
FastMap: A Fast Algorithm for Indexing, Data-Mining andVisualization of Traditional and Multimedia DatasetsChristos Faloutsos�Institute of Systems Researchand Dept. of Computer ScienceUniv. of Maryland, College Park King-Ip (David) LinDept. of Computer ScienceUniv. of Maryland, College ParkAbstractA very promising idea for fast searching in traditional and multimedia databases is to map objectsinto points in k-d space, using k feature-extraction functions, provided by a domain expert [Jag91].Thus, we can subsequently use highly �ne-tuned spatial access methods (SAMs), to answer severaltypes of queries, including the `Query By Example' type (which translates to a range query); the `allpairs' query (which translates to a spatial join [BKSS94]); the nearest-neighbor or best-match query,etc.However, designing feature extraction functions can be hard. It is relatively easier for a domainexpert to assess the similarity/distance of two objects. Given only the distance information though,it is not obvious how to map objects into points.This is exactly the topic of this paper. We describe a fast algorithm to map objects into points insome k-dimensional space (k is user-de�ned), such that the dis-similarities are preserved. There aretwo bene�ts from this mapping: (a) e�cient retrieval, in conjunction with a SAM, as discussed beforeand (b) visualization and data-mining: the objects can now be plotted as points in 2-d or 3-d space,revealing potential clusters, correlations among attributes and other regularities that data-mining islooking for.We introduce an older method from pattern recognition, namely, Multi-Dimensional Scaling(MDS) [Tor52]; although unsuitable for indexing, we use it as yardstick for our method. Then,we propose a much faster algorithm to solve the problem in hand, while in addition it allows forindexing. Experiments on real and synthetic data indeed show that the proposed algorithm is sig-ni�cantly faster than MDS, (being linear, as opposed to quadratic, on the database size N ), while itmanages to preserve distances and the overall structure of the data-set.1 IntroductionThe objective of this work is to provide a retrieval and visualization tool for large collections of traditionalas well as `exotic' and multimedia datasets. An excellent idea, suggested by Jagadish [Jag91], was to�This work was partially supported by the National Science Foundation (IRI-8958546 and IRI-9205273), with matchingfunds from Empress Software Inc. and Thinking Machines Inc.1



rely on domain experts to derive k feature-extraction functions, thus mapping each object into a pointin k-dimensional space. Then the problem is reduced to storing, retrieving and displaying k-dimensionalpoints, for which there is a plethora of algorithms available.However, it is not always easy to derive the above feature-extraction functions. Consider the case,eg., of typed English words, where the distance function is the editing distance (minimum number ofinsertion, deletions and substitutions to transform one string to the other). It is not clear which thefeatures should be in this case. Similarly, in matching digitized voice excerpts, we typically have to dosome time-warping [SK83], which makes it di�cult to design feature-extraction functions.Overcoming these di�culties is exactly the motivation behind this work. Generalizing the approachby Jagadish, we try to map objects into k-dimensional points, assuming that a domain expert has onlyprovided us with a distance/dis-similarity function D(�; �). Notice that this setting includes the caseof features, by using eg., the Euclidean distance between two feature vectors as the distance functionbetween the corresponding objects.Given such a set of objects and the distance function D(), users would like (a) to �nd objects similarto a given query object, (b) to �nd the pairs of objects that are most similar to each other, as well as(c) to visualize the distribution of objects into some appropriately chosen space, in order to check forclusters and other regularities.Next, we shall use the following terminology:De�nition 1 The k-dimensional point Pi that corresponds to the object Oi, will be called `the image'of object Oi. That is, Pi = (xi;1; xi;2; : : : ; xi;k)De�nition 2 The k-dimensional space containing the `images' will be called target space.Some of the applications that motivated the present work are listed next. Some distance functionsare also described.� Image and, in general, multimedia databases: In a collection of shapes [Jag91] we would like to �ndshapes similar to a give one; in a collection of color images, we would like to �nd images with similarcolors, shapes or texture [NBE+93]. There we used the Euclidean distance between appropriatelyselected feature vectors (color attributes, moments of inertia for shape, etc.) Search-by-contentis highly desirable in multimedia databases, with audio (voice, music), video etc. [NC91]. Forexample, users might want to retrieve, music scores, or video clips that are similar to a targetmusic score or video clip. Once the similarity (or dis-similarity) function has been determined,our proposed method can be immediately applied.� Medical databases, where 1-d objects (eg., ECGs), 2-d images (eg., X-rays) and 3-d images (eg.,MRI brain scans) [ACF+93] are stored. Ability to retrieve quickly past cases with similar symp-toms would be valuable for diagnosis, as well as for medical teaching and research purposes. Noticethat the distance functions are complicated, typically requiring some warping of the two images,to make sure that the anatomical structures (eg., bones) are properly aligned, before we considerthe di�erences [TBS90]. This warping makes it di�cult to �nd features that would adequatelydescribe each image (and therefore, map it into a point in feature space).2



� Time series, with, eg. �nancial data, such as stock prices, sales numbers etc., or scienti�cdatabases, with time series of sensor data, weather [CoPES92], geological, environmental, as-trophysics [Vas93] data, etc., In such databases, typical queries would be `�nd companies whosestock prices move similarly', or `�nd past days in which the solar magnetic wind showed patternssimilar to today's pattern' [Vas93]. The goal is to aid forecasting, by examining similar patternsthat may have appeared in the past. In [AFS93] we used the Euclidean distance (sum of squarederrors) as the distance function between two time series.� Similarity searching in string databases, as in the case of spelling, typing [Kuk92] and OCR errorcorrection [JSB91]. There, given a wrong string, we should search a dictionary to �nd the closeststrings to it. Conceptually identical is the case of approximate matching in DNA databases,where there is a large collection of strings from a four-letter alphabet (A,G,C,T); a new stringhas to be matched against the old strings, to �nd the best candidates [AGM+90]. In all theseapplications, the distance is typically the editing distance ie., minimum number of insertions,deletions or substitutions that are needed to transform the �rst string to the second.� Data mining [AS94], [AIS93] and visualization applications. For example, given records of patients(with attributes like gender, age, blood-pressure etc.), we would like to help the physician detectany clusters, or correlations among symptoms, demographic data and diseases.From the above descriptions, two types of queries seem to be very desirable: `query-by-example'requests and `all pairs' queries. Speci�cally:De�nition 3 The term query-by-example (or, equivalently `range query' or `similarity query') willsignify queries of the following form: Given a desirable object (termed query object), search a collectionof objects to �nd the ones that are within a user-de�ned distance � from the query object.De�nition 4 The term all pairs query (or, equivalently `spatial join') will signify queries of the form:In a collection of objects, �nd the pairs of objects which are within distance � from each other. Again,� is user-de�ned.All the above applications would bene�t by a mapping of objects into points in some k-d space. Sucha mapping provides two major bene�ts:1. It can accelerate the search time for queries. The reason is that we can employ highly �ne-tunedSpatial Access Methods (SAMs), like the R�-trees [BKSS90] and the z-ordering [Ore86]. Thesemethods provide fast searching for range queries as well as spatial joins [BKSS94].2. it can help with visualization, clustering and data-mining: Plotting objects as points in k=2 or3 dimensions can reveal much of the structure of the dataset, such as the existence of majorclusters, the general shape of the distribution (linear versus curvilinear versus Gaussian) etc..These observations can provide powerful insights in formulating hypotheses and discovering rules.Thus, as discussed before, the general problem is de�ned as follows. We shall refer to it as the `dis-tance case', to highlight the fact that only the distance function is known:General Problem (`distance' case) 3



Given N objects and distance information about them (eg., an N �N distance matrix, orsimply the distance function D(�; �) between two objects)Find N points in a k-dimensional space,such that the distances are maintained as well as possible.We expect that the distance function D() is non-negative, symmetric and obeys the triangular in-equality. In the `target' (k-d) space, we typically use the Euclidean distance, because it is invariantunder rotations. Alternative distance metrics could be any of the Lp metrics, like the L1 (`city-block'or `Manhattan' distance).A special case is when we have already extracted features from the objects, but we still want to doa projection, usually because the features are too many (`dimensionality curse'). We shall refer to it asthe `features' case:Specialized Problem (`features' case)Given N vectors with n attributes each,Find N vectors in a k-dimensional space,such that the distances are maintained as well as possible.Again, the distance between two vectors in either of the two spaces could be any Lp metric. Asbefore, we choose to use the Euclidean distance (L2 metric).In the above problems, the ideal mapping should ful�ll the following requirements:1. It should be fast to compute: O(N) or O(N logN), but not O(N2) or higher, because the costwill be prohibitive for large databases.2. It should preserve distances, leading to small discrepancies (low `stress' - see (Eq. 1)).3. It should provide a very fast algorithm to map a new object (eg., a query object) to its image.The algorithm should be O(1) or O(logN). This requirement is vital for `queries-by-example'.The outline of this paper is as follows. In section 2 we present a brief survey of Multi-DimensionalScaling (MDS), related dimensionality reduction methods (K-L, SVD etc) and pointers to literature onclustering and spatial access methods. In section 3 we present our method. In section 4 we give someexperimental results on real and synthetic datasets. In section 5 we list the conclusions.2 SurveyHere we present some background information about older attempts to solve the problem. First wediscuss the Multidimensional Scaling (MDS) method that has been used in several diverse �elds (eg.,social sciences, psychology, market research, physics [You87]) to solve the `distance' case problem.Then, we present the Karhunen-Lo�eve transform and the closely related Singular Value Decompositionthat has been used for dimensionality reduction (`features' case). Finally, we provide a brief survey ofspatial access methods, as well as pointers to clustering algorithms.4



2.1 Multi-Dimensional Scaling (MDS)Multidimensional scaling (MDS) is used to discover the underlying (spatial) structure of a set of dataitems from the (dis)similarity information among them. There are several variations, but the basicmethod (eg., see [KW78]) is described next. Following the `distance' case setting, the method expects(a) a set of N items, (b) their pair-wise (dis)similarities and (c) the desirable dimensionality k.Then, the algorithm will map each object to a point in a k dimensional space, to minimize the stressfunction: stress =vuutPi;j (d̂ij � dij)2Pi;j dij2 (1)where dij is the dissimilarity measure between objectOi and objectOj and d̂ij is the (Euclidean) distancebetween their `images' Pi and Pj . The `stress' function gives the relative error that the distances in k-dspace su�er from, on the average.To achieve its goal, MDS starts with a guess and iteratively improves it, until no further improvementis possible. In its simplest version, the algorithm works roughly as follows: It originally assigns each itemto a k-d point (eg., using some heuristic, or even at random). Then, it examines every point, computesthe distances from the other N � 1 points and moves the point to minimize the discrepancy betweenthe actual dissimilarities and the estimated k-d distances. Technically, MDS employs the method of`steepest descent' to update the positions of the k-d points. Intuitively, it treats each pair-wise distanceas a `spring' between the two points; then, the algorithm tries to re-arrange the positions of the k-dpoints to minimize the `stress' of the springs.The above version of MDS is called metric multidimensional scaling [Tor52], because the distancesare given as numbers. Several generalizations and extensions have been proposed to the above basicalgorithm: Kruskal [KW78] proposed a method that automatically determines a good value for k;Shepard [She62], and Kruskal [Kru64] proposed the non-metric MDS where the distance between itemsare speci�ed qualitatively; Young [You87] describes the individual di�erence MDS, which incorporatesmultiple distance measures, corresponding to di�erent observers' perception of the data's di�erence.MDS has been used in numerous, diverse applications, including the following: semantic structureanalysis of words; perceived personality trait relationships [RSN72], operating on 60 di�erent person-ality traits and people's perception of what goes together (like `warm' and `trusting'); physics (nucleargamma-ray spectra pattern recognition, recognizing the di�erent type of spins and their relationships);political science (determining ideological shifts) [You87]; texture analysis [RL92].However, for our applications, MDS su�ers from two drawbacks:� It requires O(N2) time, where N is the number of items. Thus, it is impractical for large datasets.In the applications presented above, the number of items was small (typically, N=10-100).� Its use for fast retrieval is questionable: In the `query-by-example' setting, the query item has tobe mapped to a point in k-d space. MDS is not prepared for this operation: Given that the MDSalgorithm is O(N2), an incremental algorithm to search/add a new item in the database would beO(N) at best. Thus, the complexity of answering a query would be as bad as sequential scanning.5



The above two drawbacks are the motivation behind this present paper. Despite the above problems,we use MDS as a yardstick, against which we measure the speed and `stress' of our method.2.2 Dimensionality reduction techniquesIn the `features' case, the problem has been studied extensively in statistical pattern recognition andmatrix algebra. The optimal way to map n-dimensional points to k-dimensional points (k � n) isthe Karhunen-Lo�eve (`K-L') transform (eg., see [DH73], [Fuk90]). K-L is optimal in the sense that itminimizes the mean square error, where the error is the distance between each n-d point and its k-dimage.Figure 1 shows a set of 2-d points, and the corresponding 2 directions (x0 and y0) that the K-Ltransform suggests: If we are allowed only k=1, the best direction to project on is the direction of x0;the next best is y0 etc.
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y’Figure 1: Illustration of the Karhunen-Lo�eve transformation - the `best' axis to project is x0.`K-L' is often used in pattern matching [Fuk90] to choose the most important features (actually,linear combinations of features), for a given set of vectors. It computes the eigenvectors of the covariancematrix, sorts them in decreasing eigenvalue order, and approximates each data vector with its projectionson the �rst k eigenvectors. The operation is closely related to the Singular Value Decomposition(SVD) [Str80, PFTV88, GV89] of the object-feature matrix. Appendix A gives our implementation ofthe K-L transform in Mathematica [Wol91].However, the K-L transform su�ers from two drawbacks:� it can not be applied at all on the `distance' case� even in the `features' case, it may be slow for large databases (N � 1) with many attributes(n� 1)The latter situation appears, eg., in information retrieval and �ltering [FD92], [Dum94], where docu-ments correspond to V -dimensional vectors (V being the vocabulary size of the collection, typically inthe tens of thousands). Sub-section 3.3 provides such an example.2.3 Retrieval and ClusteringAs mentioned before, the retrieval engine will be a Spatial Access Method (SAM), which, by de�nition,is a method that can handle k-dimensional points, rectangles, or even more complicated shapes. Themost popular methods form three classes: (a) tree-based methods like the R-tree [Gut84], and itsvariants (R+-tree [SRF87], hB-tree [LS90], P-tree [Jag90a], R�-tree [BKSS90], Hilbert R-trees [KF94]6



Symbols De�nitions.N Number of objects in databasen dimensionality of original space (`features' case only)k dimensionality of `target space'D(�; �) the distance function between two objectsjj~xjj2 the length (= L2 norm) of vector ~x(AB) the length of the line segment ABTable 1: Summary of Symbols and De�nitionsetc.) (b) methods using linear quadtrees [Gar82] or, equivalently, the z-ordering [Ore86, Ore90], orother space-�lling curves [FR89, Jag90b] and �nally (c) methods that use grid-�les [NHS84, HN83].There are also retrieval methods for the case where only the triangular inequality holds [BK73],[Sha77], [SW90], [BYCMW94]. All these methods try to exploit the triangular inequality in order toprune the search space on a range query. However, none of them tries to map objects into points in`target space', nor to provide a tool for visualization.Finally, our work could be bene�cial to research on clustering algorithms, where several approacheshave been proposed. See, eg., [Mur83], [Har75] for surveys, [NH94] for a recent application in GIS,[SM83] [VR79] for applications in Information Retrieval.3 Proposed MethodIn the �rst part, we describe the proposed algorithm, which achieves a fast mapping of objects intopoints, so that distances are preserved well. Then, we give an arithmetic example with a small distancematrix, and a larger example with real data. Table 1 lists the symbols and their de�nitions.3.1 AlgorithmThe goal is to solve the problem for the `distance' case, that is, to �nd N points in k-d space, whoseEuclidean distances will match the distances of a given N � N distance matrix. The key idea is topretend that objects are indeed points in some unknown, n-dimensional space, and to try to projectthese points on k mutually orthogonal directions. The challenge is to compute these projections fromthe distance matrix only, since it is the only input we have.For the rest of this discussion, an object will be treated as if it were a point in an n-d space, (withunknown n).The heart of the proposed method is to project the objects on a carefully selected `line'. To do that,we choose two objects Oa and Ob (referred to as `pivot objects' from now on), and consider the `line'that passes through them in n-d space. The algorithm to choose pivot objects is discussed later (seeFigure 3.1). 7



The projections of the objects on that line are computed using the cosine law. See Figure 2 for anillustration.Theorem 1 (Cosine Law) In any triangle OaOiOb, the cosine law gives:db;i2 = da;i2 + da;b2 � 2xida;b (2)Proof: From the Pythagorean theorem in the two rectangles OaEOi and ObEOi.Eq. 2 can be solved for xi, the �rst coordinate of object Oi:xi = da;i2 + da;b2 � db;i22da;b (3)In the above equations, dij is a shorthand for the distance D(Oi; Oj) (for i; j = 1; : : : ; N . Notice thatthe computation of xi only needs the distances between objects, which are given.
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Figure 2: Illustration of the `cosine law' - projection on the line OaOb.Observe that, thanks to Eq. 3, we can map objects into points on a line, preserving some of thedistance information: For example, if Oi is close to the pivot Oa, xi will be small. Thus, we have solvedthe problem for k=1.
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xi -xjFigure 3: Projection on a hyper-plane H, perpendicular to the line OaOb of the previous �gure.The question is whether we can extend this method, so that we can map the objects into points in2-d space, and eventually, k-d space. The answer is a�rmative, and the idea is as follows: Pretending8



that the objects are indeed points in n-d space, consider a (n�1)-d hyper-plane H that is perpendicularto the line (Oa, Ob); then, project our objects on this hyper-plane. Let Oi0 stand for the projection ofOi (for i = 1; : : : ; N). The problem is the same as the original problem, with n and k decreased by one.This should not create problems, because n was unknown to begin with!The only missing part is to determine the distance function D0() between two of the projections onthe hyper-plane H, such as, Oi0 and Oj 0. Once this is done, we can recursively apply the previous steps.Figure 3 depicts two objects Oi, Oj , and their projections Oi0, Oj 0 on the H hyper-plane. A keyobservation is the next Lemma:Lemma 1 On the hyper-plane H, the Euclidean distance D0() between the projections Oi0 and Oj 0 canbe computed from the original distance D(), as follows:(D0(Oi0; Oj 0))2 = (D(Oi; Oj))2 � (xi � xj)2 i; j = 1; : : : ; N (4)Proof: From the Pythagorean theorem on the triangle OiCOj (with the right angle at 'C') we have:(Oi0Oj 0)2 = (COj)2 = (OiOj)2 � (OiC)2 (5)where (AB) indicates the length of the line segment AB. Since (OiC) = (DE) = jjxi � xj jj2, the proofis complete.Ability to compute the distance D0() allows us to project on a second line, lying on the hyper-planeH, and, therefore, orthogonal to the �rst line (Oa, Ob) by construction.Thus, we can solve the problem for a 2-d `target' space. More importantly, we can apply the samesteps recursively, k times, thus solving the problem for any k.The point that we have not discussed is how to choose the `pivot objects' Oa and Ob. Clearly, wewould like to �nd a line on which the projections are as far apart from each other as possible. Toachieve that, we need to choose Oa and Ob such that the distance D(Oa; Ob) is maximized. However,this would require O(N2) distance computations. Thus, we propose the linear heuristic algorithmchoose-distant-objects(), illustrated in Figure 3.1Algorithm 1 choose-distant-objects ( O, dist() )begin1) Chose arbitrarily an object, and declare it to be the second pivot object Ob2) set Oa = (the object that is farthest apart from Ob) (according to the distance functiondist())3) set Ob = (the object that is farthest apart from Oa)4) report the objects Oa and Ob as the desired pair of objects.end Figure 4: Heuristic to choose two distant objects.All the steps in the above algorithm are linear on N . The middle two steps can be repeated aconstant number of times, still maintaining the linearity of the heuristic. In all our experiments, we9



have 5 iterations.Now we are ready to describe our basic algorithm. According to the problem de�nition (`distance'case), the algorithm accepts as input (a) a set O of N objects (eg., typed words, ASCII documents,color images, or n-d vectors) (b) a distance function D() that obeys the triangular inequality and (c) thedesired number of dimensions k, and it maps the objects into points in k-d space, so that the distancesare preserved as well as possible. The output vectors are written in a global variable, the N � k arrayX[]. The algorithm also records the `pivot objects' for each recursive call, in the global 2�k array PA[].Figure 3.1 gives the pseudo-code for FastMap.Algorithm 2 FastMapbeginGlobal variables:N � k array X[ ]/* At the end of the algorithm, the i-th row will be the image of the i-th object. */2� k pivot array PA[]/* stores the ids of the pivot objects - one pair per recursive call */int col# =0;/* points to the column of the X[] array currently being updated */Algorithm FastMap( k, D(), O )1) if (k � 0)f return; gelsefcol# ++;g2) /* choose pivot objects */let Oa and Ob be the result of choose-distant-objects( O, D());3) /* record the ids of the pivot objects */PA[1, col#] = a; PA[2, col#]= b;4) if ( D(Oa; Ob) = 0)set X[ i, col#] =0 for every i and return/* because all inter-object distances are zeros */5) /* project the objects on the line (Oa, Ob) */for each object Oi,compute xi using Eq. 3 and update the global array: X[i; col#] = xi6) /* consider the projections of the objects on a hyper-plane perpendicular to the line (Oa,Ob); the distance function D0() between two projections is given by Eq. 4 */call FastMap( k � 1, D0(), O)end Figure 5: Algorithm `FastMap'Thus, the algorithm determines the coordinates of the N objects on a new axis, after each of the k10



O1 O2 O3 O4 O5O1 0 1 1 100 100O2 1 0 1 100 100O3 1 1 0 100 100O4 100 100 100 0 1O5 100 100 100 1 0Table 2: Distance matrix for arithmetic examplerecursive calls. Therefore, the i-th object is mapped to the point Pi= (X[i; 1],X[i; 2], : : : X[i; k]) whereX[i; j] is the j-th co-ordinate Pi, the image of the i-th object.The complexity of the `FastMap' algorithm is O(Nk) distance calculations: At each recursive call,the longest steps are steps 2 and 5, each of which is O(N).The reason that we need to record the `pivot objects' in each recursive call is to facilitate queries.The search algorithm is as follows: when a `query-by-example' request arrives, the query object Oq ismapped into a k-d point in `target space', by projecting it on the lines of appropriate `pivot objects',with the appropriate distance function each time. That is, we repeat step 5 of the FastMap algorithmfor the query object only.Notice that the complexity of the mapping operation is constant (O(1)) with respect to the databasesize N . More detailed, the algorithm requires �(k) distance-calculation operations, because we needto compute the distance of the query object from each of the 2 � k pivot objects. Even if we decide tocompute the distances between the pivot objects on the 
y, we have to add k more distance calculationsto the count, for a total of 3 � k.3.2 Arithmetic ExampleNext we provide an arithmetic example, to illustrate how the algorithm works. Consider a set of 5objects, with the distance matrix of Table 2. Notice that the �rst three objects seem to form a cluster,and so do the rest two; the two clusters are roughly 100 units apart. With the above input and k=3,the algorithm produces the output matrix X[], as shown in Table 3. Notice that each row correspondsto one object; columns give the coordinates of each object. The coordinates in the space created byFastMap will be referred to by `FastMap-coordinates': f1, f2, f3 etc.The j-th column of the X[] matrix is produced at the j-th recursive call of FastMap. O1 and O4 werechosen as the pivot objects in the �rst recursive call, because D(O1; O4)=100 ties in the �rst place forlength (see Table 2).The projection of the �rst pivot object is always zero; the projection of the second pivot object isalways its distance from the �rst. Thus, X[1,1]=0, X[4,1]=D(O1,O4)=100. The pivot objects were(O5 , O2), and (O3, O5) in the next two recursive calls. Notice that the stress is decreasing after eachrecursive call, as expected. Figure 6 shows the scatter-plot, using the �rst two `FastMap-coordinates'f1 and f2 of the `target' space. Notice that the two clusters already can be distinguished.11



X[] f1 f2 f3O1 0 0.707089 0.668149O2 0.005 1.41418 0.935411O3 0.005 1.06062 0O4 100 0.707089 0.668149O5 99.995 0 1 Iteration# Pivot Stress1 O1, O4 0.0082 O5, O2 0.0043 O3, O5 0.001Table 3: Results of FastMap: (left) `images' of the 5 objects; (right) pivot objects and `stress' values ineach recursive call
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O5Figure 6: Scatter-plot for the 5 objects of the arithmetic example3.3 Case Study: Document Vectors and Information Retrieval.Here we trace the algorithm on an information retrieval application [SM83]. There, documents arerepresented as vectors in V -dimensional space, where V is the size of the vocabulary of the collection.For the English language, we can expect V to range from 2,000 up to and exceeding 100,000 (thevocabulary of every-day English, and the size of a very detailed dictionary, respectively [Pet80]). Thecoordinates of such vectors are called term weights and can be binary ('1' if the term appears inthe document; '0' if not) or real-valued, with values increasing with the importance (eg., occurrencefrequency) of the term in the document.Consider two documents d1 and d2, with vectors ~u1, ~u2 respectively. The similarity between twodocuments is typically measured by the cosine similarity of their vectors [SM83]:similarity(d1; d2) = ~u1 � ~u2jj ~u1jj2:jj~u2jj2 (6)where `�' stands for the inner product of two vectors and jj � jj2 stands for the Euclidean norm of thevector. Clearly the cosine similarity takes values between -1 and 1. Figure 7 gives an example. There,cos(�) is considered as the similarity of the two vectors ~u1 and ~u2. Intuitively, the cosine similarityprojects all the document vectors on the unit hyper-sphere (see vectors ~u1;0 and ~u2;0 in the �gure) andmeasures the cosine of the angle of the projections.12
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Figure 7: Two vectors ~u1, ~u2, their angle � and the cosine similarity function cos(�)In order to apply our method, we �rst need to de�ne a distance function that decreases with increasingsimilarity. From Figure 7 it would make sense to use the length of the line segment AB: (AB) =jj ~u1;0 � ~u2;0jj2. After trigonometric manipulations, the result isD(d1; d2) = 2 � sin(�=2)= q2 � (1� cos(�))= q2 � (1� similarity(d1; d2)) (7)Notice that Eq. 7 de�nes a distance function (non-negative, symmetric, satisfying the triangularinequality) and that it decreases with increasing similarity.Also notice that it allows us to respond to range queries: Suppose that the user wants all thedocuments d that are similar to the query document q:similarity(d; q)� � (8)Thanks to Eq. 7, the requirement becomesD(d; q) � q2 � (1� �) (9)which eventually becomes a range query in our `target' space and can be handled e�ciently by anySAM.Next we show the results of our algorithm for 10 documents (referred to as the `DOCS-10' dataset).The set contains 5 abstracts of computer science technical reports (labelled `Abs1-5'), and 5 reportsabout basketball games (labelled `Bbr1-5'). To create the document vector for a document, we deletedall the non-alphabetic characters, turned everything to lower-case, and deleted the most common words(using a stop-list of 150 common words). We used binary term weights, and we computed the cosinesimilarity among all these documents. The cosine-similarity matrix is given in Table 4. Notice that thereare high similarities among the abstracts, as well as among the basketball reports, and low similaritiesacross the two groups.Using Eq. 7, we turned similarities into distances, and we applied `FastMap'. The �rst 5 recursivecalls of the algorithm give the matrix in Table 5. 13



Abs1 Abs2 Abs3 Abs4 Abs5 Bbr1 Bbr2 Bbr3 Bbr4 Bbr5Abs1 1.000 0.230 0.117 0.162 0.174 0.000 0.013 0.000 0.000 0.000Abs2 0.230 1.000 0.110 0.276 0.104 0.000 0.000 0.000 0.000 0.012Abs3 0.117 0.110 1.000 0.117 0.360 0.000 0.000 0.000 0.000 0.000Abs4 0.162 0.276 0.117 1.000 0.140 0.000 0.024 0.000 0.012 0.022Abs5 0.174 0.104 0.360 0.140 1.000 0.000 0.000 0.000 0.000 0.000Bbr1 0.000 0.000 0.000 0.000 0.000 1.000 0.261 0.321 0.311 0.191Bbr2 0.013 0.000 0.000 0.024 0.000 0.261 1.000 0.307 0.326 0.354Bbr3 0.000 0.000 0.000 0.000 0.000 0.336 0.307 1.000 0.299 0.220Bbr4 0.000 0.000 0.000 0.012 0.000 0.311 0.326 0.299 1.000 0.237Bbr5 0.000 0.012 0.000 0.022 0.000 0.191 0.354 0.220 0.237 1.000Table 4: Document-to-document cosine similarity matrix for the DOCS-10 datasetdoc-Id 1st co-ord (f1) 2nd co-ord (f2) 3rd co-ord (f3) 4th co-ord (f4) 5th co-ord (f5)Abs1 1.5708 0.730908 0.649706 0.700972 0.628742Abs2 1.00057 0.821051 0.91341 0 0.600269Abs3 0.898311 1.54319 0.689338 0.837133 0.543736Abs4 0.940086 0.828169 1.48997 0.67192 0.595993Abs5 0.950136 1.06441 0.766096 1.43761 0.600269Bbr1 0 0.730908 0.649706 0.700972 0.628742Bbr2 0.556887 0.482377 0.556208 0.752998 0Bbr3 0.492452 0.611289 0 0.67192 0.595993Bbr4 0.500826 0.594315 0.551867 0.731638 1.23218Bbr5 0.605117 0 0.689338 0.837133 0.543736Table 5: Output of our algorithm for the DOCS-10 dataset: 5 TR abstracts `Abs1-5' and 5 basketballreports `Bbr1-5'If we keep the �rst 3 co-ordinates, we can plot the resulting data-set. Figure 8 gives the result (a)in 2-d space (f1-f2) and (b) in 3-d space. Notice that the `images' are clustered, even in the 2-d space,agreeing with our intuition. The separation of the clusters is even better for the 3-d case.4 ExperimentsWe implemented our method in 'C++' and UNIX on a DECStation 5000/25 and run several exper-iments, in two groups. In the �rst group we compared our method with the traditional MDS, withrespect to speed and to quality of the output, as measured by the `stress' function (Eq. 1). For theimplementation of MDS, we use the procedure MSIDV from the IMSL STAT/LIBRARY FORTRANroutines. 14
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distance. This dataset is a simpli�ed version of the one used in a Pattern Recognition textbook([Fuk90] p. 46).SPIRAL 30 points on a 3-d spiral, as suggested by Duda and Hart ([DH73] p.243):x1(i) = cosx3(i)x2(i) = sin x3(i)x3(i) = i=p2; i = 0; 1; : : :29 (10)4.1 Comparison with MDSIn the �rst group of experiments, we compare our method with the traditional MDS, using the `WINE'dataset. To see the dependency on N , we run both algorithms on subsets of varying sizes, namely, N= 45, 60, 75, 90 and 105. For both methods, we experiment with k=2 and 3. Figure 9 plots the timerequired by each method as a function of the number of records N (a) in doubly-linear scales and (b) indoubly-logarithmic scales. We used the time utility of UNIX, and we report user times. In Figure 9(b)we also plotted a linear and a quadratic curve, which, in log-log scales, become straight lines with slopes1 and 2, respectively. These lines, labelled as `O(x)' and `O(x^2)' respectively, are intended as visualaids, to highlight the fact that MDS requires roughly quadratic time while FastMap requires lineartime on the database size N .The important conclusion is that FastMap achieves dramatic time savings over MDS, even for smalldatasets.Next, we want to study the performance of each method as the dimensionality k of the target spaceincreases. We used the 60-point subset and we varied k from 2 to 6. Figure 10 shows the time for eachmethod versus k, again in doubly linear and doubly logarithmic axis, ((a) and (b) respectively). Noticethat the time of our method increases with k, as expected, while the time for MDS grows even faster.Again, FastMap provides dramatic savings in time.
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4.2 Clustering/visualization properties of FastMapIn this group of experiments our goal is to show that the proposed algorithm is useful for visualizationand clustering. Here we present the results on several datasets. Unless otherwise stated, we ask for k=3dimensions. Recall that f1, f2 and f3 stand for the �rst three `FastMap-attributes'.First we present the results with the synthetic datasets and then with the real ones.4.2.1 Synthetic DataFigure 12 gives the resulting mapping for k=3, for the GAUSSIAN5D dataset (N=120 points, forming6 clusters, with 20 points per cluster). In the plots, the points of a given cluster are all indicated bythe same letter. Figure 12(a) gives the scatter-plot of f1 vs f2, while (b) gives the scatter-plot of f1 vs.f3, and (c) gives the 3-d plot with all three `FastMap-attributes' Notice that, even with the �rst twoonly dimensions f1 and f2, we can detect roughly 4 clusters; using the next scatter-plot (b), we see thatthe clusters can be completely separated, because any two clusters are disjoint in at least one of thescatter-plots. Figure 12(c) con�rms the previous observation, showing that all 6 clusters are disjoint inthe 3-d `target' space.Although it uses a �ctitious dataset, this example illustrates the ability of FastMap to help withvisualization and clustering.
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(a) (b)Figure 15: The DOCS dataset, after FastMapin k=3-d space. (a) The big picture. (b) the contents ofthe dashed box in more detail.5 ConclusionsWe have proposed a fast algorithm to map objects into points in k-dimensional space, so that thedistances between the objects are preserved as well as possible.In an earlier approach for similarity searching in non-traditional/multimedia databases [Jag91], adomain expert was expected to provide feature extraction functions. Thanks to the proposed `FastMap'algorithm, the domain expert need only provide a distance function, from which our algorithm will inferthe appropriate features for each object.Mapping objects into points has the following two applications. Firstly, it can accelerate searching forseveral types of queries (`query-by-example' or `range' queries, `all pairs' queries or spatial joins [BKS93,BKSS94], nearest neighbor queries etc.), because several, highly optimized spatial access methods arereadily available (R-trees [Gut84], R�-trees [BKSS90] etc.). Secondly, such a mapping is useful fordata-mining, cluster analysis and visualization of a high-dimensionality dataset.The main contribution of this paper is the design of FastMap, a linear algorithm that ful�lls all thedesign goals:1. it solves the general problem (`distance' case) (while, eg., K-L and SVD can only solve the spe-cialized version (`features' case))2. it is linear on the database size, and therefore much faster than MDS and3. at the same time, it leads to fast indexing, being able to map a new, arbitrary object into a k-dpoint in O(k) distance calculations, regardless of the database size N .The algorithm uses theorems from traditional geometry (such as the cosine law), and it quicklyprojects each object on an appropriate direction at each of the k recursive calls. With respect to quality20



of output (measured by the `stress' function), we experimented with FastMap on real datasets: Theresult is that it achieves the same `stress' levels as MDS, for a fraction of the time.A second, smaller contribution, is Eq. 7, which turns the cosine similarity into a distance function, thatcan be immediately handled by FastMap. Our experiments on real documents showed good clusteringresults. Thus, coupled with Eq. 7, FastMap seems promising for document clustering and indexing.The last contribution of the paper is that it introduces tools from pattern recognition, social sciencesand matrix algebra, and speci�cally, the Multi-Dimensional Scaling method (MDS) and the Karhunen-Lo�eve transform (or Singular Value Decomposition, SVD). Although not as general or as fast as theproposed algorithm, these tools could be added to the arsenal of database research, to help with indexingand visualization of non-traditional datasets. MDS has been used in diverse applications to map objectsinto k-d points using a quadratic, iterative algorithm. Being quadratic on N and unable to handle`queries-by-example' easily, MDS is a good choice for visualization of small datasets. The SVD andthe K-L transform provide the optimal solution for the `features' case (although unable to handle thegeneral problem of the `distance' case).Finally, we have demonstrated the speed and the output quality of our proposed algorithm on realand synthetic datasets. There, `FastMap' managed to separate all or most of the existing clusters, evenwith low values for the dimensionality k of the target space (k=2 or 3 dimensions).Future work includes:� Application of the algorithm to multimedia databases, where FastMap should automatically de-termine the features for the given dataset, from the given distance function.� study of its bene�ts for interactive data mining and clustering and� the application of the algorithm for document retrieval.6 AcknowledgmentsWe would like to thank Dr. Joseph B. Kruskal from AT&T Bell Labs for providing the source code forthe MDS algorithms and for answering several questions on them; Patrick M. Murphy and David W.Aha for maintaining the UC-Irvine Repository of Machine Learning Databases and Domain Theories;Prof. Howard Elman and Doug Oard for help with SVD algorithms.A Karhunen-Lo�eve TransformThis is the code for the K-L transform in Mathematica [Wol91](* given a matrix mat_ with $n$ vectors of $m$ attributes,it creates a matrix with $n$ vectors and theirfirst $k$ most 'important' attributes(ie., the K-L expansions of these $n$ vectors) *)KLexpansion[ mat_, k_:2] := mat . Transpose[ KL[mat, k] ];(* given a matrix with $n$ vectors of $m$ dimensions,computes the first $k$ singular vectors,21
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