v

w

 =


cos(θ) − sin(θ) tx

sin(θ) cos(θ) ty

0 0 1




s 0 0

0 s 0

0 0 1




i

j

1

 (3.19)

where θ and s are the rotation and isometric scaling parameters, respectively. tx

and ty are the translation parameters. In our experiments, we set the values of

θ as {−4,−2, 0, 2, 4}◦, s as {0.9, 0.95, 1, 1.05, 1.1}, and tx and ty as {−3, 0, 3} as

they provide a reasonable coverage for possible alignment errors between the probe

and gallery images. Bilinear interpolation is employed to sample the transformed

images. As a result, a total of two hundreds and twenty five perturbed images are
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synthesized for each relighted and blurred face image.

3.6 Experiments

We first test our approach for face identification where the goal is to estimate

the subject label of a probe image, and then for face verification, where given a

pair of probe images, the goal is determine if they correspond to the same subject

or not. For face identification we consider four public datasets namely, the CMU-

PIE [2] and AR [7] datasets that contain still faces captured under constrained

settings, the UMD remote face dataset [86] comprising of unconstrained still faces,

and the Honda/UCSD video dataset [96]. For face verification we use the recent,

unconstrained Labeled Faces in the Wild (LFW) dataset [50]. Most of these datasets

contain facial variations that are not explicitly synthesized by our method. We

compare our approach with several other techniques that were evaluated on these

datasets. It is also worth noting that the existing works on domain adaptation

such as [16, 17, 57] may not be applicable to these experimental settings. One of

the reasons is that they impose data requirement constraints that are not often

satisfied as there may be as little as one image available per individual per the

source and target domains. Another reason is that the requirement for the source

and target domains to be more or less homogeneous may not hold in unconstrained

face recognition as domain shifts can be caused by multiple factor variations such

as illumination, blur, expression and alignment. In all these experiments, we use

the algorithmic parameters that were discussed in Section 3.5. Given a cropped face
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image of size 40 × 48, it takes about 4 seconds to generate the synthesized images

and perform the tensor decomposition on an Intel Core i7 computer. It takes less

than 0.05 second to estimate the geodesic distance between two tensors on a product

manifold using the same machine.

3.6.1 CMU-PIE Dataset

First, experimental results on the illumination subset of the CMU-PIE dataset

[2] are presented. Facial bounding boxes are obtained using the Viola-Jones object

detection algorithm [8] without performing any pre-processing alignment step. We

apply the same experiment settings as in [54]. The source domain which contains

the frontal images (c27) with good illumination (f21) of all 68 subjects is used as

our gallery. The target domain containing the remaining frontal images with 10

different illumination conditions is used as probe. The probe set is further divided

into two subsets: a) Good Illumination (GI) consisting of f09, f11, f12, and f20, and

b) Bad Illumination (BI) consisting of f13, f14, f15, f16, f17 and f22. The probe faces

are blurred by convolving with Gaussian kernels of σ ∈ (0.5, 1.0, 1.5, 2, 2.5, 3) and

size (2σ + 1) × (2σ + 1) for each σ. Figure 3.4 shows some examples face images

from the CMU-PIE database used in the experiments.

We compare the proposed method with the algorithms discussed in [86,97,98],

and [54]. The Local Phase Quantization (LPQ) method in [97] utilized phase in-

formation computed locally for every image position in order to perform blur in-

sensitive face classification. On the other hand, Nishiyama et al. [98] proposed a
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(a) (b) (c)

Figure 3.4: Example images of a subject from the CMU-PIE used in the exper-

iments: (a) clear and well-illuminated gallery image, (b) Good Illumination (GI)

probe images, and (c) Bad Illumination (BI) probe images. A 7×7 Gaussian kernel

with σ = 3 is used to blur the probe images.

method called FAcial DEblur INference (FADEIN) that attempted to infer a PSF

representing the process of blur on faces. Gopalan et al. [86] performed blur ro-

bust face recognition by comparing subspaces created from a clean image and its

blurred version on the Grassmann manifold. The Illumination-Robust Recognition

of Blurred Faces (rIRBF) algorithm [54] handled blur and illumination variations

in face recognition by comparing bi-convex sets formulated from face images at dif-

ferent blur and illumination conditions. Recognition rates of different approaches

across domain shifts caused by illumination and (synthetic) blur variations on the

CMU-PIE dataset are shown in Table 3.1. σ = 0 means that the recognition rates

are obtained with only illumination variations and without blurring the probe faces.

As there is only a single gallery image per subject, the nearest-neighbor classifica-
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tion based on the geodesic distance on the latent domain is used in our approach.

It can be seen from the figure that our method achieves consistently higher recog-

nition rates compared to other algorithms in all combinations of illumination and

blur. When the size of the blur kernel increases, the performance of all algorithms

decreases. However, even at the worst scenario (kernel size of 7×7 at σ = 3, bad illu-

mination), the proposed method still achieves the highest recognition rate at 92.4%,

which is 11% higher than the next best result obtained by [54]. In the case of bad

illumination and blur, the assumptions on the Lambertian model and quantization

noise used in obtaining the synthesized blurred images may be violated, and thus

lead to the reduction in the performance of our algorithm.

We also compare our algorithm with the results obtained by applying the

Euclidean nearest-neighbor (NN) classification based on `2 norm directly on syn-

thesized (blurred, relighted and transformed) images from the training set. It is

clear from Table 3.1 that the performance of the method based on direct NN on

synthesized images degrades by a large margin when the blur kernel size increases

and is significantly lower than the recognition rates obtained by our algorithm. This

can be explained by noting that the direct NN method only searches for the closest

discrete point in the image space rather than modeling domain shifts due to multiple

factor variations as in our approach.

Recognition results using the proposed approach without synthesizing images

at different illuminations are also included. It can be seen from Table 3.1a that

when the lighting component is held out, the performance of the proposed method

remains approximately the same with good illuminated faces. However, in the case of
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bad illumination in Table 3.1b, the recognition rates reduces significantly, especially

when the size of the blur kernel is large. This shows the importance of modeling

illumination variations in our approach when the lighting condition is bad.

Table 3.1: Recognition rates (in %) of different approaches across illumination and

(synthetic) blur variations on the CMU-PIE dataset. σ is the standard deviation of

the Gaussian kernel used for blurring.

(a) Good Illumination (f09, f11, f12 and f20)

σ 0 0.5 1 1.5 2 2.5 3

LPQ [97] 99.63 99.63 99.63 99.63 97.05 79.42 46.32

FADEIN [98] + LPQ 98.53 95.6 93.6 91.2 89.8 88.60 87.13

Grassmannian [86] 99.63 99.63 99.63 99.63 99.63 96.32 93.38

rIBRF [54] 99.7 99.7 99.63 99.63 99.63 99.63 97.45

NN2 with synthesized images 95.59 93.75 91.91 91.91 77.2 58.82 52.21

Our approach (without illumination) 100 100 100 99.63 99.63 99.26 98.53

Our approach 100 100 100 100 100 100 99.26

(b) Bad Illumination (f13, f14, f15, f16, f17 and f22)

σ 0 0.5 1 1.5 2 2.5 3

LPQ [97] 99.1 97.79 96.08 88.97 73.04 58.08 27.7

FADEIN [98] + LPQ 91.5 87.7 81.8 69.11 62.74 56.37 44.61

Grassmannian [86] 85.71 84.66 84.24 79.2 71.01 67.23 60.92

rIBRF [54] 95.1 92.7 92.7 91.6 88.2 84.78 81.36

NN2 with synthesized images 92.89 86.27 81.37 68.87 66.42 54.65 35.05

Our approach (without illumination) 98.77 98.77 98.77 96.08 96.08 92.65 88.48

Our approach 100 100 100 99.26 98.77 96.64 92.4
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(a) (b) (c)

(d) (e) (f)

Figure 3.5: Six facial images of a subject from the first session in the AR dataset [7].

The faces are detected and cropped using the OpenCV implementation of the Viola-

Jones object detection algorithm [8].

3.6.2 AR Dataset

In this section, experimental results for face images in the AR face dataset [7]

are presented, which contain expression variations and real occlusions. It is worth

mentioning that the proposed approach is not explicitly designed to handle domain

shifts due to occlusion and expression. Hence, this offers a test case to analyze the

robustness of our method to variations that are not synthesized.

The AR face database contains frontal images of more than 100 individuals

taken over two sessions separated by two weeks time. Following the experimental

setups in [4, 99], a total of 12 images per person are used in the experiments. Face
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detection is also performed using the Viola-Jones object detection algorithm. How-

ever, unlike [4, 99], we do not perform any facial alignment step and instead, use

the bounding boxes returned by the face detection algorithm directly in the recog-

nition. The detected faces from six images of an individual in the first session of

the AR dataset are shown in Figure 3.5. They are labeled a through f , and the

corresponding images in the second session are labeled a′ through f ′. In addition to

occlusions, there are also expression variations between the images.

Table 3.2 compares the recognition rates for different approaches on the AR

dataset with a variety of training and testing sets. These are very challenging ex-

periments as in many cases, there are approximately 50% occlusions in both the

training and testing images. As a large part of the face images is occluded, the

albedo cannot be reliably estimated and thus, we do not perform the synthesis for

illumination. Furthermore, because the number of training samples is limited, the

nearest-neighbor classification based on the geodesic distance is employed in our ap-

proach. Recognition rates using the simple Euclidean nearest-neighbor classification

based on the `2 and `1 norms, NN2 and NN1, are also included. We also compare

our algorithm with two methods, Partial Within-Class Match (PWCM) [99] and

Partial Support Vector Machines (PSVM) [4], that are specifically designed to han-

dle occlusion in face recognition. PWCM performs classification by reconstructing

a test sample as a linear combination of the training samples from each class. The

reconstruction is solely based on the visible data in the face images. On the other

hand, PSVM extends SVM to handle occlusion by deriving a criterion that can

handle the case of missing entries in the feature vectors.
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Table 3.2: Recognition rates (%) with real occlusion on the AR dataset for a variety

of training and testing sets. Results for other methods were obtained from [4]

Training Set Testing Set PSVM [4] PWCM [99] NN2 NN1 Our approach

[e, f ] [a] 96.0 89.0 45.0 79.0 91.0

[e, f ] [a′] 79.4 71.0 31.0 50.0 76.0

[e, f ] [b, c, d] 80.0 72.0 31.7 59.7 66.3

[e, f ] [b′, c′, d′] 58.7 47.3 20.3 32.7 52.7

[e, f ] [e′, f ′] 57.0 55.0 25.5 29.0 66.5

[e, f, e′, f ′] [b, c, d, b′, c′, d′] 86.6 76.2 31.3 56.5 79.8

[e, f, e′, f ′] [a, a′] 96.4 95.0 48.5 83.0 95.0

It can be seen from the table that our method significantly outperforms both

the Euclidean nearest-neighbor classification algorithms. Although our results are

not as good as the ones obtained by PSVM, it is encouraging to see that the proposed

algorithm is better than PWCM in most cases. Especially in the case where there

are occlusions in both the training ([e, f ]) and testing sets ([e′, f ′]), the proposed

algorithm outperforms both PSVM and PWCM by a large margin (66.5% compared

to 57.0% and 55.0%, respectively). These experiments show that our method is

robust to domain shifts caused by variation factors such as occlusion and expression

even if they are not explicitly modeled.

3.6.3 UMD Remote Face Dataset

We then present recognition results on the UMD remote face dataset using

the same data partitioning reported in [86]. This is an unconstrained dataset used
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Figure 3.6: Example images of six subjects from the UMD remote face dataset.

First row: source domain containing clean face images. Second row: target domain

containing moderately blurred face images. Third row: target domain containing

severely blurred face images.

for surveillance consisting of cropped faces of 17 subjects. In addition to moderate-

to-severe blur, face images in the dataset also contain moderate variations in other

factors such as pose, illumination, expression and occlusion. In this experiment, the

source domain contains face images with variations such as illumination, occlusion

and pose but without much blur. The target domains contain faces with moderate

and severe amount of blur as well as other variations. Figure 3.6 shows some example

images of the UMD remote face dataset with respect to different domains.

The comparisons between our approach and the method discussed in [86] are

shown in Figure 3.7. It can be seen that our approach achieves better results for both
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moderate and severe blur conditions regardless of the number of training samples.

When only a single training image per subject is available, our approach based on

the nearest-neighbor classification using geodesic distance on the latent domain still

obtains significantly higher recognition rates compared to [86], for both moderate

and severe blur cases. This is due to accounting for domain shift due to not only blur

variations as in [86], but also for illumination and 2D alignment in our approach.

The performance of the proposed KLDA algorithm on the latent domain increased

significantly when more data are used in the training. The main reason is that it is

able to learn the structure of the image space better by capturing domain shift due

to other factors such as 3D pose and expression that are not explicitly modeled.

3.6.4 Honda/UCSD Video Dataset

Experiments on face recognition from videos were also conducted on the Honda/UCSD

dataset [96]. This dataset contains 59 videos sequences of 20 different subjects. The

number of frames in each video sequence varies from 12 to 645. Variations in illu-

mination, pose, occlusion and expression appear across different sequences of each

subject. The faces are also detected and cropped from the video frames using the

Viola-Jones algorithm.

The proposed approach is compared with different algorithms such as [5,100–

103]. Kim et al. [100] presented a discriminative learning method based on canonical

correlations (DCC) and applied it to image set classification. Another discriminative

learning technique proposed Wang and Chen, called Manifold Discriminant Analysis
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(a)

(b)

Figure 3.7: Recognition rates for moderate and severe blurred probe images on the

UMD remote face dataset. (This figure is best viewed in color).
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(MDC) [101], modeled each image set as a manifold and tried to find an embedded

space to better separate manifolds from different classes. On the other hand, Ce-

vikalp and Triggs [102] developed methods called AHISD (Affine Hull based Image

Set Distance) and CHISD (Convex Hull based Image Set Distance) that character-

ized each image set by a convex geometric region (the affine or convex hull). The

Sparse Approximated Nearest Points (SANP) algorithm [103] introduced a between-

set distance defined as the nearest distance between sparse approximated points in

the two sets. The last method used in the comparison is the Dictionary-based Face

Recognition from Video (DFRV) algorithm [5] that extracted joint appearance and

behavioral features from facial videos using dictionary learning.

We follow the experiment procedure in [103]: 20 sequences were used for train-

ing and the remaining 39 sequences for testing. Table 3.3 shows the recognition

results obtained by using the algorithm presented in Section 3.4.2. The set length

is the maximum number of cropped face images per video sequence. If the number

of images in a sequence is less than the set length, all the images are used for classi-

fication. It can be seen from the table that our algorithm consistently outperforms

all other methods in the comparison. This shows that when multiple video frames

are available, the proposed KLDA on product manifolds is able to find an embedded

space that separated face images from different individuals well.
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Table 3.3: Recognition rates (%) on the Honda/UCSD dataset for different values

of the maximum set length. The results for other methods were obtained from [5].

Set Length DCC MDA AHISD CHISD SANP DFRV Our approach

[100] [101] [102] [102] [103] [5]

50 frames 76.92 74.36 87.18 82.05 84.62 89.74 97.44

100 frames 84.62 94.87 84.62 84.62 92.31 97.44 97.44

Full Length 94.87 97.44 89.74 92.31 100 97.44 100

Average 85.47 88.89 87.18 86.33 92.31 94.87 98.29

3.6.5 Face Verification

In order to apply the proposed approach to face verification, given a pair of

face images I1 and I2, two 4-th order tensors A(1) and A(2) are formulated from

the synthesized images at different illumination, blur and 2D transformations as

presented in Section 3.5. The vector Θ = (θ>1 , . . . ,θ
>
4 )>, with θj is the vector of

principal angles on the factor manifold Gd̄j ,dj (j = 1, . . . , 4), is computed from the

pair of tensors and used as the feature in the training and testing based on Support

Vector Machines (SVM) [19]. In this experiment, SVM with RBF kernel was used

for classifying whether the pair of images was from the same individual or not. The

optimal values of the parameters for training SVM are determined by performing

cross validation on the training set.

We use the Labeled Faces in the Wild (LFW) [50] dataset for our experiments.

It is a challenging dataset containing more than 13000 unconstrained face images

from 5749 individuals. Face images in the dataset have large variations in pose,
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(a) Same (b) Different

Figure 3.8: Examples of same and different pairs of face images from the LFW

dataset.

illumination, age, expression, etc. Figure 3.8 shows examples of same and different

pairs of face images from this dataset.

We follow the “image restricted” protocol [50]: only binary “same” or “differ-

ent” labels are available for pairs of image, the identities of the images are unknown.

The performance is measured by using 10-fold cross validation. In order to evaluate

the robustness of the proposed algorithm to face cropping quality, we report our

results on both unaligned and aligned cropped faces of the dataset [104].

Table 3.4 compares the face verification rates of different approaches on the

LFW dataset on this image restricted protocol. The method proposed by Nowak

and Jurie [105] used randomized binary trees to quantize the differences between

local descriptors sampled from “same” and “different” image pairs. On the other

hand, Wolf et. al. [106] developed a new patch-based descriptor based on Local Bi-

nary Patterns (LBP) [107]. Another method used in the comparison was proposed

by Pinto et. al. [108] that combined V1-like models and multiple kernel learning
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(MKL) for face verification. All of these above methods were evaluated on LFW

images aligned using an unsupervised technique called funneling [109]. We also in-

clude the results obtained using a recent pose-invariant algorithm based on adaptive

probabilistic elastic matching (APEM) [110] on both aligned and unaligned images.

It can be seen from the table that the proposed approach outperforms other methods

used in the comparison, except the APEM on aligned images. This is understand-

able as our algorithm does not explicitly synthesize pose and expression variations.

Furthermore, a data-driven method such as KLDA on product manifolds cannot be

applied as only pairs of face images are available without any identity information.

However, the result is encouraging as we are able to outperform the APEM method

on unaligned images, even though that method combines multiple features such as

LBP [107] and SIFT [11] and is designed to handle pose variations. The verification

rate obtained using the proposed approach on aligned images is only slightly better

than when using unaligned images. This shows that our algorithm is not as sensitive

to 2D face alignment as in other approaches, since this factor is explicitly accounted

for using 2D perturbations. The Receiver Operating Characteristic (ROC) curves

of different approaches are shown in Figure 3.9 in order to better evaluate their per-

formances. The ROC curve of the proposed algorithm is obtained by thresholding

the probability estimates computed using kernel SVM.
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Figure 3.9: ROC curves of different approaches on the LFW dataset.
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Table 3.4: Performance comparison for different methods on the most restricted

LFW. Both mean classification rates and standard errors of the mean are reported.

Method Accuracy ± Error (%)

Nowak (unaligned) [105] 72.45± 0.40

Nowak (aligned) [105] 73.93± 0.49

Hybrid descriptor-based (aligned) [106] 78.47± 0.51

V1-like/MKL (aligned) [108] 79.35± 0.55

APEM (fusion, unaligned) [110] 81.70± 1.78

APEM (fusion, aligned) [110] 84.08± 1.20

Our approach (unaligned) 82.67± 1.14

Our approach (aligned) 82.94± 0.83

3.7 Conclusions

We have shown that the underlying geometry of a set of face images of a person

under multiple factor variations plays an important role in the recognition of face

images from different domains. We showed that such a geometry can be studied by

representing this set of images as a tensor and mapping the tensor to a point on a

product manifold. The product manifold served as a latent domain where domain

shifts due to multifactor variations such as illumination, blur and 2D alignment

were jointly modeled. For cases where only a single gallery image per subject was

available, geodesic distance was used to perform nearest-neighbor classification on

the latent domain. Furthermore, a novel positive definite kernel based on an exten-

sion of the projection metric to the product space was proposed. When there were
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sufficient samples available from the source domain, this projection kernel could be

employed in any kernelized learning techniques to account for domain shifts due to

other facial variations such as 3D pose and expression that were not explicitly mod-

eled. Finally, a probabilistic method for classifying image sets on the latent domain

using the KL divergence was also introduced. Competitive experimental results on

different datasets showed the effectiveness of the approach in handling domain shifts

caused by multifactor variations.
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Chapter 4: Hierarchical Feature Learning using Sparse Coding for

Facial Attribute Analysis

4.1 Introduction

Many applications in multimedia processing rely on the ability to extract in-

formation such as expression, age class, and gender from face images in order to

improve user experience as well as to personalize content for each individual. How-

ever, this is a very challenging task due to the complex geometry of human faces

as well as the appearance variations caused by factors such as illumination, pose,

expression, occlusion, and resolution, especially when the face images are captured

in unconstrained environments. In order to handle these variations, it is important

to be able to effectively capture prominent visual structures from the input data at

different scales and orientations.

The tasks of recognizing facial attributes including expression, age class, or

gender can be considered as multi-class classification problems. A common pipeline

for solving such problems consists of two stages: feature extraction and classification.

In many current approaches, hand-crafted features such as LBP [12], Gabor [42], or

SIFT [11] are used to obtain a representation of the input image. However, these
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features usually lack explicit semantic meanings [111] and also do not take advantage

of variations in training data. Furthermore, the process of designing these features

requires expert knowledge and is often tedious as well as time consuming. An

emerging trend with promising results in other computer vision and multimedia ap-

plications such as facial expression recognition [111], object classification [112,113],

and scene understanding [114], is that of learning feature representation directly

from the training data. These approaches have been demonstrated to effectively

capture complex relationships between different statistical patterns in data.

Motivated by the works in [112, 113], we propose a fully automatic approach

for performing classification of different attributes including expression, age class,

and gender from face images using hierarchical feature learning. The feature rep-

resentations are obtained from the training data using dictionary learning, sparse

coding, and spatial pooling. An overview of the proposed system is shown in Fig-

ure 4.1. First, facial bounding boxes and landmarks are detected from the input

images using the methods of [9, 115]. In the next step, Procrustes analysis [28] is

employed to align the detected landmarks to a reference mean shape in order to

account for variations in 2D translations, rotations and scales. Hierarchical feature

learning is performed separately in a local window at each landmark location. As

a result, the number of encoders obtained from the feature learning process is the

same as the number of extracted landmarks in each face. Given a face image, these

encoders are used to obtain the local feature representations at the corresponding

landmarks. The local features at all the landmarks are then concatenated into a

single feature vector representing the whole face. The advantage of learning feature
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Figure 4.1: Analysis pipeline from input image to generative feature extraction and

classification output (best viewed in color).

representations locally at each landmark location is that it provides the correspon-

dences between local facial regions in the presence of 3D pose variations. However,

in the case that the input images have very low resolution, landmarks cannot be re-

liably extracted and feature learning is carried out for the whole face with regularly

sampled patches. Finally, the feature vectors of all training images are used to learn

a set of classifiers - one for each facial attribute. In our approach, classification is

done using the linear SVM [19] due to its effectiveness in handling high dimensional

data.

The main contribution of this work is a multistage architecture for performing

facial attribute analysis using sparse coding. To the best of our knowledge, this

is one of the first works that employs sparse coding and deep neural networks for

analyzing multiple facial attributes such as expression, age class, and gender at the

same time.
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The first advantage of the proposed method is that the features are learned

using a network of multiple layers allowing us to better capture the richness of visual

data. Another advantage is that the feature learning process is generative and can be

employed with different label sets in order to solve different classification problems

using the same set of features. Furthermore, the proposed system is fully automatic

requiring no human intervention, and a single set of configuration parameters was

used for all experiments.

Organization of the chapter: The remainder of the chapter is organized as

follows. Related work is discussed in Section 4.2. Section 4.3 presents the details of

the proposed approach. Experimental results are provided in Section 4.4. Section

4.5 concludes the chapter with a brief summary and discussion.

4.2 Related Work

Understanding attributes such as expression, age and gender from face images

has been an active research topic for several years. This section summarizes relevant

previous works on facial expression, age, and gender classification as well as feature

learning for the proposed algorithm.

In most appearance-based facial analysis algorithms, there are two main steps:

extracting features for facial representation and performing classification, usually by

employing algorithms such as AdaBoost [116] or SVM [19]. In the first step, the

representation can be obtained from either the whole face or local regions using

different features such as Haar-like features [117,118], Gabor [119,120], local binary
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patterns (LBP) [121,122], or SIFT [123]. Although these algorithms have obtained

reasonable performance in some scenarios, the use of hand-crafted features may

not sufficiently capture the complex structures of human faces, especially in uncon-

strained settings where there are variations in pose, illumination, and resolution.

In order to improve the performance of gender and age classification of face images

taken in real- world settings, Shan [124, 125] proposes to learn discriminative LBP

bins using AdaBoost. However, the main drawback of these methods is that their

performance is still bounded by the discriminative power of LBP features.

Another family of approaches for analyzing facial attributes is based on mod-

eling shape variations using facial landmarks. Turaga et al. [126] show that the

space of landmarks can be interpreted as a Grassmann manifold and the problem of

age estimation can be posed as a problem of manifold function estimation. Taheri

et al. [127] uses a Riemannian interpretation of deformations that facial expressions

cause on parts of the face to derive models for expressions on the affine shape-space.

The common drawback of these algorithms is that they heavily rely on the accu-

racy of the landmark estimation process to model shape variations. As a result,

these methods may encounter difficulties in uncontrolled environments when the

landmark extraction is not reliable. Although landmark extraction is also used in

our approach, it is more robust to low accuracy landmark locations. Feature rep-

resentations are extracted on local windows centered at the landmarks and spatial

pooling helps to handle the effect of small transformations in each local window.

Furthermore, in the case where landmarks are not reliably extracted, for instance

when the input face has low resolution, feature learning is instead performed over
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the whole face.

The process of designing features for visual data is very challenging as well

as time consuming. As a result, learning features from the raw data has attracted

a lot of interest from the research community. An early work by Manjunath and

Chellappa [128] extracts salient features at different spatial scales in the input image

using a multistage system. Deep belief networks (DBN) [129] and its variants, such

as deep autoencoders [130] and convolutional DBNs [131], learn high-level feature

representations from unlabeled data and have been demonstrated to be effective

for different classification problems. Inspired by the success of deep learning, the

approaches in [113,132] use multi-layer sparse coding networks to build feature hier-

archies layer by layer. A recent work by Liu et al. [111] proposes a deep architecture,

AU-aware Deep Networks(AUDN), for facial expression recognition by decomposing

the appearance variations into a batch of local facial Action Units (AUs).

4.3 Our Approach

4.3.1 Face and Landmark Detection

Given an input face image, the face is first detected using the part-based

face detector in [115]. The advantage of using this face detector over tradition

methods such as the Viola- Jones face detector [8] is that it performs well for face

images captured in unconstrained environments, possibly with large pose variations.

Furthermore, [115] also detects landmarks from the input face. However, in this

chapter we employ the facial landmark detection approach based on Constrained
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Local Models (CLM) [9, 133] as it provides better localizations of the landmarks

compared to [115]. In the CLM framework, the fitting of landmarks is posed as the

search for the point distribution model (PDM) parameters, p = {s,R, t,q}, that

jointly minimizes the misalignment error over all landmarks. The PDM parameters

contain a global scaling s, a rotation R, a translation t, and a set of non-rigid

parameters q. The misalignment error can be written as [133]:

Q(p) = R(p) +
n∑
i=1

Di(xi; I) (4.1)

where R is a regularization term that penalizes complex deformations, Di denotes

the measure of misalignment for the ith landmark xi in the image I. In the approach

proposed by Asthana et al. [9], each Di is a discriminant linear detector (i.e. patch

expert) trained to detect part ith. An illustration of the basic idea behind CLM

fitting is shown in Figure 4.2, with more details in [9]. Figure 4.3 shows some

examples of landmarks detected from unconstrained face images in the Labeled

Faces in the Wild (LFW) [50] dataset using the approach in [9].

After the face and landmarks are detected from the input image, Procrustes

analysis [28] is performed in order to align the input face with a reference mean

shape. This alignment step accounts for variations in translation, in-plane rotation,

and scale. As a result, it helps bring faces to roughly the same location in the image.

An example of aligning a face image using the detected landmarks and Procrustes

analysis is shown in Figure 4.4.
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Figure 4.2: Overview of the CLM Framework: (a) Sample image Patches. (b)

Computed response maps from exhaustive local search for landmarks. (c) Instances

from the 3D Shape Model.

4.3.2 Dictionary Learning

Let Y = [y1, . . . ,yn] ∈ Rd×N be a set of d-dimensional training samples,

where each yi (i = 1, . . . , N) is a vectorized image patch in our case, the task

of learning a dictionary D = [d1, . . . ,dK ] ∈ Rd×K together with the sparse codes

X = [x1, . . . ,xN ] ∈ RK×N is typically posed as the following optimization problem:

D∗, X∗ = argmin
D,X

‖Y −DX‖2
F (4.2)

s.t. ‖xi‖p ≤ λ,∀i ∈ [1, N ]

‖dj‖2 = 1,∀j ∈ [1, K]
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Figure 4.3: Examples of detected landmarks from unconstrained face images in the

LFW dataset using [9].

where ‖Y‖F denotes the Frobenius norm defined as ‖Y‖F =
√∑

i,j |Yi,j|2, λ is a

positive constant, and the constraint ‖xi‖p ≤ λ promotes sparsity in the coefficient

vectors. The constraints ‖dj‖2 = 1, j = 1, . . . , K, keep the columns of the dictionary

(or dictionary atoms) from becoming arbitrarily large that may result in very small

sparse codes.

Many algorithms have been proposed in the literature for solving the optimiza-

tion problem in (4.2). In the case where the `0 norm is enforced, i.e. ‖xi‖0 ≤ λ where

λ is the number of non-zeros in the coefficient vector, the K-SVD algorithm [134]
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(a) Input image (b) Aligned image

Figure 4.4: An example of aligning a face image using the detected landmarks and

Procrustes analysis.

can be used to train a dictionary. K-SVD is an iterative algorithm that operates by

alternatively computing D and X. The sparsity can also be promoted by enforc-

ing the `1 norm on X, i.e. ‖xi‖1 ≤ λ. In this case, the online dictionary learning

algorithm in [135] can be applied to solve the above problem. This algorithm ap-

proximates the optimal solution iteratively by efficiently minimizing at each step a

quadratic surrogate function of the empirical cost over the set of constraints. More

details about these methods can be found in [134] and [135]. In our method, K-SVD

is used to learn the dictionary due to its efficiency compared to the online learning

algorithm in [135].
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4.3.3 Sparse Coding

After the dictionary D is learned, given a vectorized image patch y, its sparse

code x can be computed by minimizing the following objective function:

‖y −Dx‖2
2 s.t. ‖x‖p ≤ λ (4.3)

where ‖x‖p can either be the `0 or `1 norm of x. If the `0 norm of x is enforced,

Orthogonal Matching Pursuit (OMP) [136] can be applied to compute the sparse

code. OMP is a greedy algorithm that iteratively selects an element of the sparse

code to be made non-zero to minimize the residual reconstruction error. In the case

of enforcing the `1 norm of x, the objection function in (4.3) can be formulated as

a LASSO (Least Absolute Shrinkage and Selection Operator) problem:

min
x
‖y −Dx‖2

2 + β‖x‖1 (4.4)

where β is a positive regularization constant. A numerical method called LARS

(Least Angle Regression Stagewise) [137] can be used to solve (4.4) for all possi-

ble values of β at once. Similar to OMP, LARS is also an iterative algorithm but

it guarantees that the solution path is the global optimizer of (4.4). In the pro-

posed approach, OMP is employed to compute the sparse codes of image patches

in order to be consistent with the dictionary learning method discussed in Section

4.3.2. Furthermore, by pre-computing the inner products between image patches

and dictionary atoms, a batch version of the OMP algorithm [138] can be employed

to provide significant speed-up.

Rather than using the original sparse codes in the later stage of the framework,
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a non-linear operation is applied on the sparse codes in order to obtain a new set of

features. Instead of employing a sigmoid function as in traditional neural networks,

the non-linear rectification is performed by separating the negative sparse coefficients

from the positive ones. This operation is termed POSNEG and has been shown to

play an important role in improving the final system performance [112,139]. Given

a sparse code x ∈ RK , the rectified sparse code u ∈ R2K is obtained using POSNEG

by setting

uj = max(0, xj) (4.5)

uj+K = max(0,−xj) (4.6)

where uj and xj are the elements at the index j of the vectors u and x, respectively.

4.3.4 Hierarchical Feature Learning

When landmarks can be reliably extracted from the input face image, the

process of learning feature representations is performed independently for each local

window centered at each landmark location. The final feature vector for each face is

the concatenation of the features learned at local windows centered at all landmark

locations. However, when we cannot detect landmarks from the input face image,

for instance when the image has low resolution, feature learning is carried out for the

whole face. For simplicity, the following discussion of hierarchical feature learning

considers the latter case.

Layer 1: First, dense sampling is performed on each training face image to

obtain a set of small overlapping patches (e.g. 6× 6). In order to reduce the effect
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of illumination, each patch is contrast- normalized by subtracting the mean and

divided by the standard deviation of its intensity values. As the number of patches

obtained from the dense sampling can be very large, we randomly sample a subset of

patches to use for learning the dictionary. For face images or local windows of size of

at least 25×25, we found that a good trade-off between accuracy and computational

efficiency can be obtained by setting the number of randomly sampled patches per

face image or local window to 100. After the dictionary is learned, the sparse

codes for all sampled patches are computed using the batch OMP algorithm. The

POSNEG non-linear rectification is then performed on the sparse codes in order to

obtain a new set of features. Spatial max-pooling is used to aggregate the sparse

codes over each spatial cell:

zj = elem max
j∈Ni

uij (4.7)

where uij are rectified sparse codes in each spatial cell Ni, and elem max is the

element-wise maximum operator. In our approach, max-pooling is carried out over

spatial cells of size 4× 4. The reason for selecting max-pooling over other methods

of pooling such as average- pooling is because it is particularly well-suited for the

separation of sparse features [140]. Figure 4.5 visualizes the process of local pooling

over each spatial cell.

Layer 2: Similar computations are performed in this layer except that the

input is not image intensities but instead, the pooled sparse codes from the previous

layer. The pooled features obtained from the previous layer are further aggregated

by concatenation over each 2 × 2 neighborhood and contrast- normalized. The
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Figure 4.5: Local pooling over spatial cells. For ease of viewing, the size of each

spatial cell is set to 2×2. Blue circles are original feature vectors and each red circle

is a pooled vector over a spatial cell (best viewed in color).

concatenated feature vector helps handle local variations in illumination as well as

foreground-background contrast. This contrast-normalization is different from the

one in the first layer and is performed as follow:

f̂ =
f√
‖f‖2 + ε

(4.8)

where f is the concatenated feature, and ε is a small positive constant. The value of

ε is set to 10−7 as it is found to work well in our experiments. However, as long as

ε is small enough, it does not affect the performance of the system significantly. At

the end of this layer, spatial pyramid max-pooling is used to aggregate the sparse

codes. In our approach, a three-level spatial pyramid is employed to compute the

final feature vector for each face image. A visualization of this spatial pyramid is

shown in Figure 4.6. By performing max-pooling over the whole image (or local

87



Figure 4.6: A three-level spatial pyramid used in the proposed approach.

window), a single feature vector is obtained at level 0 of the spatial pyramid. At

level 1, four feature vectors are obtained from dividing the image into four quadrants

and performing max-pooling on each quadrant. Similarly, the image is divided into

9 quadrants in level 2, yielding nine feature vectors. The final vector is obtained by

concatenating 14 feature vectors from the spatial pyramid.

4.3.5 Implementation

The proposed framework is written in C++ and optimized to run on com-

puting clusters using a hybrid MPI-OpenMP implementation. Jobs are divided to
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Figure 4.7: Visualization of a hybrid MPI-OpenMP implementation on a cluster of

K nodes.

nodes in a cluster using Boost.MPI1, a C++ interface to the standard Message

Passing Interface (MPI). OpenMP is employed for parallelization inside each node

in order to reduce latency from data movement between nodes. A visualization of

this implementation is shown in Figure 4.7.

In all experiments reported in Section 4.4, the training and testing are per-

formed on a cluster of six nodes with 24 2.2Ghz processors on each node. It takes

around 30 minutes to learn the features using a two-layer network for 20000 images

of size 61× 49 (i.e. for the Images of Groups dataset in Section 4.4.2.1).

4.4 Experiments

Experimental results on different constrained and unconstrained datasets are

reported in this section. For the Extended Cohn-Kanade (CK+) dataset [141] and

Labeled Faces in the Wild [50] dataset, we report the results using feature learning

1http://www.boost.org
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for both with and without landmarks as they can be reliably detected from the face

images in these datasets. For the Kaggle facial expression challenge dataset [142]

and Images of Groups dataset [143] dataset, we do not perform landmark detection

and feature learning is carried out for the whole face image as many of these images

have low resolution.

Parameter settings: In the case that landmarks are used, local windows of

size 25× 25 centered at each landmark location are extracted. The patch size is set

equal to 6×6. The number of the dictionary atoms is set to 500 and 1000 for the first

and second layer, respectively. For both layers, the value of λ is set to 4 for training

and 40 for testing, respectively. This is similar to the finding in [139] as smaller

sparsity constant is needed to make the learning more stable. Furthermore, we need

a higher sparsity constant (i.e. denser feature vectors) in order to better capture the

structure of the test samples. Max-pooling is performed over spatial cells of size 4×4

in the first layer. The feature vectors obtained from the first layer are aggregated

over 2× 2 spatial cells before feeding to the second layer. Final feature vectors are

obtained by performing max-pooling over a three-level spatial pyramid, partitioned

into 1× 1, 2× 2, and 3× 3. Linear SVMs with regularization parameters of 100 and

1 are employed for classification with and without landmarks, respectively. This is

due to the difference in the dimensions of the final feature vectors in each case. The

values of these parameters are obtained by using the findings in [113, 134, 139] to

create a small subset of values, and perform cross-validation on the training data to

obtain the optimal settings.
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4.4.1 Expression Classification

4.4.1.1 Extended Cohn-Kanade (CK+) Dataset

In this section, we present the expression recognition results for the CK+

dataset [141]. This dataset contains 593 image sequences of 123 subjects taken un-

der controlled conditions. However, there are only 327 sequences with seven valid

expression labels: Anger (An), Contempt (Co), Disgust (Di), Fear (Fe), Happiness

(Ha), Sadness (Sa), and Surprise (Su). Figure 4.8 shows examples of these expres-

sions. For each sequence, the first frame (Neutral) and three peak frames with the

most expressions are used and results are reported over 10-fold cross-validation. As

the resolution of images in this dataset is relatively high (640×940), we can reliably

extract 66 landmarks from each face and the final feature vector is the concatenation

of the features obtained at the local window centered at each landmark location.

Table 4.1 shows the expression recognition results for different methods on

the dataset. We compare our approach with the results obtained by using hand-

crafted features such as LBP, SIFT, and HOG. It can be seen from the table that

the proposed method significantly outperforms these approaches. It is worth men-

tioning that linear SVMs is used in our method whereas SVMs with non-linear

RBF kernels are used with the mentioned approaches. The proposed method is

also compared against CSPL [144] that learns common and specific patches for

discriminating facial expressions. Even though CPSL only handles six expression

categories from 96 subjects, it still does not perform as well as our approach in
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(a) Neutral (b) Anger (c) Contempt (d) Disgust

(e) Fear (f) Happy (g) Sad (h) Surprise

Figure 4.8: Examples of different facial expressions in the CK+ dataset.

this dataset. Furthermore, recognition results using over-complete representations

(OR) [111] and AU-aware Receptive Fields (AURF) [111] are also included in the

comparison. AURF achieves the accuracy of 92.22, which was the state-of-the-art

performance in the CK+ dataset. The main drawback of AURF is that it uses the

class information in the process of feature learning and thus, the learned representa-

tions cannot be applied to recognize other facial attributes. Finally, the performance

obtained using our algorithm to learn features for the whole face without landmark

extraction is also reported. It can be seen from the table that learning features at

landmark locations helps improve the absolute recognition accuracy by nearly 2%

on this dataset.

In order to better assess the detailed performance of our algorithm, the con-

fusion matrix is shown in Table 4.2. It can be seen from the confusion matrix that

the recognition accuracies of Contempt, Fear, and Sad are not as good as that of
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Table 4.1: Expression recognition accuracy on the CK+ dataset.

Method Accuracy

LBP (SVM with RBF kernel) [111] 83.37%

SIFT (SVM with RBF kernel) [111] 86.39%

HOG (SVM with RBF kernel) [111] 89.53%

CSPL (SVM with unknown kernel) [144] 89.89%

OR (linear SVM) [111] 91.44%

AURF (linear SVM) [111] 92.22%

Our approach 93.04%

(without landmarks, linear SVM)

Our approach 94.65%

(with landmarks, linear SVM)

other expressions. This may be caused by the limited number of training samples

in these categories compared to other expressions.

4.4.1.2 Kaggle Facial Expression Challenge Dataset

In this section, we report the results on the Kaggle facial expression challenge

dataset [142]. This dataset contains unconstrained images collected using Google

image search. There are 28709 training images and 7178 testing images with seven

expression categories: Neutral, Anger, Disgust, Fear, Happy, Sad, and Surprise.

Figure 4.9 shows some examples of faces with different expressions in the dataset.

It can be seen that this is a very challenging dataset due to the appearance varia-

tions of the face images as a result of pose, illumination, occlusion, as well as other
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Table 4.2: Confusion matrix for expression recognition on the CK+ dataset using

our method with landmarks.

Neutral Anger Contempt Disgust Fear Happy Sad Surprise

Neutral 97.86 0.61 1.53 0 0 0 0 0

Anger 1.48 91.11 2.96 2.22 0 0 2.22 0

Contempt 5.56 1.85 88.89 0 0 0 0 3.7

Disgust 0 0 0 94.92 0 1.69 1.69 1.69

Fear 0 0 0 0 84.00 4.00 0 12.00

Happy 0 0 0 0 0 98.55 0 1.45

Sad 0 7.14 3.57 3.57 0 0 85.71 0

Surprise 0 0 1.20 1.20 0 0 1.20 96.39

factors. Furthermore, as the resolution of the images is low (48 × 48), we cannot

reliably detect landmarks from the face and thus, only report the result obtained by

considering the whole face. In order to increase the number of training samples and

avoid significant over-fitting, the training set is supplemented with images obtained

by performing similarity transformations on the training images. The comparisons

between different methods are shown in Table 4.3. The method proposed by Ionescu

et al. [145] uses SIFT and multiple kernel learning (MKL) to perform the classifi-

cation. It achieves the best recognition rate (67.48%) in the challenge for methods

that do not use feature learning. The top performer in the challenge [146] uses the

primal objective of an SVM as the loss function for training a deep network and

obtains a recognition rate of 71.16%. Although our approach does not perform as
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(a) Neutral (b) Anger (c) Disgust (d) Fear

(e) Happy (f) Sad (g) Surprise

Figure 4.9: Examples of different expressions in the Kaggle facial expression chal-

lenge dataset.

well, it does not require label information in the feature learning process. How-

ever, it is possible for the proposed approach to accommodate label information

in the learning process by training dictionaries discriminatively using approaches

such as [147,148]. A drawback of these approaches is that they are computationally

expensive compared to learning a generative dictionary and may not be applicable

with high-dimensional data. We intend to pursue this as a future work.

4.4.2 Age Class and Gender Classification

In this section, we report the results of age class and gender classification on the

Images of Groups dataset [143] and gender classification on the LFW dataset [50].
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Table 4.3: Expression recognition accuracy on the Kaggle dataset.

Method Accuracy

Radu + Marius + Cristi [145] 67.48%

RBM [146] 71.16%

Our approach 69.35%

4.4.2.1 Images of Groups Dataset

The Images of Groups dataset contains 28231 faces from 5080 images collected

from Flickr. Many faces in the dataset have low resolution with the median face

having only 18.5 pixels between the eye centers, and 25% of the faces have under

12.5 pixels. All faces are normalized to 61×49 based on the eye centers. As a result,

the feature learning in our approach is performed for the whole face, not at each

landmark location. Each face in the dataset is labeled with gender and one of seven

age classes: 0-2, 3-7, 8-12, 13-19, 20-36, 37-65, and 66+. Figure 4.10 shows some

example faces from the dataset with different gender and age class.

Following the experimental setup in [143], we randomly sample 3500 faces that

are uniformly distributed among all age categories to use as the training set. An

independent set of 1050 randomly sampled faces is used as the testing set. In our

approach, the same feature representation is used for both classifying age class and

gender in the dataset. For age classification, the accuracy of an exact match (AEM)

and the accuracy of allowing an error of one age category (AEO) (e.g. a 3-7 year

old classified as 8-12) are used as evaluation measures [149]. Table 4.4 reports the
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Figure 4.10: Example face images with different age class and gender from the

Images of Groups dataset.

age class recognition accuracies of different approaches on the dataset. It can be

seen from the table that our approach achieve more than 3% improvement in the

AEM metric over the next best result in [124]. The age classification accuracy with

respect to each age class is shown in Figure 4.11. Intuitively, it is expected that

the proposed approach performs really well for the infant age class (0-2) and the

elder age class (66+) as the appearance of human faces in these two classes are very

different from the remaining age classes.

Gender classification results of different approaches are shown in Table 4.5.

The proposed method also outperforms all other algorithms used in the comparison
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Table 4.4: Age classification results on the Images of Groups dataset.

Method Classifier AEM AEO

Appearance [143] Gaussian maximum likelihood 38.3% 71.3%

Appearance + Context [143] Gaussian maximum likelihood 42.9% 78.1%

Gabor [124] Adaboost 43.7% 80.7%

LBP [124] Adaboost 44.9% 83.0%

Boosted Gabor [124] SVM (RBF kernel) 48.4% 84.4%

Boosted LBP [124] SVM (RBF kernel) 50.3% 87.1%

PLO [149] Ordinal hyperplane ranker [150] 48.5% 88.0%

Our approach Linear SVM 53.4% 90.7%

for gender classification on this dataset. The performance of the proposed method

for age and gender classification on this dataset is very encouraging given that

the dataset was taken in unconstrained conditions and thus, is very challenging.

Figure 4.12 shows the gender classification accuracy for different age classes. We

can observe from the figure that it is more difficult to recognize gender for infant

and young children (from 0 to 12 years old) from their face images than for older

humans. This is because their facial features have not been discriminative enough

given the ages.

4.4.2.2 Labeled Faces in the Wild (LFW) Dataset

The LFW dataset [50] contains 13233 labeled images from 5749 individuals

collected from the web. There are 2977 females and 10256 males in the dataset.

The gender classification results are reported for both feature learning with and
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Figure 4.11: Age classification accuracies for different age classes on the Images of

Groups dataset.

without using landmarks over 5-fold cross-validation. The folds can be downloaded

from http://face.cs.kit.edu/download/LFW-gender-folds.dat. All images of

individual subjects are only in one fold at a time in order to prevent the algorithm

from learning the identity of the persons rather than the gender. When landmarks

are not used, all the extracted faces are resized to 48 × 48 in order to test the

performance of the algorithm under low resolution. We also do not perform any

preprocessing step to align the faces before learning the features in this case.

Table 4.6 compares the gender classification results of different approaches on

the LFW dataset. It is worth mentioning that the methods in [125] are performed

only on 7443 frontal faces of the dataset. They do not consider non-frontal faces

as well as faces that are difficult to establish the ground truth. Furthermore, in

their methods, all the faces were aligned with a commercial face alignment software

99

http://face.cs.kit.edu/download/LFW-gender-folds.dat


Table 4.5: Gender classification results on the Images of Groups dataset.

Method Accuracy

Appearance [143] 69.6%

Appearance + Context [143] 74.1%

Gabor + Adaboost [124] 70.2%

LBP + Adaboost [124] 71.0%

Boosted Gabor + SVM [124] 73.3%

Boosted LBP + SVM [124] 74.9%

Our approach 77.7%

(without landmarks, linear SVM)

and have high-resolution (250 × 250). As a result, it is very encouraging to see

that the performance of our approach using feature learning without landmarks is

only marginally less than their results, even we perform classification low-resolution,

unaligned, and non-frontal faces. When landmarks are used, the performance of our

method is significantly better (98.38%) compared to the ones obtained by other

approaches. It can be seen from the table that the classification rates for female

are always lower than that for male due to the imbalance of the number of training

samples between two classes.

4.5 Conclusions

We have presented a hierarchical approach for performing feature learning

using sparse coding with applications to facial attribute analysis. The proposed

approach compares favorably, and in many cases, significantly outperforms state-
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Figure 4.12: Gender classification accuracies for different age classes on the Images

of Groups dataset.

Table 4.6: Gender classification results on the LFW dataset.

Method Classifier
Accuracy

Female Male Overall

Standard LBP [125] SVM with RBF kernel 89.78% 95.73% 93.38%

Boosted LBP [125] AdaBoost 91.58% 95.98% 94.40%

Boosted LBP [125] SVM with RBF kernel 92.02% 96.64% 94.81%

Our approach (low resolution, Linear SVM 83.56% 95.18% 92.57%

unaligned, without landmarks)

Our approach (with landmarks) Linear SVM 95.64% 99.17% 98.38%

of-the-art methods in different classification tasks. Unlike other feature learning

algorithms that use label information in the training process, the feature learning

process in our method is generative and a common feature representation can be
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used to train an arbitrary set of classifiers for different facial attributes such as

expression, age class, and gender.
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Chapter 5: Head Pose Estimation using Randomly Projected Dense

SIFT Descriptors

5.1 Introduction

Head pose estimation is the process of finding the 3D orientation of a human

head from an input face image. It has been widely employed in many applications

such as human-computer interaction, gaze direction detection and multi-view face

recognition. For instance, in human-computer interaction, especially for computer

gaming, the ability to accurately estimate the head pose plays an important role

in interpreting head gesturing [151]. In driver monitoring, it is critical to be able

detect the driver’s eye gaze direction in order to help avoid vehicle accidents. It was

shown by Langton et al. [152] that the head pose is highly correlated with the gaze

direction. In several pose-invariant face recognition algorithms that render frontal

views from non-frontal face images [27,35,36], head pose estimation is an important

pre-processing step in the synthesizing process.

Head pose estimation is a very challenging problem due to several factors

including projective geometry, illumination variations, facial expressions, subject

variability and camera distortion. Different techniques have been proposed in order
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to tackle these challenges. One of the most popular approaches is using Support

Vector Regressors (SVRs) [20] trained from face images captured at different viewing

directions to predict the head pose [153,154]. However, the main drawback of these

approaches is that a single SVR may not capture complex variations in the face image

space resulted from varying the head pose. An improvement proposed by Guo et

al. [155] employs Support Vector Machines (SVMs) [19] to add a small correction to

the head pose estimate returned by SVR. However, if the initial estimate obtained

using SVR deviates far away from the true head pose, the correction by SVM may

not be sufficient to bring the it close to the true value.

In this chapter, an automatic method for estimating the head pose from a

single 2D face image is presented. In the proposed approach, rather than employing

a single SVR to predict the whole range of head pose, an SVM is first applied to

provide a coarse estimation. Multiple SVRs, each trained for a different interval of

the head pose range, is then used to refine the initial estimate. Rather than us-

ing original intensity values, dense SIFT descriptors are extracted from image grid

points in order to obtain a representation that is robust to noise and illumination

variations. Random Projection (RP) is used to reduce the dimension of the con-

catenated descriptor vector for efficient processing. The advantage of the proposed

approach is that it does not depend on the extraction of facial feature points such as

the mouth and eye corners and the nose tip, which by itself is a challenging process.

In addition, the proposed method is fully automatic. The overview of our approach

is illustrated in Figure 5.1.

Organization of the chapter: Section 5.2 discusses some related works. The
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Figure 5.1: Overview of the proposed head pose estimation method.

proposed head pose estimation algorithm is presented in Section 5.3. Experimental

results on different datasets are given in Section 5.4.

5.2 Related Work

Many algorithms have been proposed in the literature in order to solve the

problem of head pose estimation. This section provides a brief review of different

head pose estimation approaches. A more detailed survey on head pose estimation

methods can be found in [13].

By directly comparing a given image with a set of exemplars, appearance tem-

plate methods estimate the head pose of the input face as the 3D angles of the

most similar template. The comparison is carried out by either using mean squared

error [156], normalized cross-correlation [157], or Gabor wavelets [158]. The main

advantage of these methods is that the reference set can be expanded anytime to

adapt to changing conditions. Furthermore, they do not require facial feature points

or negative training samples [13]. However, these techniques are sensitive to noise

caused by illumination and expression changes as the matching processes are based

on pair-wise similarities. In addition, they are only capable of inferring discrete pose

values.
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Classification-based methods [159] learn head pose classifiers by dividing the

training images into a discretized space of poses. The most commonly used classifiers

for this task are multi-class SVMs [160] or multi-class linear discriminant analysis

(LDA) [161]. The improvement of these approaches over the appearance template

methods is that they learn to ignore the appearance variations not corresponding to

the changes in head pose. However, both the appearance template and classification-

based methods can only return discrete poses and also suffer from non-uniform

sampling in the training data.

In order to obtain continuous pose estimates, regression-based methods learn

continuous mapping functions between the face image and the pose space. The

regression can be performed using algorithms such as Support Vector Regression

(SVR) [153, 154], Gaussian Process Regression (GPR) [162], or neural networks

[163, 164]. A recent work by Haj et al. [165] applies Partial Least Squares (PLS)

to the problem of head pose estimation. The main drawback of these approaches

is that it is not clear whether the learned mapping function is able to capture the

complex variations in the data well enough [13].

Manifold embedding methods [166–168] assume that the variations in head pose

lie in a low-dimensional manifold. In these approaches, the manifold embedding is

learned from the training data and the head pose estimation is performed on the

low-dimensional space. The main weakness of manifold embedding methods is that

appearance variation is a result of not only pose changes but also other factors such

as identity and lighting changes.

By employing the relative configuration of facial features such as eyes, mouth
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corners and the nose tip, geometric methods [169–171] can obtain an estimate of the

pose using projective geometry. The main advantage of these techniques is that they

are very fast and simple once the facial feature points are obtained. On the other

hand, these techniques depend on the feature extraction process and are susceptible

to outliers and missing features.

5.3 Head Pose Estimation

5.3.1 Dense SIFT Descriptors

The Scale Invariant Feature Transform (SIFT), proposed by Lowe [11], is one

of the most popular algorithms for extracting keypoints from an image. At each

detected keypoint, a local descriptor is created by forming a histogram of gradient

orientations and magnitudes of image pixels in a small window centered at this

point. The size of the local window is usually chosen at 16× 16. It is then divided

into sixteen 4×4 sub-windows. Gradient orientations and magnitudes are estimated

within each sub-window and put into an 8 bin histogram. The histograms of the sub-

windows are concatenated to create a 128-dimensional feature vector (descriptor) of

the keypoint.

In our approach, local SIFT descriptors are extracted at regular image grid

points, rather than only at keypoints, in order to form a dense description of the

input face image. This dense representation was also employed successfully for image

alignment and gender classification in [18] and [172], respectively. The advantage of

this representation is that it does not depend on the matching of keypoints, which
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(a) (b) (c)

(d) (e) (f)

Figure 5.2: Input face images at different poses and the corresponding visualizations

of their dense SIFT descriptors.

is often challenging when significant pose and illumination variations are present

between the input images. Figure 5.2 shows the input face images at different poses

and their corresponding dense SIFT descriptors. In the second row of the figure,

the first three principal components of each descriptor are mapped into the principle

components of the RGB color space in order to visualize purpose. Similar to [18],

the first component is mapped into R+G+B, the second and third components are

mapped into R-G and R/2+G/2-B, respectively.

5.3.2 Dimension Reduction using Random Projection (RP)

As the length of the descriptor extracted at each image grid point is 128,

the dimension of the concatenated feature vector for the whole input face image
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will become significant. In order to improve the efficiency of the proposed algo-

rithm, PCA [83] can be used to project the concatenated feature vector into a

lower-dimensional subspace. However, the eigenvalue decomposition of the data co-

variance matrix is very computationally expensive due to the large dimension of the

feature space. A more efficient way to reduce the dimension of the feature vectors

is by projecting them onto a random lower-dimensional subspace.

The key idea of random projection comes from the Johnson-Lindenstrauss (JL)

lemma [173]:

Lemma 5.3.1. (Johnson-Lindenstrauss) Let ε ∈ (0, 1) be given. For every set Q of

#(Q) points in RN , if n is a positive integer such that n > n0 = O
(
ln(#(Q))

ε2

)
, there

exists a Lipschitz mapping f : RN → Rn such that

(1− ε)||u− v||2 ≤ ||f(u)− f(v)||2 ≤ (1 + ε)||u− v||2 (5.1)

for all u,v ∈ Q.

Basically, this lemma states that the pairwise distances between any two points

are approximately maintained when the points are projected onto a random subspace

of suitably high dimension. It is often the case that the performance of a wide variety

of machine learning algorithms when given access to only randomly projected data

is essentially the same as their performance on the original dataset [174].

Because the majority of patches in a face image are uniform, when estimating

the SIFT descriptors, there are many bins in the histogram of image gradients with

zero values. As a result, the concatenated descriptor vector is sparse. Figure 5.3

shows the SIFT descriptors extracted from two different locations in a face image.
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Figure 5.3: SIFT descriptors extracted from two different locations in a face image.

The sparsity of the concatenated SIFT descriptor vectors helps to further im-

prove the efficiency of the random projection. For K-sparse signals (i.e. have at most

K non-zero entries), the computational complexity of the random projection reduces

from O(nNC) to O(nKC) for a dataset containing C vectors [175]. Furthermore,

the embedding subspace dimension now depends only on the information content K

of the dataset, not on its cardinality C as in the case of non-sparse signals. In other

words, if the signals are K-sparse, the JL lemma holds for n = O(K logN) [174].

In our implementation, each element φi,j of the random projection matrix Φ
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is generated independently according to the following simple distribution:

φi,j =

√
3

n


+1 with probability 1/6

0 with probability 2/3

−1 with probability 1/6

(5.2)

The mapping given by this matrix satisfies the JL lemma and is more computation-

ally efficient compare to Gaussian distributed random matrices [175]. By using this

discrete random matrix in performing random projection, it is able to avoid costly

matrix multiplication operations. As a result, this helps to significantly improve the

efficiency of the proposed approach.

5.3.3 Support Vector Machines and Support Vector Regressions

Given a set of labeled training data D = {xi, yi}Ni=1, where xi ∈ Rn and

yi ∈ {−1,+1}, an SVM tries to find a separating hyperplane parameterized by the

pair (w, b) that achieves the maximum margin [19]. The value of (w, b) is obtained

by solving the following constrained optimization problem:

min
w,b,ξ

1

2
||w||2 + C

N∑
i=1

ξi (5.3)

subj. to yi(w · xi + b) ≥ 1− ξi

ξi ≥ 0

where ξi are slack variables. The above optimization problem can be solved by the

method of Lagrange multipliers. After obtaining the pair (w, b) from training, the

predicted label for a test sample x is given by:

y = sign(w · x + b) . (5.4)
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In order to handle multi-class classification problems, we can either train SVMs for

each pair of classes (AVA) or train classifiers for each class against the rest (OVA).

In our implementation, the AVA approach was employed to train the multi-class

SVMs.

An extension of SVM for regression problems, called Support Vector Regres-

sion (SVR) was proposed by Drucker et. al. [20]. In SVR, the regression function

f(x) is optimized such that it has most ε deviation from the output value yi ∈ R

for a training sample xi ∈ Rn, and is as flat as possible at the same time. In other

words, we need to solve the following optimization problem:

min
w,b,ξ+,ξ−

1

2
||w||2 + C

N∑
i=1

(ξ+
i + ξ−i ) (5.5)

subj. to yi −w · xi − b ≤ ε+ ξ+
i

w · xi + b− yi ≤ ε+ ξ−i

ξ+
i , ξ

−
i ≥ 0

The predicted value for a test sample x is obtained as:

y = f(x) = w · x + b . (5.6)

In order to improve the performance in non-linearly separable cases, SVMs and

SVRs with Gaussian kernels (also called RBF kernels) are used in our approach. An

RBF kernel has the following form:

K(RBF )
γ (x, z) = exp

[
−γ||x− z||2

]
(5.7)

where γ is the parameter controlling the width the kernel.
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5.3.4 Predicting by Combining Classification and Regression

In the proposed method, rather than just performing a regression on the head

pose of an input face image, classification and regression are combined together

in order to obtain a more robust estimate. First, the space of possible head pose

configurations is divided into a fixed number of bins. Face images whose poses lie in

the same bin have the same label and a multi-class SVM is trained for these labels.

It can be seen that this multi-class SVM provides a coarse prediction of the head

pose. Face images in the same bin are then used to train an SVR in order to refine

the pose estimate. As a result, the number of SVRs will be equal to the number

of bins (classes). It is clear that this number is decided based on the number of

available training images and how fine we want the post estimate to be.

As the SVR method tries to avoid over-fitting by finding a flat curve within a

small ε margin, a single SVR may not capture irregular curves like the one in Figure

5.4 [155]. The advantage of combining SVC and SVR over a global SVR is that

it provides a better approximation to the data distribution by training the SVRs

“locally”.

5.4 Experiments

5.4.1 Training

The proposed algorithm was trained on 2D images generated from the 3D faces

in the USF 3D database [25]. The 2D views were synthesized at different viewing
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Figure 5.4: An illustration of using SVR to approximate an irregular curve.

angles by rotating the 3D models and projecting into the image plane. Figure 5.5

shows the 2D face images of a person in the database generated at different poses

and the visualization of their corresponding dense SIFT descriptors. As the USF

database contains the geometry as well as the texture information of the 3D faces,

the face images at different illumination conditions can also be generated from the

surface normals and albedo using the Lambert’s Cosine Law :

Ii,j = ρi,j max(nTi,js, 0) (5.8)

where s is the direction of the light source, Ii,j, ni,j and ρi,j are the image intensity,

surface normal and albedo at the pixel (i, j), respectively. This is necessary in order

for the method to handle possible illumination variations in the test images.

In our experiments, all training images were scaled to a fixed size of 50× 50.

The gap between two image grid points is set to 5. As a result, there are 100

(= 10× 10) descriptors obtained from each 50× 50 image. Each image is padded in
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(a) (b) (c)

(d) (e) (f)

Figure 5.5: First row: face images of a person in the USF 3D database generated

at different viewing angles. Second row: visualization of the corresponding dense

SIFT descriptors.

order to obtain SIFT descriptors for grid points on the borders. As the dimension of

each descriptor is 128, the length of the concatenated feature vector for each resized

face image is 12800. Random projection is applied to bring the dimension of the

feature vector down to 2000.

5.4.2 Pointing ‘04 database

In order to evaluate the proposed approach, it was first tested on the Pointing

‘04 head pose database [48]. This database consists of 15 sets of images. In each set,

there are 2 series of 93 images of the same person with varying yaw and pitch angles.

The head poses are quantized into nine angles of pitch: {−90◦,−60◦,−30◦,−15◦,
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(a) (b) (c)

Figure 5.6: Face images of a subject in the Pointing ‘04 database at different head

poses.

0◦, 15◦, 30◦, 60◦, 90◦} and thirteen angles of yaw: {−90◦,−75◦,−60◦,−45◦,−30◦,−15◦,

0◦, 15◦, 30◦, 45◦, 60◦, 75◦, 90◦}. Figure 5.6 shows example images of a subject in the

Pointing ‘04 database at different head poses.

The proposed approach is compared with methods presented in [161], [155] and

[165]. The results obtained using dense SIFT descriptors with PCA are also included

for comparison. The measure of performance used in the comparison is the Mean

Absolute Error (MAE). It is defined as the average of the absolute errors between the

estimated and ground-truth poses. The comparison of the MAEs between different

approaches on the Pointing ‘04 database is shown in Table 5.1. It can be seen from

Table 5.1 that the proposed method outperforms all other algorithms used in the

comparison.

5.4.3 Multi-PIE database

Experiments on the Multi-PIE dataset [3] were also performed in order to

better assess the performance of the proposed algorithm. We employed the same
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Table 5.1: Comparison of the MAEs between different approaches on the Pointing

‘04 database.

Method Yaw Error Pitch Error

Local-PCA [161] 24.5◦ 37.6◦

Local-LPP [161] 29.2◦ 40.2◦

Local-LDA [161] 19.1◦ 30.7◦

LARR2 [155] 9.23◦ 7.69◦

Kernel PLS [165] 6.56◦ 6.61◦

Dense SIFT + PCA 6.17◦ 6.42◦

Our approach (Dense SIFT + RP) 6.05◦ 5.84◦

experiment setup as in [165]: 2700 face images of 144 subjects, under frontal illumi-

nation and varying expressions, were used. There are thirteen discrete yaw angles in

the images, varying between −90◦ and 90◦ with increments of 15◦. Example images

from the Multi-PIE database are shown in Figure 5.7. Table 5.2 shows the MAEs

obtained using our approach and other methods on the Multi-PIE dataset. The

results of the methods based on linear PLS, kernel PLS and Principal Component

Regression (PCR) were obtained from [165]. It can be seen from the table that

our method based on dense SIFT and PCA was comparable to the kernel PLS and

outperformed the algorithms based on linear PLS and PCR. When RP was used in-

stead of PCA for dimension reduction, it further reduced the estimation error from

5.63◦ to 5.11◦.
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(a) (b) (c)

Figure 5.7: Face images of a subject in the Multi-PIE database at different head

poses.

Table 5.2: Comparison of the MAEs in the yaw angle between different approaches

on the Multi-PIE dataset.

Linear PLS Kernel PLS PCR [165] Dense SIFT Dense SIFT

[165] [165] + PCA + RP

Yaw Error 9.11◦ 5.31◦ 11.03◦ 5.63◦ 5.11◦

5.5 Conclusions

In this chapter, we have presented an automatic method for head pose esti-

mation from a single image. By extracting dense SIFT descriptors from the input

image, we obtain a high dimensional feature vector that is robust to noise and il-

lumination variations. The dimension of the feature vector is reduced using RP for

efficient processing. A combination of SVM and SVR is used improve the predic-

tion of the head pose. The advantage of the proposed approach is that it does not

depend on the extraction of facial features such as the eye corners, nose tip and
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mouth corners from the input image. Experimental results on the Pointing ‘04 and

CMU-PIE databases demonstrate the effectiveness of the approach.
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Chapter 6: Directions for Future Work

In this chapter, different future directions for exploring the research presented

in the dissertation are discussed.

6.1 3D Face Reconstruction

One of the possible future research directions is extending the method for

synthesizing frontal faces proposed in Chapter 2 to the task of 3D face reconstruction

(Figure 6.1). By dividing the input face image into patches and employing a similar

MRF framework, a set of 3D parameters of the patches can be obtained in order to

inferred the 3D structure of the input face. If each patch is assumed to be planar

as in the Make3D algorithm [176], the 3D parameters can be the 3D locations and

orientations of the patches. However, in order to capture the complex geometry

of a 3D face, it is better to represent each 2D image patch as the projection of a

parametric curved surface in the 3D space.

6.2 Explicitly Synthesize Out-of-Plane Rotations and Expressions

Another future work is to explicitly incorporate other variation factors such

as 3D pose and expression into the face recognition approach based on multifactor
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Figure 6.1: Visualization of 3D reconstruction from a 2D face image.

analysis discussed in Chapter 3. As a result, it is necessary to investigate on how

to obtain analytical representations of the image space resulting from the varia-

tions in head pose or facial expression. It was proved in [177] that the transformed

images of a 3D object under all viewing directions form a parametric manifold in

a 6-dimensional linear subspace. Although there have been many works on man-

ifold representations of facial expression [178, 179], most of them were based on

non-parametric appearance manifolds. It is desirable to obtain an analytical repre-

sentation of the expression manifold in order to systematically sample face images

of a subject at different expressions.

6.3 Simultaneous Feature and Multitask Learning

One drawback of the approach in Chapter 4 is that the classifier for each task is

learned separately using the corresponding labels. It may be possible to improve the

performance of these classifiers by training them together using multitask learning

[180]. Multitask learning is a machine learning technique that allows the learner to

use the commonality among the tasks in order to obtain better generalization.
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Assume that there are T tasks (linear classification or regression) to be learned.

For each task t ∈ [1, . . . , T ], there are Mt samples. For simplicity, assume that all

samples have the same dimension d. Our goal is to learn a common dictionary D,

a matrix A containing the sparse codes of all data samples, and a weight matrix

W simultaneouly. The dimension of the dictionary D is d × kD where kD is the

number of atoms. The vector αti is the sparse code for the data sample xti (sample

i in task t). Each αti is a column of the matrix A of dimension kD × M where

M =
∑T

t=1Mt. Column t of W (denoted by wt) is the classifier (or regressor) for

task t. The dimension of W is kD × T .

The optimal values of D, A, and W can be obtained by solving the following

minimization problem:

{D∗, A∗,W ∗} = argmin
D,A,W

T∑
t=1

{ Mt∑
i=1

{
||xti −Dαti||22 + λ1||αti||1 + γ1C(yti,wt ·αti)

}
+ λ2||wt||22

}
(6.1)

where yti is the training label (or output) for sample xti. C[yti(wt · αti)] is the

loss function. In the case of classification, we employ the logistic loss C(y, ŷ) =

log(1 + exp(−yŷ)) as it is similar to the hinge loss in SVM as well as differentiable.

For regression tasks, the squared loss C(y, ŷ) = ||y − ŷ||2 is used.
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