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KinectFusion is a surface reconstruction method to allow a user to rapidly 

generate a 3D model of an indoor scene by moving a standard Kinect camera. With a 

GPU-based pipeline, the system takes in live depth data from a moving Kinect 

camera and can create a high-quality 3D model in real time.  

In this thesis, in order to increase the utility of 3D reconstruction for the 

symmetric objects, we augment the reconstruction algorithm by adding an occupancy 

mapping step on top of the surface reconstruction. This is achieved by combining the 

GPU-based KinectFusion with the CPU-based occupancy mapping algorithm 

Octomap. The resulting system runs in real time and is used as an input to the 

symmetry detection algorithm.  

Tested by the Kinect video stream, our results demonstrate an accurate 

colored 3D surface reconstruction, which is useful for symmetry detection. 
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Chapter 1: Introduction 

Algorithms used for 3D surface reconstruction based on consecutive depth 

maps were well studied. With a core GPU pipeline of four stages described by figure 

1.1, KinectFusion was the first system to achieve real-time 3D reconstruction with a 

low-cost handheld Kinect camera scanning. However, neither of those existing 

systems could provide both the real-time 3D surface reconstruction and occupancy 

mapping, which are necessary for symmetric detection algorithm introduced by [1]. 

In this work, in order to increase the utility of real time 3D surface 

reconstruction for the symmetric objects, we combine the GPU-based pipeline of 

KinectFusion with the CPU-based occupancy mapping algorithm Octomap.  

Firstly we implement and test the real-time GPU-based KinectFusion system. 

Compared to [2], on the one hand, we use two strategies to ensure the accuracy of 

camera tracking: (i) Apply the bilateral filtering module to remove the noise on the 

raw depth data. (ii) A power-of-two depth pyramid is constructed to increase the 

efficiency and range of convergence. On the other hand, for steady TSDF integration, 

the KinectFusion integration equation is modified both for coloring and non-coloring 

vertices.  

Secondly, we augment the surface reconstruction algorithm by adding an 

occupancy-mapping step Octomap on top of the surface reconstruction KinectFusion. 

The resulting system runs in real time and is useful for symmetric detection.  

Finally our implementation adds more capabilities to extract the 

reconstruction surface, for example, (i) visualize the fusion process frame by frame in 
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the interactive mode, (ii) visualize and export the point clouds, surface normal, 

meshes, and (iii) down-sample the point clouds result by GPU.  

The remainder of this work is structured as follows: After introducing the 

basic mathematical background for KinectFusion in chapter 2, our GPU-based 

KinectFusion implementation is described in details in chapter 3. In chapter 4, we 

introduce the Octomap and then in chapter 5, we add this occupancy mapping step on 

top of surface reconstruction by multithreading. In chapter 6, we provide two GPU-

based methods to do surface extraction: marching cubes and point cloud down 

sampling. We finish with demonstrating our experiment results in chapter 7 and a 

conclusion. 

 

 

Figure 1.1:  GPU pipeline of KinectFusion, image from [2] 
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Chapter 2: Reconstruction model 

This chapter gives a short overview about the scene’s geometry described by 

figure 2.1. Then we introduce the Kinect camera and volumetric TSDF model used in 

this work. The advantages and disadvantages of our surface reconstruction model are 

discussed. 

 

Figure 2.1:  Camera Space / Image Space / Global Space, images from [3] 

2.1 Camera Pose  

The camera space is a 3D camera coordinate system. The Kinect camera is 

placed at the origin (0, 0, 0) in this system and looking down the Z axe. The position 

of camera is also pre-defined and can be adjusted. The mapping of camera space to 

global space is a 6 DOF problem (3 for rotation and 3 for translation), which can be 

described in matrix form T as following: 

𝑇 = [
𝑅 𝑡
0 1

] =  [

𝑟0,0 𝑟0,1 𝑟0,2

𝑟1,0 𝑟1,1 𝑟1,2

𝑟2,0 𝑟2,1 𝑟2,2

𝑡𝑥

𝑡𝑦

𝑡𝑧

0    0     0 1

]                          (2.1) 

 

Given the camera pose T, a vertex 𝑣𝑔 in the global space can be projected into 

the camera space vertex 𝑣, by 𝑣 =  𝑇 ∗ 𝑣𝑔. 
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2.2 Image space 

The image space is a 2D image coordinate system.  The image consists of 

pixels and is pertained by the camera’s view frustum. Each pixel can be projected to 

the camera space by projection matrix 𝑲, which is defined as following: 

𝐾 = [
−𝑓𝑥 0 𝑐𝑥

0
0

−𝑓𝑦

0

𝑐𝑦

1

]                                                     (2.2) 

 

(𝑐𝑥, 𝑐𝑦) is the center of image and (𝑓𝑥, 𝑓𝑦) is the focal length. These 4 

parameters can be obtained when calibrating the Kinect camera. So the equation for 

projecting an image space pixel 𝑢 = (𝑥, 𝑦) to camera space vertex 𝑣 is: 

v(𝐮) =  𝐷(𝒖)𝐾−1(𝒖, 1)                                           (2.3) 

2.3 Global space 

The global space is a 3D world coordinate system. All of the reconstruction 

will be implemented within a volume, of which the size and volume number is pre-

defined and can be adjusted.  The center of volume is placed at (0, 0, 0) and the 

coordinates are measured in millimeters. 

2.4 Depth map 

From 2D pixel coordinates alone, it is impossible to reconstruct a unique 3D 

model, because all points on a line through the origin will be projected to the same 

pixel [4]. To get a unique solution, a third parameter, the depth, is necessary.  
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Figure 2.2: The depth d of pixel x is the distance of the point X to the camera plane 

CY, and it is normal to the viewing direction CZ. Varying d changes the position of X 

along the line CX, but its projected pixel x remains the same, image from [4]. 

The Microsoft Kinect RGB-D sensor, like other RGB-D sensors, provides 

color information as well as the estimated depth for each pixel. The Kinect Camera 

has 30 fps, and the resolution for the depth map and RGB image is both 640 by 480. 

With a single Kinect camera, we can reconstruct a unique 3D surface for the objects 

by the depth and RGB images from the Kinect video stream. 

 

Figure 2.3:  Raw data from Kinect. Depth map (Noisy) / RGB image 
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2.5 Point clouds 

A point cloud is a loose collection of 3D points representing object surfaces in 

the scene [4]. A Point cloud can be colorless or annotated with color. Our 

KinectFusion implementation reconstructs the object surface by point clouds both 

with color and without color. 

2.6 Volumetric TSDF 

The point cloud model is enclosed within a 3D volume, where each voxel 

contains a truncated signed distance (TSDF) function value to represent the voxel’s 

distance [4]. Then we can find the object surface by finding the TSDF’s zero crossing 

(TSDF sign changes), which needs to be interpolated from the voxel grids. More 

details will be discussed in Chapter 3.7. 

The key advantage to use a volumetric TSDF is that multiple camera views 

can be combined and extended each other, thus smoothing out the depth noise and 

filling holes on the depth map [4]. Also for symmetry detection, multiple views of a 

same object is necessary to ensure the symmetry property. 

However, the main disadvantage is that this reconstruction model must be 

within a fixed size volume, so computational resources need to be assigned for each 

voxel inside the volume [5]. The zero crossing might only occupy a small part of the 

volume, but memory has to be allocated for processing each voxel, which is not 

memory efficient [6]. 
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Chapter 3: KinectFusion 

In this chapter, the GPU-based KinecFusion algorithm is discussed and 

implemented for real time 3D surface reconstruction. 

3.1 Bilateral filtering 

The raw depth map received from the camera is noisy and there may be black 

holes indicating no depth data available, thus filtering is necessary to smooth the raw 

depth signals [7]. Bilateral filtering is a good method to smooth the depth image and 

remove the noise, while still preserving the edges. The update formula is as follows: 

 𝑔(𝑥, 𝑦) =  
𝐷(𝑥, 𝑦)𝑤(𝑥, 𝑦, 𝑖, 𝑗)

∑ 𝑤(𝑥, 𝑦, 𝑖, 𝑗)𝑖,𝑗
                                    (3.1) 

In equation 3.1, D(x, y) is the depth value and g(x, y) is the pixel value. The 

pair (x, y) indicates the pixel position, while (i, j) indicates the filter radius, which is 

also known as the kernel size.  The weighting w(x, y, i, j) is the product of spatial 

Gaussian 𝐺𝜎𝑑
 and range Gaussian 𝐺𝜎𝑟

, as following:  

w(𝑥, 𝑦, 𝑖, 𝑗) = exp (−
(𝑥 − 𝑖)2 +  (𝑦 − 𝑗)2

2𝜎𝑑
2

− 
‖𝐷(𝑥, 𝑦) − 𝐷(𝑖, 𝑗)‖2

2𝜎𝑟
2

)   (3.2) 

With the predefined parameters as discussed above, each GPU thread operates 

in parallel on the pixel 𝒖 = (𝑥, 𝑦) on the depth map 𝐷(𝒖) of current frame, and the 

depth value for each pixel is then filtered with the weight function inside the kernel 

window.  
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3.2 Depth conversion 

Given the intrinsic calibration matrix K of the depth camera, the re-projected 

3D vertex in the camera space is defined as following: 

v(𝐮) =  𝐷(𝒖)𝐾−1(𝒖, 1), 𝒖 = (𝑥, 𝑦)                                  (3.3) 

In other words, for a point 𝒖 in the depth map, the corresponding 3D vertex 𝒗 

can be calculated by the following equation, where D represents the depth map. 

{

𝑣. 𝑥 = (𝑢. 𝑥 − 𝑐. 𝑥) ∗ 𝐷(𝒖) 𝑓. 𝑥⁄

𝑣. 𝑦 = (𝑢. 𝑦 − 𝑐. 𝑦) ∗ 𝐷(𝒖) 𝑓. 𝑦⁄

𝑣. 𝑧 = 𝐷(𝒖)
                                      (3.4) 

By using the neighbors of the re-projected vertices, we can calculate the 

normal vectors by the following equation, after which the value is normalized.  

𝑛𝑔,𝑖(𝑥, 𝑦) = (𝑣𝑔,𝑖(𝑥 + 1, 𝑦) − 𝑣𝑔,𝑖(𝑥, 𝑦)) × (𝑣𝑔,𝑖(𝑥, 𝑦 + 1) − 𝑣𝑔,𝑖(𝑥, 𝑦)) (3.5) 

 By equation 3.4 and 3.5, we can convert the depth map into the distance map, 

then the normal map.  

Moreover, in order to increase the efficiency and convergence for the ICP 

process, we use a coarse-fine depth pyramid over a power of two. The lowest level is 

the original depth map after bilateral filtering, and each level is half of the previous 

level by down sampling, then each pixel value is averaged in a pre-defined window. 

As indicated by [8], this optimization is more stable than 6DOF estimation when the 

number of pixels considered is low, helping to converge for large pixel motions, even 

when the true rotation is not strictly rotational. With the depth pyramid, we also build 

a normal pyramid corresponding to depth map in each pyramid level.  
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3.3 Camera tracking 

3.3.1 Overview 

The ICP (Iterative Closest Point) algorithm is widely used for geometric shape 

alignment of 3D models.  Given the camera pose in the global space, the stream of 

depth maps can be correctly fused into a single 3D model [2]. In the global space, the 

camera pose consists of 6 unknown parameters, 3 for translation and 3 for rotation. In 

this stage, we estimate the camera pose for each frame in the global space by 

estimating a single rigid 6DOF transformation between two consecutive frames.   

The input of ICP is the consecutive points and normal in two consecutive 

frames, and the output is the 6DOF transformation matrix T, which describes the 

translation and rotation of the camera in the global space.  

We set the first frame correspond to the global coordinates. Every frame will 

be aligned to the previous one, thus eventually all the frames can be aligned to the 

first frame [2]. The ICP method for camera tracking can be described as an 

optimization problem, and further a linear optimization problem as follows. Assume: 

    Previous Frame: Source point 𝑠𝑖 = (𝑠𝑖𝑥, 𝑠𝑖𝑦, 𝑠𝑖𝑧) 

    Current frame: point correspondence for 𝑠𝑖: 𝑑𝑖 = (𝑑𝑖𝑥, 𝑑𝑖𝑦, 𝑑𝑖𝑧) 

    Surface Normal at point 𝑑𝑖: 𝑛𝑖 = (𝑛𝑖𝑥, 𝑛𝑖𝑦, 𝑛𝑖𝑧) 

Given the point correspondence, the goal of ICP is to find matrix T that 

minimize the squared distances between source point and tangent plane at the 

corresponding destination point [2], and T is the global camera pose estimation. 

∑ ((𝑇 ∗ 𝑠𝑖 −  𝑑𝑖) ∗ 𝑛𝑖)2
𝐷𝑖(𝑢)>0 ` 
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Based on the assumption of slight movement between consecutive frames, the 

target function can be transformed into linear least square problem by approximation, 

and then solved as a 6-by-n linear system using SVD algorithm as mentioned in [9] 

and [10]. 

3.3.2 Implementation 

With the distance and normal pyramid described in chapter 3.2, then ICP is 

done iteratively at different pyramid levels from the coarsest level to the full to 

incrementally update the transformation matrix T, by minimizing the sum squared 

errors during iteration in each pyramid level. At each ICP iteration, the first step of 

the ICP algorithm is to find the point correspondence, then the error is minimized to 

get the increment change of camera pose matrix T by SVD decomposition. The point 

correspondence can be found by pixel parallel on GPU with the ray casting result as 

previous reference frame, while the SVD decomposition by OpenCV library on CPU, 

as described in Algorithm 1. 

 

Figure 3.1: Depth pyramid / Camera tracking system 
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Algorithm 1 Algorithm for Camera Pose estimation 

GPU – Find the point correspondence 

for each depth map, pixel u 𝜖 depth map 𝐷𝑖 in parallel do 

if 𝐷𝑖(𝐮) >  0 𝐭𝐡𝐞𝐧 

                          𝑣𝑖−1 = 𝑇𝑖−1
−1 𝑣𝑖−1

𝑔
 

                          𝑝 ← 𝑝𝑒𝑟𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒 𝑝𝑟𝑜𝑗𝑒𝑐𝑡 𝑣𝑒𝑟𝑡𝑒𝑥 𝑣𝑖−1 

    if  𝑝 ∈ 𝑣𝑒𝑟𝑡𝑒𝑥 𝑚𝑎𝑝 𝑉𝑖 𝒕𝒉𝒆𝒏 

   𝑣 = 𝑇𝑖𝑉𝑖(𝑝) 

                                     𝑛 = 𝑅𝑖𝑁𝑖(𝑝) 

   if ‖𝑣 − 𝑣𝑖−1
𝑔

‖ < 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡ℎ𝑟𝑒ℎ𝑜𝑙𝑑 𝑎𝑛𝑑 

𝑎𝑏𝑠(𝑛 𝑛𝑖−1
𝑔

) < normal threshold then 

     point correspondence found 

    end if 

 end if 

end 

 

CPU – SVD decomposition to update T (OpenCV) 

for the depth map in each pyramid  

 find the points and correspondence in previous frame 

 while not reaching ICP iteration times 

Apply SVD algorithm to update the T matrix 

end 

Output T  
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3.4 Volumetric Integration 

3.4.1 Overview 

At this stage, truncated distance function (TSDF) is used to fuse the new depth 

map with the existing volumetric model in the global space. 

A 3D volume of a predefined resolution is used to represent the space we are 

measuring.  This volume is uniformly subdivided into a 3D grid of voxels, to which 

those global 3D vertices will be integrated using a TSDF value. The value inside each 

voxel is the distance to closest surface and the distance is signed and truncated. The 

TSDF values are positive in front of the surface and negative behind the surface, with 

the zero crossing specifying the surface of the model. To determine the surface of the 

object, tri-linear interpolation is needed to find the zero crossings between each voxel. 

The SDF can be calculated as follows, and then truncated: 

 

 𝑆𝐷𝐹 = ∥ 𝑠 − 𝑐 ∥  − ∥ 𝑣 − 𝑐 ∥                                       (6.1) 
 

 Where s is the surface vertex, v is the voxel vertex and c is the camera 

position. 

3.4.2 Implementation 

To achieve real-time rates, we basically implement the pseudo code in [2]. 

Due to the large number of voxels, we only assign threads to each (x, y) voxel on the 

x,y slice of the volume, then iterate all of the z values.  Each voxel is firstly mapped 

to the vertex in the global space, then projected into the camera space using the 

camera pose estimation by ICP, and finally projected to the image space to determine 

the SDF value by looking up the distance map.  
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For CUDA optimization, we make the distance map built in chapter 3.2 as 

texture memory for quick look-up. During integration process, KinectFusion gives the 

following TSDF update for each voxel: 

𝑇𝑆𝐷𝐹𝑎𝑣𝑔 =  
𝑇𝑆𝐷𝐹𝑖−1 ∗ 𝑤𝑖−1 + 𝑇𝑆𝐷𝐹𝑖 ∗ 𝑤𝑖

𝑤𝑖−1 +  𝑤𝑖
                                         (6.2) 

 

However, our results were less steady using Equation 6.1. Replacing the 

equation with 6.2 below solved this, as more weight is given to the existing value. 

𝑇𝑆𝐷𝐹𝑎𝑣𝑔 =  
𝑇𝑆𝐷𝐹𝑖−1 ∗ 𝑤𝑖−1 + 𝑇𝑆𝐷𝐹𝑖

𝑤𝑖−1 +  1
                                                 (6.3) 

 

 

Algorithm2 illustrates the main steps of our implementation with the (6.2) equation. 

 

 

Algorithm 2 TSDF integration without color 

for each voxel g in x,y volume slice in parallel do 

while sweeping from front slice to back do                               
                                𝐯𝐠 ← 𝑐𝑜𝑛𝑣𝑒𝑟𝑡 𝑔 𝑓𝑟𝑜𝑚 𝑔𝑟𝑖𝑑 𝑡𝑜 𝑔𝑙𝑜𝑏𝑎𝑙 3𝐷 

              v ← 𝑇𝑖
−1 𝑣𝑔 

                            𝐩 ← 𝑝𝑒𝑟𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒 𝑝𝑟𝑜𝑗𝑒𝑐𝑡 𝑣𝑒𝑟𝑡𝑒𝑥 𝐯 

      if  𝐯 in camera view frustum 𝒕𝒉𝒆𝒏 

   𝐬𝐝𝐟𝒊 ←  𝐃i(𝐩 ) − ‖𝐯‖ 

       if  (𝐬𝐝𝐟𝒊 > − max _truncation) 𝒕𝒉𝒆𝒏 

                                              t𝐬𝐝𝐟𝒊 ← min (1, 𝐬𝐝𝐟𝒊 max _truncation⁄ ) 

              𝐭𝐬𝐝𝐟𝒊−𝟏, 𝒘𝒊−𝟏 ← 𝑓𝑒𝑡𝑐ℎ 𝑇𝑆𝐷𝐹 𝑎𝑛𝑑 𝑤𝑒𝑖𝑔ℎ𝑡 𝑎𝑡 𝑣𝑜𝑥𝑒𝑙 𝑔 

                                              𝐰𝑖 ← min (max 𝑤𝑒𝑖𝑔ℎ𝑡,  𝐰𝑖−1 + 1) 

                                              𝐭𝐬𝐝𝐟𝑎𝑣𝑔 ← (𝐭𝐬𝐝𝐟𝒊−𝟏𝒘𝒊−𝟏 +   𝐭𝐬𝐝𝐟𝒊) 𝐰𝑖⁄  

           store 𝐰𝑖 𝑎𝑛𝑑 𝐭𝐬𝐝𝐟avg at voxel g 

   end if 

    end if 

end  

end 
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3.5 Color rendering 

At this stage, we want to find the corresponding color for each vertex by 

camera calibration. 

When calibrating the Kinect camera, the calibration matrix between the depth 

and RGB camera is also obtained, with which we can know how to project the pixel 

color from the RGB image space to Depth camera space, then to the volume in the 

global space. Thus the pose of RGB camera can be estimated from the depth sensor.  

The only change from non-coloring TSDF integration is that the camera pose 

T is now the RGB camera instead of the depth sensor, and TSDF values needs to be 

updated for R,G,B channels. The algorithm is described in Algorithm 3 as follows.  

 

Algorithm 3 TSDF integration with color 

for each voxel g in x,y volume slice in parallel do 

while sweeping from front slice to back do  

  𝐯𝐠 ← 𝑐𝑜𝑛𝑣𝑒𝑟𝑡 𝑔 𝑓𝑟𝑜𝑚 𝑔𝑟𝑖𝑑 𝑡𝑜 𝑔𝑙𝑜𝑏𝑎𝑙 3𝐷 

                          v ← 𝑇𝑖
−1 𝑣𝑔 

                          𝐩 ← 𝑝𝑒𝑟𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒 𝑝𝑟𝑜𝑗𝑒𝑐𝑡 𝑣𝑒𝑟𝑡𝑒𝑥 𝐯 

    if  𝐯 in camera view frustum  𝒕𝒉𝒆𝒏 

   𝐬𝐝𝐟𝒊 ←  𝐃i(𝐩 ) − ‖𝐯‖ 

     if  (𝐬𝐝𝐟𝒊 > − max _truncation) 𝒕𝒉𝒆𝒏 

        𝐯 ← 𝑟𝑔𝑏 𝑇𝑆𝐷𝐹 𝑣𝑜𝑙𝑢𝑚𝑒 𝑎𝑡 𝑣𝑜𝑥𝑒𝑙 𝒈 

 𝐰𝑖−1 ← 𝑤𝑒𝑖𝑔ℎ𝑡 𝑎𝑡 𝑣𝑜𝑥𝑒𝑙 𝒈 

    𝐰𝑖 ← min (max 𝑤𝑒𝑖𝑔ℎ𝑡,  𝐰𝑖−1 + 1) 

                                      𝐯. 𝐫 ← (𝐯. 𝐫 ∗ 𝒘𝒊−𝟏 +  𝐯. 𝐫) 𝐰𝑖⁄  ← 𝑟𝑒𝑑  
                                      𝐯. 𝐠 ← (𝐯. 𝐠 ∗ 𝒘𝒊−𝟏 +  𝐯. 𝐠) 𝐰𝑖⁄ ← 𝑔𝑟𝑒𝑒𝑛 

                                      𝐯. 𝐛 ← (𝐯. 𝐛 ∗ 𝒘𝒊−𝟏 +  𝐯. 𝐛) 𝐰𝑖⁄ ← 𝑏𝑙𝑢𝑒  
 store 𝐰𝑖 𝑎𝑛𝑑 𝒗 at voxel g 

 

     end if 

   end if 

end 

end 
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3.6 Ray casting 

3.6.1 Overview 

At this stage, a GPU-based ray casting is implemented to render the surface of 

current view. Also the result is used as a reference frame for next ICP iteration. 

Given the position of the camera to cast ray to the volume of TSDF volume, 

the GPU threads march along the ray with a pre-defined ray casting step size. At each 

step, the global position of the ray will be re-projected to a voxel within the volume 

and the zero crossing of TSDF values will be checked to look for the surface.  As 

discussed in the chapter 3.4, TSDF values are positive in front of the surface but 

negative behind. So, if a negative TSDF value is found earlier than a positive TSDF, 

then the implicit surface must have been neglected and such zero crossing is not the 

true surface. So we must look for the sign change of TSDF values from positive to 

negative. 

Let 𝑉𝑜𝑥(𝑥, 𝑦, 𝑧) be the voxel that contains the TSDF zero-crossing, we can 

use the following equations to determine the surface normal: 

𝑛𝑥 = 𝑇𝑠𝑑𝑓(𝑉𝑜𝑥(𝑥 + 1, 𝑦, 𝑧)) −  𝑇𝑠𝑑𝑓(𝑉𝑜𝑥(𝑥 − 1, 𝑦, 𝑧)) 

𝑛𝑦 = 𝑇𝑠𝑑𝑓(𝑉𝑜𝑥(𝑥, 𝑦 + 1, 𝑧)) −  𝑇𝑠𝑑𝑓(𝑉𝑜𝑥(𝑥, 𝑦 − 1, 𝑧)) 

𝑛𝑧 = 𝑇𝑠𝑑𝑓(𝑉𝑜𝑥(𝑥, 𝑦, 𝑧 + 1)) −  𝑇𝑠𝑑𝑓(𝑉𝑜𝑥(𝑥, 𝑦, 𝑧 − 1)) 

 

The vector is then normalized. 

 With the vertex and its normal vector, a lighting equation is calculated for 

each pixel by GPU thread in the output image, in order to render the current view of 

the model [7]. 
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3.6.2 Implementation 

As our TSDF volume is truncated by a pre-defined distance, we can set a ray-

casting step-size to accelerate the speed [7].  Once the sign change of TSDF values 

from positive to negative is detected, a trilinear interpolation is implemented 

between the two voxels to accelerate the speed to predict the surface position.  The 

algorithm and result is described as follows. 

Algorithm 4 Ray casting 

Given the camera pose estimation T, 

for each voxel g in x, y volume slice in parallel do 

              𝐫𝐚𝐲𝐨𝐫𝐠 ← ray casting origin 

   𝐫𝐚𝐲𝐝𝐢𝐫 ← ray casting direction 

              𝐫𝐚𝐧𝐠𝐞 ← 𝑐ompute intersection of the ray with volume′s six planes 

              𝐭𝐬𝐝𝐟𝐜𝐮𝐫 ← fetch the current tsdf value along the ray 
    while cur is within the range 

               𝐭𝐬𝐝𝐟𝐧𝐞𝐱𝐭 ←  fetch the next tsdf value along the ray  

     if  𝐭𝐬𝐝𝐟𝐜𝐮𝐫 > 𝟎 and 𝐭𝐬𝐝𝐟𝐧𝐞𝐱𝐭 < 𝟎 𝒕𝒉𝒆𝒏 

   vertex ← global intersection by trilinear interpolation  

      normal ← calculate the normal at vertex 

   update the normal and depth maps for current rendering 

 end if 

   cur ← next 

   next ← increment by the raycaster step size 

 end  

end  

 

 

Figure 3.2: Ray casting: Reconstructed surface / Surface with normal 
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Chapter 4. Occupancy mapping 

 

 
         Octree          Point Cloud             Octomap 

 

Figure 4.1: Octree/Point Cloud/Octomap. Images from [11]. 

 

Octomap is an efficient probalistic 3D Mapping Framework Based on the 

Octree. It is a volumetric representation of occupied, free and unknown space based 

on the tree structure Octree [11]. Octree is used to recursively subdivide the cube into 

small cells. Compared to the fixed grid or volume, the main advantage of tree 

structure is memory efficient, as the empty regions do not use memory, and it is not 

limited to a fixed scene size because the Octree can dynamically expand the depth.  

 The main reason to implement the Octomap is for the symmetry detection 

indicated by [1], we need the occupancy mapping to determine a true symmetry or 

not. So for the symmetry detection, Octomap needs to be implemented in real time on 

top of the surface reconstruciton. 

To generate the Octomap, we need the inputs as the depth map and its 

corresponding camera pose to insert into the Octree. With the current open-source 

Octomap library, the tree insertion on CPU is slow and cannot be implemented in real 

time. One insertion of a resolution of 0.005m would cost one second, which is larger 

than the 30 Fps of the Kinect camera.  
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One way to speed up the Octomap is to decrease the resolution, which 

however, cannot guarantee a good symmetry detection, because resolution larger than 

0.01m is not good for symmetry detection. Another way to solve this is to down-

sample the depth frames and depth map. In other words, we only process down-

sampled depth frames, and we also spatially down sample those depth maps. The 

main steps are illustrated as follows. 

 

Algorithm 5 Octomap  

Initialize the Counter and Octree by pre-defined resolution 

for each depth frame in the video stream 

 𝐢𝐟  Counter is equal to frame down-sampling rate 𝒕𝒉𝒆𝒏 

             𝐃𝐞𝐩𝐭𝐡 𝐌𝐚𝐩 ← downsample the depth map 

                        𝐓 ← estimated camera pose by the depth map 
  Insert Depth Map and T into the Octree 

  Reset the Counter 

End 

Counter++ 

end 

Output Octree 
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Chapter 5: System design 

In this chapter, CPU-based Octomap is implemented on top of GPU-based 

KinectFusion by multithreading with image correction thread. The resulting system 

runs in real time.  

5.1 Image correction 

Another challenge for real-time implementation is to correct the depth and 

RGB images for lens distortion. As the distortion correction is well studied [12], it is 

easy to initialize the distortion rectify map both for the depth and RGB image with 

the OpenCV library. However, this image correction process takes about 0.04s by 

OpenCV on CPU, which is slower than the 30 Fps of the Kinect camera.  

 

5.2 Multithreading 

In our work, in order to solve the slow process of image correction, we 

combine the GPU-based pipeline of KinectFusion with the CPU-based Octomap and 

image correction by multithreading. The system involves 3 threads, one main thread 

for image input and correction, another thread for KinectFusion, and the other thread 

for Octomap. 

The main thread inputs and corrects both of the depth and RGB images, and 

then corrected images are saved in a queue structure. Once the image queue is not 

empty, KinectFusion keeps fusing the front image of the queue until the queue is 

empty. Octomap thread detects for both the depth image and its corresponding 



 20 

 

camera pose, and uses a counter to down-sample the depth frames. Octomap thread 

keeps inserting into the Octree on CPU until the depth-camera queue is empty.  

The resulting system described by Figure 4.1 runs in real time and can be used 

as a useful input to the symmetry detection algorithm introduced by [1]. 

 

Thread 1: GPU-based pipelines of KinectFusion 

Thread 2: Input depth and RGB images and correction 

Thread 3: Occupancy mapping algorithm, Octomap  

Figure 4.2: System for real-time 3D surface reconstruction
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Chapter 6:  Surface Extraction 

In this chapter, we provide two GPU-based methods to extract the 3D surface 

reconstruction of point clouds. 

6.1 Marching cubes 

While in theory every point needs to be rendered, this is not possible in 

practice. However, the Marching cubes algorithm creates a triangle representation on 

the surface of a 3D point cloud, thus can make a good approximation to the surface of 

the point cloud model by triangular mesh [12].  

Based on the open source GPU-based Marching cubes implementation by 

[13], for each 3D vertex generated by the KinectFusion, we need to find those 

vertices where the surface intersects the voxel. Then we will generate the triangles to 

represent the surface of the reconstruction object.  

For CUDA optimization, the tables for enumerating the Marching Cubes 

situations can be bind with texture memory for quick look-up. The pseudo code 

below describes our GPU-based Marching cubes algorithm. 

 

Algorithm 6 Marching cubes 

edgeTable ←8-bit flag representing which cube vertices are inside 

triangleTable ← map same cube vertex index to a list of 5 triangles 

numVertsTable ← number of vertices for the triangleTable 

for each point 𝐯 parallel do 

 p ← 𝑝𝑒𝑟𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒 𝑝𝑟𝑜𝑗𝑒𝑐𝑡 𝑣𝑒𝑟𝑡𝑒𝑥 𝐯 

p[𝟖] ← calculate cell vertex positions 
 find the vertices where the surface intersects the voxel by interpolation 

 output triangle vertices 

end 
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6.2 Point cloud down sampling 

The KinectFusion reconstructs a point cloud to represent the object surfaces in 

the scene. However, the number of vertex generated by KinectFusion can be up to 

millions, which significantly slows down the symmetry detection. Thus, in order to 

decrease the number of point clouds and approximate the surface, down sampling of a 

point cloud is necessary to be implemented by GPU. Similar with average down-

sampling method, by dividing the 3D volume into small voxels, all of the vertices 

inside the same voxel will be approximated with their centroid, thus down sample the 

point cloud.  

This down sampling method copies the point cloud buffer and runs 

independently for visualization and exporting.  

Algorithm 7 Downsampling a Point Cloud 

 Pre-defined down-sample size as scale 

while the 3D point (x,y,z) inside the voxel parallel do 

 for 3D point (x +  dx, y +  dy, z +  dz) within down-sample cube 

  F ← Fetch the current TSDF at (x +  dx, y +  dy, z +  dz)   
  𝐹x ← Fetch the next TSDF at (x +  dx + 1, y +  dy, z +  dz) 

  If F and 𝐹x are different signs, 

   Found surface vertex in x direction 

  𝐹y ← Fetch the next TSDF at (x +  dx, y +  dy + 1, z +  dz) 

  If F and 𝐹y are different signs, 

   Found surface vertex in y direction 

  𝐹z ← Fetch the next TSDF at (x +  dx, y +  dy, z +  dz + 1) 

If F and 𝐹z are different signs, 

   Found surface vertex in z direction 

end 

 Calculate the mean for these vertices 

 Use this centroid to represent the vertex in the down-sample cube 

 x ← x + scale 

            y ← y + scale 

            z ← z + scale 

end 
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Chapter 7:  Experiments and results 

 

We simulate our real time surface reconstruction by three 30 fps Kinect video 

streams as input. Our program is implemented in CUDA and C++. All experiments 

were run on a machine with one Intel i5-6600K CPU clocked at 3.5GHz. The 

Octomap runs as a parallel CPU thread, while the KinectFusion is implemented with 

Nvidia’s CUDA framework, which utilizes the computer’s dedicated GPU (One 

Nvidia GeForce GTX Titan X). Additionally we use an extra CPU thread for reading 

and correcting the input images. Then we use Meshlab to visualize the point cloud 

and mesh. 

 

7.1 Initialization 

All of the Kinect and Octomap parameters are initialized as listed in 

Appendices. The surface reconstruction is done within the 3D volume of length 

1.28m and with voxel resolution 0.0025m, and the cursor indicates the camera initial 

position. 

 

Figure 6.1: Volume and camera initialization 
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7.2 Surface reconstruction 

 
(a)                    (b) 

 
(c)                  (d) 

 

(a) Depth map (b) RGB image (c) Point cloud (d) Mesh 

Figure 6.2: Surface reconstruction from video A 

 

 
       (a)                                   (b) 

 
        (c)           (d) 

 

Figure 6.3: Surface reconstruction from video B 
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         (a)            (b) 

 
          (c)                                                                        (d) 

 

(a) Depth map (b) RGB image (c) Point cloud (d) Mesh 

Figure 6.4: Surface reconstruction from video C 

7.3 Octomap 

 
Figure 6.5 Octomap from from video C, resolution 0.006m / 0.01m 

7.4 Down sampling 

 

Figure 6.6: Point cloud down sampled by 4, 298101 vertices / 92785 vertices
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Conclusion 

In this thesis, we present a real time system for 3D surface reconstruction for 

symmetric objects. This is achieved by adding a CPU-based occupancy mapping step 

on top of the GPU-based reconstruction algorithm KinectFusion. Moreover, in order 

to increase the capabilities to process the resulting point clouds, we develop the GPU-

based Marching cubes algorithm to take the mesh, and GPU-based down sampling to 

decrease the point clouds’ size, thus speed up the symmetric object detection 

introduced by [1]. 

Our experiments demonstrate a fast and accurate colored 3D surface 

reconstruction by point clouds, mesh and Octomap, which can be a useful input to the 

symmetric object detection algorithm introduced by [1]. Also our surface 

reconstruction implementation only depends on CUDA and OpenCV, which simplify 

the dependency installation and compiler process. 

In its current state, our system requires multithreading to implement real-time 

image correction and Octomap based on CPU. Moreover, only 37 per cent of GPU 

memory is used even for reconstruction of large point clouds, such as video C. A 

further idea for the optimization is to implement these two CPU steps on GPU, in 

order to save the cost of transmitting the data between CPU and GPU and maximize 

the GPU memory efficiency. 
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Appendices 

 

Volume 
Initilization 

Volume size 1.28 meters 

number of voxels 512 

Depth Pyramid Pyramid levels 4 

Bilateral Filtering 

bilateral kernel size  5 

depth paramter for bilateral filter 0.001 meter 

spatial parameter for bilateral filter 3 pixels 

ICP 

Camera Position (-0.64,-0.64.0.2) 

Camera Pose T 
Initilized with identity 

matrix 

ICP iteration time for each pyramid 
level {3,3,3,3} 

ICP distance threshold 0.1 meter 

ICP angle threshold 30 degree 

TSDF Integration 

TSDF trunction distance  0.001 meter 

TSDF max weight (without color)  255 

TSDF  max weight (with color) 255 

Ray Casting 
ray cast step factor  0.75 voxel size 

gradient_delta_factor 0.75 voxel size 

Octomap 
Frame down-sample rate 15 

Resolution 0.01 meter 
 

Table A: Parameters for KinectFusion and Octomap 
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