

ABSTRACT

Title of Thesis: A REAL TIME IMPLEMENTATION OF 3D

SYMMETRIC OBJECT RECONSTRUCTION

 Liangchen Xi, Master of Science, 2017

Thesis Directed By: Professor Yiannis Aloimonos

Department of Computer Science

KinectFusion is a surface reconstruction method to allow a user to rapidly

generate a 3D model of an indoor scene by moving a standard Kinect camera. With a

GPU-based pipeline, the system takes in live depth data from a moving Kinect

camera and can create a high-quality 3D model in real time.

In this thesis, in order to increase the utility of 3D reconstruction for the

symmetric objects, we augment the reconstruction algorithm by adding an occupancy

mapping step on top of the surface reconstruction. This is achieved by combining the

GPU-based KinectFusion with the CPU-based occupancy mapping algorithm

Octomap. The resulting system runs in real time and is used as an input to the

symmetry detection algorithm.

Tested by the Kinect video stream, our results demonstrate an accurate

colored 3D surface reconstruction, which is useful for symmetry detection.

A REAL TIME IMPLEMENTATION OF 3D SYMMETRIC OBJECT

RECONSTRUCTION

by

Liangchen Xi

Thesis submitted to the Faculty of the Graduate School of the

University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of

Master of Science

2017

Advisory Committee:

Professor Yiannis Aloimonos, Chair

Professor Cornelia Fermuller

Professor Gang Qu

© Copyright by

Liangchen Xi

2017

 ii

Acknowledgements

I owe my gratitude to all the people who have made this thesis possible.

First and foremost, I thank Prof. Yiannis Aloimonos for his great scientific

guidance. Next, I would like to thank Prof. Cornelia Fermuller for her continuing and

unfailing support throughout the work on this thesis.

Last but not least, I want to thank Aleksandrs Ecins for supporting my work

on this thesis. His insightful comments and suggestions highly influenced both design

and performance of the presented system.

 iii

Table of Contents

Acknowledgements ... ii

Table of Contents ... iii
List of Tables ... iv
List of Figures ... v
Chapter 1: Introduction ... 1
Chapter 2: Reconstruction model.. 3

2.1 Camera space .. 3
2.2 Image space ... 3

2.3 Global space .. 3
2.4 Depth map ... 4
2.5 Point clouds ... 6
2.6 Volumetric TSDF.. 6

Chapter 3: KinectFusion ... 7
3.1 Bilateral filtering ... 7

3.2 Depth conversion .. 8
3.3 Camera tracking .. 9

3.3.1 Overview .. 9

3.3.2 Implementation .. 12

3.4 Volumetric Integration .. 12
3.4.1 Overview .. 12
3.4.2 Implementation .. 12

3.5 Color rendering ... 14
3.6 Ray casting .. 15

3.6.1 Overview .. 15
3.6.2 Implementation .. 16

Chapter 4: Octomap .. 17

Chapter 5: System design.. 19
5.1 Image correction ... 19
5.2 Multithreading... 19

Chapter 6: Surface extraction... 21
6.1 Marching cubes ... 21
6.2 Point cloud down sampling ... 22

Chapter 7: Experiments and results ... 23
7.1 Initilization .. 23
7.2 Surface reconstruction .. 24
7.3 Octomap .. 25
7.4 Down sampling ... 25

Conclusion .. 26

Appendices .. 27

Bibliography ... 28

 iv

List of Tables

1. Camera pose estimation .. 11

2. TSDF integration without color .. 13

3. TSDF integration with color ... 14

4. Ray casting .. 16

5. Octomap .. 18

6. Marching cubes ... 21

7. Down sampling a point cloud ... 22

 v

List of Figures

1.1 GPU pipeline of KinectFusion .. 2

2.1 Camera space/Image space/Global space ... 3

2.2 Depth map ... 5

2.3 Raw data from Kinect ... 5

3.1 Depth pyramid/camera tracking system .. 10

3.2 Ray casting .. 16

4.1 Octree/Point cloud/Octomap ... 17

4.2 System for real-time surface reconstruction ... 19

6.1 Volume and camera initilization ... 23

6.2 Surface reconstruction from video A .. 24

6.3 Surface reconstruction from video B .. 24

6.4 Surface reconstruction from video C .. 25

6.5 Octomap from video C.. 25

6.6 Point cloud down sampling ... 25

 1

Chapter 1: Introduction

Algorithms used for 3D surface reconstruction based on consecutive depth

maps were well studied. With a core GPU pipeline of four stages described by figure

1.1, KinectFusion was the first system to achieve real-time 3D reconstruction with a

low-cost handheld Kinect camera scanning. However, neither of those existing

systems could provide both the real-time 3D surface reconstruction and occupancy

mapping, which are necessary for symmetric detection algorithm introduced by [1].

In this work, in order to increase the utility of real time 3D surface

reconstruction for the symmetric objects, we combine the GPU-based pipeline of

KinectFusion with the CPU-based occupancy mapping algorithm Octomap.

Firstly we implement and test the real-time GPU-based KinectFusion system.

Compared to [2], on the one hand, we use two strategies to ensure the accuracy of

camera tracking: (i) Apply the bilateral filtering module to remove the noise on the

raw depth data. (ii) A power-of-two depth pyramid is constructed to increase the

efficiency and range of convergence. On the other hand, for steady TSDF integration,

the KinectFusion integration equation is modified both for coloring and non-coloring

vertices.

Secondly, we augment the surface reconstruction algorithm by adding an

occupancy-mapping step Octomap on top of the surface reconstruction KinectFusion.

The resulting system runs in real time and is useful for symmetric detection.

Finally our implementation adds more capabilities to extract the

reconstruction surface, for example, (i) visualize the fusion process frame by frame in

 2

the interactive mode, (ii) visualize and export the point clouds, surface normal,

meshes, and (iii) down-sample the point clouds result by GPU.

The remainder of this work is structured as follows: After introducing the

basic mathematical background for KinectFusion in chapter 2, our GPU-based

KinectFusion implementation is described in details in chapter 3. In chapter 4, we

introduce the Octomap and then in chapter 5, we add this occupancy mapping step on

top of surface reconstruction by multithreading. In chapter 6, we provide two GPU-

based methods to do surface extraction: marching cubes and point cloud down

sampling. We finish with demonstrating our experiment results in chapter 7 and a

conclusion.

Figure 1.1: GPU pipeline of KinectFusion, image from [2]

 3

Chapter 2: Reconstruction model

This chapter gives a short overview about the scene’s geometry described by

figure 2.1. Then we introduce the Kinect camera and volumetric TSDF model used in

this work. The advantages and disadvantages of our surface reconstruction model are

discussed.

Figure 2.1: Camera Space / Image Space / Global Space, images from [3]

2.1 Camera Pose

The camera space is a 3D camera coordinate system. The Kinect camera is

placed at the origin (0, 0, 0) in this system and looking down the Z axe. The position

of camera is also pre-defined and can be adjusted. The mapping of camera space to

global space is a 6 DOF problem (3 for rotation and 3 for translation), which can be

described in matrix form T as following:

𝑇 = [
𝑅 𝑡
0 1

] = [

𝑟0,0 𝑟0,1 𝑟0,2

𝑟1,0 𝑟1,1 𝑟1,2

𝑟2,0 𝑟2,1 𝑟2,2

𝑡𝑥

𝑡𝑦

𝑡𝑧

0 0 0 1

] (2.1)

Given the camera pose T, a vertex 𝑣𝑔 in the global space can be projected into

the camera space vertex 𝑣, by 𝑣 = 𝑇 ∗ 𝑣𝑔.

 4

2.2 Image space

The image space is a 2D image coordinate system. The image consists of

pixels and is pertained by the camera’s view frustum. Each pixel can be projected to

the camera space by projection matrix 𝑲, which is defined as following:

𝐾 = [
−𝑓𝑥 0 𝑐𝑥

0
0

−𝑓𝑦

0

𝑐𝑦

1

] (2.2)

(𝑐𝑥, 𝑐𝑦) is the center of image and (𝑓𝑥, 𝑓𝑦) is the focal length. These 4

parameters can be obtained when calibrating the Kinect camera. So the equation for

projecting an image space pixel 𝑢 = (𝑥, 𝑦) to camera space vertex 𝑣 is:

v(𝐮) = 𝐷(𝒖)𝐾−1(𝒖, 1) (2.3)

2.3 Global space

The global space is a 3D world coordinate system. All of the reconstruction

will be implemented within a volume, of which the size and volume number is pre-

defined and can be adjusted. The center of volume is placed at (0, 0, 0) and the

coordinates are measured in millimeters.

2.4 Depth map

From 2D pixel coordinates alone, it is impossible to reconstruct a unique 3D

model, because all points on a line through the origin will be projected to the same

pixel [4]. To get a unique solution, a third parameter, the depth, is necessary.

 5

Figure 2.2: The depth d of pixel x is the distance of the point X to the camera plane

CY, and it is normal to the viewing direction CZ. Varying d changes the position of X

along the line CX, but its projected pixel x remains the same, image from [4].

The Microsoft Kinect RGB-D sensor, like other RGB-D sensors, provides

color information as well as the estimated depth for each pixel. The Kinect Camera

has 30 fps, and the resolution for the depth map and RGB image is both 640 by 480.

With a single Kinect camera, we can reconstruct a unique 3D surface for the objects

by the depth and RGB images from the Kinect video stream.

Figure 2.3: Raw data from Kinect. Depth map (Noisy) / RGB image

 6

2.5 Point clouds

A point cloud is a loose collection of 3D points representing object surfaces in

the scene [4]. A Point cloud can be colorless or annotated with color. Our

KinectFusion implementation reconstructs the object surface by point clouds both

with color and without color.

2.6 Volumetric TSDF

The point cloud model is enclosed within a 3D volume, where each voxel

contains a truncated signed distance (TSDF) function value to represent the voxel’s

distance [4]. Then we can find the object surface by finding the TSDF’s zero crossing

(TSDF sign changes), which needs to be interpolated from the voxel grids. More

details will be discussed in Chapter 3.7.

The key advantage to use a volumetric TSDF is that multiple camera views

can be combined and extended each other, thus smoothing out the depth noise and

filling holes on the depth map [4]. Also for symmetry detection, multiple views of a

same object is necessary to ensure the symmetry property.

However, the main disadvantage is that this reconstruction model must be

within a fixed size volume, so computational resources need to be assigned for each

voxel inside the volume [5]. The zero crossing might only occupy a small part of the

volume, but memory has to be allocated for processing each voxel, which is not

memory efficient [6].

 7

Chapter 3: KinectFusion

In this chapter, the GPU-based KinecFusion algorithm is discussed and

implemented for real time 3D surface reconstruction.

3.1 Bilateral filtering

The raw depth map received from the camera is noisy and there may be black

holes indicating no depth data available, thus filtering is necessary to smooth the raw

depth signals [7]. Bilateral filtering is a good method to smooth the depth image and

remove the noise, while still preserving the edges. The update formula is as follows:

 𝑔(𝑥, 𝑦) =
𝐷(𝑥, 𝑦)𝑤(𝑥, 𝑦, 𝑖, 𝑗)

∑ 𝑤(𝑥, 𝑦, 𝑖, 𝑗)𝑖,𝑗
 (3.1)

In equation 3.1, D(x, y) is the depth value and g(x, y) is the pixel value. The

pair (x, y) indicates the pixel position, while (i, j) indicates the filter radius, which is

also known as the kernel size. The weighting w(x, y, i, j) is the product of spatial

Gaussian 𝐺𝜎𝑑
 and range Gaussian 𝐺𝜎𝑟

, as following:

w(𝑥, 𝑦, 𝑖, 𝑗) = exp (−
(𝑥 − 𝑖)2 + (𝑦 − 𝑗)2

2𝜎𝑑
2

−
‖𝐷(𝑥, 𝑦) − 𝐷(𝑖, 𝑗)‖2

2𝜎𝑟
2

) (3.2)

With the predefined parameters as discussed above, each GPU thread operates

in parallel on the pixel 𝒖 = (𝑥, 𝑦) on the depth map 𝐷(𝒖) of current frame, and the

depth value for each pixel is then filtered with the weight function inside the kernel

window.

 8

3.2 Depth conversion

Given the intrinsic calibration matrix K of the depth camera, the re-projected

3D vertex in the camera space is defined as following:

v(𝐮) = 𝐷(𝒖)𝐾−1(𝒖, 1), 𝒖 = (𝑥, 𝑦) (3.3)

In other words, for a point 𝒖 in the depth map, the corresponding 3D vertex 𝒗

can be calculated by the following equation, where D represents the depth map.

{

𝑣. 𝑥 = (𝑢. 𝑥 − 𝑐. 𝑥) ∗ 𝐷(𝒖) 𝑓. 𝑥⁄

𝑣. 𝑦 = (𝑢. 𝑦 − 𝑐. 𝑦) ∗ 𝐷(𝒖) 𝑓. 𝑦⁄

𝑣. 𝑧 = 𝐷(𝒖)
 (3.4)

By using the neighbors of the re-projected vertices, we can calculate the

normal vectors by the following equation, after which the value is normalized.

𝑛𝑔,𝑖(𝑥, 𝑦) = (𝑣𝑔,𝑖(𝑥 + 1, 𝑦) − 𝑣𝑔,𝑖(𝑥, 𝑦)) × (𝑣𝑔,𝑖(𝑥, 𝑦 + 1) − 𝑣𝑔,𝑖(𝑥, 𝑦)) (3.5)

 By equation 3.4 and 3.5, we can convert the depth map into the distance map,

then the normal map.

Moreover, in order to increase the efficiency and convergence for the ICP

process, we use a coarse-fine depth pyramid over a power of two. The lowest level is

the original depth map after bilateral filtering, and each level is half of the previous

level by down sampling, then each pixel value is averaged in a pre-defined window.

As indicated by [8], this optimization is more stable than 6DOF estimation when the

number of pixels considered is low, helping to converge for large pixel motions, even

when the true rotation is not strictly rotational. With the depth pyramid, we also build

a normal pyramid corresponding to depth map in each pyramid level.

 9

3.3 Camera tracking

3.3.1 Overview

The ICP (Iterative Closest Point) algorithm is widely used for geometric shape

alignment of 3D models. Given the camera pose in the global space, the stream of

depth maps can be correctly fused into a single 3D model [2]. In the global space, the

camera pose consists of 6 unknown parameters, 3 for translation and 3 for rotation. In

this stage, we estimate the camera pose for each frame in the global space by

estimating a single rigid 6DOF transformation between two consecutive frames.

The input of ICP is the consecutive points and normal in two consecutive

frames, and the output is the 6DOF transformation matrix T, which describes the

translation and rotation of the camera in the global space.

We set the first frame correspond to the global coordinates. Every frame will

be aligned to the previous one, thus eventually all the frames can be aligned to the

first frame [2]. The ICP method for camera tracking can be described as an

optimization problem, and further a linear optimization problem as follows. Assume:

 Previous Frame: Source point 𝑠𝑖 = (𝑠𝑖𝑥, 𝑠𝑖𝑦, 𝑠𝑖𝑧)

 Current frame: point correspondence for 𝑠𝑖: 𝑑𝑖 = (𝑑𝑖𝑥, 𝑑𝑖𝑦, 𝑑𝑖𝑧)

 Surface Normal at point 𝑑𝑖: 𝑛𝑖 = (𝑛𝑖𝑥, 𝑛𝑖𝑦, 𝑛𝑖𝑧)

Given the point correspondence, the goal of ICP is to find matrix T that

minimize the squared distances between source point and tangent plane at the

corresponding destination point [2], and T is the global camera pose estimation.

∑ ((𝑇 ∗ 𝑠𝑖 − 𝑑𝑖) ∗ 𝑛𝑖)2
𝐷𝑖(𝑢)>0 `

 10

Based on the assumption of slight movement between consecutive frames, the

target function can be transformed into linear least square problem by approximation,

and then solved as a 6-by-n linear system using SVD algorithm as mentioned in [9]

and [10].

3.3.2 Implementation

With the distance and normal pyramid described in chapter 3.2, then ICP is

done iteratively at different pyramid levels from the coarsest level to the full to

incrementally update the transformation matrix T, by minimizing the sum squared

errors during iteration in each pyramid level. At each ICP iteration, the first step of

the ICP algorithm is to find the point correspondence, then the error is minimized to

get the increment change of camera pose matrix T by SVD decomposition. The point

correspondence can be found by pixel parallel on GPU with the ray casting result as

previous reference frame, while the SVD decomposition by OpenCV library on CPU,

as described in Algorithm 1.

Figure 3.1: Depth pyramid / Camera tracking system

 11

Algorithm 1 Algorithm for Camera Pose estimation

GPU – Find the point correspondence

for each depth map, pixel u 𝜖 depth map 𝐷𝑖 in parallel do

if 𝐷𝑖(𝐮) > 0 𝐭𝐡𝐞𝐧

 𝑣𝑖−1 = 𝑇𝑖−1
−1 𝑣𝑖−1

𝑔

 𝑝 ← 𝑝𝑒𝑟𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒 𝑝𝑟𝑜𝑗𝑒𝑐𝑡 𝑣𝑒𝑟𝑡𝑒𝑥 𝑣𝑖−1

 if 𝑝 ∈ 𝑣𝑒𝑟𝑡𝑒𝑥 𝑚𝑎𝑝 𝑉𝑖 𝒕𝒉𝒆𝒏

 𝑣 = 𝑇𝑖𝑉𝑖(𝑝)

 𝑛 = 𝑅𝑖𝑁𝑖(𝑝)

 if ‖𝑣 − 𝑣𝑖−1
𝑔

‖ < 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡ℎ𝑟𝑒ℎ𝑜𝑙𝑑 𝑎𝑛𝑑

𝑎𝑏𝑠(𝑛 𝑛𝑖−1
𝑔

) < normal threshold then

 point correspondence found

 end if

 end if

end

CPU – SVD decomposition to update T (OpenCV)

for the depth map in each pyramid

 find the points and correspondence in previous frame

 while not reaching ICP iteration times

Apply SVD algorithm to update the T matrix

end

Output T

 12

3.4 Volumetric Integration

3.4.1 Overview

At this stage, truncated distance function (TSDF) is used to fuse the new depth

map with the existing volumetric model in the global space.

A 3D volume of a predefined resolution is used to represent the space we are

measuring. This volume is uniformly subdivided into a 3D grid of voxels, to which

those global 3D vertices will be integrated using a TSDF value. The value inside each

voxel is the distance to closest surface and the distance is signed and truncated. The

TSDF values are positive in front of the surface and negative behind the surface, with

the zero crossing specifying the surface of the model. To determine the surface of the

object, tri-linear interpolation is needed to find the zero crossings between each voxel.

The SDF can be calculated as follows, and then truncated:

 𝑆𝐷𝐹 = ∥ 𝑠 − 𝑐 ∥ − ∥ 𝑣 − 𝑐 ∥ (6.1)

 Where s is the surface vertex, v is the voxel vertex and c is the camera

position.

3.4.2 Implementation

To achieve real-time rates, we basically implement the pseudo code in [2].

Due to the large number of voxels, we only assign threads to each (x, y) voxel on the

x,y slice of the volume, then iterate all of the z values. Each voxel is firstly mapped

to the vertex in the global space, then projected into the camera space using the

camera pose estimation by ICP, and finally projected to the image space to determine

the SDF value by looking up the distance map.

 13

For CUDA optimization, we make the distance map built in chapter 3.2 as

texture memory for quick look-up. During integration process, KinectFusion gives the

following TSDF update for each voxel:

𝑇𝑆𝐷𝐹𝑎𝑣𝑔 =
𝑇𝑆𝐷𝐹𝑖−1 ∗ 𝑤𝑖−1 + 𝑇𝑆𝐷𝐹𝑖 ∗ 𝑤𝑖

𝑤𝑖−1 + 𝑤𝑖
 (6.2)

However, our results were less steady using Equation 6.1. Replacing the

equation with 6.2 below solved this, as more weight is given to the existing value.

𝑇𝑆𝐷𝐹𝑎𝑣𝑔 =
𝑇𝑆𝐷𝐹𝑖−1 ∗ 𝑤𝑖−1 + 𝑇𝑆𝐷𝐹𝑖

𝑤𝑖−1 + 1
 (6.3)

Algorithm2 illustrates the main steps of our implementation with the (6.2) equation.

Algorithm 2 TSDF integration without color

for each voxel g in x,y volume slice in parallel do

while sweeping from front slice to back do
 𝐯𝐠 ← 𝑐𝑜𝑛𝑣𝑒𝑟𝑡 𝑔 𝑓𝑟𝑜𝑚 𝑔𝑟𝑖𝑑 𝑡𝑜 𝑔𝑙𝑜𝑏𝑎𝑙 3𝐷

 v ← 𝑇𝑖
−1 𝑣𝑔

 𝐩 ← 𝑝𝑒𝑟𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒 𝑝𝑟𝑜𝑗𝑒𝑐𝑡 𝑣𝑒𝑟𝑡𝑒𝑥 𝐯

 if 𝐯 in camera view frustum 𝒕𝒉𝒆𝒏

 𝐬𝐝𝐟𝒊 ← 𝐃i(𝐩) − ‖𝐯‖

 if (𝐬𝐝𝐟𝒊 > − max _truncation) 𝒕𝒉𝒆𝒏

 t𝐬𝐝𝐟𝒊 ← min (1, 𝐬𝐝𝐟𝒊 max _truncation⁄)

 𝐭𝐬𝐝𝐟𝒊−𝟏, 𝒘𝒊−𝟏 ← 𝑓𝑒𝑡𝑐ℎ 𝑇𝑆𝐷𝐹 𝑎𝑛𝑑 𝑤𝑒𝑖𝑔ℎ𝑡 𝑎𝑡 𝑣𝑜𝑥𝑒𝑙 𝑔

 𝐰𝑖 ← min (max 𝑤𝑒𝑖𝑔ℎ𝑡, 𝐰𝑖−1 + 1)

 𝐭𝐬𝐝𝐟𝑎𝑣𝑔 ← (𝐭𝐬𝐝𝐟𝒊−𝟏𝒘𝒊−𝟏 + 𝐭𝐬𝐝𝐟𝒊) 𝐰𝑖⁄

 store 𝐰𝑖 𝑎𝑛𝑑 𝐭𝐬𝐝𝐟avg at voxel g

 end if

 end if

end

end

 14

3.5 Color rendering

At this stage, we want to find the corresponding color for each vertex by

camera calibration.

When calibrating the Kinect camera, the calibration matrix between the depth

and RGB camera is also obtained, with which we can know how to project the pixel

color from the RGB image space to Depth camera space, then to the volume in the

global space. Thus the pose of RGB camera can be estimated from the depth sensor.

The only change from non-coloring TSDF integration is that the camera pose

T is now the RGB camera instead of the depth sensor, and TSDF values needs to be

updated for R,G,B channels. The algorithm is described in Algorithm 3 as follows.

Algorithm 3 TSDF integration with color

for each voxel g in x,y volume slice in parallel do

while sweeping from front slice to back do

 𝐯𝐠 ← 𝑐𝑜𝑛𝑣𝑒𝑟𝑡 𝑔 𝑓𝑟𝑜𝑚 𝑔𝑟𝑖𝑑 𝑡𝑜 𝑔𝑙𝑜𝑏𝑎𝑙 3𝐷

 v ← 𝑇𝑖
−1 𝑣𝑔

 𝐩 ← 𝑝𝑒𝑟𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒 𝑝𝑟𝑜𝑗𝑒𝑐𝑡 𝑣𝑒𝑟𝑡𝑒𝑥 𝐯

 if 𝐯 in camera view frustum 𝒕𝒉𝒆𝒏

 𝐬𝐝𝐟𝒊 ← 𝐃i(𝐩) − ‖𝐯‖

 if (𝐬𝐝𝐟𝒊 > − max _truncation) 𝒕𝒉𝒆𝒏

 𝐯 ← 𝑟𝑔𝑏 𝑇𝑆𝐷𝐹 𝑣𝑜𝑙𝑢𝑚𝑒 𝑎𝑡 𝑣𝑜𝑥𝑒𝑙 𝒈

 𝐰𝑖−1 ← 𝑤𝑒𝑖𝑔ℎ𝑡 𝑎𝑡 𝑣𝑜𝑥𝑒𝑙 𝒈

 𝐰𝑖 ← min (max 𝑤𝑒𝑖𝑔ℎ𝑡, 𝐰𝑖−1 + 1)

 𝐯. 𝐫 ← (𝐯. 𝐫 ∗ 𝒘𝒊−𝟏 + 𝐯. 𝐫) 𝐰𝑖⁄ ← 𝑟𝑒𝑑
 𝐯. 𝐠 ← (𝐯. 𝐠 ∗ 𝒘𝒊−𝟏 + 𝐯. 𝐠) 𝐰𝑖⁄ ← 𝑔𝑟𝑒𝑒𝑛

 𝐯. 𝐛 ← (𝐯. 𝐛 ∗ 𝒘𝒊−𝟏 + 𝐯. 𝐛) 𝐰𝑖⁄ ← 𝑏𝑙𝑢𝑒
 store 𝐰𝑖 𝑎𝑛𝑑 𝒗 at voxel g

 end if

 end if

end

end

 15

3.6 Ray casting

3.6.1 Overview

At this stage, a GPU-based ray casting is implemented to render the surface of

current view. Also the result is used as a reference frame for next ICP iteration.

Given the position of the camera to cast ray to the volume of TSDF volume,

the GPU threads march along the ray with a pre-defined ray casting step size. At each

step, the global position of the ray will be re-projected to a voxel within the volume

and the zero crossing of TSDF values will be checked to look for the surface. As

discussed in the chapter 3.4, TSDF values are positive in front of the surface but

negative behind. So, if a negative TSDF value is found earlier than a positive TSDF,

then the implicit surface must have been neglected and such zero crossing is not the

true surface. So we must look for the sign change of TSDF values from positive to

negative.

Let 𝑉𝑜𝑥(𝑥, 𝑦, 𝑧) be the voxel that contains the TSDF zero-crossing, we can

use the following equations to determine the surface normal:

𝑛𝑥 = 𝑇𝑠𝑑𝑓(𝑉𝑜𝑥(𝑥 + 1, 𝑦, 𝑧)) − 𝑇𝑠𝑑𝑓(𝑉𝑜𝑥(𝑥 − 1, 𝑦, 𝑧))

𝑛𝑦 = 𝑇𝑠𝑑𝑓(𝑉𝑜𝑥(𝑥, 𝑦 + 1, 𝑧)) − 𝑇𝑠𝑑𝑓(𝑉𝑜𝑥(𝑥, 𝑦 − 1, 𝑧))

𝑛𝑧 = 𝑇𝑠𝑑𝑓(𝑉𝑜𝑥(𝑥, 𝑦, 𝑧 + 1)) − 𝑇𝑠𝑑𝑓(𝑉𝑜𝑥(𝑥, 𝑦, 𝑧 − 1))

The vector is then normalized.

 With the vertex and its normal vector, a lighting equation is calculated for

each pixel by GPU thread in the output image, in order to render the current view of

the model [7].

 16

3.6.2 Implementation

As our TSDF volume is truncated by a pre-defined distance, we can set a ray-

casting step-size to accelerate the speed [7]. Once the sign change of TSDF values

from positive to negative is detected, a trilinear interpolation is implemented

between the two voxels to accelerate the speed to predict the surface position. The

algorithm and result is described as follows.

Algorithm 4 Ray casting

Given the camera pose estimation T,

for each voxel g in x, y volume slice in parallel do

 𝐫𝐚𝐲𝐨𝐫𝐠 ← ray casting origin

 𝐫𝐚𝐲𝐝𝐢𝐫 ← ray casting direction

 𝐫𝐚𝐧𝐠𝐞 ← 𝑐ompute intersection of the ray with volume′s six planes

 𝐭𝐬𝐝𝐟𝐜𝐮𝐫 ← fetch the current tsdf value along the ray
 while cur is within the range

 𝐭𝐬𝐝𝐟𝐧𝐞𝐱𝐭 ← fetch the next tsdf value along the ray

 if 𝐭𝐬𝐝𝐟𝐜𝐮𝐫 > 𝟎 and 𝐭𝐬𝐝𝐟𝐧𝐞𝐱𝐭 < 𝟎 𝒕𝒉𝒆𝒏

 vertex ← global intersection by trilinear interpolation

 normal ← calculate the normal at vertex

 update the normal and depth maps for current rendering

 end if

 cur ← next

 next ← increment by the raycaster step size

 end

end

Figure 3.2: Ray casting: Reconstructed surface / Surface with normal

 17

Chapter 4. Occupancy mapping

 Octree Point Cloud Octomap

Figure 4.1: Octree/Point Cloud/Octomap. Images from [11].

Octomap is an efficient probalistic 3D Mapping Framework Based on the

Octree. It is a volumetric representation of occupied, free and unknown space based

on the tree structure Octree [11]. Octree is used to recursively subdivide the cube into

small cells. Compared to the fixed grid or volume, the main advantage of tree

structure is memory efficient, as the empty regions do not use memory, and it is not

limited to a fixed scene size because the Octree can dynamically expand the depth.

 The main reason to implement the Octomap is for the symmetry detection

indicated by [1], we need the occupancy mapping to determine a true symmetry or

not. So for the symmetry detection, Octomap needs to be implemented in real time on

top of the surface reconstruciton.

To generate the Octomap, we need the inputs as the depth map and its

corresponding camera pose to insert into the Octree. With the current open-source

Octomap library, the tree insertion on CPU is slow and cannot be implemented in real

time. One insertion of a resolution of 0.005m would cost one second, which is larger

than the 30 Fps of the Kinect camera.

 18

One way to speed up the Octomap is to decrease the resolution, which

however, cannot guarantee a good symmetry detection, because resolution larger than

0.01m is not good for symmetry detection. Another way to solve this is to down-

sample the depth frames and depth map. In other words, we only process down-

sampled depth frames, and we also spatially down sample those depth maps. The

main steps are illustrated as follows.

Algorithm 5 Octomap

Initialize the Counter and Octree by pre-defined resolution

for each depth frame in the video stream

 𝐢𝐟 Counter is equal to frame down-sampling rate 𝒕𝒉𝒆𝒏

 𝐃𝐞𝐩𝐭𝐡 𝐌𝐚𝐩 ← downsample the depth map

 𝐓 ← estimated camera pose by the depth map
 Insert Depth Map and T into the Octree

 Reset the Counter

End

Counter++

end

Output Octree

 19

Chapter 5: System design

In this chapter, CPU-based Octomap is implemented on top of GPU-based

KinectFusion by multithreading with image correction thread. The resulting system

runs in real time.

5.1 Image correction

Another challenge for real-time implementation is to correct the depth and

RGB images for lens distortion. As the distortion correction is well studied [12], it is

easy to initialize the distortion rectify map both for the depth and RGB image with

the OpenCV library. However, this image correction process takes about 0.04s by

OpenCV on CPU, which is slower than the 30 Fps of the Kinect camera.

5.2 Multithreading

In our work, in order to solve the slow process of image correction, we

combine the GPU-based pipeline of KinectFusion with the CPU-based Octomap and

image correction by multithreading. The system involves 3 threads, one main thread

for image input and correction, another thread for KinectFusion, and the other thread

for Octomap.

The main thread inputs and corrects both of the depth and RGB images, and

then corrected images are saved in a queue structure. Once the image queue is not

empty, KinectFusion keeps fusing the front image of the queue until the queue is

empty. Octomap thread detects for both the depth image and its corresponding

 20

camera pose, and uses a counter to down-sample the depth frames. Octomap thread

keeps inserting into the Octree on CPU until the depth-camera queue is empty.

The resulting system described by Figure 4.1 runs in real time and can be used

as a useful input to the symmetry detection algorithm introduced by [1].

Thread 1: GPU-based pipelines of KinectFusion

Thread 2: Input depth and RGB images and correction

Thread 3: Occupancy mapping algorithm, Octomap

Figure 4.2: System for real-time 3D surface reconstruction

 21

Chapter 6: Surface Extraction

In this chapter, we provide two GPU-based methods to extract the 3D surface

reconstruction of point clouds.

6.1 Marching cubes

While in theory every point needs to be rendered, this is not possible in

practice. However, the Marching cubes algorithm creates a triangle representation on

the surface of a 3D point cloud, thus can make a good approximation to the surface of

the point cloud model by triangular mesh [12].

Based on the open source GPU-based Marching cubes implementation by

[13], for each 3D vertex generated by the KinectFusion, we need to find those

vertices where the surface intersects the voxel. Then we will generate the triangles to

represent the surface of the reconstruction object.

For CUDA optimization, the tables for enumerating the Marching Cubes

situations can be bind with texture memory for quick look-up. The pseudo code

below describes our GPU-based Marching cubes algorithm.

Algorithm 6 Marching cubes

edgeTable ←8-bit flag representing which cube vertices are inside

triangleTable ← map same cube vertex index to a list of 5 triangles

numVertsTable ← number of vertices for the triangleTable

for each point 𝐯 parallel do

 p ← 𝑝𝑒𝑟𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒 𝑝𝑟𝑜𝑗𝑒𝑐𝑡 𝑣𝑒𝑟𝑡𝑒𝑥 𝐯

p[𝟖] ← calculate cell vertex positions
 find the vertices where the surface intersects the voxel by interpolation

 output triangle vertices

end

 22

6.2 Point cloud down sampling

The KinectFusion reconstructs a point cloud to represent the object surfaces in

the scene. However, the number of vertex generated by KinectFusion can be up to

millions, which significantly slows down the symmetry detection. Thus, in order to

decrease the number of point clouds and approximate the surface, down sampling of a

point cloud is necessary to be implemented by GPU. Similar with average down-

sampling method, by dividing the 3D volume into small voxels, all of the vertices

inside the same voxel will be approximated with their centroid, thus down sample the

point cloud.

This down sampling method copies the point cloud buffer and runs

independently for visualization and exporting.

Algorithm 7 Downsampling a Point Cloud

 Pre-defined down-sample size as scale

while the 3D point (x,y,z) inside the voxel parallel do

 for 3D point (x + dx, y + dy, z + dz) within down-sample cube

 F ← Fetch the current TSDF at (x + dx, y + dy, z + dz)
 𝐹x ← Fetch the next TSDF at (x + dx + 1, y + dy, z + dz)

 If F and 𝐹x are different signs,

 Found surface vertex in x direction

 𝐹y ← Fetch the next TSDF at (x + dx, y + dy + 1, z + dz)

 If F and 𝐹y are different signs,

 Found surface vertex in y direction

 𝐹z ← Fetch the next TSDF at (x + dx, y + dy, z + dz + 1)

If F and 𝐹z are different signs,

 Found surface vertex in z direction

end

 Calculate the mean for these vertices

 Use this centroid to represent the vertex in the down-sample cube

 x ← x + scale

 y ← y + scale

 z ← z + scale

end

 23

Chapter 7: Experiments and results

We simulate our real time surface reconstruction by three 30 fps Kinect video

streams as input. Our program is implemented in CUDA and C++. All experiments

were run on a machine with one Intel i5-6600K CPU clocked at 3.5GHz. The

Octomap runs as a parallel CPU thread, while the KinectFusion is implemented with

Nvidia’s CUDA framework, which utilizes the computer’s dedicated GPU (One

Nvidia GeForce GTX Titan X). Additionally we use an extra CPU thread for reading

and correcting the input images. Then we use Meshlab to visualize the point cloud

and mesh.

7.1 Initialization

All of the Kinect and Octomap parameters are initialized as listed in

Appendices. The surface reconstruction is done within the 3D volume of length

1.28m and with voxel resolution 0.0025m, and the cursor indicates the camera initial

position.

Figure 6.1: Volume and camera initialization

 24

7.2 Surface reconstruction

(a) (b)

(c) (d)

(a) Depth map (b) RGB image (c) Point cloud (d) Mesh

Figure 6.2: Surface reconstruction from video A

 (a) (b)

 (c) (d)

Figure 6.3: Surface reconstruction from video B

 25

 (a) (b)

 (c) (d)

(a) Depth map (b) RGB image (c) Point cloud (d) Mesh

Figure 6.4: Surface reconstruction from video C

7.3 Octomap

Figure 6.5 Octomap from from video C, resolution 0.006m / 0.01m

7.4 Down sampling

Figure 6.6: Point cloud down sampled by 4, 298101 vertices / 92785 vertices

 26

Conclusion

In this thesis, we present a real time system for 3D surface reconstruction for

symmetric objects. This is achieved by adding a CPU-based occupancy mapping step

on top of the GPU-based reconstruction algorithm KinectFusion. Moreover, in order

to increase the capabilities to process the resulting point clouds, we develop the GPU-

based Marching cubes algorithm to take the mesh, and GPU-based down sampling to

decrease the point clouds’ size, thus speed up the symmetric object detection

introduced by [1].

Our experiments demonstrate a fast and accurate colored 3D surface

reconstruction by point clouds, mesh and Octomap, which can be a useful input to the

symmetric object detection algorithm introduced by [1]. Also our surface

reconstruction implementation only depends on CUDA and OpenCV, which simplify

the dependency installation and compiler process.

In its current state, our system requires multithreading to implement real-time

image correction and Octomap based on CPU. Moreover, only 37 per cent of GPU

memory is used even for reconstruction of large point clouds, such as video C. A

further idea for the optimization is to implement these two CPU steps on GPU, in

order to save the cost of transmitting the data between CPU and GPU and maximize

the GPU memory efficiency.

 27

Appendices

Volume
Initilization

Volume size 1.28 meters

number of voxels 512

Depth Pyramid Pyramid levels 4

Bilateral Filtering

bilateral kernel size 5

depth paramter for bilateral filter 0.001 meter

spatial parameter for bilateral filter 3 pixels

ICP

Camera Position (-0.64,-0.64.0.2)

Camera Pose T
Initilized with identity

matrix

ICP iteration time for each pyramid
level {3,3,3,3}

ICP distance threshold 0.1 meter

ICP angle threshold 30 degree

TSDF Integration

TSDF trunction distance 0.001 meter

TSDF max weight (without color) 255

TSDF max weight (with color) 255

Ray Casting
ray cast step factor 0.75 voxel size

gradient_delta_factor 0.75 voxel size

Octomap
Frame down-sample rate 15

Resolution 0.01 meter

Table A: Parameters for KinectFusion and Octomap

 28

Bibliography

[1] Ecins, Aleksandrs, Cornelia Fermüller, and Yiannis Aloimonos. "Cluttered scene

segmentation using the symmetry constraint." Robotics and Automation (ICRA), 2016 IEEE

International Conference on. IEEE, 2016.

[2] Izadi, Shahram, et al. "KinectFusion: real-time 3D reconstruction and interaction using a

moving depth camera." Proceedings of the 24th annual ACM symposium on User interface

software and technology. ACM, 2011.

[3] http://www.cse.psu.edu/~rtc12/CSE486/lecture12.pdf

[4] Mayer, Nikolaus. "Coupling ICP and Whole Image Alignment for Real-time Camera

Tracking." (2014).

[5] T. Whelan, M. Kaess, M. Fallon, H. Johannsson, J. Leonard, and J. McDonald,

“Kintinuous: Spatially extended KinectFusion,” in RSS Workshop on RGB-D: Advanced

Reasoning with Depth Cameras, Sydney, Australia, Jul 2012.  

[6] T. Whelan, H. Johannsson, M. Kaess, J. J. Leonard, and J. McDonald, “Robust real-time

visual odometry for dense rgb-d mapping,” in ICRA, 2013, pp. 5724– 5731.  

[7] N. Schwabsky, V. Cohen. “Open Fusion, Real-time 3D Surface Reconstruction Out of

Depth Images.” (2013).

[8] R. A. Newcombe, S. Lovegrove, and A. J. Davison, “Dtam: Dense tracking and mapping

in real-time,” in ICCV, 2011, pp. 2320–2327.  

[9] Y. Chen and G. Medioni. Object modeling by registration of multiple range images.

Image and Vision Computing (IVC), 10(3):145–155, 1992.  

[10] Kok-Lim Low. Linear least-squares optimization for point-to-plane icp surface

registration. Technical Report TR04-004, Department of Computer Science, University of

North Carolina at Chapel Hill, 2004.  

[11] K. M. Wurm, A. Hornung, M. Bennewitz, C. Stachniss, and W. Burgard, “Octomap: A

probabilistic, flexible, and compact 3d map representation for robotic systems,” in Proc. of

the ICRA 2010 workshop on best practice in 3D perception and modeling for mobile

manipulation, vol. 2, 2010.

[12] Lorensen, William E., and Harvey E. Cline. "Marching cubes: A high resolution 3D

surface construction algorithm." ACM siggraph computer graphics. Vol. 21. No. 4. ACM,

1987.

[13] https://github.com/Nerei/kinfu_remake

http://www.cse.psu.edu/~rtc12/CSE486/lecture12.pdf

