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Atmospheric ammonia is a precursor to the formation of fine particulate matter, 

which contributes to human health problems and decreased visibility.  Atmospheric 

ammonia may also be transported through wet and dry deposition to water bodies 

such as the Chesapeake Bay, contributing to excess nutrient loadings that cause 

eutrophication.  Vehicle exhaust contains ammonia, created by a reaction of NOx with 

H2 in the three-way catalytic converter.  Ammonia emissions were measured using a 

mass balance on the Fort McHenry Tunnel, Baltimore, Maryland.  Atmospheric 

concentrations of gas-phase and particulate-phase ammonium were measured during 

2003-2004 using denuders and filter packs.  The average vehicle (veh) emission rate 

for these studies was 8.1 ± 4.3 mg NH3-N veh-1 km-1. We estimate the annual 

emission of ammonia from vehicles to be 151 metric tons NH3-N yr-1 in Baltimore 

City and County and 707 metric tons NH3-N yr-1 in all of Maryland.   
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Chapter 1: Introduction 

The information presented in this thesis is the result of research done during the years 

2003-2005 in the pursuit of a Master of Science degree in Marine, Estuarine and 

Environmental Sciences with a specialization in Environmental Chemistry at the 

University of Maryland, College Park.  Laboratory work was done at the Chesapeake 

Biological Laboratory in Solomons Island, Maryland, a member laboratory of the 

University of Maryland Center of Environmental Sciences. 

Three-way catalytic converters were introduced in 1975 to reduce the emissions of 

harmful chemicals such as carbon monoxide (CO), nitrogen monoxide (NO), nitrogen 

dioxide (NO2), and unburned hydrocarbons from automobile exhaust.  One side effect 

of the catalytic process is the reduction of NOx (NO and NO2) to ammonia (NH3) via 

the reaction of nitrogen oxide with hydrogen on the catalyst (Equation 1) (Baum et 

al., 2001; Kean et al., 2000).   

(1) 2NO + 5H2 → 2NH3 + 2H2O

The amount of ammonia generated in this manner on the catalyst is dependent on 

vehicle operating conditions.  Experiments show that vehicles operating fuel-rich 

exhibit higher ammonia emissions (Huai et al., 2000; Allen et al., 2001). 

Ammonia is the primary basic gas in the atmosphere and can react with sulfuric and 

nitric acids (from sulfur dioxide (SO2) and nitrogen oxides (NOx) emissions) to form 

secondary fine particulate matter with an aerodynamic diameter < 2.5 µm (PM2.5) in 
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the form of ammonium sulfate ((NH4)2SO4), ammonium bisulfate (NH4HSO4), and 

ammonium nitrate (NH4NO3).  PM2.5 is one of the six criteria pollutants designated 

by the Environmental Protection Agency (EPA) because of its adverse effect on 

human health and contribution to haze.  In an effort to link air pollution to human 

health, a recent study conducted in Baltimore, Maryland, established a significant 

relationship between ambient PM2.5 measurements and human exposure samples 

(Landis et al., 2001).  After it is inhaled, PM2.5 travels deeper into lung airways than 

larger particles and is retained in those airways (Churg & Brauer, 2000).  An earlier 

study found that this fine particulate matter contributed to excess mortality in some 

U.S. cities (Dockery et al., 1993).   

Particulate matter derived from atmospheric ammonia also contributes to haze and 

decreases visibility.  A study conducted in the Baltimore-Washington region 

determined that ammonium sulfate comprised ~ 60% of the PM2.5 mass fraction 

during haze episodes (Chen et al., 2003), while a California study conducted near a 

dairy farming area with significant ammonia emissions found that ammonium nitrate 

was the largest component (Hughes et al., 2002). 

Atmospheric ammonia may also cause problems in aquatic environments.  

Atmospheric nitrogen inputs (NO3- and NH3) from sources such as chicken and hog 

livestock operations, agriculture, industry, and vehicle emissions have been found to 

account for between 24% (Castro & Driscoll, 2002) and ~ 35% (Howarth et al., 1996) 

of total nitrogen inputs to estuaries in the northeastern United States.  These inputs 

are excess nutrients, causing eutrophication, which affects the health of aquatic flora 
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and fauna by causing algal blooms that block sunlight and create areas of low oxygen 

content. 

This study measured vehicular ammonia emissions in the Baltimore, Maryland, 

metropolitan area to determine the significance of this source of ammonia to the 

region and Chesapeake Bay relative to other sources.  It is part of a larger project 

assessing ammonia emissions and deposition from agricultural operations and urban 

areas in the Chesapeake Bay airshed.  On-road vehicular ammonia emissions were 

measured in the Fort McHenry Tunnel, Baltimore, Maryland, on September 29, 2003, 

November 14, 2003, March 22, 2004, and June 10, 2004. Tunnels have been used 

effectively to measure vehicle emissions in a number of previous studies (Kean et al., 

2000; Fraser et al., 1998; Moeckli et al., 1996; Pierson & Brachaczek, 1983), 

including in the Fort McHenry Tunnel (Pierson et al., 1996). 

Chapter 2 of this thesis describes two pilot studies that were done prior to the main 

study to determine the most effective ammonia measurement method.  Chapter 3 

describes laboratory tests done in order to determine the effectiveness of the denuder 

coating solution that was used, as compared to other denuder coating solutions.  

Chapter 4 describes the main research project of this thesis, four field studies in the 

Fort McHenry Tunnel in Baltimore, MD.  The collected data were analyzed, and an 

average ammonia emission rate determined.  Chapter 5 describes work done with the 

Carnegie Mellon University Ammonia Model and presents results from executions of 

that model.  Appendix A describes the analysis of error that was conducted.  

Appendix B discusses the velocity profile model used to determine mean air velocity 

in the tunnel. 
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Chapter 2: Fort McHenry Tunnel Pilot Studies 

Introduction 

In order to determine the best method for measuring atmospheric ammonia (NH3) in 

the Fort McHenry Tunnel, Baltimore, Maryland, two pilot studies were conducted, 

one on July 29, 2003 and one on August 13, 2003.  The first pilot study was 

conducted using Ogawa passive samplers deployed in such a way to calculate a 

vehicular emission rate in the tunnel.  Because of their ease of use, and low cost, it 

was hoped that Ogawa passive samplers could be used to measure ammonia 

concentrations in the tunnel air.  However, the lower than expected emission rate 

measured during the first pilot study caused concern that something was wrong with 

the sampling method.  An additional concern with the samplers was that they only 

measure gas-phase ammonia.  The second pilot study was conducted with Ogawa 

passive samplers and a glass annular denuder and filter pack combination placed side-

by-side.  Denuders deployed with filter packs are an apparatus know to sample 

ammonia effectively (Andersen & Hovmand, 1994).  During the second pilot study, 

both types of samplers were deployed at the tunnel exit only, to provide ammonia air 

concentration measurements for comparison.  No vehicular emission rate was 

calculated for the second deployment. 
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Methods 

Sampling Site 
A detailed description of the tunnel can be found in the Methods section of Chapter 4 

of this thesis.  The pilot study measurement locations were different than those used 

in the final study and are described in the following sections.  One major 

measurement location difference was that ammonia measurements were taken at the 

tunnel bulkhead (Figure 2.1, location A), which divides the exhaust air shaft halfway 

along the tunnel length.  The bulkhead was reached by walking from the tunnel exit 

through the exhaust air duct above the roadway. 

Flow Rate Measurement 
Anemometers, as described in Chapter 4, were used to measure air velocity.  Air 

velocity measurements were corrected using the factor described in Chapter 4.  For 

the first pilot study, air velocities were measured at the tunnel bulkhead and the 

tunnel exit by hanging the anemometer through vents in the ceiling (Figure 2.1, 

locations A & C), and in the fresh air duct at the tunnel exit (Figure 2.1, location D).  

For the second pilot study, air velocity was measured from the ceiling vents at the 

tunnel exit only. 

Ammonia Measurement, Ogawa Passive Samplers 
The Ogawa passive sampler is a Teflon cylinder consisting of two unconnected 

chambers.  Each chamber holds a reactive filter, held in place with stainless steel 

screens.  The ends of each chamber are capped off with a diffusion end cap 

containing 25 holes (Figure 2.2).  The filters were impregnated with 100 µl of 2%



6

(w/v) citric acid-2% (v/v) glycerin in methanol.  The samplers were kept frozen in 

airtight vials until deployment time and then deployed in a protective PVC cap, held 

in by a clip provided by the manufacturer.  Samplers were always deployed three at a 

time to provide statistical replication, each within their own PVC protective cap 

(Figure 2.3).  For deployment, the PVC caps were attached approximately 5cm apart 

to a metal rod.   

In the first pilot study, 3-PVC cap/sampler assemblies were deployed at locations A, 

C, and D (Figure 2.1) for ~7 hours.  The optimal deployment time of 7 hours for the 

passive samplers was determined using recent studies of vehicle ammonia emissions 

in conjunction with minimum exposure times determined by Roadman et al. 

(Roadman et al., 2003).  The assemblies were hung through slits in the ceiling at 

locations A and C (Figure 2.1) with the closed part of the PVC caps facing traffic to 

protect the samplers.  The assembly was mounted on a free-standing pole at location 

D (Figure 2.1).   

In the second pilot study, two assemblies were deployed at the tunnel exit only 

(Figure 2.1, location C) and were left overnight for ~24 hours.  One assembly was 

deployed with the closed caps facing traffic (perpendicular) and one with the caps 

aligned parallel to traffic to ensure that there was no problem with the orientation.  

Blanks were prepared and measured for each study and were kept in the airtight vials 

until extraction.  Preparation and analysis of the Ogawa samplers for both pilot 

studies was done at the University of Delaware Graduate College of Marine Studies 

in Lewes, Delaware, according to the method detailed by Roadman et al. (Roadman et 

al., 2003). 
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Ammonia Measurement, Denuder/Filter Packs 
A URG annual denuder and filter pack assembly was used to measure the ammonia 

concentration in the tunnel during the second pilot study.  The preparation, operation, 

and extraction of the denuders and filter packs is described in Chapter 4 of this thesis,  

and in Figure 4.2, the only difference being that two denuders, instead of one, were 

deployed in series attached to the filter pack.  The two denuders in series were 

deployed to ensure that the first denuder did not reach maximum ammonia trapping 

capacity.  Denuder and filter extracts were analyzed using the OPA fluorescence 

method (Li et al., 1999).  Analysis of the ammonia in the denuder and filter pack 

extracts was done at the Chesapeake Biological Laboratory and also at the University 

of Delaware.   

Traffic Monitoring 
Traffic was monitored for the first pilot study by videotaping the tunnel exit during 

the ammonia collection period from the control tower located at the north end of the 

tunnel.  Vehicles were counted and classified as light or heavy-duty (diesel-burning).  

Vehicles were counted for the first ten minutes of each of the six video tapes.  An 

average vehicle rate was calculated from these counts and used in the emission 

calculation. 

Emission Calculation 
The amount of ammonia produced per second (mg NH3-N s-1) in the portion of the 

bore sampled was calculated using a mass balance approach similar to the method 

detailed by Pierson et al. (Pierson et al., 1996) and described in detail in Chapter 4 of 

this thesis.  An emission rate was not calculated for the second pilot study as 
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ammonia measurements were taken in only one location in order to compare the two 

methods.  

Results and Discussion 

Table 2.1 presents the air and ammonia measurements taken in the first pilot study.  

The emission rate was calculated from these measurements, the traffic counts, and the 

tunnel bulkhead to exit distance to be .67 mg NH3-N veh-1 km-1. This measurement 

was much lower than expected when compared to results of other vehicular ammonia 

emission studies (Table 4.6).  Because of concern that the passive samplers were not 

measuring the ammonia concentration correctly, the second pilot study was 

conducted.  Table 2.2 presents the results of the second pilot study.  The ammonia 

concentration measured by the passive samplers was 8 µg NH3-N m-3 and the 

concentration measured by the denuder/filter packs was 58 µg NH3-N m-3 over the 

24-hour period.  Because of the low measurements reported by the passive samplers, 

it was decided that denuders and filter packs would be used in the final tunnel studies. 

Two denuders were deployed in series in the second pilot study to ensure that the first 

denuder was not reaching capacity.  The first denuder in series captured 818 µg NH3-

N while the second denuder captured 1.5 µg NH3-N.  Because the second denuder 

captured less than 1% of the total ammonia, it was assumed that the first denuder did 

not reach capacity and only one denuder was used going forward in the final tunnel 

studies. 
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Tables

Table 2.1 Pilot study ammonia concentrations, airflow rates, and mass flow rates at all measurement locations measured with
Ogawa Passive Samplers in the Fort McHenry Tunnel, Baltimore, Maryland on July 29, 2003.

Incoming Air Outgoing Air

Data
Field
Blank

Air Entering
With Vehicles
(Location A)

West
Ventilation Air
(Location D)

Air Exiting
With Vehicles
(Location C)

Balance
(Outgoing -
Incoming)

Ammonia Concentration (µg NH3-N m-3) 1.7 2.8 0.7 3.7 N/A
Flow Rate (m3 s-1) 332 45 339 -38
Mass Flow Rate (mg NH3-N s-1) 0.9 0.0 1.3 0.3
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Table 2.2  Ammonia concentration measured by two different methods over a 
24-hour period in the Fort McHenry Tunnel, Baltimore, Maryland, on August 
14, 2003. 

Method  Ammonia Concentration (µµµµg NH3-N m-3)

Ogawa Passive Samplers  8 
 
Denuder/Filter Packs  58 
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Figures 

Figure 2.1  Pilot study airflow direction and sampling sites in the Fort McHenry 
Tunnel, Baltimore, Maryland. 
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Figure 2.2  Ogawa passive sampler configuration.  End cap (1), stainless steel 
screen (2), pre-coated collection filter (3), retainer ring (4), inner base pad (5), 
sampler body (6). 
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Figure 2.3  Ogawa passive sampler protective cap. 
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Chapter 3: Denuder Coating Verification 

Introduction 

Although the EPA method (EPA, 1999) and the URG website (www.urgcorp.com) 

suggest use of citric acid (C6H8O7), oxalic acid (H2C2O4), or phosphorus acid (H3O3P) 

as the denuder coating acid, other acidic coating solutions, such as phosphoric acid 

(H3PO4) have been used (Pisano & Fitz, 2002).  The coating solution used in the final 

tunnel studies presented in this thesis (Chapter 4) was composed of 1% (v/v) 

phosphoric acid in 10% (v/v) methanol in DI water.  To ensure that the phosphoric 

acid coating solution was as effective as those suggested by URG and the EPA, 

denuder/filter pack laboratory tests were done to compare the effectiveness of 

different coating solutions.  Two denuder/filter pack laboratory tests were done to 

verify the coating solution on March 24, 2005, and on May 5, 2005.  A phosphoric 

acid coating solution evaporation test was also conducted from September 1-3, 2004. 

Methods 

Denuder/Filter Pack Test 
Citric acid, phosphoric acid, and phosphorus acid coating solutions were prepared.  

The citric acid solution was prepared by combining 0.5 g citric acid, 50 ml ethanol, 

and 0.5 ml glycerol.  The phosphoric acid solution was prepared by combining 1 ml 

phosphoric acid, 10 ml methanol, and 90 ml DI water.  The phosphorus acid solution 

was prepared by combining 1 g phosphorus acid, 90 ml methanol, and 10 ml DI 

water.  Gas phase ammonia samples were collected using a URG annular denuder 
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(URG Corporation, URG-2000-30X242-3CSS, three channel, 242mm length), and 

particulate phase ammonium samples were collected with an attached URG 47mm 

filter pack (Figure 4.2) (Andersen & Hovmand, 1994).  Each of the three coating 

solutions was used to prepare three denuders and filter packs following the method 

outlined in Chapter 4 of this thesis.  The filter packs contained one Teflon filter and 

one prepared quartz filter.  One of each of the three different acid-coated assemblies 

was used as a blank and the remaining six of the denuder/filter pack assemblies were 

mounted approximately 4 feet above the ground in the laboratory.  A GAST vacuum 

pump regulated by a flow meter pulled air through each assembly at 10 L min-1. Air 

traveled though the denuder/filter pack assembly first through an inlet cyclone with a 

2.5 µm cutoff at 10 LPM, next through the annular denuder, and then through the 

filter pack (Figure 4.2).  The airflow was adjusted to 10 ± 0.1 LPM through the 

assembly at the beginning of the deployment, checked 24 hours later, and checked at 

the end of the deployment period using a bubble flow meter (Gilibrator).  Airflows at 

the end of the deployment were always within 3% of the initial reading and usually 

within 1%.  The denuders/filter packs were left to sample for ~40 hours for the first 

deployment, and ~43 hours for the second. 

At the end of the deployment time, the pumps were turned off and the denuders and 

filter packs were extracted according to the method described in Chapter 4 of this 

thesis.  The Nutrient Analytical Services Laboratory at the Chesapeake Biological 

Laboratory analyzed samples from both tests using the Berthelot Reaction 

(Technicon, 1986). 
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An analysis of variance using an F-test (α = 0.05) was done on the data from both 

days to determine if the mean ammonia concentrations found for each coating 

solution were statistically different from one another (Ott and Longnecker, 2001). 

Evaporation Test 
Phosphoric acid is a liquid at room temperature, while citric and phosphorus acid are 

solids.  To ensure that phosphoric acid does not have the tendency to evaporate at 

room temperature, thus reducing its effectiveness at trapping ammonia, an 

evaporation test was conducted.  7.23 grams of phosphoric acid (a liquid) was placed 

in a glass petri dish about 4 inches in diameter. This amount of acid coated the bottom 

of the petri dish. The dish was then placed under an airflow from a 4-inch diameter 

hose with a face velocity of ~3.6 m s-1. The petri dish was then weighed over a two 

day period to determine if any of the phosphoric acid had evaporated.  The relative 

humidity in the area of the Petri dish ranged from 45 to 49% and the temperature was 

73 °F. 

Results and Discussion 

The mass of NH3 extracted from each of the samplers including the blanks is 

presented in Table 3.1.  The mass of NH3 extracted from the blank samplers was 

between 0 and 7% of the total extracted from the deployed samplers (Table 3.1).  

Concentration data from the denuder/filter pack tests is presented in Table 3.2.  A 

statistical analysis of variance was done for each date.  There was no statistically 

significant difference found between mean ammonia concentrations collected by each 

of the three coating solutions on either experiment date.  This leads to the conclusion 
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that the three coating solutions are equally effective at trapping atmospheric 

ammonia.  Although the citric acid and phosphorus acid solutions are suggested by 

the EPA and URG, the phosphoric acid coating solution used in the tunnel studies 

presented in this thesis is equally effective. 

Data from the evaporation test is presented in Table 3.3.  The results show that the 

phosphoric acid did not evaporate but actually is hygroscopic and takes up water from 

the air.  This can be seen as the mass of the phosphoric acid actually increases over 

the time period of the experiment (Table 3.3).  The results from this experiment lead 

to the conclusion that no evaporation of phosphoric acid occurs from the surface of 

the denuders or filters. 
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Tables 

Table 3.1  Mass of ammonia extracted from samplers and blanks with three 
different coating solutions, citric, phosphoric, and phosphorus acid, on March 24 
and May 5, 2005. 

Date Coating Solution 
Ammonia Mass Extracted  

(µµµµg NH3)

24 Mar 2005 Citric Acid 1 24.4 
 Citric Acid 2 36.4 
 Citric Acid Blank 1.5 
 

Phosphoric Acid 1 30.7 
 Phosphoric Acid 2 26.9 
 Phosphoric Acid Blank 2.1 
 

Phosphorus Acid 1 30.2 
 Phosphorus Acid 2 32.4 
 Phosphorus Acid Blank 0.7 
 

05 May 2005 Citric Acid 1 59.2 
 Citric Acid 2 97.7 
 Citric Acid Blank 0.3 
 

Phosphoric Acid 1 65.7 
 Phosphoric Acid 2 63.7 
 Phosphoric Acid Blank 0.2 
 

Phosphorus Acid 1 51.9 
 Phosphorus Acid 2 65.4 
 Phosphorus Acid Blank 0.7 
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Table 3.2  Mean ammonia concentrations captured by three different coating 
solutions, citric, phosphoric, and phosphorus acid, on March 24 and May 5, 
2005. 

Date Coating Solution 

Average Total Ammonia 
Concentration  
(µµµµg NH3-N m-3)

24 Mar 2005 Citric Acid 1.2 a* 
 Phosphoric Acid 1.2 a 
 Phosphorus Acid 1.3 a 
 

05 May 2005 Citric Acid 3.1 b 
 Phosphoric Acid 2.5 b 
 Phosphorus Acid 2.3 b 

 
* Means with different letters indicate significant differences, α = 0.05. 
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Table 3.3  Results of phosphoric acid (H3PO4) evaporation test conducted from 
September 1-3, 2004. 

Date Time Mass (g H3PO4)

01 Sep 2004 12:22 7.23 
 12:40 8.03 
 12:46 8.22 
 13:07 8.66 
 13:16 8.85 
 13:22 8.93 
 13:25 8.98 
 15:32 9.64 
 15:53 9.67 
 16:33 9.75 

02 Sep 2004 8:28 10.10 
 9:18 10.04 
 12:29 9.92 
 16:39 9.94 

03 Sep 2004 10:34 10.07 
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Chapter 4: Fort McHenry Tunnel Studies 

Introduction 

To determine an on-road ammonia emission rate for the Baltimore fleet, this study 

measured on-road vehicular ammonia emissions in the Fort McHenry Tunnel, 

Baltimore, Maryland, on September 29, 2003, November 14, 2003, March 22, 2004, 

and June 10, 2004.  Acid-coated denuders and filter packs were used to capture 

ammonia, and anemometers were used to measure air velocity in the tunnel. 

Methods 

Sampling Site 
Vehicular ammonia emissions were measured during four separate field studies at the 

Fort McHenry Tunnel in Baltimore, Maryland.  The 2.2 km long tunnel carries traffic 

under the Baltimore Harbor on Interstate 95 through four bores that contain two lanes 

of traffic each.  Heavy-duty (HD) vehicles are directed to the exterior bores in both 

directions, while light-duty (LD) vehicles travel through both the interior and exterior 

bores during normal tunnel operations.  HD vehicles are defined as diesel-fuel 

burning trucks and LD vehicles as gasoline-burning.  It is not mandatory for HD 

vehicles to use the exterior bores and therefore there is still a mix of LD and HD 

vehicles that enter the interior bores.  LD vehicles equipped with three-way catalytic 

converters emit more ammonia than vehicles without catalytic converters (Der, 1999; 

Fraser & Cass, 1998; Pierson et al., 1996; Cadle & Mulawa, 1980), therefore bore 

three, the interior northbound traffic bore, which was expected to contain a large 
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fraction of LD vehicles, was used as the main sampling site to maximize ammonia 

concentration in the tunnel.  Bore three was used for each field deployment except for 

the last deployment.  Bore three was closed on the day of the last deployment so all 

traffic was diverted to bore four and measurements were made there. 

A fresh air ventilation duct runs the length of each bore below the roadbed, and an 

exhaust duct runs the length of each bore above the roadbed (Figure 4.1).  Most of the 

outside air entering the tunnel is pushed by the traffic through the tunnel entrance by 

the “piston effect” (Pierson et al., 1996).  Fresh air also enters the tunnel through 

forced ventilation along most of the tunnel length through fresh air ventilation ducts 

just above the roadbed along the sides of the tunnel.  Exhaust air leaves the tunnel, 

pushed by the traffic, through the tunnel exit.  Air from the tunnel can also be 

removed by fans through an exhaust ventilation system above the tunnel.  However 

the fan exhaust system is used primarily for emergencies and was never used during 

this study. 

Flow Rate Measurement 
Air velocities were measured using Extech Model 451126 Van Thermo-Anemometer 

Dataloggers at 10-second intervals over the duration of each deployment.  The air 

velocity measurements were collected in the tunnel by hanging the anemometers 

through vents in the ceiling of the tunnel at locations A and C (Figure 4.1).  The 

anemometers hung suspended 0.25 m from the ceiling.  The velocity profile in the 

tunnel was calculated by approximating the tunnel as a circular pipe and using the 

equations for turbulent flow (Green & Maloney, 1997).  The velocity profile has a 

very sharp gradient near the wall because of the turbulent flow (Figure B.1).  The 
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velocity at 0.25 m from the tunnel walls was ~ 6% lower than the mean tunnel 

velocity at the tunnel entrance, and ~4.3% lower at the tunnel exit (Table B.1).  The 

anemometer measurements at locations A and C (Figure 4.1) were adjusted by these 

factors to account for the velocity profile.  See Appendix B for a more detailed 

description of the velocity profile and corrections.  Incoming air velocity 

measurements were collected in the fresh air ventilation ducts below the entrance and 

exit of the bore (Figure 4.1, locations B and D).  These anemometers stood in the 

center of the duct and no corrections were made to account for the velocity profile 

since these flows usually represented < 10% of the total flow into the bore.  The 

velocity measurements were averaged for each location and converted to airflow by 

multiplying the velocity by the cross-sectional area at the measurement locations.  

Ammonia Measurement 
The incoming ammonia air concentration was measured at the tunnel entrance (Figure 

4.1, location A) and in the fan room that supplies ambient air to the fresh air 

ventilation ducts (Figure 4.1, location E).  The ambient air measurement in the fan 

room was extrapolated to the fresh air duct locations (Figure 4.1, locations B and D) 

for the mass balance calculation.  The outgoing ammonia air concentration was 

measured at the tunnel exit (Figure 4.1, location C).  The incoming and outgoing 

ammonia air concentrations were measured by placing the sampling inlets through the 

ventilation slits in the exhaust duct floor (i.e., the roadbed ceiling).  The entrance and 

exit sampling locations were approximately fifty meters from the tunnel openings 

because of safety and accessibility to these locations.  One coated denuder/filter pack 

set was transported to the sampling site to be used as a field blank and not deployed. 
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Gas phase ammonia samples were collected using a URG annular denuder (URG 

Corporation, URG-2000-30X242-3CSS, three channel, 242mm length), and 

particulate phase ammonium samples were collected with an attached URG 47mm 

filter pack (Figure 4.2) (Andersen & Hovmand, 1994).  A GAST vacuum pump 

regulated by a flow meter pulled air through the assembly at 10 L min-1. Timers 

attached to the vacuum pumps at each sampling location were used to synchronize the 

start and stop of airflow through the denuders and filter packs.  Air traveled though 

the denuder/filter pack assembly first through an inlet cyclone with a 2.5 µm cutoff at 

10 LPM, next through the annular denuder, and then through the filter pack (Figure 

4.2).  The airflow was adjusted to 10 ± 0.1 LPM through the assembly at the 

beginning of the deployment and checked at the end of the deployment period using a 

bubble flow meter (Gilibrator).  Airflows at the end of the deployment were always 

within 7% of the initial reading and usually within 2%.   

Annular denuders were coated with a 1% (v/v) phosphoric acid (H3PO4)-10% (v/v) 

methanol in DI water solution and then dried in a laminar flow hood with a pre-filter 

coated with the same solution to minimize ammonia contamination during the drying 

process.  Phosphoric acid was used in this study since it has been shown effective in 

other experiments (Pisano & Fitz, 2002), although other acidic coatings are more 

common (e.g., the EPA method suggests the use of oxalic acid as a coating medium 

(EPA, 1999)).  A 47mm Zefluor 2.0 µm filter was placed first in the filter pack to 

collect particulate matter, followed by a 47mm Nylasorb 1.0 µm filter to collect 

volatilized HNO3 from the Zefluor filter, and finally a 47mm Whatman quartz fiber 

filter to collect volatilized NH3 from the Zefluor filter.  The quartz fiber filter was 
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coated with a 1% H3PO4 solution and dried in a laminar flow hood with a pre-filter 

coated with the same solution to minimize ammonia contamination. 

The extraction of the denuders and filters was based on the EPA Method, 

“Determination of Reactive Acidic and Basic Gases and Strong Acidity of 

Atmospheric Fine Particles <2.5 µm” (EPA, 1999).  The denuders were extracted 

using three rinses of 10 ml of DI water each.  The quartz fiber filters were extracted 

by immersing the filters in DI water and then sonicating them for 15 minutes.  The 

extraction solution was filtered through a Gelman Ion Chromatography Acrodisc 0.45 

µm filter to remove dislodged quartz fibers.  The Zefluor filters were extracted by 

wetting the surface with approximately 150 µl of ethanol, immersing the filter in DI 

water, and then sonicating for 15 minutes.  All of the filters were extracted twice and 

each extraction solution was analyzed separately.  Analysis of the samples from the 

fourth deployment included extraction of the cyclones and the inlet tubes with two 10 

ml washes of DI water each.  These additional extractions were done to investigate 

the quantity of ammonium particles captured on the walls of the cyclone and inlet 

tubes.   

Extracted samples from the first deployment were analyzed at Chesapeake Biological 

Laboratory (CBL) using ion chromatography (IC) on a Dionex DX-600 system.  A 

CS12A cation column (Dionex) with a methanesulfonic acid (MSA) eluent in 

gradient mode separated and eluted the cations.  The samples from the second and 

third deployments were analyzed at CBL using the OPA fluorescence method (Li et 

al., 1999).  Standards were prepared for both of these methods by diluting the Ultra 
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Scientific Ammonium 1000 µg ml-1 standard.  If necessary, samples were diluted 

with DI water to bring the concentrations within the calibration range.  The Nutrient 

Analytical Services Laboratory at the Chesapeake Biological Laboratory analyzed 

samples from the fourth deployment using the Berthelot Reaction (Technicon, 1986).  

The three methods have a similar error rate, in the range of ± 10%.  Quality is assured 

for the IC and OPA methods in the CBL laboratory by using the same ammonium 

standards to calibrate the instruments, and by lab participation in the Chesapeake Bay 

Blind Audit Program.  Quality assurance procedures for the Berthelot Reaction 

performed in the CBL Nutrient Analytical Services Laboratory are documented on 

their website (http://www.cbl.umces.edu/nasl/index.htm).  

Traffic Monitoring 
Traffic was monitored by videotaping the tunnel exit during the ammonia collection 

period from the control tower located at the north end of the tunnel.  Vehicles were 

counted and classified as light or heavy-duty. 

Emission Calculation 
The amount of ammonia produced per second (mg NH3-N s-1) in the portion of the 

bore sampled was calculated using a mass balance approach similar to the method 

detailed by Pierson et al. (Pierson et al., 1996):   

∑ ∑−=
i j jininioutout VCVCM )()(

Where ( )ioutoutVC is the product of the concentration of ammonia in the air 

exiting the tunnel (mg NH3-N m-3) and the volumetric flow rate of air exiting the 
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tunnel (m3s-1), and ( ) jininVC is the product of the concentration of ammonia in 

the air entering the tunnel and the volumetric flow rate of air entering the tunnel.  

Ideally Vout is equal to Vin if all of the incoming and outgoing air has been accounted 

for.  In the Fort McHenry Tunnel, air exits through only one location, therefore i = 1, 

while air enters through three locations (tunnel entrance, and entrance and exit fresh 

air ventilation ducts), therefore j=3 and the above product for incoming air was 

summed for these locations.  The mass flow rate of ammonia produced in the section 

of the bore sampled (M, mg NH3-N s-1) was calculated by subtracting the sum of the 

incoming products from the outgoing product.  Field blank measurements were 

subtracted from each tunnel measurement prior to the mass balance calculation.  The 

vehicular (veh) ammonia emission rate was calculated by dividing the amount of 

ammonia generated per second (M, mg NH3-N s-1) by the total number of vehicles per 

second (V, veh s-1), and then by the length of the tunnel in kilometers (L, km), i.e., 

E = M / (VL). 

The estimate of error was calculated for each deployment using a ±10% error for the 

ammonia measurement device and the estimated error for each other measurement 

used in the mass balance calculation.  The uncertainties were propagated through the 

emission rate calculation to determine the overall emission rate error estimate 

(Appendix  A). 
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Results and Discussion 

Emission Rates 
In order for the mass balance method of calculating ammonia emissions in the tunnel 

to be accurate, the volumetric airflow rate of the incoming air must balance that of the 

outgoing air.  Airflow rate was calculated using the average velocity at each location 

(Table 4.1).  Velocity was highly variable at each location which can be seen in an 

example from the deployment on November 14, 2003 (Figure 4.3).  Although no 

velocity data from other studies is available for the Fort McHenry tunnel, Pierson et 

al., found a tailwind speed of 5.3 m s-1 in the Tuscarora Mountain Tunnel which is 

similar in length and traffic speed to the Fort McHenry Tunnel (Pierson et al, 1996).  

The similarity between 5.3 m s-1 and the corrected entrance tunnel velocities 

measured in this study, which were between 4.74 and 5.78 m s-1 (Table 4.1), adds 

confidence to our measurements.  A discussion of the velocity profile model used and 

velocity correction factors can be found in Appendix B.  Table 4.2 lists the incoming 

and outgoing air volumetric flow rates measured for each deployment.  The flow 

balance shows reasonable agreement for each of the deployments with the outgoing 

air balancing the incoming air within 10% or less for all of the deployments.  This 

agreement provides confidence that the airflow measurements were accurate. 

The ammonium concentration extracted from the samplers at each sampling location 

including the blank samplers is presented in Table 4.3.  The blank concentrations 

ranged between 0 and 11% of the concentration extracted from samplers of the 

corresponding date (Table 4.3).  The ammonia concentration measured at each 
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sampling location for each deployment is presented in Table 4.4.  The ammonia 

concentration measurements in Table 4.4 are totals, including both gaseous ammonia 

and particulate ammonium.  Table 4.4 also lists the calculated mass flow rate of 

ammonia for each location and the calculated ammonia mass balance for each 

deployment in units of mass of ammonia generated per second (mg NH3-N s-1).  The 

ammonia mass flow rates ranged between 2.3 and 12.0 mg NH3-N s-1 for the four 

deployments. 

Table 4.5 presents the ammonia emission rates determined in this experiment.   The 

average emission rate measured was 8.1 ± 4.3 mg NH3-N veh-1 km-1. Emission rates 

of gas-phase, particulate-phase, and total are presented separately in Table 4.5.  The 

particulate-phase emission was between 0% and 5% of the total for deployments one, 

three and four, however, it was 74% of the total for deployment two.  An estimate of 

particulate-phase ammonium lost to the denuder inlet tube and cyclone chamber walls 

was determined during the fourth deployment.  Analysis of inlet tube and cyclone 

extractions for each denuder resulted in an average of 17% of the total particulate 

ammonium lost to these components.  Using the 17% correction to update 

concentrations from the prior deployments resulted in a < 1% change to the overall 

mass balance for deployments one and three because of the small particulate 

emissions measured in these deployments.  Applying the correction to the emission 

rate measured in deployment two makes a significant difference in the emission rate 

because of the high particulate matter emission measured in that deployment.  

However the correction was not applied to any of the deployments because of the 

uncertainty in the amount of the correction.  Further experiments should be 
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undertaken to determine the exact emission rate correction to be made from 

particulate matter loss to the cyclone and inlet tube. 

The cyclone of the denuder apparatus excludes particulate matter with aerodynamic 

diameters > 2.5 µm.  If ammonia emissions in the tunnel were present in significant 

amounts on particulate matter > 2.5 µm, the emission estimate would be under-

predicted.  To ensure that this was not the case, open face filter packs with no 

aerodynamic diameter exclusion limit were deployed without denuders next to the 

denuder and filter pack combinations in the fourth deployment.  The total ammonia 

concentration that was calculated for the filter pack alone was between 2% and 7% 

different when compared to the denuder and filter pack combination, leading to the 

conclusion that no significant amounts of particulate ammonium were excluded, and 

that the denuders were equally as efficient as the coated filters at collecting gas-phase 

ammonia. 

The traffic rate for each deployment is also presented in Table 4.5.  Traffic moved at 

similar speeds and similar volumes for all four deployments.  The average proportion 

of HD vehicles for the first three deployments was 3-4% of the total number of 

vehicles going through the tunnel.  The fourth deployment was conducted in the 

exterior northbound bore, into which HD vehicles were directed by tunnel protocol.  

As expected, the percentage of HD vehicles was greater for the fourth deployment, at 

25%.  A greater percentage of HD vehicles is expected to cause the emission rate to 

be lower per vehicle because HD vehicles without catalytic converters are known to 

emit less ammonia (Der, 1999; Fraser & Cass, 1998; Pierson et al., 1996; Cadle & 
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Mulawa, 1980).  The emission rate for deployment four is lower than deployments 

one and two, as expected, although still greater than deployment three.  It is possible 

to correct the emission rates by accounting for LD vehicle miles only.  When this 

correction is made, the emission rate for the fourth deployment becomes 10.7 ± 3.4 

mg NH3-N veh-1 km-1, which is closer in value to the corrected emission rates from 

deployments one and two (Table 4.5).  The corrected emission rates represent the 

ammonia emission rate for LD vehicles. 

The emission rates for deployments one, two, and four are similar in magnitude.  

However, the emission rate for deployment three is ~ 70% less than the average of the 

other three deployments.  The lowest ambient temperature, and the lowest relative 

humidity occurred on the day of deployment three (Table 4.5).  More investigation is 

necessary to determine if temperature and relative humidity have an effect on the 

vehicular emissions reaching the sampling equipment.   

Comparison to Previous Studies 
Other studies have investigated vehicular ammonia emissions and are presented in 

Table 4.6.  It should be noted that the average ammonia emission rate measured in 

our study, 8.1 ± 4.3 mg NH3-N veh-1 km-1, is lower than those calculated in two 

recent, similar studies.  Kean et al. determined an emission rate of 40 mg NH3-N veh-1 

km-1 in San Francisco in 1999 (Kean at al., 2000), and Fraser and Cass calculated an 

emission rate of 50 mg NH3-N veh-1 km-1 in Los Angeles in 1993 (Fraser & Cass, 

1998).  Moeckli et al. measured an emission rate of 12 mg NH3-N veh-1 km-1 in 

Zurich, Switzerland, in 1995 (Moeckli et al., 1996), a rate much closer to those 

measured in this study.  In 1981, Pierson and Brachaczek measured a rate of 1.1 mg 
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NH3-N veh-1 km-1 (Pierson & Brachaczek, 1983), which is much lower than this study 

and other recent studies.  In 1981 the percentage of vehicles on the road with three-

way catalytic converters was much lower than it is today, although catalytic 

converters were made mandatory in 1975.  Other studies have also measured 

vehicular ammonia emissions without the use of a tunnel.  Baum et al. determined an 

emission rate of 78 mg NH3-N veh-1 km-1 using a remote sensing technique in 1999 

(Baum et al., 2001), and Durbin et al. used chassis dynamometer test cycles to 

determine an emission rate of 28 mg NH3-N veh-1 km-1 in 2001 for a test set of LD 

vehicles only (Durbin et al., 2002).  The Durbin study used the FTP test cycle which 

simulates an urban route with frequent stops, and the US06 cycle which simulates 

high acceleration, aggressive highway driving 

(http://www.epa.gov/oms/labda.htm#vehcycles).  Neither of these test cycles are 

similar to the driving conditions seen in the Fort McHenry Tunnel.  Vehicle ammonia 

emission measurements published thus far are varied, which makes choosing a rate 

for modeling traffic emissions a difficult task. 

Vehicular Ammonia Emission Impact 
According to the 2003 “Millions of Annual Vehicle Miles” report from the Maryland 

Department of Transportation (MDOT, 2003), 1.9 x 1010 kilometers were driven in 

Baltimore City and Baltimore County in 2003 and 8.8 x 1010 kilometers were driven 

in all of Maryland.  Using our emission rates, these kilometers driven translate into a 

total emission of 151 mtpa (metric tons per annum) NH3-N in Baltimore City and 

County and 707 mtpa NH3-N in all of Maryland. 



33 
 

The Carnegie Mellon University Ammonia Model (CMU Model) (Davidson et al., 

2001) provides monthly ammonia emissions by county for the United States.  The 

emissions are classified into the following source categories:  livestock, fertilizer, 

soil, mobile, industry, domestic animals, wild animals, and miscellaneous.  After the 

model was updated to use the emission rates determined in this study (Chapter 5), the 

CMU Model predicts annual emissions from mobile sources of 121 mtpa NH3-N for 

Baltimore City and County and 520 mtpa NH3-N for all of Maryland (Table 5.1).  

These estimates are very similar to our predictions and any differences probably arise 

from traffic data.  The model predicts total ammonia emissions from all sources to be 

2,730 mtpa NH3N in Baltimore City and County, and 37,776 mtpa NH3-N in the state 

of Maryland (Table 5.1).  Of the Maryland total, 50% is from agriculture (livestock 

and fertilizer sources) while only 1% is from mobile sources (Figure 5.1).  Looking at 

Baltimore City and Baltimore County together, a more urban area, mobile sources 

contribute 4% of the total NH3-N emission (Table 5.2). 

Another source comparison is provided by a recent study of ammonia emissions from 

chicken houses on the Eastern Shore of Maryland (Siefert et al., 2004).  The chicken 

houses are estimated to emit 18,000 mtpa NH3-N.  This estimate is ~ 48% of the total 

emissions predicted for all of Maryland by the CMU Model, and much larger than 

vehicular ammonia emission predictions. 

It is difficult to determine vehicular impact on total ammonia emissions, as mobile 

emission factors vary from source to source.  Vehicular ammonia emission is 

probably not a large contributing factor of atmospheric ammonia to the Chesapeake 

Bay compared to other regional sources.  However, within populated areas, such as 
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Baltimore City, vehicular ammonia emissions are still an important contributing 

factor to visibility and health problems via formation of PM2.5.
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Tables

Table 4.1 Average air velocity measured at each sampling location in the Fort McHenry Tunnel, Baltimore, Maryland, on
four sampling dates.

Incoming Air (m s-1) Outgoing Air (m s-1)

Sampling
Date

Air Entering with
Vehicles

(Location A)

West Ventilation
Air

(Location B)

East Ventilation
Air

(Location D)

Air Exiting With
Vehicles

(Location C)

29 Sep 2003 4.74 2.83 2.80 5.36
14 Nov 2003 5.48 2.72 2.82 6.73
22 Mar 2004 5.22 2.44 3.98 6.03
10 Jun 2004 5.78 1.86 3.99 6.50
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Table 4.2 Volumetric airflow balance measured in the Fort McHenry Tunnel, Baltimore, Maryland, on four sampling dates.
Incoming Air (m3 s-1) Outgoing Air (m3 s-1) Flow Balance (m3 s-1)

Sampling
Date

Air Entering
with Vehicles
(Location A)

West
Ventilation Air
(Location B)

East
Ventilation Air
(Location D)

Total
Incoming

Air Exiting With
Vehicles

(Location C) Outgoing - Incoming

29 Sep 2003 259 36 35 331 293 -37
14 Nov 2003 300 35 36 370 368 -2
22 Mar 2004 285 31 51 367 330 -37
10 Jun 2004 316 24 51 391 356 -35
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Table 4.3 Extracted ammonium concentrations for samplers at all sampling sites including blanks measured in the Fort
McHenry Tunnel, Baltimore, Maryland, on four sampling dates.

Extracted Ammonium Concentration (µµµµM)

Sampling Date Blank

Air Entering with
Vehicles

(Location A)
Fresh Air Fan Room

(Location E)

Air Exiting With
Vehicles

(Location C)

29 Sep 2003 0.16 3.52 1.40 9.82
14 Nov 2003 0.05 0.88 1.07 5.14
22 Mar 2004 0.00 0.61 0.03 1.46
10 Jun 2004 0.09 1.98 1.29 4.84
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Table 4.4 Values of ammonia (± estimate of error) in incoming and outgoing air measured in the Fort McHenry Tunnel,
Baltimore, Maryland, on four sampling dates presented as concentration and mass flow rates. A - Air entering with vehicles,
B - West ventilation air, D - East ventilation air, C - Air exiting with vehicles (Figure 4.1). Mass balance of ammonia
generated (± estimate of error) is calculated as mass flow rates C - (A + B + D).

Concentration (µµµµg NH3-N m-3) Mass Flow Rate (mg NH3-N s-1)

Incoming Outgoing Incoming Outgoing
Mass

Balance
Sampling

Date A B D C A B D C
Ammonia
Generated

29 Sep 2003 12.4 ± 1.2 6.1 ± 0.5 6.1 ± 0.5 47.2 ± 4.7 3.2 ± 0.6 0.2 ± 0.0 0.2 ± 0.0 13.8 ± 2.2 10.2 ± 2.3
14 Nov 2003 6.5 ± 0.6 7.9 ± 0.7 7.9 ± 0.7 39.3 ± 2.7 1.9 ± 0.4 0.3 ± 0.1 0.3 ± 0.1 14.5 ± 2.5 12.0 ± 2.5
22 Mar 2004 4.7 ± 0.5 0.2 ± 0.0 0.2 ± 0.0 11.2 ± 1.1 1.3 ± 0.3 0.0 ± 0.0 0.0 ± 0.0 3.7 ± 0.7 2.3 ± 0.7
10 Jun 2004 12.7 ± 1.1 8.5 ± 0.7 8.5 ± 0.7 32.7 ± 2.9 4.0 ± 0.7 0.2 ± 0.0 0.4 ± 0.1 11.6 ± 2.1 7.0 ± 2.2
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Table 4.5 Ammonia emission rates (± estimate of error) and other data measured in the Fort McHenry Tunnel, Baltimore,
Maryland, on four sampling dates.

Emission Rate (mg NH3-N veh-1 km-1)*

Sampling
Date

Gas-
Phase
Only

Particulate-
Phase Only Total

Corrected
Rate

(Light-Duty
Only) Method**

Vehicle
Rate

(veh min-1)

Percent
Heavy-Duty

Vehicles

Ambient
Temperature

(°C)

Ambient
Relative
Humidity

(%)

29 Sep 2003 10.2 ± 2.2 0.0 ± 0.1 10.2 ± 2.3 10.5 ± 2.4 IC 31 3% 13 69
14 Nov 2003 3.0 ± 1.0 8.4 ± 1.6 11.4 ± 2.4 12.1 ± 2.6 OPA 33 4% 5 45
22 Mar 2004 2.7 ± 0.9 0.1 ± 0.0 2.8 ± 0.9 2.9 ± 0.9 OPA 26 3% 0 40
10 Jun 2004 7.5 ± 2.3 0.4 ± 0.3 7.9 ± 2.5 10.7 ± 3.4 Berthelot 28 25% 26 70

Average 8.1 ± 4.3 9.0 ± 5.0

* veh = vehicle.
** Methods described in detail in Chapter 4.
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Table 4.6  Values of vehicular ammonia emission rates from seven studies. 

Year Researchers 
Emission Rate  

(mg NH3-N veh-1 km-1)* 

Tunnel Studies  
1981 Pierson and Brachaczek (13) 1 
1993 Fraser and Cass (11) 50 
1995 Moeckli, Fierz, and Sigrist (12) 12 
1999 Kean and Harley (2) 40 
2004 Erwin and Siefert 8 

 
Other Studies  

1999 Baum, Kiyomiya, Kumar, and Lappas (1) 77 
2001 Durbin, Wilson, Norbeck, Miller, Huai, and Rhee (22) 28** 

 
* veh = vehicle  
** Light-duty vehicles only  
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Figures 

Figure 4.1  Airflow direction and sampling sites in the Fort McHenry Tunnel, 
Baltimore, Maryland. 
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Figure 4.2  Denuder and filter pack assembly. 
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Figure 4.3  Velocity vs. time graph for deployment on November 14, 2003 in the 

Fort McHenry Tunnel, Baltimore, Maryland. 
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Chapter 5: Carnegie Mellon University Ammonia Model 

Introduction 

The goal of the research presented in this thesis was to determine an ammonia 

emission rate for vehicles of the Baltimore fleet.  The emission rate determined in this 

study was then compared to ammonia emission rates from other sources in the area to 

determine its relative importance.  The Carnegie Mellon University Ammonia Model 

(CMU Model) was used to determine the ammonia emissions from other sources as 

well as to model mobile emissions for Maryland. 

The CMU Model was developed by Cliff Davidson and a team of researchers at 

Carnegie Mellon University in 2001 for the Northeast States for Coordinated Air Use 

Management (NESCAUM), and the Mid-Atlantic Regional Air Management 

Association (MARAMA) (Davidson et al., 2001).  The model can be downloaded at 

www.cmu.edu/ammonia. The model provides an estimate of monthly ammonia 

emissions in the United States at a county level for a number of different sources 

including livestock, fertilizer, soil, mobile sources, industry, publicly owned 

treatment works, humans, domestic animals, wild animals, and biomass burning.  The 

model is very flexible and the user can easily change factors as new research is 

published.  Emission rates output by the model are in kg NH3 yr-1 or kg NH3 month-1,

which were converted to mtpa NH3 (metric tons NH3 per year) for presentation in this 

thesis. 
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Ammonia Emission Factors and Activity Levels 

Emission factors and activity levels incorporated by the model in 2001 were gathered 

from a number of different sources as described below (Davidson, 2001).  An 

emission factor is the amount of ammonia produced monthly in each county by a 

source unit.  A source unit may be a cow, a human, a type of soil, or a car, for 

example.  Emission activity level is the number of units per county per month.  These 

two inputs are used to calculate ammonia emissions by county, by month.  Factor and 

activity updates have been made to the model since its inception and are included in 

version 3, the most recent version. 

Mobile Sources 
The mobile source emission rates used in the CMU Model were initially taken from a 

study done by Battye et al. for the EPA (Battye et al., 1994) and then updated based 

on the STi report (Chinkin et al., 2003).   The CMU Model, version 3, uses an 

emission rate of 60.6 mg NH3-N km-1 for LD vehicles, which is much greater than the 

rate measured in this study.  It uses a rate of 17 mg NH3-N km-1 for HD vehicles, 

which is inconsistent with the fact that HD vehicles emit much less ammonia than 

catalytic converter equipped automobiles (Der, 1999; Fraser & Cass, 1998; Pierson et 

al., 1996; Cadle & Mulawa, 1980).  The emission factor used to calculate emissions 

for LD mobile sources in the CMU Model was updated to 8.1 mg NH3-N veh-1 km-1 

to reflect the results of this study, and the factor used to calculate emissions for 

heavy-duty mobile sources was updated to 0 mg NH3-N veh-1 km-1. Mobile source 

activity levels for each county were gathered from state transportation departments. 
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Other Sources 
Livestock Activity levels from USDA data for 1992, and 1997.  

Composite emission factors for each USDA livestock category 

from Battye et al., 1994.   

Fertilizer Activity levels from Association of American Plant and Food 

Control Officials.  Emission factors from Battye et al., 1994 

and Asman et al., 1992.  Monthly distribution determined from 

USDA data. 

Soil Activity levels from Anderson land use codes.  Emission 

factors from Cass et al., 1982.  This is the most uncertain of all 

the source categories. 

Industry Actual ammonia emissions for industry from the EPA Toxic 

Release Inventory (TRI) database.  These values are highly 

uncertain. 

Domestic Animals Category includes cats and dogs.  Activity levels from the 

American Veterinary Medical Association.  Emission factors 

form Battye et al., 1994. 

Wild Animals Category includes bear, deer, and elk.  Activity levels from 

Rocky Mountain Elk Foundation, American Bear Association, 

and the Quality Deer Management Association.  Emission 

factors determined by Botsford in 1997. 
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Miscellaneous Category includes Publicly Owned Treatment Works 

(POTWs), humans, and wildfires.  POTW activity levels from 

the EPA Office of Water.  POTW emission factors from Battye 

et al., 1994.  Human activity levels from the US Census, and 

emission factors (from breath and perspiration) from Battye et 

al, 1994.    Wildfire activity levels from the National 

Interagency Fire Center.  Wildfire emission factors computed 

by combining an emission factor of CO from wildfires 

provided by the EPA with a ratio of NH3/CO measured by 

Hegg in 1998. 

Model Execution Results 

The CMU Model predicts annual emissions from mobile sources of 121 mtpa NH3-N 

for Baltimore City and County and 520 mtpa NH3-N for all of Maryland (Table 5.1).  

These estimates are very similar to our predictions and any differences probably arise 

from traffic data.  The model predicts total ammonia emissions from all sources to be 

2,730 mtpa NH3-N in Baltimore City and County, and 37,776 mtpa NH3-N in the 

state of Maryland (Table 5.1). 

The model was executed for all counties in Maryland to provide ammonia emissions 

for the entire state.  Baltimore County and Baltimore City data were separated to 

show relative source ammonia emission data for a largely urban area.  Figure 5.1 

presents relative ammonia emissions by source for the state of Maryland.  The 

greatest contributors of ammonia emissions statewide are livestock and soil, while 
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mobile sources contribute only 1% of the total ammonia emitted.  Figure 5.2 presents 

relative ammonia emissions by source for Baltimore City and Baltimore County.  

Because these two areas contain major urban areas, mobile sources are a greater 

contributor.  Mobile sources contribute 4% of the total emissions while livestock 

drops to 6%.  Soil and domestic animal emissions are important contributors at 29% 

each.   

Figure 5.3 presents total ammonia emissions by county for the state of Maryland.  

The counties exhibiting the highest ammonia emissions probably do so because of 

large agricultural areas.  Figure 5.4 presents mobile ammonia emissions by county for 

the state of Maryland.  As expected, the more urban counties surrounding Baltimore, 

MD and Washington, DC (Baltimore County, Baltimore City, Anne Arundel County, 

Prince George’s County, Howard County, and Montgomery County) show greater 

mobile ammonia emissions. 

According to the mobile ammonia emission rate calculated in this thesis and results of 

the CMU Model, mobile emissions are not a relatively important contributor, 

although they are more important in urban areas. 

More work should be done to better quantify all ammonia source data for Maryland to 

update the CMU Model. 
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Tables 

Table 5.1  Annual ammonia emission estimates calculated using thesis data and 
CMU Model output. 

 
Thesis Prediction  

(mtpa NH3-N)* 
CMU Model Prediction 

(mtpa NH3-N) 

Mobile Emissions   
Baltimore City & Baltimore County 151 121 
Maryland (entire state) 707 520 
 
Total Emissions   
Baltimore City & Baltimore County N/A 2,730 
Maryland (entire state) N/A 37,776 
 
* Metric tons per year   
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Figures 

Figure 5.1  Ammonia emissions by source for the state of Maryland. 
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Figure 5.2  Ammonia emissions by source for Baltimore City and Baltimore 
County, Maryland. 
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Figure 5.3  Total ammonia emissions by county for the state of Maryland. 
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Figure 5.4  Mobile ammonia emissions by county for the state of Maryland. 
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Appendix A:  Analysis of Error 

Error was calculated by propagating known measurement error through the emission 

rate calculation.  The method used is detailed in Principles of Instrumental Analysis 

(Skoog, 1985).  Error is propagated using the following method: 

If A = B * C,

Then ∆A2 = (δA/δB)2 * ∆B2 + (δA/δC)2 * ∆C2

Where ∆A, ∆B, ∆C are the uncertainties associated with each variable, and 

δA/δB and δA/δC are the partial derivatives of A with respect to B and C

Each step of this calculation is detailed in this appendix.  Variables used are listed 

below. 

Variable Name and Units 
A Tunnel area (m2)

C Air ammonia concentration (µg NH3-N m-3)
D Dilution volume (L) 
E Emission rate (mg NH3-N veh-1 km-1)
F Airflow rate (m3 s-1)
G Gilibrator reading (m3 s-1)
L Tunnel length (km) 

M Mass flow rate (µg NH3-N s-1)
MN  Moles extracted (µmoles) 
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N Ammonium concentration (µM) 

Q Ammonia generated (µg NH3-N s-1)
T Time deployed (minutes) 
U Air velocity (m s-1)
V Air volume (m3)

Flow Rate Error 

Flow rate (F) in m3 s-1 was calculated by multiplying the average air velocity (U) in m 

s-1 by the tunnel area (A) in m2. The know error associated with the air velocity is 

given by EXTECH, the manufacturer of the anemometers, as ± 3% ± 0.1 m s-1.

Because of the uncertainty in tunnel air velocity due to the velocity profile model, a 

final error of 15% was applied to the air velocity (Appendix B).  The error associated 

with the tunnel area was estimated to be 5%. 

Flow rate error was calculated for each measurement location on each sampling date 

as: 

∆F2 = (δF/δU)2 * ∆U2 + (δF/δA)2 * ∆A2

= A2 * ∆U2 + U2 * ∆A2

Actual values are presented in Table A.1. 

Air Volume Error 

Air volume (V) in m3 was calculated by multiplying the number of minutes deployed 

(T) by the average Gilibrator flow reading (G) in m3 s-1. The error associated with the 
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number of minutes deployed was estimated to be 1%.  The error associated with the 

Gilibrator reading was 1%. 

Air volume error was calculated for each measurement location on each sampling 

date as: 

∆V2 = (δV/δT)2 * ∆T2 + (δV/δG)2 * ∆G2

= G2 * ∆T2 + T2 * ∆G2

Actual values are presented in Table A.2. 

Moles of Ammonia Extracted Error 

The number of moles extracted (MN) in µmoles was calculated by multiplying the 

ammonium concentration (N) in µM by the dilution volume (D) in liters.  The blank 

ammonium concentration was subtracted from each ammonium concentration 

calculated.  The ammonium concentration was measured using one of three 

techniques (Chapter 4, Methods Section) and was assigned an estimated error of 10%.  

The error associated with the dilution volume was estimated to be ± 0.0005 L. 

Moles extracted error was calculated for each measurement at each measurement 

location on each sampling date as: 

∆MN2 = (δMN/δN)2 * ∆N2 + (δMN/δD)2 * ∆D2

= D2 * ∆N2 + N2 * ∆D2
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Actual values are presented in Tables A.3A, A.3B, A.3C, and A.3D.  Error was 

calculated for each individual measurement which included two denuder extractions 

and two extractions for each filter at each location as well as a full extraction for the 

blank apparatus. 

Air Ammonia Concentration Error 

The ammonia concentration in the tunnel air (C) in µg NH3-N m-3 was calculated by 

multiplying the total moles extracted (MN) in µmoles by the molecular weight of 

NH3-N (14.01 µg µmole-1) and then dividing by the total air volume (V) in m3. The 

error associated with both the moles extracted and the total air volume was calculated 

in a previous step. 

Ammonia concentration error was calculated at each measurement location for total, 

gas, and particulate forms of NH3 on each sampling date as: 

∆C2 = (δC/δMN)2 * ∆MN2 + (δC/δV)2 * ∆V2

= (14.01/V)2 * ∆MN2 + (-14.01 * MN/V2)2 * ∆V2

Actual values are presented in Table A.4. 

Ammonia Mass Flow Rate Error 

The mass flow rate (M) in µg NH3-N s-1 was calculated by multiplying the total 

ammonia concentration in the air (C) in µg NH3-N m-3 by the airflow rate (F) in  

m3 s-1. The error associated with both the ammonia concentration and the air flow 

rate was calculated in a previous step. 
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Mass flow rate error was calculated at each measurement location for total, gas, and 

particulate forms of NH3 on each sampling date as: 

∆M2 = (δM/δC)2 * ∆C2 + (δM/δF)2 * ∆F2

= F2 * ∆C2 + C2 * ∆F2

Actual values are presented in Table A.5. 

Ammonia Generated in Tunnel Error 

The ammonia generated in the tunnel (Q) in mg NH3-N s-1 was calculated by 

subtracting the sum of all incoming mass flow rates from the outgoing mass flow rate 

in µg NH3-N s-1. The error associated with mass flow rate was calculated in a 

previous step.  There are four different mass flow rates used in this calculation, exit 

exhaust, entrance exhaust, entrance ventilation, and exit ventilation. 

Ammonia generated in the tunnel error was calculated for total, gas, and particulate 

forms of NH3 on each sampling date as: 

∆Q2 = (M12 + M22 + M32 + M42)/1000 

Actual values are presented in Table A.6. 

Ammonia Emission Rate Error 

The emission rate (E) in mg NH3-N veh-1 km-1 was calculated by dividing the total 

ammonia generated in the tunnel (Q) in mg NH3-N s-1 by the vehicle rate (R) in  

veh s-1 and then by the tunnel length (L) in km.  The error associated with the total 
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ammonia generated was calculated in a previous step.  The error associated with the 

vehicle rate was estimated to be ± 0.005 veh s-1. The error associated with the tunnel 

length was estimated to be ± 0.05 km. 

The emission rate in the tunnel error was calculated for total, gas, and particulate 

forms of NH3 on each sampling date as: 

∆E2 = (δE/δQ)2 * ∆Q2 + (δE/δR)2 * ∆R2 + (δE/δL)2 * ∆L2

= (1/R/L)2 * ∆Q2 + (-Q/R2/L)2 * ∆R2 + (-Q/R/L2)2 * ∆L2

Actual values are presented in Table A.7.
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Tables

Table A.1 Average velocity, tunnel area, airflow rate, and their associated uncertainties (∆) for all sampling locations in the
Fort McHenry Tunnel, Baltimore, Maryland on four sampling dates. A - Air entering with vehicles, B - West ventilation air,
D - East ventilation air, C - Air exiting with vehicles (Figure 4.1)

Sampling
Date

Sampling
Location

Average Air Velocity (U)
(m s-1) ∆U

Tunnel Area (A)
(m2) ∆A

Airflow Rate (F)
(m3 s-1) ∆F

29 Sep 2003 A 4.74 0.24 54.74 2.74 260.30 18.60
B 2.83 0.26 12.70 0.64 35.89 2.95
C 5.36 0.18 54.74 2.74 299.10 20.79
D 2.80 0.18 12.70 0.64 35.50 2.93

14 Nov 2003 A 5.48 0.27 54.74 2.74 301.32 20.92
B 2.72 0.18 12.70 0.64 34.53 2.88
C 6.73 0.31 54.74 2.74 375.71 25.17
D 2.82 0.18 12.70 0.64 35.82 2.95

22 Mar 2004 A 5.22 0.26 54.74 2.74 286.61 20.08
B 2.44 0.17 12.70 0.64 31.01 2.69
C 6.03 0.28 54.74 2.74 336.64 22.93
D 3.98 0.22 12.70 0.64 50.53 3.76

10 Jun 2004 A 5.78 0.27 54.74 2.74 317.56 21.84
B 1.86 0.16 12.70 0.64 23.65 2.31
C 6.50 0.30 54.74 2.74 362.80 24.43
D 3.99 0.22 12.70 0.64 50.70 3.77
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Table A.2 Gilibrator flow reading, minutes deployed, air volume, and their associated uncertainties (∆) for all sampling
locations in the Fort McHenry Tunnel, Baltimore, Maryland on four sampling dates.

Sampling
Date

Sampling
Location

Gilibrator
Reading (G)

(m3 s-1) ∆G

Minutes
Deployed (T)

(min) ∆T
Air Volume (V)

(m3) ∆V

29 Sep 2003 Entrance Exhaust 10.10 0.10 375 3.75 3.79 0.05
Exit Exhaust 10.00 0.10 287 2.87 2.87 0.04
Fresh Air 10.15 0.10 282 2.82 2.86 0.04

14 Nov 2003 Entrance Exhaust 10.05 0.10 180 1.8 1.81 0.03
Exit Exhaust 10.10 0.10 180 1.8 1.82 0.03
Fresh Air 10.00 0.10 180 1.8 1.80 0.03

22 Mar 2004 Entrance Exhaust 10.10 0.10 180 1.8 1.82 0.03
Exit Exhaust 10.15 0.10 180 1.8 1.83 0.03
Fresh Air 10.10 0.10 180 1.8 1.82 0.03

10 Jun 2004 Entrance Exhaust 9.97 0.10 210 2.1 2.09 0.03
Exit Exhaust 9.67 0.10 210 2.1 2.03 0.03
Fresh Air 9.97 0.10 210 2.1 2.09 0.03
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Table A.3A Ammonium concentration, dilution volume, moles extracted, and their associated uncertainties (∆) for all
sampling locations in the Fort McHenry Tunnel, Baltimore, Maryland on September 29, 2003.

Sampling
Location NH3 Form

Part of
Apparatus
Extracted*

Ammonium
Concentration (N)

(µµµµM) ∆N

Dilution
Volume (D)

(L) ∆D

Moles
Extracted (MN)

(µµµµmoles) ∆MN

Entrance Exhaust Total 3.36 0.30

Gas Denuder I 143.25 14.32 0.02 0.0005 2.86 0.30
Denuder II 0.00 0.00 0.00 0.0000 0.00 0.00

Gas Total 2.86 0.30
Gas Total - Blank 2.80 0.30

Particulate Zefluor I 14.33 1.43 0.02 0.0005 0.29 0.03
Zefluor II 0.00 0.00 0.00 0.0000 0.00 0.00
Nylasorb I 0.00 0.00 0.00 0.0000 0.00 0.00
Nylasorb II 0.00 0.00 0.00 0.0000 0.00 0.00

Quartz I 18.27 1.83 0.02 0.0005 0.37 0.04
Quartz II 0.00 0.00 0.00 0.0000 0.00 0.00

Particulate Total 0.65 0.05
Particulate Total - Blank 0.56 0.05

Exit Exhaust Total 9.67 0.96

Gas Denuder I 463.92 46.39 0.02 0.0005 9.28 0.96
Denuder II 0.00 0.00 0.00 0.0000 0.00 0.00

Gas Total 9.28 0.96
Gas Total - Blank 9.22 0.96
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Table A.3A Continued

Sampling
Location NH3 Form

Part of
Apparatus
Extracted*

Ammonium
Concentration (N)

(µµµµM) ∆N

Dilution
Volume (D)

(L) ∆D

Moles
Extracted (MN)

(µµµµmoles) ∆MN

Particulate Zefluor I 11.70 1.17 0.02 0.0005 0.23 0.02
Zefluor II 0.00 0.00 0.00 0.0000 0.00 0.00
Nylasorb I 0.00 0.00 0.00 0.0000 0.00 0.00
Nylasorb II 0.00 0.00 0.00 0.0000 0.00 0.00

Quartz I 15.41 1.54 0.02 0.0005 0.31 0.03
Quartz II 0.00 0.00 0.00 0.0000 0.00 0.00

Particulate Total 0.54 0.04
Particulate Total - Blank 0.45 0.04

Fresh Air Total 1.25 0.11

Gas Denuder I 51.41 5.14 0.02 0.0005 1.03 0.11
Denuder II 0.00 0.00 0.00 0.0000 0.00 0.00

Gas Total 1.03 0.11
Gas Total - Blank 0.97 0.11

Particulate Zefluor I 9.71 0.97 0.02 0.0005 0.19 0.02
Zefluor II 0.00 0.00 0.00 0.0000 0.00 0.00
Nylasorb I 0.00 0.00 0.00 0.0000 0.00 0.00
Nylasorb II 0.00 0.00 0.00 0.0000 0.00 0.00

Quartz I 8.95 0.89 0.02 0.0005 0.18 0.02
Quartz II 0.00 0.00 0.00 0.0000 0.00 0.00

Particulate Total 0.37 0.03
Particulate Total - Blank 0.28 0.03
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Table A.3A Continued

Sampling
Location NH3 Form

Part of
Apparatus
Extracted*

Ammonium
Concentration (N)

(µµµµM) ∆N

Dilution
Volume (D)

(L) ∆D

Moles
Extracted (MN)

(µµµµmoles) ∆MN

Blank Total 0.16 0.01

Gas Denuder I 3.14 0.31 0.02 0.0005 0.06 0.01
Denuder II 0.00 0.00 0.00 0.0000 0.00 0.00

Blank Total 0.06 0.01

Particulate Zefluor I 0.00 0.00 0.02 0.0005 0.00 0.00
Zefluor II 0.00 0.00 0.00 0.0000 0.00 0.00
Nylasorb I 0.00 0.00 0.00 0.0000 0.00 0.00
Nylasorb II 0.00 0.00 0.00 0.0000 0.00 0.00

Quartz I 4.62 0.46 0.02 0.0005 0.09 0.01
Quartz II 0.00 0.00 0.00 0.0000 0.00 0.00

Blank Total 0.09 0.01

* Roman numerals following apparatus part indicate which extraction is included in the measurement.
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Table A.3B Ammonium concentration, dilution volume, moles extracted, and their associated uncertainties (∆) for all
sampling locations in the Fort McHenry Tunnel, Baltimore, Maryland on November 14, 2003.

Sampling
Location NH3 Form

Part of
Apparatus
Extracted*

Ammonium
Concentration (N)

(µµµµM) ∆N

Dilution
Volume (D)

(L) ∆D

Moles
Extracted (MN)

(µµµµmoles) ∆MN

Entrance Exhaust Total 0.84 0.07

Gas Denuder I 35.10 3.51 0.02 0.0005 0.80 0.07
Denuder II 5.20 0.52 0.01 0.0005 0.03 0.01

Gas Total 0.75 0.07
Gas Total - Blank 0.71 0.07

Particulate Zefluor I
Zefluor II 0.00 0.00 0.02 0.0005 0.04 0.00
Nylasorb I 0.00 0.00 0.02 0.0005 0.00 0.00
Nylasorb II 0.00 0.00 0.02 0.0005 0.00 0.00

Quartz I 0.00 0.00 0.02 0.0005 0.00 0.00
Quartz II 6.48 0.65 0.02 0.0005 0.20 0.01

0.00 0.00 0.02 0.0005 0.00 0.00
Particulate Total 0.13 0.01

Particulate Total - Blank 0.13 0.01

Exit Exhaust Total 5.10 0.34
89.77 8.98 0.02 0.0005 1.80 0.19

Gas Denuder I 8.68 0.87 0.01 0.0005 0.09 0.01
Denuder II Gas Total 1.88 0.19

Gas Total - Blank 1.84 0.19
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Table A.3B Continued

Sampling
Location NH3 Form

Part of
Apparatus
Extracted*

Ammonium
Concentration (N)

(µµµµM) ∆N

Dilution
Volume (D)

(L) ∆D

Moles
Extracted (MN)

(µµµµmoles) ∆MN

Particulate Zefluor I 1.58 0.16 0.02 0.0005 0.03 0.00
Zefluor II 0.00 0.00 0.02 0.0005 0.00 0.00
Nylasorb I 0.00 0.00 0.02 0.0005 0.00 0.00
Nylasorb II 0.00 0.00 0.02 0.0005 0.00 0.00

Quartz I 135.97 13.60 0.02 0.0005 2.72 0.28
Quartz II 25.47 2.55 0.02 0.0005 0.51 0.05

Particulate Total 3.26 0.29
Particulate Total - Blank 3.26 0.29

Fresh Air Total 1.02 0.09

Gas Denuder I 39.98 4.00 0.02 0.0005 0.00 0.08
Denuder II 2.69 0.27 0.01 0.0005 0.00 0.00

Gas Total 0.83 0.08
Gas Total - Blank 0.78 0.08

Particulate Zefluor I 2.09 0.21 0.02 0.0005 0.00 0.00
Zefluor II 0.00 0.00 0.02 0.0005 0.13 0.00
Nylasorb I 0.00 0.00 0.02 0.0005 0.00 0.00
Nylasorb II 0.00 0.00 0.02 0.0005 0.00 0.00

Quartz I 9.93 0.99 0.02 0.0005 0.20 0.02
Quartz II 0.00 0.00 0.02 0.0005 0.00 0.00

Particulate Total 0.24 0.02
Particulate Total - Blank 0.24 0.02
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Table A.3B Continued

Sampling
Location NH3 Form

Part of
Apparatus
Extracted*

Ammonium
Concentration (N)

(µµµµM) ∆N

Dilution
Volume (D)

(L) ∆D

Moles
Extracted (MN)

(µµµµmoles) ∆MN

Blank Total 0.05 0.00

Gas Denuder I 2.33 0.23 0.02 0.0005 0.05 0.00
Denuder II 0.00 0.00 0.01 0.0005 0.00 0.00

Blank Total 0.05 0.00

Particulate Zefluor I 0.00 0.00 0.02 0.0005 0.00 0.00
Zefluor II 0.00 0.00 0.02 0.0005 0.00 0.00
Nylasorb I 0.00 0.00 0.02 0.0005 0.00 0.00
Nylasorb II 0.00 0.00 0.02 0.0005 0.00 0.00

Quartz I 0.00 0.00 0.02 0.0005 0.00 0.00
Quartz II 0.00 0.00 0.02 0.0005 0.00 0.00

Blank Total 0.00 0.00

* Roman numerals following apparatus part indicate which extraction is included in the measurement.
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Table A.3C Ammonium concentration, dilution volume, moles extracted, and their associated uncertainties (∆) for all
sampling locations in the Fort McHenry Tunnel, Baltimore, Maryland on March 22, 2004.

Sampling
Location NH3 Form

Part of
Apparatus
Extracted*

Ammonium
Concentration (N)

(µµµµM) ∆N

Dilution
Volume (D)

(L) ∆D

Moles
Extracted (MN)

(µµµµmoles) ∆MN

Entrance Exhaust Total 0.61 0.06

Gas Denuder I 15.25 1.53 0.04 0.0005 0.61 0.06
Denuder II 0.00 0.00 0.01 0.0005 0.00 0.00

Gas Total 0.61 0.06
Gas Total - Blank 0.61 0.06

Particulate Zefluor I 0.00 0.00 0.02 0.0005 0.00 0.00
Zefluor II 0.00 0.00 0.02 0.0005 0.00 0.00
Nylasorb I 0.00 0.00 0.02 0.0005 0.00 0.00
Nylasorb II 0.00 0.00 0.02 0.0005 0.00 0.00

Quartz I 0.00 0.00 0.02 0.0005 0.00 0.00
Quartz II 0.00 0.00 0.02 0.0005 0.00 0.00

Particulate Total 0.00 0.00
Particulate Total - Blank 0.00 0.00

Exit Exhaust Total 1.46 0.14

Denuder I 17.69 1.77 0.08 0.0005 1.42 0.14
Gas Denuder II 0.63 0.06 0.01 0.0005 0.01 0.00

Gas Total 1.42 0.14
Gas Total - Blank 1.42 0.14
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Table A.3C Continued

Sampling
Location NH3 Form

Part of
Apparatus
Extracted*

Ammonium
Concentration (N)

(µµµµM) ∆N

Dilution
Volume (D)

(L) ∆D

Moles
Extracted (MN)

(µµµµmoles) ∆MN

Particulate Zefluor I 0.00 0.00 0.02 0.0005 0.00 0.00
Zefluor II 0.00 0.00 0.02 0.0005 0.00 0.00
Nylasorb I 0.00 0.00 0.02 0.0005 0.00 0.00
Nylasorb II 0.00 0.00 0.02 0.0005 0.00 0.00

Quartz I 1.98 0.20 0.02 0.0005 0.04 0.00
Quartz II 0.00 0.00 0.02 0.0005 0.00 0.00

Particulate Total 0.04 0.00
Particulate Total - Blank 0.04 0.00

Fresh Air Total
0.03 0.00

Gas Denuder I 1.46 0.15 0.02 0.0005 0.03 0.00
Denuder II 0.00 0.00 0.01 0.0005 0.00 0.00

Gas Total 0.03 0.00
Gas Total - Blank 0.03 0.00

Particulate Zefluor I 0.00 0.00 0.02 0.0005 0.00 0.00
Zefluor II 0.00 0.00 0.02 0.0005 0.00 0.00
Nylasorb I 0.00 0.00 0.02 0.0005 0.00 0.00
Nylasorb II 0.00 0.00 0.02 0.0005 0.00 0.00

Quartz I 0.00 0.00 0.02 0.0005 0.00 0.00
Quartz II 0.00 0.00 0.02 0.0005 0.00 0.00

Particulate Total 0.00 0.00
Particulate Total - Blank 0.00 0.00
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Table A.3C Continued

Sampling
Location NH3 Form

Part of
Apparatus
Extracted*

Ammonium
Concentration (N)

(µµµµM) ∆N

Dilution
Volume (D)

(L) ∆D

Moles
Extracted (MN)

(µµµµmoles) ∆MN

Blank Total 0.00 0.00

Gas Denuder I 0.00 0.00 0.02 0.0005 0.00 0.00
Denuder II 0.00 0.00 0.01 0.0005 0.00 0.00

Blank Total 0.00 0.00

Particulate Zefluor I 0.00 0.00 0.02 0.0005 0.00 0.00
Zefluor II 0.00 0.00 0.02 0.0005 0.00 0.00
Nylasorb I 0.00 0.00 0.02 0.0005 0.00 0.00
Nylasorb II 0.00 0.00 0.02 0.0005 0.00 0.00

Quartz I 0.00 0.00 0.02 0.0005 0.00 0.00
Quartz II 0.00 0.00 0.02 0.0005 0.00 0.00

Blank Total 0.00 0.00

* Roman numerals following apparatus part indicate which extraction is included in the measurement.
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Table A.3D Ammonium concentration, dilution volume, moles extracted, and their associated uncertainties (∆) for all
sampling locations in the Fort McHenry Tunnel, Baltimore, Maryland on June 10, 2004.

Sampling
Location NH3 Form

Part of
Apparatus
Extracted*

Ammonium
Concentration (N)

(µµµµM) ∆N

Dilution
Volume (D)

(L) ∆D

Moles
Extracted (MN)

(µµµµmoles) ∆MN

Entrance Exhaust Total 1.89 0.16

Gas Denuder I 76.84 7.68 0.02 0.0005 1.54 0.16
Denuder II 10.85 1.09 0.01 0.0005 0.11 0.01

Gas Total 1.65 0.16
Gas Total - Blank 1.59 0.16

Particulate Zefluor I 11.55 1.16 0.02 0.0005 0.23 0.02
Zefluor II 0.00 0.00 0.02 0.0005 0.00 0.00
Nylasorb I 2.60 0.26 0.02 0.0005 0.05 0.01
Nylasorb II 1.67 0.17 0.02 0.0005 0.03 0.00

Quartz I 0.81 0.08 0.02 0.0005 0.02 0.00
Quartz II 0.24 0.02 0.02 0.0005 0.00 0.00

Particulate Total 0.34 0.02
Particulate Total - Blank 0.30 0.02

Exit Exhaust Total 4.75 0.42

Gas Denuder I 203.00 20.30 0.02 0.0005 4.06 0.42
Denuder II 26.10 2.61 0.01 0.0005 0.26 0.03

Gas Total 4.32 0.42
Gas Total - Blank 4.27 0.42
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Table A.3D Continued

Sampling
Location NH3 Form

Part of
Apparatus
Extracted*

Ammonium
Concentration (N)

(µµµµM) ∆N

Dilution
Volume (D)

(L) ∆D

Moles
Extracted (MN)

(µµµµmoles) ∆MN

Particulate Zefluor I 13.96 1.40 0.02 0.0005 0.28 0.03
Zefluor II 0.00 0.00 0.02 0.0005 0.00 0.00
Nylasorb I 4.73 0.47 0.02 0.0005 0.09 0.01
Nylasorb II 1.43 0.14 0.02 0.0005 0.03 0.00

Quartz I 5.58 0.56 0.02 0.0005 0.11 0.01
Quartz II 0.11 0.01 0.02 0.0005 0.00 0.00

Particulate Total 0.52 0.03
Particulate Total - Blank 0.48 0.03

Fresh Air Total 1.26 0.10

Gas Denuder I 46.35 4.64 0.02 0.0005 0.93 0.10
Denuder II 4.42 0.44 0.01 0.0005 0.04 0.00

Gas Total 0.97 0.10
Gas Total - Blank 0.92 0.10

Particulate Zefluor I 11.26 1.13 0.02 0.0005 0.23 0.02
Zefluor II 0.00 0.00 0.02 0.0005 0.00 0.00
Nylasorb I 2.62 0.26 0.02 0.0005 0.05 0.01
Nylasorb II 2.00 0.20 0.02 0.0005 0.04 0.00

Quartz I 2.84 0.28 0.02 0.0005 0.06 0.01
Quartz II 0.54 0.05 0.02 0.0005 0.01 0.00

Particulate Total 0.32 0.02
Particulate Total - Blank 0.35 0.03
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Table A.3D Continued

Sampling
Location NH3 Form

Part of
Apparatus
Extracted*

Ammonium
Concentration (N)

(µµµµM) ∆N

Dilution
Volume (D)

(L) ∆D

Moles
Extracted (MN)

(µµµµmoles) ∆MN

Blank Total 0.09 0.01

Gas Gas Denuder I 2.16 0.22 0.02 0.0005 0.04 0.00
Denuder II 0.96 0.10 0.01 0.0005 0.01 0.00

Blank Total 0.05 0.00

Particulate Particulate Zefluor I 0.34 0.03 0.02 0.0005 0.01 0.00
Zefluor II 0.00 0.00 0.02 0.0005 0.00 0.00
Quartz I 1.61 0.16 0.02 0.0005 0.03 0.00

Blank Total 0.04 0.00
* Roman numerals following apparatus part indicate which extraction is included in the measurement.
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Table A.4 Moles extracted, total air volume, tunnel air ammonia concentration, and their associated uncertainties (∆) for
both gas and particulate forms of NH3 and total at all sampling locations in the Fort McHenry Tunnel, Baltimore, Maryland
on four sampling dates.

Sampling
Date

Sampling
Location NH3 Form

Moles
Extracted (MN)

(µµµµmoles) ∆MN

Total Air
Volume (V)

(m3) ∆V

Air Ammonia
Concentration (C)

(µµµµg NH3-N m-3) ∆C

29 Sep 2003 Entrance Exhaust Total 3.36 0.30 3.79 0.05 12.44 1.12
Gas 2.80 0.30 3.79 0.05 10.37 1.10
Particulate 0.56 0.05 3.79 0.05 2.07 0.18

Exit Exhaust Total 9.67 0.96 2.87 0.04 47.18 4.72
Gas 9.22 0.96 2.87 0.04 44.99 4.71
Particulate 0.45 0.04 2.87 0.04 2.20 0.20

Fresh Air Total 1.25 0.11 2.86 0.04 6.10 0.54
Gas 0.97 0.11 2.86 0.04 4.73 0.52
Particulate 0.28 0.03 2.86 0.04 1.37 0.14

14 Nov 2003 Entrance Exhaust Total 0.84 0.07 1.81 0.03 6.48 0.58
Gas 0.71 0.07 1.81 0.03 5.48 0.57
Particulate 0.13 0.01 1.81 0.03 1.00 0.10

Exit Exhaust Total 5.10 0.34 1.82 0.03 39.27 2.65
Gas 1.84 0.19 1.82 0.03 14.14 1.44
Particulate 3.26 0.29 1.82 0.03 25.13 2.23

Fresh Air Total 1.02 0.09 1.80 0.03 7.94 0.67
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Table A.4 Continued

Sampling
Date

Sampling
Location NH3 Form

Moles
Extracted (MN)

(µµµµmoles) ∆MN

Total Air
Volume (V)

(m3) ∆V

Air Ammonia
Concentration (C)

(µµµµg NH3-N m-3) ∆C

Gas 0.78 0.08 1.80 0.03 6.07 0.65
Particulate 0.24 0.02 1.80 0.03 1.87 0.16

22 Mar 2004 Entrance Exhaust Total 0.61 0.06 1.82 0.03 4.70 0.48
Gas 0.61 0.06 1.82 0.03 4.70 0.48
Particulate 0.00 0.00 1.82 0.03 0.00 0.00

Exit Exhaust Total 1.46 0.14 1.83 0.03 11.20 1.10
Gas 1.42 0.14 1.83 0.03 10.90 1.10
Particulate 0.04 0.00 1.83 0.03 0.30 0.03

Fresh Air Total 0.03 0.00 1.82 0.03 0.23 0.02
Gas 0.03 0.00 1.82 0.03 0.23 0.02
Particulate 0.00 0.00 1.82 0.03 0.00 0.00

10 Jun 2004 Entrance Exhaust Total 1.89 0.16 2.09 0.03 12.65 1.09
Gas 1.59 0.16 2.09 0.03 10.66 1.07
Particulate 0.30 0.02 2.09 0.03 2.00 0.17

Exit Exhaust Total 4.75 0.42 2.03 0.03 32.74 2.93
Gas 4.27 0.42 2.03 0.03 29.45 2.92
Particulate 0.48 0.03 2.03 0.03 3.29 0.23
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Table A.4 Continued

Sampling
Date

Sampling
Location NH3 Form

Moles
Extracted (MN)

(µµµµmoles) ∆MN

Total Air
Volume (V)

(m3) ∆V

Air Ammonia
Concentration (C)

(µµµµg NH3-N m-3) ∆C

Fresh Air Total 1.26 0.10 2.09 0.03 8.46 0.67
Gas 0.92 0.10 2.09 0.03 6.14 0.65
Particulate 0.35 0.03 2.09 0.03 2.32 0.17
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Table A.5 Tunnel air ammonia concentration, air flow rate, mass flow rate, and their associated uncertainties (∆) for both
gas and particulate forms of NH3 and total at all sampling locations in the Fort McHenry Tunnel, Baltimore, Maryland on
four sampling dates.

Sampling
Date Sampling Location NH3 Form

Air Ammonia
Concentration (C)

(µµµµg NH3-N m-3) ∆C

Air Flow
Rate (F)
(m3 s-1) ∆F

Mass Flow
Rate (M)

(µµµµg NH3-N s-1) ∆M

29 Sep 2003 Entrance Exhaust Total 12.44 1.12 259.28 41.00 3224.14 586.36
Gas 10.37 1.10 259.28 41.00 2687.41 512.10
Particulate 2.07 0.18 259.28 41.00 536.73 97.21

Exit Exhaust Total 47.18 4.72 54.74 46.36 13834.47 2202.60
Gas 44.99 4.71 54.74 46.36 13190.59 2101.50
Particulate 2.20 0.20 54.74 46.36 643.88 102.41

Entrance Ventilation Total 6.10 0.54 12.70 5.67 218.92 35.30
Gas 4.73 0.52 12.70 5.67 169.60 27.63
Particulate 1.37 0.14 12.70 5.67 49.32 8.01

Exit Ventilation Total 6.10 0.54 12.70 5.61 216.53 34.92
Gas 4.73 0.52 12.70 5.61 167.75 27.35
Particulate 1.37 0.14 12.70 5.61 48.78 7.92

14 Nov 2003 Entrance Exhaust Total 6.48 0.58 300.14 47.46 1945.48 353.19
Gas 5.48 0.57 300.14 47.46 1644.14 311.00
Particulate 1.00 0.10 300.14 47.46 301.34 57.04
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Table A.5 Continued

Sampling
Date Sampling Location NH3 Form

Air Ammonia
Concentration (C)

(µµµµg NH3-N m-3) ∆C

Air Flow
Rate (F)
(m3 s-1) ∆F

Mass Flow
Rate (M)

(µµµµg NH3-N s-1) ∆M

Exit Exhaust Total 39.27 2.65 368.31 58.24 14464.29 2486.99
Gas 14.14 1.44 368.31 58.24 5209.71 980.21
Particulate 25.13 2.23 368.31 58.24 9254.58 1677.39

Entrance Ventilation Total 7.94 0.67 34.53 5.46 274.22 49.14
Gas 6.07 0.65 34.53 5.46 209.61 40.00
Particulate 1.87 0.16 34.53 5.46 64.61 11.70

Exit Ventilation Total 7.94 0.67 35.82 5.66 284.46 50.97
Gas 6.07 0.65 35.82 5.66 217.43 41.50
Particulate 1.87 0.16 35.82 5.66 67.03 12.13

22 Mar 2004 Entrance Exhaust Total 4.70 0.48 285.49 45.14 1342.11 252.36
Gas 4.70 0.48 285.49 45.14 1342.11 252.36
Particulate 0.00 0.00 285.49 45.14 0.00 0.00

Exit Exhaust Total 11.20 1.10 330.01 52.18 3697.55 687.94
Gas 10.90 1.10 330.01 52.18 3597.48 674.47
Particulate 0.30 0.03 330.01 52.18 100.07 18.94

Entrance Ventilation Total 0.23 0.02 31.01 4.90 7.00 1.32
Gas 0.23 0.02 31.01 4.90 7.00 1.32
Particulate 0.00 0.00 31.01 4.90 0.00 0.00
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Table A.5 Continued

Sampling
Date Sampling Location NH3 Form

Air Ammonia
Concentration (C)

(µµµµg NH3-N m-3) ∆C

Air Flow
Rate (F)
(m3 s-1) ∆F

Mass Flow
Rate (M)

(µµµµg NH3-N s-1) ∆M

Exit Ventilation Total 0.23 0.02 50.53 7.99 11.41 2.16
Gas 0.23 0.02 50.53 7.99 11.41 2.16
Particulate 0.00 0.00 50.53 7.99 0.00 0.00

10 Jun 2004 Entrance Exhaust Total 12.65 1.09 316.31 50.01 4002.49 720.29
Gas 10.66 1.07 316.31 50.01 3370.53 632.03
Particulate 2.00 0.17 316.31 50.01 631.96 113.36

Exit Exhaust Total 32.74 2.93 355.66 56.23 11643.89 2116.10
Gas 29.45 2.92 355.66 56.23 10472.56 1955.38
Particulate 3.29 0.23 355.66 56.23 1171.33 202.62

Entrance Ventilation Total 8.46 0.67 23.65 3.74 200.18 35.39
Gas 6.14 0.65 23.65 3.74 145.34 27.61
Particulate 2.32 0.17 23.65 3.74 2.32 9.57

Exit Ventilation Total 8.46 0.67 50.70 8.02 429.04 75.85
Gas 6.14 0.65 50.70 8.02 311.51 59.17
Particulate 2.32 0.17 50.70 8.02 117.53 20.52
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Table A.6 Mass flow rate, total ammonia generated in the tunnel, and their associated uncertainties (∆) for both gas and
particulate forms of NH3 and total at all sampling locations in the Fort McHenry Tunnel, Baltimore, Maryland on four
sampling dates.

Sampling
Date

Sampling
Location NH3 Form

Mass Flow
Rate (M)

(µµµµg NH3-N s-1) ∆M

Ammonia Generated
in Tunnel (Q)
(mg NH3-N s-1) ∆Q

29 Sep 2003 Entrance Exhaust Total 3224.14 586.36
Gas 2687.41 512.10
Particulate 536.73 97.21

Exit Exhaust Total 13834.47 2202.60
Gas 13190.59 2101.50
Particulate 643.88 102.41

Entrance
Ventilation Total 218.92 35.30

Gas 169.60 27.63
Particulate 49.32 8.01

Exit Ventilation Total 216.53 34.92
Gas 167.75 27.35
Particulate 48.78 7.92

Total
Total 10.17 2.28
Gas 10.17 2.16
Particulate 0.01 0.14



81

Table A.6 Continued

Sampling
Date

Sampling
Location NH3 Form

Mass Flow
Rate (M)

(µµµµg NH3-N s-1) ∆M

Ammonia Generated
in Tunnel (Q)
(mg NH3-N s-1) ∆Q

14 Nov 2003 Entrance Exhaust Total 1945.48 353.19
Gas 1644.14 311.00
Particulate 301.34 57.04

Exit Exhaust Total 14464.29 2486.99
Gas 5209.71 980.21
Particulate 9254.58 1677.39

Entrance
Ventilation Total 274.22 49.14

Gas 209.61 40.00
Particulate 64.61 11.70

Exit Ventilation Total 284.46 50.97
Gas 217.43 41.50
Particulate 67.03 12.13

Total
Total 11.96 2.51
Gas 3.14 1.03
Particulate 8.82 1.68

22 Mar 2004 Entrance Exhaust Total 1342.11 252.36
Gas 1342.11 252.36
Particulate 0.00 0.00
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Table A.6 Continued

Sampling
Date

Sampling
Location NH3 Form

Mass Flow
Rate (M)

(µµµµg NH3-N s-1) ∆M

Ammonia Generated
in Tunnel (Q)
(mg NH3-N s-1) ∆Q

Exit Exhaust Total 3697.55 687.94
Gas 3597.48 674.47
Particulate 100.07 18.94

Entrance
Ventilation Total 7.00 1.32

Gas 7.00 1.32
Particulate 0.00 0.00

Exit Ventilation Total 11.41 2.16
Gas 11.41 2.16
Particulate 0.00 0.00

Total
Total 2.34 0.73
Gas 2.24 0.72
Particulate 0.10 0.02

10 Jun 2004 Entrance Exhaust Total 4002.49 720.29
Gas 3370.53 632.03
Particulate 631.96 113.36

Exit Exhaust Total 11643.89 2116.10
Gas 10472.56 1955.38
Particulate 1171.33 202.62
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Table A.6 Continued

Sampling
Date

Sampling
Location NH3 Form

Mass Flow
Rate (M)

(µµµµg NH3-N s-1) ∆M

Ammonia Generated
in Tunnel (Q)
(mg NH3-N s-1) ∆Q

Entrance
Ventilation Total 200.18 35.39

Gas 145.34 27.61
Particulate 2.32 9.57

Exit Ventilation Total 429.04 75.85
Gas 311.51 59.17
Particulate 117.53 20.52

Total
Total 7.01 2.24
Gas 6.65 2.06
Particulate 0.37 0.23
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Table A.7 Total ammonia generated in the tunnel, vehicle rate, tunnel length, and their associated uncertainties (∆) for
both gas and particulate forms of NH3 and total at all sampling locations in the Fort McHenry Tunnel, Baltimore, Maryland
on four sampling dates.

Sampling
Date NH3 Form

Ammonia
Generated in
Tunnel (Q)

(mg NH3-N s-1) ∆Q

Vehicle
Rate (R)
(veh s-1) ∆R

Tunnel
Length (L)

(km) ∆L
Emission Rate (E)

(mg NH3-N veh-1 km-1) ∆E Error %

29 Sep 2003 Total 10.17 2.28 0.52 0.01 1.90 0.05 10.2 2.3 23%
Total (corrected) 10.17 2.28 0.51 0.01 1.90 0.05 10.5 2.4 23%
Gas 10.17 2.16 0.52 0.01 1.90 0.05 10.2 2.2 21%
Particulate 0.01 0.14 0.52 0.01 1.90 0.05 0.0 0.1 1566%

14 Nov 2003 Total 11.96 2.51 0.55 0.01 1.90 0.05 11.4 2.4 21%
Total (corrected) 11.96 2.51 0.52 0.01 1.90 0.05 12.1 2.6 21%
Gas 3.14 1.03 0.55 0.01 1.90 0.05 3.0 1.0 33%
Particulate 8.82 1.68 0.55 0.01 1.90 0.05 8.4 1.6 19%

22 Mar 2004 Total 2.34 0.73 0.43 0.01 1.90 0.05 2.8 0.9 31%
Total (corrected) 2.34 0.73 0.42 0.01 1.90 0.05 2.9 0.9 31%
Gas 2.24 0.72 0.43 0.01 1.90 0.05 2.7 0.9 32%
Particulate 0.10 0.02 0.43 0.01 1.90 0.05 0.1 0.0 19%

10 Jun 2004 Total 7.01 2.24 0.47 0.01 1.90 0.05 7.9 2.5 32%
Total (corrected) 7.01 2.24 0.35 0.01 1.90 0.05 10.7 3.4 32%
Gas 6.65 2.06 0.47 0.01 1.90 0.05 7.5 2.3 31%
Particulate 0.37 0.23 0.47 0.01 1.90 0.05 0.4 0.3 64%
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Appendix B:  Velocity Profile 

Velocity Profile Model 

Velocity measurements were made in the tunnel using anemometers suspended 0.25 

m from the ceiling.  In order to determine the actual mean tunnel air velocity the 

tunnel was modeled as turbulent flow.  The model used was taken from Perry’s 

Chemical Engineers’ Handbook (Green and Maloney, 1997).  Parameters input into 

the model were as follows: 

 Tunnel diameter   = 10.52 m 

 Viscosity of air at 20 °C  = 3.26 x 10-5 kg m-1 s-1 

Density of air at 20 °C  = 1.2 kg m-3 

Reynolds Number   = 2.4 x 106

= mean velocity * density * diameter  / viscosity 

 Friction factor   = 3 x 10-3 (Table 6-9 from Perry’s) 

 Wall stress   = 0.069  kg m-1 s-2 

= friction factor * density * mean velocity2 / 2

Friction velocity  = 0.240 m s-1 

= (wall stress / density)0.5 

The graph of tunnel velocity vs. distance from wall representing the velocity profile 

for a mean tunnel velocity of 6.2 m s-1 is presented in figure B.1. 

By changing the mean velocity in the model, the velocities at different distances from 

the tunnel walls also changed.  Using an iterative process, the mean velocity was 
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changed until the velocity at .25 m was equal to the velocity measured on the 

anemometer.  The mean velocity was then used to calculate an average correction 

factor over all the tunnel deployments (Table B.1).  This correction factor was 

calculated for the velocity measured at the tunnel entrance and the velocity measured 

at  the tunnel exit.  The correction factor was then applied to the velocities measured 

in each deployment to approximate the actual tunnel mean velocity.  The velocity was 

used to calculate the flow rate of air through the tunnel as a part of the emission rate 

calculation. 

Measurement Error 

To determine the error associated with this measurement, velocity was measured from 

the tunnel ceiling at the exit, and in the tunnel at the exit at car height approximately 

0.8 m in from the tunnel walls during the pilot study conducted on July 29, 2003.  

Using the iterative method described previously, the ceiling velocity measurement of 

5.94 m s-1 gave a mean tunnel velocity of 6.2 m s-1. Using the model, the velocity 

measured 0.8 m from the wall was calculated to be 6.7 m s-1. The actual value 

measured was 7.27 m s-1. The difference between these two values was ~9%.  Due to 

the error inherent in the anemometer measurement and the error in our model, a 

tunnel air velocity error of 15%  was applied in the calculation of emission rate error 

(Appendix A).
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Tables

Table B.1 Measured velocity and calculated mean velocity from velocity profile for turbulent flow for both tunnel entrance
and exit on five different sampling dates in the Fort McHenry Tunnel, Baltimore, Maryland.

Sampling Date

Measured
Velocity at

Entrance Exhaust
(m s-1)

Mean Velocity
from Model

(m s-1)
Correction

Factor

Measured
Velocity at Exit

Exhaust
(m s-1)

Mean Velocity
from Model

(m s-1)
Correction

Factor

29 Jul 2003 N/A N/A N/A 5.94 6.2 4%

29 Sep 2003 4.47 4.8 7% 5.14 5.4 5%

14 Nov 2003 5.17 5.5 6% 6.45 6.7 4%

22 Mar 2004 4.92 5.2 6% 5.78 6.0 4%

10 Jun 2004 5.45 5.7 5% 6.23 6.5 4%

Average Entrance Correction Factor >> 6.0% Average Exit Correction Factor >> 4.3%
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Figures 

Figure B.1  Tunnel velocity profile calculated using model from Perry’s 
Chemical Engineers’ Handbook (Green and Maloney, 1997) for a mean tunnel 
velocity of 6.2 m s-1.



89 
 

Literature Cited 

(1) Allen, J.O.; Mayo, P.R.; Hughes, L.S.; Salmon, L.G.; Cass, G.R.  Emissions 

of Size-Segregated Aerosols from On-Road Vehicles in the Caldecott Tunnel.  

Environmental Science and Technology.  2001, 35, 4189-4197. 

(2) Andersen, H.V.; Hovmand, M.F.  Measurements of Ammonia and 

Ammonium by Denuder and Filter Pack.  Atmospheric Environment.  1994, 

28, 3495-3512. 

(3) Battye, R.; Battye, W.; Overcash, C.; Fudge, S.  Development and Selection 

of Ammonia Emission Factors.  Prepared by EC/R, Inc. for the US-EPA 

Atmospheric Research and Exposure Assessment Laboratory.  1994. 

(4) Baum, M.M.; Kiyomiya, E.S.; Kumar, S.; Lappas, A.M.  Multicomponent 

Remote Sensing of Vehicle Exhaust by Dispersive Absorption Spectroscopy.  

2. Direct On-Road Ammonia Measurements.  Environmental Science and 

Technology. 2001, 35, 3735-3741. 

(5) Cadle, S.H.; Mulawa, P.A.  Low Molecular Weight Aliphatic Amines in 

Exhaust from Catalyst-Equipped Cars.  Environmental Science and 

Technology. 1980, 14, 718-723. 

(6) Castro, M.S.; Driscoll, C.T.  Atmospheric Nitrogen Deposition to Estuaries in 

the Mid-Atlantic and Northeastern United States.  Environmental Science and 

Technology. 2002, 36, 3242-3249. 

(7) Chen, L.-W.A.; Chow, J.C.; Doddridge, B.G.; Dickerson, R.R.; Ryan, W.F.; 

Mueller, P.K.  Analysis of a Summertime PM2.5 and Haze Episode in the 



90 
 

Mid-Atlantic Region.  Journal of the Air and Waste Management Association.

2003, 53, 946-956. 

(8) Chinkin, L.R.; Ryan, P.A.; Coe, D.L.  Recommended Improvements to the 

CMU Ammonia Emission Inventory Model for Use by LADCO.  Prepared by 

Sonoma Technology, Inc. for the Lake Michigan Air Directors Consortium.  

2003. 

(9) Churg, A.; Brauer, M.  Ambient Atmospheric Particles in the Airways of 

Human Lungs.  Ultrastructural Pathology. 2000, 24, 353-361. 

(10) Davidson, C.; Strader, R; Anderson, N.; Goebes, M.; Ayers, J.  Development 

of an Improved Ammonia Emissions Inventory for the United States.  

Prepared for the Northeast States for Coordinated Air Use Management 

(NESCAUM) and the Mid-Atlantic Regional Air Management Association 

(MARAMA).  2001. 

(11) Der, K.; Jannejohn, D.; Mignacca, D.; Sidi, S.; Visser, R.  Ammonia Emission 

Inventory for the Lower Fraser Valley Airshed.  Prepared by the Greater 

Vancouver Regional District Air Quality Department.  1999. 

(12) Dockery, D.W.; Pope, C.A.; Xu, X.; Spengler, J.D.; Ware, J.H.; Fay, M.E.; 

Ferris, B.G.; Speizer, F.E. An Association Between Air Pollution and 

Mortality in Six U.S. Cities. The New England Journal of Medicine. 1993,

329, 1753-1759. 

(13) Durbin, T.D.; Wilson, R.D.; Norbeck, J.M.; Miller, J.W.; Huai, T.; Rhee, S.H.  

Estimates of the Emission Rates of Ammonia From Light-Duty Vehicles 



91 
 

Using Standard Chassis Dynamometer Test Cycles.  Atmospheric 

Environment. 2002, 36, 1475-1482. 

(14) Fraser, M.P.; Cass, G.R.  Detection of Excess Ammonia Emissions from In-

Use Vehicles and the Implications for Fine Particle Control.  Environmental 

Science and Technology. 1998, 32, 1053-1057. 

(15) Perry’s Chemical Engineers’ Handbook; Editor, Green, D.W.; Editor, 

Maloney, J.O.  7th ed.  McGraw Hill:  New York, NY, 1997. 

(16) Howarth, R.W.; Billen, G.; Swaney, D.; Townsend, A.; Jaworski, N.; Lajtha, 

K.; Downing, J.A.; Elmgren, R.; Caraco, N.; Jordan, R.; Berendse, F.; Freney, 

J.; Kudeyarov, V.; Murdoch, P.; Shao-Liang, Z.  Regional Nitrogen Budgets 

and Riverine N & P Fluxes for the Drainages to the North Atlantic Ocean:  

Natural and Human Influences.  Biogeochemistry. 1996, 35, 75.

(17) Huai, T.; Durbin, T.D.; Miller, J.W.; Pisano, J.T.; Sauer, C.G.; Rhee, S.H.; 

Norbeck, J.M.  Investigation of NH3 Emissions from New Technology 

Vehicles as a Function of Vehicle Operating Conditions.  Environmental 

Science and Technology. 2000, 37, 4841-4847. 

(18) Hughes, L.S.; Allen, J.O.; Salmon, L.G.; Mayo, P.R.; Johnson, R.J.; Cass, 

G.R.  Evolution of Nitrogen Species Air Pollutants Along Trajectories 

Crossing the Los Angeles Area.  Environmental Science and Technology.

2002, 36, 3928-3935. 

(19) Kean, A.J.; Harley, R.A.; Littlejohn, D.; Kendall, G.R.  On-road Measurement 

of Ammonia and Other Motor Vehicle Exhaust Emissions.  Environmental 

Science and Technology. 2000, 34, 3535-3539. 



92 
 

(20) Landis, M.S.; Norris, G.A.; Williams, R.W.; Weinstein, J.P.  Personal 

Exposures to PM2.5 Mass and Trace Elements in Baltimore, MD, USA.  

Atmospheric Environment. 2001, 35, 6511-6524. 

(21) Li, J.; Dasgupta, P.K.; Genfa, Z.  Transversely Illuminated Liquid Core 

Waveguide Based Fluorescence Detection.  Fluorometric Flow Injection 

Determination of Aqueous Ammonium/Ammonia.  Talanta. 1999, 50, 617-

623. 

(22) Maryland Department of Transportation (MDOT), 2003.  Millions of Annual 

Vehicle Miles Report.

(23) Moeckli, M.A.; Fierz, M.; Sigrist, M.W.  Emission Factors for Ethane and 

Ammonia from a Tunnel Study with a Photoacoustic Trace Gas Detection 

System.  Environmental Science and Technology. 1996, 30, 2864-2867. 

(24) Ott, R.L.; Longnecker, M.  An Introduction to Statistical Methods and Data 

Analysis; 5th ed.  Wadsworth Group:  Pacific Grove, CA, 2001. 

(25) Pierson, W.R.; Brachaczek, W.W.  Emissions of Ammonia and Amines from 

Vehicles on the Road.  Environmental Science and Technology. 1983, 17,

757-760. 

(26) Pierson, W.R.; Gertler A.W.; Robinson N.F.; Sagebiel J.C.; Zielinska B.; 

Bishop, G.A.; Stedman, D.H.; Zweidinger, R.B.; Ray, W.D.  Real-world 

Automotive Emissions – Summary of Studies in the Fort McHenry and 

Tuscarora Mountain Tunnels.  Atmospheric Environment. 1996, 30, 2233-

2256. 



93 
 

(27) Pisano, J.T.; Fitz, D.R.  Flux Measurements of Ammonia to Estimate Emission 

Factors for Area Sources. Final Report to California Air Resources Board 

under Contract 98-340.  CE-CERT document 02-AP-18395-004-FR.  2002. 

(28) Roadman, M.J., Scudlark, J.R., Meisinger, J.J., Ullman, W.J.  Validation of 

Ogawa Passive Samplers for the Determination of Gaseous Ammonia 

Concentrations in Agricultural Settings.  Atmospheric Environment. 2003, 37,

2317-2325. 

(29) Siefert, R.L.; Scudlark, J.R.; Potter, A.G.; Simonsen, K.A.; Savidge, K.B.  

Characterization of Atmospheric Ammonia Emissions from a Commercial 

Chicken House on the Delmarva Peninsula.  Environmental Science and 

Technology. 2004, 38, 2769-2778. 

(30) Skoog, D.A.  Principles of Instrumental Analysis;  3rd ed.  Saunders College 

Publishing:  Philadelphia, PA, 1985. 

(31) Technicon Industrial Systems.  Technicon Industrial Method No. 804-86T.

Tarrytown, New York, 1986. 

(32) U.S. Environmental Protection Agency, Center for Environmental Research 

Information, Office of Research and Development.  Compendium of Methods 

for the Determination of Inorganic Compounds in Ambient Air.  Document 

EPA/625/R-96/010a.  Washington, D.C., 1999. 


