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This thesis presents a number methodologies for computer assisted vulnerabil-

ity analysis of routing protocols in ad-hoc networks towards the goal of automating

the process of finding vulnerabilities (possible attacks) on such network routing pro-

tocols and correcting the protocols. The methodologies developed are (each) based

on a different representation (model) of the routing protocol, which model predicated

the quantitative methods and algorithms used. Each methodology is evaluated with

respect to effectiveness feasibility and possibility of application to realistically sized

networks. The first methodology studied is based on formal models of the protocols

and associated symbolic partially ordered model checkers. Using this methodol-

ogy, a simple attack in unsecured AODV is demonstrated. An extension of the

Strands model is developed which is suitable for such routing protocols. The second

methodology is based on timed-probabilistic formal models which is necessary due

to the probabilistic nature of ad-hoc routing protocols. This second methodolgy



uses natural extensions of the first one. A nondeterministic-timing model based on

partially ordered events is considered for application towards the model checking

problem. Determining probabilities within this structure requires the calculation of

the volume of a particular type of convex volume, which is known to be ]P -hard. A

new algorithm is derived, exploiting the particular problem structure, that can be

used to reduce the amount of time used to compute these quantities over conven-

tional algorithms. We show that timed-probabilistic formal models can be linked to

trace-based techniques by sampling methods, and conversely how execution traces

can serve as starting points for formal exploration of the state space. We show that

an approach combining both trace-based and formal methods can have faster con-

vergence than either alone on a set of problems. However, the applicability of both

of these techniques to ad-hoc network routing protocols is limited to small networks

and relatively simple attacks. We provide evidence to this end. To address this

limitation, a final technique employing only trace-based methods within an opti-

mization framework is developed. In an application of this third methodology, it is

shown that it can be used to evaluate the effects of a simple attack on OLSR. The

result can be viewed (from a certain perspective) as an example of automatically

discovering a new attack on the OLSR routing protocol.
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Chapter 1

Introduction

1.1 Outline

This dissertation develops and evaluates methodologies for the computer as-

sisted vulnerability analysis of ad-hoc network routing protocols. This introductory

chapter aims to describe the ideas motivating this work and its main contributions.

Subsequent chapters will address the details of the techniques that support the

results outlined in this chapter.

Several approaches towards the problem of ad-hoc routing protocol attack vul-

nerability analysis are explored in this thesis. This is pursued towards the eventual

goal of computer-aided design tools that will relieve protocol designers from time-

consuming, error-prone tasks. This is important in view of the fact that there is a

clear trend towards more complex protocols and the proliferation of protocols, while

at the same time pressure to reduce the costs of analysis is increasing. A possible

solution is to automate steps of the analysis and this thesis aims in that direction.

The following section presents some basic ideas on vulnerability analysis of

ad-hoc routing protocols.
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1.2 Vulnerability Analysis of Ad-Hoc Routing Protocols : An Overview

The most basic and direct mechanism by which to perform computer assisted

vulnerability analysis for a particular protocol is to start with a model of the proto-

col, a model of the attacker and a definition of what constitutes an attack. Then it

is a matter of searching the combined execution space of the protocol and attacker

for traces that satisfy the attack definition. Despite the simplicity of its description,

developing implementable such mechanisms is a challenging undertaking, for several

classes of protocols encountered in modern communication networks. Nevertheless,

there are a number of ways of doing this, and traditionally, in the area of security

protocols, formal models of both the protocol and the attacker are defined (for ex-

ample, the Dolev-Yao model [24]) and security is specified as a set of properties

that all executions must satisfy. Using suitable models, security criteria and tools,

it is possible for some types of protocols and cases, to perform automatically the

checking for security violations [50], [64].

Model checking works by enumerating (ideally exhaustively) the execution

space, (see [18] for an introduction). The goal is to find within the execution space

violations of desired properties or to show conversely that the execution space is free

of violations. In some limited instances this is possible, but in most real problems

and in the specific problem of ad-hoc routing protocol security, this does not appear

to be possible. A particular obstacle is that of state space explosion, which is a

result of the fact that the possible reachable states of a dependent composition of

state machines is exponential in the number of machines being composed. There are
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a number of universally applicable reduction techniques, such as symbolic variable

representation and partial order reduction for concurrent machines, but none of

these approaches defeats the state space explosion problem.

Applying (or extending and applying) model checking methods to ad-hoc rout-

ing protocols is significantly further complicated by the fact that ad-hoc routing pro-

tocols behave probabilistically and their behavior is time-dependent. In OLSR [20],

there are behaviors, such as packet emission that occur based on a clock variable

that is uniformly distributed over a given range. This distribution affects the be-

havioral distribution of OLSR. In such systems, the event timings can be described

by systems of constraints on the event timings that may be encapsulated in objects

referred to as Difference Bound Matrices (DBMs) [3][2][18]. Each entry in a DBM

represents one temporal constraint between two time variables of the system. In

systems such as OLSR where behaviors occur according to clocks that are random

and uniform over intervals while adhering to ordering constraints, the probability

of particular partial order traces can be computed by evaluating the volume of the

polytope specified by the DBM. Being able to evaluate the individual probability

of traces enables the formulation of probabilistic model checking and cost-based

evaluation of protocols.

Given that the behaviors of ad-hoc routing protocols are probabilistic (stochas-

tic), it may not make sense to apply notions of correctness towards their evaluation

in model checking. For example, it may be the case that with very low probability,

packets are continually dropped and the routing algorithm cannot converge over a

given time window. This gives no indication that the algorithm is inherently faulty.
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It makes more sense in this context to describe the average behavior of the algorithm

or the likely behaviors of the algorithm. It may make sense to call an algorithm

faulty if under appropriate conditions, convergence occurs at a frequency less than

some specified threshold P . Thus the model checking problem becomes one of com-

puting the probability that certain conditions are satisfied. This removes one of the

benefits of model checking, which is that instances of violating traces are produced.

Instead, an entire collection of traces along with their probabilities are produced

and can only be considered a violation in aggregate.

As stated earlier, it will not be possible in general to enumerate all the states.

However, since the relevant features of the execution space apply to aggregates of

traces, it may make sense to consider a partial exploration of the state space by

random sampling of traces. This alternative approach is supported by the theory of

simulation-based optimization methods [23][9].

1.3 Main Contributions of this Dissertation

The initial effort of the research reported was towards the development of

partially-ordered symbolic formal models of ad-hoc routing protocols and attacks,

in order to make progress in the direction of computer assisted vulnerability analysis

of these protocols. A contribution from this initial effort is the development of an

extension of the Strands model [29], in a manner suitable for describing ad-hoc

routing protocols and attacks. On the other hand, despite considerable and diverse

efforts, we have not been able to overcome (the apparently) insurmountable obstacle
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of state space explosion for such systems so that they can handle problems of size

and complexity typically encountered in practice. Our research efforts compiled

considerable evidence that the development of such automated methods does not

appear to be feasible. The research from this initial effort led to the pursuit of

probabilistic-timed models for ad-hoc routing protocols and attacks.

The second major component of the work was therefore towards the devel-

opment of a probabilistic model checker. The goal was to discover to what extent

a methodolgy could be developed in this direction, so as to accomplish computer

assisted vulnerability analysis of interesting classes of routing protocols. The focus

on developing such a method yielded a significantly enhanced algorithm for com-

puting the volume of DBMs. This is another contribution of the dissertation with

diverse applications to probabilistic model checking. This is achieved by reducing

the branching factor in Lasserre’s recursion. In general formulations for Lasserre’s

recursion, the problem of eliminating redundant constraints is equivalent in complex-

ity to the linear programming problem. Due to the special shortest-path structure

of DBMs, redundant constraints can be eliminated in quadratic time in the num-

ber of clock variables using the improved algorithm. This results in significantly

reducing in the computational time, although this improvement does not change

the fundamental complexity class of the volume computation problem. This result

can be applied towards counting the number of linear extensions of a partial order.

It is also shown how this algorithm can be combined with Monte-Carlo methods to

improve the convergence time of Monte-Carlo integration for this class of problems.

Nevertheless, in the course of this part of the research we accumulated substantial
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evidence, that computer assisted vulnerability analysis of ad-hoc routing protocols

could not be developed by probabilistic model checking methodologies alone so as

to handle cases of practical complexity.

Given the complexity issues posed by the above, probabilistic model checking

does not appear cabable as a method, to succeed in automated attack discovery

within the proposed framework. Since a probabilistic framework makes sense for

this problem, the problem was reposed using sample based estimates within an

optimization framework. This last framework resulted in some successes, in that

computer assisted evaluation of the effects of a number of vulnerabilities in OLSR

were performed. The scope of these vulnerabilities were rather narrow, but the algo-

rithms were able to determine that the effects could be substantial. In addition our

methods indicated a proposed modification to the OLSR protocol and we demon-

strated that this modification circumvents the vulnerability which was revalidated

within the attack discovery framework.

1.4 Dissertation Outline

The research of this thesis pursued computer assisted vulnerability analysis

from three different perspectives. In the remainder of the thesis, the three main

efforts of research are described in detail and the results are described together with

their inter-relationships and implications. In Chapter 2, the focus is on developing

a formalism for a symbolic partial order model checker. The protocol examined in

Chapter 2 is AODV and the approach is roughly inspired by the Strands model,

6



which is extended appropriately. In Chapter 3, a probabilistic timed model for

model checking is developed and the detailed mechanics of this model are developed

along with a significantly computationally improved algorithm for computing the

critical probabilities. In Chapter 4, a different approach is taken in order to bypass

the insurmountable complexity problems encountered with the previous methods.

Sampling methods are explored and a simulation-based optimization technique is

used to evaluate quantitatively the effects of some simple novel attacks on the rout-

ing protocol OLSR. Chapter 5 summarizes the results, discusses limitations and

describes promising directions for future work. Among the latter, the most promis-

ing appears to be (based on the evidence we compiled) a combination of formal

(symbolic partial-order) checker and simulation-based (trace-based) optimization

methodology.
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Chapter 2

A Formal Model for Ad Hoc Routing Protocol Vulnerability Analysis

2.1 Introduction

A participant in an ad hoc network may communicate directly only with its

immediately adjacent neighbors. It relies on routing services provided by its neigh-

bors, and in turn neighbors of its neighbors recurisvely, to communicate with distant

members of the network. Due to this dependency, a malicious node is in a position

to disrupt services in the network, even when there is enough redundancy to avoid

relying on the routing services of the malicious node directly. Current approaches to

securing ad-hoc routing protocols focus on using secure signatures to authenticate

routing information and some built-in mechanisms for resisting or detecting Byzan-

tine attacks [49] [54] [72] [38]. However, authentication is not always sufficient to

safeguard the network from malicious nodes, as in the case of publically accessible

wireless networks or in the case of physical compromise, to which mobile devices are

thought to be more susceptible. Also, methods for detecting Byzantine attacks are

often susceptible to attack themselves.

This chapter focuses on developing formal models for ad hoc networks with

the objective of understanding and evaluating vulnerability to Byzantine or insider

attacks as well as their effects (cf. causing loss of connectivity). Such a model

may aid protocol engineers in mitigating their effects or reducing the number of
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vulnerabilities of this type. In addition, formal models have been used previously

in intrusion detection to protect routing in fixed networks. A formal model for ad

hoc networks may also prove useful for constructing intrusion detection systems in

a mobile environment.

This work proposes an extension of the Strand model that captures the be-

havior of ad hoc routing protocols. It inherits from the Strand model the partial

ordering semantics, which is useful for mitigating the state space explosion prob-

lem. In this extended Strands model, it is possible to formulate Byzantine attacks

as security goals. However, neither regularity nor formulation of this problem in a

decidable infinite structure is obvious. Using this Strand model, AODV has been

modeled along with one of its security goals, and the semi-decision procedure is able

to discover a particular attack on AODV. Nevertheless, it is our conclusion, based

on the results presented and the evidence we have accumulated, that the success of

methods developed along such lines will be limited to relatively small networks and

simple attacks (vulnerabilities).

2.2 Background

Formal models for the analysis of ad hoc routing protocols has been appliet

to the case of fixed topologies for a small number of nodes [10] [4]. Additionally

several frameworks have been proposed for formally examining the security of ad-hoc

routing protocols [69] [16] [1]. The work of the author in [69] is presented here.
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2.2.1 Verification of Ad Hoc Routing Protocols

Consider a protocol where each node has k states and assume there are n nodes

in the network. Then there are kn possible concurrent states of these nodes, though

not all of these states are necessarily reachable. Since k can be immense (for example,

AODV specifies sequence numbers as 31-32 bit integers which is approximately 2-4

billion states), the exponential state space explosion problem is acute. Compounding

this difficulty is the effect of topology on the behavior of the protocol. Since the

number of non-isomorphic topologies is also exponential in n, the number of states

increases further by another factor exponential in n. An explicit representation of

the protocol by a state machine that incorporates all these topologies and transitions

between topologies will be enormous.

Thus, model checking by state enumeration is only possible for a small, fixed

number of nodes under special assumptions and clever reductions of the state space.

Unfortunately, this approach is still intractable for the numbers of nodes found in

real networks. Clearly, state enumeration model checking techniques alone are insuf-

ficient for the development of computer assisted (automated) vulnerability analysis

for realstic ad hoc networks. A possible solution to the problem is to use hand proofs

to establish lemmas that reduce the verification problem to one that requires only

model checking a small, finite, representative fragment of the execution space of the

protocol.

A notable example of this technique is the work on verifying the loop freedom

of AODV [10] [53]. The authors used formal models of AODV to discover conditions
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leading to the formation of routing loops by model checking finite models of AODV

in SPIN [36]. They proceeded to design a repair for AODV that eliminates this

problem and verified that the repaired version of AODV is loop free under some

assumptions (prior to restarting its AODV process, a node must ensure that all of

its neighbors detect the restart). The verification combines a hand proof performed

using the mechanical proof assistant HOL with finite state model checking performed

by SPIN.

2.2.2 Secure Ad Hoc Routing Protocols

The preceding discussion pertains to ad hoc routing protocols that have no

security provisions, but recently, there has been intense interest in securing ad hoc

routing protocols [72] [49] [54] [38] [71]. For these new protocols, the amount of

formal analysis is limited, and contributions and progress in formal modeling of these

kinds of protocols is one of the objectives of this dissertation. The following briefly

surveys some approaches to securing routing algorithms in rough chronological order.

The more recent secure ad hoc routing algorithms borrow from secure algo-

rithms for fixed networks. Perlman proposed a link state routing protocol that is

robust to Byzantine failure, but has a very high overhead associated with public key

encryption [58].

For the mobile case, Zhou and Haas propose a threshold cryptography system

for key management that can be distributed across an ad hoc network that per-

mits subversion of t from a total of 3t + 1 nodes while maintaining security [72].
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This scheme has the added benefit of working under weak assumptions about the

synchronicity of network communication. However, it does not directly address the

issue of subverted insiders attacking the routing algorithm itself rather than the

certificate authority (CA).

Marti describes a technique for detecting misbehavior in ad hoc networks by

having nodes promiscuously listen to make sure that packets are correctly forwarded

by their neighbors[49]. However, wireless collisions almost guarantee that not all

forwarded messages will be heard, so a node receives a rating based on the frequency

of missed message forwarding observations and if the frequency exceeds a certain

threshold, the node is labeled malicious. This approach does not make any formal

guarantees of correctness and identifies several of its own vulnerabilities, the most

critical of which is exploiting the watchdog reporting mechanism itself.

Two algorithms based on DSR, SRP and Ariadne, attempt to achieve routing

security [54] [38]. The claim is that source based routing protocols are easier to

secure than distance vector routing protocols because the explicit representation

of the route allows greater fine grain control. For example, SRP requires nodes to

authenticate the destination during each route discovery. Both SRP and Ariadne use

message authentication codes to achieve authentication of route replies. They differ

in what assumptions they make about the requirements on the key management

infrastructure and what security guarantees they provide.

The routing algorithm SRP guarantees against malicious route replies while

requiring only a security association between the source and destination nodes by

using a message authentication code on queries and replies. The route discovery
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phase of the algorithm is proven to work in the presence of any number of malicious

nodes as long as they do not collude. However, malicious nodes can still corrupt

error messages and interfere with the route maintenance phase. For example, since

intermediate nodes are not authenticated, a malicious node might listen for a source

routed packet and synthesize a route error message to invalidate the route. This

route may not even include the malicious node.

Ariadne, based on DSR, makes stronger assumptions on the network infras-

tructure than SRP. Ariadne authenticates not only the endpoints in the communi-

cation, but also the intermediate nodes, and it will not be vulnerable to the same

types of attacks as SRP and does not assume non-colluding compromised nodes.

While the assumptions on clock synchronization have been criticized as unrealistic

in mobile ad hoc networks [71], Ariadne can run using pair-wise shared secret keys

or RSA asymmetric keys without requiring clock synchronization. The distribution

of n(n−1)/2 shared secret keys could be established using the distributed threshold

cryptography CA described previously or with PKI. Managing n(n − 1)/2 shared

secret keys is costly (in constrast SRP requires only shared keys between commu-

nicating endpoints). Also, the high computational cost of authenticating with PKI

could be a security liability leading to denial of service where attackers inject many

messages that require authentication into the network.

When using the TESLA [59] asymmetric cryptographic primitive with Ari-

adne, clock synchronization is required, but the timing requirements are loose. There

only needs to be a known upper bound ∆ on the clock disparity between the nodes

in the network and an upper bound τ on the network traversal time. 2∆ + τ gives
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a lower bound on authentication delay (in turn becoming a lower bound on route

discovery delays) since authentication depends on the disclosure of an appropriate

hash chain key. τ could be arbitrarily long in large, busy networks. Key disclo-

sure, which requires periodic flooding of the network at a rate proportional to n,

will increase network delays, thus increasing τ . This does not compromise the secu-

rity of Ariadne, but affects its delay and power utilization. While TESLA achieves

an asymmetric primitive with lower computational cost than conventional public

key algorithms, it does so by increasing bandwidth requirements. A final criticism

of TESLA is that by requiring unauthenticated messages to be buffered until key

disclosure, it opens a risk of a denial of service attack based on filling this buffer.

In work related to Ariadne on packet leashes [39], the time synchronicity as-

sumptions are less realistic. The peril of relying on synchronized clocks for security

has been pointed out previously [31]. GPS has been proposed as a solution to the

clock synchronization problem, in addition to being able to provide geographical

packet leashes; however GPS has its own security and practicality concerns. GPS

signals are too weak to provide information indoors and problematic in cities where

the line of sight to the GPS satellites may be blocked by surrounding buildings. The

accuracy of GPS measurements can be influenced by other environmental conditions

and mobility. Finally, the weak GPS signal is vulnerable to jamming by homemade,

portable devices [5].

A source based routing algorithm similar to SRP and Ariadne but not based

on DSR has been proposed [6]. This algorithm assumes that there is a facility

that provides pairwise shared secret keys on demand via some CA, which may be
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distributed. There are two main differences between this work and the previously

discussed works based on DSR. Instead of constructing routes during request prop-

agation as in DSR, the proposed algorithm constructs hop by hop authenticated

routes during reply propagation. The second and more important difference is the

idea of being able to locate nodes in routes exhibiting Byzantine behavior. Essen-

tially, by using probes to perform a binary search along the route, it is possible to

identify a faulty link (not a node) in log(n) faults where n is the length of the route.

When such a link is identified, a weight is assigned to it that causes it to be avoided

in the next route discovery phase. The authors claim that this guarantees that if

there exist routes that are not controlled by adversaries, the routes will be discov-

ered in finite time. However, this scheme appears to suffer from the same problem

as the previously discussed misuse detection scheme, namely abuse of the detection

system itself. For example, an attacker could use jamming to create delays in the

fault probes in to incriminate certain otherwise well behaving links.

An approach based on the distance vector routing algorithm AODV rather

than any source based algorithm has also been proposed [71]. This approach assumes

that there is a PKI and that each node is able to securely determine if a given

public key belongs to another given node. Security is improved over AODV, which

has no security provisions by signing routing messages and using hash chains to

sign mutable fields of routing messages. However, this work does not address the

problem of malicious insiders or wormhole attacks.

The objective of all of these secure ad hoc routing algorithms can be seen as

improving the survivability of mobile wireless networks. Survivability is character-
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ized by three objectives: resistance, recognition, and recovery [65]. The protocols

reviewed above focus mainly on resistance and partially on recognition. However,

there is little analysis on how well the protocols recover from attacks, where recovery

is defined as the ability to maintain services during attack and the ability to com-

pletely restore services after the attack. The techniques must be hardened under

attack models in the wireless context.

2.2.3 Securing Fixed Routing Protocols

The preceding survey of approaches to securing routing in ad hoc networks

excludes some ideas that might be useful, but are currently used only for fixed

topology networks. The following two techniques use formal methods to increase

security in wired networks, but have no analagous ad hoc wireless equivalents.

One such model for wired networks is that of filtering postures, which allows a

global set of constraints on network traffic in terms of security goals to be automat-

ically converted into a set of local filtering configurations [32]. The types of packets

that may flow from one location to another in the network are defined in terms of

constraints on the packet headers, which may be efficiently represented in terms

of binary decision diagrams (BDD) [12]. This also allows for efficient automatic

verification of local filtering configurations. This approach depends upon the fixed

topology of the network, an assumption that does not apply in wireless networks.

The idea of using binary decision diagrams on packet header fields might be useful

in similar wireless network packet filtering problems.
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Another topology dependent application of formal models to securing routing

in fixed networks is sensor based intrusion detection [52]. For a given topology

and a given set of sensor positions within the network, the approach constructs

a model of all possible routing advertisements that a given sensor will observe.

Impossible routing advertisements are automatically flagged as malicious, and other

routing advertisements can be verified by probing the network via sending packets

to other sensors. The approach has certain limitations and is not able to detect all

possible attacks, in addition to sometimes generating false positives. Obviously, this

approach will not work in wireless networks, but one interesting question it raises is

whether or not one may formulate an equivalent wireless sensor intrusion detection

problem.

2.2.4 Formal Methods

The previous two approaches use formal models in order to analyze security

properties of wired networks. While there is no standard formal model for ad hoc

networks, there is a vast literature on formal models in general [18] [26] [56][51]

[48]. The following surveys just a few of the most prominent ones. Ideas from these

models will be important in formulating a model for ad hoc routing protocols.

The basic model for concurrent programs is the labeled transition system

(LTS), of which variants can be defined based on different notions of state. A

LTS is a tuple (Q,Σ, δ, q0, F ) where

Q set of states (possibly infinite)
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Σ set of transition labels

δ ⊆ Q× Σ×Q transition relation

q0 ∈ Q start state

F ⊆ Q set of terminal states where

∀q ∈ F ∀a ∈ Σ ∀q′ ∈ Q ¬δ(q, a, q′)

This appears no different from the description of a finite state machine (FSM), and

if Q and Σ are finite, then this indeed represents a nondeterministic FSM. However,

Q can be infinite, for example including an infinite tape as with Turing machines. Σ

may also be infinite. One characterization of Q that is useful for describing protocols

is as a set of assignments of values to a set of variables V = v1, . . . , vn. Let each

variable vi take on values from the domain Di, then Q is the set D1 × . . .×Dn.

Process algebras have been used to reason about the properties of concurrent,

communicating systems. The π-calculus is a prominent example of a process al-

gebra [51] [56]. An important concept from process algebras like the π-calculus

is bismulation, which defines a notion of equivalence between states. There is

an elegant description of bisimilarity in terms of a simple two player game. Let

M = (Q,Σ, δ, q0, F ), M ′ = (Q′,Σ′, δ′, q′0, F
′) and initially let x = q0 and y = q′0.

1. If x ∈ F ⊕ y ∈ F ′ then player 1 is the winner.

2. If x ∈ F ∧ x′ ∈ F ′ then player 2 is the winner.
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3. Otherwise x 6∈ F ∧x′ 6∈ F ′. Player 1 chooses an enabled transition from either

M or M ′. That is, player 1 chooses either α and x′ such that (x, α, x′) ∈ δ or

β and y′ such that (y, β, y′) ∈ δ′.

4. If player 1 chooses a transition of machine M , (x, α, x′), then player 2 must

choose a transition of machine M ′ having the same label (y, α, y′) ∈ δ′. If

there are no enabled transitions for M ′ with the label α, then player 1 is the

winner. Similarly if player 1 chooses a transition o machine M ′.

5. The game repeats with x = x′ and y = y′.

M is bisimilar to M ′, written M ∼M ′ iff player 2 always has a winning strategy. It

is important to note that bisimilarity is more restrictive than language equivalence

in automata because bisimilarity models a reactive system.

An interesting analogy for the packet filtering and sensor based intrusion detec-

tion problem exists in the context of ad hoc networks formulated as a bisimulation.

Let E be a LTS that represents every possible interaction a node may exhibit in

an ad hoc network under some protocol. It may not even be possible to charac-

terize E since it must capture the behavior of every reachable state of the network

and the routing protocol in general has unbounded state. Nevertheless, the for-

mulation proceeds as follows. Let M be the behavior of a node and let E ′ be an

unconstrained machine (single state q with transition relation containing (q, α, q)

for all labels α) with the same labels set as E. First, if E ∼ E ′, then the hostile

environment is indistinguishable from the secure environment and nothing can be

done. Assume this is not the case for protocols of interest. Then a machine M ′ such
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that M ′ × E ∼ M × E is equivalent to M , but it will not necessarily be the case

that M ∼ M ′, and preferably not the case that M ′ × E ′ ∼ M × E ′. This yields a

criterion for testing machines M ′ which include packet filtering mechanisms on top

of existing algorithms.

Temporal logic is an extension of first order logic that includes temporal op-

erators in addition to the regular boolean operators [48]. This is a linear time

formulation, so every behavior σ is a sequence of states < s0, s1, . . . >. Define the

suffixing operator as σi =< si, si+1, . . . >. Let ϕ be a unary relation on the states Q.

In temporal logic, relations are interpreted on sequences, where truth on a sequence

is defined as

σ |= ϕ iff ϕ(s0) holds.

State relations can be composed using Boolean operators in the natural way. The

notion extends to sets of behaviors naturally. Let Σ be a set of behaviors. Then

Σ |= ϕ iff ∀σ ∈ Σ σ |= ϕ.

Temporal logic defines the following operators for describing properties of a

program. Let ϕ and ψ be temporal formulas.

2 henceforth. σ |= 2ϕ iff ∀i σi |= ϕ

3 eventually. σ |= 3ϕ iff σ |= ¬2¬ϕ.

© nextime. σ |=©ϕ iff σ1 |= ϕ.

U until. σ |= ϕUψ iff ∃j σj |= ψ ∧ ∀i < j σi |= ϕ.
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There are fairly simple rules of inference for this logic that can be used to establish

invariance properties and liveness properties.

The temporal logic of actions (TLA) is a specification language for concur-

rent systems that allows systems to be specified with temporal logic [44][45]. The

fundamental unit of execution is the action. Let A be an action, which is a binary

relation on Q×Q.

σ |= A iff A(s0, s1) holds.

A cannonical definition of a program in TLA can be written

Init ∧2[N ]v ∧ L.

Init is a unary state relation specifying the initial conditions, N =
∨n
i=1Ai and L

is a formula specifying the fairness of the system. The notation [N ]v is a shorthand

denoting stuttering invariance. The specified system either stutters or executes one

of the n actions Ai.

Subsequently, temporal logic has been categorized into variants depending on

the underlying view of time (see the survey by Emerson [26]). In Linear Temporal

Logic (LTL), which has the same semantics as the temporal logic above, time is a

totally ordered set (S,<) of cardinality ω which is usually assumed to be isomorphic

with (N, <). The other view of time is as an infinite branching tree structure where

along each path in the tree is a linear time line. Computational Tree Logic (CTL)

extends LTL by adding the following operators.

A for all futures

E for some future
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CTL also restricts formulas to disallow Boolean combinations and nestings of the

linear-time operators. In terms of expressiveness, CTL and LTL are incomparable.

There are properties that may be expressed in LTL that are not expressible in

CTL and vice versa. However, CTL has lower computational complexity for model

checking than LTL.

Note that there is no difficulty in defining TLA actions in CTL by translating

2 into A2 and by using A© to operate on state predicates of the next state.

However, this is not true in general for LTL formulas. For example, the LTL formula

¬2¬P expresses something different from the CTL formula ¬A2¬P . While the

LTL formula specifies that all executions eventually reach state P , as in 3P , the

CTL formula merely states that there is an execution that reaches state P .

There has also been interest in the area of using optimization methods for

automated theorem proving [17]. This approach is based on the insight that sat-

isfiability in propositional logic, which is the basis for many automatic theorem

provers, can be modeled as a 0-1 integer programming problem. However, it is dif-

ficult to automate proofs of this type due to the computational complexity, even in

the case where the theory is decidable. Consider, for example, the decidable theory

(Z,+,≤, 0), which permits the elimination of quantifiers. Any algorithm that can

determine satisfiability of sentences in this theory has a lower bound on computa-

tional complexity of 22cn where n is the length of the sentence and c is a constant > 0

[30]. This means that no matter what algorithm is used, even using optimization

methods, the computational cost is still doubly exponential. Since protocols are

complex, sentences used to describe them are necessarily long, and so automated
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theorem proving with temporal logic remains infeasible. The other approach to an-

alyzing programs is model checking, in which every system is assumed to be a finite

automaton on possibly infinite strings.

A useful formalism for model checking that subsumes CTL and some of its

variants is the Mu-calculus [27]. The Mu-calculus introduces the idea of least (µ)

and greatest (ν) fixpoint operators. From these and the operators A© and E©,

all the rest of the CTL can be defined. Mu-calculus model checking is grounded

in the Knaster-Tarski theorem [22], which guarantees the existence of solutions to

the fixpoint operator and also provides a bounded algorithm for calculating these

fixpoints.

Theorem 2.2.1 (Knaster-Tarski). Let L be a complete lattice (supS and inf S exist

for all S ⊆ L), and Φ : L→ L be an order preserving map (∀a, b ∈ L if a ≤ b then

Φ(a) ≤ Φ(b)). Then

sup{x ∈ L|x ≤ Φ(x)}

is the maximal fixpoint of Φ.

Proof. Let H = {x ∈ L|x ≤ Φ(x)}, α = supH. α exists because L is a complete

lattice. Then

∀x ∈ H x ≤ Φ(x) ≤ Φ(α)

by order preservation of Φ. So α ≤ Φ(α) because α = supH, meaning ∀x ∈

L (∀y ∈ H x ≥ y) → α ≤ x. So α ∈ H. By order preservation, since α ≤ Φ(α),

Φ(α) ≤ Φ(Φ(α)). Hence Φ(α) ∈ H and Φ(α) ≤ α meaning Φ(α) = α and α is

indeed a fixpoint. α is obviously maximal because H contains all fixpoints of Φ and
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α = supH.

Corollary 2.2.2. Corollary. Let L be a finite complete lattice of size n, and Φ :

L → L an order preserving mapping. Then Φn−1(>) (where > = supL) is the

maximal fixpoint of Φ.

Proof. > ≥ Φ(>) so by order preservation and induction Φi(>) ≥ Φi+1(>) for all

i ≥ 0. At each value of i, either Φi(>) > Φi+1(>) or Φi(>) = Φi+1(>) meaning

Φi(>) is a fixpoint. Clearly, the first holds at most for n − 1 values of i because L

has only n distinct elements so Φn−1(>) is a fixpoint of Φ.

Let α be the maximal fixpoint of Φ. Let β = Φn−1(>). > ≥ α ≥ β since β is a

fixpoint and α is the maximum fixpoint. By order preservation, Φ(>) ≥ Φ(α) = α.

By reapplication, Φn−1(>) ≥ α. Therefore Φn−1(>) = α.

The Knaster-Tarski theorem applies to complete lattices, and one such com-

plete lattice is the powerset of a finite set of state predicates under the subset

relation. There are syntactic restrictions on Mu-calculus formulas that can be used

to ensure that they are in fact monotone. The fixpoints of these formulas can be

calculated, which yields a technique for model checking.

The verification results above apply mainly to finite state systems. There

are also some positive model checking results for infinite state systems [15]. The

decidability of bisimulation equivalence and model checking for systems resembling

pushdown automata has been established [28]. However, it is completely unclear

how to represent routing protocols as pushdown automata.

Some practical demonstrations of Mu-calculus model checking exist. One tech-
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nique uses binary decision diagrams [12] to great effect as a symbolic representation

for the state of a system [14]. Binary decision diagrams allow Boolean operations

on formulas describing the set of states to be performed in linear time with respect

to the size of the diagrams. In many problems, binary decision diagrams perform

well, but in the worst case, they can reach sizes that are exponential in the number

of variables.

SPIN is another example of model checking that uses LTL and automata

rather than CTL and BDDs [36]. Again, SPIN, like Mu-calculus model checking,

assumes that the automata are always finite so that all properties of the system are

automatically decidable. It uses the language Promela for specifying communicating

automata and computes their asynchronous product yielding a global automata. It

converts the LTL formulas used to specify the desired properties of the system into

Büchi automata and checks that the language of the system automaton is included

in the language of the automaton generated from the LTL formula. SPIN has

many performance optimizations for storing automata, and performs partial order

reduction for asynchronous systems. It also includes a mechanism called bit-state

hashing for dealing with automata that are too large to fit into memory. In these

cases, bit-state hashing allows for model checking with an incomplete, but nearly

exhaustive coverage of the states.

There are many possible future directions for the area of formal methods[19].

One such example is combining theorem proving with model checking where model

checking is used as a decision procedure within a deductive framework. Another

point is that tools should be be oriented towards finding errors rather than proving
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correctness, which is rather consistent with the model checking approach. Addition-

ally, methods and tools should be specialized to particular aspects of a system and

need not be good at analyzing all aspects of a system.

One approach that lies between theorem proving and model checking has been

used to verify secrecy and nonrepudiation in security protocols [64]. The tool Athena

is based on the Strand model [29], which provides a framework for proving properties

of security protocols. Athena has several advantages over other approaches that

would be useful in the study of routing protocols. For instance, since the model of

variables is symbolic, it is possible to describe an infinite range of executions within

a finite expression. Also, partial order reduction is an inherent part of the model.

Rather than representing time as a linear or branching structure, time is implicit

and only appears as a set of constraints on the causal ordering of events. Athena is

so efficient at checking protocols that it is possible to search the space of possible

protocols (for the classes where it can be applied) to automatically generate them

[60].

As a combination of model checking and theorem proving, Athena uses only

symbols and simple operations on these symbols to represent the variables occurring

in the system. This model can be expressed in first order logic [68]. Athena then uses

a model checking procedure to check the satisfiability of these logical formulas that

describe scenarios in their system. It manipulates the data variables symbolically,

but explores the control paths explicitly. Consequently, only a finite number of

control paths can be checked by Athena. It is possible to show that this suffices

to capture all possible behaviors of a protocol that could satisfy a given formula.
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However, it is doubtful that the same result applies to the problem of interest here

(i.e. ad-hoc routing protocols), because in routing algorithms, the number of control

paths includes all the infinite possible sequences of topology changes.

An alternative to verifying protocols is subjecting them to automatically gener-

ated fault oriented tests [34] [35]. The protocols are modeled as finite state machines

and rather than checking the entire state space for violations of the correctness cri-

teria, one only checks states reachable from faults (low level anomalous, but correct

behavior). Once incorrect states reachable from faults are identified, a backwards

search is performed from the fault to determine if it is reachable. This search is per-

formed for each type of fault and each message of the system and yields a set of tests

that lead to error states. The idea of restricting the search to faults helps to mitigate

the effect of state space explosion in blind searches of the protocol state space. This

work places emphasis on simulation of the system using the test sequences leading

to realistic examples of protocol errors.

2.3 Criteria for Secure Routing

Attacks may come in many forms in an ad hoc routing protocol. It is possible

that an attacker may compromise nodes and make them behave arbitrarily. It is also

possible for an attacker to jam the physical medium. Survivability demands of an

ad hoc routing protocol that it is able to maintain service under hostile conditions.

Eavesdropping is always possible by passive snooping on the broadcast medium, so

it is not an attack that is considered here. The attacks of interest are those that
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disrupt routing services provided by the protocol even if there exist uncompromised

routes through the network.

Routing protocols must provide routing service and may depend upon lower

layer mechanisms to provide reliable, in-order communication with adjacent nodes.

The MAC layer should also be formally verified to guarantee these properties, but

that is not within the scope of the current discussion.

Given the above assumptions, secure routing protocols should provide routing

service even in the presence of attackers. All of the secure routing algorithms refer-

enced in Section 2.2.2 require authentication of routing messages. Based on whether

or not they may generate these authenticated messages, there are two categories of

attackers.

Outsider : A malicious outsider is unable to generate authentic routing messages.

However, it is able to replay messages that are generated by legitimate parties

and to degrade communication between nodes within its broadcast range by

jamming the lower layers of communication.

Insider : A malicious insider can perform all the attacks that an outsider can. Ad-

ditionally, a malicious insider has the keys necessary to generate authentic

messages for its own identity. If malicious insiders cooperate and share their

keys, each insider may generate any message appearing to originate from any

of the compromised nodes.

In secure environments, it is possible to apply sufficient safeguards to the nodes

themselves to prevent compromise, and it is only necessary to consider outsider
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attacks. However, malicious insiders are a more realistic model in less controlled

environments, such as public access networks.

An ideal routing protocol should be able to provide routing service in the

presence of any number of attackers, as long as there is a stable, uncompromised

path through the network. There are two criteria that define an uncompromised

path through the network.

Safety : Every node in the path is normal, that is non-malicious and its key has not

been disclosed. If there are malicious nodes in the path, then there is always

a way for that node to prevent route discovery of that path.

Liveness : Communication is possible along the path. This is necessary because it

is possible for malicious nodes not belonging to the path to compromise it by

either jamming lower protocol layers or denial of service attacks at the rout-

ing message level. For example, continual routing messages that fill message

queues or require processing may prevent legitimate routing messages from

ever being processed, as a malicious node is unlikely to respect fairness re-

quirements. More precisely, there is an upper bound on the amount of delay

between nodes in the path.

Given an uncompromised path, a secure routing algorithm should be able

to discover the route along the path. In the case where there may be malicious

insiders, the requirement is very strong, and there is a useful abstraction that gives a

simplified model of the network for the purpose of verification. Let G = (V,E) be the

topology of the network and letR = {p1, . . . , pN} be a chain of uncompromised nodes
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Figure 2.1: Uncompromised path.

where p1 is the source and pN is the destination where < p1, . . . , pN > is a stable

path in the network. There may be any number of malicious insiders surrounding

the path that are able to generate arbitrary authentic messages originating from any

node not in R. They are also able to replay messages originating in R. The behavior

of normal nodes outside R is a subset of the behavior of these malicious nodes. By

verifying that routing security is achieved under attack by malicious nodes, one

automatically shows that the same routing security is achieved by including any

number of normal nodes along with the malicious nodes.

Checking the above scenario with any bounded N is finite state because each

node has a limited RAM, though the number of states may be very large. The only

state maintained by malicious outsiders is replayable messages. It is assumed that

the clocks of the normal nodes are kept roughly synchronized, such that there is an

upper bound ∆ on the difference between the clocks and that each action takes a
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nonzero amount of time, meaning that only a finite number of messages can be sent

over any time interval. Let f be an upper bound on the frequency of messages that

can be produced by the nodes in the chain. Then ∆f gives the maximum number

of messages useful for replay (simple timestamps can be used to discard messages

older than ∼ ∆), hence the number of messages stored by the environment for

replay is also finite. This shows that for any particular N and a given set of initial

conditions, the system is finite state and the problem is automatically decidable.

However, N is dependent on the real topology of the network. Different topologies

may entail different values of N = 2, . . . , K, but in practice there should be some

upper bound on K, the maximum path length through a network. Additionally, the

initial conditions may determine whether or not the path will be discovered. These

initial conditions are dependent on the protocol itself, but since the state of the

normal nodes is finite, there are still only finitely many states to check. Another

approach to dealing with the problem of arbitrary path length is to use a hand

proof to perform an induction on the number of nodes in this chain, which should

be possible since the intermediate nodes of the chain behave similarly.

In the case where the malicious nodes are not insiders, the model becomes

much more subtle. It no longer suffices to consider chains of normal nodes, because

the routing algorithm needs only to discover any path through the uncompromised

part of the network. This entails state reachability of the surrounding nodes over

an arbitrary network. Again, it is possible to assume that there is a rough time

synchronization limiting the number of useful replayable messages to ∆f , but f

is roughly proportional to the size of the network, which can be large in realistic
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scenarios. The messages that are generated by the nodes may also depend upon the

topological changes of the networks. This means that any state machine model of

the network must include transitions between topologies, which grow exponentially

with the number of nodes. It is unlikely that any approach based solely on model

checking will be adequate for analyzing this problem. A combined approach of

hand proof with model checking is more suitable. Another approach to reducing the

problem could be to search only for conditions that may lead to faults.

In both cases, with or without malicious insiders, the definition of security

comprises two conditions: safety and liveness. The safety condition asserts that

the discovered route is stable. Otherwise, paths that are discovered can be broken

by the attacker as they are formed. This can result in indefinite denial of routing

service. The liveness condition asserts that it is possible to discover the route.

These conditions can be expressed formally with sentences of CTL. The safety

condition can be expressed with the sentence

A2(R→ A©R)

where R is a state predicate describing the state in which the routing table has

an uncompromised route to the destination. The precise definition of R depends

on the specific topology and how the routing protocol defines routes. The liveness

condition is expressed in terms of a collection of assertions parameterized on a well

founded set W . The state predicate R is similar to the one defined above and asserts

that in the current state, the route exists. The predicates ϕi where i ∈ W are a

chain of assertions that describe a set of actions, whose inevitable outcome is R.
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The liveness condition can be expressed with the sentence

A2(Aϕi U R ∨
∨
j<i

ϕj)

The definition of state predicates ϕi and W depends on the particular protocol and

topology. These two rules are complete for describing safety and liveness properties

[48], so these sentences should be sufficient for describing any routing protocol.

2.4 Proposed extended strands model

The Strand model exploits the nonbranching behavior of security protocols

where each participant executes a fixed sequence of input and output events. How-

ever, this will not be entirely appropriate for routing protocols. Since the behavior

of routing protocols contains branches, it is necessary to extend the Strand model.

This work presents an extension of the strand model that enables it to capture the

behavior of routing protocols for the purposes of verification.

Node: Since the term “node” has special significance in the Strand model, a

“node” of the network will be referred to as a participant to avoid confusion where

necessary.

2.4.1 Partial Order Semantics and CTL

The model of concurrent execution for the proposed model is similar to the

Strand model, where events are partially ordered by the transitively closed causality

relation. Since constructs from temporal logic are used, it is necessary to ensure

that the semantics are compatible. The technical issue concerns true concurrency.
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In CTL, every execution, corresponding to one path through the tree, must admit

a total ordering of events. This is in conflict with the idea of modeling events by a

system of constraints because in the constraint model it is possible for two events

to occur exactly simultaneously. For very straightforward reasons, this technical

discrepency is immaterial for the systems under consideration.

Let < be the binary causal relation on the time of occurrence of events. There

are three categories of events in the partially ordered model of time: causally inde-

pendent, causally dependent and mutually causally dependent.

If two events, α and β are causally independent, ¬α < β and ¬β < α, then

there are three possible executions: < α, β >, < β, α > and α|β. α|β denotes true

concurrency of the events α and β. Suppose that the ordering of the events α and

β may affect the state reached. This implies that α and β must both affect some

common process p. This can only occur if α and β synchronize in the timeline of p so

they are causally dependent. The case where α|β is ruled out by the same argument

because synchronization in a single process implies a total ordering of events. This

behavior is easily captured by the branching time semantics. The argument may be

extended to encompass sets of causally independent events.

If two events, α and β are causally dependent, then they are totally ordered,

which is easily captured by the branching time semantics.

Finally, if events α and β are mutually causally dependent, that is, they must

occur simultaneously, then in the branching time semantics, the events must be

treated as a single event with a shared label. This might create difficulties if the

causal constraints indicate that events must be concurrent, as in a causal loop. This
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is impossible though because a loop including α requires an event in process a that

precedes α to be caused by α and all events preceding α in a strictly precede it.

2.4.2 Messages and events

The proposed model, in the context of a LTS has an alphabet Σ consisting

generally of tuples of integers. These tuples have special structure however, asso-

ciated with their semantics. The terms “event”, “action” and “message” refer to

syntactic constructs rather than the particular events, actions or messages of an

execution. The term “event instance” will be used to refer to an actual occurring

event.

Events are composed of an action and a message. The action describes what

the event does. It may be a communication or a synchronization point in the process.

The message embodies the information that is associated with the event.

The following are the defined action symbols representing different kinds of

events.

+ directed message send.

− message receipt.

? message broadcast.

/ state precedence.

. state succession.
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A message is a set of symbols. Each symbol in the message represents some

data field that is included in the message. For example, σ = {s, d, f1, . . . , fm} is a

directed message.

An event is formally a tuple (a, V ), written aV , where a is one of the action

symbols and V is a message. For events with + actions, the message must be

directed and include at least an element for both source and destination. For ?

actions, the message is broadcast so it must include the source but not necessarily

the destination. Finally, for / or . actions, the message must be a set containing

a single symbol representing the identity of the process such as {p}. For example,

/{p} is an event and if σ is a directed message then +σ and −σ are both events.

2.4.3 Role

Roles describe implicitly the state space and the behavior of processes in the

protocol. In a general sense, this extended role definition combines actions of TLA

with the behavioral model of Strands. The TLA action is used to describe the

change in state variables, which the Strand model does not have, while Strands are

used as a partially ordered, goal driven model of execution.

Formally, a role R is a tuple R = (X i, Xf ,M,Φ(L)).

X i: set of state symbols representing values of the state variables prior to the exe-

cution of the role.

Xf : set of state symbols representing values of the state variables after the execution

of the role.
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M : a sequence of events. If an event with the action . occurs in this sequence, then

it can only be the first event and it must be of the form .{p} where p is a

participant symbol. Similarly, if / occurs, then it must be the last event and

of the form /{p}.

For some finite sets Σd of directed messages and Σb of broadcast messages, the

rest of the events are of the form +σ1, ?σ2 or −σ3 for some σ1 ∈ Σd, σ2 ∈ Σb

and σ3 ∈ Σd ∪ Σb. For example

〈.{p},+σ1, . . . ,+σm, /{p}〉

where σ1, . . . , σm ∈ Σd, is such a sequence.

Define the length of a role R, written l(R) as the length of the sequence of

events M . Also define the ith event of role R, written R[i], where 1 ≤ i ≤ l(R)

as the ith event in the sequence of events M .

Φ: a formula of first order logic with free variables from the set of symbols L.

L: the complete set of uniquely labeled symbols included inX i, Xf andM . LetM =

〈a1V1, . . . , amVm〉. Let the distinguishable message symbols Ω =
⋃m
i=1{i}×Vi.

The following mappings define L.

gi: X
i → Li where gi 1-1 onto.

gf : X
f → Lf where gf is 1-1 onto.

gM : Ω → LM where gM is onto but generally not 1-1. There is a particular

element of LM that would not have a well defined inverse mapping, though
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the rest of the elements of LM would. Let α denote this symbol in LM .

If ai = . or ai = /, then Vi = {p} for some symbol p and gM(i, p) = α. If

ai = + or ai = ? then Vi contains s where s is a symbol for the sender and

gM(i, s) = α. Similarly, if ai = − and Vi is a directed messsage, then the

Vi contains a symbol r corresponding to the recipient and gM(i, r) = α.

Every other element of Ω maps to a distinct element of LM that is not α.

All pairs of ranges from Li, Lf , LM should have empty intersections. Let g be

the union of gi, gf , gM . L = Li ∪ Lf ∪ LM , the range of g.

The shared symbol α represents the id of the participant, which should remain

constant throughout. In constrast, fields associated with state variables and message

field values are potentially different and therefore labeled distinctly.

2.4.3.1 Logical Theories for Φ

The description of roles has so far been syntactic. The actual logical theory

of Φ will depend on the protocol being studied. For most protocols, this theory will

be some reduct of number theory but it is possible to have other theories, such as

the theory of real numbers. The formula Φ(L) is always decidable because it models

the next state function of a protocol for which an effective decision procedure must

exist.

It is possible that Φ is merely a set of formulas as with an integer program.

For example

l1 + l1 + l2 + l2 + l2 = 0
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where l1, l2 ∈ L is such a formula which is equivalent to

2l1 + 3l2 = 0

in terms of what relation it defines on l1 and l2. This is a subset of Presburger

arithmetic, NA = (N; 0, S,<,+) for which satisfiability is exactly the same thing as

solving an integer program. While decidable, like Presburger arithmetic, no decision

procedure is fast enough for very long formulas.

In the case of routing protocols such as AODV [57] and TORA [55], it suffices

to consider the theory of the structure

NL = (N; 0, S,<).

This theory admits the elimination of quantifiers, which is stronger than decidability.

Some examples of atomic formulas of this structure include

l1 = l2,

l1 ≤ l2,

l1 < l2,

l1 +k = l2

where l1, l2 ∈ L ∪ Z, k ∈ Z. The formula l1 ≤ l2 is equivalent to the formula

l1 < l2∨ l1 = l2 and the formula l1 +k = l2 is merely a suggestive way of writing the

formula skl1 = l2. It is possible to extend the language to include relations +k = as

defined. Observe that on the structure NL, (+k =) ⊂ (<) ⊂ (≤) for any k ∈ Z. The

inclusion of these extra relational symbols does not change the expressiveness of the
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language but they do facilitate the description of an efficient satisfiability procedure

for terms of this language to be described in Section 2.4.12.

BDDs might also be a good choice for the representation Φ. In this repre-

sentation, each variable represented in L is a set of Boolean variables, and Φ can

then be expressed in terms of the characteristic function of a Boolean function on

L, which may be easily represented by a BDD.

2.4.4 Protocols

Define a protocol as the tuple P = (Σ,∆).

Σ: set of messages. Σ = Σd ∪Σb ∪ {p} where Σd is a set of directed messages, Σb is

a set of broadcast messages and p is a symbol representing a participant.

∆: set of roles of the protocol where for all R ∈ ∆ where R = (X i, Xf ,M,Φ) the

messages of events in M are all in Σ.

2.4.5 Strands

A strand is a prefix of an execution of a role. Formally, a strand is a tuple

θ = (R, k, I), where

R: a role, R = (X i, Xf ,M,Φ(L)).

k: a number 1 ≤ k ≤ l(R) giving the number of events of the role that this strand

instantiates.
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I: some set of instance symbols. I has an element for each symbol occurring in L

such that there is a 1-1 onto mapping h : L→ I.

Each instance symbol is unique. For any two strands θ1 = (R1, k1, I1) and

θ2 = (R2, k2, I2), I1 ∩ I2 = φ. Even though the strand represents only the execution

of the first k events of the role, the set I still contains all the symbols associated

with L, because it might not be possible to express all the applicable constraints

from Φ otherwise.

t = (θ, i), where θ = (R, k, I) is a node of θ if 1 ≤ i ≤ k, written t ∈ θ. t refers

to the execution of event R[i].

2.4.6 Goal bindings

A goal is an event required to occur by a particular node in order for that

node’s event to occur. For a node t = (θ, i), where θ = (R, k, I), 1 ≤ i ≤ k and

R[i] = aV , the goal is bV , where b is some event depending on the action a as

described below.

a = +: No goals are associated with actions of this type.

a = −: Message receipt has as its goal the sending of the same message, either

through a broadcast or a directed send, depending on the message type. If V

is a directed message, then the goal is +V , if it is a broadcast message, then

the goal is ?V . There is exactly one goal instance for nodes having this action.

a = .: The single goal of nodes having this kind of event is /{p}.
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a = /: This type of node has no goals.

Binders are also events, and these will satisfy the goals described above. Nodes

having certain actions will have binders, and for these nodes the binder is R[i]. The

number of instances of the binder depends on the binder’s action symbol.

a = +: Exactly one instance of the binder.

a = ?: The number of instances of this binder depends on the topology of the net-

work.

a = −: Zero binder instances.

a = .: Zero binder instances.

a = /: Exactly one instance of the binder.

The general idea is that in an execution, all the goals must be satisified by

binders. Also, the binders with actions + or ? require goals to be bound to them,

while binders with the action / do not.

For any goal and binder pair, the binder may bind the goal when the events are

equal, meaning that the actions are identical and the sets of variables are identical.

When a binder of node t1 binds a goal of node t2, it can be written as t1 → t2.

In the special case where t1 = /{p} and t2 = .{p} for some symbol p, this may

also be written as t1 ≺ t2. Since each strand may have at most one occurrence of

an event with action . and one occurrence of an event with action /, there is no

confusion in also writing θ1 ≺ θ2 if for some t1 ∈ θ1, t2 ∈ θ2 t1 ≺ t2.

Define the binary relation→ on nodes to hold for pairs of nodes where t1 → t2.
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2.4.7 Causal relations

The causal relation C is a transitive binary relation on nodes. It is possible to

interpret this relation as ≤ where the node symbols are interpreted as timestamps.

C arises from the strands and goal binding as follows.

For a strand θ = (R, k, I), for each i ∈ {1, . . . , k − 1} and for each j = i + 1

the nodes ti = (θ, i) and tj = (θ, j) satisfy

Ctitj ∧ ¬Ctjti.

Each node of a strand strictly precedes the higher numbered nodes in the same

strand.

Given nodes t1 and t2 where t1 → t2,

Ct1t2 ∧ Ct2t1.

The event associated with node t1 occurs concurrently with the event associated

with node t2.

A given set of strands and goal bindings between their nodes describes a causal

relation. If this causal relation is infeasible by interpreting over ≤ and timestamps,

then there is no way that this describes an actual execution of the protocol. For

example, if the transitive closure of constraints given by the binding relation and

the ordering of nodes in a strand includes both Ct1t2 and ¬Ct1t2 then no ordering

of t1 and t2 can satisfy both constraints.
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2.4.8 Constraint Program

Given a set of strands Θ = {θ1, . . . , θn} and a goal binding relation → on

nodes occurring in Θ define an equivalence relation E on the instance symbols of

each strand in Θ.

For each strand θi ∈ Θ, let (Ri, ki, Ii) = θi, Ri = (X i
i , X

f
i ,Mi,Φi(Li)), gi be

the labeling function defined in Ri and hi be the instantiation function defined in

θi. By definition, for each i 6= j where 1 ≤ i ≤ n and 1 ≤ j ≤ n, Ii ∩ Ij = φ. Let

U =
⋃n
i=1 Ii. E is an equivalence relation on U satisfying the following.

• For ti → tj the instance symbols associated with the messages of the two nodes

are equivalent under E. Let (θi, ii) = ti and (θj, ij) = tj, where θi, θj ∈ Θ.

Since ti → tj, Ri[ii] = aV and Rj[ij] = bV for exactly the same set of symbols

V , though a and b will differ. For all v ∈ V

E(hi(gi(ii, v)), hj(gj(ij, v))).

• If ti ≺ tj, then the above constraints still apply, along with some additional

recursively defined constraints.

Let Xu
0 = X i

j, θp0 = θi. The following hold for k = 0 and for all k > 0 where

Xu
k 6= φ and θpk ≺ θp(k−1) for some θpk ∈ Θ.

E(hpk(gpk(x)), hi(gi(x))) for all x ∈ Xu
k ∩X

f
pk

Xu
k+1 = Xu

k \X
f
pk

This recursion terminates for any finite set of strands and binding relations

with a feasible causal relation.
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The equivalence relation E defines a partition on U . For each partition, choose

a distinct unused symbol and let e be a mapping from U onto this set of new symbols.

g(x) = g(y) iff E(x, y). Consider the set of constraints
⋃|Θ|
i=1 Φi(Ii). Clearly, this is

a set of constraints only on U . Apply to each symbol from U occurring in this set

of constraints the mapping e. The resulting set of constraints Γ must be feasible in

order for the set of strands and binding relation to be a valid execution.

2.4.9 Semibundles

A semibundle is a tuple (Θ,→).

Θ: set of strands.

→: goal binding relation on nodes occurring in Θ.

For all semibundles, the semibundle’s causal relation (Section 2.4.7) and constraint

program (Section 2.4.8) must be feasible.

2.4.10 Bundles

A bundle is a semibundle where every goal is bound to a binder and every

binder requiring a goal to be bound to it is bound.

Theorem 2.4.1. [29] There is a bundle iff there is a protocol execution that is

consistent with the bundle.
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2.4.11 Topologies

The topologies of interest are chains of non-penetrator participants surrounded

by penetrators. The penetrators can emulate the behavior of non-penetrator nodes.

Distinguish endpoint roles with constraints on the identity symbol p. Then there is

no ambiguity about how many binders are necessary in message broadcasts.

2.4.12 Constraint program feasibility

In the case where the model for Φ, the transitions, is an integer program, it is

possible to solve it as an integer program. However, integer programs are difficult

to solve, and all algorithms are in their worst case exponential in difficulty with

the number of variables. Fortunately, AODV and TORA do not require the full

expressiveness of integer prorgrams. They can actually be described completely on

the structure NL = (≤, s, 0) because they only make use of variable assignment,

comparison and incrementing by a constant [57][55].

The constraint program arising from NL is an integer program and can be

solved as such. There is a polynomial time algorithm to determine whether or not

a diagonal constraint program is feasible.

Consider the atomic formulas of the first order language L1 having nonlogical

symbols {s, 0}, where s is the unary successor function and 0 is a constant symbol.

All atomic formulas of this language have one of the following forms

snv1 = smv2

snv1 = sm0
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where n,m ≥ 0 and sn represents a string of n s symbols. Any formula is equivalent

to one of the following normal forms

v1 = snv2

v1 = sn0

snv1 = 0

where n ≥ 0.

Let Γ ⊂ AtfmL1 (where AtfmL1 denotes the set of all atomic formulas of L1)

be finite and let each formula in Γ be in normal form. Let φ be the formula formed

by the conjunction over Γ. Let ψ be φ existentially quantified over all variables in

Fv(φ). The satisfiability of ψ on the structure A = (Z, s) can be determined by a

graphical method.

Let G = (V,E) be the directed graph described as follows. V = Fv(φ) ∪ {0}.

Define Γ ⊂ AtfmL1 where |Γ| < ω and Fv(Γ) ⊆ {x1, . . . , xn} for some fixed, finite

n. Define the directed graph G = (V,E) where V = {x1, . . . , xn}, and the edges

E = {(x, y) ∈ V × V : +1 = xy ∈ Γ}.

Theorem 2.4.2. Γ is realized in A = (Z,+1 =) iff every simple, undirected loop in

G contains an equal number of upstream and downstream edges.

Proof. The goal is to show that Γ is feasible implies that every loop contains an equal

number of upstream and downstream edges. It suffices to show the contrapositive.

If there are an unequal number of +1 = and = 1+ edges in a particular loop, then
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that loop is infeasible, since for any node x in the loop, it says x + k = x for some

nonzero k, which is impossible.

The proof of the converse proceeds by constructing a solution. Assume without

loss of generality that the graph is connected because disjoint partitions may be

realized independently. Arbitrarily choose some v ∈ V and some c ∈ Z. Assign

values to neighbors of v exactly as indicated by the edges. Continue in this manner

by either breadth first or depth first search throughout the graph. The assignments

will all be consistent by hypothesis.

This result generalizes to encompass terms +k = by introducing k−1 artificial

variables and applying +1 = k times.

Consider now the language L with nonlogical symbols {≤,+1 =}, where both

are binary relations. Define Γ as before, but with L instead of L1. Define the graph

G = (V,E) with V = {x1, . . . , xn} as before, but the edges must include labels

{≤,+1 =} in order to distinguish between +1 = edges and ≤. Here,

E = {(x, y, R) ∈ V × V × {≤,+1 =} : Rxy ∈ Γ}

Definition 2.4.1 (Simple Loop). A simple loop of a an edge labeled graph G =

(V,E) is a sequence of edges < (x1, x2, λ1), (x2, x3, λ2), . . . , (xn−1, xn, λn−1) > where

for all 1 ≤ i ≤ n− 1 (xi, xi + 1, λi) ∈ E,

for all 1 ≤ i ≤ n− 1, i < j ≤ n− 1 xi 6= xj.

x1 = xn
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Definition 2.4.2 (Direction Complemented Graph). Define the direction comple-

mented graph G′ of a graph G as G′ = (V,E ′) where

E ′ = E ∪ {(y, x,= 1+) : (x, y,+1 =) ∈ E}.

Theorem 2.4.3. Γ is realized in A = (Z,≤,+1 =) iff every simple loop of the

direction complemented graph of G satisfies the following criteria.

• If the loop excludes edges labeled ≤, then the number of edges labeled +1 =

must equal the number of edges labeled = 1+.

• If the loop includes edges labeled ≤, then the number of edges labeled = 1+

must be greater than or equal to the number of edges labeled +1 =.

Proof. It is easy to show necessity by contraposition. To show sufficiency, con-

struct a feasible solution to the problem incrementally, showing that each increment

preserves both criteria.

This problem is equivalent to the problem of assigning to each ≤ a value s ≥ 0

such that the ≤ is interpreted as +s =. Let e = (x, y,≤) ∈ E ′. Formally, the graph

after such a substitution has the set of edges

(E ′ \ {e}) ∪ {(x, y,+s =), (y, x,= s+)}.

In this case, the problem is feasible if after assigning values to all of the ≤

edges, the first criterion still holds, as this is equivalent to the feasibility of the

program in L1.

It suffices to show that given that the criteria hold, it is possible to assign

some s value to any ≤ edge in the graph such that after making the assignment,
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the resulting graph still satisfies the criteria. Then a solution can be constructed by

recursively assigning s values to the result of the previous substitution.

Replacing a ≤ labeled edge e may affect the criteria as follows.

(1) Loops having e as the only ≤ labeled edge become loops containing only +1 =

and = 1+ labeled edges. These resulting loops must satisfy the first criterion.

(2) Loops containing e along with other ≤ labeled edges must still satisfy the second

criterion after the substutition occurs.

(3) It is possible that the substitution creates loops that did not previously exist

because it adds the reverse edge (y, x,= s+). The resulting loop must contain

at least one ≤ labeled edge where the direction differed from the removed ≤

labeled edge so the second criterion applies.

These effects constrain the value of s to be substituted. If the criteria hold prior to

the substitution, these constraints are feasible.

Lemma 2.4.4. The set of edges in any finite loop is the union of the sets of edges

of some number of simple loops.

Proof. Recursively decompose the arbitrary finite loop into smaller and smaller loops

until they are simple. The only difference between a simple loop and an arbitrary

loop is that simple loops contain only one repeated vertex, the beginning and end.

The arbitrary loop may revisit multiple vertices.

If the loop is not simple, then there is some vertex, call it v, that is not the

beginning or end but is traversed twice. The path between the two occurrences of
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the same vertex is a loop. The path starting from the beginning and up to the

first instance v skipping the v- to-v loop then continuing to the end is another

loop. If either of these resulting loops is not simple, then recursively reapply the

process. The recursion terminates because each stage of the recursion monotonically

decreases the size of the loops and the initial loop is finite.

Corollary 2.4.5. If every simple loop of a graph satisfies the criteria, then every

arbitrary finite loop satisfies the criteria.

Proof. Both criteria are closed under summation, and every simple loop satisfies

the criteria so every arbitrary loop that can be decomposed into simple loops also

satisfies the criteria.

If any loop l containing e has effect (1) above, then s will be equal to the

number of edges labeled = 1+ minus the number of edges labeled +1 =. s ≥ 0

holds because of the second criterion. It is easy to verify that this substitution does

not invalidate any of the criteria for other loops containing e by considering the fact

that for any loop containing e, the same loop not including e but traversing the

remainder of l must still satisfy both criteria. It is necessary to apply the corollary

here in case the loop described here is not a simple loop.

Otherwise, only effects (2) and (3) apply. Effect (2) places an upper bound on

s, while (3) places a lower bound. For every loop where effect (2) applies, the value

s must be less than or equal to the number of edges labeled = 1+ minus the number

of edges labeled +1 =. There is some loop for which this difference is minimal,

though always greater than or equal to zero by the second criterion. This is the
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upper bound on s.

Let (x, y,≤) = e. When effect (3) applies, there is a simple path from x to y

that contains at least one ≤ labeled edge. s plus the number of = 1+ labeled edges

minus the number of +1 = labeled edges along this simple path must be greater

than or equal to zero. In other words s must be greater than or equal to the number

of +1 = labeled edges minus the number of = 1+ labeled edges.

The simple path of effect (3) runs parallel to and in the same orientation as e.

Then there is a loop consisting of the simple path and the loops having effect (2).

These loops must satisfy the criteria by the corollary, which guarantees the lower

bound is less than or equal to the upper bound.

This result can be used to reason about < and = constraints. For < constraints

such as x < y, introduce an artificial variable a0 and represent the constraint as the

pair of constraints a0 + 1 = y and x ≤ a0. For = constraints, such as x = y, remove

the constraint and substitute throughout the rest of the constraints x every time y

appears.

2.4.13 Algorithm for checking feasibility

An adaptation of the Floyd-Warshall all pairs shortest paths algorithm [8]

determines the feasibility of the constraint program of Section 2.4.12 in polynomial

time.

Define costs in the network as tuples (a, b) ∈ {0, 1} × Z as follows, depending

52



on the edge label λ.

(1, 0) : when λ = ≤

(0,−1) : when λ = +1 =

(0, 1) : when λ = = 1+

The rest of this discussion will assume that the labels of the edges are costs as given

above.

Let (a1, b1), (a2, b2) be any two costs. Define the sum of the costs (a1, b1) +

(a2, b2) as

(a1 ∨ a2, b1 + b2)

where ∨ is logical or and + is addition on the integers.

If x, y are two vertices in the graph and the sum of the cost along some path

from x to y is (a, b), it represents the following relation between x and y.

x = b+ y : when a = 0

x ≤ b+ y : when a = 1

The algorithm requires the comparison of pairs of costs. For pairs of costs

c1, c2, define the comparison as the subset relation: c1 ≤ c2 iff c1 ⊆ c2. The subset

relation is not well defined for all pairs of costs, namely those that have empty

intersections. The intersection of two costs (a1, b1) ∩ (a2, b2) is given below.

• (a1, b1) if a1 = 0, a2 = 0, b1 = b2

• (a1, b1) if a1 = 0, a2 = 1, b1 ≤ b2
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• (a2, b2) if a1 = 1, a2 = 0, b1 ≥ b2

• (a1, b1) if a1 = 1, a2 = 1, b1 ≤ b2

• (a2, b2) if a1 = 1, a2 = 1, b1 ≥ b2

• φ otherwise

Note that the following are equivalent.

• The intersection is nonempty.

• One of the costs is a subset of the other cost.

• The intersection is equal to one of the two costs.

Also note that the intersection is commutative.

The next lemma helps to establish that in systems consistent with the loop

criteria, the algorithm only compares pairs of costs where one is a subset of another.

Lemma 2.4.6. Let x, y be any two variables of the system and let p1, p2 be any two

paths in the graph from x to y. If the system satisfies the loop criteria, then the

sums of the costs along p1, c1 = (a1, b1) and p2, c2 = (a2, b2) are such at least one

of c1 ⊆ c2 or c2 ⊆ c1 hold.

Proof. It suffices to show by contraposition that if c1 6⊆ c2 and c2 6⊆ c1 then the

system does not satisfy the loop criteria. Assume c1 6⊆ c2 and c2 6⊆ c1 which is

equivalent to c1 ∩ c2 = φ. There are two cases to consider depending on the values

of a1 and a2.
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• If a1 = 0, a2 = 0 then c1 ∩ c2 = φ iff b1 6= b2. Since a1 and a2 are sums of 0,

each edge of both paths p1 and p2 must have a cost of the form (0, b). Then

there is a path from y to x that has a cost of (0,−b1). This forms a loop with

p2 and the number of +1 = edges is not equal to the number of = 1+ edges

violating the loop crtieria as required.

• In the case where a1 6= a2, either a1 = 0, a2 = 1, b1 > b2 or a1 = 1, a2 = 0, b1 <

b2. Consider the first of these two cases where a1 = 0. As in the previous

argument, there is a reverse path from y to x of cost (0,−b1). Then this forms

a loop with the path having cost (1, b2). Since b1 > b2, this path violates the

second loop criterion. The other case is completely symmetrical with this case.

The overall search of the semi-bundle space maintains some feasible set of

strands and instantiates roles and binders, thus adding vertices to a graph that is

already known to be feasible. The algorithm should be efficient in the sense that

it should reuse information about what is known to be feasible, so it proceeds by

adding vertices one by one and testing their feasibility.

Let G = (V,E) be the edge complemented graph of some set of constraints

where V = {v1, . . . , vN}. Let D1
1,1 = 0. Define Dn for n > 1 recursively in terms of

Dn−1 as follows.

First define dn,x and dx,n for all x ∈ {v1, . . . , vn−1}. Let

{(a1, b1), . . . , (ak, bk)} where k ≥ 0
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be an enumeration of the set of costs

{(a, b) : (vn, vx, (a, b)) ∈ E}.

In this enumeration, k = 0 iff there is no edge from vn to vx, in which case define

dn,x = ∞. A cost of ∞ represents the universal relation: the entire set Z × Z.

Otherwise

dn,x = (a1, b1) ∩ . . . ∩ (ak, bk) for some k ≥ 1.

Define the cost dx,n as previously, but swapping the positions of vx and vn. Finally

let dn,n = (0, 0). After computing these minimal costs, the rest of the edges and

costs may be disregarded because they represent constraints that are consequences

of the minimal constraint.

If any of the distances dn,x or dx,n are φ, then by contraposition of the lemma,

the loop criteria fail and the system is infeasible. It is only necessary to continue if

all the distances are nonempty.

For all pairs of vertices vx 6= vy where x, y ∈ {1, . . . , n − 1}, check that the

cost (a, b) = dn,x +Dn−1
x,y + dy,n satisfies one of the following.

• (a, b) =∞

• a = 0 and b = 0

• a = 1 and b ≥ 0

Otherwise the system is inconsistent with the loop criteria.
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Once the consistency has been established by the above checks, define Dn.

Dn
x,x = (0, 0) ∀x ∈ [1, n]

Dn
n,x =

⋂
vy∈N (n)

dn,y +Dn−1
i,x ∀x ∈ [1, n)

Dn
x,n =

⋂
vy :n∈N (vy)

Dn−1
x,y + dy,n ∀x ∈ [1, n)

Dn
x,y = Dn−1

x,y ∩ (Dn
x,n +Dn

n,y) ∀x 6= y ∈ [1, n)

Theorem 2.4.7. The algorithm succeeds iff the set of constraints are consistent

with the loop criteria.

Proof. The proof proceeds by induction on the number of vertices. For the base step

where there is a single vertex, the result is trivially true because there are no loops

and the system is always feasible. Inductively hypothesize that the result holds for

n− 1 vertices and show that the result holds for n vertices.

Determining the initial distance estimates dx,n and dn,x and verifying that they

are nonempty checks that loops of length less than or equal to 2 are consistent with

the loop criteria. The second stage of the algorithm checks that every loop of size

greater than 2 is consistent with the loop criteria. It suffices to show these two

propositions independently.

First, estimating the distances dn,x and dx,n for 1 ≤ x ≤ n− 1 succeeds iff the

loop criteria hold for loops with length less than or equal to 2. Prove the left to

right implication by contraposition. It suffices to show that if either the first loop

criterion or the second loop criterion are violated, then the construction yields φ as

one of the distances.
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• When the first loop criterion is violated it means that for some vertex vx ∈

{v1, . . . , vn−1} (vn, vx, (0, b1)), (vx, vn, (0,−b2)) ∈ E and b1 6= b2. Since it is

an edge complemented graph, the (vn, xn, (0, b2)) ∈ E and (vn, vx, (0, b1)) ∩

(vn, vx, (0, b2)) = φ.

• When the second loop criterion is violated, it means that for some b > 0 either

(vn, vx, (1, 0)), (vx, vn, (0, b) ∈ E

or (vx, vn, (1, 0)), (vn, vx, (0,−b)) ∈ E

Consider just the first here, since the two cases are symmetrical. (vn, vx, (0, b)) ∈

E if (vx, vn, (0,−b)) ∈ E because it is a complemented graph. Then (vn, vx, (0, b))∩

(vn, vx, (1, 0)) = φ as required.

Next show that given that the loop criteria hold, the algorithm succeeds. Let

(vn, vx, (a1, b1)), (vn, vx, (a2, b2)) be two edges in E. Consider the definition of the ∩

operation between two costs and observe that when both a1 and a2 are both 1, the

intersection is always nonempty. Therefore

(a1, b1) ∩ (a2, b2) = φ implies (a1 = 0 or a2 = 0).

In the case where a1 = 0 and a2 = 0, (a1, b1) ∩ (a2, b2) 6= φ by the first loop

criteria considering the complement link (vx, vn, (a1,−b1)) ∈ E. If a1 6= a2, assuming

without loss of generality that a1 = 0, a2 = 1 as the cases are symmetrical, consider

the complement link (vx, vn, (0,−b1)). The second loop criterion ensures that −b1 +

b2 ≥ 0 or b1 ≤ b2. Hence (a1, b1) ∩ (a2, b2) 6= φ as required.
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Since every pair of costs of parallel edges must have nonempty intersections

and a ∩ b = a or a ∩ b = b given that a ∩ b 6= φ the initial construction of the

distances dn,x and dx,n succeeds iff the loop criteria hold. Now show that the same

result holds for all loops of length greater than or equal to 2.

Lemma 2.4.8. Assume that the graph considering only the vertices {v1, . . . , vn−1}

and the edges between these vertices is consistent with the loop criteria. On this

graph, define vx, vy ∈ V with x, y ∈ {1, . . . , n− 1} and (a∗, b∗) the least, in the sense

of ∩, cost path from vx to vy. Add the vertex vn and edges to the graph such that

there are edges from vy to vn and from vn to vx. In other words, for all simple paths

from vx to vy there is a simple loop including the vertices vy, vn, vx. Let (a1, b1) be

the sum of the costs of the edges from vy to vn and vn to vx. If the total cost of

the loop (a, b) = (a∗, b∗) + (a1, b1) satisfies the check (a, b) or (a = 0 and b = 0) or

(a = 1 and b ≥ 0), then every simple loop including the path vy, vn, vx is consistent

with the loop criteria.

Proof. Every simple loop including the path vy, vn, vx consists of vy, vn, vx and an-

other path, p. Since the loop is simple, p does not traverse vn and hence traverses

only vertices in {v1, . . . , vn−1}. By the previous lemma, and the fact that the sub-

graph containing only vertices {v1, . . . , vn−1} is consistent with the loop criteria, the

minimum (a∗, b∗) is nonempty.

By commutativity of ∩, letting (ap, bp) denote the sum of the costs of edges in

the path p, (ap, bp) ∩ (a∗, b∗) = (a∗, b∗).

First let (an, bn) be the sum of the costs of the edges in the path vy, vn, vx.
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There are several cases to consider depending on the values of a∗ and ap,

a∗ = 0, ap = 0 The only case when this can result in a nonempty intersection is if

b∗ = bp. The check of the loop criteria succeeds for (ap, bp) since it does for

(a∗, b∗) = (ap, bp).

a∗ = 0, ap = 1 From the definition of ∩, this can be the case only when b∗ ≤ bp.

There are two subcases to consider depending on the value of an.

When an = 1, the loop criterion requires that bn + bp ≥ 0. The fact that

bn + b∗ ≥ 0 (by hypothesis) and b∗ ≤ bp guarantees this to be true.

When an = 0, the loop criterion requires again that bn + bp ≥ 0. The same

reasons as above guarantee this to hold.

a∗ = 1, ap = 0 This case is impossible because no matter what the assignments of

b∗ and bp, it is never the case that (1, b∗) ⊆ (0, bp).

a∗ = 1, ap = 1 By the minimality of (a∗, b∗), this can only occur when b∗ ≤ bp. The

loop criteria require only that bp + bn ≥ 0. This fact is guaranteed by the fact

that b∗ + bn ≥ 0 and b∗ ≤ bp.

For loops of size greater than or equal to 2, the left to right implication should

be easy to show by contraposition. To show the right to left implication, the test

is exactly the situation in the above lemma where the minimum costs are supplied

by the Floyd-Warshall algorithm. The minimum costs exist because of the first

lemma.
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The above algorithm has a running time equivalent to the Floyd-Warshall al-

gorithm which is O(N3), and it is easy to see how the instantiation based searching

can be applied because of the incremental statement of the algorithm. This algo-

rithm statement includes some redundancy that does not need to be implemented

but simplifies the development of the proof. It is also easy to extend the above

algorithm to take into account edges labeled = which have cost (0, 0) and edges

= k+ labeled with arbitrary k ≥ 1.

2.5 Search procedure

The search procedure follows directly from the search procedure in Athena

[64]. For example, a disruption attack can be modeled by instantiating a pair of

participants with a path between them. Then instantiate a node with the goal

term where one of the participants no longer has the other one in its routing table.

Additionally, instantiate a set of nodes corresponding to the initial conditions of the

system. Continually bind unbound goals in all possible ways by instantiating roles

and binding to existing nodes in the system until all goals are bound. If a bundle is

eventually discovered, a corresponding execution exists and the property has been

disproved. On the other hand, verifying the property requires that all branches

of the backwards reachability search converge. In Athena, this was claimed to be

undecidable in general because each instantiation of a role potentially creates new

unbound goals (though in Athena the possible instantiations are in fact bounded

making the procedure decidable still, which is not the case here). It is possible to
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force convergence by assuming a bound on the length of executions.

2.5.1 Protocol specification language

The messages are specified in a message file with a very simple syntax: the

message name, followed by the names of the message fields where each message is

separated by a new line.

While roles are described as sequences of events and a set of atomic formulas

taken in conjunction to constraining the values of state variables and event message

fields, the actual specification language allows for the description of roles in terms of

atomic formulas joined by the logical connectives and some programmatic connec-

tives. The logical connectives supported are the usual boolean operations ∧,∨,¬

denoting and, or and not respectively. For convenience, the operator ⇒ represents

the programmatic construct if-then-else.

The interpretation of the programmatic connective “⇒” differs fundamentally

from logical implication. It denotes that if the first argument is true, then the

latter argument must also be true. However, when the first argument is false, the

second argument is not executed. In the case where ⇒ has three arguments, the

third argument represents the else clause and is invoked when the first condition

evaluates to false. In practice, the ⇒ separates into two distinct roles, one in the

case where the condition evaluates true, and the other when the condition evaluates

false. This can lead to a multiplication of roles because a formula may contain

multiple instances of ⇒ terms where each possible combination forms a distinct
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role.

After the ⇒ construct is removed from the formulas by separation it into its

components, the remaining formula consists of atomic formulas joined by ∧,∨,¬.

Converting this to disjunctive normal form (DNF) then taking each individual con-

junct yields the roles. Negations appearing on the atomic formulas can be incor-

porated into the formulas themselves by reversing the inequality or equalities. If

the reversal is of an equality, the role splits into two, one where the equality is

substituted with > and one with <.

2.6 Implementation

The implementation is mixed Ruby (an object-oriented scripting language)

[66] and C. Ruby has many desirable features in a language: iterators, blocks and

closures, built-in regular expressions and garbage collection. It also has a clean

interface to native C. The core of the search engine is in native C for better perfor-

mance and the rest of the implementation, of which a large portion is a parser for

the language, is in Ruby.

2.7 Results

The test scenario comprises four participants, one of which is an intruder. The

scenario intializes the network to a state where the hop counts to the destination are

the actual distances and the route is valid. This state represents R in the formal-

ization given previously. A simple way to invalidate this condition is by specifying
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src dest

intruder

Supplied Binders

hops = 2 hops = 1
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intruder

Unbound Goal

hops < 2

?

src dest

intruder

RREP: hopCount <= 0

Figure 2.2: Example scenario.

that one of the hop counts is less than its actual distance to the destination. This

goal state is an element of ¬R.

The goal binding search procedure examines possible executions that can lead

to the goal state being reached and discovers that it is possible to reach such a

state by a forged RREP emitted by the intruder. While this might be obvious to

an analyst examining the protocol, this example demonstrates that it is possible to

automate such reasoning.

2.8 Discussion

There is some limited success here in vulnerability analysis, in the sense of

finding an attack according to the definition using correctness. However, there are

a number of important limitations. One of the problems is that the above example

is quite limited and also, it is not clear that correctness and liveness are the “best”
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formal (logic) notions for identifying attacks on ad-hoc network routing protocols.

In the next chapter, more general criteria based on a probabistic and timed model

of ad-hoc network routing protocols are introduced.
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Chapter 3

Probabilistic-Timed Formal Model

3.1 Introduction

The problem of studying guarantees in general for ad-hoc networks is that the

underlying medium and usually the protocols themselves behave in a probabilistic

fashion. For example, transmitting a packet in a wireless medium cannot be mod-

eled as a deterministic process because depending on network conditions, there is

a significant chance of packet loss. Also, wireless networking protocols often uti-

lize random jitter as a collision avoidance mechanism. The most commonly used

approach approach to automating the process of checking properties of protocols

is finite state model checking. It is possible to model the nondeterminism using

nondeterministic finite state machines, but it would be very sound because every

possible combination of events must be explored. Many of these explored traces will

consist of highly improbable scenarios where for example, a particular message is

lost repeatedly. Ad-hoc networks require both probabilistic treatment and temporal

analysis. Delay is an important performance metric in ad-hoc networks and guaran-

tees on delay should be something that analysis can provide. Therefore automated

analysis of performance guarantees for ad-hoc networks should be both probabistic

and timed.

However, timed, probabilistic model checking limits the number of nodes that
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can be analyzed. The inclusion of timing creates difficulties in the state space

explosion problem, particularly if time is discretized. If time is treated symbolically,

then the same fundamental problem manifests itself as an explosion in the number

of constraints needed to describe the problem. These problems are insurmountable

by formal analysis alone, however, the probabilistic nature of the problem provides

an alternative means to address the problem.

Probabilistic model checking in the sense of counting paths satisfying LTL

formulas is NP -hard, but not NP -complete[46]. Thus every problem in the class

NP can be reduced polynomially to an instance of probabilistic model checking.

However, an oracle that is capable of providing solutions to NP hard problems would

not solve probabistic model checking instances. NP hard language membership

problems can be defined by the existence of a nondeterministic Turing machine

that reaches some accepting state in polynomial time if and only if the input is a

member of the NP hard language. The problem of probabistic model checking not

only requires the existence of this accepting state, but computing the probability

of reaching an accepting state. This is an example of a ]P -complete, or counting

problem (defined in [67]). Other examples of this problem include counting the

number of satisfying truth assignments in propositional logic, counting the number

of linear extensions of a partial order[11], and computing the volume of a convex

polytope[25].

An interesting characterization of the class of ]P -complete problems is that

while exact solutions are very difficult to obtain, for many instances, randomized ap-

proximations exist[41]. This means that arbitrary levels of precision can be achieved
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via approximation by increasing the amount of computational resources devoted to

the problem. For an intuitive example, consider the problem of counting the num-

ber of satisfying truth assignments in an instance of the propositional satisfiability

problem[41]. Randomly choosing truth assignments and testing for rejection is an

effective scheme for establishing a count[41] (in the sense of absolute error, not

in the sense of error relative to the number of solutions which is a much harder

problem). Monte-Carlo integration for convex polytopes is another example of an

approximation technique for problems of this class[25]. The error reduces at a rate

of 1/
√
n, where n is the number of samples, although the initial constant factor can

be important and is dependent on the problem instance[62]. The approach advo-

cated in this thesis for the probabilistic model checking problem for ad-hoc network

routing utilizes this property. The problem is then formulated within the framework

of Monte-Carlo simulation. Thus, the work addressed in this chapter addresses the

analysis of properties of ad-hoc routing algorithms using Monte-Carlo simulation.

3.1.1 Related Work

Formal analysis has been applied to a large number of communication pro-

tocols including routing (AODV[10]). However, there is no work yet on applying

formal analysis towards understanding timed or probabilistic properties of routing

algorithms. The work on AODV focused on correctness and loop-freeness and not

performance. The most closely related work would be the formal analysis of the

802.11 MAC [43] protocol. It shares the property of being probabilistic and timed.
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As with OLSR, there are no guaranteed time bounds, and only probabilistic ones

may be established.

As stated in the introduction, the formal analysis of routing algorithms is

heavily exacerbated by the state space explosion problem. A naive approach using

standard tools alone is impossible. In the analysis of 802.11 [43], only two nodes were

modeled and there were in excess of 5 million states examined. The objective in this

work is to analyze at least a network for which routing properties can be explored.

Existing model-checking tools are inappropriate for this task in their current form.

The problem is primarily the orientation of the tools. The probabilistic model

checker PRISM[42] is closest in orientation to this task. However, for this class of

problems, ]P , model checking by brute force state enumeration is fundamentally

flawed. As stated in the introduction, the correct framework for addressing these

types of problems is Monte-Carlo simulation.

3.2 Review of OLSR

In this section we review OLSR based on a mathematical decomposition by

components[70]. For details on the operation of OLSR, refer to the RFC [20]. Fig-

ure 3.1 shows the dependencies in the behavior of OLSR. It is constructed by an

analysis of the OLSR protocol by tracing the data flow in the OLSR algorithm.

The components described decompose readily due to the clean design of OLSR. The

figure may be interpreted in a manner similar to Bayesian networks (see [40] for an

introduction to Bayesian networks).
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Topology Information Dissemination

Figure 3.1: OLSR Dependencies

To see how this information can be used, associate with each node in the above

figure a variable representing the state of the routing protocol associated with the

component shown. For example, define the following random processes associated

with the depicted components.

A : Hello process that generates hello messages having state space A.

B : One-hop Neighborhood process of one-hop symmetric neighborhood discovery

having state space B.

C : Two-hop Neighborhood process of two-hop symmetric neighborhood discovery

having state space C.

D : Topology Information Selection process of generating (selecting) topological

information to be distributed in topology control messages with state space

D. This includes selecting MPRs and selectors then notifying the MPRs.
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E : Topology Information Dissemination process of disseminating to the network

with topology control messages with state space E.

The state of these components at time k is given by (ak, bk, ck, dk, ek, fk). Notation-

ally, x1:k may stand for either x1 ∧ x2 ∧ . . . ∧ xk or (x1, x2, . . . , xk) depending on

what the context requires. The following decomposition of the probability density

function shows how the conditional independencies of Figure 3.1 can be applied.

P (a1:k ∧ b1:k ∧ c1:k ∧ d1:k) =

P (d1:k|a1:k ∧ c1:k)P (c1:k|a1:k ∧ b1:k)P (b1:k|a1:k)P (a1:k)

The above decomposition is salient because each of the conditional probabilities

can be computed naturally from the protocol behavior. Note the application of the

conditional indepence property

P (d1:k|a1:k ∧ b1:k ∧ c1:k) = P (d1:k|a1:k ∧ c1:k)

which follows from the data dependencies shown in Figure 3.1 or in other words the

causal dependencies of the protocol model induce these probabilistc dependencies,

which reduce significantly the overall complexity of the probabilistic model. For

example, the state of the two-hop symmetric neighborhood discovery process given

by c1:k depends only on the state of the one-hop symmetric neighborhood discovery

process given by b1:k and the hello process given by a1:k.
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The computation of P (ak ∧ bk) follows below.

P (ak ∧ bk) =
∑

ak−1∈A,bk−1∈B

P (ak ∧ bk ∧ ak−1 ∧ bk−1) (3.1)

=
∑

ak−1,bk−1

P (ak|bk ∧ ak−1 ∧ bk−1)P (bk ∧ ak−1 ∧ bk−1) (3.2)

=
∑

ak−1,bk−1

P (ak|ak−1)P (bk|ak−1 ∧ bk−1)P (ak−1 ∧ bk−1) (3.3)

Note that the step from (3.2) to (3.3) uses the conditional independence implied by

Figure 3.1: P (ak|bk ∧ ak−1 ∧ bk−1) = P (ak|ak−1). Observe that (3.3) is a recursive

expression where it is assumed that the initial probabilities P (a1 ∧ b1) are given.

This formulation provides a basis for decomposing OLSR into a number of

distinct components for analysis. For example, given this causal dependency graph,

it is possible to attempt to localize OLSR faults to invididual components of OLSR.

This same structure will be useful when modifications are required because it will

be possible to localize modifications to particular components.

3.2.1 Components of OLSR

OLSR can be divided into the following major components[70].

• Neighborhood Discovery

• Topology Information Dissemination (with two important sub-compononents,

Topology Information Selection and Topology Information Dissemination)

• Pathfinding

• Data Forwarding
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While Data Forwarding is an important component in routing, the OLSR standard

[20] does not actually specify how packets are to be forwarded, only how routing

tables are to be maintained.

3.2.1.1 Local Topology Maintenance

The first of these components, neighborhood discovery occurs via regular

HELLO packets. The HELLO packets include a node identifier for the node per-

forming the HELLO. This allows neighbors to become aware of the broadcasting

node. It additionally broadcasts the identifier of each of its heard neighbors along

with a flag indicating each neighbor as being asymmetrical, symmetrical or lost.

Asymmetrical: The broadcasting node has heard a neighbor, but the neighbor does

not appear to hear it. Upon hearing a new neighbor initially, this is the state

set if the neighbor does not indicate the receiver as a neighbor.

Symmetrical: A symmetrical link exists between the broadcasting node and this

neighbor. This is set by a node A whenever it hears a neighbor node B

broadcast the ID of A as either asymmetrical or symmetrical.

Lost: A link existed between the broadcasting node and a neighbor, but it has not

heard any HELLO messages for 3 HELLO intervals.

The end goal of this neighbor discovery process, in OLSR, is that each node knows

its two-hop symmetric neighborhood.
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3.2.1.2 Information Dissemination

Nodes that are selected as MPRs will then flood information via TC (topology

control) messages to the network. The TC messages include the identity of the MPR

node and the identity of every node selecting it as an MPR, thus disseminating

information about the symmetrical links between all MPRs and selectors throughout

the network.

The flooding mechanism uses the MPR structure to reduce the overhead of

flooding. Rather than having every node repeat a message, only nodes hearing a

message from a symmetric neighbor selecting it as an MPR will forward the message.

This system has one peculiarity: If a message is heard broadcast by a neighbor that

does not select the node as an MPR, then heard again from a node that does select

it as an MPR, then it will not forward the message. See Section 3.4.1 of the OLSR

RFC [20] for details.

3.3 Protocol Specification by Extended Executable Model

OLSR will be specified formally by an extended executable model. An exe-

cutable model is a formal specification, though it does include some specific imple-

mentation details. The execution of OLSR will have two sources of nondeterministic

behavior. One is the random jitter that is part of the collision avoidance mecha-

nism of OLSR and the other is the fact that packets that are transmitted have a

non-zero probability of loss. In order to accommodate the analysis, both of these

mechanisms will require slightly more careful treatment, entailing the extension of
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normal executable models.

Ordinarily, in a simulation or executable model, the presence of branching

behavior such as the random timer causes the simulation code to generate a random

number from the correct distribution and inserts it into the simulation engine. This

extended executable model requires not just the ability to sample from the execution

space as above, but also to know the distribution of successor states from any given

state. It is clear that given this distribution, the simulation engine can then either

sample the distribution or perform state exploration from a given state. This can

be achieved without detailed knowledge of the states themselves by the simulation

engine.

3.3.1 Basic Formal Model

The basic formal model will be that of a discrete event simulation of a number

of concurrent processes. Each process has its own internal state variables. Formally,

let P = (Q,E,∆) be a process.

Q: A state of the process P . It is fairly arbitrarily defined and may contain state

variables or arbitrary internal data structures.

E: A set of events. These are fairly arbitrarily defined and may contain variables or

internal data structures. Each event e has associated with it a time te. In the

following let p denote any previous event and tp the time at which it occurs.

• A specific absolute time value relative to 0.
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• A specific relative time value to another preceding event. te may be

defined as te = tp +D for any constantD > 0, generally implying a causal

relationship between e and p.

• A random relative time value to another preceding event. te may be

defined as te ≥ tp + L and te ≤ tp + U with 0 < L < U . te occurs nonde-

terministically on the interval [tp + L, tp + U ].

∆: A mapping ∆ : Q× E → Q× 2E. This mapping takes a state q ∈ Q, an event

e ∈ E and produces a successor state q′ ∈ Q and a set of new events e′ ⊂ E.

The new events in ε ∈ e′ are constrained such that tε > te due to causality.

The state of a process is captured by the tuple (q, h, e, c).

q: A particular state that is an element of Q.

h: A subset of E of events that have already happened (history).

e: A subset of E of enabled events.

c: A set of causality constraints. These show up as constraints on the time values

of events in e and h.

The nondeterministic time intervals are for now only uniform because OLSR

uses uniform random jitter. The analysis that follows, particularly in section 3.3.3,

assumes this fact, although other formulations are possible that are free from this

assumption.

This is a minimalistic model that places most of the complexity in the process

P . This basic model does not capture partial orders but can be extended to do so
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if required.

3.3.2 Formal Timing Analysis

In OLSR, the random jitter is always based on a uniform distribution over a

fixed interval. This fits within the framework of timed model checking of Alur and

Dill[3]. The basic argument is presented below.

The following objects comprise the model.

Σ = {φ, e1, e2, . . . , en}: Set of events. φ denotes a special, constant zero event and

can be aliased as e0.

{0, t1, t2, . . . , tn}: Set of times for events in Σ. φ occurs at time 0, and for i = 1 . . . n

event ei occurs at time ti.

C: Set of timed causal constraints having the form ti + dij ≥ tj. For constraints

involving φ, the following forms can be used: 0 + d0i ≥ ti or ti + di0 ≥ 0.

Given a candidate set of events Σ and constraints C, it is necessary to be able

to determine whether or not an execution is feasible. The main result is that this

corresponds exactly to the negative cycle detection problem[18].

Theorem 3.3.1. Interpreting the dij quantities from the set C as distances between

nodes i and j, the resulting distance matrix has no negative cycles if and only if

there is an assignment of t values that satisfies all of the constraints.

Proof. To show that having no negative cycles is necessary for feasibility assume
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that for some n1, . . . , nk we have constraints from C that form a negative cycle:

dn1n2 + dn2n3 + . . .+ dnk−1nk + dnkn1 < 0. (3.4)

The equations associated with the above constraints are

xn1 + dn1n2 ≥ xn2

xn2 + dn2n3 ≥ xn3

. . .

xnk−1
+ dnk−1nk ≥ xnk

xnk + dnkn1 ≥ xn1 .

These can be combined as

xn1 + dn1n2 + dn2n3 + . . .+ dnk−1nk + dnkn1 ≥ xn1

dn1n2 + dn2n3 + . . .+ dnk−1nk + dnkn1 ≥ 0. (3.5)

Note that (3.5) directly contradicts (3.4). This shows that negative cycles in the

constraint system C result in infeasibility proving that feasibility implies no negative

cycles.

Conversely, a constructive argument can be used to prove that having no

negative cycles is sufficient for feasibility. Using each value dij from the constraint

set C as the distance from node i to j, construct a shortest path matrix D with

values Dij for i, j = 0, . . . , n. Entries Dii are defined to be 0. By assumption, the

values dij produce no negative cycles, so the distance matrix D is a well defined

shortest path matrix. By definition of shortest paths, the resulting values must be
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less than or equal to their original values: Dij ≤ dij. Interpreting this as constraints

ti + dij ≥ ti +Dij ≥ tj

shows that the new constraints in the shortest path matrix D are at least as strict as

the original constraints in C, meaning that any feasible solution to the constraints

specified by D will also be feasible solutions to C. Since the matrix D is a shortest

path distance matrix, the following always holds:

Dij +Djk ≥ Dik i, j, k = 0, . . . , n. (3.6)

Consider the point defined by

(0,−D10,−D20, . . . ,−Dn0).

It is possible to verify that this point satisfies all the constraints specified by the

distances in the shortest path matrix. For constraints of the form ti +Di0 ≥ φ,

substitution results in

−Di0 +Di0 ≥ 0

which obviously holds. For constraints of the form φ+D0i ≥ ti, substitution results

in

0 +D0i ≥ −Di0

which must hold since there are no negative cycles. Finally for constraints of the

form ti +Dij ≥ tj, substitution yields:

−Di0 +Dij ≥ −Dj0

Dij +Dj0 ≥ Di0
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which must hold because of (3.6). Thus the absence of negative cycles is sufficient

for feasibility of a constaint set C.

So a constraint set C is feasible if and only if it has no negative cycles. This

means that feasibility of a particular partial order described by Σ and C can be

easily checked by applying a negative cycle detection algorithm to the constraints,

such as the Floyd-Warshall algorithm[21]. This is the basic mechanism for state

space exploration of the model checker UPPAAL [7].

3.3.3 Probabilistic Timing Analysis

In Section 3.3.2, timing is treated as only a feasibility problem, but the time

values generally come from a probability distribution. The time values of particular

interest come from the uniform random jitter of OLSR and the probability of an

execution of OLSR can be calculated. This enables probabilistic reasoning over the

space of executions of the protocol.

3.3.3.1 Preliminaries

Before proceeding further, it is necessary to establish some basic facts about

the shortest path matrix D as constructed in Section 3.3.2.

Theorem 3.3.2. Assume that some feasible system (having no negative cycles) has

shortest path matrix D. Then for all Dij the following relation between the variables

ti and tj holds

ti +Dij ≥ tj. (3.7)
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Where Dij is the shortest distance from i to j with distances between nodes provided

by initial constraint differences d.

Proof. For each i, j pair Dij being the shortest distance between them implies that

for some n1, . . . , nk:

din1 + dn1n2 + . . .+ dnk−1nk + dnkj = Dij (3.8)

Each distance dxy in the constraint set C, is defined by tx + dxy ≥ ty. A combination

of the constraints associated with din1 , din2 , . . . , dnk−1nk , dnkj yields

ti + din1 + dn1n2 + . . .+ dnk−1nk + dnkj ≥ tj, (3.9)

which shows that (3.7) holds.

Theorem 3.3.2 demonstrates that the the shortest path distance between nodes

in the graph representation correspond directly to relationships between the corre-

sponding variables that can be derived from the constraint set in the linear inequality

set representation. The next result will demonstrate a special form of redundancy

that allows for the elimination of variables, but first a small lemma will be needed.

Lemma 3.3.3. Assume that for two variables ti, tj, Dij +Dji = 0 or

Dij = −Dji. (3.10)
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Then for all k 6= i, j, the following equalities hold:

Dik = Dij +Djk (3.11)

Dki = Dkj +Dji (3.12)

Djk = Dji +Dik (3.13)

Dkj = Dki +Dij. (3.14)

Proof. Assume that the hypothesis (3.10) holds. According to the theorem 3.3.2,

the following applies

ti +Dij ≥ tj (3.15)

tj +Dji ≥ ti. (3.16)

Substituting (3.10) into (3.15) results in

ti −Dji ≥ tj

tj +Dji ≤ ti

which along with (3.16) shows that

tj +Dji = ti, (3.17)

and equivalently by (3.10)

ti +Dij = tj. (3.18)

Now consider any variable tk such that k 6= i, j. The following hold because D is a
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shortest path matrix:

Dik ≤ Dij +Djk (3.19)

Dki ≤ Dkj +Dji (3.20)

Djk ≤ Dji +Dik (3.21)

Dkj ≤ Dki +Dij (3.22)

Substituting (3.10) into (3.21) results in

Djk ≤ −Dij +Dik

Dik ≥ Dij +Djk. (3.23)

Thus due to (3.19) and (3.23)

Dik = Dij +Djk

holds (3.11). Similarly from (3.10) and (3.22)

Dkj ≤ Dki −Dji

Dki ≥ Dkj +Dji.

Therefore

Dki = Dkj +Dji

holds (3.12). By symmetry

Djk = Dji +Dik

Dkj = Dki +Dij

both hold (3.13) (3.14). Thus each of the equalities of the consequent have been

shown to hold.
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Theorem 3.3.4. When (3.10) holds, that is

Dij = −Dji,

then either of the two variables ti or tj (not simultaneously) may be removed from the

shortest path matrix D while preserving all relationships between all other variables.

Proof. Assume that the hypothesis (3.10) holds so therefore Lemma 3.3.3 applies.

Suppose that variable tj is removed. Then the structure does not change since the

constraints

tj +Djk ≥ tk (3.24)

and tk +Dkj ≥ tk (3.25)

are implied by

ti +Dik ≥ tk (3.26)

and tk +Dki ≥ ti. (3.27)

Substituting for ti using (3.17) in the above results in

tj +Dji +Dik ≥ tk (3.28)

and tk +Dki ≥ tj +Dji. (3.29)

By Lemma 3.3.3, (3.13) holds and applying it to (3.28) results in

tj +Djk ≥ tk

which is exactly (3.24). Applying first (3.10) then (3.14) (again using Lemma 3.3.3)

into (3.29) results in

tk +Dkj ≥ tj
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which is exactly (3.25). Removing ti instead of tj follows similarly by symmetry. In

summary, all variables that are related by Dij +Dji = 0 are structurally redundant.

3.3.3.2 Deriving the Timing Model from the Formal Model

The formal model will be used to generate instances of the timing model. The

manner in which it does so is described here. Based on the results of Section 3.3.3.1

Σ may contain just a subset of the events from the formal model without losing any

information. Construction of this Σ will be described below.

There will be an auxiliary data structure used to store information about

redundant events and their predecessors. Each event will be stored as the tuple

(e, p, d).

e: The event itself.

p: The parent event. It is assumed that p precedes e in time.

d: In the case of redundant events, the fixed distance te − tp. In the case of irredun-

dant events, the minimum distance between te and tp corresponding to the L

in te ≥ tp + L.

In the case of redundant events, the d value in the above satisfies d = te − tp or

tp + d = te which can be rewritten in more familiar terms as

tp + d ≥ te

te − d ≥ tp.
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The redundant events will be those that satisfy condition (3.10).

Recall from Section 3.3.1 that there were three given ways to define the time

of an event. In the case where events are redundant, they are handled as follows.

1. Absolute time in relation to 0. These will be redundant with φ. A tuple will

be created with (e, φ,D), where D is the absolute time.

2. Fixed relative time to a past event. These are always redundant. Let e be the

current event, p be the past event and D be the distance D = te − tp. There

are two possibilities depending on whether p itself is a redundant event. In

the case where it is not redundant, then the e is stored as the tuple (e, p,D).

If p is redundant, then it has an associated tuple (p, p′, D′). In this case, e gets

stored with the tuple (e, p′, D′ +D).

3. Random relative time over a specified interval. These can never be redundant,

but they will be affected by redundant data. Let e be the random event, p

be the predecessor event and let L and U be the constants in the constraints

te ≥ tp + L and te ≤ tp + U . e is added to Σ and te is added to the list of

times. How the constraint set is modified depends on whether p is redundant.

If p is an irredundant event, then the constraints are put into standard form

and added to the constraint set as follows

te − L ≥ tp

tp + U ≥ te.

In this case, the tuple is stored as (e, p, L).
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Otherwise p is a redundant event. Let (p, p′, D) be the tuple associated with

p. Since tp = tp′ +D, the correct modification of the constraint should be

te − (L+D) ≥ tp′

tp′ + U +D ≥ te.

In this case, the tuple is stored as (e, p′, L+D).

Note that based on the rules, redundant tuples always indicate an irredundant tuple

as its predecessor. Also observe that Σ will be comprised of φ and a single variable

corresponding to each random variable in the execution.

Finally, the supplemental causal constraints must be translated and added

to the constraint set. Assume supplemental constraints are given in the form

te1 +D ≥ te2 . e1 and e2 might be redundant events. In this case, a substitution

is performed. Supposing that e1 is redundant with tuple (e1, p1, d1), a substitu-

tion is performed for te1 using te1 = tp1 + d1. Similarly for e2. This will put the

supplemental constraints in terms of irredundant variables.

The probability of a particular execution occurring is based on the distribu-

tion of the random variables. Define a new set of random variables {τ1, . . . , τn} to

correspond with the duration of the uniform random intervals. It is clear that the

probability of a region in τ -space is the ratio of its volume to the overall rectangular

region. However, the timing model is not formulated in terms of the lengths of the

intervals, but rather their starting and ending times. It is possible to extract this

information from the timing model. Let ei be an event corresponding to the random
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Figure 3.2: Unit cube partitioned by coordinate order - 6 = 3!.

interval τi and let (ei, pi, di) be its associated tuple. Then

τi = tei − tpi − di.

This is true for each τi so it is possible to write down the expression in vector form

τ = At− d. In order to compute the volume in τ -space, it suffices to compute the

volume in t space then multiply by |Det(A)|.

3.3.3.3 Volume Computation

The discussion above (Section 3.3.3.2) means is that it will be necessary to

have an algorithm for computing the integral over convex polytopes described by

the causal constraints. A discussion of the general characteristics of this problem

follows.

The problem of exact volume computation is a known hard problem [25]. It is

possible to use volume computation, for instance, to compute the number of linear

extensions of a partial order [11]. A unit cube with number of dimensions N can
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be partitioned into N ! regions based on the ordering of the coordinates. Figure

3.2 provides an example in 3D. These partitions are all identical in volume by

symmetry so each must have a volume of 1/N !. The partial order constraints on

the unit cube describe a convex polytope with volume exactly equal to the number

of linear extensions divided by N !.

Since counting the number of linear extensions of a partial order is known to be

]P -complete [11] and is reducible to volume computation, volume computation must

be at least ]P -hard. Monte-Carlo integration is a standard approximation scheme

for these types of problems. What makes Monte-Carlo integration potentially slow

is that it is based on a ratio to an initial estimate. Essentially, the technique requires

knowing exactly the volume of a figure that encloses the region of interest. Then

a uniform sampling of points is taken from the enclosing region, and membership

within the volume of interest is evaluated. The ratio of members to nonmembers

gives the ratio of the volume of the enclosed figure to the volume of the enclosing

figure. It is clear that having an enclosing figure as close as possible to the figure of

interest will produce the most efficient Monte-Carlo integration. If the figure encloses

a space much larger than the volume of interest, then a vast majority of samples

will be wasted on empty space. Thus the basis for any Monte-Carlo integration is

still a good technique for exact volume computation. In this case, a projection of a

lower dimensional computable volume into the higher dimensional space can serve

as a starting point for Monte-Carlo sampling.

Lasserre’s recursive decomposition of volumes is a possible choice as a starting

point for this problem[47]. Lasserre’s method is based on recursively decomposing
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Figure 3.3: Lasserre’s algorithm example in 2D.

convex polytopes into pyramids with a base that is one dimension less than the

starting dimensionality. At one dimension, the volume of a polytope is just the

length of an edge and therefore trivially computable. Figure 3.3 shows an example

in two dimensions. The region is partitioned into sub-regions A,B and C, for which

the volume is easier to evaluate.

The formula V = bh/2 generalizes for pyramids in higher dimensions to V =

bh/D, where D is the number of dimensions, b is the volume of the base and h is

the height of the pyramid. The main problem with this decomposition is that each

dimensionality reduction step causes a fanout of the number of resulting polytopes.

This is an exponential fanout that is endemic to problems that are NP-hard and

unavoidable.

3.3.3.4 Adapting Lasserre’s Algorithm to Temporal Structure

It is possible to adapt Lasserre’s algorithm to the particular problem of in-

terest here (routing protocols) and exploit the shortest path structure. Since every
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Figure 3.4: Distance from point to line in constraint structure.

constraint of the system has a corresponding weight within a shortest path matrix,

manipulations of the constraints required for Lasserre’s algorithm can be achieved

by manipulating the shortest path matrix rather than the equations themselves.

While doing so does not improve the overall complexity of the algorithm (it cannot

because of the complexity class), it can reduce the constant factors significantly.

Lasserre’s algorithm requires two basic recursive operations:

1. Measuring the distance from a particular face of a polytope to a specified point

in order to establish the height of a pyramid.

2. Creating an object of dimensionality D-1 from the face of a polytope to recur-

sively compute the volume of the base of a pyramid.

Since the constraints are all planes, the first of these operations is readily handled

by the formula for finding the distance from a point to a plane. Every constraint in

this temporal structure has the form xi + dij ≥ xj. Let x be a point that satisfies
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the constraint and assume that (xi,xj) is its projection onto the i and j dimensions.

As shown in Figure 3.4, the distance from the point x to the constraint associated

with dij is given by (xi − xj + dij)/
√

2.

The second operation requires taking a particular face of the polytope and

examining its “volume.” Before proceeding with the discussion of this operation, it

is necessary to distinguish between constraints that are associated with faces of the

polytope and constraints that are implied by other constraints. Figure 3.5 shows a

polytope that has examples of both. Assume that initially

dij ≥ di0 + d0j. (3.30)

Combining the constraints φ+ d0j ≥ xj and xi + di0 ≥ φ results in

xi + di0 + d0j ≥ xj.

By assumption (3.30), this implies the constraint xi + dij ≥ xj. When a constraint is

implied by a combination of other constraints, it will be called an implied constraint.

Definition 3.3.1 (Implied Constraint). An implied constraint is a constraint that

may be derived from a combination of other constraints. Such constraints are re-

dundant.

Theorem 3.3.5. In the temporal graph structure, if the shortest path between two

variables consists of multiple hops, then the constraint associated with the distance

between those variables is an implied constraint and does not form a face of the

polytope.
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Figure 3.5: The constraint xj + dji ≥ xi forms a face of the polytope, but xi + dij ≥ xj

is degenerate, being implied by φ+ d0j ≥ xj and xi + di0 ≥ φ.

Proof. Consider the constraint dij. Suppose that there exists n1, . . . , nk such that

din1 + dn1n2 + . . .+ dnk−1nk + dnkj ≤ dij. (3.31)

i, n1, . . . , nk, j is a path shorter than the atomic path with distance dij. The distances

din1 , dn1n2 , . . . , dnk−1nk , dnkj are associated with the constraints

xi + din1 ≥ xn1 (3.32)

xn1 + dn1n2 ≥ xn2 (3.33)

. . . (3.34)

xnk−1
+ dnk−1nk ≥ xnk (3.35)

xnk + dnkj ≥ xj (3.36)

which can be combined as

xi + din1 + dn1n2 + . . .+ dnk−1nk + dnkj ≥ xj. (3.37)
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Due to (3.31), the equation above implies xi + dij ≥ xj.

Let dij be the distance associated with constraint xi + dij ≥ xj and assume

that this constraint is not implied. The figure formed by this face of the polytope is

the intersection of the polytope with the constraint xi + dij = xj. Since the polytope

already satisfies xi + dij ≥ xj, this is equivalent to taking the intersection of the

polytope with xi + dij ≤ xj or

xj − dij ≥ xi. (3.38)

It is possible to use this complementary constraint in order to perform the required

intersection operation on the shortest path constraint structure. The following will

describe the effects of adding constraint (3.38) to the system in terms of the shortest

path distance matrix representation.

The immediate effect of adding constraint (3.38) is that the equality relation

xi + dij = xj (3.39)

will hold. Assuming that initially, the constraints describe an N -dimensional poly-

tope, constraining the original polytope to the plane (3.39) results in an (N − 1)-

dimensional polytope associated face of the polytope. After setting dji = −dij, it is

the case that dij + dji = 0, so Theorem 3.3.4 applies and it is possible to completely

remove either xi or xj without losing any information about the shape of the face

assuming that the shortest path matrix is updated with the new constraint.

The constraints governing the selected polytope face are formed from con-

straints of the original polytope. There are two main cases to consider, the case
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where the constraint from the original polytope is between variables other than xi

and xj and the case where one of the variables is either xi or xj.

In the first of these cases, consider a constraint between variables xa and xb

where a, b 6= i, j. Let

xa + dab ≥ xb (3.40)

be the constraint. Assume that it is known that (3.40) is not implied. No implied

constraints are considered because they do not form polytope faces by Theorem

3.3.5. There are two possibilities. The first is that the constraint is not a face of the

sub-polytope. This is the case when

dab ≥ daj − dij + dib. (3.41)

This condition tests if the dab constraint becomes implied when adding the comple-

mentary edge (setting dji = −dij). If condition (3.41) does not hold, then the con-

straint associated with dab remains non-implied in the sub-polytope. Note that up-

dating d′ab = min(dab, daj − dij + dib) is equivalent to performing a Floyd-Warshall

update using the new edge dji = −dij and performing this update on all pairs a, b

suffices for updating the shortest path matrix.

Here, the second case, where one of the variables is xi or xj, will be considered.

Let the other variable be called xk with k 6= i, j. For reasons that will be explained

later, it is not only necessary to keep track of the shape of the polytope face, but also

exactly which original constraints the constraints in the polytope face correspond

to. There are two possibilities to be considered separately.

• The constraint is associated with either dik or djk.
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Figure 3.6: Effect of assigning complementary distance dji ← −dij

• The constraint is associated with either dki or dkj.

The first of these cases corresponds graph-wise to constraints that are outgoing

edges from xi or xj. As stated previously in this section, it is possible to remove

one of the two variables without affecting the shortest path structure. It is assumed

that xi will be removed. The argument is similar if xj is removed. It is necessary

then to find the effect of adding the complementary edge on the distances and the

polytope faces. The edge that is added, dji ← −dij, will generally create a path that

is shorter than the existing path. Referring to Figure 3.6, observe the following

dik ≤ dij + djk (3.42)

dik − dij ≤ djk. (3.43)

(3.42) must hold because of the shortest path condition. (3.43) holds as a conse-

quence. It means that after applying the complementary edge, the distance from xj
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to xk becomes dik − dij so the constraint becomes

xj + dik − dij ≥ xk. (3.44)

It is still necessary to determine what initial constraint this new constraint derives

from.

There are two potential candidate constraints. The first is dik. This occurs

whenever the inequality in (3.42) is strict

dik < dij + djk.

This is depicted in Figure 3.7. The constraint xi + dik ≥ xk is a constraint of the

polytope face if it is not an implied constraint and the above condition is satisfied.

It will be associated with the new constraint (3.44).

The second candidate is the constraint

xj + djk ≥ xk. (3.45)

If equality is achieved in (3.42)

dik = dij + djk

then xj + djk ≥ xk may be a constraint of the polytope face. This is depicted in

Figure 3.3.3.4. If constraint (3.45) is not implied then it is associated with the new

constraint (3.44).

If neither of the candidates satisfy the required conditions above, then the new

constraint (3.44) is in fact an implied constraint.

The argument is similar in the case of the constraints associated with dki and

dkj so only the result will be described here. As before, it will be possible to remove
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Figure 3.7: 3D cross-eye stereographic illustration: view left image in right eye and right

image in left eye. dik < dij + djk. Consequently, the constraint xi + dik ≥ xk dominates

xj + djk ≥ xk within the plane xi + dij = xj. In this case, the constraint within the poly-

tope face, xj + dik − dij ≥ xk, corresponds with the original constraint xi + dik ≥ xk. Note

that xj + djk ≥ xk is redundant within the plane xi + dij = xj.
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Figure 3.8: 3D cross-eye stereographic illustration: view left image in right eye and

right image in left eye. xi + dik ≥ xk is implied by xj + djk ≥ xk and xi + dij ≥ xj. In

this case, the polytope face in the plane xi + dij = xj has xj + djk ≥ xk as a constraint.

xi + dik ≥ xk is implied and therefore degenerate.

one of xi or xj and it is assumed that xi will be removed. Referring to Figure 3.6,

it is clear that the weights of incoming edges to xj will never be affected by the

addition of the complementary edge because the added edge is outgoing from xj.

It is still necessary to determine which of the edges (xk, xi) or (xk, xj) is associated

with the resulting constraint xk + dkj ≥ xj. For reasons similar to the above, in the

case of strict inequality,

dkj < dki + dij,

the associated edge is (xk, xj) if that edge is not implied. In the case of equality,

dkj = dki + dij,

the associated edge is (xk, xi) if that edge is not implied. If none of the above apply

then no edge is associated with the resulting constraint.

99



There are a number of optimizations that apply to this computation. The most

important of which is caching of sub-volumes. Each sub-volume that is formed is the

result of taking the intersection of the original polytope with a set of its enclosing

planar constraints. It turns out that this recursive process causes the same volumes

to be generated again and again. In fact, each sub-volume is generated exactly N !

times where N is the number of constraints taken in intersection to produce the

sub-volume. Since the volume of a sub-volume is invariant, it is possible to cache

these values based on the set of planes used to produce them, reducing the amount

of computation needed.

There is a trade-off to be considered in caching. The size of the cache grows

quickly as a function of the number of dimensions. Performance of cache lookups

tends to degrade as the cache gets larger and larger generally O(N logN), even if

hash tables are used. Since volumes become easier to compute as the dimensionality

decreases, and each level of the recursion decreases the dimensionality by one, at

some point it becomes more efficient to compute a volume directly than to perform

a cache lookup for that volume. In this particular implementation, that occurs at 3

dimensions. For any volume of 3 dimensions or less, it is more efficient to recompute

the volume than it is to cache. The efficiency may be further improved by unrolling

the computation of the lower dimensional volumes. Every 2-dimensional volume has

the form depicted in Figure 3.3.3.4. The formula expressing its volume is

(di0 + d0i)(dj0 + d0j)−
(d0j − dij + di0)2

2
+

(d0i − dji + dj0)2

2
.

An optimization that has to deal with the geometry of Lasserre’s algorithm is
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Figure 3.9: A representative 2D volume is shown. Its volume (area) can be decomposed

into a main rectangular region subtracting two triangular regions.

shifting the anchor point to a vertex of the polytope. Faces adjacent to this vertex

then have zero height and it is unnecessary to compute their volumes. This can be

used to reduce the number of computations necessary. In this implementation, the

anchor point is always chosen to be the intersection of all constraints of the form

xi + di0 ≥ φ, which yields the point (−d10,−d20, . . . ,−dn0) as the anchor (where n

is the number of dimensions).

Execution times for a Java implementation based on these ideas is compared

to Vinci[13], an optimized implementation of Lasserre’s algorithm in C in Figure

3.3.3.4. The numbers are the average over 10 runs of randomly generated N-

dimensional volumes. The Java times start out greater than the times for Vinci

because the executions include JVM startup times and JIT compilation. Without
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Figure 3.10: Execution times vs number of dimensions. No data point given for 12

dimensions in Vinci because it crashes.

the overhead, it is expected that the Java version would be faster. The execution

times are provided for an AMD Athlon(tm) 64 X2 Dual Core Processor 4200+ on

a machine with 2 GB of RAM running Linux.

The reason that this implementation is significantly faster than Vinci is proba-

bly due to the reduction in the branching achieved by eliminating implied constraints

as shown in Section 3.3.3.4. Eliminating constraints directly reduces the number of

branches needed at each stage of the recursion. This is due to the fact that con-

straint elimination in the shortest path structure has only quadratic complexity. In

the general case which Vinci handles, constraint elimination would be equivalent to

the problem of elimination of redundant inequalities from a set of linear inequalities,

which is reducible to linear programming, which has a much greater complexity than

the shortest-path manipulations used here.
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Developing a parallelized version of this algorithm in Java was not fruitful,

most likely because of the limitations of the JVM. A fine-grain parallelized version

was written, but very little performance gain was realized. An experiment was

performed to see how much overhead the JVM imposes on threaded programs.

Running two non-interacting instances of the program in two threads in the same

JVM is only 1.4 times faster than running two instances without threads. Running

two instances of the JVM resulted in close to the expected 2 times performance

boost.

3.3.3.5 Coupling Monte-Carlo Integration with Exact Computation

The volume computation problem can also be solved using Monte-Carlo inte-

gration. Monte-Carlo integration based on the rejection method may be used. Let

R be a region for which it is possible to determine for any given point p whether

or not p ∈ R. It is clear that for the constraint programs arising from the formal

timing model that this is the case because it is possible to test any point p against

each of the planar constraints.

The rejection method is based on taking a region R′ such where R ⊆ R′. The

region R′, in addition to enclosing R must satisfy the following properties.

• The volume V (R′) of R is either given, or easily computed.

• There is a method for generating an arbitrary number of random samples

x1, x2, . . . , xn uniformly in R′.

Given these three conditions, it is possible to use the rejection method to integrate
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over a volume. An estimate for the volume of region R, Ṽ (R), can be computed as

Ṽ (R) = V (R′)
1

n

n∑
i=1


0 : xi 6∈ R

1 : xi ∈ R
(3.46)

The convergence of this method dependends on the ratio p = V (R)/V (R′). Let c be

the count of samples from R′ in R. c is binomially distributed with paramters n and

p so its mean is given by np and its standard deviation by
√
np(1− p). The estimate

of p given by c/n has expected value p and standard deviation
√
p(1− p)/

√
n. The

standard deviation, which can be used as an indication of absolute magnitude of the

error decreases with 1/
√
n. In this case, it is also useful to consider the ratio of the

error to the computed volume (
√
p(1− p)/

√
n)/p which equals

√
1− p
np

. (3.47)

A plot of this function for n = 1 is shown in Figure 3.3.3.5. The relative error goes

towards infinity as p goes to zero. What this means is that the algorithm converges

more quickly if p is close to 1. In terms of the regions, this implies that performance

is improved by choosing R′ to cover as little volume as possible outside of R.

So in implementing Monte-Carlo integration, it is necessary to choose bounding

regions R′ ⊇ R that are similar to R. However, it is necessary to be able to compute

the volume of R′ and also to be able to sample from R′. The problem is that R is

typically a complex figure and to properly enclose R, it is necessary to use figures

that are less complex than R itself, for example rectangular prisms. Rectangular

prisms are easy to sample from and their volumes can be computed, however, there

may be better choices for approximation for these partially ordered structures.
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Figure 3.11: Plot of the function
√

1−p
p . The relative error goes towards infinity as p

approaches 0 and 0 as p approaches 1.

The technique proposed here is to use a simplified version of the region R as

the bounding region. More specifically, for a chosen subset of the variables, compute

the volume exactly, and use rectangular constraints for the remaining variables for

Monte-Carlo sampling. This hybrid approach will improve the convergence rate

of Monte-Carlo sampling and also take advantage of exact methods for volume

computation.

Ideally, the variables selected for exact computation are chosen so that the

remaining variables, that are treated using rectangular Monte-Carlo sampling, are

the ones best approximated by rectangular prisms. A heuristic is applied to rank

the variables. Assuming that constraints of the form xi + dij ≥ xj where i, j 6= 0

do not interact with one another, it is possible to quickly compute the ratio of the

volume of the actual figure to its enclosing rectangular prism. The variables are

thereby ranked and selected in order of their ranking.
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Figure 3.12: Shows the computation of the distance from a given point (a, b) to the

constraint xi + dij ≥ xj along a chosen direction vector. cos(θ) can be obtained by taking

the dot product of the direction vector with the normal vector.

It is necessary to be able to sample from the region R′. The hit-and-run

sampling algorithm can be used to sample uniformly from a convex body and is used

for this purpose. The basic idea is to take the previous sample, choose a random

chord over the body and then sample uniformly along the length of that chord.

Executed repeatedly, this procedure should converge to the uniform distribution.

Choosing a random chord can be split into two parts, choosing a random

direction then computing the resulting chord by intersection with the constraints

forming the region. Choosing a random direction can be achieved by sampling from

a multi-dimensional Gaussian distribution with zero covariance and unit variances

then normalizing. Once the direction is chosen, it is still necessary to determine the

length of the chord. This is achieved by testing the starting sample and direction
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Figure 3.13: Shows an example of hit and run sampling with poor convergence to the

distribution. This should be uniform over a rectangle. The reason for this is that the vast

majority of random chords are nearly vertical in this rather severe aspect ratio.

against every planar constraint. The minimum length discovered is the correct one

to use for chord length. The calculation for a particular constraint is shown in Figure

3.3.3.5. This must be done separately for the positive and negative directions to find

the chord.

The problem with hit and run sampling is that it can converge arbitrarily

slowly depending on the figure. In the test examples, its performance was generally

poor, although the test generator was intentionally designed to produce pathological

cases. Figure 3.3.3.5 illustrates an example of non-uniform sampling due to the

configuration of a figure.

Nonetheless, it is possible to show that the hybrid Monte-Carlo integration

that incorporates both exact volume computation and sampling outperforms Monte-

Carlo integration using just rectangular sampling. This is illustrated Figure 3.3.3.5.
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Figure 3.14: Shows comparison of convergence of Monte-Carlo integration using plain

rectangular rejection method and hybrid rejection method. The key difference is that the

hybrid method results in a sampling region 1.4 times the size of the target region whereas

the plain rectangular method results in a sampling region 7.5 times the size of the target.

This example is for a 6-dimensional figure. Greater gains should be achievable in higher

dimensions, but the hit-and-run sampling method works poorly there.
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In order to overcome the convergence issues with hit and run sampling it

is possible to employ a sampling routine based on Lasserre’s dimensional recursion.

This sampling technique presupposes the ability to compute the volume of the region

of interest using Lasserre’s algorithm. In Lasserre’s algorithm, a pivot point is

selected and the main volume is partitioned into sub-volumes. The volume of each

of the sub-volumes is known based on prior volume computation using Lasserre’s

algorithm. Given this, it is possible to assign a probability of drawing a sample

from each of the sub-volumes. A sample from a given sub-volume can be computed

by taking a sample from its base, and sampling uniformly along the ray from the

base to the pivot point. Sampling from the base is a recursive application of this

sampling algorithm.

3.4 Discussion

The problem with this approach is that in any network, there are a very large

number of concurrent nodes. And while partial order reduction is compatible with

this approach, broadcast messages used in ad-hoc networks necessitate synchroniza-

tion points spanning large numbers of nodes reducing its effectiveness.

Sampling methods have been demonstrated here to be able to be able to extend

the capabilities of formal methods. The next chapter will focus entirely on sampling

methods within the context of an optimization framework.
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Chapter 4

Trace-Based Model within an Optimization Framework : OLSR

Example

4.1 Introduction

Adapting OLSR to meet changing requirements using components decomposes

into two problems. The first of these problems is isolating protocol changes to

particular components. The second problem is once the components that need to

be changed are identified, implementing protocol modifications. In this chapter,

it will be shown that components can facilitate re-evaluation of the overall system

performance through re-use of models.

The new requirement will be to address a security problem in OLSR, namely

malicious nodes that can arbitrarily ignore routing messages. These nodes are prob-

lematic from a security perspective if they can adversely affect routing performance

because they are formally indistinguishable (in a non-probabilistic formal model)

from nodes that are sporadically receiving packets due to packet loss. A model for

an attacker of this form will have to be devised and tested against OLSR extensions

that are meant to counteract the effects of such attacks. A significant portion of the

work will be devoted to automating the construction of such an attacker in order to

test the methodology.
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Figure 4.1: Simple network with a malicious node.

4.2 New Security Requirement

Figure 4.1 depicts a simple network with a malicious node 1. This node is

permitted to ignore any message that it receives, emulating packet loss. The network

has a topology where 1 will be given preference by an MPR selection algorithm [20]

due to the two unique neighbors 6 and 7 that it possesses. Note that in this scenario

every node other than 6 and 7 is connected by a pathway that excludes node 1.

The longest of these pathways is the path from 0 to 3, which has pathlength of at

least 3. This is the pathway that we will be observing for the performance metric.

There may exist a direct means to compute the optimal policy for ignoring packets

in this scenario, but it is not known offhand. Furthermore, if the routing protocol

changes or the topology changes, the policy will need to change as well. By using

policy iteration, an optimization technique, a good though not necessarily optimal

controller can be automatically contructed. This can serve as a lower bound on the

performance of a controller. Since the policy will be automatically determined, it

will be easy to adapt it to multiple scenarios or different routing algorithms.
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The malicious node 1 will require some information on which to base its de-

cision to either ignore or accept a message. It is assumed that the malicious node

can determine for each neighbor (nodes 0 and 2, since nodes 6 and 7 should never

be ignored) its neighbor state for 1 and its timeout value for 1. The neighbor state

is provided in the HELLO advertisements from 1 and the timeout value for 1 can

be roughly inferred by the last time that 1 has sent a HELLO message.

4.2.1 Policy Iteration Formulation

The malicious node will have a decision function

p = π(θ; v)

where θ is a set of observations, v is a set of parameters for the policy and 0 ≤ p ≤ 1

is the decion. The decision here is whether or not to ignore a given packet and y will

be interpreted as the probability of ignoring a packet. Since the particular decision

maker or parameters may depend on the topology or versions of the routing protocol

using different extensions, it is not trivial to determine the specific form of π to use.

This malicious node will act in the context of a simulation with a distribution

f(x; v). The dependency of f on the policy π is implicit and accounts for all of the

dependencies of f on v. x represents a simulation trace. Let S(x) be a score function

that maps simulation traces x to values in R. In the problem stated in Section 4.2,

the score is the connectivity which can easily be evaluated given a simulation trace.

The optimization problem can be stated as the following:

max
v
Ex∼f(x;v)[S(x)]. (4.1)
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The distribution f(x; v) has no closed form description, however samples can be

drawn from this distribution by simulation. Each simulation trace is a sample from

the distribution.

4.2.1.1 Cross-Entropy Optimization

The cross-entropy method of optimization[63] is a heuristic method for opti-

mization that is amenable to being used in cases where the objective function must

be estimated by running simulations. For a tutorial on this method and how it

can be applied to rare-event simulation see [23]. The method is reviewed here as it

applies to determining a policy for the attacker. While the cross-entropy method is

originally defined in terms of rare event simulation, it serves as a useful heuristic for

simulation-based optimization.

Problem (4.1) is complex because the cost function must be estimated for v

by performing simulation. Since the simulation is a nondeterministic process, many

simulations are needed to make a cost evaluation for any choice of v. Many opti-

mization problems can be made simpler by exploiting problem specific structure.

However, since this framework is being proposed as a means to evaluate many dif-

ferent versions of a routing protocol, it is undesirable to impose structure on the

problem since different versions could have very different structures. Nevertheless

the cross-entropy method provides an optimization heuristic that can be applied to

this problem. The following is a derivation of the heuristic.
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Let µ be the initial parameter for the system such that the cost is given by

Ex∼f(x;µ)[S(x)]. (4.2)

Let γ be some threshold value and define the indicator function

I{S(x)≥γ} =


1 S(x) ≥ γ

0 S(x) < γ

. (4.3)

Assume in the following that γ is chosen such that strict inequality holds in the

following

1 >

∫
I{S(x)≥γ}f(x;µ)dx > 0. (4.4)

This means that γ is such that there is a nonzero probability that S(x) ≥ γ and a

nonzero probability that S(x) < γ.

Define a new density function gγ(x;µ) in terms of f(x;µ) that admits only x

values that pass the indicator function:

gγ(x;u) =
I{S(x)≥γ}f(x;µ)∫
I{S(x)≥γ}f(x;µ)dx

. (4.5)

Define also the complementary density function hγ(x;µ) that selects only x values

for which S(x) < γ:

hγ(x;u) =
I{S(x)<γ}f(x;µ)∫
I{S(x)<γ}f(x;µ)dx

.

The following holds because every value that is averaged over is greater than or

equal to γ :

Ex∼gγ(x;µ)[S(x)] ≥ γ. (4.6)

Similarly:

Ex∼hγ(x;µ)[S(x)] < γ. (4.7)
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Thus:

Ex∼gγ(x;µ)[S(x)] > Ex∼hγ(x;µ)[S(x)]. (4.8)

The above expression can be expanded as

∫
S(x)I{S(x)<γ}f(x;µ)dx∫
I{S(x)<γ}f(x;µ)dx

< Ex∼gγ(x;µ)[S(x)]. (4.9)

Moving the term from the right over and multiplying through by the denominator

which is nonzero due to (4.4) there results:

∫
S(x)I{S(x)<γ}f(x;µ)dx− Ex∼gγ(x;µ)[S(x)]

∫
I{S(x)<γ}f(x;µ)dx < 0.

Adding Ex∼gγ(x;u)[S(x)] to both sides:

∫
S(x)I{S(x)<γ}f(x;µ)dx+ Ex∼gγ(x;µ)[S(x)](1−

∫
I{S(x)<γ}f(x;µ)dx)

< Ex∼gγ(x;µ)[S(x)]

Noting that
∫
f(x;µ)dx = 1 and

∫
f(x;µ)dx−

∫
I{S(x)<γ}f(x;µ)dx =

∫
I{S(x)≥γ}f(x;µ)dx

allows the reduction

∫
S(x)I{S(x)<γ}f(x;µ)dx+ Ex∼gγ(x;µ)[S(x)]

∫
I{S(x)≥γ}f(x;µ)dx

< Ex∼gγ(x;µ)[S(x)]

.

Now expanding the Ex∼gγ(x;µ)[S(x)] on the left results in:

∫
S(x)I{S(x)<γ}f(x;µ)dx+

R
S(x)I{S(x)≥γ}f(x;µ)dxR
I{S(x)≥γ}f(x;µ)dx

∫
I{S(x)≥γ}f(x;µ)dx

< Ex∼gγ(x;µ)[S(x)]∫
S(x)I{S(x)<γ}f(x;µ)dx+

∫
S(x)I{S(x)≥γ}f(x;µ)dx < Ex∼gγ(x;µ)[S(x)].
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Applying the fact that

∫
S(x)I{S(x)<γ}f(x;µ)dx+

∫
S(x)I{S(x)≥γ}f(x;µ)dx =

∫
S(x)f(x;µ)dx

to the above results in:

∫
S(x)f(x;µ)dx < Ex∼gγ(x;µ)[S(x)].

Which is an equivalent way to state the key cross-entropy method optimization

heuristic:

Ex∼f(x;µ)[S(x)] < Ex∼gγ(x;µ)[S(x)]. (4.10)

What this expression states is that using the distribution gγ(x;µ) defined in (4.5),

increases the expected score over the nominal distribution f(x;µ).

This can be thought of as providing in some way a stochastic gradient for the

distribution to follow in updating the parameter v in f(x; v). The mechanism for

doing this depends on minimizing the difference between gγ(x;µ) and the updated

distribution f(x; v). To quantify the distance between two distributions, the cross-

entropy or Kullback-Leibler divergence is used as defined below.

D(gγ(x;µ), f(x; v)) = Ex∼gγ(x;µ)[log
gγ(x;µ)

f(x; v)
]

=

∫
log

gγ(x;µ)

f(x; v)
gγ(x;µ)dx

=

∫
gγ(x;µ) log gγ(x;µ)dx−

∫
gγ(x;µ)logf(x; v)dx (4.11)

Minimizing this distance with respect to the parameter v is equivalent to the fol-
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lowing maximization:

max
v

∫
gγ(x;µ)logf(x; v)dx

= max
v

∫
I{S(x)≥γ}f(x;µ)∫
I{S(x)≥γ}f(x;µ)dx

logf(x; v)dx

(4.12)

Since it is only v that is interesting, one may instead ignore the normalization term∫
I{S(x)≥γ}f(x;µ)dx and just solve:

max
v

∫
I{S(x)≥γ}f(x;µ)logf(x; v)dx

= max
v
Ex∼f(x;µ)[I{S(x)≥γ}logf(x; v)]. (4.13)

The above expression can be estimated in sample form. Let each x[n] for n = 1 . . . N

be a sample from the distribution f(x;µ). Then an approximate form for (4.13) is

given by:

max
v

1

N

N∑
n=1

I{S(x[n])≥γ}logf(x[n]; v)

=
1

N
max
v

∑
n∈{n:S(x[n])≥γ}

logf(x[n]; v)

=
1

N
max
v

log
∏

n∈{n:S(x[n])≥γ}

f(x[n]; v)

Since log is monotonically increasing, the same v value will maximize

max
v

∏
n∈{n:S(x[n])≥γ}

f(x[n]; v). (4.14)

This is immediately recognizable as the maximum likelihood estimate for the v pa-

rameters given the elite samples x[n] satisfying S(x[n]) ≥ γ. In summary, the cross-

entropy method states prescribes the following procedure for selecting a parameter

v that increases the score over parameter µ.
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1. Generate a sample x[n] for n = 1 . . . N using distribution f(x;µ) where µ is

the initial parameter.

2. Select a parameter γ such that

∫
I{S(x)≥γ}f(x;µ)dx and

∫
I{S(x)<γ}f(x;µ)dx

are both nonempty.

3. Determine the maximum subset

Y = {y[1], . . . , y[N ′]} ⊂ {x[1], . . . , x[N ]}

satisfying S(y[n]) ≥ γ.

4. Determine the new parameters v using maximum-likelihood estimation for

generating the samples Y .

Note that the selection of γ in steps 2 and 3 above is usually implemented by setting

a percentile threshold for selecting elite samples.

A phenomenon observed in the implementation of this method is that elite

sampling causes instability in the algorithm. The problem is that the elite exemplar

vectors completely determine the result of the algorithm. It is sometimes the case

(see Section 4.3.1) that the population can be decomposed into distinct, overlapping

groups. In these cases, the group with the higher score variance may be selected

preferentially over the group with the higher mean score because they occupy more of

the highest ranking positions. Consider the Gaussian distributions shown in Figure

4.2.1.1. The problem is that the elite samples will come predominantly from the
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Figure 4.2: Elite sampling instability. Elite samples from a distribution that is a com-

posite of these two will be dominated by the distribution with the lower mean but higher

variance.

distribution with the lower mean but higher variance. So as the algorithm converges

towards higher scores, the properties of the elite samples will become more and more

like the distribution with the lower mean. At some point, the scores will fall back

to the distribution with the lower mean. The distribution with the higher mean will

not be a stable equilibrium point.

One way to ameliorate this behavior is to reduce the rigidity of the elite sam-

pling. Any mechanism for choosing samples that satisfies (4.10) can be used. One

possibility is to use a score-weighted sample rather than a purely elite sample. An-

other option is to keep some of the previously selected samples and combining those

samples with high scoring samples in the next training epoch. Numerous other

heuristic schemes adhering to the principle in (4.10) exist[63].

A remarkable property of the cross-entropy method is that it gives mathe-
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matical justification to a very simple algorithm that can be applied in instances

where very little is known about the structure of the cost function. It should

be noted that for many distributions, explicit formulas exist for performing the

maximum-likelihood parameter estimates. That is usually considered a strength of

the cross-entropy optimization method, but it will not be possible here in the attack

generation problem. Instead, the maximum-likelihood parameter estimate will be

treated as a sub-optimization problem.

4.2.1.2 Multi-Layer Perceptrons

In Section 4.2.1.1, the cross-entropy method was reviewed as a technique for

solving the overall optimization problem. However, step 4 of the algorithm does

not state explicitly how the maximum-likelihood parameter estimate should be per-

formed. In this section, a function class for the decision-maker π and a means for

updating π according to the elite samples Y is provided.

As in Section 4.2.1.1, the main problem may be stated as

max
v
Ex∼f(x;v)[S(x)].

This is dependent on v through a decision-maker

p = π(θ; v).

The decision-maker π acts multiple times in each simulation trace x in the following

manner. As the simulation proceeds, the malicious node will be presented with a

series of decision points. At each decision point i, a number of observations θi will
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be presented to the decision-maker and it will choose a probability pi with which

to accept or ignore a particular packet. The decision-maker requires no additional

inputs and is assumed to be parameterized by a vector of parameters v.

One candidate family of functions for the decision-maker π is the multi-layer

perceptron (MLP) shown in Figure 4.2.1.2. Given a two layer MLP, the first layer

having a sigmoid transfer function and the second layer having a linear transfer func-

tion, it has been shown that almost any function can be approximated to arbitrary

accuracy [37] using a sufficient number of units in the first layer. Therefore, the form

of the solution in this problem is chosen to be a two-layer multilayer perceptron.

The parameters for the MLP will be optimized within the training framework

provided by the cross-entropy method described in Section 4.2.1.1. The training

data will consist of a set of simulation runs Y . It is assumed for simplicity that

the decisions are all independent of one another and extract a set of training pairs

(θi, di) for i = 1 . . . N from all of the simulation runs where θi is the input to the

decision-maker and di ∈ {0, 1} is the decision made for that input in that simulation.

N is the total number of decisions made over each of the simulation runs in Y . The

objective of the optimization will be to perform a maximum-likelihood estimate of
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the parameters v that are most likely to produce the set of training pairs (θi, di) for

i = 1 . . . N .

The following argument can be used to show that the optimal parameter se-

lection in this problem may be accomplished by minimizing the sum of the error

squared. Let p be the probability that d = 1 (with 1− p as the probability that

d = 0), for some choice of θ. Then

E[(d− π(θ; v))2]

=E[d2]− 2E[d]π(θ; v) + E[π(θ; v)2].

SubstitutingE[d] = (p)(1) + (1− p)(0) = p and E[d2] = (p)(12) + (1− p)(02) = p then

simplifying yields

p− 2pπ(θ; v) + π(θ; v)2.

The value of π(θ; v) that minimizes the above expression can be found by taking

the derivative with respect to π(θ; v) and setting it to zero.

−2p+ 2π(θ; v) = 0

π(θ; v) = p

What this shows is that it is reasonable to minimize the square error with the {0, 1}

valued decision variables di in

min
v

N∑
i=1

(di − π(θi; v))2 (4.15)

and interpret the resulting values of π(θ; v) as probabilities in Bernoulli trials. What

remains to be shown is how to perform the minimization in (4.15).
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There are well known techniques for finding parameters for MLPs such as the

v parameters in π(θ; v). A good description of the Matlab Neural Networks Toolbox

is given in [33]. The formulas for performing Levenberg-Marquardt optimization

(described in [61]) on multi-layer perceptrons will be reviewed here. A few definitions

will be required, refer also to Figure 4.2.1.2.

N : number of training samples.

L : number of layers in the perceptron.

Dk : the length of vector after stage k for k = 1 . . . L.

(x[n], y[n]) : training samples for n = 1 . . . N . x[n] denotes the input and y[n]

denotes the output. (These correspond with the (θi, di) pairs described previ-

ously.)

The equations that govern the perceptron may be written as follows. Initially define

x0[n] = x[n] (4.16)

where x[n] is the input to the perceptron corresponding to training output y[n]. The

rest of the behavior may be defined recursively for l = 1 . . . L, m = 1 . . . Dl:

xlm[n] = f l([(W l)Txl−1[n] + bl]m)

= f l((W l
∗m)Txl−1[n] + blm). (4.17)

The notation W∗m denotes the mth column of W . The squared error for input pair

(x[n], y[n]) can thus be written

(xL[n]− y[n])T (xL[n]− y[n]).
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The goal is to find W l, bl for l = 1 . . . L that minimizes the sum of the training error

N∑
n=1

(xL[n]− y[n])T (xL[n]− y[n]).

It is convenient to define the above in terms of an aggregated, homogenized param-

eter vector v. Let v be a vector of the parameters, such as

v =
[
W 1

1∗, . . . ,W
1
D0∗, (b

1)T , . . . ,WL
1∗, . . . ,W

L
DL−1∗, (b

L)T
]T
. (4.18)

The particular ordering of the parameters does not matter as long as the mapping

between the parameter and its position in v is accounted for. Then it is possible to

define

F (v) =
N∑
n=1

(xL[n]− y[n])T (xL[n]− y[n]). (4.19)

where the dependency of xL[n] on v is implicit and it is clear that y[n] does not

depend on v at all.

The problem is to minimize F (v) with respect to the parameter vector v. This

is a nonlinear optimization which can be troublesome to solve. One simple approach

towards solving this problem is to use steepest gradient descent. In this method,

the parameters are updated according to

∆v = −α∇vF (v) (4.20)

where α > 0 is the learning rate. The idea is to move the parameters in the direction

that most quickly decreases the error. This approach is called backpropagation of

error (described in [33]).
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The gradient ∇vF (v) can be computed from the definition of F (v).

∇vF (v) = ∇v

N∑
n=1

(xL[n]− y[n])T (xL[n]− y[n])

= ∇v

N∑
n=1

DL∑
m=1

xLm[n]2 − 2xLm[n]ym[n] + ym[n]2

= 2
N∑
n=1

DL∑
m=1

(xLm[n]− ym[n])∇vx
L
m[n] (4.21)

In (4.21) above, the error term (xLm[n]− ym[n]) can be computed given (x[n], y[n])

from (4.16) and (4.17). The other term ∇vx
L
m[n] will require some further deriva-

tion. The expression ∇vx
L
m[n] is actually the per training input sensitivity of the

mth output of the perceptron on parameters v. The terms of v are the weights W l
ij

and bias offsets blj for each layer l = 1 . . . L.

The individual gradient terms ∂
∂vγ
xLm[n] in the case where vγ corresponds with

W l2
ij are given by the recursion below for L ≥ l1 > l2 ≥ 1.

∂xl1 [n]

∂W l2
ij

=
∂xl1 [n]

∂xl1−1[n]

∂xl1−1[n]

∂W l2
ij

. (4.22)

Similarly in the case where vγ corresponds with bl2i ,

∂xl1 [n]

∂bl2i
=

∂xl1 [n]

∂xl1−1[n]

∂xl1−1[n]

∂bl2i
. (4.23)

To complete these recursions, it’s necessary to compute the Jacobians ∂xl1 [n]

∂xl1−1[n]
and

also evaluate the cases where l1 = l2. First, the Jacobian calculation: the following

proceeds from equation (4.17) for l = 1 . . . L.

xlm[n] = f l((W l
∗m)Txl−1[n] + blm)

∂xlm[n]

∂xl−1
i [n]

= ḟ l((W l
∗m)Txl−1[n] + blm)W l

im

∇xl−1[n]x
l
m[n] = ḟ l((W l

∗m)Txl−1[n] + blm)W l
∗m (4.24)
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It’s possible to express the Jacobian in terms of the gradient expression above (4.24).

For l = 1 . . . L:

∂xl[n]

∂xl−1[n]
=


∇xl−1[n]x

l
1[n]

...

∇xl−1[n]x
l
Dl

[n]

 (4.25)

Now that the Jacobian is computed, all that remains to solve equations (4.22)

and (4.23) is to evaluate the case where l1 = l2.

∂xlm[n]

∂W l
ij

=
∂

∂W l
ij

f l((W l
∗m)Txl−1[n] + blm)

=


ḟ l((W l

∗m)Txl−1[n] + blm)xl−1
i [n] if j = m

0 if j 6= m

(4.26)

The expression above can be rewritten in vector form as

∂xl[n]

∂W l
ij

= ḟ l((W l
∗j)

Txl−1[n] + blj)x
l−1
i [n] · ej (4.27)

where ej denotes the jth unit vector.

Similarly, it is necessary complete the evaluation of equation (4.23) under the

condition l1 = l2.

∂xlm[n]

∂bli
=

∂

∂bli
f l((W l

∗m)Txl−1[n] + blm)

=


ḟ l((W l

∗m)Txl−1[n] + blm) if i = m

0 if i 6= m

(4.28)

The above expression can also be written in vector form as

∂xl[n]

∂bli
= ḟ l((W l

∗i)
Txl−1[n] + bli) · ei (4.29)

In summary, to find∇vx
L
m[n], which is required for the gradient∇vF (v) (4.21):
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• Compute all the xl[k] values for l = 1 . . . L using equations (4.16) and (4.17).

• Use equations (4.24) and (4.25) to compute the Jacobian matrices ∂xl[n]
∂xl−1[n]

for

l = 2 . . . L.

• Use equations (4.27) and (4.29) along with the Jacobian matrices from the

last step to solve the recursions (4.22) and (4.23) for the entries of ∇vx
L
m[n].

This completes the description of the backpropagation algorithm. The backpropa-

gation algorithm suffers from slow convergence in areas where the gradient is small.

Also, it is not clear how to choose a learning rate α. The Levenberg-Marquardt [61]

algorithm addresses both of these issues by using an estimate of the second order

derivatives of the error function.

In the Levenberg-Marquardt algorithm, an approximate second order Taylor

series expansion around the current parameter set is constructed. A local extremal

point can then be searched for by setting the derivative equal to zero in this approx-

imation. The second order Taylor series expansion of F (v) is written as

F (v + ∆v) ≈ 1

2
∆vT∇2

vF (v)∆v +∇vF (v)T∆v + F (v). (4.30)

To evaluate the above expression, it is necessary to know both the gradient and

the Hessian of F (v). The gradient ∇vF (v) is the same as the one used in the

backpropagation algorithm (4.21) and can be computed the same way. The Hessian

requires additional evaluation. Note that the individual ith entries of this gradient

vector may be written as

∇vF (v)i = 2
N∑
n=1

DL∑
m=1

(xLm[n]− ym[n])
∂

∂vi
xLm[n] (4.31)
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Evaluating the Hessian ∇2
vF (v) proceeds from the above equation as follows:

∇2
vF (v)ij =

∂

∂vj
∇vF (v)i

=
∂

∂vj

2
N∑
n=1

DL∑
m=1

(xLm[n]− ym[n])
∂

∂vi
xLm[n]


= 2

N∑
n=1

DL∑
m=1

∂

∂vi
xLm[n]

∂

∂vj
xLm[n] + (xLm[n]− ym[n])

∂2

∂vi∂vj
xLm[n] (4.32)

In the last line above, the second order expression

(xLm[n]− ym[n])
∂2

∂vi∂vj
xLm[n]

is approximated as zero because the error terms xLm[n]− ym[n] will tend to cancel

each other out in the sum and the second order derivatives are assumed to be

relatively small. This results in the approximate Hessian

∇2
vF (v)ij ≈ 2

N∑
n=1

DL∑
m=1

∂

∂vi
xLm[n]

∂

∂vj
xLm[n].

It is apparent that this can be rewritten in matrix form as

∇2
vF (v) ≈ 2

N∑
n=1

DL∑
m=1

(∇vx
L
m[n])(∇vx

L
m[n])T . (4.33)

Note that the above expression for the Hessian depends on ∇vx
L
m[n] which is already

computed by the backpropagation algorithm to generate the gradient ∇vF (v). Now

to find the update, optimize the quadratic expression (4.30) by setting its gradient

to zero.

∇∆vF (v + ∆v) ≈ ∇∆v
1

2
∆vT∇2

vF (v)∆v +∇vF (v)T∆v + F (v)

≈ ∇2
vF (v)∆v +∇vF (v) (4.34)
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It is assumed that the second order derivatives are continuous so the Hessian is

symmetric. Setting the gradient expression in (4.34) to 0 results in

∇2
vF (v)∆v +∇vF (v) = 0

∆v = −(∇2
vF (v))−1∇vF (v). (4.35)

The update rule (4.35) is not always going to be optimal because the error surface

is not generally quadratic. Therefore it is possible that the update rule increases

the error. The innovation introduced by Levenberg was to blend this update rule

with the steepest descent algorithm by introducing a damping term µ as follows:

∆v = −(∇2
vF (v) + µI)−1∇vF (v) (4.36)

For large values of µ this rule approaches gradient descent with a small learning

rate, and for small values of µ behaves just like a Newton’s method update. To

apply this in training a network, the following procedure is suggested. A scaling

factor α is selected having a value of about 10.

1. Start initially with a small value of µ.

2. Calculate the update ∆v using the selected µ value and update the parameters

accordingly.

3. If the update increases the error, revert to the previous set of parameters,

multiply µ by α and go back to step 2.

4. If the update decreases the error, keep the new set of parameters.
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5. If error criteria are not yet satisfied, keeping the new set of parameters, divide

µ by α and repeat from step 2.

This concludes the description of the Levenberg-Marquardt algorithm for MLP

training.

There remains an issue of the initialization of the values of the parameters for

the MLP. In this problem, there are two layers, the first layer being sigmoid and

the second layer being linear. There is a geometrical interpretation that will aid in

establishing initial parameters.

From equation (4.17), each neuron m for m = 1 . . . D1 in layer 1 is governed

by the equation

x1
m[n] = f 1((W 1

∗m)Tx0[n] + blm).

Choices of f 1 will be a sigmoidal function, usually something like tanh as shown in

Figure 4.4. Observe that this function is symmetrical, roughly linear close to the

origin and saturates to 1,−1 as values increase in distance from the origin. The
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argument of the transfer function

a1
m(x) = (W 1

∗m)Tx+ blm (4.37)

may be interpreted as a scaled distance of the input argument x to a particular

plane described by

a1
m(x) = 0

W 1
∗m · x+ b1

m = 0. (4.38)

This plane has normal direction (W 1
∗m)T (the mth column of W 1). Since the shortest

distance between a point and a plane is the perpendicular distance, the distance

between this plane and the origin can be computed as the length of |l| =
√
l · l such

that l is parallel to the normal vector and resides in the plane.

(W 1
∗m) · l + b1

m = 0

|W 1
∗m||l| cos(φ) + b1

m = 0

|l| = −b1
m

cos(φ)|W 1
∗m|

A positive value of−b1
m|W 1

∗m|−1 indicates φ = 0 and a negative value indicates φ = π.

The placement of the plane can be on either side of the origin along the normal vector

depending on φ. From this it is possible to define the point in the plane closest to

the origin as

p0
m =

−b1
mW

1
∗m

W 1
∗m ·W 1

∗m
. (4.39)

The distance d1
m(x) of x to plane (4.38) can be computed by taking the distance

along the normal from x to any point in the plane. It is convenient to just use p0
m

131



as define above.

d1
m(x) = (x− p0

m) · W
1
∗m

|W 1
∗m|

= x · W
1
∗m

|W 1
∗m|
− −b1

mW
1
∗m

W 1
∗m ·W 1

∗m
· W

1
∗m

|W 1
∗m|

= x · W
1
∗m

|W 1
∗m|

+
−b1

m

|W 1
∗m|

Comparing equation (4.37) to the expression above, observe that d1
m(x) = a1

m(x)
|W 1
∗m|

or

a1
m(x) = d1

m(x)|W 1
∗m|. (4.40)

This means that by choosing the magnitude of W 1
∗m, it is possible to scale the

distance to the plane.

A number of facts have been established giving a geometric interpretation to

the action of neurons in the input layer. Each neuron in the input layer defines

a plane with normal direction W 1
∗m|W 1

∗m|−1. The distance of this plane from the

origin along the normal is given by −b1
m|W 1

∗m|−1. By selecting a normal direction

and an appropriately scaled offset b1
m it is possible to select any arbitrary plane. As

shown in equation (4.40) the argument received by the transfer function will be the

distance to this plane multiplied by |W 1
∗m|. So in addition to being able to select an

arbitrary plane, it is also possible to choose a scaling factor for the distance from

that plane.

To apply this to initializing the neurons in a two-layer network the following

algorithm is used. First choose a saturation threshold t for the transfer function (a

value beyond which values are considered saturated, for tanh a value of t = 3 might

be appropriate). Choose also a moderate value 0 < r < 1, the ratio of training
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inputs that will not saturate a particular neuron.

1. The mean and variance of each of the input parameters is computed.

2. For each neuron in the first layer, randomly sample from the multi-variate

Gaussian distribution a point with the parameters determined in step 1.

3. For each neuron in the first layer, define a plane passing through the selected

point such that the selected point is closest to the origin.

4. For each neuron in the first layer, compute the distances from each of the

training points to the defined plane. Find the training input that is at rank

rN in distance from the plane. Set the scaling factor for that neuron according

to Equation (4.40) so that the distance of the chosen training input times the

scaling factor is equal to the threshold t.

Following this procedure will ensure that each initialized neuron will not be operating

in a completely saturated fashion with respect to the data and places the separating

planes fairly regularly over the dataset.

In order to initialize the second layer, which is purely linear, it suffices to per-

form a least-squares fitting using the outputs of the first layer and the corresponding

training outputs. Due to linearity, the least-squares fitting can be solved exactly.

Let x1[n] be the outputs from the initialized first layer corresponding to inputs x0[n]

and therefore outputs y[n]. It is clear that the neurons are all independent of each

other, so it is possible to perform the minimization for each neuron independently.

The minimization can be solved by setting the derivatives with respect to the weights
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and the offset equal to zero. Define for m = 1 . . . D2

Fm =
N∑
n=1

((W 2
∗m)Tx1[n] + bm − y[n]m)2

=
N∑
n=1

(
(
D1∑
k=1

W 2
kmx

1[n]k) + bm − y[n]m)

)2

. (4.41)

Then the optimization for neuron m proceeds as follows.

∂Fm
∂Wim

=
∂

∂Wim

N∑
n=1

(
(
D1∑
k=1

W 2
kmx

1[n]k) + bm − y[n]m

)2

= 2
N∑
n=1

(
(
D1∑
k=1

W 2
kmx

1[n]k) + bm − y[n]m

)
x1[n]i (4.42)

Taking the derivative with respect to bm yields:

∂Fm
∂bm

=
∂

∂bm

N∑
n=1

(
(
D1∑
k=1

W 2
kmx

1[n]k) + bm − y[n]m

)2

= 2
N∑
n=1

(
(
D1∑
k=1

W 2
kmx

1[n]k) + bm − y[n]m

)
(4.43)

Setting the derivatives equal to zero from equations (4.42) for i = 1 . . . D1 and (4.43)

results in D1 + 1 equations in the D1 + 1 variables {W 2
1m . . .W

2
D1m, bm}. The solu-

tion to this set of equations gives the optimal least squares values for the weights

and offset of neuron m. Performing this process for m = 1 . . . D2 completes the

initialization for the second layer of the multi-layer perceptron.

It is a good idea to initialize multiple times using different random configu-

rations because the Leverberg-Marquardt and the steepest descent algorithms are

both local optimizers. Having multiple initial points decreases the likelihood of

ending in an especially bad local optimum.
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Figure 4.5: Fraction of time Disconnected vs Training Epoch. In this training scenario,

the malicious node may ignore any packet. The random initial training data for Epoch 0

begins with a mean value of 0.2.

4.3 Initial Experiments

A sequence of experiments was performed using the described scenario and

training for an attacker from the class described above. The first of these scenar-

ios allows for an attacker that can arbitrarily ignore any HELLO or TOPOLOGY

CONTROL message directed at it. The score is given by the amount of time that

the nodes 0 and 3 are disconnected as a fraction of the total running time.
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4.3.1 Experiment 1

Figure 4.3.1 depicts the results of training using the above described algorithm

where any packets may be ignored. The initial training epoch uses a Bernoulli deci-

sion maker with p = 0.5 for every possible decision. Each training epoch represents

20000 1 minute long (in simulation-time) trials using a ten-neuron decision maker.

The training algorithm is unable to discover the optimal law (in the mean sense) for

the scenario, probabaly due to the elite sampling heuristic being used. There are a

number of distinct peaks in the histogram corresponding to two different strategies

employed by the decision-maker (here the attacker).

The first strategy is interference with hello messages. Refer to back to Figure 4.1

for the scenario topology. Node 1 may cause node 2’s MPR selection to oscillate

between itself and node 5. This makes the topology unstable and causes node 0

to be disconnected from node 3. This strategy increases the variance over the core

strategy of ignoring only TC messages.

The second strategy, and the dominant one, is intereference with the TC mes-

sages. In fact, by examining the resulting neural network, we see that the output

is close to zero over the entire input space. The output weight vector for the TC

probability is given by

[2.0, 3.6, 1.5,−0.5, 2.6,−2.2,−1.3,−3.1,−10.0, 4.3]× 10−3

with offset −6.958× 10−5. Since the outputs of stage 1 are bounded between −1

and 1, the output values will be very close to 0. This means that the decision maker

has decided to ignore all TC messages. Examining the topology, we see that if this
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Figure 4.6: Fraction of time Disconnected vs Training Epoch. In this training scenario,

the malicious node may only ignore TC packets and must accept all HELLO messages.

is indeed an effective strategy, causing node 0 to be unable to receive TC messages

from node 5, resulting in disconnection. The network initially starts in a state where

everything is connected so it takes approximately one TC HOLD INTERVAL of time for

the connection to be lost.

Figure 4.3.1 shows what happens when only the ability to ignore TC messages

is enabled. The result is as expected: the decision-maker converges rapidly to

accepting no TC messages whatsoever. In Section 4.3.2, the case where only HELLO

messages may be ignored will be discussed. The performance is actually better in the

mean when the ability to ignore HELLO messages is disabled. A possible explanation

for the reason why this is not the discovered strategy comes from the elite sampling

heuristic. While the performance of the TC only strategy is better in the mean, it

has less variance than strategies that include ignoring HELLO messages. This is due

to the fact that the TC HOLD INTERVAL is longer than the NEIGHBOR HOLD INTERVAL.
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It takes time roughly equal to TC HOLD INTERVAL for ignoring TC messages to cause

a loss of connectivity, whereas it takes only time equal to NEIGHBOR HOLD INTERVAL

to cause a loss of connectivity due to ignoring HELLO messages.

Ignoring HELLO messages causes a temporary disruption in connectivity be-

cause OLSR responds by rerouting traffic through an alternate path. The side effect

is that the effectiveness of ignoring TC messages by the malicious node is nullified.

This reduces the mean scores achievable by ignoring HELLO messages. However, on

occasion, ignoring HELLO messages is beneficial because it is possible to cause dis-

connection through HELLO timeout, quickly reconnect and then ignore TC messages.

This may produce slightly higher scores than ignoring TC messages alone because

it is possible to disconnect the network in the initial TC HOLD INTERVAL. Figure 4.7

shows the average HELLO decision surface. There is a high probability of accepting

a HELLO message when a timeout is about to occur, and a low probability when it is

far from timeout. This posture maximizes the amount of control that the malicious

node may exhibit over the state of its neighbor node by keeping its neighbor nodes

as close as possible to the timeout state.

4.3.2 Experiment 2

In this experiment, the malicious node is allowed only to ignore HELLO messages

of OLSR, but is otherwise the same as Experiment 1. Figure 4.3.2 shows the result of

training. The controller here is assumed to have access to the following information

(which is all locally available at the malicious node).
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Figure 4.7: Probability of ignoring HELLO messages vs timeout values. Values are aver-

aged over response to HELLO messages from nodes 0 and 2, and all possible combinations

of values of NEIGHBOR TYPE.
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Figure 4.8: Fraction of time Disconnected vs Training Epoch. In this scenario, the

malicious node may only ignore HELLO messages.

• The hello timeout value the malicious node keeps on its neighbors.

• The link state that the malicious node assigns to its neighbors.

These pieces of information seem insufficient for attacking the network. The results

can be improved by using the following pieces of information. The effect is shown

in Figure 4.3.2.

• The difference between the current time and the last time a hello message was

sent by the malicious node.

• The recorded value of the neighbor state that the malicious node last time

sent a HELLO message.
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Figure 4.9: Fraction of time Disconnected vs Training Epoch. In this scenario, the

malicious node may only ignore HELLO messages. This scenario differs from the previous

in that different inputs used for the decision maker.

This is an effective attack that can be achieved by only ignoring HELLO messages.

4.3.3 Experiment 3

In this experiment, the same conditions are used as in the second experi-

ment in Section 4.3.2, but a countermeasure described below is put in place. First,

NEIGH HOLD TIME is set to zero. Second, k additional states are introduced to the

OLSR state machine. These states modify the behavior in the following manner.

Before processing any HELLO message, at least k messages in a row must have been

received without any timeouts occurring. This in combination with the first modi-

fication selects strongly against links that are lossy.

Figure 4.3.3 shows the results of training an attacker on a version of the pro-

tocol that contains this countermeasure with a value of k = 2. The attacker is much
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Figure 4.10: Mean Fraction of time Disconnected vs Training Epoch. In this scenario,

the malicious node may only ignore HELLO messages. OLSR has been modified to contain

countermeasures to attackers that mysteriously drop packets.

less effective in this scenario. The instability shown in the training algorithm was

discussed in Section 4.2.1.1.

4.4 Discussion

A technique for using only trace-based information for optimizing an attacker is

presented, demonstrating that it is possible to disrupt connectivity in a bi-connected

network running OLSR using only the ability to selectively ignore certain packets.

In this case, the metric for the attack is defined by the effect that the attack has

on the performance of the protocol over time. A number of attacks are found, and

it is shown that this method is also applicable to checking instances where attack

countermeasures are in place. The fact that this is a trace-based method implies
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that it will be impossible to use this to prove that a protocol is free from possible

attacks.
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Chapter 5

Discussion and Future Work

This dissertation presents a number of different ways to explore the state

space of an ad-hoc routing protocol in the presence of an attacker. The first of these

methods, presented in Chapter 2 is timed formal analysis.

By taking advantage of symbolic variable representation and partial order

reduction, it is possible to explore the behavior of an ad-hoc routing protocol in the

presence of a malicious node. By specifying a set of safety properties, a simple attack

on the network on routing protocol AODV was demonstrated by automating the

search for a violation of this set of properties. However difficulties were encountered

in finding attacks once the models became more realistic or complex.

With the introduction of a fully timed-probabilistic model that is more rep-

resentative of the fine grained behavior of ad-hoc routing protocols, many of the

problems with formal methods become apparent. In particular, state space ex-

plosion is a problem and it is compounded by the difficulty of evaluation of the

probabilities of trajectories through the state space. The evaluation of probabilistic,

partially-ordered trajectories described in Chapter 3 requires the calculation of the

volume of a particular type of polytope. This calculation is in the complexity class

] − P complete. The best known algorithm for its exact computation is Lasserre’s

recursive decomposition. Using the particular geometry of the partial order struc-
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ture, the difference bound matrix, it was shown how the complexity of the algorithm

could be reduced, however not into a class other than ]− P complete. This meant

that it was not possible to apply this method towards the problem of automated

attack discovery in general.

Another shortcoming of formal analysis is that even if a behavior violating

a safety or a liveness condition is discovered, it is not clear that the violation is

an attack. For example, if an attack occurs, the routing algorithm may have a

mechanism for isolating the area affected by the attack or may be able to detect the

attack and respond to it. If the routing algorithm is able to mitigate the effects of

an attack, then it is hard to say formally whether the degradation in performance

constitutes an attack.

Other instances, such as the attack introduced in Section 4.2 are also hard to

distinguish formally from normal behavior because it merely emulates packet loss.

It may be possible to develop a formal specification on the packet loss characteristics

of the links in the network, but this does not appear to be a sound direction.

Instead of specifying attacks by correctness or liveness properties, Chapter 4

uses a performance metric as the criterion for discovering attacks. Since for the

attack discovery problem it suffices to show that an attack exists, simulation of par-

ticular scenarios is adequate for measuring performance. The technique presented

shows that it is possible to use trace based methods to find attacks and evaluate

their effects.

It is possible to view trace-based methods in relation to formal methods. In

formal methods, the goal is an enumeration or accounting of all possible traces of the
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system. In realistically sized systems, this will not be possible. A collection of traces,

being a result of a trace-based search routine is essentially a set of samples from

the formal search space. If the collected traces satisfy a particular property, then

existence of that property within the formal universe of possibilities is established.

In large problems with timing and lengthy, highly branching traces, any computer

will be overwhelmed by an enumeration task and sampling may be the only recourse

available for providing a quick analysis of the problem.

The idea of using a combination of formal methods and trace based methods

could not be applied specifically here to the problem of automated vulnerability

discovery in ad-hoc routing protocols, but such techniques are likely applicable to

problems that are more formally tractable. In Chapter 3, it was demonstrated how

exact, symbolic, timing analysis could be linked with sampling methods to provide

more rapidly converging approximations than sampling methods alone. State space

reduction techniques such as partial order reduction and symbolic representations

may be applied towards reducing the complexity of optimization problems or rare

event simulation involving systems with concurrent states.

Other protocols may be tested as well as other topological configurations with

many other possible sets of parameters. Additionally, testing under dynamically

changing topology and testing under a large range of topologies in larger problem

instances are still unaddressed problems.
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[29] F. Javier Thayer Fábrega, Jonathan C. Herzog, and Joshua D. Guttman.
Strand spaces: Proving security protocols correct. Journal of Computer Se-
curity, 7(2,3):191–230, 1999.

[30] Jeanne Ferrante and Charles W. Rackoff. The Computational Complexity of
Logical Theories. Lecutres Notes in Mathematics. Springer Verlag, 1979.

[31] Li Gong. A security risk of depending on synchronized clocks. Operating Sys-
tems Review, 26(1):49–53, 1992.

[32] J. D. Guttman. Filtering postures: Local enforcement for global policies. In
Proceedings of the 1997 Conference on Security and Privacy, pages 120–129,
Los Alamitos, May 4–7 1997. IEEE Press.

[33] Martin T. Hagan, Howard B. Demuth, and Mark Beale. Neural network design.
PWS Publishing Co., Boston, MA, USA, 1996.

[34] Ahmed Helmy, Deborah Estrin, and Sandeep K. S. Gupta. Fault-oriented test
generation for multicast routing protocol design. In FORTE, pages 93–109,
1998.

[35] Ahmed Helmy, Deborah Estrin, and Sandeep K. S. Gupta. Systematic test-
ing of multicast routing protocols: Analysis of forward and backward search
techniques. In Proceedings of IEEE ICCCN, October 2000.

[36] Gerard J. Holzmann. The model checker spin. IEEE Transactions on Software
Engineering, 23(5):279–295, 1997.

[37] Kurt Hornik, Maxwell B. Stinchcombe, and Halbert White. Multilayer feed-
forward networks are universal approximators. Neural Networks, 2(5):359–366,
1989.

[38] Y. Hu, A. Perrig, and D. Johnson. Ariadne: A secure on-demand routing
protocol for ad hoc networks, 2002.

[39] Yih-Chun Hu, Adrian Perrig, and David B. Johnson. Packet leashes: A defense
against wormhole attacks in wireless ad hoc networks, 2003.

[40] Finn V. Jensen, F.V. V. Jensen, and F. V. Jensen. Introduction to Bayesian
Networks. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1996.

149



[41] R. M. Karp, M. Luby, and N. Madras. Monte-carlo approximation algorithms
for enumeration problems. J. Algorithms, 10(3):429–448, 1989.

[42] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. PRISM: Probabilis-
tic symbolic model checker. In Computer Performance Evaluation / TOOLS,
pages 200–204, 2002.

[43] Marta Z. Kwiatkowska, Gethin Norman, and Jeremy Sproston. Probabilistic
model checking of the ieee 802.11 wireless local area network protocol. In
PAPM-PROBMIV, pages 169–187, 2002.

[44] L. Lamport. The temporal logic of actions. ACM Transactions on Programming
Languages and Systems, 16(3):872–923, May 1994.

[45] L. Lamport. Verification and specification of concurrent programs. Lecture
Notes in Computer Science, 803:347–374, 1994.

[46] Richard Lassaigne and Sylvain Peyronnet. Probabilistic verification and ap-
proximation. In Proceedings of the 12th Workshop on Logic, Language, Infor-
mation and Computation (WoLLIC 2005), pages 101–114, Amsterdam, Nether-
lands, 2006. Elsevier.

[47] Jean B. Lasserre. An analytical expression and an algorithm for the volume of a
convex polyhedron in rn. In Journal of Optimization Theory and Applications,
volume 39, pages 363–377. Springer, 1983.

[48] Zohar Manna and Amir Pnueli. Adequate proof principles for invariance and
liveness properties of concurrent programs. Science of Computer Programming,
4(3):257–290, December 1984.

[49] Sergio Marti, T. J. Giuli, Kevin Lai, and Mary Baker. Mitigating routing
misbehavior in mobile ad hoc networks. In Mobile Computing and Networking,
pages 255–265, 2000.

[50] Catherine Meadows. The NRL protocol analyzer: An overview. Journal of
Logic Programming, 26(2):113–131, 1996.

[51] R. Milner, J. Parrow, and J. Walker. A calculus of mobile processes, I and II.
Information and Computation, 100(1):1–40,41–77, September 1992.

[52] Vishal Mittal and Giovanni Vigna. Sensor-based intrusion detection for intra-
domain distance-vector routing. In Proceedings of the 9th ACM conference on
Computer and communications security, pages 127–137. ACM Press, 2002.

[53] D. Obradovic. Formal Analysis of Routing Protocols. PhD thesis, University of
Pennsylvania, 2001.

150



[54] Panagiotis Papadimitratos and Zygmunt J. Haas. Secure routing for mobile
ad hoc networks. In SCS Communication Networks and Distributed Systems
Modeling and Simulation Conference (CNDS 2002), San Antonio, TX, January
2002.

[55] Vincent D. Park and M. Scott Corson. A highly adaptive distributed routing
algorithm for mobile wireless networks. In INFOCOM (3), pages 1405–1413,
1997.

[56] Joachim Parrow. An introduction to the π-calculus. In Bergstra, Ponse, and
Smolka, editors, Handbook of Process Algebra, pages 479–543. Elsevier, 2001.

[57] C. Perkins. Ad-hoc on-demand distance vector routing, 1997.

[58] Radia Perlman. Network Layer Protocols with Byzantine Robustness. PhD the-
sis, MIT Laboratory for Computer Science, Cambridge, Massachusetts, 1988.

[59] Adrian Perrig, Ran Canetti, J.D. Tygar, and Dawn Song. The tesla broadcast
authentication protocol. RSA CryptoBytes, 2002. vol. 5.

[60] Adrian Perrig and Dawn Song. A first step towards the automatic generation of
security protocols. In Proceedings of the Symposium on Network and Distributed
Systems Security (NDSS ’00), pages 73–83, San Diego, CA, February 2000.
Internet Society.

[61] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flan-
nery. Numerical Recipes in C: The Art of Scientific Computing. Cambridge
University Press, New York, NY, USA, 1992.

[62] Christian P. Robert and George Casella. Monte Carlo Statistical Methods
(Springer Texts in Statistics). Springer, July 2005.

[63] Reuven Y. Rubinstein, Dirk P. Kroese, and Reuven Y. Rubenstein. The Cross
Entropy Method: A Unified Approach To Combinatorial Optimization, Monte-
carlo Simulation (Information Science and Statistics). Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 2004.

[64] Dawn Song, Sergey Berezin, and Adrian Perrig. Athena: A new efficient auto-
matic checker for security protocol analysis. In Proceedings of the 12th IEEE
Computer Security Foundations Workshop (CSFW ’99), pages 192–202, Wash-
ington - Brussels - Tokyo, June 1999. IEEE.

[65] James P. G. Sterbenz, Rajesh Krishnan, Regina Rosales Hain, Alden W. Jack-
son, David Levin, Ram Ramanathan, and John Zao. Survivable mobile wireless
networks: issues, challenges, and research directions. In Proceedings of the ACM
workshop on Wireless security, pages 31–40. ACM Press, 2002.

151



[66] David Thomas and Andrew Hunt. Programming Ruby: the pragmatic program-
mer’s guide. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2000.

[67] Leslie G. Valiant. The complexity of computing the permanent. Theor. Comput.
Sci., 8:189–201, 1979.

[68] Shahan Yang. Modeling strands with predicate logic. Unpublished Work at
University of Maryland.

[69] Shahan Yang and John S. Baras. Modeling vulnerabilities of ad hoc routing
protocols. In SASN ’03: Proceedings of the 1st ACM workshop on Security of
ad hoc and sensor networks, pages 12–20, New York, NY, USA, 2003. ACM.

[70] Shahan Yang and John S. Baras. Causal decomposition of olsr into compo-
nents and applications to performance analysis. Technical report, Institute for
Systems Research and Center for Hybrid Networks, University of Maryland,
January 2007.

[71] Manel Guerrero Zapata and N. Asokan. Securing ad hoc routing protocols.
In Proceedings of the ACM workshop on Wireless security, pages 1–10. ACM
Press, 2002.

[72] Lidong Zhou and Zygmunt J. Haas. Securing ad hoc networks. IEEE Network,
13(6):24–30, 1999.

152


