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Abstract

In this paper, results of psychovisual studies of the human visual system are
discussed and interpreted in a mathematical framework. The formation of the per-
ception is described by appropriate minimization problems and the edge information
is found to be of primary importance in visual perception. Having introduced the
concept of edge strength, it is demonstrated that strong edges are of higher percep-
tual importance than weaker edges (textures). We have also found that smooth areas
of an image influence our perception together with the edge information, and that
this influence can be mathematically described via a minimization problem. Based
on this study, we have proposed to decompose the image into three components: (i)
primary, (ii) smooth and (iii) texture, which contain, respectively, the strong edges,
the background and the textures. An algorithm is developed to generate the three-
component image model and an example is provided in which the resulting three
components demonstrate the specific properties as expected. Finally, it is shown
that the primary component provides a superior representation of the strong edge
information as compared with the Laplacian-Gaussian Operator scheme which is a

popular edge extraction method.

'This work was supported in part by National Science Foundation grants NSFD MIP-86-57311
and NSFD CDR-85-00108.






I Introduction

In most image compression systems, the primary objective is that of a high fidelity
reconstruction of the original image with as small a number of bits as possible.
Naturally, the fidelity criterion used for the design of the compression system plays a
significant role on the system performance. A commonly used fidelity criterion is the
mean squared-error (MSE) distortion. The main attributes of the MSE are (i) its
mathematical tractability and (ii) the fact that small values of MSE correspond to
perceptually high quality reconstructed images. The latter fact is important since
human eye is commonly the final judge of the reconstructed image. With the MSE
and its variants as fidelity criterion, various image coding techniques such as adaptive
discrete cosine transform (ADCT) coding, various forms of vector quantization (VQ)
and subband coding (SBC) have been studied [1]-[4]. While all these techniques have
led to relatively high quality reconstructed images at bit rates about 1.0 bit/pixel and
above, they usually produce specific types of visible distortion (blockiness; blurred
edges, jagged edges, etc.) at lower bit rates.

Over the past decade, a new class of image coding schemes, generally referred to
as second-generation techniques, has been developed [5]-[8]. These methods, which
have exhibited improvements over the MSE-based schemes, attempt to describe the
image in terms of more nearly physical entities such as regions or contours for a
more compact representation of the image and hence a higher compression ratio [6];
this is in contrast with the waveform representation of the image in the MSE-based
schemes.

In this paper, in an approach not unlike that of second-generation image coding
techniques, we have developed a model for real-world imagery based on those features
of the image signal that are of distinct significance to human perception. Specifically,
we have formalized some previous psychovisual studies [9] [10] to characterize the
features of the image signal that are responsible for the formation of the perception
in the human visual system (HVS). In particular, some interesting evidences on the

binocular nature of the human vision in [9] are used to formulate the formation of



the perception as a minimization of the intensity variation energy; this has led to the
notion of “strong edges” which apparently plays a significant role in the perception.
Additionally, we have used the psychovisual observations in [10] to mathematically
formulate the interaction between the strong edges and the areas of smooth intensity
variations. To characterize the strong edges, we have introduced the concept of the
“stressed image” and defined the strong edges as the high curvature energy pixels
of the stressed image. This stressed image, which has an interesting analogy to
the stable configuration of a mechanical structure, is generated by a space-variant
low-pass filtering of the original image. The above formalism has led to a three-
component image model consisting of (i) the strong edge component, (ii) the smooth
intensity variation component and (iil) the texture component.

The three-component model developed here is quite general and might prove
useful in various image processing algorithms. However, it was primarily developed
for an image coding situation where the different features of the image signal can
be classified (according to the role they play in the formation of human perception),
extracted and treated separately for subsequent encoding. This idea is similar to the
sketch-based image coding scheme of [7] [§] which consists of two components: one
is similar to the strong edge component of the three-component model developed
here, and the other is simply the residual between the original image and an image
obtained merely from the strong edge information. In the sketch-based scheme, the
strong edges are extracted by the Laplacian—Géussian Operétor (LGO) followed by a
gradient operator. This edge extraction scheme suffers from certain drawbacks which
will be discussed in detail. In addition, a careful comparison between the LGO-based
method and the edge extraction scheme associated with the three-component model
will be presented. The applications of the three-component image model in defining
a perceptual distortion criterion for specific image coding schemes are presented in
a sequel paper [11].

This paper is organized as follows. In Section II, certain psychovisual evidences of
the human perception are presented and discussed. The evidences lead to the charac-

terization of the strong edge information in Section III, followed by an algorithm for



the extraction of strong edges along with the development of the three-component
image model in Section IV. In Section V, an example of the three-component image
model is provided and certain comparisons against the LGO-based edge extraction

scheme are presented. Summary and conclusions are provided in Section VI.

II Observations on Psychovisual Aspects of
Human Visual System

In the next three subsections, we describe some observations on psychovisual aspects
of the human visual system. The objective is to extract and discriminate different
properties of image signals which are of significance to our perception. Interpreta-
tions in the context of image coding are also provided, and will form the motivation
and basis for the work described later. In the first two subsections, we use the binoc-
ular nature of human visual system to explain the relationship between the image

signals and our perception.

A.  Edge Information of Image Signals

As described in [9], in natural binocular vision, when two views are presented with
two forms which are- different (in the sense that they do not admit of being combined
into the image of a single object), the images of both forms will generally be seen
at the same time superposed on one another in the field of view. Usually, in some
locations of the field of view, one image dominates the other, and vice versa in other
parts of the field. For the situation where broad black-and-white figures are displayed
to both views, the general rule is that the dominating image along an edge and in its
vicinity will be the one which owns the edge. As an example, let us consider Fig. 1,
in which we have two bars, one vertical and one horizontal. When the vertical bar
is seen by the left eye and the horizontal bar by the right eye, without devoting
exclusive attention to any of the two, the total effect will be an image similar to

Fig. 2. As shown in Fig. 2, the perception will be a cross which is black over the



center square; the background appears white. The four arms of the cross are perfectly
black at their ends and almost entirely white near the center square, with transitions
in between.

Based on this phenomenon, we may conclude that the collection of the individual
pixel intensity values without any interaction between them (the most primitive
property of the image) is not what produces the visual perception. For otherwise, the
image in the field of view should be formed at each pixel with an intensity produced
only by the two corresponding pixel intensities of the two images according to a
certain law, and thus the perception should be a uniform combination of the two
pictures. Obviously, the image shown in Fig. 2 cannot be constructed by a uniform
combination of the two images in Iig. 1.

Based on this observation, we conjecture that here it is the edge property (or
information), to be defined next, of the image signal that arouses our visual percep-
tion. For the images in Fig. 1, the edge information is described by (i) the locations
of variations of intensity values and (ii) the related intensity values at these loca-
tions. For example, in Fig. 1 (a), the locations of the intensity variations are along
the border of the vertical black bar, and the related intensity values are those inten-
sity values immediately inside and outside the border. The above actually describes
what we generally refer to as an edge. This edge basically has two related intensity
values, zero (255) corresponding to black (white), representing the intensity vari-
ation. We call the contour formed by the lower intensity value the lower brim of
the edge (or lower edge brim), and the contour formed by the higher intensity value
the upper brim of the edge (or upper edge brim). For example, in Fig. 1 (a), the
rectangular contour of the lower edge brim is just inside the border, while the one for
the upper edge brim is just outside. The locations and intensity values of the lower
and upper edge brims completely define the corresponding edge, and, therefore, we
may define an edge through the concept of edge brims which will be characterized
mathematically later in this paper.

We now go back to our conjecture that the edge information is responsible for the

formation of the visual perception. Remarkably, this conjecture is justified in this



case by actually producing Fig. 2 only from the knowledge of lower and upper edge
brims of the two images in Fig. 1 by minimizing the variation in intensity values as
described below.

Let a generic digital image of size M x M be denoted by an array of real numbers
{z:;},4,7 =0,1,..., M —1, where z; ; is the intensity value of the pixel (7, 7) at the
ith row and the jth column. Note that an image {z;;}, ¢,7 = 0,1,..., M — 1, can
be defined as a set & of triples: X = {(z,7,2:;), 4,7 = 0,1,...,M —1} C R®. Then
the lower and upper edge brims of an image A" are a subset of X'. Let the subsets of
lower and upper edge brims of the images (a) and (b) in Fig. 1 be denoted by B, and
By, respectively. We combine the information in B, and B; by forming a set B from
B, UB, in the following way. We first define two projection functions, f; : R® — R?
where f1 ((i,7,2)) = (i,7), and fo: R® — R where f2((3,7,2)) = z. We denote by
fe(A) the image of a set A under fy, k = 1,2. For a set A C IR®, we also define
A6 = {s:s € Aand fi(s) = (i,7)}. Then the set B is defined as,

B = {(iaj’fi,j) : (23]) € fl (Ba UBb)}7 (III)

where T; ; is the average value of the elements of the set f; ((Ba U Bb)(i’j)). In other
words, the set B is a “linear” combination of B, and B, in the above sense.

Before describing how the image shown in Fig. 2, denoted by A, can be obtained
from the edge information contained in B, we make the following definition. The
variation energy of intensity values of an image X is defined as:

M-2 M-2
Ve =0 2 (i — ia1) + (205 — 2i1)"]. (11.2)
i=0 j=0

As indicated above, éul‘ objective is to generate an image &X;, as shown in Iig. 2,
solely from the information contained in B. In other words, we seek to find an image
X, having minimum information while containing the information in B. We call this
concept the minimum information principle *. We quantify the information content

of an image X by its variation energy Vy, and define X. = {(¢,7,2{;)} to be the

1The term “minimum information principle” is motivated by a concept, referred to as “no news

is good news,” introduced in [12].



solution of the minimization problem:

min Vy, subject to XY N B = B, (11.3)

{zi,

where X = {(¢, 7, z;;)}. For example, an image with uniform intensity values has zero
variation energy, and thus contains the smallest amount of information by the above
definition. Because of the quadratic nature of the objective function Vy, we may
write it in matrix notation: XTLVx+XTHX3+X£DX3, where X is a vector in RM =Bl
containing elements z; ;, (7,7) € f1(B) in a certain order, xp is a vector in R/P! with
elements z; ;, (1,7) € fi(B), the matrix Ly is a non-negative definite (positive definite
when B # §) matrix, and the superscript 7 indicates vector transpose. Then, when
B # §, the unique solution of problem (I1.3) is given by the vector x. = —Li:' Hxg/2.
For the given example, the resulting image X, is shown in Fig. 2; this image, obtained
from our minimization problem, is very similar to the corresponding illustration
shown in Fig. 73 of [9].

Therefdre, in an image information system for which the human visual system is
the final receiver, the necessary and sufficient information to be transmitted and/or
stored for the images in Fig. 1 is the edge information.

To summarize, we explain the phenomenon in Fig. 2 with a conjecture that the
visual perception is derived from the edge information of the image. Furthermore,
the perception can be illustrated by an image which is the solution of a minimization
problem similar to (II.3). In this sense, we may take the mechanism governed by
this minimization problem as the one which forms our perception.

We now question whether all edges are of the same importance in forming our
perception. In the next subsection, we describe a binocular phenomenon in an effort

to answer this question in the context of image coding.

B. Strong Edges and Textures

Similar to Fig. 1, shown in Fig. 3 are two images, (a) and (b), separately presented
to the two eyes. In Fig. 3, image (a), examined by the left eye, is a black cross,

while image (b) for the right eye is a network of slanted black lines over a white
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background. Without any special attention to either image, the usual binocular
perception would be similar to the image shown in Fig. 4. That is, the image of the
cross prevails along its edges; it is only at the center of the cross and away from its
edges that the pattern of the network texture may be visible [9].

In view of this phenomenon, the two images in Fig. 3 do not have edge information
of the same importance, for otherwise in the vicinity of the edge of the cross the
network texture should not be invisible. Thus, in this case, we cannot combine the
edge information “linearly” as in (II.1). We speculate that an edge has a strength
property associated with it. Edges of relatively high (low) strength have stronger
(weaker) influence on our perception, and may be called stronger (weaker) edges.
Weaker edges commonly correspond to feztures in the usual sense, and thus are
referred to as textures. As compared with textures, we may simply refer to stronger
edges as strong edges.

Apparently, edges with larger intensity variations and shorter widths (distance
between the corresponding edge brims) are relatively more significant to our per-
ception, and are generally called sharp edges. However, edges do not individually
influence our perception; rather, they interact with other neighboring edges. For
example, a thin black line in the network of Fig. 3 (b) actually consists of two edges
of the same intensity variation and width as for the edge of the cross, but it has less
perceptual significance when compared with the edge of the cross. Based on this
observation, we conjecture that every edge has an original strength which is propor-
tional to (i) the intensity variation between its two edge brims and (ii) its width.
Neighboring edges interact with each other in an inhibitive way. The more closely
two edges stand, the more severely their strengths are weakened. When two edges
of equal original strength stand side by side, as in the case of a thin black line on
a white background, their strengths vanish. The resulting strength of an edge after
it interacts with the neighboring edges will be called the strength of the edge. Thus
stronger edges are those edges of higher intensity variation and shorter width which
are relatively isolated, while weaker edges are those of lower intensity variation and

longer width, being relatively crowded with other edges.
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We now use this qualitative notion of edge strength to explain the phenomenon
of Fig. 4. Similar to Subsection II.A, we denote the subsets of lower and upper edge
brims of images (a) and (b) in Fig. 3 by B, and Bs, respectively. We combine the
information in B, and By based on the concept of edge strength in the following way.
When stronger edges meet weaker ones, the stronger ones dominate. This domination
of the stronger edge will be extended to its neighborhood and the influence will
diminish gradually as a function of the distance from the stronger edge. After a
certain distance from the stronger edge, weaker edges will begin to show their effects
which will eventually dominate at distances far enough from the stronger edge.

Our experiments indicate that this phenomenon for Figs. 3 and 4 can be explained
as follows. In the close neighborhood of the edges represented by B,, the image for
the perception is formed by solving a problem similar to (I11.3) with B, as the fixed-
point set; we call this image X4. For distances sufficiently far from the edge in B,,
where the influence of the strong edge diminishes, the image of the perception is
formed by solving a problem like (I1.3) with B, as the fixed-point set; we call this
image Xp. In between these two extreme cases, the influence of the strong edge
in B, decreases, and the perception is formed by linearly combining X4 and X
(AX4+ (1 — A\)XB) where A decreases quadratically from 1 to 0 as the distance from
the strong edge gets large. Our results indicate that this linear combination with the
chosen weighting facfor results in an image which agrees with our perception as well
as the description given in [9, pp. 496-497]. Again as in Subsection II.A, we tested
our éxplanation by actually constructing Fig. 4 according to the process described
above.

We conclude that stronger edges are of higher importance to our perception.
Therefore, to design an image information transmission system, one should treat
edges in accordance with their strengths to achieve high efficiency. This concept is

especially important for image transmission systems at low bit rates.



C.  Smooth Areas of Image Signals

We now investigate the influence of smooth areas of an image on our perception.
In the smooth areas of an image, intensity values change slowly. For example, in
Fig. 1 (a), the areas inside and outside of the black bar are smooth areas where
intensity values are actually constant. The smooth areas of constant intensity values
are of little interest here, since we have indicated in Subsection II. 4 that they have
no influence on the perception. Instead we will consider the case of smooth areas
with non-constant intensity values.

Let us examine the patterns in Fig. 5 which are also considered in [10] [12]. In
Fig. 5 (a) we have two concentric disks with their intensity values along the diameter
as illustrated in Fig. 5 (b). While the perception of the image in Fig. 5 (a) varies
from person to person, generally, one feels that it is a small dark disk in the middle of
a larger and brighter one. In the extreme case, the inner disk is perceived as having
constant intensity values. However, as shown in Fig. 5 (b), in the regions near the
center of the disks and the border of the bigger disk, the intensity values are, in fact,
identical.

We now describe this phenomenon quantitatively. We denote the set of lower and
upper edge brims by B representing the two circular edges of the inner and outer
disks in Fig. 5 (a). We denote the image in Fig. 5 (a) by X and the image of our
perception by X, = {(7,,27,)}. Then we conjecture that A} is the solution of the

following minimization problem:

M-1M-1
mm/\ ST (yij — i)’ + Vy, (I1.4)

i} 10 j=0
subject to Y N B = B, where A > 0 is a weighting factor on the squared errors
between X and Y in the objective function, Y = {(%,7,¥:,)}, and B # §. Notice
that when A = 0, &), would be an image of two disks with constant intensity values
for the inner disk and a linear transition of intensity values on the outer disk, which
corresponds to the extreme case mentioned before. When A gets larger, A}, would be
closer to X in the Euclidean sense, and would have larger variation energy than the

case with A = 0.



We summarize the psychovisual results described in the above three subsections
by stating that basically the edge information in an image is responsible for our
perception, stronger edges are of higher importance to our perception and the smooth
areas influence our perception together with the edge information.

In the next two sections, we will introduce a three-component image model based

on these observations.

III Characterization of Strong Edge Information
and Generation of the Stressed Image

As pointed out in Section II, for our visual perception, the strong edge information
of an image plays a more important role as compared with texture and smooth areas.
Therefore, in designing image coding systems, strong edges need special attention.
To do this, we may first characterize and then extract this strong edge information
so that it can be treated separately. In what follows, we will consider the character-

ization of strong edge information which leads to the concept of a stressed image.

A.  Characterization of Strong Edge Information

In this subsection, we first provide a mathematical description of edges, strong or
weak, and then develop a scheme for the discrimination of strong edges.

In what follows, we explain briefly a traditional way of describing edges [7] [§]
[13]. For an image X = {(4,4,2:;), 4,7 = 0,1,..., M — 1}, we define the directional

variations v]; and v{; at pixel (7, j),

V5= Tij = Ty, (I11.1)
for1=0,1,...,M —1,and j =0,1,...,M — 2,

V5= Ti — Tigg, (111.2)

fore=0,1,...,M —2,and j = 0,1,...,M — 1. We define the locations of edges to

10



be those points where v] ; and/or v{; assume large absolute values ?. More precisely,
we say that there is an edge point at (7, j40.5) if [v] ;| > T, and an edge point at (i +
0.5,7) if |v§,| > T, for a positive threshold T,. We then describe the corresponding
edge at location (7,7 +0.5) or (¢+0.5, 7) by the intensity values of neighboring pixels,
z;; and z; 41, or, ; j and x4 j, respectively.

This scheme works well for edges which are one-pixel wide, but not for edges of
multi-pixel width as illustrated by the following example. In Fig. 6 (a), we have an
image with an edge which has an intensity jump from 20 to 220, and a variable-
width: one pixel wide at the top and ten pixels wide at the bottom. The intensity
values associated with the 256th scanline (center row) in Fig. 6 (a) is shown in
Fig. 7 (a). On this scanline, the edge is 6 pixels wide: from pixel (256,253) to
(256,261), where the intensity values change linearly from 20 to 220. Notice that
|2a56.; — T2s6,501] = (220 — 20)/6 for 255 < j < 260. Therefore, for T, > 200/6, no
point on this scanline will be identified as an edge point. On the other hand, for
T, < 200/6, the points (256, 7 +0.5), 255 < j < 260 will all be taken as edge points.
While a complete description of the edge on the scanline is provided by these six
detected edge points, this description is redundant, since the two intensity values at
locations (256,255) and (256, 261) completely define the edge here. These two pixels,
(256,255,20) and (256,261, 220), are referred to as edge brim points in Section IL

We now develop a new way of describing edges in the following. We define the

second-order directional variations D] . and D¢, for X at pixel (7, ),

D, = xij-1 — 2205 + Ti s, (I11.3)
fori=0,1,....M—-landy=1,..., M -2,

Df; = i1 = 2%i5 + Tivrj, (I11.4)

fori =1,....M —2 and 5 = 0,1,...,M — 1. We then use these second-order

directional variations to describe the edge brim points and then the corresponding

2The actual schemes introduced in {7] [8] [13] are further extensions of the concept here; they
are combined with techniques of Gaussian filtering and gradient operator, and will be briefly de-

scribed in Section V.
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edges. More specifically, we define the pizel row-curvature energy CT. and the pizel

column-curvature energy C{; by
1

or (Di;)? fori=0,1,....M—landj=1,..., M -2,
]

il
—_~
p—
-
—
(w14
p—

0 otherwise,

and,

(Dg;)? fori=1,...,M —2and j =0,1,...,M -1,

Cs; (IIL.6)

0 otherwise,

respectively, and will refer to them collectively as pizel curvature energies. We then

define the set Br(X') of edge brim points of X" as follows,
Br(X)={(i,j,2:;): C[;>Tor C&; > T}, (1IL.7)

where T' > 0. We apply this characterization of edge brim points to the image in
Fig. 6 (a) with a threshold T' = 32; the detected edge brim points are indicated
by bright points in Fig. 6 (b). We superimpose the image (b) on image (a), and
show the result in image (c) where dark points are used for the upper edge brim
points. These detected edge brim points are exactly at the places where the edge
starts and ends. To demonstrate this, we repeat Fig. 7 (a) along with two vertical
lines indicating the edge brim points in Fig. 7 (b). For the case of Fig. 6, the set
Bp(X) completely defines the edge; in fact, we can recover the image in Fig. 6 (a)
merely from the information in Br(X') by solving the minimization problem (II.3).

We note that definition (II1.7) gives a set of edge brim points regardless of whether
they correspond to strong edges. To circumvent this problem, we introduce the
concept of a stressed image: X° = {(¢,7,z},)} associated with the image X'. We first
state here the properties which the stressed image X'® is required to possess, and
then, in the next subsection, develop a scheme to generate the stressed image. We

require that, at strong edges, the stressed image X'* closely approximate the original

image X, i.e., the squared-errors, (z;; — $f7j)2, are small at these pixels; the pixel
curvature energies of X'* of these pixels have no additional constraint other than

that imposed by the squared-errors constraint. In other areas such as smooth and
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texture areas, we require the pixel curvature energies of X'° to be small while placing
a loose constraint on the squared-error (z;; — zf;)®. Thus Br(X*®), as compared
with Br(X'), will only contain the edge brim points corresponding to strong edges
because large pixel curvature energies occur only at the strong edges. Note that
this stressed image is generally smooth, except at strong edges where it usually
assumes large pixel curvature energies, and thus is “stressed”. Note also that in the
edge extraction schemes introduced in [7] [8] [13], the textures are suppressed by
uniformly smoothing the image. While here we also smooth the image to suppress

the textures, we do the smoothing non-uniformly. The term “stressed image™ is used

to indicate this non-uniformity of smoothing.

B. Generating the Stressed Image

In this subsection, we consider the generation of a stressed image A'® from an original

image X’. Since the main property of the stressed image X'° 1s described in terms

of (i) the squared-errors (z;; — «7;)* and (ii) the pixel curvature energies of X*, we

consider the following quantity at pixel (z,7), which is a combination of the above

two quantities,

E;; (AL

1,]7

AN =X (e —al)t + A0+ XL CE

6,79 ,J 1,77

(1I1.8)

A2 )3, are three non-negative real numbers. We define the

where parameters A}, AF., A7,

1,50
summation of these F; ; as

M-1M-1

E(X,X,0)= 3 3 Bii(M; M5 08), (11L.9)

where A represents the collection of the parameters A} ; /\2 and A7
We then consider the following minimization problem for a given parameter set A
min E(Y, X, A), (I11.10)
{vis
where Y = {(4,7,yi;)}- Note that the objective function E(), X, A) is convex as

a function of Y, since each E;;(A};,A\7;,A\?;) is a convex function of {y:;} [14].
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Therefore, {y;;} is a solution of this minimization problem if and only if it is a

solution of the following system of linear equations,
Vi EY,X,A) =0, (I11.11)

where V. yE(Y, X, A) denotes the gradient of E(Y, X', A) with respect to {y;;}.

We may write the objective function in problem (II1.10) in matrix notation:

[yi.j]TL[yi,j] - Q[A},jxiy] [y: J} + [/\ i L J] {l‘i,j], (T1.12)

where vectors [y; ;| € RM* and Az € RM” contain elements y;; and AL,
respectively, in a certain order (one-to-one function) r: {0,1,....M — 1} x
{0,1,...,M — 1} — {0,1,...,M? — 1}, i.e., the (r(io,Jo))th element in the vec-
tors [y:;] and [A] ;x;;] are ys,,5, and A} . i, o, respectively. The matrix L = [£,,] is
a non-negative definite matrix, where ¢, , is the coefficient of the term y,-1 )y, -1(u)

when v = v, and half of the coefficient of the term y,-1()y,-1(n) When u # v, in

E(Y,X,A). With this matrix notation, (II1.11) simplifies to the following:
Llyil = [Mjzig]- (111.13)

We now show the existence and uniqueness of the solution for the minimization

problem (II1.10) when A} > 0 for all (7, 7).
Lemma IIL.1 The matriz L is positive definite if A} ; > 0 for all (i,7).

Proof: Settmg z;; = 0 for all (v, 7) in the objective function (IT1.12), we have

E(Y, Z,A) = [yi;]" Llyis), (I11.14)
where Z = {(3,7,0)}. While
M-1M-1
ED,Z,0) = 3 30 M) + M08 + 4505 (I11.15)
1=0 j=0

we have that [y; ;]7L{y; ;] = 0 if and only if y; ; = 0 for all (,4), when A} ; > 0 for all
(¢,7) (under the assumption that A?;, A}, are non-negative). QED.
From now on, we assume that the parameter set A is such that all A}; are greater

than zero, and therefore we will talk about the solution of problem (I11.10), which
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is L7'[A};2i;]. The problem (IIL.10) is solved iteratively using the Gauss-Seidel
iteration and with the Multi-Grid technique to speed up the convergence. The Gauss-
Seidel iteration and the Multi-Grid technique are well known [15]. Nevertheless, the

details of the implementation of these two techniques are included in [16].

We now consider the influences of the choices of \!. A2

LCAS
35,3777,

Y* = {(4,7,y7;)}, of problem (II1.10). A close examination of (IIL.8) indicates that if

and A}, on the solution,

A} ; is large compared with A} ; and A, (; j—y7;)? would be small, and the constraint

1, 1,79
on the pixel curvature energies of J* would be loose; on the other hand, if ,\?7]- and

1

3
A;; are large as compared to A; ;,

the pixel curvature energies of J* would be small,
and the constraint imposed on the squared-error (z;; — y7;)* would be relaxed. To
make this observation more precise, we consider the relationship between the original
image X’ and the solution }* governed by the minimization problem (II1.10) as a
filtering operation with input A and output V*. In Appendix A, we investigate the
frequency response of this filter (in its continuous form for simplicity) and show that
it is a low-pass filter with cutoff frequencies at (7, ;) controlled by the parameters

Al

1, Al; and A;, and thus is space-variant. The relationship between the cutoff

i

frequencies and the parameters given in Appendix A can be described as follows:
Larger values of A}, give higher cutoff frequencies in both directions, while larger
values of Af; and )} lead to lower cutoff frequencies in row-direction and column-
direction, respectively. "It is important to note that it is not the absolute values
of AL, A2, and A}, but rather the ratios A?;/A!. and A?;/A!. which influence the
solution Y*.

The minimization problem (III.10) actually has an interesting interpretation in
that the solution J* can be thought of as the stable configuration of a mechanical
structure, a part of which is depicted in Fig. 8. In this structure, at each pixel
location (7, ) we have a vertical spring with both ends fixed on a floor (height = 0)
and a ceiling (height = 255), and a cylinder fixed on it at height z; ;. This cylinder is
constrained to move only in the vertical direction. For each row and column we have

a flexible bar of the shape shown in Fig. 8 with a slot in the middle. The cylinders

associated with each (i,7) are fitted inside the corresponding column bars, and the
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column bars, in turn, are fitted inside row bars. Shown in Fig. 8 is the structure
at pixel (M — 1,0). We now suppose that this mechanical structure assumes a
configuration described by the heights y; ; of the cylinders. Then the potential energy
of this configuration {y;;} is approximated by E(}, X, A) defined in (II1.9), where
A (2 —vig)?, A2,CT; and A}, CF; approximate the potential energies of the spring,
the row bar and the column bar at pixel (i, ), respectively. The parameters A};, A7
and Af’y ; control the rigidness of the spring, the row bar, and the column bar at pixel
(i) [17)

To visualize the formation of the stable configuration for this mechanical struc-
ture, we note that if all the bars are taken out, the cylinders on the vertical springs
for each pixel (7,7) will assume their stable positions at z;j, i.e., this configuration
represents the original image X'. After we slide in all the row and column bars
whose rigidness (or flexibility) are determined by the parameters, {A?;} and {A}},
the configuration of the structure will change, and will reach the final stable con-
figuration {y7;} which has the minimum potential energy, i.e., Y is the solution of
problem (III.10). Due to this analogy to the mechanical system, we refer to (I111.10)
as an Energy Minimization Model (EMM) problem.

To obtain the stressed image A'° from the original image X', it suffices to solve
the EMM problem with a proper parameter set A, namely, small ratios A?;/A} . and
A?;/Al; at locations of strong edges and larger ratios at other places. However, we
can not specify the parameter set A a priori, since this requires the knowledge of the
locations of strong edges - the very purpose of generating the stressed image.

We now proceed to explain qualitatively an approach for solving this problem
with the help of the above mechanical structure. We assume that in the process of
forming the stressed image X'*) the bars and springs first have uniform rigidness,
and the stable configuration reached by the structure is a uniformly smoothed ver-
sion, denoted by V' = {(7,4,v},)}, of the original image X'. Then we allow the bars
to have more flexibility at locations corresponding to large pixel curvature energies
(where the bars are most severely bent), and let the structure stabilize to a new

configuration, denoted by V? = {(¢,7,57,)}. Then again we measure the pixel cur-
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vature energies of this new configuration }?, and allow higher flexibility of the bars
at places of large pixel curvature energies. We continue the process by repeating the
above procedure. Notice that the textures are suppressed in the first configuration
V!, and will continue to be suppressed in later configurations, while the strong edges
which correspond to locations of large pixel curvature energies will be gradually ap-
proximated in the later configurations since we change the flexibilities of the bars to
accentuate the strong edges.

To express the above idea mathematically, we start with a uniform parameter
set A, i.e., parameter )\ﬁj = A for all (4,7), k = 1,2,3, and solve problem (III.10)
to get Y'. We then update the parameter set A by changing the ratios, A7;/A;
and A?;/A};, according to C}; and Cf; of V'. The updating strategy should be
such that large values of C]; and Cy; give rise to small ratios, A} ;/A}; and A}, /A,
respectively. In the algorithm proposed here, we set A7 /Aj,; and A];/Al. to be

inversely proportional to C7; and C¢, i.e.,

2’]’

A/ = B/CE; and M /0L = B/CE (IIL.16)

4]
where 3 is a constant. Then we solve problem (I11.10) again with the new parameter
set to obtain Y?. We repeat the above iteration until the relative variation of the
objective function in (III.10) for the two consecutive iterations is smaller than a

given threshold. The final solution y"’, where K is the total number of iterations,

will be called a stresséd imhge (denoted by X'*-before) of the image X.

IV  Extraction of Strong Edge Information and a
Three-Component Image Model

As indicated before, the strong edge information can be extracted by identifying
pixels of large pixel curvature energies in a stressed image X°, and is represented by
Br(X*) in (I11.7). While generating Br(X®) based on (III.7) is straightforward, the
choice of the threshold T is crucial and fine-tuning of T" is computationally extensive.

To circumvent these difficulties, further selection of the pixels in Br(X?) is made by
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identifying pixels of large local mazimum pixel curvature energies as the resulting
edge brim points. More specifically, the definition of edge brim points in (II1.7) is

modified as follows:

(t,5,27;) € Br(X?)

if  Dp,_,DI,<0, DDl <0, and CI, > T;

1,1

orif DI, ,Di.>0,D;.Di, <0, and CI; > max{C]; |, T}

or if 1Dl <0, D7D >0, and CF; > max{C] ., T}

orif DI, ,Di.>0,D;,Di., >0, and C}; > max{C};_,,C] 1, T};

orif  Di_,;D;.<0,D{; D, <0, and C}; > T;

or if i1;D5;,>0,D8,,,D;; <0, and Cf; > max{C[_, ;,T'};

orif  Di,.Di;<0,D;.Di,;>0, and Cf; > max{Cf,, ;, T}

orif  D{,;Di;>0,D;D;,;>0,and C; > max{C;_; ;,Ci, ;, T}
(IV.1)

Therefore, the set Br(X®) contains pixels not only of high pixel curvature energies,
but also of curvature energies larger than those of the neighboring pixels with the
same sign of the second-order variations.

To complete the process of the extraction of the strong edge information, we
will consider the generation of the contours of edge brims from Br(X®) in the next

subsection. The formation of these contours is also important for the coding of strong

edge information [11] [16] [18] [19].

A. Generation of Edge Brim Contours

We now consider the problem of generating contours from the set Br(X*) described
n (IV.1). We define a contour as a sequence of triples: b = {(ik,jk,xfktjk)}, k=
0,1,...,m —1, such that

|57 = <L R - 5 L (Iv.2)
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and (:F1 551) £ (45 5%), for k = 1,...,m — 1, and the mazimum-variation of
intensity values

T8 = fmod 1 25 =7 < T, (1v3)

where T, > 0, T is the average of the pixel intensity values on b, and m is called the
length of the contour. This definition is different from previous contour definitions
[20] - [22] in condition (IV.3); condition (IV.3) is introduced to prevent a mixing of
the upper and lower edge brims into one contour. In the following, we will deseribe
the details of the contour extraction procedure used here.

Let us first consider the so-called contour tracing problem [20] - [22], which ignores
condition (IV.3). This problem is solved by a local search algorithm. To aeSC1‘ibe this
algorithm, consider Fig. 9 where a generic pixel (¢, ) is circled, and its neighboring
pixels are labeled by indices 0,1,...,7. Starting from a pixel (:°, ;%) € fi(Br(X*)),
the tracing algorithm searches among its neighboring pixels (starting from 0 in the
clockwise direction) for one in Br(X*). As soon as the algorithm finds a pixel
(21, 71) € fi(B7(X*®)) in these neighboring pixels, it moves the search center to (¢*, j1),
and repeats the search again until the search fails. The resulting sequence of pixels,
(#°,3% 2% 50), (3,51, 24 j1),. .., defines the contour extracted.

Suppose that we have a contour (1% j° 2% ), (¢%,7% 2% ), -0 (771,570,
Tin jme1) satisfying the geometric condition (IV.2). We now impose the constraint
(IV.3) on this contoﬁ—r. While the whole contour may not satisfy this constraint for
a given threshold T, short segments of the contour are likely to satisfy this con-
dition. Thus this added constraint essentially breaks the contour into segments,
which leads to a problem similar to the straight-line-fitting problem in [23], with the
exception that the straight-line-segments in [23] are replaced by constant-intensity
curve-segments here.

The contour extraction algorithm actually implemented is a combination of the
above techniques and works as follows. Starting from a pixel (:°, j°, 2% ) € Br(X”®),
in its eight neighboring pixels we search for pixels in By(&'®), among which we choose
a pixel that gives the minimum fnaximum—variation; if this maximum-variation is also

lower than T., we take this pixel as the next pixel (:',j',z% ;) on the contour. Then
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we move the search center to (¢',5', @} ;1), delete (:°,7% 2% ;o) from Br(X*), and
repeat the above procedure again. The process stops when we cannot locate a pixel
in Br(X*) having maximum-variation lower than 7, among the neighboring pixels of
the current search center. This is the basic form of the algorithm. In the following,
we discuss two other considerations in the actual algorithm implemented, namely,
back-tracing and prediction.

Note that when we take an arbitrary pixel in Br(&'*) to begin a contour tracing,
we might start in the middle of an actual contour, and would only get a portion of
this contour using our basic algorithm. We circumvent this problem by introducing
a flag such that when in the first search step we have more than one neighboring
pixel in Br(X*) giving maximum-variations lower than T, this flag is set to “1”, and
otherwise, it is set to “0”. When this flag is “1”, we first trace to one end of the
contour, and then trace back to the other end of the contour.

Due to the iterative nature of the algorithm for generating the stressed image, it
is possible that we lose a few pixels on some edge brim contours for a given threshold
T.. Some of the missing pixels may be recovered by a predictive process based the
information of the generated contours. The details of the prediction is included in
Appendix B.

Having determined all contours with the above algorithm, we eliminate those
contours of small length, namely, those with length smaller than a certain threshold
T,. Since strong edges are represénted by two contours, namely, lower and upper
edge brims, we may use this pairing property to further reduce spurious contours.

More precisely, let us define a d-neighborhood of a pixel (7, j,zf;) as follows,
N(d, (%, %, zi #)) = {4, 4,)  max{li — "], |j — j*1} < d}, (IV.4)

where d > 0. We say that a pixel in Br(X*) is paired in distance d if and only if the
d-neighborhood of this pixel contains pixels on another contour of Br(X*); and that
a contour in Br(X*®) is pa,ir‘ed in distance d if and only if it has at least T}, pixels
being paired in distance d. Having checked all contours in B (X*®), we eliminate

those contours not paired in distance d.



We will denote the final collection of the pixels on the remaining contours by
B7(X*) again, and we will refer to this set as the collection of extracted strong edge

brim contours.

B. A Three-Component Image Model

We now proceed to generate an image P = {(7,7,p:;)}, %, = 0,1, ..., M — 1, solely
from Br(X*), such that the difference image X &P = {(, 7, zi; — pi;)} has no strong
edges represented by B7(X?®). We generate the image P based on the minimum
information principle introduced in Section IT (ref. eq. (11.3)). We will call the image
P the primary image (or primary component) of the original image X', since the
strong edge information contained in image P is most important to human visual
system.

Notice that, the stressed image X°, from which the set By(X?) is derived, can
be considered as the output of a space-variant filter for the input X. This filter is
basically low-pass except at locations of strong edges. Thus the stressed image X*
contains the low-frequency component, or smooth coﬁponent, and the strong edge
information of the image X. Therefore, the difference image X' & X'® consists of the
high-frequency component, but without the strong edge information. We define 7 =
xox® = {(i,3,65)) = {(i.,25-x1,)} and § = X°6P = {(i,,50)} = (6,23~
p:;)} corresponding to the texture and the smooth component, respectively. Thus,

the image X can be expressed as
X=TaeSoP= {(i,j,ti’j—i-si,j-’rpi,j)}. (Iv.5)

In the sequel, this model will be referred to as the three-component image model.
In the next section, we present an experiment for this three-component image

model and a comparison with the LGO.
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V  Experimental Results and Comparisons

Consider the test image shown in Fig. 10. This 256 x 256 image has a circular strong
edge in the middle and textures or smooth areas in the rest of the image. A scanline
(row 128) of the test image is plotted in Fig. 11. Note that around the center of the
scanline we have a convex curve with the shape of a sine wave from 0 to =, then
two strong edges, and up-down waveforms with linearly increasing frequency and
amplitudes.

To get a picture of the edge location of the edge, we draw a grid in Fig. 12 with
the intersections of vertical and horizontal lines indicating the pixel locations; the
upper and lower edge brims are indicated by small square-dots ( Fig. 12 is only the
center portion of the image ). Two typical edge segments are shown in Fig. 13. Note
that the width of the edge is not limited to one pixel in contrast with the restriction

in [7] [8] (see Subsection V.B).

A.  An Ezample of the Three-Component Image Model

The stressed image is generated with the scheme developed in Section III. For
simplicity, we assumed that A}, = A}, = A5, for all (z,7). Thus A;;/A}; is the only
independent parameter. Therefore, instead of updating two parameters A7, A7, we
may simply update A} ; by the formula: A} ; = v(C7; + Cf;), (7 is a constant), which
is similar reciprocally to (II1.16) [16].

The stressed image is shown in Fig. 14 (a), which is clearly stressed only at the
strong edge of the test image. The computer time used on a SPARCstation-1 is
about 1400 seconds. Edge brim points and the corresponding contours are extracted
by the scheme introduced in Section IV, with T = 512, T, = 32, T, = 16 and d = 3.
The resulting two contours are shown in Fig. 14 (b). An enlarged picture of these
contours is shown in Fig. 15. These two contours correspond to the lower and upper
edge brims. In Fig. 16, we superimpose Fig. 15 and Fig. 12 to demonstrate the

effectiveness of our scheme in locating the strong edge.

To better understand the behavior of the stressed image, we have plotted scanline

[S]
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128 for the test image (solid curve) and for the stressed image (dotted curve) in
Fig. 17 (a), and with vertical lines indicating the locations of edge brim contours on
this scanline in Fig. 17 (b). Note that the scanline associated with the stressed image
is smooth except at the strong edge locations where it matches the edge, and that
the locations of edge brim contours coincide with the upper and lower edge brims of
the strong edge.

The primary image associated with the extracted strong edge is shown in Fig. 18.
The other two components, namely, the smooth and texture components, are derived
as in Subsection IV.B. Notice that the smooth and texture components are differ-
ences of two images, and thus may have negative intensity values. We have added
constants to these two components in order to bring their intensity values in the
displayable range, namely, [0,255]. The resulting images of these two components
are shown in Fig. 19. Note that the primary image contains the strong edge informa-
tion, the smooth component provides the background slow intensity variations and
the texture component contains all the textures.

Note that there are some traces of brighter pixels at around the location of the
circular edge in the texture image. The reason for this phenomenon is basically the
orientation anisotropy of the EMM problem since there are only two directions for
the bars and the discrete structure of the problem (ref. Section IIT). This orientation
anisotropy can be most clearly seen for edge segments with an orientation slightly
tilted away from the vertical or the horizontal directions. However, since the primary
image gives a perceptually good copy of the edge, these traces of brighter pixels can
be treated as textures.

In what follows, we compare the performance of the strong edge extraction of the

three-component image model with that of the LGO scheme.

B.  The Laplacian-Gaussian Operator

The LGO scheme refers to an edge extraction scheme which is introduced by Marr
and Hildreth [13]. In the following, we provide a brief description of the LGO and

discuss some of its applications in the context of image coding [7], [8]. Then some
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limitations of the LGO are illustrated by an example.

For simplicity, let us consider a real-valued function z(#) of a real variable t. We
define the edge locations of z(¢) by the zero-crossing locations of the second derivative
of z(t). To suppress weak edges, a Gaussian filter is used to smoothen z(t) before
second derivative zero-crossings are located. More precisely, a 1-D Gaussian kernel

g-(t) of standard deviation o is convolved with z(t):

0y =2 @50 = [~ sw——en-U Dy v

-0 2ro
and the points at which y”(¢) = 0 are defined as the edge locations. Note that the
standard deviation o of the Gaussian kernel controls the strengths of the extracted
edges, i.e., larger values of o correspond to higher edge strengths [13].

In the 2-D case, we consider a function z(t, s) of two variables ¢ and s. The edges
with strengths above a threshold are defined as the points where the Laplacian of
Yo (t,3), V2iy,(t,s) = 0%y, /0t* + 9%y, [Ds?, vanishs, where y, (¢, s) is the convolution
of z(t,s) and a 2-D Gaussian kernel: G, (r,8) = exp(—r?/(2¢%))/(2x0?), where (r,0)
denotes the polar coordinates, with r € [0,00), § € [0,27). Note that

V2, (t,s) = V{z(t,s) ® G,(r,0)) = z(t, ) ® (VG (r, 9)), (V.2)
and
- 0*G 190G 1 r? r?
2 _ 104 _ _ _ :
VGo(r,6) = or: rOr 7ra4(202 1) exp( 202)' (V.3)

To apply the LGO to digital images, the 2-D kernel V2G,(r,0) is discretized and
convolved with the image {z;;}. We denote the result of this convolution by {y:;}
and locate its zero-crossings in the horizontal and vertical directions. For example,
we say that there is a zero-crossing at (7,7 + 0.5) if y; ;¥ ;41 < 0. As in [7], we apply
a gradient operator across each zero-crossing; if the absolute value of the output of
the gradient operator is above a certain threshold, the zero-crossing is taken as an
edge location. The resulting edge locations are transmitted along with the intensity
values of their neighboring pixels for a complete description of the corresponding

edges.
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As indicated above, the standard deviation o of the Gaussian filter controls the
strengths of the extracted edges. Additionally, o influences another important prop-
erty of the resulting zero-crossings, namely, the accuracy of their locations with
respect to the actual edges. Smaller values of o give better accuracy, and larger val-
ues of o result in poor accuracy [24]. We illustrate this situation with the following
example.

Consider the 1-D signal z(z) shown by the solid curve in Fig. 20 with an edge
at 1 = 179.5. More specifically, z(¢) = 105 for : < 180, z(180) = —105 and z(z)
linearly increases afterward. The dashed curve in Fig. 20 is a normalized version of
—y”(7) (ref. eq. (V.1)) for o = 3. Notice that —y/(z) has an isolated zero-crossing
at i = 179.5. Thus, in this case the LGO locates the edge accurately; the intensity
values of the left and right pixels of this zero-crossing are z(179) = 105 and 2(180) =
—105. These intensity values plus the location of the zero-crossing provide a complete
description of the edge. Fig. 21 shows —y/(¢) for 0 = 11. In this case, the zero-
crossing point is 2 = 177.5 which is clearly an inaccurate result.

Thus, on the one hand, small values of o are needed to ensure accurate detection
of the edge location and, on the other hand, large values of o should be used for
detection of “strong” edges. These requirements are conflicting and constitute a
drawback of the LGO edge-detection scheme. In addition, the LGO scheme implicitly
assumes the edge is one sample wide. This is in contrast with real-world situations
(especially for images) where edges are typically several pixels wide.

In what follows we proceed to use the LGO scheme to detect the strong edge of

the test image presented in Fig. 10.

C. An Ezample of Locating Strong Edges with the LGO

We now present the results of the LGO-based edge detection for the test image
with five different values of ¢ namely, 1,2,3,4 and 5 pixel-widths. In each case,
the threshold for the output of the gradient operator is determined empirically as
the largest possible to keep the zero-crossings for the strong edge and to suppress,

as much as possible, the zero-crossings corresponding to the textures. The results
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are summarized in Fig. 22 in the form of images where a bright point at pixel (¢, )
indicates a zero-crossing at (z,7 + 0.5) and/or (: 4+ 0.5,7). The computer times, in
seconds (s), used on a SPARCstation-1 to do the convolution (ref. (V.8)) are also
included.

As shown in Fig. 22, the result for ¢ = 5 pixel-widths detects the strong edge
only, while all the other results contain zero-crossings corresponding to the textures,
as well. The enlarged picture of the zero-crossing points for ¢ = 5 pixel-widths is
shown in Fig. 23 (compared with the actual edge location in Fig. 24), where the
positions of the zero-crossings are one half pixel-width to the right or below the
square-dots (ref. Subsection V.B). Thus, the set of the edge brim points consists
of the pixels on two circles. One circle is shown in Fig. 23, and the other one (not
shown) is one pixel away to the right and below of the first one. The primary image
of these edge brim points is generated and shown in Fig. 25. Notice that simply there
is no edge in Fig. 25, as compared with Fig. 18 obtained using the three-component
image model.

Therefore, the representation of the edge in the test image generated with the
LGO gives location error, and, more seriously, fails to provide the intensity variation
of the edge, while the strong edge extraction scheme associated with the three-

component image model provides a superior edge extraction performance.

VI Summary and Conclusions

We have studied several psychovisual evidences of human visual system and at-
tempted to describe them mathematically. In particular, the strong edges and the
areas of smooth intensity variations are carefully studied and their effect as well
as their interaction in formation of the perception are described in terms of simple
minimization problems. An algorithm, based on a space-variant low-pass filtering
operation, for the generation of the stressed image is developed from which the strong
edges can be easily extracted. This has led to introducing a three-component image

model based on the (i) strong edges, (ii) areas of smooth intensity variations and
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(iii) textures - the three components which apparently play different roles in the
formation of the perception.

In a specific comparison, we have shown the superiority of the strong edge ex-
traction scheme developed here over the LGO-based edge extraction method. The
three-component model was motivated by the need for subjective-based criteria for
the design of low bit rate image coding systems (such as adaptive DCT and sub-
band coding) in which the three components of our model are treated based on their
relative perceptual importance. The preliminary results [11] [18] [19] are quite en-
couraging. In addition, we are currently working on applying the three-component
model in the complex domain for representing planar curves - a problem which has

applications in computer vision [25].

Appendix A EMM - a Space-Variant Filter

In this Appendix, we show that the EMM problem can be described as a space-
variant filtering process. The input-output relation of this filter is determined by the
minimization problem (II1.10), and will be discussed in the following.

For simplicity, we consider the continuous form of (III.10). Let z(u,v) be a
continuous function of two variables u, v defined on a simply-connected closed domain
[26] G C R? with a piecewise smooth boundary C. We want to solve the following

minimization problem, -

minJo(y) = [ [ (e o)) = ()] + Ao, 0)ealu,v)]
+As(u, ) [Yow(u, v)]*} dudv, (A.1)

where \;(u,v) > 0, 7 = 1,2,3, are functions of u,v on G having continuous second-
order partial derivatives, y(u, v) is an admissible function defined on G having contin-
uous fourth-order partial derivatives with y, dy/du, dy/0v vanishing on the bound-
ary C and yy,(u,v) and y,,(u, v) are second-order partial derivatives of y with respect
to u and v, respectively. In (A.1), J;(y) is used to denote the objective function. All

admissible functions form a linear space, denoted by D(G) endowed by a norm ||y

[S]
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defined as

lyll = max_ly(u, v}l + max yu(u,v)[ + max [yu(u, o)l (A.2)

Thus D(G) becomes a normed linear space [26].
We say J, has a minimum at y* € D(G) if and only if J(y) — J(y*) > 0 for all
y € D(G). Then, the necessary and sufficient condition for y* to be a minimum of

J, is that [16]
/ / " = @) Ao b+ Aoy dudv = 0, (A.3)
for all h € D(G). By the Green’s theorem [27], (A.3) reduces to [16]
A 0)y7 () + Ay Jun (1 0) + oyl Yoo 0) = My (u,0)2(usv), (A4)

for (u,v) € G. Equation (A.4) is known as an Fuler’s equation [26].

Now we show that at all (u,v) € G satisfying Aj(u,v) > 0, the solution of the
Euler’s equation is unique. Let y; and y, be two solutions of the Euler’s equation,
then y; — y, is a solution of the Euler’s equation with = = 0, and thus y; — y, is
a minimum point of Jo. Then yi(u,v) — y2(u,v) = 0, for every (u,v) such that
A1(u,v) > 0, for otherwise Jo(e(y1 — ¥2)) < Jo(y1 — y2) for any 0 < e < 1.

Now we investigate the frequency domain behavior of the input-output relation
governed by the above Euler’s equation. Let (u;,v;) be an interior point in G, and
A be an open neighgorhood containing the point: (uj,v;). To further simplify the
problem, we assume that the paramétér functions, A\; > 0, A, A3, are constants on A
(certainly when A is a small neighborhood, this is a reasonable assumption). Then

the above Euler’s equation becomes

A (ur, v1)y" (4, v) + Az (U, v1)Yguun (4, v) + As(tn, v1) Y500 (1, v) = A (ug, vi)z(u, v)
(A.5)
on A. Equation (A.5) is a linear partial differential equation which describes the
input-output relationship of a linear system with input z(u,v), output y~(u,v) and
frequency response H(w,,w,) given by
1

Az(u1,v1) 4 Aa{ui,vr), g4
1+ A1 (uy vl) + A(up,m) v

H(wy,w,) = (A.6)
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which clearly describes a 2-D low-pass filtering operation. The cutoff frequencies of
H(w,,w,) are controlled by the ratios Ay(u1, vy)/A1 (w1, v1) and Az(uy,v1)/ A (ur,v1).
Larger values of Aj(uy,v1) give rise to higher cutoff frequencies in u and v, while
larger values of Ay(u1,v1) and As(uy,v;) lead to lower cutoff frequencies in v and v
directions, respectively.

Note that we have assumed that all admissible functions and their first-order
partial derivatives vanish on the boundary C, while in the original case (I11.10) we
do not have any such constraint. This difficulty can be avoided by solving a slightly
modified problem in which the boundary constraints are removed. The details of

this are omitted here but can be found in [16].

Appendix B Contour Prediction

The first-order prediction works in the following way. After the basic algorithm (with
back-tracing) stops, we locate an additional pixel in the neighborhood of the end-
pixel of the traced contour in the direction determined by the last two pixels. More
precisely, for the traced contour, (i, 7%, 2% ), (¢%, 7', Th )y (2571, 9L, Tieor jeo1)s

the additional pixel, (3%, 5%, T3 ;e), is defined as:

Z'Z — Z‘E—-l + (Z-e—1 _ Z'Z—2); jE — ]-Z—l + (j@—l __jZ—Z). (Bl)

If this new contour, (¢',5,2% ), ..., (i, 55 3, j¢), satisfies condition (IV.3), and by
the above basic search procedure we can locate in the neighborhood of (i%, j*, (L'fl’j()
a pixel other than (:¢71, 7%, Tl-1 je-1) in Br(&X?®), we move the search center to this
new pixel in Br(X*); otherwise, the contour terminates at (¢!, 7471, o1 joa ). The
first-order prediction is illustrated in Fig. 26, where the end pixel and its previous
pixel are indicated by a circle and a cross, respectively, and the predicted pixel is
indicated by a square box. ‘

If the first-order prediction fails, a second-order prediction can be used. Using

41
’

the same notation as before, we define pixels (ig,je,:cf,,].e) and (2 A

J

s
) xi£+1,]‘£+1)



such that

’L'Z — 2'5—1 + (if—? _ 2'3—3); jf — jl—l + (]'l——Z _]-l—B);

2‘(-{-1 — i( + (if—l _ Z'E-Z); jf+1 — jl 4+ (jf—l __]'L’-—2). (BQ)

If this extended contour does not satisfy condition (IV.3), we stop and end the
contour at pixel (:*71, 747} x5, je-1); otherwise, we continue as follows. If pixel
(41, 7 s je41) is in Br(X?), we move the search center to this pixel and con-

tinue; if not, we perform the basic search step at (:/+1, ;%1

,:vf.”l’jgﬂ), and if we
successfully locate a pixel in By(X*), we then move the search center to this new
pixel and continue. We illustrate the second-order prediction in Fig. 27 with a simi-

lar legend as in Fig. 26. This procedure can be extended to higher order predictions

in a similar manner.
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(a) (b)

Figure 1: (a) Vertical bar for the left eye; (b) horizontal bar for the right eye.

Figure 2: Binocular perception of the two images in Fig. 1.
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(a) (b)

Figure 3: (a) A cross; (b) a network of lines.

Figure 4: Binocular perception of the two images in Fig. 3.
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(b)

Figure 5: (a) Two concentric disk image; (b) intensity values along the diameter of

the disks.
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()

Figure 6: (a) An edge of variant width; (b) lower and upper edge brims; (c) image

(a) superposed with image (b).
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Figure 7: (a) Scanline #256 of image (a) in Fig. 6; (b) with indications of edge

brims.
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Figure 10: Test image.
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Figure 11t Scanline #1928 of the test image.
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Figure 12: Enlargéd picture of the edge-brim locations in the test image.

Figure 13: Typical segments of the edge in the test image.



(a) The stressed i}nage (b) The picture of edge brim contours

Figure 14: The stressed image and the picture of edge brim contours extracted for

the test image.
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Figure 15: Enlarged picture of the contours extracted from the stressed image shown

in Fig. 14 (a).
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Figure 16: The superimposition of Fig. 15 and Fig. 12.
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(b) Vertical lines indicating location of edge brim points on this scanline.

Figure 17: Scanline #128 of the test image and the stressed image.
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Figure 18: The primary image for the test image.

(a) Smooth component (b) Texture component

Figure 19: The smooth and texture components.
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o =1 pixel-width (33 s) o = 2 pixel-width (125 s)

o = 3 pixel-width (345 s) o = 4 pixel-width (603 s)

o =5 pixel-width (1019 s)

Figure 22: Zero-crossing results with the LGO scheme for the test image.
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Figure 23: Enlarged picture of the zero-crossings for ¢ = 5 pixel-widths.
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Figure 24: The superimposition of Fig. 23 and Fig. 12.
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Figure 25: The primary image of the neighboring pixels of zero-crossings shown in

Fig. 23.
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Figure 26: The first-order prediction.
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Figure 27: The second-order prediction.
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