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but there is presently no good rationale to determine which pigment combinations may be 

most effective.  Our research goal was to develop and test an absorption index for 

pigment selection that would increase the output of DSSCs.  Our results demonstrated a 

positive correlation between spectral absorption of the sensitizing dye and power output 

of the cell.  Certain pigment combinations were more effective sensitizers based on 

combined absorption capabilities, but resolving the mechanisms of the exact relationship 

requires further research and likely further development of the algorithm used to choose 
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1. INTRODUCTION 

1.1. Energy Crisis 

“Now, to protect our planet, now is the time to change the way we use energy. 
Together, we must confront climate change by ending the world’s dependence on 
fossil fuels, by tapping the power of new sources of energy like the wind and sun, 
and calling upon all nations to do their part.”  
 
  - President Barack Obama, April 2009 

1.1.1. Climate Change 

In the past century, human activity has created undeniable and unprecedented 

climate changes.  The global average surface temperature has increased by 0.6°C over the 

past century, leading to a 10% decrease in the extent of snow cover, widespread retreat of 

mountain glaciers, and a 40% decline in Arctic sea-ice thickness (Figure 1.1) (1).  With 

extensive melting of glaciers and ice, the global average sea level has risen almost 0.2 

meters in the past century alone (2). Further, in the past 15 years, the sea level has risen at 

double the rate experienced over the past century (2). 
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Figure 1.1: Variations of the Earth’s surface temperature over the last 140 years and the last millennium.  
(a) The red bars show the Earth’s surface temperature year-by-year and the black line shows the Earth’s surface 
temperature according to decade.  Global average surface temperature has increased by 0.6±0.2°C. (b) The blue 
curve represents variations of the average surface temperature of the Northern Hemisphere year by year and the 
black curve shows the 50 year average variations of the average surface temperature of the Northern Hemisphere 
for the past 1000 years (1). 
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The warming of the Earth’s surface and subsequent rising sea levels cannot be 

attributed to natural forces alone.  Although the energy emitted from the sun follows an 

11-year cycle with steady increases and decreases, there is no net increase in the energy 

absorbed at the top of the Earth’s atmosphere (2).  Thus, small increases in the sun’s 

energy cannot be culpable for large increases in the global surface temperature.  Instead, 

human activity continues to be the primary contributor to global warming (2). Global 

warming is attributed to positive radioactive forcing largely induced by increases in 

greenhouse gases including carbon dioxide, methane, and nitrous oxide (Figures 1.2 and 

1.3) (2). Since 1750, atmospheric levels of carbon dioxide have increased by almost 31% 

and continue to rise at unparalleled rates. The burning of fossil fuels has contributed to 

almost 75% of the anthropogenic emissions of carbon dioxide in the past 20 years (1). 

Over the past decade, global emissions of carbon dioxide have increased to a growth rate 

of 3.3% per year, compared to a 1.3% per year growth rate in the 1990s (2). 

 
 
Figure 1.2. Greenhouse Gas Concentrations.  Changes in three of the most important atmospheric trace 
gasses over the past two thousand years (2). 
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Figure 1.3. Global Temperature and Carbon Dioxide.  The relationship between atmospheric CO2 
concentration and departure from mean global temperature average.  Red bars indicate temperature above 
and blue bars indicate temperatures below the average temperature for the period 1901-2000. The black 
line shows atmospheric carbon dioxide concentration in parts per million (2). 

 

In addition to likely increases in global temperatures in response to increases in 

CO2 and other trace gases, there may be a suite of other potentially negative effects on 

the earth.  For example, as oceans absorb more carbon dioxide, seawaters become less 

alkaline in an irreversible process of ocean acidification.  The acidification of ocean 

waters has negatively affected many oceanic species and ecosystems that rely on 

calcification for survival (2).  Increased carbon dioxide emissions have also altered 

precipitation patterns, with notable increases in precipitation in eastern North America, 

southern South America, and northern Europe in the past century (2). Moreover, extreme 

natural events, like heat waves, regional droughts, and hurricanes, have become more 

common in the past 50 years (2). 

Recent projections of the long term effects of increasing carbon dioxide emissions 

and warmer temperatures predict changes in precipitation and sea level on a global scale.  

Precipitation is projected to increase in northern areas and decrease in southern regions of 
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Earth, and heavy precipitation will likely increase in the wettest regions.  The intensity of 

Atlantic hurricanes and cold-season storms is predicted to increase in the 21st century.  

Heat waves will continue to increase in intensity, frequency, and duration.  As the global 

surface temperature rises, melting of Arctic sea ice is likely to continue to increase 

(Figure 1.4).  The 2007 assessment by the IPCC predicts global sea levels will rise 8 

inches to 2 feet by the end of the 21st century.  Other models predict that, with increased 

carbon dioxide emissions, sea levels will rise 3 to 4 feet by the end of the century (2). 

Greenland and Antarctica contain the largest ice sheets in the world.  Increased 

melting of these ice sheets, resulting in decreased ice volume, is contributing to rising sea 

levels.  In the event that the entire Greenland Ice Sheet melted completely, worldwide sea 

level could rise almost 20 feet. The Antarctic Ice Sheet is divided into two parts, the West 

Antarctic Ice Sheet and the East Antarctic Ice Sheet.  Global sea levels would increase by 

16 to 20 feet with complete melting of the West Antarctic Sheet and 200 feet with the 

melting of the East Antarctic Sheet (2). 

 
 

Figure 1.4. Cumulative decrease in global glacier ice since 1960 (2). 
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1.1.2. Fossil Fuels 

Since the beginning of the industrial era in the mid-1700s, the atmospheric carbon 

dioxide concentration has risen exponentially due largely to the burning of fossil fuels 

and biomass (see Figure 1.3) (2). By 1951, petroleum surpassed coal in annual U.S. 

consumption, and by 1960 (Figure 1.5), the import of petroleum became necessary for 

continued consumption (3).  Between 1950 and the 1973, U.S. oil consumption doubled, 

eventually reaching 33% of global oil consumption, even though the U.S. comprised only 

6% of the global population (4).  By 1973, the U.S. was importing 6.3 million barrels of 

petroleum each day and becoming more dependent on foreign oil (3). 

 
 

Figure 1.5. Energy consumption by source, 1635-2000 (Quadrillion BTU) in the United States (3). 
 

1.1.3. 1973 OPEC Oil Embargo 

In addition to the environmental effects induced by rising levels of carbon dioxide 

and use of fossil fuels, the increasing demand for a limited supply of petroleum has led to 

political and international turmoil.  The growing reliance on imported fossil fuels was 

first exposed by the oil crisis that occurred from 1973 to 1974.  In 1973, the members of 

the Organization of Petroleum Exporting Countries (OPEC) sanctioned an oil embargo 

against the United States (4). The embargo quickly caused gas prices at the pump to 

quadruple and crude oil prices to increase almost ten times in the U.S. (5). 
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The embargo was particularly detrimental because, in addition to dependence on 

foreign oil, the United States was confronted with growing oil consumption along with 

diminishing domestic oil reserves.  The initial effects were worsened by price controls 

sanctioned by the U.S. government.  The price controls lowered the price of old oil and 

increased the price of newly discovered oil, inadvertently eliminating old oil from the 

market and creating “artificial scarcity” of available oil (4). 

In response to the effects of the embargo, the U.S. government initiated Project 

Freedom to promote domestic energy independence. Though the oil embargo was lifted 

in March of 1974, only six months after it was initiated, the effects of the embargo 

lingered.  President Richard Nixon appointed William Simon the official “Energy Czar” 

and created the Department of Energy in 1977 to help reduce oil consumption (4). Since 

the oil crisis of 1973, research in alternative energies has intensified with a goal to 

alleviate dependence on fossil fuels.  Nevertheless, by 1975, U.S. petroleum consumption 

began to increase again, reaching 18.8 million barrels per day in 1978 and 19.4 million 

barrels per day in 2000, with 10 million barrels being imported daily (3). 

1.1.4. Deepwater Horizon Oil Spill 

Beyond the political issues that arise with consistent reliance on petroleum and 

other fossil fuels, the environmental and social impact of fossil fuels further complicates 

their use.  Particularly, the drilling and transportation of oil is frequently hampered by 

environmentally catastrophic spills, notably the 1989 Exxon Valdez spill off the coast of 

Alaska and, most recently, the Deepwater Horizon disaster in the Gulf of Mexico.  In 

both situations, countless gallons of oil spilled into the world’s waters, wreaking havoc 

on fragile ecosystems.  In the summer of 2010, an explosion in an offshore rig operated 
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by British Petroleum (BP) created a leak that soon began releasing 5,000 barrels of oil a 

day into the Gulf.  Estimates indicate that up to 7 million barrels of crude oil emptied into 

the Gulf before the leak was finally capped almost 3 months following the initial accident 

(6). 

That oil spill has negatively affected the fishing and tourism economies in states 

adjacent to the Gulf of Mexico (7).  On May 24, 2010, U.S. Commerce Secretary issued a 

“fishery disaster” in Gulf States including Louisiana, Mississippi, and Alabama due to the 

economic impact of the spill.  The effects of the spill on wildlife have yet to be accurately 

determined.  The Unified Area Command issued its first Consolidated Fish and Wildlife 

Collection Report on May 30, 2010.  Of 1,746 dead and living birds captured, 1,014 were 

covered in oil. The Exxon Valdez spill left 350,000 to 600,000 birds and thousands of 

other wildlife dead, and wildlife biologists estimate that similar numbers of casualties 

will ultimately result from the BP spill (7).  

Following the initial public outcry and media frenzy over the oil spill, there is a 

lack of political or legislative action to prevent future catastrophes by alleviating reliance 

on fossil fuels.  For example, Time magazine recently stated: 

“the carbon cap-and-trade bill, just being introduced to the Senate back in May, 
has died without a vote. The Presidential moratorium on new deepwater drilling 
was lifted early this fall, before the official government report on the causes of the 
spill even came out.  Congress never managed to pass legislation that would have 
overhauled drilling safety, nor did it make any new laws that would have helped 
move the country off fossil fuels (8).” 
 

Thus, despite the disastrous environmental and economical effects of the spill, deepwater 

oil drilling is able to continue in order to satisfy the U.S.’s dependence on oil. 
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1.1.5. Government Policy 

Although reliance on fossil fuels has increased in the past century, a few recent 

laws have promoted independence from fossil fuels and the development of clean, 

alternative fuels. The Energy Policy Act of 1992 granted financial incentives for 

consumers of and companies that built clean-fuel vehicles (9). The Energy Policy Act of 

2005 promoted energy conservation and efficiency, as well as encouraged the 

development and use of renewable alternative energies.  It also provided tax incentives to 

businesses and individuals for reducing energy needs and using alternative fuels.  

Specifically, Title IX encouraged the development of advanced technologies such as 

biofuel production.  The Energy Independence and Security Act of 2007, or the Clean 

Energy Act, further promoted the improvement of energy use and the development of 

alternative fuels.  The law required the use of 36 billion gallons of ethanol by 2022 and 

designated a minimum corporate average fuel economy standard of 35 miles per hour by 

2020.  The 2007 Act allocated $240 million per year from 2008-2012 for research into 

carbon capture and sequestration and $200 million per year for research involving the 

capture and purification of carbon dioxide released from industry sources.  It also created 

various efficiency standards for appliances, lighting, and motors.  With increased 

government funding, more research and development projects have focused on improving 

the efficiency of current alternative fuels (9). 
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1.2. Alternative Fuels 

1.2.1. Biofuels 

In 2005, the use of renewable energy was 6.6% of total U.S. energy consumption, 

with biofuels comprising just 10% of all renewable energy use.  The most common liquid 

forms of biofuels are bioethanol and biodiesel.  Bioethanol is commonly produced from 

the fermentation of crops like sugarcane, corn, and sugar beets, while biodiesel is 

produced from vegetable oils, animal fats, or waste cooking oils (10). Both biofuels are 

environmentally beneficial because they are biodegradable, locally available, and their 

use does not contribute to a net increase in atmospheric carbon dioxide levels.  Further, 

biodiesel contains less sulfur dioxide and aromatic compounds than conventional diesel.  

Biodiesel use also reduces carbon dioxide emissions by 14%, carbon monoxide emissions 

by 17.1%, and smoke density levels by 22.5% compared with diesel to produce the same 

amount of energy.  Ethanol is often used as a gasoline additive, reducing petroleum 

consumption for transportation.  Similarly, biodiesel can be readily substituted for 

conventional diesel fuel in diesel engines (11). 

However, because biofuels are largely produced from crops, the environmental 

impact of their production must be considered.  Extended production of biofuels can 

result in loss of cropland for food production and increased food prices, deforestation, 

biodiversity extinction, soil degradation by erosion, and water depletion (12). Further, 

fossil fuels are required to produce fertilizer for the crops, and the fertilizer can release 

nitric oxide and other components with high Global Warming Potential into the 

environment (12).  For example, the high levels of nitrogen used in corn production and 

fertilization requires large energy inputs and leads to increased nitrogen run-off.  Thus, 
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the large-scale production of ethanol from corn may not have a positive impact on total 

carbon emissions and can exacerbate existing water problems because of increased 

nitrogen release to the environment (13). 

Moreover, the production of high-quality fuel ethanol requires energy input of 

almost 80% of the energy value of ethanol.  Compared to gasoline, ethanol production is 

energetically more costly in all regions except Brazil, where sugar cane is plentiful (10). 

Further, both bioethanol and biodiesel production are limited by high input cost of 

production.  Feedstock accounts for 66% and 75-80% of the total operating costs of 

bioethanol and biodiesel production, respectively (10).  In developed countries, the 

production cost of biofuels is up to three times higher than that of petroleum.  Ultimately, 

due to their expensive cost, biofuels cannot compete effectively with conventional fuels 

in the U.S. 

1.2.2. Wind Energy 

Wind energy has increasingly been used as a source of alternative energy since 

the capacity of wind energy has continued to rise.  By the end of 2009, worldwide 

capacity reached 159,213 MW, with a growth rate of 31.7% in wind power in that year 

alone.  The typical generating capacity for wind turbines is 20-35% (14).  Since most 

countries meet the standards for the wind levels required for wind energy, wind energy 

remains a feasible alternative internationally (15). 

However, the potential of wind energy to become a major contributor to current 

energy consumption is limited by several factors.  The efficiency of wind energy is 

affected by wind availability and the size of the turbine system (14). During times of low 

wind levels, the generating capacity of turbines declines.  For example, wind plants 
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cannot generate enough energy to match demand in the winter and summer months, since 

electricity use is high but wind levels are low (14). 

Other factors further prevent wind energy from being an effective competitor of 

fossil fuels.  Wind energy, at its cheapest, can cost only four cents per kilowatt-hour, but 

this cost achievement is only possible through the latest wind turbine models (15).  In 

addition, in order to generate sufficient power and prevent wake interaction effects, large 

numbers of wind turbines must be spaced adequately over large areas of land (15). But, 

the public is concerned about the construction and use of wind turbines because of 

unpleasant noise and aesthetics, which interferes with land requirements (15).  Wind 

power also requires a suitable infrastructure to connect wind power plants to existing 

electricity systems.  In the absence of a functional network, the cost of implementation 

rises with the construction of expensive lines and substations (15). 

Although wind power does not produce emissions harmful to the environment, 

wind turbines, which require large rotating blades, have been shown to have significant 

negative ecological effects, primarily on local animals.  Noticeable bird and bat fatalities 

have occurred due to wind turbines, raising concern about potential population impacts 

on particular species (16). 

Many studies have asserted that one of the major advantages of wind energy is the 

short energy payback time of wind turbines (15).  However, a recent 2009 study has 

found that the methods used to determine payback time are unreliable and show 

variability in their results (14).  The current trend in wind energy technology is to 

increase the size of turbines and, in effect, increase the output of the turbines.  However, 
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larger turbine sizes lead to an increase in the quantity of materials and energy required for 

turbine manufacture without a sufficient increase in energy yield (14). 

1.2.3. Wave Energy 

Since the 1970s, interest and research concerning the potential of wave energy has 

increased.  Wave energy is most feasible in areas near long oceanic coastlines, although 

recent models are focusing on offshore developments to increase the availability of wave 

energy to inland areas.  Wave energy is more advantageous than wind energy because it 

has a higher energy density and is more predictable (17). 

While research into an array of different models continues, concerns about the 

utilization of wave energy swell.  Wave energy is primarily limited by variance in wave 

power, ranging from day to day, season to season, and year to year (18).  In order to 

generate waves sufficient to produce a useful source of energy, strong winds must be 

present.  Wave power further depends on the local climate, the amount of solar energy 

transferred to waves, and the distance and duration of the winds (18).  Although wave 

energy is influenced by several uncontrollable factors, no control back-up systems exist 

for when wave power declines.   

The ecological impact of offshore renewable energy developments additionally 

restricts the potential of wave energy.  Offshore developments can have ecological 

footprints ranging from several to more than fifty square kilometers of water (19).  These 

ecological effects are further expounded when developments are located adjacent to each 

other.  Thus, before offshore generators can be constructed, additional research must be 

conducted to examine the effects on marine habitats.  Yet, field research in marine 
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environments is limited because it is “costly and requires advanced underwater 

technologies” (17). 

1.2.4. Nuclear Technology 

According to estimates by the International Atomic Energy Agency, nuclear 

energy accounted for 13 to 14 percent of the global electricity demand in 2009 (20). 

However, the percentage of global nuclear electricity production has declined over the 

past decade due to the shutdown of large nuclear reactors (Figure 1.6).  In 2008, nuclear 

energy contributed 13.5 percent to world electricity production compared to 16.7 percent 

in 2000 (21).  By December 2009, 436 reactors remained out of the 444 running in 2002 

(21).  There has been little growth in nuclear technology due to the cost of nuclear power 

compared to coal and natural gas, declining investment in research and development, and 

reduction in the workforce.  In addition, nuclear power is limited by the rising costs of 

nuclear plants operations, the cost of nuclear waste management, and unfavorable 

electricity cost comparisons with coal and natural gas.  Since 2003, the construction costs 

for nuclear plans have risen exponentially.  A 2003 study conducted by the Massachusetts 

Institute of Technology concluded that nuclear power is not an economically competitive 

choice, as it is more expensive than both coal and natural gas (Figure 1.7) (21). 
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Figure 1.6. The blue line depicts the number of operating nuclear reactors since 2000.  The green bars 
represent the nuclear percentage of global electricity production each year between 2000 and 2008 (21). 
 

 
 
Figure 1.7. Costs of nuclear, coal, and gas energy sources compared in 2003 and 2009. (21). 

 

Additionally, the use of fission and fusion technology is limited by safety hazards, 

including the environmental release of radioactive nuclides.  Before nuclear technology 

can be effectively employed, safety issues must be addressed.  Radioactive waste must be 

disposed of in underground repositories that “afford efficient containment so to prevent 
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the escape of radioactive species to the biosphere” (22).  However, plans for the 

development of repositories often met with opposition, as in the proposed site at Yucca 

Mountain in Nevada that was halted due to political resistance (22).  

Foreign relation issues further exacerbate the research in and availability of 

nuclear technology.  Fuel and some by-products from Nuclear power generation can 

potentially be used to produce nuclear weapons and must be adequately regulated.  

President Barack Obama recently asserted the necessity to secure nuclear material within 

four years in order to ensure global security from nuclear attack (23).  Before nuclear 

power can be exploited as a useful source of energy, President Obama calls for a global 

ban on nuclear testing and a “new framework for civil nuclear cooperation, including an 

international fuel bank, so that countries can access peaceful power without increasing 

the risk of proliferation” (23).  Even with international cooperation, the threat of nuclear 

terrorism persists as nuclear technology continues to be sold in the black market.  

    

1.3: Solar Energy 

 Solar energy has the largest potential of all the alternative energies.  However, 

due to the high cost of photovoltaics, solar energy’s leading technology, harnessing solar 

energy is out of reach for most of the population.  Solar energy has been utilized for 

millennia and studied in depth for centuries.  In the last two centuries, photovoltaics have 

jumped from hypothesis to reality, and in the last fifty years, spurred by oil crises and the 

development of nanotechnology, solar energy is now a $7.5 billion industry growing at a 

rate of 35–40% per annum (24).  
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 In comparison to the other alternative and renewable energies, no other type of 

energy is as renewable, available, or primary as solar energy.  Man has been able to 

harness solar energy to heat buildings and water since the time of the Romans in the first 

century A.D. Horace de Saussure developed the first solar collector used for cooking in 

1767 and modern photoelectric theories began in 1839 when Edmond Becquerel 

discovered the photovoltaic effect (25).  In 1883 Charles Fritts created the first solar cell 

made with selenium, and in 1905 Albert Einstein published his papers on the Theory of 

Relativity and the Photoelectric Effect, which explained Max Planck’s discovery of black 

body radiation (25, 26).  Einstein won the Nobel Prize for these papers in 1921.  In 1954, 

scientists at Bell Laboratories developed the silicon photovoltaic cell of the same design 

used today (27). 

Several factors must be understood in order to comprehend the development of 

solar energy technology for uses ranging from heating Roman baths to providing energy 

for satellites two-thousand years later.  These factors include the process of harnessing 

the sun’s energy, the legislative and technical developments leading to our modern solar 

energy industry, and the obstacles that the industry faces now and in the future. 

1.3.1 The Sun 

The sun is the principal source of energy for Earth (24).  In The Problem of 

Increasing Human Energy, originally published in Century Illustrated Magazine in June 

1900, Nikola Tesla repeatedly emphasized the importance of harnessing the sun’s energy.   

Even at that time he realized our need for energy-driven processes, 

“that all the objects about us are manufactured by machinery: the water we use is 
lifted by steam-power, the trains bring our breakfast from distant localities; the 
elevators in our dwelling and our office building, the cars that carry us there, are 
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all driven by power, in all daily errands, and in our very life-pursuit, we depend 
upon it” (28). 

 
Due to this reliance on machinery and the vast potential of technological developments, 

Tesla instructed that, “whatever our resources of primary energy may be in the future, we 

must, to be rational, obtain it without consumption of any material” (28).  The chief way 

to produce energy without consuming material is through the sun.  Tesla believed in the 

sun’s potential so greatly that he poetically wrote, 

“First let us ask: Whence comes all the motive power? […] All this energy 
emanates from one single center, one single source—the sun.  The sun is the 
spring that drives all.  The sun maintains all human life and supplies all human 
energy.  Another answer we have now found to the above great question: To 
increase the force accelerating human movement means to turn the uses of man 
more of the sun’s energy” (28). 

 
The sun indirectly provides the energy for essentially all life on earth through 

photosynthesis and heat, and thus has continually been given scientific interest and 

consideration.  Even over one hundred years ago, science knew that harnessing the power 

of the sun is essential to support human development.   

 The sun provides the Earth with all the energy necessary for life.  The sun 

constantly provides 120,000 terawatts (TW) of radiation on the surface of the Earth (24). 

In comparison, the entire world consumes 13 TW of power.  Thus, the sun’s energy is 

“far exceeding human needs even in the most aggressive energy demand scenarios.”  As 

the “Earth’s natural power source,” the sun provides an “energy stream far more potent 

than present-day human technology can achieve” (24).  The power of the sun is so great 

that “covering 0.16% of the land on Earth with (only) 10% efficient solar conversions 

systems would provide 20 TW of power, nearly twice the world’s consumption rate of 

fossil energy and the equivalent of 20,000 1-GWe nuclear fission plants” (24).  While it is 
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clear that there are vast amounts of solar energy available and that solar technology holds 

great potential, the hurdles of solar technology are also great, beginning with harnessing 

the energy itself.   

1.3.2. Harnessing Solar Energy 

Though Tesla did not know the exact method for harnessing solar energy in 1900, 

he knew that “an inexhaustible source of power would be opened up by the discovery of 

some efficient method of utilizing the energy of the rays” (28).  Solar energy can be 

harnessed through solar electric, solar fuel, and solar thermal systems.   

Solar electric technology is the most common form of solar energy and consists of 

photovoltaic cells, often simply called solar cells.  Solar fuel consists of any fuel made by 

the sun, “converting solar photons into chemical fuel” (29).  Solar fuel systems include 

fuels made by the natural processes of photosynthesis and microbial anaerobic 

fermentation such as biomass and biofuels, as well as fuels produced by the metabolic 

pathways of genetically modified organisms like algae and E. coli.  Artificial 

photosynthesis and non-biologically based photoelectrochemical conversion also create 

fuels by harnessing the power of the sun. 

Solar thermal systems utilize heat from the sun through concentrated sunlight. 

After being concentrated with mirrors, sunlight in towers can reach 1500° C or greater 

(29).  Solar thermal systems include solar water heating, heat engines, and thermo-

chemical water splitting.  Solar water heating is used to heat water around the globe, and 

heat engines can be used to drive steam engines and solar thermal electricity plants.  

Solar electricity generated from these steam engines produce the “cheapest solar 

electricity” (29).  Thermo-chemical water splitting, which involves a reaction that is 
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thermodynamically very unfavorable, is possible using the high temperatures of sunlight 

generated by solar thermal systems (29). 

 While solar thermal and fuel systems do provide viable and useful forms of 

energy, recent developments in nanotechnology have provided the opportunity for 

improvements to solar electrics and their efficiency of converting sunlight into useable 

energy. 

 

1.4. Photovoltaic Technology 

1.4.1. The Beginning  

 Daryl Chapin, Calvin Fuller, and Gerald Pearson began working on the first 

photovoltaic cell at Bell Laboratories in 1952.  Initially Chapin was instructed to design a 

cell to replace “traditional dry cell batteries, which worked fine in mild climates, (but) 

degraded too rapidly in the tropics and ceased to work when needed” (27).  Early 

experiments with selenium solar cells achieved low conversion efficiencies, or the 

percent of incident light striking a solar cell that is converted into useable electrical 

power.   

Pearson instructed Chapin to change his material to silicon after Pearson himself 

discovered the benefits of the “introduction of impurities necessary to transform silicon 

from a poor to a superior conductor,” meaning combining other elements into silicon to 

allow it to better carry a current (27).  With these adjustments, this silicon cell reached 

6% conversion efficiency, but did not reach its calculated potential of 23% due to effects 

of the chemical instability of the lithium-doped silicon (27).   
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With the silicon cell’s failure to reach its full potential, research was temporarily 

abandoned.  Then, Bell’s competitor, RCA, developed the atomic battery that generates 

power from strontium-90, now “classified as one of the more hazardous constituents of 

nuclear waste” (27).  With pressure to “produce something newsworthy,” Fuller 

increased the efficiency of his solar cells by cutting silicon into strips and using arsenic 

and boron to produce a p-n junction close to the surface of the silicon (27). 

By 1954 Bell Laboratories had a finished product.  Although it still did not reach 

the 23% optimal conversion efficiency, the New York Times stated that “the construction 

of the first solar module to generate useful amounts of power marks ‘the beginning of a 

new era, leading eventually to the realization of one of mankind’s most cherished 

dreams—the harnessing of the almost limitless energy of the sun for the uses of 

civilization’” (27).  This is the same design currently used today in the silicon solar cell. 

1.4.2. How Photovoltaic Cells Work   

 Photovoltaic cells are semiconductors that capture solar energy in the form of 

photons and release these as electron flow or electrical power (Figure 1.8).  The wave-

particle model of light describes light as consisting “of discrete particle-like packets of 

energy called photons” (24).  The available energy of a given photon is a function of its 

frequency, so all photons do not contain the same amount of energy.  The energy 

available is usually measured in electron volts (eV), and the energy within the visible 

spectrum (ranging in wavelengths from about 400 nm to about 700 nm) varies from about 

3.0 eV to 1.8 eV (24).  However, the peak irradiance present on the surface of the earth 

lies in the region of the solar spectrum at about 2.4-2.2 eV (500-550 nm) with the number 

of photons present dropping off dramatically at the shorter, but more energetic 
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wavelengths.  In order to maximize photoconversion, it is important for a photovoltaic 

cell to absorb light at the higher energy levels as well as across the entire visible spectrum 

since the total energy depends on the energy of each photon and the number of photons 

reaching the cell (30). 

The first reaction in a photovoltaic cell occurs when a photon from the sun (or 

other light source) strikes the photovoltaic cell.  This photon can pass through the cell, be 

reflected away, or be absorbed.  In order to induce the photoelectric effect that converts 

light energy into electrical energy, the photon must be absorbed (30).  Thus, the 

semiconductor in the photovoltaic cell only absorbs photons carrying at least a given 

minimum energy.  This energy is defined as the minimum energy required to elevate the 

energy of the outer valence electron across the band gap, or energy state where no 

electron exists, to the next higher conductive level or energy state.  In this way, only 

photons with energies above the band gap are absorbed (24).  Silicon, the semiconductor 

used in conventional solar cells absorbs only electrons with energy greater than 1.1 eV 

(32).  There are two layers of the semiconductor as seen in Figures 1.8 and 1.9.  

 

Figure 1.8. Generation of electric current in a traditional solar cell.  The sunlight hits the semiconductor, 
which excites an electron, creating an electron hole causing a separation of charges and subsequently 
electron flow, or current (31). 
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Figure 1.9. N (negative) and P (positive) layers of photovoltaic cell (33). 

 

 

Figure 1.10. When a semiconductor absorbs the energy of a photon, excited electrons move from the 
valence to the conduction band (24). 

 

The energy of the electrons (“e-” in the figure) in the valance level (lower electron 

in the figure) and next higher energy conductive level (upper portion of Figure 1.10) is 

called a band, and more importantly, the energy difference between these levels is called 

a band gap.  Therefore, for a photon to be effective in inducing a current it must contain 

energy equivalent to that required to cross the band gap and reach the conductive level.  
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When a photon of sufficient energy is absorbed by the valence electron, the 

energy is transferred precisely into that electron elevating its energy to the “excited” state 

of the conductive level, which was previously empty of excess electrons.  Once electrons 

are in the conduction band, they are bound to their atoms more loosely.  This reduction in 

the energy binding the electron to the atom means that, although the atom maintains its 

neutral charge, the electron can more readily move from the atom to a nearby atom and 

so produce a current and a voltage. 

During the construction of a photovoltaic cell, each layer of the semiconductor is 

‘doped’ with another element in order to change the ability of the semiconductor to 

conduct electricity.  Doping is the “process of adding impurities to the silicon, (and) is 

used to increase the activity of free electrons.”  A layer of semiconductor that has been 

doped to contain more electrons in the conduction band than the pure semiconductor is 

called an n-layer, where the “n” refers to the negative charge carried by the electrons (not 

the atoms).  A layer of semiconductor doped to contain fewer electrons in the conduction 

band than the pure semiconductor has a greater number of “holes”, or positions of a lack 

of electrons in the conduction band that thus have a positive charge, and is so called the 

p-layer (24).  Neither layer is electrically charged, but the two layers sandwiched next to 

each other form what is called a p-n junction.  In the p-n junction there is a separation of 

charge, which induces an electric field.   This electric field provides voltage which helps 

push the current of photon-excited electrons through the field and eventually creates 

electricity as described above (30).  Doping silicon with phosphorous provides the silicon 

with excess electrons to serve as the n-layer, and doping with boron provides the silicon 

with excess holes to serve as the p-layer (31). 
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The entire process of converting light to electrical energy as described is for 

inorganic photovoltaic cells primarily.  In addition to these inorganic photovoltaic cells, 

the same general concept of photon-excited electrons, with slight variations, applies to 

other types of photovoltaic cells called organic and dye-sensitized solar cells.  In organic 

semiconductors, the electrons and holes “are initially bound to each other in pairs called 

excitons, (which) must be broken apart in order to separate the electrons and holes to 

generate electricity” (24).  The reaction in dye-sensitized solar cells is more complex, and 

will be described in the next section as well as in the literature review. 

1.4.3. Uses of Photovoltaic Cells 

In 1955 Western Electric began to sell licenses for silicon photovoltaic 

technologies.  Some of their products included computer punch card decoder devices and 

dollar bill changers, all powered through photovoltaics (25).  The first solar heated office 

building was designed around the same time by architect Frank Bridges.  For the next two 

decades, scientific developments continually increased the conversion efficiency of 

silicon solar cells.  Finally, in the 1970s, Eliot Berman, with help from Exxon, increased 

the efficiency to cost ratio and brought the price of solar electricity from $100/watt to 

$20/watt (25). 

According to the U.S. Department of Energy Solar Timeline, commercialization 

of solar energy in the 1950s and 1960s failed.  However, during this same period, NASA 

pioneered the use of solar cells using photovoltaics to power devices in satellites.  In 

1958 the Vanguard I used a photovoltaic array that generated more than one watt to 

power its radios (25).  By 1978, NASA’s Lewis Research Center developed a 3.5-

kilowatt photovoltaic (PV) system, and the Department of Energy was created in 1977 
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along with the National Renewable Energy Laboratory (NREL) (25).  According to the 

Department of Energy, solar energy “became the accepted energy source for space 

applications and remains so today” (25).  Other modern applications include lighthouses, 

solar powered calculators, and of course solar panels for homes and buildings.  While 

these applications are of fairly small scale, photovoltaics are also currently a major part 

of renewable electric plants. 

NREL’s 2000 Technical Report on the Renewable Electric Plant Information 

System (REPiS) describes the REPiS database and the contributions of each type of 

renewable energy.   In 1999, photovoltaics contributed 90 MW from 866 units (34). In 

the 1980s the government installed large photovoltaic systems, but more recently, smaller 

and more numerous systems have been implemented.  In the late 1990s when this report 

was written, the United States’ economy was on the rise, which allowed expensive 

photovoltaic energy to emerge as a viable alternative energy source.  The production of 

solar energy has risen from essentially zero (0) to 15,000 kW between 1980 and 2000 

(Figure 1.11). 

In most production schemes, increased production leads to decreased per-unit 

cost.  The prices of PV modules have followed this trend: “for every doubling of the total 

cumulative production of PV modules worldwide, the price has dropped by 

approximately 20%,” this is referred to as the ‘80% learning curve’ (24).  In 1997 

President Bill Clinton announced an initiative to have 1 million solar roofs installed by 

2010 through public-private partnerships (34).  Therefore the use of solar energy to 

produce electricity appeared to increase dramatically by the turn of the century. 
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Figure 1.11. Kilowatts of power generated by photovoltaics from 1978-1999 (34). 

1.4.4. Problems with Photovoltaic Cells 

While the use of photovoltaic technology has increased and the cost has decreased 

immensely since the 1970s, the cost of electricity generated by photovoltaics needs to be 

reduced further if its use is to become more widespread.  Specifically, according to the 

Report of the Basic Energy Sciences Workshop on Solar Energy Utilization by the U.S. 

DOE in 2005, the price must decrease by a factor of 15 to 25 to approach $.40/Wp (24), 

given in units of dollars per Watts of power produced.  In 1976 the cost of photovoltaic 

modules was $70/Wp, and in 2003 it was $3.50/Wp.  The balance of system (BOS) costs, 

or the costs associated with all parts of a PV system except for the solar modules 

themselves, for a grid-tiled PV system is $2.50/Wp.  In order to consider the total cost of 

energy and not just power (electricity) production, both module and BOS costs must be 
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considered.  Using this unit, the cost per kilowatt-hour of solar electricity costs have 

dropped from $3.65/kWh in 1976 to $.30/kWh in 2003.  However, in order to be 

economically feasible and competitive, the cost of solar energy needs to approach 

$.05/kWh (24).  This is not projected to occur for 20 to 25 more years, and this projection 

is possible only with an increased rate of research in the field.  Currently, silicon-based 

photovoltaic cells make up more than 99% of today’s photovoltaic production (24).  

Their high cost (due to the need for high-purity silicon) is limiting the contribution of 

photovoltaics to energy production (35). 

Increasing solar cell efficiency without substantially increasing costs is another 

means to improve the cost-to-efficiency ratio and potentially boost the contribution of 

solar cells to global energy production.  William Shockley and Hans Quiesser established 

the efficiency limit of single junction photovoltaic cells at 31% in 1961.  However, the 

highest efficiency achieved by silicon crystal solar cells is 25% in the laboratory and 18% 

in commercial applications (29). 

The Department of Energy in the Solar Energy Utilization Report calls for,  

“basic research…to not only maintain the existing technology path and learning 
curve in support of evolution, but to also produce a revolution to dramatically 
change the slope of the historical learning curve and produce dramatic reductions 
in the PV module cost-to-efficiency ratio.  The goal is to reduce the cost per peak 
watt by a factor of about 15-25 relative to present systems through the use of new 
designs, materials, and concepts for solar electricity production, and to do so 
more quickly than would be accomplished by staying on the existing learning 
curve—thereby materially impacting global energy supply in 10-15 years rather 
than by the mid-21st century “(24). 

 
It is clear that research efforts need to increase in order to increase solar cell 

efficiency.  As illustrated previously, technological advancements and increases in use 

and production of solar cells will also certainly continue to cyclically decrease their cost 



 29 
 

of production and the utilization of new materials may lower all the surrounding costs 

included in the BOS.  These two factors—efficiency and cost of materials—are the chief 

motivators behind the increasing number of alternative photovoltaic designs that have 

been developed in the last two decades.   

1.4.5. Alternative Designs of Photovoltaic Cells 

The conventional silicon crystalline photovoltaic cell, a single junction 

photovoltaic cell, is presently the best commercial solar cell.  Other single junction 

photovoltaic cells are nanocrystalline silicon, gallium arsenide, dye-sensitized and 

organic solar cells. No single junction solar cell has yet surpassed the crystalline silicon 

conversion efficiency of 25% in the laboratory.  As of 2007, gallium arsenide solar cells 

have also reached 25%, while dye-sensitized solar cells have reached 10% conversion 

efficiency and are made of much less expensive material than conventional silicon solar 

cells (29). 

In addition to single junction cells, there are also multijunction solar cells.   While 

single junction solar cells are thermodynamically restricted to a maximum conversion 

efficiency of 31% due to the Shockley-Queisser limit, multijunction solar cells have a 

potential 66% conversion efficiency limit.  Multijunction solar cells can be flexible and 

lightweight, and have reached a laboratory best of 32% conversion efficiency.  In 

addition, multijunction cells can also increase the absorption to a larger portion of the 

solar spectrum through the use of multiple absorbing materials separated in the multiple 

cells.  Single junction photovoltaic cells combined with concentrated sunlight have 

achieved 28% conversion efficiency in the laboratory and have a thermodynamic limit of 

41% (29).  While developments in nanotechnology have allowed for such designs as the 
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quantum-dot solar cells to increase the conversion efficiency of solar cells, there is 

currently no way to attach wires to nanocrystals, so no laboratory results have been 

reported for carrier multiplication solar cells (29). 

While these commonly reported figures show impressive efficiencies for 

multijunction photovoltaic cells, we must also consider cost.  According to Chen et al. 

(2007) at the International Conference on Advance Manufacture (ICAM): “‘high 

conversion efficiency’ and ‘low manufacturing cost’ are the two key points for the 

popularization of solar cells” (26).  While multijunction and traditional silicon solar cells 

achieve the highest conversion efficiency, they fail to have a low manufacturing cost. 

Amorphous solar cells are less expensive, but have not achieved high conversion 

efficiencies (26).   

Einstein’s 1905 mathematical explanation of the photoelectric effect depicted how 

electrons emitted in solar energy capture depend only on the frequency of incoming light 

(26).  In terms of solar cells, this means that “the spectral absorption and emission of 

incident light will influence the measurements of efficiency for solar cells” (26).  

Therefore, increasing the absorption spectrum of the cells should directly increase 

electricity generated and, in turn, increase efficiency.  Taking light absorption capabilities 

into account, the three most important factors to consider in the development of a 

successful type of solar cell are (1) overall efficiency, (2) cost of materials, and (3) light 

absorption.  A novel type of solar cell, the dye-sensitized solar cell (DSSC) addresses 

these three facets and has the potential to be the front-runner of solar technology. 
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1.4.6. The Dye-Sensitized Solar Cell 

Invented by Michael Grätzel in 1991, the DSSC is made of relatively affordable 

and readily available resources.  However, the achieved efficiencies to date are only 

about 10% in the laboratory.  As of 2009, the certified record efficiency of dye-sensitized 

solar cells was 11.1%, and suggested lifetimes exceeding 10 years (36).  The 

implementation of light-absorbing dyes provides another opportunity to increase 

efficiency by expanding the absorption spectra and to reduce costs (26). 

Since its advent in the early 1990s, the DSSC has developed into a promising 

addition to solar technology that makes use of low-cost and abundant materials.  The 

cells are flexible, lightweight, transparent, and bifacial, meaning they have less reliance 

on the angle of incident light.  Dye-sensitized solar cells operate using a mechanism that 

mimics photosynthesis and separates light absorption and charge generation (37).  A 

molecular dye, known as the sensitizer, absorbs photons and uses the energy of its own 

excited electrons to excite electrons to the TiO2 semiconductor.  During the process of 

photosynthesis in plants, chlorophyll absorbs photons of incident light exciting its 

electrons to a higher energy state.  These electrons then undergo a series of oxidation-

reduction reactions that ultimately reduce NADP+ to NADPH and produce a trans-

membrane proton gradient or membrane potential.  This indirect production of energy 

from the absorbed photon is used to generate ATP.  The DSSC is the first photovoltaic 

system to mimic natural photosynthesis (37). 

In recent years, DSSC technology has progressed and DSSC modules have begun 

to enter the commercial market. Dr. Michael Grätzel’s original DSSC design has 

remained relatively constant, despite some modifications, which will be discussed in the 
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following chapter (37).  Although efficiency has improved over the years, dye-sensitized 

solar cells remain more costly than traditional silicon solar cells and less efficient.  One 

of the most important parts of the DSSC is also one of the most expensive—the 

sensitizer.  Costly synthetic dyes are most frequently used although organic dyes and 

plant pigments have also been employed as sensitizers for DSSCs (38).  Using plant 

pigments to sensitize DSSCs is a low-cost, non-toxic, and natural alternative to synthetic 

dyes, but further research on pigment sensitizers is necessary.  Because the sensitizer 

must absorb light to generate the charge, the sensitizer must have high light absorbance 

across a large range of wavelengths.  Although there may not be a single pigment that can 

act as a highly efficient sensitizer, it is possible that a combination of pigments could 

provide the absorbance necessary to increase the efficiency of a DSSC.  In fact, some 

research has demonstrated a synergistic effect of two sensitizing pigments, meaning the 

absorption spectra of two pigments combined to increase light absorption and increase 

the incident photon to current conversion efficiency of the solar cell (38, 39).  An added 

benefit of natural pigments is that they can be extracted directly from plants, whereas 

dyes must be synthesized using costly procedures.   

Our research focuses on developing an optimal combination of natural pigments 

to use as a DSSC sensitizer.  The ultimate goal of our project is to determine whether the 

use of natural plan pigments can improve the efficiency and lower the cost of DSSCs.  If 

so, then this may lower the effective cost of DSSCs and make solar energy more 

available, affordable, and usable.   
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1.5. Our Research 

1.5.1. Research Question 

 Our primary research question is: Which combinations of plant pigments will 

most effectively sensitize a DSSC in terms of increased output?  Since testing all plant 

pigments and all possible pigment combinations is not practical our research sub-question 

is:  Can we determine and then use an index of the absorption spectra of various 

sensitizing dyes to predict the pigment combination that will lead to the highest cell 

electrical output and conversion efficiency? 

1.5.2. Hypotheses 

A dye-sensitized photovoltaic cell sensitized with a specific pigment, or 

combination of pigments, will yield a higher conversion efficiency and voltage output 

than a cell sensitized with another combination of pigments.  Theoretically, the output of 

the cells will vary based on the combined effect of pigments’ light absorption properties.  

By spectrophotometrically analyzing pigments’ absorption spectra and measuring cell 

output, our team will evaluate the relationship between a given pigment mixture’s 

absorbance and cell electrical output.  Essentially, we expect if a cell can absorb more 

light, its electrical output will be greater.  The null hypothesis is that any particular 

predetermined concentration of natural plant pigments will not produce an energy 

conversion efficiency and voltage output significantly different from any other pigment 

concentration used on our cells. 
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2. LITERATURE REVIEW 

2.1. Michael Grätzel and the Dye Sensitized Solar Cell 

2.1.1. Development of the Dye-Sensitized Solar Cell 

Vlachopoulos, Liska, Augustynski, and Grätzel created the first incarnation of a 

DSSC in 1988 using a titanium sheet covered with a fractal TiO2 film (40).  A yellow 

ruthenium dye was used as the sensitizer and a platinum wire was inserted into a beaker 

of electrolyte as the counter electrode.  At the sensitizer’s absorption maximum 

wavelength, the device converted over 60% of the photons into electric energy with an 

overall conversion efficiency in sunlight between 1 and 2% (40).  Grätzel’s lab then 

significantly expanded on these initial findings to develop a low-cost solar cell with a 

much higher efficiency. 

O’Regan and Grätzel developed a photovoltaic cell based on a transparent, porous 

film of TiO2 particles coated with a sensitizing dye (41).  DSSCs consist of an electrode, 

coated with TiO2, a dye, and a counter electrode, coated with platinum catalyst.  Light 

absorption in dye-sensitized solar cells is separated from charge carrier transport.  

Nanoparticles of TiO2 are deposited onto a glass electrode and then coated with 

sensitizing dye.  Dye molecules absorb the photons of incident light, causing electron 

injection into the TiO2 semiconductor.  These electrons diffuse toward the glass electrode 

and travel through a wire to the counter electrode, creating an electrical circuit.  The 

electrons then attach to iodine molecules, which diffuse across the electrolyte and return 

to the dye molecules.  A graphic representation of the components of the DSSC as well as 

summary of the reactions involved in the functioning of the DSSC are shown in Figures 

2.1 ad 2.2, respectively.   
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Figure 2.1. Side view representation of the components of a DSSC. 

 

Figure 2.2. Schematic representation of a DSSC and the reactions associated with light absorption and 
charge transport.  S denotes the sensitizer, or dye, I-/I3

- is the charge mediating electrolyte, and Pt CE 
denotes the platinum-coated counter electrode (42). 
 

This revolutionary type of photovoltaic cell is modeled after plants, which also 

separate the two parts of energy conversion as they function to process solar energy.  The 

light-to-electric energy conversion efficiency of the DSSC in this landmark study was 

7.1-7.9% in simulated solar light and 12% in diffuse sunlight (41).  Grätzel patented his 

DSSC in 1990 (US Patent 4,927,721), and by 2003, scientists overall registered more 

than 800 patents (42).  
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2.1.2. Principles of Operation of DSSCs 

The dye-sensitized solar cell differs from other solar cells in two primary ways.  

First, light absorption and charge transport are separated.  Light absorption occurs in the 

dye sensitizer and charge transport occurs in the TiO2 and electrolyte.  This separation 

allows for low carrier recombination, or back reaction of injected electrons, and a high 

tolerance for impurities (43). The efficiency of the cell depends heavily on the kinetics 

of electron transfer.  The rate of electron injection must be higher than the decay of the 

excited state of the dye, and the rate of reduction of the oxidized sensitizer must be 

higher than the rate of recombination of the injected electrons with the dye cation.  In 

addition, the reaction at the counter electrode must regenerate the charge-mediating 

electrolyte quickly enough so that the step does not become rate limiting.  Once the 

sensitizer has been regenerated, the cell has transformed light into electric energy 

without permanently changing its chemical structure.  A graphic representation of the 

components of the DSSC as well as summary of the reactions involved in the 

functioning of the DSSC is shown in Figures 2.1 ad 2.2, respectively.  

The second major unique feature of DSSCs involves the novel use of a 

mesoscopic junction.  Charge generation takes place only at the interface between the 

dye, TiO2, and electrolyte.  Grätzel was able to increase the efficiency of his cell by an 

order of magnitude by taking advantage of the large surface area of the porous TiO2 film 

deposited onto the glass surface (41).  The surface area of the porous TiO2 allows the 

applied dye to seep in and form hundreds of monolayers for maximal absorption of light.  

A single monolayer would only weakly absorb light because the area of one dye molecule 



 37 
 

is larger than its optical cross section.  The multi-layered structure closely resembles the 

stacked thylakoid vesicles in chloroplasts, which harvest light via chlorophyll (37).   

The mesoporous nature of the TiO2 film also allows the liquid electrolyte to seep 

into the pores of the TiO2.  The deep penetration of the dye into the TiO2 increases the 

contact between the dye molecules, the TiO2, and the electrolyte.  When light strikes the 

cell, a dye molecule is excited and an electron is injected at an extremely high rate (i.e., 

on the order of femtoseconds) into the TiO2 semiconductor.  The conduction band of the 

oxide allows for rapid electron conduction.  The time required for electrons to cross a 10 

µm TiO2 film is 10 ms, and this rate of transfer is even more rapid than electron transfer 

across a photosynthetic membrane in plants (37). Therefore, the TiO2 is essential for 

optimal light absorption by providing a framework for multiple dye layers.  TiO2 is also 

essential for charge transport from the mesoscopic dye/TiO2/electrolyte junction toward 

the anode.  Figure 2.3 shows a scanning electron micrograph of the TiO2 film (37).  

 

Figure 2.3.  Scanning electron micrograph of TiO2 film.  Average particle size is 20 nm (37).  
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2.1.3. Recent Developments in DSSC Technology and Commercialization 

 Despite being a promising next step in solar energy generation, the efficiency of 

the DSSC has yet to reach standards high enough to make it commercially viable to 

compete with PV solar cells or other sources of energy.  The efficiency (η) of a solar cell 

is given by the following equation: 

  (40) 

Equation 2.1. Solar cell efficiency. 

where Jsc is the short circuit current, Voc is the open current voltage, FF is the fill factor, 

and Pm is the total solar power incident on the cell.  The FF in the equation is relatively 

constant, where typical values for the fill factor range from 0.75 to 0.85.  Pm is based on 

solar irradiance but would change over geographic and temporal scales and for use with 

an artificial source of irradiance.  Therefore, the principal way to adjust the efficiency of 

the cell is to increase either the Jsc or Voc, so most developments in the technology of 

DSSCs aim to improve these variables (44). 

Dr. Michael Grätzel, winner of the 2009 Balzan Prize and 2010 Millennium 

Technology Prize, discussed the most recent developments in DSSC technology at his 

Balzan Lecture at the Carnegie Institution for Science in Washington, D.C. on November 

3, 2010 (45).  Notable milestones for DSSC technology occurred in 2005, when DSSCs 

were scaled up to modules by researchers in Israel, and in 2009, when DSSCs began to be 

commercially produced by G24 Innovations (G24i) located in Cardiff, Wales.  G24i 

collaborated with Grätzel to mass produce DSSC-powered phone chargers, universal 

remotes, lamps, and indoor modules (46). G24i backpacks and bicycle panniers 

integrated with DSSCs are able to provide power for charging small electronics such as 
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iPods, cell phones, and GPS devices.  The “Grätzel Solar Bag” and “G-pack”, shown in 

Figure 2.4, are two products offered by G24i (46). 

 

Figure 2.4.  The Grätzel Solar Bag (left) and the G-pack (right) produced by G24i are capable of 
harvesting energy from sunlight and charging small electronics on the go (46). 

 

Grätzel discussed the unique aspects of DSSC technology that give it great 

potential for success in global markets (45). DSSCs are bifacial, allowing them to capture 

light from any angle, and are translucent, making them perfect for integration into 

buildings or homes as façades or windows.  They are less sensitive to the angle of 

incidence of light and also have increased efficiency in higher temperatures compared to 

traditional silicon solar cells (45). Also, DSSCs can be made to appear different colors, 

which means an energy-harvesting façade can also be aesthetically pleasing.   

The original design of the DSSC, developed by Grätzel in the early 1990s, has 

remained relatively constant despite modifications and improvements.  Although DSSCs 

have unparalleled potential for commercial success, the future of DSSC technology will 

depend on increasing efficiency and lowering cost.   Grätzel stated that the price of solar 

energy needed to decrease to 5 cents/ kW-hr in order to be viable for widespread use 

(45).  Currently, a Grätzel Solar Bag sells for $124.95 and the G-pack sells for $99.95 
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before shipping costs (46).  Large scale projects for homes and buildings using DSSCs 

would be extremely costly and only affordable for the wealthiest “green” consumers.   

Research has increased to improve many aspects of these solar cells, with the 

main goal of decreasing cost.  Researchers have studied ways to improve all parts of the 

DSSC, including the electrolyte, TiO2, and catalyst.  However, one of the most important 

parts of the DSSC is also the most expensive—the dye.   

2.2. Specifications and Modifications of DSSCs 

2.2.1. Size of the DSSC 

There is a significant difference between the size of solar cells studied in a 

research laboratory and those that are actually applicable on a large scale.  Most studies 

involving DSSCs focused on small cells, less than 1 cm2.  However, recent advances in 

technology have led to the ability to test larger modules that would make DSSCs 

competitive with other major forms of energy. 

Lenzmann and Kroon (2007) studied the effect of DSSC size without considering 

stability, and found that efficiency decreased with DSSC size (Figure 2.5) (43). 

 

Figure 2.5. A comparison between cell active surface area and top recorded efficiencies (η) as of 2007 
(43). 
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It should also be noted that the last entry, a cell with the largest active area of 26.5 

cm2, is roughly the size of what can be considered a “submodule,” which is the beginning 

of large scale production (43).  A cell this size has only achieved a recorded efficiency 

slightly greater than half of the highest recorded efficiency for DSSCs (43).  As the active 

area of a DSSC is increased by a few square centimeters, the overall resistance of the 

glass grows, causing a high series resistance for the solar cell module and a low fill 

factor.  As the area of the DSSC increases, more energy was lost as heat due to this 

resistance (47). 

Lee et al. (2007) also studied how a varying size in the DSSC tested corresponded 

to a change in efficiency recorded, and they found more evidence of larger cells 

achieving lower efficiencies than their smaller counterparts (47).  In their research, they 

compared 25 cm2 cells (15.12 cm2 active area) with 1.2 cm2 cells (36mm2 active area).  

The measured open circuit voltages of both sizes were equal, but the short-circuit current 

density and fill factor both decreased by over 5% in the larger 25 cm2 cell (47). 

Although it seems that smaller cells yield higher efficiencies and better results, 

Park et al. (2007) examined an important aspect regarding DSSC size that helped 

advocate for further study into larger cells (48).  They found that an overestimation of 

cell efficiency was enhanced in small cells and concluded that the overestimation 

decreased as the active area increased.  This suggested that a larger cell provided more 

accurate results.  When considering an assembly of solar modules, only the light hitting 

the front of the cells is relevant, and so, such overestimations are not applicable for 

eventual real-world applications.  To truly get a dependable reading from smaller DSSCs, 
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some kind of masking is required to cover the edges of the cell and make sure that only 

the light incident on the front surface is the light providing electricity (48). 

Dai et al. called for a need to shift research to the development of larger cells as 

they reiterated how already by 2007, a record efficiency of 11.14% was achieved with 

cells of active area less than 0.3 cm2, while cells significantly over 1 cm2 only displayed a 

record 8.18% efficiency.  Even this record 8.18% efficiency was achieved by a DSSC 

with an area of only 2.36 cm2.  As Dai et al. said, to properly commercialize DSSCs, they 

need to be scaled up (49, 50).  

However, scaling up to larger cells is not simple and new details must be 

accounted for that do not appear in smaller cells.  Small cells can be made with 

conductive glass and no collective electrode, but for cells around a size of 10 cm by 10 

cm, efficiency without such an electrode comes out to less than 1%.  Dai et al. worked 

with modules at a size of 15 cm by 20 cm (187.2 cm2 active area) each, and managed to 

produce from each module a short current between 2 and 3 A, an open circuit voltage of 

about 0.7 V, and a fill factor between 55 and 60% (50).  Overall, these modules mostly 

displayed a photoelectric conversion efficiency around 5-6%, with averages of 7.4% 

efficiency for an active area of 10.2 cm2, 5.9% efficiency for 187.2 cm2, and 6.2% 

efficiency for 1497.6 cm2 (49).  Although these output values were not as high as those 

achieved by the best small cells, they are still significant, especially when taking into 

account the overestimation in efficiency that arises in smaller cells.  It is clear that more 

research is needed on the technological aspects of increasing cell sizes. 
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2.2.2. Types of glass 

 Continuing with the constituents of any DSSC, another component that 

contributes to the net efficiency of the cell is the type of glass used for the outer layers.  

These layers of the cells are the ones exposed directly to the environment and hold the 

rest of the parts carrying out the functions of the cells.  Since the glass plates are in 

contact with the inner elements, they play a role in their connection to the cell as an 

electrical component that interacts with the generated energy and could potentially affect 

its output.  The glass used for DSSCs is made to be conductive so that it can aid in the 

collection of free electrons produced and help transfer the current out of the cell.  In 

addition, since the glass plates are the outer boundaries of the cell, any incoming light 

must travel through the glass.  Thus, the optical properties of the glass are critical to the 

cells functioning.  The glass must be highly transparent in the absorbing region of the 

sensitizers in order to excite electrons within the DSSC. 

The current typical practice is to place the TiO2 on glass plates that are coated 

with a thin layer of fluorine-doped tin or tin-doped indium oxide (FTO or ITO).  The 

FTO or ITO are conductive, and so can make the glass plates serve as electrodes that help 

collect electric charge produced within the cell.  Both types of coatings are very 

transparent throughout the visible spectrum (they are more absorbent in ranges closer to 

UV radiation), making them well suited for the main part of the Sun’s output (42).  

Besides allowing light to enter the cell, the glass electrode also takes part in the 

overall circuit created by the cell, and the main parameter that affects the circuit is the 

resistivity of the glass, or its resistance per unit area.  In general, a higher resistivity leads 

to a higher series resistance within the solar cell, which in turn decreases the overall 
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performance of the cell in terms of electrical output.  Both FTO and ITO coatings share a 

typical resistivity of between 10-20 Ω/cm2.  However, the resistivity of glass-ITO 

electrodes increases significantly as temperature rises and this effect is not observed in 

FTO covered glass (42). 

Another variation on ITO glass is a flexible electrode, polyethylene terephthalate 

coated with tin-doped indium oxide (PET-ITO), which is cheaper, lighter, and less 

limited by its shape than regular ITO.  However, temperature becomes even more of an 

issue since at the same time PET-ITO requires that a lower temperature be used for 

binding TiO2, and this lower binding temperature causes less TiO2 to stick to the 

electrode.  Some treatments help the TiO2 stick better, but they result in a lower stability 

of the DSSC.  Longo and De Paoli showed that flexible electrodes also create a higher 

series resistance than glass electrodes, so the final series resistance in FTO glass reaches 

around 35-50 Ω versus about 400 Ω for the PET-ITO.  Due to this difference, despite the 

relatively same open current voltage displayed by both flexible and glass electrodes, 

flexible cells produced about 10 times less photocurrent (42). 

In terms of their interaction with the rest of a DSSC, ITO and FTO glass cannot 

serve alone.  The surface of these transparent glass electrodes allows for poor kinetics in 

the reduction of triiodide to iodide, and the process at their surface is very slow.  

Catalysts such as platinum are much better for the reaction, and so covering the glass 

plates aids the overall solar cell (42).  In addition to lowering the efficiency of a cell, 

glass also poses the potential risk of breaking.  Metal is a conceivable replacement for the 

back electrode of a DSSC since it is cheaper and would provide a longer lifetime for the 

cell than glass. Also, with metal’s higher conductivity, a metal electrode would provide 
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less resistance and so increase efficiency.  However, glass is believed to not react with 

the corrosive Iodine electrolyte as metal does and it is still the most commonly used 

electrode.  Toivola et al. (2006) tested various substances and found that platinum-treated 

FTO glass was the more efficient than any metal electrode tested.  They also tried using 

plastic substrates to replace glass ones, but the glass cells performed much better than any 

plastic.  Until the metal and plastic process is optimized, glass is still the best choice for 

substrate and electrode (51). 

It seems that in general, FTO is a better choice for coating than ITO due to its 

independence on temperature.  Although flexible electrodes could be cheaper and more 

versatile, they result in a lower output and again display temperature dependence.  In 

most studies, the commonly used glass is FTO coated glass and the common resistivity is 

similar to that of TEC15-type glass (glass with 15 Ω/cm2 resistivity).  The TEC15 is 

cheaper than the other viable option, TEC8 (8 Ω/cm2), and is still of a quality fit to make 

a good solar cell (42, 47, 50, 51).  The few instances when a lower resistivity glass (such 

as TEC8 or TEC10) has been used were in studies that considered other parameters of the 

glass.  One example is with Park et al. who considered the effect of the electrode 

thickness on the cell performance and they wanted to reduce other possible contributions 

to efficiency from the glass as much as possible (48).  While several innovations in glass 

are underway at the present, it appears that FTO coated, TEC15 glass for DSSCs is still 

the norm used in current research.  Further research is needed to improve the 

performance of the glass in DSSCs. 
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2.2.3. Review of Reaction Components: Electrode, Catalyst, and Electrolyte 

The type of glass used and size of the cell affect the ability to gather energy by a 

DSSC, but a cell’s ability to produce energy depends on the components that directly 

affect the main photochemical reaction.  As explained previously, the main chemical 

reaction in a DSSC involves the photon of light, the sensitized electrode or 

photoelectrode, the counter electrode, the catalyst, and the electrolyte.  The 

photoelectrode consists of TiO2 bound to glass and sensitized by dye.  The counter 

electrode is coated with the catalyst for the chemical reaction.  The electrolyte assists as 

the redox mediator in the chemical reaction (36). 

The reaction starts as the photon is absorbed by the dye, which injects an electron 

into the TiO2.  Then, the electron moves through the TiO2 to the film plated glass.  Since 

the dye has just lost an electron, it has been oxidized.  To regain an electron (in order to 

keep the reaction going), iodide (I-) reduces the dye and becomes triiodide (I3
-).  The 

triiodide moves to the counter electrode, where it is reduced back to iodide for use in 

another round of the chemical cycle.  The catalyst coated on the counter electrode 

increases the kinetics of the reaction (52). 

Since these components of the cell help maintain and speed up the photochemical 

reaction that produces electrical energy, improvements in these components can lead to 

drastic increases in DSSC efficiency.  Additionally, the use of lower priced materials 

while maintaining efficiency could potentially decrease the cost to efficiency ratio.  Such 

replacements could make DSSCs and solar energy technology more affordable, available, 

and ultimately more popular.  The following is a review of previous research that has 

addressed the standard features and adaptations of the photoelectrode, catalyst, and 
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electrolyte—the key factors in the driving chemical reaction, as pathways to an improved 

DSSC. 

2.2.4. The Photoelectrode 

Kay and Grätzel (1996) described the photoelectrode of the DSSC as a conductive 

glass plate “coated with a porous layer of a wide band gap semiconductor, usually TiO2, 

which is sensitized for visible light by an absorbed dye (52).”  This paper was published 

so early that the cells described were not even called DSSCs, but instead were called 

“low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide 

and carbon powder (52).”  Kay and Grätzel applied colloid TiO2 by the doctor-blading 

method (using a rod pressed against the surface to spread across the surface) to the 

conductive side of glass with SnO2 film.  Then, the glass coated in TiO2 was heated to 

450°C (52).  Next, the glass coated in TiO2 was soaked in sensitizing dye to complete the 

photoelectrode.  This process is standard to most DSSCs.  Since Kay and Grätzel, before 

the term ‘DSSC’ was even in use, TiO2 has always been used as the photoelectrode.  As 

revealed by an extensive literature review, there have been very few changes to the 

semiconductor in the last fifteen years.  Most experiments affecting the photoelectrode 

have dealt with changing the sensitizer of the electrode: the dye.  Otherwise, the main 

developments in the photoelectrode have only involved the use of different types of TiO2.  

The studies of the dye will be discussed later in this literature review. 

TiO2 has been used as the semiconductor in DSSCs since their inception because 

of its low cost, excellent semiconducting properties, and already widespread use as a 

white colorant in toothpastes and paints (52).  From the beginning of the reaction (photon 

absorption) to the end of the cycle (redox), TiO2 is a good semiconductor.  
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In the beginning of the excitation cycle, due to the high refractive index of TiO2, 

light is able to scatter throughout the photoelectrode, allowing for maximum absorption.  

Next, electron injection is supported by TiO2’s conduction band, which is slightly below 

the excited state energy level of many dyes.  TiO2 then sufficiently shields that injected 

electron due to its high dielectric constant, which prevents the electron from interacting 

prematurely with the dye instead of the electrode.  TiO2 is also stable under extreme 

conditions, such as high temperatures, in photoelectrochemical cells (52). 

Different types of TiO2 can affect the abilities of a cell.  Kang et al. (2008) 

recommended using TiO2 nanorods instead of TiO2 nanoparticles (53).  Nanorods result 

in improved charge transport, and induce a longer lifetime for the electron in the 

photoelectrode due to necking of the rods in a unique 3D network.  Due to the increased 

surface area of nanorods over nanoparticles, the initial conversion efficiency of nanorod-

based DSSCs is 3.32% compared to that of nanoparticle-based DSSCs at 1.97%.  

Nanorod-based DSSCs also have a higher overall conversion efficiency in an 

environment of increasing salt concentration.  The conversion efficiency of nanorod-

based DSSCs remained constant while the conversion efficiency of nanoparticle-based 

DSSCs decreased with increasing salt concentrations.  These results led to the conclusion 

that nanorod-based DSSCs performed better in extreme environments and overall than 

nanoparticle-based DSSCs (53). 

While we will be changing the sensitizer in DSSCs, we will not be changing the 

semiconductor component of the photoelectrode.  Though Kang et al. recommended 

using TiO2 nanorods rather than nanoparticles, nanoparticles are more affordable and 

currently the most readily available form of TiO2 from the common suppliers of DSSC 
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kits.  For DSSC construction, the doctor-blading method for applying TiO2, 

recommended by Kay and Grätzel and supported by most researchers since the 1990s, is 

both cheap and reliable. 

2.2.5. The Counter Electrode and Catalyst 

The counter electrode has been subject to much more experimentation than the 

electrode.  The basis of modifications to the counter electrode has been through 

modifications to the catalyst.  Platinum is the primary catalyst used, but carbon catalysts 

are a significantly lower priced option.  Carbon is much more readily available, as 

opposed to platinum which is a precious metal that is not abundantly available (35).  Thus 

far, DSSCs incorporating platinum catalysts have always had higher initial efficiency in 

comparison to DSSCs incorporating carbon catalysts.  However, recent studies have 

found modified-structure carbon catalysts provide higher long-term efficiency.   

2.2.5.a.  Platinum as the Catalyst 

In 1996 Kay and Grätzel acknowledged that platinum “has been the preferred 

material for the counter electrode since it is an excellent catalyst for triiodide reduction 

(52).”  The primary focuses of research on the platinum catalyst are the methods of 

preparation, methods of application, and thickness. 

Khelashvili et al. (2006) compared multiple types of platinum preparation 

methods (54).  Sputtering, thermal deposition, electrochemical reduction, and chemical 

deposition were all measured through transmission electron microscopy, x-ray 

diffraction, x-ray photoelectron spectroscopy, and x-ray absorption near edge structure 
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analysis.  Based on electrochemical performance, they concluded that hydrogen reduction 

is the best method for platinum preparation (54). 

Fang et al. (2004) studied the effect of thickness of the platinum film on DSSC 

performance (55).  Platinum is one of the most expensive components of the DSSC.  

Using the smallest possible layer of platinum is essential to lowering the cost of DSSCs 

overall.  Platinum was deposited in thicknesses ranging from 0 nm to 415 nm based on 

sputtering time.  After analysis of grain size, porosity, conductivity, sheet resistance, and 

overall DSSC performance, platinum thicknesses of 2 nm and 415 nm provide the highest 

energy conversion efficiency due to the lowest sheet resistance of the counter electrode 

(55). 

There are a variety of methods of platinum application to the glass of the counter 

electrode.  One of the most common, screen-printing, is also one of the simplest.   

Burnside et al. (2000) tested the application of screen-printing for coating both the 

electrode with TiO2 and the counter electrode with catalyst.  The screen-printing method 

provides even and consistent layers of pastes.  This method also allows for quick and 

easy, automated fabrication of DSSCs (56). 

2.2.5.b. Carbon as the Catalyst 

One of the most appealing features of DSSCs over conventional silicon solar cells 

is their low cost.  Cost of DSSCs can be reduced immensely by lowering the cost of the 

most expensive component: the platinum catalyst.  In comparison to other catalysts, 

though it is efficient, platinum “has the disadvantage of being very expensive.”  

Additionally, commercially mass producing DSSCs require a substantial amount of 

platinum “which is not abundantly available (35).”  Platinum is both “extremely 
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expensive and also has the potential of corrosion by the iodide solution (57).”  Kay and 

Grätzel also emphasized the concern “that a small amount of platinum might dissolve in 

the electrolyte by oxidation and complex formation with iodide/triiodide, e.g.., as PtI4 or 

H2PtI6.”  These compounds would adversely affect the conversion efficiency of the cell 

(52). 

Joshi et al. (2009) contended that “efforts are needed to search for an alternative 

material which is readily available, cost effective, and capable of showing comparable 

catalytic effects for tri-iodide, and carbon is such a material (35).”  Kay and Grätzel 

(1996) also reached the same conclusion when looking for a catalyst that was low cost 

but could still “be well conducting and exhibit a low overvoltage for reduction of the 

redox couple (52).”  They proposed using carbon as a “low cost alternative” because “it 

combines sufficient conductivity and heat resistance as well as corrosion resistance and 

electrocatalytic activity for triiodide reduction (52).”  

Kay and Grätzel used the doctor-blading method to coat the counter electrode 

with graphite powder with 20% carbon black added (52).  Fanis et al. (1998) and Kay and 

Grätzel (1996) also suggested using a graphite rod or soft lead pencil, as well as an open 

flame to apply the carbon layer (52, 58, 59).   Nevertheless, problems with consistency 

and even coating have been experienced while using graphite rods or pencils as well as 

with open flame techniques.   

Li et al. (2009) made carbon counter electrodes with organic binder free carbon 

slurry at low temperatures (57).  Efficiency reached as high as 6.1%, which is 

“comparable,” but not higher than counter electrodes coated in platinum. The significant 

achievement here is that Li et al. achieved these results while staying at low temperatures, 



 52 
 

and previous research had only achieved results when cells were heated up to 450°C.  

High temperature requires additional energy and “limits the choice of substrates to heat-

resistant materials, and they cannot be used for plastic substrates usually employed in 

flexible DSSCs” (57).  

The most recent research in carbon catalysts has been done with carbon 

nanotubules.  They have higher surface area than ordinary carbon and thus contribute to 

higher conversion efficiencies in DSSCs with liquid electrolytes due to increased contact 

between the electrolyte and the counter electrode (60). 

Suzuki et al. (2002) compared three different types of nanocarbon materials: 

single wall carbon nanotubes (SWCNTs), nanohorns, and carbon filaments.   The study 

also compared the three nanocarbon-coated counter electrodes to a platinum-coated 

counter electrode (60).  The conventional platinum coated electrode achieved the highest 

conversion efficiency (5.4%).  Of the three types of nanocarbon materials, only the 

SWCNT had a high conversion efficiency (4.5%) (60).  Ramasamy et al. (2007) achieved 

6.73% overall conversion efficiency with a nanocarbon counter electrode, which is 

comparable to the 7.26% conversion efficiency they achieved with conventional platinum 

(61). 

Koo et al. (2006) compared the effect of different counter electrodes on DSSC 

efficiency over a period of five days (62).  The three counter electrodes compared were 

prepared with a multi-wall carbon-nanotube film (~20-25 µm), a platinum film prepared 

by the sputtering method (~500 nm), and a platinum film prepared by the electro-

deposition method (~5 nm).  The films were applied by the doctor-blading method.  This 

study reported that the DSSC with the carbon nanotube counter electrode had more 
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stability than those coated in platinum.  Increased percent efficiency was also reported for 

the carbon-nanotube counter electrode, but only in the period from 24 hours to 5 days.  

According to figures in the paper, the efficiencies for all three electrodes were roughly 

equivalent in the first 24 hours.  Additionally, while the platinum counter electrode 

performance decreased with time, there was “no significant change of impedance 

characteristics in the carbon-nanotube electrode” after 5 days (62).   

Based on these results, the study concluded that a “DSSC having carbon-nanotube 

counter electrode has higher efficiency and more stability than those in the case of two 

platinum counter electrodes (62).” However, later studies still contended that carbon-

nanotube counter electrodes are comparable to, but have not surpassed, the conversion 

efficiencies of platinum counter electrodes (61). 

2.2.5c. Catalyst Conclusion 

The choice of which catalyst to use, nanocarbon or platinum, is controversial.  

While nanocarbon is the low-cost option, platinum is the industry standard.  Additionally, 

the initial conversion efficiencies of nanocarbon have not surpassed those of platinum.  

While carbon in the form of an open flame or a lead pencil is readily available and 

inexpensive, those methods of application are not automated and therefore leave room for 

errors and inconsistencies.  The most successful form of the inexpensive element is 

nanocarbon material, which, in addition to still being experimental, is not currently 

readily available from the DSSC kit suppliers.  For this study we have chosen the more 

expensive option because it is currently the most efficient and conventional.  Since we 

are changing so many aspects of the cell, the catalyst is a factor where we would like to 

use the foremost and industry premier material.  However, we acknowledge that using a 
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carbon counter electrode is an excellent and feasible way to improve the cost efficiency 

of DSSCs.  In the future, when there is more industry support of and evidence for the use 

of nanocarbon materials as the counter electrode, a more cost efficient DSSC may be 

made with nanocarbon materials. 

2.2.6. The Electrolyte 

The reduction oxidation (redox) couple is the key component to DSSCs (36). 

Iodide (I-) reduces the dye that has been oxidized by the incoming photon and becomes 

triiodide (I3
-).  Triiodide moves to the counter electrode and is reduced back into iodide.  

The iodide can then reduce the dye that has been newly oxidized by the second incoming 

photon.  The cycle continues, dependent on the redox reactions occurring with the redox 

couple mediator (I-/I3
-).  Because the electrolyte serves as the redox mediator, it is key to 

the functionality of the DSSC.  According to Boschloo and Hagfeldt (2009) in their 

review of the iodide/triiodide redox mediator, “the photovoltage of the device depends on 

the redox couple because it sets the electrochemical potential at the counter electrode 

(36).”  Kinetically, this is because the “driving force for dye regeneration reaction is 

given by the difference between” the energy states of the standard dye with the oxidized 

dye and iodide with diiodide (I2
-) (36). 

However, a few problems exist with this mediator.  First, though the 

iodide/triiodide couple has an extremely large standard potential and the sensitizer has an 

extremely large oxidation potential, internal potential loss is also great, decreasing the 

efficiency.  If we could gain only half of the internal potential loss, overall DSSC 

efficiencies above 15% might be achieved (36).  Kay and Grätzel demonstrated that 

iodide is highly corrosive to most metals, limiting cell-to-cell connections.  Additionally, 
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the conventional liquid electrolyte solution (with acetonitrile) has a relatively low boiling 

point of 82° C, which results in low stability of DSSCs under extreme conditions and 

requires hermetic sealing of the cell (52).   

Regardless of these issues with the conventional electrolyte, Boschloo and 

Hagfeldt concluded “the iodide/triiodide couple will probably be unsurpassed as a redox 

mediator for dye-sensitized solar cells for some time to come.”  They also acknowledged 

that with “the growing ability to master the semiconductor/dye/electrolyte interface and 

control recombination reactions, we will be able to use alternative redox mediators…that 

have redox potentials up to .5 V more positive than that of iodide/triiodide (36).”  The 

following literature review highlights the current research of both alternative redox 

mediators and the durability of the electrolyte solution and therefore the DSSC as a 

whole. 

2.2.6.a. Alternative Redox Mediators  

Bromide pseudohalides and selenocyanate based ionic liquid electrolytes have 

been developed (36). Selenocyanate-based ionic liquid electrolytes “gave very 

encouraging performance” (36).  One-electron redox systems have also been investigated, 

using cobalt and copper in coordination with organic mediators like TEMPO (36, 63).  

Copper-iodide (CuI) as an inorganic hole-transport material had increased efficiency 

from 1% to 6%, but deteriorated quickly due to the property of iodide to degrade metals 

(63).  Solid-state organic hole conductors are another possible substitute for the redox 

electrolyte couple.  Yanagida et al. (2009) also described the fabrication of PEDOT poly 

(3, 4-ethyl-enedioxythiophene)-based DSSCs and in situ photoelectrochemical 

polymerization as alternatives for iodide-free DSSCs (63).  New liquid crystal embedded 
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in polymer electrolytes composed of click polymers have also been developed that have 

relatively high conversion efficiencies of 4.7% (64).  However, at this point, none of 

these electrolytes have surpassed the capabilities of the triiodide/iodide mediator. 

2.2.6.b. Addressing Durability Issues: Gel Electrolytes 

In addition to increasing efficiency of the redox couple, the second important 

factor in alternative electrolytes is durability.  According to Wang et al. (2003), due to the 

electrolyte, “one of the main factors that has hampered widespread practical use of the 

DS(S)C is the poor thermostability encountered so far with these devices” (65).  The 

principal solution to the problem of low-boiling point and thus low stability of the 

electrolyte solution is to create gelled electrolytes. 

Kubo et al. (2001) studied the performance of DSSCs with gelled and liquid 

electrolytes.  The study concluded that “gelation does not affect the conductivity of the 

electrolyte and that the conductivity increased with an increase of iodine in both gel 

electrolytes and liquid electrolyte” (66).  In three separate studies, Wang et al. 

investigated solid-state DSSCs using amphiphilic ruthenium as a dye sensitizer and a 

polymer gel electrolyte (65, 67, 68).  These studies addressed the issue that “the leakage 

of the liquid electrolyte…as well as corrosion of the platinum counter electrode by the 

triiodide/iodide couple have been suggested as some of the critical factors limiting the 

long-term performance of the DS(S)C, especially at elevated temperature (68).”  There is 

no difference in the conversion efficiencies of the polymer gel electrolyte with 

iodide/triiodide created with silica nanoparticles in comparison with the standard, 

conventional liquid electrolyte, demonstrating “extraordinary stabilities of the device 
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under both thermal stress and soaking with light…rendering these devices viable for 

practical application” (67, 68). 

2.2.6.c. Electrolyte Conclusion 

Though the iodide/triiodide couple definitely has room for improvement, it is still 

currently the best electrolyte for DSSCs.  It is also readily available, found in DSSC kits, 

and extremely affordable.  We are not testing our DSSCs in high-temperature conditions, 

so we have chosen to use the conventional liquid iodide/triiodide electrolyte.  In the 

future, if a superior alternative redox mediator is developed, it will greatly enhance the 

efficiency of DSSCs and should be employed if it continues to lower the cost to 

efficiency ratio. 

2.2.7. Reaction Component Conclusion 

Though many variations and adaptations of the chemical components of the 

DSSC have been developed, most are still in an experimental phase.  Since we are 

drastically changing the sensitizer from that of the conventional DSSC, we have planned 

to minimize changes in other key chemical components like the catalyst, electrolyte, and 

semiconductor.  However, in order to achieve the overarching goal of making solar 

energy more cost effective by simultaneously increasing efficiency and lowering cost, 

improved advances in the catalyst, electrolyte, and semiconductor must be incorporated 

into DSSC technology.  We will keep the reaction components of the catalyst, electrolyte, 

and semiconductor constant, and vary the combination and concentration of the 

sensitizer: the photosynthetic pigments. 
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2.3. Photosynthesis 

The greatest inspiration and original model for DSSCs comes from nature itself 

and the evolutionarily developed process of photosynthesis.  DSSCs imitate 

photosynthesis through their own “photosynthetic” pigments.  Although plants in nature 

are not perfect in their conversion of light to energy, the ability of their pigments to 

capture sunlight is very efficient and should be discussed in order to fully understand the 

process and capabilities of DSSCs.  

Roughly speaking, photosynthesis is the process through which plants and a few 

other organisms use sunlight to create energy.  More specifically, plants take in carbon 

dioxide and water, and, with the aid of sunlight, produce sugar and oxygen.  Actually, 

this process is comprised of two primary reaction sequences.  The first sequence is the 

light-dependent, or thylakoid reactions, where pigments in the plant cells absorb light and 

convert it to potential chemical energy in the form of ATP and NADPH.  The second 

reactions are light-independent and take place in the stroma, but use the chemical 

potential energy created in the thylakoids to build carbohydrates.  These carbohydrates 

can be used as packets of energy for the entire plant and essentially all ecosystems (69, 

70).  A plant’s ability to transfer energy from light to ATP and NADPH is very efficient, 

at around 95-99%.  However, the total energy that could be produced on a theoretical 

level if all light were absorbed is around 27% of the initial energy input (71).  Overall, 

photosynthesis is not very efficient in terms of biomass production, yielding 3-5% of the 

energy captured, but light excitation and subsequent electron transfer is very efficient.  It 

is this efficient, light-dependent reaction that can be utilized by humans through 

photovoltaic cells. 
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The principle of photosynthesis stems from the interaction of light with matter.  

When a photon, or a “particle” of energy, hits a molecule that is capable of absorbing 

energy at that wavelength, the energy of the photon is absorbed by an electron and the 

photon ceases to exist.  The electron is then “excited,” or boosted, to a more energetic 

level around the molecule (Figure 2.6).  The electron excitation, however, is very brief so 

after a very short period of time, the excited electron loses this excitation energy in one of 

four ways.  One option is for the electron to simply return to its original energy level, and 

in doing so emit the energy as either another photon of lesser energy than the original 

(fluorescence) or as heat, or as both another photon and heat.  Alternatively, the 

excitation energy may be transferred to another molecule through resonance transfer or 

may be converted through photochemistry into potential chemical energy ultimately 

yielding reducing power in the form or NADPH or ATP (69). 

 

Figure 2.6. An electron is shown excited to a higher energy state, an excited state, after being struck by a 
photon (72). 
 

In plant cells, photosynthesis occurs within the chloroplasts, which contain a 

variety of light-absorbing molecules called pigments.  The main pigments found in green 

plants are chlorophylls a and b, and in fact, all photosynthetic cells contain some kind of 
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chlorophyll (69).  There also exist accessory pigments, which include carotenoids (which 

split into two types: carotenes and xanthophylls) and phycobilins (which are found only 

in algae).  The pigments in the chloroplasts are arranged into two structural groups called 

Photosystems I and II.  Each photosystem is basically a cluster of pigments, with what 

are called “antenna pigments” at the edges and the “reaction center” at the center.  The 

reaction center is simply a chlorophyll molecule and associated proteins anchored in the 

thylakoid membrane within the chloroplast.  A photosystem starts functioning by having 

the antenna pigments absorb energy from sunlight.  The energy may be transferred by 

resonance transfer to neighboring pigments that require light of either the same or less 

energy until it reaches the reaction center.  The reaction center is where the energy of 

excited electrons is transferred into potential chemical energy via a sequence of 

oxidation-reduction reactions (Figure 2.7) (69, 70).  

 

Figure 2.7. The functioning of a photosystem, where energy from light is carried among antenna pigment 
molecules until it makes its way to the reaction center, where it can then initiate a flow of electrons (71). 

 

Photosystem I is a system with a high amount of the chlorophyll a pigment.  Its 

reaction center is a molecule called P700, which is a chlorophyll molecule with attached 

proteins specialized to trap energy with a maximum absorbance at a wavelength of 
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around 700 nm (far red light).  Photosystem II has a lower ratio of chlorophyll a to b than 

the first, and its reaction center is P680, another specialized chlorophyll and protein 

combination molecule whose peak absorbance is around 680 nm (red light).  Both 

reaction centers, after receiving energy, release electrons that can then be transferred in a 

series of oxidation-reduction reactions. 

The interaction between the two photosystems that eventually results in the 

creation of ATP and NADPH is a process called the “Z-scheme.”  As explained, a photon 

strikes pigments in Photosystem I, and the energy from the photon is transferred to the 

P700 molecule.  The P700 loses electrons, which flow through a chain of electron carriers 

to an already existing, positively charged molecule called NADP+.  The negatively 

charged electrons are able to react with NADP+ to create the product NADPH.  Since 

P700 has lost electrons, it is left with an electron hole and a net positive charge.  To fill 

this hole, an electron comes from Photosystem II via transporters and the cytochrome 

system protein complex (69).  This electron comes from another photon striking  

Photosystem II at about the same time.  Similar to Photosystem I, the energy from that 

photon makes its way to the Photosystem II reaction center, called P680.  The P680 loses 

an electron that flows through a different chain of electron carriers to the hole that had 

been created in P700.  The hydrolysis of a water molecule produces electrons that fill the 

electron holes formed in P680.  Each transfer of electrons is energetically favorable, since 

the electrons start in an excited state with excess energy and reach a lower energy state by 

filling a hole.  This process is often portrayed as a Z shape (on its side) with the rises and 

falls in energy levels of the electrons as they flow from water to fill a hole in 
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Photosystem II, from which an electron flows to fill a hole in Photosystem I, from which 

an electron flows to create usable energy (Figure 2.8) (69, 71).  

 

Figure 2.8. Another rendering of the Z-scheme, this time showing the energies of each state and how the 
electrons always flow to a position of lower energy except when light energy lifts them to an excited state 
(73). 
 

Photosynthetic pigments are natural molecules whose primary function is to trap 

energy from sunlight and eventually convert it into a flow of electrons.  They are found in 

all plants, and so they are very readily available in potentially large quantities.  Plants 

have perfected photosynthesis over billions of years, and humans could use this natural 

technology to tap into the Sun’s resources. 

 

2.4. Individual Photosynthetic Pigments and Spectral Properties 

The different pigments involved in photosynthesis vary in their spectral 

properties.  Plants in nature make use of a myriad of pigments to capture a spectrum of 

light broader than any single pigment alone.  By exploring the spectral properties of 
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various pigments, we are able to learn about their ability to capture different parts of the 

energy provided by the sun. 

Not every photon can excite every electron in a light-absorbing molecule.  Rather 

than being continuous, there is a discrete amount of energy between each level to which 

an electron can be excited.  For this reason, only photons that have a certain wavelength 

(which governs the color of the light but is also related to energy) can be absorbed by a 

particular molecule (69).  The color of a photosynthetic pigment is an indicator of what 

wavelengths the pigment can absorb, since the wavelengths that are not absorbed are 

usually reflected off the pigment and so give it the color we see.  Thus, chlorophyll is 

green because it absorbs best in the red and blue range of the light spectrum.  The two 

kinds of carotenoids, carotenes and xanthophylls, each get their colors from their own 

absorbance spectrum.  Carotenes appear orange since they do not absorb blue light, and 

xanthophylls are yellow since they do not absorb light of the red spectrum.  The 

construction of the light harvesting antennae leads to a broadened absorbance in the intact 

plant that is greater than the single pigment absorbance spectrum of the single pigments 

alone.  Examples of some common photosynthetic pigment absorption spectra are shown 

in Figure 2.9.  These spectra are made even broader when pigments interact with various 

proteins within chloroplasts (70). 
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Figure 2.9. The absorbance spectra of various pigments. It can be seen here that each pigment has a peak 
absorbance at a different wavelength, and that the area under any one particular spectrum is not as great as 
the area under all of them combined (71). 
 

Chlorophylls are naturally very efficient at absorbing light.  In green plants in 

nature, chlorophyll serves as the major light-absorbing pigment.  A photosynthetic action 

spectrum demonstrates which wavelengths of light cause photosynthesis to occur.  For 

green plants, the action spectrum essentially follows the absorption spectrum of 

chlorophyll and, to a lesser extent, that of carotenoids (see Figure 2.10).  Light that is 

captured by accessory pigments eventually has its energy transferred to chlorophyll 

molecules to be used in photosynthesis (69, 70). 
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Figure 2.10. Here the absorption spectra of chlorophyll a, chlorophyll b, and certain carotenoids are 
overlapped and then placed beside the action spectrum of the photosynthesis in green plants to show how 
large a role chlorophyll plays in the determination of this spectrum (74). 
 

Carotenoids aid the chlorophylls in two ways.  First, carotenoids collect light that 

the chlorophyll does not absorb near the green part of the spectrum.  As can be seen by 

their different colors, accessory pigments (like carotenes and xanthophylls) have 

absorption maxima at wavelengths different from those of chlorophyll, making them 

supplementary receptors of light to the chlorophyll.  Accessory pigments capture 

incoming light that the chlorophyll cannot absorb (69).  With this addition to the usable 

spectrum of light, a plant can utilize more of the incoming sunlight.  The second role 

played by carotenoids is a form of defense, as carotenoids collect extra energy from the 

already excited chlorophyll and then dissipate it away as heat or in a series of 

biochemical reactions.  For example, the xeazanthin cycle helps plants dissipate excess 

absorbed energy and minimize photoinhibition.  This absorption of the excess energy 

prevents the formation of reactive oxygen species that may damage the plant (70).  

Plants have naturally evolved to reach the composition of antennae complexes 

that maximize absorbance at their own unique environments.  For example, plants vary 

tremendously quantitatively and qualitatively in the structure and composition of their 
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light harvesting complexes under shade and sun conditions.  Therefore it seems likely 

that modifying pigments in DSSCs can improve their performance and efficiency as well.  

In our attempts to harvest energy from the sun, we can learn from plants and even make 

use of the pigments that they have already developed over billions of years for this sole 

purpose.  By combining various different pigments, we can potentially at least imitate a 

process already found to be extremely efficient in nature. 

 

2.5. Pigments and DSSCs 

DSSCs incorporate pigments as the sensitizer with which they can absorb 

incoming sunlight and proceed with their process of turning that sunlight into viable 

energy.  Most DSSCs in use today use artificial pigments, based on ruthenium and 

developed to capture as much light from the solar spectrum as possible.  However, these 

artificial dyes are both expensive and toxic.  Natural pigments could solve both of these 

issues, and it is this area that we wish to explore.  Researchers have explored the 

possibilities of a variety of natural pigments as a replacement for the artificial sensitizers. 

2.5.1. Individual Photosynthetic Pigments as Sensitizers for DSSCs 

2.5.1.a. Chlorophyll Alone 

As the source of energy capture, the sensitizer of a DSSC is a vital component 

that can be improved to raise the efficiency of DSSCs as a whole. Much research has 

been done with various dye electron sources to find sensitizers that would increase cell 

efficiency.  Shortly after his ground-breaking paper, Michael Grätzel wrote a paper with 
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Andreas Kay in which they discussed TiO2 solar cells sensitized with chlorophyll (Figure 

2.11) and chlorophyll derivatives (75).  

 

Figure 2.11. Molecular structure of chlorophyll (76). 

When bound to TiO2, the normal chlorophyll absorption peaks broadened (Figure 

2.12) and Grätzel attributed this broadening to the polar interactions of the TiO2 with the 

polar moieties of the chlorophyll a molecule and the higher concentration of chlorophyll 

that aggregates on the limited cell surface area.  Gräztel and Kay concluded that while 

chlorophyll derivatives have shown a high photocurrent quantum yield comparable with 

the efficiency of natural photosynthesis, their practical use as a sensitizer is limited by 

their low energy conversion efficiency (75).   

 

Figure 2.12. An example of widening of an absorbance spectrum when the dye is bound to the TiO2. 
Though this example is of fruit extract, the same thing occurs with all pigments (77). 
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An additional problem with using chlorophyll comes from its photostability as 

explained by the physical chemistry involved in electron excitation.  When an electron 

absorbs energy, it is excited to a higher energy level from the ground state (S0  S1) and 

then releases this excess energy through radiation as it decays to its ground state.  This 

process occurs very quickly in the order of magnitude of picoseconds.  Occasionally, a 

vibrational energy sub-state of a lower energy level is close enough in energy to that of 

the excited electron state.  In this case, the excited electron can alter its quantum spin so 

that it now mirrors that of the electron left in the unexcited ground state.  This 

transformation is called intersystem crossing and results in the formation of a “forbidden” 

triplet state.  The electron will eventually relax back down to the ground state and revert 

back to its original spin, but this process occurs at a rate order significantly slower than 

normal fluorescence (Figure 2.13). During this extended time period, the free electron is 

able to react with other entities in the system, leaving the original molecule from which 

the excited electron originated radically changed.  In the case of chlorophyll, this radical 

change is the degradation of the chlorophyll.  Because the chlorophyll remains in the 

triplet state for such a relatively long amount of time, chlorophyll becomes susceptible to 

reacting with external factors via reduction reactions, which inevitably result in the 

formation of radicalized species.  These radicalized species, often singlet state oxygen 

because of its natural abundance (but potentially hydrogen as well), are incredibly 

reactive and can easily interfere with the chlorophyll and lead to rapid degradation of the 

chlorophyll molecule as a sensitizer.  As such, it seems that chlorophyll would be too 

unstable to use as a sensitizer, especially over the extended periods of time that DSSCs 

would need to be operative in order to be practical for outside use (78). 
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Figure 2.13. Energy diagram of the excitation of an electron form chlorophyll. When the light (hv) hits the 
ground state an electron is ejected (red arrow) to the next highest energy state S1. Here it can either 
fluoresce through relaxation (green arrow) or crossover to a triplet state and then fluoresce (blue arrow). 

2.5.1.b. Artificial Dyes 

Artificial dyes might at first glance seem much more promising for the efficiency 

of DSSCs than chlorophyll, but they too carry disadvantages.  Ruthenium based dyes, 

such as N3 dye (Figure 2.14) are commonly used artificial pigments that absorb light 

wavelengths with peaks around 400 nm and 550 nm.  Thus, N3 dye shows a higher 

absorbance than chlorophyll, and is able to cover a large amount of the non-linear solar 

irradiance (Figure 2.15).  DSSCs incorporating N3 dye has a strong incident photon to 

current efficiency (ICPE), or the efficiency of the cell to convert photons into usable 

energy, of about 80%.  However, despite its good binding properties with the TiO2 

semiconductor and a strong ICPE, N3 dye does not absorb well above 600 nm and thus 

leaves a lot of the photons from the natural sunlight in the 600-800 nm range unabsorbed.  

Further problems noted with Ruthenium based dyes are in the price and sustainability of 

the sensitizer.  Ruthenium is a rare earth metal and as such is subject to higher market 

prices because of its limited supply.   
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Figure 2.14. The molecular structure of (cis-bis(4,4-dicarboxy-2,2-bipyridine)dithiocyanato ruthenium(II) 
or N3 dye (44). 

 

Figure 2.15. N3 dye absorbance (shown in red) compared with solar irradiance (overarching blue curve) 
(44).  
 

Because N3 dyes do not absorb all wavelengths of visible light, pigments that 

absorb in the missing ranges have become the subject of many studies.  One example is 

the recently developed synthetic Black Dye, which has a broad absorbance throughout 

the visible spectrum.  Ru(4,40,400-tricarboxy-2,20:60,200-terpyridine)(NCS)3, also 

known as the Black Dye, is currently the most efficient dye for use in DSSCs.  The Black 

Dye is a modification of the ruthenium polypyridyl complex N3 dye (Figure 2.16) (44).  



 71 
 

Recent studies on the Black Dye show the dye to have a nearly quantitative absorbed 

photon to current efficiency (APCE), indicating this dye exhibits strong coupling to the 

semiconductor and minimal recombination (44).  The Black Dye improves on the N3 dye 

by increasing the absorbance spectrum 100nm further in the infrared range (Figure 2.17). 

This expansion in the absorption increases the absorption of light, yields a higher Voc and 

Jsc, and results in an increase to 15% efficiency without any modification to the cell (79). 

 

Figure 2.16. (a) Structure of Ruthineum Polypyridyl complex N3 dye. (b) Structure of the Black Dye (44). 
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Figure 2.17. Graph of photocurrent action spectra of TiO2 (Blue), N3 (Red), and The Black Dye (Black) 
(79). 

2.5.1c. Other Natural Photosynthetic Pigments – Carotenoids 

Chlorophyll alone does not seem to be a very viable DSSC sensitizer, but other 

natural pigments exist that can replace the expensive, toxic, artificial pigments.  

Carotenoids, which often make up the majority of the accessory pigments in plants, make 

for an interesting study because they tend to absorb in the green range of the visible 

spectrum, where the sunlight intensity is the highest.  Probably just as important as its 

added absorption to the overall solar cell, carotenoids possess the ability to act as a 

photoprotecting agent to shield chlorophyll from its own triplet state.   

Carotenoids can act very effectively as agents for protecting photosystems against 

the harmful effects of the induced oxidation described above.  They can quench the initial 

triplet state of the chlorophyll sensitizer by absorbing energy from it to return the 
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sensitizer to its original ground state singlet without the formation of harmful radicals.  

This process (outlined below) forms a triplet state carotenoid, but unlike the chlorophyll, 

triplet state carotenoids will dissipate their excess energy harmlessly as heat and not form 

radicals with existing O2 molecules. 

Chl +  1Chl*  
1Chl*  3Chl*     (intersystem crossing into triplet state) 
3Chl* + Car  3Car* + Chl   (triplet Chl returns to ground and Car excites to   

triplet state) 
3Car*  Car + Heat (degradation of triplet Car to singlet state)    

Carotenoids also maintain the ability to react with the already formed radical and 

return them to their initial states, but the exact mechanism through which this processes 

occurs is still not well understood.  The steps that are understood are outlined below (44): 

Chl +  Chl*      (singlet excited Chl) 

Chl*  3chl*     (triplet excited Chl) 
3chl*+ O2  Chl+ 1Δg O2     (Singlet oxygen) 
1Δg O2 + Car  3Car* + O2      (transfer of energy to triplet Car) 
3Car*  Car+ Heat (degradation of triplet Car to singlet state)    

It must also be noted that various studies have found that the number of 

conjugated double bonds has a great impact on the efficiency of the carotenoid as a 

photoprotector.  A study involving M. luteus showed that carotenoids with fewer than 9 

conjugated double bonds are much less efficient in quenching singlet oxygen, since a 

mutant strain in which the carotenoid contained only eight conjugated bonds was three 

times less effective at protection.  Studies have shown that carotenoids also have some 

effect acting like a sunscreen to protect various plants, algae and bacteria from 

degradation caused by “near UV” (UV-B and UV-A, of wavelengths between 280 nm 

and 400nm) (44). 
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2.5.1d. Carotenoids in DSSCs 

With respect to the absorbance of carotenoids in DSSCs, two different studies 

examined the potential of using them as the sole sensitizing agent.  De Padova et al. used 

beta-carotene (Figure 2.18), a completely nonpolar molecule, and achieved a voltage of 

320 mV and a current output of 0.35 mA (77).  This result is significant, because beta-

carotene, being nonpolar, does not contain any moieties that would appear to allow it to 

bind with the TiO2, but it still yielded an output statistically significant from blanks.  In 

addition, beta-carotene is less expensive to purchase than chlorophyll or many other of 

the carotenoid pigments.  If beta-carotene could prove as a viable substitution for 

artificial pigments, it would significantly lower the cost of constructing the DSSCs. 

 

Figure 2.18. The molecular structure of β-carotene (44). 
 

A second study involving carotenoids examined the use of two pigments, crocetin 

and crocin, as sensitizers.  Both of these carotenoids are structurally similar to beta-

carotene but contain two ester groupings on the end that allow it to bind better to the 

semiconducting layer.  This improved binding allowed DSSCs sensitized with crocetin to 

achieve a voltage of 430 mV and a current of 2.84 mA, while DSSCs sensitized with 

crocin achieved a voltage 580 mV and a current 0.45 mA (80).  Xanthophyll (Figure 

2.19), a carotenoid similar to crocin and crocetin, is also promising and will be discussed 

later in this literature review.  
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Figure 2.19. The molecular structure of xanthophylls (44). 

2.5.1e. Anthocyanins 

The search for natural pigments similar to N3 dyes in absorbance led researchers 

to turn to anthocyanins.  Anthocyanins are glycosylated polyphenols that are water-

soluble and produce a range of colors from red to purple in flowers, fruits and fall foliage.  

Grätzel and colleagues experimented with cyanin and achieved a Voc of between 400 mV 

and 450 mV and a Jsc of between 1.5 mA and 2.2 mA for DSSCs sensitized with cyanin 

(81).  In a comparable study, Tennakone et al. examined the use of cyanidin (an 

anthocyanin that is harder to isolate and less photostable then cyanin) from blood-red 

anthurium flowers.  Tennakone et al. recorded a Voc of 435 mV and a Jsc of 2.9 mA for 

DSSCs sensitized with cyanidin.  However, they observed an immediate decay of the 

photocurrent from the cells when a potassium iodide (KI) electrolyte was utilized.  They 

concluded, similar to Kay and Grätzel regarding the chlorophyll derivatives, that cyanidin 

was impractical as a sensitizer on its own because DSSCs sensitized with cyanidin 

achieved very low current and voltage outputs.  Neither of these studies’ results is near 

the 15%-17% efficiency required to make DSSCs commercially viable (82).  

Many further studies have been conducted to explore the efficiency of using fruit 

juice extract containing anthocynanins to boost voltage and current outputs.  Using just 

the juices extracted from a pomegranate containing the anthocyanin cyanidine-3-

glucoside as a sensitizer, researchers were able to able to achieve voltages between 300 
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mV and 480 mV, and currents ranging from 0.18 mA to 0.86 mA depending on the 

electrolyte used in the cell.  Like the studies before, these researchers observed a 

widening of the absorption spectra of the anthocyanin as it bound to the TiO2 

semiconducting layer and became stabilized (83).  Many other such studies of 

anthocyanins as sensitizers have been preformed and their respective results are 

summarized in Table 2.1 below. 

Anthocyanin Source 

Tested 

Reported 

Photovoltage (mV) 

Reported 

Photocurrent (mA) 

Reported Max 

Power 

(mW/cm2) 

Reported Fill 

Factor (%) 

Red Sicilian Orange 

(84) 

340 3.84 0.66 0.50 

Strawberry (84,85) 405 2.86 0.61 0.53 

Blueberry (84,85) 360 4.29 0.52 0.34 

Orange (84,5) 412 1.02 0.13 0.31 

Red Cabbage (84,85) 525 4.70 1.51 0.61 

Cochineal (84,85) 397 6.00 1.20 0.52 

Skin of Jaboticaba 

(84,86) 

660 2.60 1.10 0.62 

California blackberry 

(84) 

400 2.20 0.56 - 

Skin of eggplant 

(84,86) 

350 3.40 0.48 0.40 

Black rice (84,87) 551 1.14 0.327 0.52 

Rosa xanthina (87) 492 0.637 0.163 0.52 

Betaxanthin (87) 220 2.00 - 0.51 

Betanin (87) 270 0.51 - 0.47 

Melanin (87) 230 0.75 - 0.35 

 
Table 2.1. Different anthocyanins tested as sensitizers and their respective voltage and current outputs. 
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2.5.1f. Increased DSSC Performance with Combined Pigments 

It has been shown that natural photosynthetic pigments can serve as an 

appropriate sensitizer in a DSSC.  Individual plant pigments, such as chlorophyll, 

xanthophyll, carotenoids, and anthocyanins have appropriate light absorption 

characteristics when combined with TiO2 to function sufficiently in DSSCs. 

Some studies have shown that combinations of more than one plant pigment may 

increase energy output and solar energy conversion efficiency.  Liu et al. tested cells 

sensitized with pure chlorophyll, pure xanthophyll, or a  mixture of both pigments (38).  

The absorption spectra of each pigment at a presumed equal concentration and the mixed 

pigments indicated the absorbance of xanthophyll was greater than that of the mixture of 

the two pigments combined (Figure 2.20).  The absorption of the mixed solution was the 

“linear superposition” of each of the pigments alone and lower absorbance values than 

each individual pigment because the mixture contained a reduced concentration of each 

pigment. 

 
Figure 2.20. Shown are the absorption spectra for the same concentration of a. xanthophyll, b. chlorophyll 
and xanthophyll combined in a 1:1 ratio, and c. chlorophyll (38). 
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However, when the piments were bound to TiO2, the absorption characteristics 

changed.  The mixture had the greatest absorption spectrum in this study (Figure 2.21).  

 

Figure 2.21. Shown are the absorption spectra for a TiO2 electrode binded to a. xanthophyll, b. chlorophyll 
and xanthophyll combined in a 1:1 ratio, and c. chlorophyll (38). 
 

Liu et al. suggested that the reason behind the increased performance of DSSCs 

created with the mixture of chlorophyll and xanthophyll was that the combination of 

chlorophyll and xanthophyll in DSSCs mimic the natural process of photosynthesis in 

plants and capture more incoming light (38).  They further suggested that electrons 

excited in chlorophyll that were not injected into the TiO2 band were captured by 

xanthophylls and that xanthophyll was therefore able to inject electrons from its own 

absorbance, as well as excess electrons originally excited in chlorophyll (38).  Thus, 

according to Liu et al., the scheme of energy conversion between primary and secondary 

dyes in plants is recreated when chlorophyll and xanthophyll are used in DSSCs (38).  

They termed this higher output achieved through the use of a mixture a synergistic effect.  

While they provided no evidence of a real synergism, the phenomenon lends credibility 
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to the hypothesis that using naturally occurring ratios of plant pigments to sensitize 

DSSCs can lead to superior cells with the greatest energy output. 

A study by Chang and Lo documented a similar trend with chlorophyll and 

anthocyanins (88).  Chang and Lo extracted chlorophyll from pomegranate leaves and 

anthocyanins from mulberry fruit to sensitize DSSCs.  Similar to the previous study, 

Chang and Lo showed the individual absorption spectra for chlorophyll and anthocyanins 

and compared it to the spectrum for the mixture of the two pigments.  The overall effect 

was an increase in the total amount of light absorbed over all relevant light wavelengths. 

Chang and Lo also provided a plot of Current Density versus Voltage for the cells 

treated with chlorophyll, the cells treated with anthocyanins, and the cells treated with a 

mixture.  This revealing diagram showed that for any given value of voltage in the cells, 

there was approximately 1.5 times as much current in the cells treated with a mixture of 

the pigments as there was for either of the individual pigments.  This means that the cells 

treated with a mixture of pigments were much more effective at creating an electrical 

current for the same applied light sources.  Additionally, the value of photoelectric 

conversion efficiency for the mixture of pigments was approximately 1.2 times greater 

than that of either individual pigment.  Clearly, the cells treated with a mixture of 

pigments exhibited a superior performance compared to those treated with either 

individual pigment, again displaying the synergistic effect. 

In another study, Kumara et al. examined the effect between chlorophyll and 

shisonin, both extracted from shiso leaves (39).  This study showed the electrical activity 

of the tested DSSCs with varying wavelengths of light.  Similar to light absorption 

spectra, the electrical activity charts for cells treated with each pigment display peaks at 
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particular wavelengths of light, and as before, the chart for the mixture of the two 

pigments retained the peaks of individual pigments at slightly lower values.  The overall 

effect discovered was that the cells treated with the combination of pigments exhibited a 

higher overall total electrical activity when summed over all wavelengths of light.  Since 

electrical activity versus light energy is a critical characteristic of photovoltaic cells, the 

increase in overall electrical activity means that the DSSCs treated with combined 

pigments have superior performance to those treated with individual pigments. 

Three distinct studies demonstrated the effect of using multiple natural plant 

pigments on the solar energy conversion of DSSCs.  Not only did pigment combinations 

exhibit higher energy conversion and electrical activity than lone pigments, but 

combinations also mimicked some of the natural processes that occur during 

photosynthesis in plants.  The synergistic effect of multiple plant pigments in DSSCs 

shows great promise for maximizing the output and solar energy conversion of these 

solar cells. 

Despite the promise that seems to come from the synergistic effect, it is important 

to note that not all combinations of photosynthetic pigments have displayed this same 

synergistic effect when sensitizing a DSSC.  Wongcharee et al. (2007) used rosella and 

blue pea extracts alone and in equal combination, but they found that the DSSC 

sensitized with rosella extract alone had the best sensitization (89).  As an anthocyanin, it 

had the broadest absorption spectrum, and this spectrum was not improved by the 

combination (89).  

Though their results did not support the previous results for the synergistic effect, 

they did display the complicated interactions of pigments in their sensitization of DSSCs.  
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The relationships between pigment spectra and ICPE (a measure of cell efficiency) are 

not simply additive.  More research is required to fully understand mechanisms of 

pigment combinations and their binding affinities with TiO2 in order to select optimal 

pigment combinations. 

 

2.6. Conclusions of Literature Review 

Based on our literature review, we have decided to focus our research on the dye 

of the DSSC.  Instead of manipulating chemically produced dyes, we will use 

photosynthetic pigments.  In order to further explore the effects of various pigment 

mixtures on DSSC output, we will use three photosynthetic pigments, alone and in 

combinations, that have been shown to produce at least some current.  Plants display a 

wide range of synergistic effects in terms of the interactions between primary and 

accessory photosynthetic pigments.  Therefore, we have designed our DSSCs so that they 

are similar to green plants in that we will use the three most common photosynthetic 

pigments in plants—chlorophyll, xanthophyll, and beta-carotene.  The performances of 

DSSCs will be related to the absorbance spectra of the corresponding pigment solutions 

to determine if there is a correlation between cell performance and total pigment 

absorbance.  We hypothesize that the larger absorption spectrum a cell’s sensitizing 

pigment solution has, the larger the cell’s output will be. 
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3. METHODS 

3.1 Pigments 

Stock solutions of beta-carotene, xanthophyll, and chlorophyll a were acquired 

from Sigma-Aldrich (Sigma-Aldrich Inc, St. Louis, MO, USA).  Each pigment was 

diluted in ethanol to a final concentration of 1.119 x 10-4M.  The pigments were stored in 

the dark at -18°C.    

3.1.1. Absorption Spectra 

In order to measure absorption spectra of the pigments, pigment solutions were 

further diluted to a concentration of 1.119 x 10-5M in ethanol.  Absorption spectra were 

measured from 390-700 nm in 1nm increments using Shimadzu Model UV-2550 Dual 

Beam Spectrophotometer (Shimadzu Inc, Kyoto, Japan). 

3.2. Electrodes and Counter Electrodes 

Uncut transparent TiO2-coated test cell TEC15 glass plates and Pt-coated test cell 

TEC15 glass plates were obtained from DyeSol (DyeSol, Queanbaven, NSW, Australia).  

TEC15 glass plates were chosen over TEC8 glass plates because TEC15 is a cheaper 

alternative to TEC8 glass and is the standard glass used in current DSSC research, as 

discussed previously in the Literature Review.  The dimensions of the uncut glass plates 

were 161mm x 80mm.  The plates were cut into 28 individual electrodes and counter 

electrodes measuring 20mm x 23mm (460mm2) with an active area of 8mm x 11mm 

(88mm2) coated with 18NR-T TiO2.   
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The plates were cut using a Dremel grinder tool (Dremel, Racine, WI, USA) 

because a manual glasscutter was not sufficient.  A score was first made at least half way 

through the glass while the temperature of the glass was kept low under a constant stream 

of cool water.  After cutting a deep score, the section of the glass was snapped off by 

applying pressure to either side of the score.  Sharp edges were then ground away with 

the grinder tool.  

The electrodes and counter electrodes were heated on Fisher Scientific Isotemp 

Digital ceramic-top hot plate (Fisher Scientific, Pittsburgh, PA, USA) at 300°C for 45 

minutes according to instructions from DyeSol.  After the electrodes cooled to 90°C, the 

electrodes were placed in a vial containing 20mL of pigment solutions. The electrodes 

were soaked for 24 hours in the dark at room temperature.  Three electrodes were soaked 

in each of the following pigment combinations:  

 
 

Pigment Combination 

1 Blank 
2 100% Chlorophyll 
3 100% Chlorophyll 
4 100% Beta-carotene 
5 1:1 Chlorophyll: Beta-carotene 
6 1:1 Chlorophyll: Xanthophyll 
7 1:1 Xanthophyll: Beta-carotene 
8 1:1:1 Chlorophyll: Xanthophyll: Beta-carotene 
9 2:1:1 Chlorophyll: Xanthophyll: Beta-carotene 
10 1:2:1 Chlorophyll: Xanthophyll: Beta-carotene 
11 1:1:2 Chlorophyll: Xanthophyll: Beta-carotene 

 
 

Table 3.1. Pigment solution used to sensitize electrodes. 

Before assembling the solar cells, the counter electrodes were cooled to room 

temperature. 
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3.2.1. Cell Assembly 

After the electrodes were soaked in the pigment solutions for 24 hours, they were 

carefully removed from the solutions with tweezers and allowed to air dry.  The electrode 

was placed on top of the counter electrode in such a manner to maximize contact between 

the TiO2 and platinum.  Binder clips were placed along the edges of the cell to hold the 

glass plates together.  Once the plates were secure, KI electrolyte solution was dropped 

onto the edge of the cell and spread between the glass plates through capillary action to 

cover the entire active area.  Excess electrolyte was wiped off the solar cell. 

	
  
Figure 3.1. Photograph of cell placed electrode side up, displaying placement of copper tape and binder 
clips for the testing process.  

	
  
As the last step of the construction process, copper tape was placed along the 

protrusions on the top and bottom of each cell (Figure 3.1).   The copper tape served as a 

point of contact to which wires could be attached to complete circuits with the cells.  The 

glass plates were specified to have a sheet resistance of 15 ohms, so the use of copper 

tape was designed to minimize any further increases in resistance associated with the 

electrode-wiring contact points. 
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3.3. Testing 

The cells were placed in a Conviron Model BDW36 Growth Chamber (Conviron, 

Pembina, ND, USA).  The chamber was equipped with 20 GE MVR400/HOR/MOG 

metal halide lamps (General Electric, Fairfield, CT, USA) filtered with a 1/8 inch 

Plexiglass type G barrier to remove most of the ultraviolet radiation from the chamber 

(Figure 3.2).  The spectral irradiance inside the chamber is shown in Figure 3.3.  The 

cells were evaluated at a temperature of 22°C and 15% relative humidity.  Lights were 

turned on for the first 30 minutes, off for the next 30 minutes, then on again for the final 

30 minutes.  Three cells sensitized with the same pigment combination were attached to 

21X Datalogger (Campbell Scientific, Logan, UT, USA).  The Datalogger measured the 

voltage and current of each cell every second.  The voltage and current values were 

averaged every 10 minutes.  Data were recorded with PC200W Datalogger Starter 

Software (Campbell Scientific, Logan, UT, USA). 

 
Figure 3.2.  Photograph of three cells attached to data logger in growth chambers during testing process.  
The circular light sensor in the upper right quadrant of the photograph is a quantum used to verify the 
operation of the chamber lights. 
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3.4. Analysis 

3.4.1. Absorption Spectra Analysis, Development of the A-value 

In order to predict which pigment or pigment combination would be the most 

effective dye in terms of maximizing cell output, a variety of computations were 

conducted with the measured pigment absorbance spectra in order to produce an adjusted 

absorbance or “A” value for each pigment mixture.  The simple absorption spectra of a 

pigment is not sufficient to compare the energy production results of the DSSCs since the 

total energy available to the DSSCs is determined by the combination of the pigments 

absorbance characteristics and the lamp output (energy available).  Each lamp source has 

a unique spectral output so the effectiveness of a given pigment will vary depending the 

light source used to supply the energy to the cells.  The output spectra for the specific 

lamp used in the growth chamber compared with normalized solar photon flux are shown 

on Figure 3.3 below. 
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Figure 3.3. Emission spectrum from metal halide lamps (MH) filtered by a plexiglass barrier (PC) in a 
Conviron Model BD236 growth chambers (blue) compared to solar output normalized to PAR (pink), 
obtained with an Optronics Model 754 spectroradiometer (Optronics Inc. Orlando, FL, USA).  

 

A number of mathematical computations were used to calculate an effective 

absorbance or “A” value for each pigment combination.  First all spectra were normalized 

to unity at 710 nm in order to compare spectra.  Second, these absorbance values were 

multiplied by the lamp output in moles at each nm to compute the adjusted absorbance 

for each pigment at each wavelength (Equations 3.1). 

Aadj = Aλ X PFλ  

Equation 3.1. Adjusted A-value at each wavelength. 

where Aadj was the adjusted absorbance value for a given wavelength, Aλ was the 

measured absorbance at a given wavelength and PFλ was the lamp emission at a given 

wavelength. 
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This process was completed for each collected absorption spectrum.  An adjusted 

spectrum is shown below in Figure 3.4 for the solution of 100% chlorophyll in ethanol. 

 

 
Figure 3.4. Adjusted absorption spectrum for 100% chlorophyll, obtained by multiplication of absorption 
values with scaled light output values. 

 

The absorption spectrum for each tested pigment combination can be found in 

Appendix 2.1. 

Finally the “A” value was obtained by determining the area under each adjusted 

absorbance cure.  The process of calculating this value is summarized below in Equation 

3.2.  The areas under the adjusted absorption spectra were calculated using the method of 

trapezoidal Riemann sums according to the equation below. 
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Equation 3.2. The area under absorption spectra curves termed the “A-value”. 

where i was the index of the absorption value, n was the total number of absorption 

values, ai was the absorption value with the index indicated, and λi was the wavelength of 

the indicated index.  The area under the adjusted absorption curve is now referred to as 

the A-value for a given pigment mixture.   

The A-value then was calculated and assumed to represent the estimated total 

absorptive capability of a pigment mixture in that light source.  Therefore, a pigment 

mixture with a higher “A-value” curve was theoretically better than a mixture with a 

lower “A-value” at absorbing the light from that source and producing cell power output.  

The ability of this value to predict cell output was tested by regression analysis using the 

cell output parameters described below.    

3.4.2. Cell Output Data Analysis 

To better understand the potential of the DSSCs to provide useable electricity, it 

was more prudent to examine output power rather than potential difference.  The data 

logger stored data for both the current and potential difference of each tested cell.  Using 

current and voltage information, power was calculated using the equation below, 

 

Equation 3.3. Equation for power. 

where P was electrical power, I was the electrical current and V was the electrical 

potential difference. 
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Power was calculated for each cell at every time point by multiplying voltage and 

current, which yielded a power output curve versus time for each cell (three curves per 

pigment combination).  The three curves were averaged together to produce an average 

power curve per pigment combination.  While many photovoltaic measurements calculate 

the maximum power or Pmax of the I-V curve, it was not calculated in this study because 

instead, power at each time point was calculated and averaged.  This practice was suitable 

for the comparative purposes as all measurements used the same resistance based on the 

resistor in the data logger. 

3.4.2a. Average Power Output  

The average power output of each cell over the irradiation period was calculated 

in order to compare one pigment mixture to another based on DSSC output. This gave a 

single output value to compare overall electrical performance of each pigment 

combination. 

The lights in the growth chamber were active for two 30-minute periods separated 

by a 30 minute dark period for each pigment mixture.  This resulted in two distinct 

regions of electrical activity of the DSSCs.  In many cases cell output was highly variable 

during the first irradiation period and was more stable during the second irradiation time 

period.  For this reason, the cell outputs from only the second light interval were used to 

calculate the time average value.  The sole exception to this general policy was the 

mixture of 2-1-1 beta-carotene to chlorophyll to xanthophyll.  For this mixture, due to a 

timer malfunction, the second peak had values at only 2 separate points in time, which 

were not enough to calculate a reliable average (see Figure A2.2.9).  This power output 

average over time for each pigment mixture was calculated and tabulated.  
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3.4.2b. Additional Cell Output Data  

In addition to examining the time average power of DSSCs treated with each 

pigment combination, two other data analysis methods were performed.  First the average 

of the maximum power values for each pigment combination were calculated by 

averaging the highest achieved power output for each cell, resulting in one maximum 

power value per pigment combination.  These data were not further analyzed and are not 

shown here.  The absolute maximum power output value was also recorded by taking the 

single highest achieved output value of any cell for that given pigment combination.  

3.4.3. Statistical Evaluation of Results 

The study was treated as a completely randomized design with 3 replicates of 

each cell pigment composition.  Cell power output was compared with the A-value using 

the Mixed Model procedure of SAS (Statistical Analysis System, Cary, NC, USA).  The 

Mixed Model was used to adjust for different replication number of cells.  The model 

tested was average cell power vs. A-value.  In order to compare output parameters for 

each cell pigment composition and determine whether there were differences between 

pigment mixtures, LSMEANS were computed and were separated using the LSD (Least 

Significant Differences) function of the SAS program. 
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4. RESULTS 

4.1. Pigment Spectra 

Pigment absorption capabilities were measured and analyzed for the development 

of a model to predict which pigments would be the best sensitizers for DSSCs.  We 

measured the absorption spectra for the chosen pigments and pigment mixtures using a 

spectrophotometer.  Shown in Figure 4.1 is the absorption spectrum for a solution of 

100% chlorophyll diluted in ethanol.  We measured the absorption for each single 

pigment as well as the absorption spectra for all of our tested pigment mixtures (see 

Table 3.1 for a list of all pigment combinations).  The complete set of spectral data (i.e., 

the absorption spectra for every tested pigment and pigment combination) is compiled in 

Appendix 2.1. 

 

Figure 4.1. Absorption Spectrum for solution of 100% chlorophyll in ethanol. 
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The absorbance spectra of the pigment mixtures were also obtained in order to 

understand how absorptive capabilities change when pigments are combined.  For 

example, Figure 4.2 shows the absorption spectra of a 1:1 ratio of chlorophyll to 

xanthophyll, a 5:1 ratio of chlorophyll to xanthophyll, and a 9:1 ratio of chlorophyll to 

xanthophyll.  This graph illustrates the effect of increasing the percentage of chlorophyll 

in a mixture with xanthophyll. 

 

Figure 4.2. The overlay of 3 combinations of chlorophyll-xanthophyll with different composition ratios. 

 
Figure 4.3 shows the overlaid absorption spectra of chlorophyll alone, a 1:1 ratio 

of chlorophyll and xanthophyll, and a 1:1:1 ratio of chlorophyll, xanthophyll, and beta-

carotene.  The combination of three pigments demonstrated a broadening of the 

absorbance peaks over a larger range of wavelengths compared to the pure solution. 
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Figure 4.3.	
  Shows the overlaid absorbance spectra for 100% chlorophyll, 1-1 chlorophyll-xanthophyll and 
1-1-1 chlorophyll-xanthophyll-beta-carotene.	
  

 

The complete set of absorption spectra were analyzed in order to determine a way 

to predict which pigments or combinations of pigments would best sensitize a DSSC.  

This analysis led us to the calculation of a parameter representative of the absorptive 

capabilities, and thus the sensitizing capabilities, of each pigment mixture.  This “A-

value,” which was derived from our spectral data, will be discussed in the following 

section. 

4.2 A-values 

The A-value allowed us to numerically compare absorption spectra of each 

pigment combination with respect to the irradiance of the lamps in the growth chamber.  

The calculated A-values ranged from 686 to 1513 (see Table 4.1).  Based on their high A-

values, the pure chlorophyll and pure xanthophyll were predicted to be the best pigments 
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for sensitizing a DSSC.  The next apparent grouping was the 1:1:1 mixture of all three 

tested pigments and all three of the 1:1 pigment mixtures.  The combinations predicted to 

have the lowest cell outputs, in order of decreasing A-value, were 100% beta-carotene 

and the unequal mixtures (2:1:1).  Since these values were calculated as a single value 

from three spectral scans of a single solution there were no statistical probabilities 

associate with the calculations.   

Pigment Mixture 
Adjusted Area, A-

value 
100% Chl  1513 
100% Xan  1462 

1:1:1 Chl: B-Car: Xan 1070 
1:1 Chl: Xan 1052 

1:1 B-Car: Xan 967 
1:1 Chl: B-Car 952 

2:1:1 Xan-: B-Car: Chl 820 
2:1:1 Chl: B-Car: Xan 802 

100% B-Car 772 
2:1:1 B-Car: Chl: Xan 686 

 
Table 4.1. Pigment mixtures and their adjusted areas, ranked highest to lowest. 

4.2. DSSC Output 

The data logger recorded the voltage and current output of the DSSCs.  These 

data were stored in a tabular format for analysis.  A sample of collected DSSC 

performance data for the pure chlorophyll solution demonstrates the two periods of 

irradiation separated by a dark period (Figure 4.4).  The slope of the curve during the first 

irradiation period may be attributed to the growth chamber lamps warming up or to the 

“break-in” period of the solar cell. 
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Figure 4.4. DSSC cell potential difference (voltage) plotted against time for 3 DSSC cells coated with 
chlorophyll and measured in a growth chamber with alternating 30-minute periods of light and dark cycles.  
Note the increased stability during the second light period.  

 

To better understand the electrical potential of our DSSCs we calculated power 

output, as described in Section 3.4.2, by multiplying voltage and current values for each 

cell at each time.  This produced a curve of output power versus time for each cell. The 

three power curves from each cell were averaged together to produce an average power 

curve for that pigment combination.  A sample average power curve for 100% 

chlorophyll can be seen below (Figure 4.5).  All data are shown in the appendix. 
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Figure 4.5. Average power-output for 3 DSSCs coated with 100% chlorophyll over a 2-hour period of 
alternating light and dark cycle.  Error bars represent + 1 standard error of the mean. 
 

To compare the cell power output of all cells, cell power output over the second 

irradiation period was averaged as described in section 3.4.2.  This provided a single 

number representing the overall cell performance of each pigment combination (Table 

4.2 and Figure 4.6).  All outputs were statistically different from the blank according to 

Least Square Means (p < 0.05).  The blank had a slight power output as expected from 

our literature review (79).  The cells soaked in pure chlorophyll had the highest average 

power output and this was significantly different from all other pigment combinations 

except for the 1:1:1 mixture of all three pigments (Table 4.2).  The other pigments 

exhibited lower power output and fell into three (3) general groupings with the 2:1:1 

xanthophyll: beta-carotene: chlorophyll-treated cells having significantly lower output 

than all other combinations except the blank. 
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Pigment Mixture Average Power 
100% Chl 206.93  ± 20.5 a  

1:1:1 Chl: B-Car: Xan 172.0 ± 25.2 ab 
100% Xan 131.1 ± 25.2 bc 

100% B-car 130.9± 25.2 bc 
1:1 B-Car: Xan 123.1 ± 25.2 bc 
1:1 Chl: B-Car 106.07 ± 35.6 bcd 

2:1:1 Chl: B-Car: Xan 105.8 ± 20.5 cd 
2:1:1 B-Car: Chl: Xan 86.1 ± 20.5cd 

1:1 Chl: Xan 79.2 ± 25.2cd 
2:1:1- Xan: B-Car: Chl 70.2.5 ± 20.5d 

Blank 0.6 ± .1e 
 
Table 4.2. Average power values for DSSCs coated with various pigment combinations and measured over 
a 30 minute irradiation period in a growth chamber.  Pigment combinations followed by the same letter are 
not statistically different according to LSD.   

 

 

Figure 4.6. Graphical representation of average power output of DSSCs from Table 4.2.  Each bar is the 
mean of three cells and vertical bars are the standard error of the mean. 
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4.3. Correlation between A-value and Average Power Output 

To determine the relationship between the A-value and average power output, the 

average power values over the second irradiance period were plotted against the A-value 

for each pigment mixture.  The second irradiance period was used because it was more 

consistent and, unlike the first irradiance period, did not include the “break-in” period of 

the cells or the warming of the lamps.  There was a positive relationship between cell 

output (dependent variable) and the A-value (independent variable) with an R2 of 0.44 

(Figure 4.7). 

 
Figure 4.7.  Average power for each DSSC pigment combination plotted against its corresponding A-
value.  The calculated linear regression line is also shown. 
 

Including every pigment combination’s average power versus the A-value in the 

regression gives an overall perspective of the predictive value of the A-value parameter.  

However for closer analysis removing some data from the regression may provide more 
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insight into the relationship between average power and A-value in terms of each 

pigment.  For example, since pure chlorophyll was the best sensitizer for the DSSCs a 

regression was constructed with those mixtures that contained chlorophyll (Figure  4.8).  

The R2 value for this relationship was 0.68, indicating that the A-value may be a better 

predictor of cell output for chlorophyll then for other molecules.  However, there was no 

obvious linear response for chlorophyll concentration.  If that has been the case then we 

would have expected the A-value and cell output from the 1:1:1 mixture (e.g. 33% 

chlorophyll) to fall below that of the 1:1 or 2:1:1 chlorophyll rations (e.g. 50% 

chlorophyll).   

 
Figure 4.8.  Average power for only the DSSC pigment solutions that contain chlorophyll plotted against 
its corresponding A-value.  The calculated linear regression line is also shown. 
 
 

Constructing separate regression analyses for mixtures containing either beta-

carotene or xanthophyll failed to increase the coefficient of determination (Figures 4.9 

and 4.10).  The R2 value for beta-carotene mixtures was 0.47 or essentially the same as 
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that for the entire suite of mixtures evaluated and the R2 value for xanthophyll mixtures 

was 0.26, which was lowest of all the regressions.  This suggests that the A-value did not 

have as much predictive power for xanthophyll solutions as the other molecules.  In fact, 

if xanthophyll when present as the dominant or co-dominant pigment in any 

combinations is removed from the predictive model, the R2 increases to 0.82 (Figure 

4.11). 

 

 
 
Figure 4.9.  Average power for only the DSSC pigment solutions that contain beta-carotene plotted against 
its corresponding A-value.  The calculated linear regression line is also shown. 
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Figure 4.10.  Average power for only the DSSC pigment solutions that contain xanthophyll plotted against 
its corresponding A-value.  The calculated linear regression line is also shown. 

 
 

 

Figure 4.11  Average power for only the DSSC pigment solutions that contain xanthophyll plotted against 
its corresponding A-value.  The calculated linear regression line is also shown. 
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4.4 Maximum Power 

We also recorded the absolute maximum power output achieved by cells in each 

pigment combination.  This value, which we termed highest achieved power, was simply 

the maximum calculated power for each pigment combination.  Maximum power was 

assessed to compare our cell output with literature values since maximum power was 

commonly reported in other studies.  This output may be an indication of the potential 

capacity of a given pigment mixture.  There was no statistical probability associated with 

this value however, since it was obtained as the highest single 10-minute average cell 

output.  However, observationally, the cells coated with pure chlorophyll had the highest 

achieved power, corresponding with the highest average power (Table 4.3, Figure 4.8).  

Similarly, the 2:1:1 xanthophyll: chlorophyll: beta-carotene cells had the lowest output in 

terms of average power and the second from the lowest output of highest achieved power.  

There was weak positive correlation between A-value and highest achieved power (R2 = 

0.28, data not shown). 

Pigment Mixture Highest Achieved Power 
100% Chl 392.1 

100% B-Car 309.7 
1:1 Chl: B-Car 240.5 
1:1 Chl: Xan 231.4 

1:1 B-Car: Xan 192.7 
100% Xan 178.3 

1:1:1 Chl: B-Car: Xan 162.7 
2:1:1 Chl: B: Car: Xan 140.5 
2:1:1 Xan-B: Car: Chl 140.5 
2:1:1 B-Car: Chl: Xan 117.3 

Blank 2.6 
 

Table 4.3. Highest achieved power for tested pigment mixtures. 
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Figure 4.11. Highest achieved power values for tested pigment combinations. 
 
 



 105 
 

5:  DISCUSSION 

5.1. Restatement of Question and Our Answer 

We explored the utility of using natural pigment solutions as sensitizers for Dye 

Sensitized Solar Cells (DSSCs).  Our goals were to determine whether there were 

differences in power output of the DSSCs due to the use of different pigments and 

whether the use of pigment mixtures could improve the efficiencies of the cells through 

synergistic interactions between the pigments.  In addition, our research aimed to 

determine a relationship between the absorption spectra of the various combinations of 

pigments and the resulting electrical output when incorporated into DSSCs. 

We found differences in pigments tested and disproved our null hypothesis that 

there would be no differences in cell output due to changes in plant pigments.  

Chlorophyll was the best sensitizer, as DSSCs sensitized with 100% chlorophyll achieved 

the highest average power and the highest maximum achieved power.  The calculated A-

value proved to be a reasonable predictor of DSSC electrical output by relating DSSC 

output to pigment optical properties.  We are not aware of any other studies that have 

attempted to establish this relationship.   However, the high degree of variability of cell 

output and unexplained variation in the relationship suggests that more research is needed 

in order to understand the interactions between the pigments and to improve efficiency of 

DSSCs. 

5.2. Plant Pigments as DSSC sensitizers 

 Our spectral analysis documented the differences in absorbance of the single 

pigments and their combinations as expected from Beer’s law.  In many cases the 
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pigment combinations expanded the absorbing area compared to that of the respective 

single pigments.  For example, as seen in Figure 4.3, the absorbance band of the 1:1:1 

chlorophyll: xanthophyll: beta-carotene (blue) exhibited a broader absorbance than 

Chlorophyll alone in the 440-525 nm range.  However, the increase in absorbance at 

those wavelengths attributable to the addition of xanthophyll and beta-carotene was offset 

by the loss of absorbance at the longer (red) wavelengths (650-700 nm range) due to the 

dilution of chlorophyll.  This led to a reduction in both the cell output and the calculated 

A-value for that mixture.  According to our hypothesis, a change in total absorbance 

would be expected to result in a change in DSSC output and this was the case.   

There was a substantial difference in DSSC electrical output when different 

photosynthetic pigments were used to sensitize the photovoltaic cells.  For example, the 

mixture of 1:1:1 chlorophyll: xanthophyll: beta-carotene produced an average power of 

172.0 ± 25.2 µW, while the mixture of 2:1:1 beta-carotene: chlorophyll: xanthophyll 

produced an average power of 86.1 ± 20.5 µW.  Different pigment combinations reacted 

differently with the incoming light to produce different electrical outputs.  This disproves 

our null hypothesis, which stated that there would be no difference in DSSC performance 

with changes in sensitizing pigments. 

 

5.2.1. Previous studies 

The use and the manipulation of photosynthetic pigments to sensitize DSSCs in 

the literature have been limited to a few similar studies.  Liu et al. used xanthophyll and 

chlorophyll, Kumara et al. used chlorophyll and shisonin, and Wongcharee used rosella 

and blue-pea extract (both abundant in anthocyanins).  All three studies made DSSCs 
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sensitized with either 100% of the first pigment, 100% of the second pigment, or a 1:1 

ratio (50% and 50%) of both pigments (38, 39, 89).  Liu et al. and Kumara et al. both 

reported an increased DSSC output when sensitized with mixtures compared to pure or at 

least presumed “single” compounds and termed this a “synergistic effect.”  Neither of 

these two studies could explain the molecular mechanism of the presumed synergistic 

effect, though they believed that it could potentially mimic the interaction between 

multiple photosynthetic pigments in plants.  Plants consist of both primary (e.g. 

chlorophyll) and secondary (e.g. xanthophyll) pigments.  These primary and secondary 

pigments work together to increase the light capturing capabilities of the plants and aid 

the plants in other methods such as quenching chlorophyll fluorescence and providing 

protection to the plant (69, 71).  It should also be noted that neither of the above studies 

report any replication or statistical analysis of their results.  Therefore, it cannot be 

validated that any one pigment or combination actually improved DSSC electrical output.   

Although Liu et al. and Kumara et al. suggested the synergistic effect, the results 

of Wongcharee et al. did not (38, 39, 89).  Wongcharee et al. used DSSCs sensitized with 

100% rosella extract, blue pea extract, and a 1:1 pigment solution of rosella extract and 

blue-pea extract.  They also evaluated differing extraction temperatures and pHs and thus 

shifted the absorbance of the anthocyanins, which they determined were a major part of 

the extract.  In this case, they reported that the rosella extract had the largest absorption 

spectrum and achieved the highest power output.  Other than indicating some putative 

primary compounds in the extracts no further chemical identification or quantification 

was attempted in that study.  Therefore there is no evidence in this study that synergism 

exists with regard to DSSC output.   
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Overall these studies, as compared to our study, integrated only two different 

types of pigments or the pigments were largely unknown and simply whole leaf extracts.  

Also, the precise concentrations used were either not specified at all or it was stated that 

they were “equal.”   These factors plus the lack of statistical analysis in any of the three 

studies above make it difficult at best to interpret the results of these studies in terms of 

whether there was any synergism of pigment combinations as asserted by those authors. 

The results of our study indicate that DSSC output varies among pigments and 

mixing ratios, and some of our results indicate that a possible synergistic or at least 

additive effect may exist.  For example, with the triplet combination groupings, the 1:1:1 

cells displayed a materially higher energy output than any of the 2:1:1 cells.  This 

indicates that a cell coated with a combination of 33% of each pigment outperforms one 

where a single pigment of the three comprises 50% of the coating.  To point, even though 

the pure chlorophyll coating was the clear forerunner of the single pigment cells, in the 

case of 2:1:1 chlorophyll: xanthophyll: beta-carotene, increasing the chlorophyll percent 

composition did not lead to higher outputs.  This result suggests that a non-additive 

synergistic response may exist wherein combinations of pigments may be stronger than 

the sum of their parts. 

On the other hand, it is clear that all pigments combinations do not exhibit 

synergistic or even additive effects.  For example, we found no indication of synergism 

and in fact a reduction of output from the pure pigment cells to the 1:1 mixtures. There 

was a drop in power output when comparing the output of the 100% chlorophyll and 

100% beta-carotene cells and the 1:1 combination of the two.  The reduction of output 

does not support synergism, because at the very least one would expect that the 
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combination of chlorophyll and beta-carotene would be no lower then the beta-carotene 

dye as a lone sensitizer.  Overall the three single pigments and the 1:1:1 ratio of them 

produced the highest average DSSC power.  This does not seem to support a synergistic 

effect among pigments when sensitizing DSSCs.   

5.2.2. Variation in cell output 

Cell output was extremely variable and so more replication would have certainly 

assisted in the interpretive power of the results.  Further discussion will follow in later 

sections on some of the technological considerations that may have contributed to this 

variation.  However a consideration of the chemistry and structural organization of the 

pigments may also explain some of the variation and unexpected cells responses.  Also, 

the underlying mechanism of the synergistic effect may not necessarily depend on 

pigments’ combined absorption but may be understood based on analysis of the binding 

properties of pigments to TiO2. 

We used beta-carotene as a sensitizer because of its prominence in plants as an 

accessory photosynthetic pigment and also because of its relatively low cost.  The 

potential problem with beta-carotene is that its structure suggests that it will not bind well 

to TiO2.  However, De Padova et al. showed that a cell sensitized with beta-carotene did 

produce a current and voltage (77).  We found that DSSCs sensitized with 100% beta-

carotene achieved the lowest average output compared with the other pure solutions and 

that combining beta-carotene with both chlorophyll and xanthophyll (in 1:1:1) improved 

the DSSC performance compared to DSSCs sensitized with beta-carotene alone.  Thus, 

our results provide novel insight into beta-carotene integration by combining it with both 

xanthophyll and chlorophyll.   
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5.2.3. TiO2 pigment binding characteristics 

The above discussion on beta-carotene brings up the important question of 

whether the optical properties that we measured in ethanol solutions is equivalent to those 

when the pigments were bound to the TiO2 molecules on the DSSC electrodes.  In order 

to be effective as dyes each pigment must be bound to the TiO2 nanoparticles in order to 

transfer electrons.  If binding is not equal for all the pigments then DSSC output will not 

be simply a function of pigment optical properties but will also be scaled by binding 

affinity.  Liu et al. and Kumara et al. reported optical properties of pigments bound to 

TiO2 and this is the condition in which they reported expanded absorbance ranges and 

where they reported apparent enhanced DSSC output in mixtures (38, 39).  Unfortunately 

we were not able to measure pigment optical properties while bound to the DSSC 

electrodes so we are not able to partition the variation in DSSC output between pigment 

optical properties and pigment binding properties to TiO2. 

5.2.4. Structural orientation of the pigments. 

Another factor that may have contributed to variation in DSSC output differences 

between pigments is the structural arrangement of the pigment molecules on the 

electrodes.  In plants, there is a very structured organization of pigments.  Typically the 

chlorophyll molecules are located in the center of the light harvesting complex of the 

plant’s photosystem, and are surrounded by accessory pigments, such as xanthophyll and 

beta-carotene (Figure 5.1).  The energy in the photons captured by xanthophyll is then 

transferred into a series of chlorophyll molecules, ultimately reaching the reaction center.  
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The chlorophylls utilize this transferred energy to facilitate excitation and energy transfer 

of their own electrons.  

In our cells, however, the pigments were mixed together and the cells were 

soaked in a non-structured matrix.  Unlike in plants, our cells contained a random 

distribution of the pigments in each mixture (Figure 5.1).  Due to the lack of defined 

structure, the cooperative properties between pigments, as seen in plants, might not have 

existed in our cells. 

   

Figure 5.1 A rough pictorial representation of the structural differences in pigment layout between plants 
and our cells. 
 

Absorbance, binding, and structural differences may not have been the only 

reason that pigments were not equally suited as DSSC dyes.  In addition to expanding the 

effective absorbing range of light in plants, the accessory pigments such as xanthophyll 

and beta-carotene have the special ability to act as antioxidants and to absorb excess 

energy to protect the chlorophylls from being over-stimulated.  In short they may “scrub” 

excess electron and use this excess reducing power to change the oxidation state of 

xanthophylls in what is called the zeazanthin cycle (71).  This essential “recycling” of 

electrons and excess energy plays a major role in protecting plants from photoinhibition 

in high light environments.  If xanthophyll molecules were in facts “scrubbing” electrons 
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in the DSSC cells then this could have reduced the power output of the cells that included 

xanthophylls.  The possible premature electron quenching, may have hindered the 

development of charge differential between the plates of the cell, materially reducing 

photon conversion efficiency and power output. 

5.2.5. Conclusions 

Chlorophyll was the best pigment for use in DSSCs in terms of electrical power.  

Since the chlorophylls are the primary photosynthetic pigments this is not surprising.  

However, the photo stability of the molecule poses series problems that must be 

addressed before DSSCs sensitized with chlorophyll could be used for long-term DSSC 

electricity production.  Adding in accessory pigments to DSSC electrodes similar to what 

might be found in a chloroplast in order to stabilize chlorophyll and enhance electron 

output did not yield a great electrical power in this study. 

 

5.3. Correlation between Average Power Output and the A-value 

 This is the first study that we have found that has attempted to explain DSSC 

output by a spectral analysis of the pigments.  Several previous studies have used either 

chlorophyll or simple chemical derivatives of it.  Others have used mixtures of 2 

pigments that seem to have been either randomly chosen or simply because the plants 

they were extracting pigments form contained those pigments.  One of our goals was to 

explain DSSC output based on the optical absorbance properties of the pigments we used.   

We found a significant correlation (e.g. Figure 4.7), between the A-value and the 

realized power output that explained a little less than half of the variation in cell output 
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(R2 = 0.45).  These novel data provide insight into the absorption and output relationship 

of triple, double, and single combinations 

5.3.1. Trends in the A-value and DSSC output 

The high variation in DSSC output and low repetition or overall unexplained 

experimental error certainly contributed greatly to the unexplained variation in DSSC 

output.  However there were also some interesting trends in the analysis that are of 

importance to note.  For example the positive relationship between the output of the 

triplet-combinations and the dyes’ A-value suggested that there are mixtures that are 

more effective than others in terms of DSSC output.   

Using only pigments that contained chlorophyll strengthened the correlation and 

coefficient of determination (i.e. increasing R2 from 0.44 to 0.68).  This again confirms 

the importance of chlorophyll as the most effective of the pigments tested in terms of 

DSSC power.  However, a linear relationship between chlorophyll concentration and 

DSSC output was not found (Figure 4.8).  This suggests that the contribution of other 

pigments may not be purely additive.  For instance, the 1:1:1 chlorophyll: xanthophyll: 

beta-carotene (reduction in chlorophyll concentration by about 66%) had both one of the 

highest power outputs (172.0 ± 25.2 µW) as well as the third highest A-value.  A 

theoretical consideration of the binding properties to the TiO2 and the in-situ chemical 

functions of the pigments in a plant may help to explain the relationship between out 

calculated A-value and DSSC output.   
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5.3.2. Increasing the coefficient of determination (R2) 

While the A-value provides an explanation for about half the experimental 

variance, other potential variables can be used to explain the additional variance.  These 

consist of two main categories: those that affect the calculation of the A-value and those 

that affect the power output. 

Since incident photon flux on the DSSCs was a used in the calculation of the A 

value the A-value would change if the spectral qualities of the light source changed in 

either a quantitative or qualitative manner.  Our initial attempts to generate a predictor 

value for cell output was called the S-value and was computed as the summation of the 

intensity of sunlight as a function of wavelength multiplied by the measured absorbance 

corresponding to each wavelength, over the visible range of light (400-700 nm).   This is 

shown in equation 5.1 below.  

 

  

Equation 5.1. S-value calculation equation. 

 

However, we modified the value by calculating it in the same manner except that 

the actual irradiance of the lamps in the growth chamber were substituted for sunlight>  It 

was presumed that the A-value would be more appropriate as an indicator of cell output 

since actual photon fluxes were used.  However, the lamp output was fairly similar to 

sunlight in spectral distribution (see Figure 3.3) so using sunlight instead of the lamp 

spectra would likely have only changed the magnitude of the A-value (higher photon 
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flux) but not the relationship between the calculated values.  There were however, some 

key assumptions inherent in the process that should be evaluated.  

 In modeling the A-value, we made two major simplifying assumptions.  The first 

was that the photon conversion efficiency (IPCE) of every dye was 100%.  This 

assumption is not accurate in reality, as no dye has 100% conversion efficiency and as 

Kumara et al. demonstrated, pigments do not necessarily have the same IPCE (39).  We 

were not able to measure IPCE but the assumption that it was equal for all pigments 

instead of weighting each for its own IPCE could well have affected the relationship 

between the A-value and power output. 

 The second assumption was that every molecule bound to the TiO2 perfectly, and 

thus there was seamless transfer of the electron from the sensitizer to the semiconductor. 

As previously discussed, each pigment’s specific absorption spectrum does not take into 

account the absorptive capabilities of the pigment when combined with the TiO2.  Liu et 

al. (2008) showed that binding with TiO2 modified the absorption spectra of chlorophyll, 

xanthophyll, and a 1:1 ratio of the two (Figure 2.21) (38).  They found that the area under 

these absorption spectra was much higher when bound to TiO2 than the absorption 

spectra of chlorophyll, xanthophyll, and the 1:1 ratio alone (Figure 2.20) (38).  The 

binding of the pigment to TiO2 could stabilize the dyes and thus decreases the HOMO-

LUMO gap between the semiconductor and the sensitizer allowing excitation at different 

wavelengths and lead to both a broadening of the absorbance peak and red-shift 

expanding the actual absorbance.  However, our study did not take into account the 

absorption spectra of the pigments bonded with TiO2 because we were interested in 

analyzing output based on absorptive capabilities of pigments alone.  Corrections to the 
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A-value based on pigment absorbance when bound to the electrode substrate could 

improve the algorithm to determine which pigments or pigment combinations would lead 

to the highest output of a DSSC. 

 We propose that a modification of the A-value computation could address the 

potential issues resulting from these simplifications.  The new A-value would include 

additional parameters of the absorbance of a dye combination bound to the TiO2 at a 

given wavelength, the IPCE of each pigment in the sensitizing solution and the percent 

composition of each pigment in the solution. The new A-value would be the summation 

of the products of these parameters as shown below in Equation 5.2. 

 

Equation 5.2. Modified A-value equation. 

This equation could be modified for the inclusion of additional pigments in the 

solution, by simply expanding the last two elements of the product to include the metrics 

for each new pigment.  This modified A-value would take into account the different 

IPCEs of the pigments involved as well as any red-shifting, and should serve as a better 

model for further exploration. 

In addition to the optical properties of the pigments and their conversion of 

incoming light to electron flow there are biological aspects of these pigments that may 

contribute to the results of this study.  As alluded to previously, of the three pigments 

used, chlorophyll appeared to be the primary pigment driving power generation from the 

DSSCs.  The variation in DSSC signal that was explained by chlorophyll content was 

66% when only those mixtures containing chlorophyll were included.  On the other hand, 

while xanthophyll alone was useful as a dye, the relationship between xanthophyll 
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content and DSSC power output was poor (Figure 4.10) and cells that had xanthophyll in 

the dyes appeared to consistently fall under the predicted regression line.  In fact 

removing xanthophyll from the analysis when it had equal or greater concentrations then 

either or both of the other pigments substantially increased the predictive power of the 

regression.  In the case the R2 increases to 0.82, albeit with only 6 solutions left in the 

analysis.  The structural considerations presented above and the biochemical role of 

xanthophyll in plants as an electron scavenger, call into question its value as a dye 

component.  However, more research is required on this topic and it is possible that a 

benefit of xanthophyll, just as in a plant, could be as a chlorophyll stabilizer by protecting 

chlorophyll from excess excitation energy.   

5.4. Study Limitations and Uncertainty 

Throughout our study, we strove to be precise and accurate with our methodology 

and testing.  However, as with all experimental studies, there were limiting factors and 

random errors associated with the data that adds uncertainty to the results.  These and the 

photochemical and biological considerations discussed above contributed to the 

variations observed in DSSC output.  Some of these are briefly discussed below in an 

effort to assist other groups that might continue these studies.  

Due to budgetary constraints we were limited to testing three cells per dye 

combination.  This sample size is at the minimum number for most statistical tests to 

have validity and with only three trials available, the elimination of any apparent 

anomalies or outlier would have had a material affect on the DSSC output and a 

secondary affect on the regressions.   
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Our initial plans were to test the cells for 24 hour time periods and at 5 different 

light levels.  However, our limited budget also prevented us from purchasing sealants for 

the cells and our tests with various forms of hot glue and other adhesives proved to be 

ineffective and may have interfered with cell operation, because the glue reacted with the 

KI electrolyte.  Without proper sealant, our cells were only active for about 2 hours, after 

which the KI evaporated.  Additionally, opening up the cells to oxygen could have led to 

the increased degradation of some of the pigments leading to a reduction in output over 

time.  A key missing component in the assessment of the cells was a light response curve 

for each pigment combination.  This would have given us a measure of the quantum 

efficiency and saturation level of each pigment and would have greatly strengthened the 

interpretive power of our results.  

Also, some of the variability and apparent instability in cell output may have been 

due to faulty electrical connections within the data logger or “noise” due to variations in 

resistance through the connections or alligator clips.  Electronic “noise” is always present 

in such connections but in this case, with very low DSSC electrical output, the signal to 

noise ratio may have been so low that the noise contributed significantly to apparent 

DSSC output.  However, the DSSC coated with pigments had about a ten-fold grater 

output than the uncoated blanks so we were still able to detect differences between the 

pigments.   

Further, there was an apparent general discrepancy in the shapes of the output 

voltages between the two irradiation periods.  The first time the light was turned on, the 

cells exhibited a sort of charging up effect similar to electrical capacitance.  However, the 

second time the lights were turned on, the cells tended to reach maximum capacity at a 
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more rapid rate.  The lamps in the chambers require several minutes to warm up and 

achieve a stable temperature and output, especially in the shorter, more energetic, 

wavelengths so it is possible that the more rapid response during the second irradiation 

period was due to the lamps having already warmed up.  In retrospect, we could have 

eliminated this problem by warming up the lights to a stable temperature prior to placing 

the DSSCs beneath them and then covering the DSSCs for the dark period rather than 

turning off the lights. 

Finally, we measured the performance of our DSSCs in a growth chamber to 

control for light and humidity.  However, the spectrum of the light inside the growth 

chamber does not match that of natural sunlight.  Although this did not directly affect our 

findings, as we sought only to make comparisons between cells, it should be noted that 

our results should not be extrapolated to DSSC performance in natural sunlight.  

 

5.5. Future Directions  

5.5.1. Additional Pigment Combinations 

Due to time constraints, we were only able to test 10 different pigment 

combinations.  While we focused on only three pigments, previous studies have 

examined the potential use of anthocyanins as sensitizers (80-82).  DSSCs sensitized with 

various anthocyanins achieved voltages up to 480 mV and currents up to 2.9 mA (82, 83). 

There are hundreds of different pigments and other photosynthetic dyes that exist in 

nature, and each has its own unique absorption spectrum and other physical 

characteristics.  Future studies could explore the use of these additional natural 
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photosynthetic compounds as well as additional ratios beyond the scope of our 

experiment.  

However, screening hundreds of compounds to incorporate into DSSCs as 

sensitizers is not practical or feasible.  Therefore, a means to determine the most viable 

options will be required.  The algorithm we developed needs further development and 

additional consideration of the electron configuration of putative pigments may assist in 

the selection of the pigments that are most likely to be good choices for electrode 

sensitizers.   

Every pigment molecule contains a highest occupied molecular orbital (HOMO) 

and a lowest unoccupied molecular orbital (LUMO) which is its lowest excited electron 

state.  The energy gap associated with the jump between HOMO and LUMO energy 

states is referred to as ΔEg.  The lower the ΔEg (i.e. the closer the HOMO and LUMO are 

to one another), the less energy that is required to eject an electron from the HOMO band 

to the LUMO band and therefore the more likely it will be that an incident photon will 

create free charge.  Additionally, a smaller ΔEg leads to increased pigment spectral area 

towards longer wavelengths with lower energy.  However, there is a limiting factor in 

how close the HOMO and LUMO can be.  In order for the DSSC to work, the conducting 

band of the semiconducting band must be of lower energy than the LUMO.  This allows 

the semiconductor to capture the excited electron as it relaxes back down to the ground 

HOMO state and prevents the cell from a short-circuit or the energy will simply be lost as 

heat (90).  Further research could determine the suitability of pigments as sensitizers 

based on their reduction potential to comprise a list of possible candidates. 
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In addition to the restriction put on the system by the ΔE1 requirements, there is 

an additional requirement that must be met to make an efficient DSSC.  The energy level 

between the electrolyte and the HOMO is called ΔE2.  The electrolyte must be at a 

sufficiently higher energy level than the HOMO so that it can easily transfer the electrons 

to fill in the electron hole resulting from the loss of electron due to excitation.  This 

complicated system can be seen below in Figure 5.2. (90). 

   

Figure 5.2.  The energy changes associated with electron transfer between the dye and the semiconductor 
in DSSCs.  The excited electron from the LUMO relaxes from the HOMO to the TiO2 conductive band. 
(90) 
 
 
5.5.2. Adding concentration to the Algorithm 

The relationship between the concentration of a pigment and its ability to act as a 

sensitizer is unknown since we only tested using single pigment concentrations.  If the 

relationship between concentration and DSSC output is linear, then adding additional 

pigment to the cell will be continuously beneficial and lead to a higher output.  However, 

if or when the DSSC saturates then the relationship becomes asymptotic in nature.  At 

that point, there would be a diminishing marginal return on power output.  Increasing the 

concentration of a pigment beyond this point would yield diminishing increases in power, 

limiting the benefit of the increasing concentration.  Further investigation using a range 
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of pigment concentrations could be carried out to model the nonlinear change in power as 

a function of pigment concentration.  Knowledge of the diminishing returns of additional 

pigment concentration could be combined with the A-value computation to predict ideal 

pigment concentrations.  

 

5.5.3. Durability 

Our research focused primarily on improving the efficiency of the DSSC, but did 

not determine the stability of the performance over an extended period of use.  Although 

DSSCs sensitized with 100% chlorophyll achieved the highest average power output and 

the highest maximum power achieved, it is unknown how long this performance will last.  

The durability of the DSSCs must be determined in order to analyze the potential use of 

DSSCs commercially.  

5.5.4. Natural Sunlight 

While the growth chamber is a decent model for natural sunlight, light used in the 

growth chamber was only about 500 µmol, or just a quarter of the light from the sun.  In 

addition, solar intensity and duration varies on a latitudinal, seasonal and diurnal basis.  

The light that strikes Canada on a winter day is different in intensity than the light that 

strikes the tropics at the same time.  Plants have adapted in part to varying levels of 

sunlight by developing photosynthetic light harvesting complexes that vary quantitatively 

and qualitatively.  Additional experiments should examine whether the performance of 

the DSSCs changes in natural sunlight and if the composition of the cell can be changed 

to maximize the efficiency based on geographical location. 
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5.6. Summary 

DSSCs are a promising solar energy technology that can help alleviate our current 

dependence on fossil fuels.  However, their current widespread use is limited by their 

high cost and low efficiency.  In a step towards improving the efficiency of DSSCs, we 

have tested the potential use of several natural plant photosynthetic pigments as 

sensitizing pigments.  We used various combinations of chlorophyll, xanthophyll, and 

beta-carotene, as well as novel combinations incorporating all three pigments to sensitize 

DSSCs.  We found a difference in DSSC output among the pigments tested, with 

chlorophyll being the pigment that resulted in the highest DSSC power output.  In order 

to explore why the pigments varied in their utility as DSSC sensitizers dyes and to predict 

the response of other pigments, we also developed an algorithm to calculate an A-value 

for each pigment.  This value was correlated (R = 0.66) with cell output and the 

regression explained just under 50% (R2 = 0.45) of the variability of cell DSSC output.  

This study is the first attempt to use a natural plant product’s optical properties to 

determine its likely use in DSSCs.  However, further research is needed in order to 

successfully implement DSSCs sensitized with plant pigments into practice. 
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APPENDIX 1: METHOD DEVELOPMENT 

A1.1 Pigments  

A1.1.1Column Chromatography Extraction 

Our first method of acquiring pigments involved a plan that we thought would be 

the cheapest: extracting pigments from plants ourselves.  We chose to work with spinach, 

since it contains a high level of chlorophyll as well as other pigments.  Beta-carotene and 

chlorophylls a and b were separated using column chromatography.  The two chlorophyll 

pigments are highly polar while beta-carotene is a hydrocarbon and therefore nonpolar.    

Separation was achieved by changing the solvents run in the column. 

First, fresh spinach leaves were ground with a mortal and pestle in a hexane 

solution after the stems and central veins of the leaves were removed.  For every 1.0 g of 

dry spinach leaves, 2.0 g of sand were added and then ground into the leaves until a green 

powder consistency was achieved.  The product was suspended in acetone, and a Rotovap 

apparatus was used to evaporate out all the liquid.  Following evaporation, the extract 

was re-suspended in 10 mL of hexane.   

For the column chromatography, the column was packed with silica gel.  For the 

mobile phase, we used a solution of 7 % hexane and 30% ethyl alcohol.  A less polar 

mobile solution was run through the column to elute the beta-carotene from the spinach 

extract.  After the beta-carotene was collected, a more polar solution was run through the 

column to elute the chlorophyll pigments.  As each mobile phase was run through the 

column, the spinach extract separated into different colored bands, each of which 

corresponded to different pigments.   
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After collecting the samples, the purity of the pigments was tested using thin layer 

chromatography (TLC).  A horizontal line was drawn onto a TLC plate 1 cm from the 

bottom, and a drop of each solution was placed on this baseline using a glass pipette.   

About 10 mL of 70%-hexane-30% acetone solution was added to a chromatography jar.  

The filter paper was then placed into the jar with the end closest to the baseline in the 

solvent.  The jar was capped and the solvent moved up the plate by capillary action.  The 

plate was removed from the jar when the solvent front reached about 1 cm from the top.  

A line was drawn on the paper to mark the solvent front and the spot of each pigment was 

circled.  The retention fractions for each pigment were calculated by dividing the distance 

the pigment traveled from the baseline by the distance the solvent traveled. 

The absorbance spectrum of each pigment was also found to further verify the 

purity of the pigments.  Using a Shimadzu Model UV-2550 Dual Beam 

Spectrophotometer (Shimadzu Inc, Kyoto, Japan), the absorbance spectrum of a 1 mL 

sample of each pigment was measured for the entire visible light spectrum (390 - 700 

nm).  These spectra were then compared with spectra recorded in the literature to 

determine purity. 

Unfortunately, spectral readings of the different colored solutions we obtained 

from the column chromatography proved too contaminated to determinately conclude the 

identity of each pigment.  We were thus reluctant to use them in an analysis to determine 

the effects of varying pigment combinations on solar cell efficiency. 

A.1.1.2. Extraction of Chlorophyll and Xanthophyll 

In an attempt to improve the purity of the pigment solutions, we decided to follow 

the extraction methods of chlorophyll from Chinar and xanthophyll from chrysanthemum 
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as shown previously in Liu et al (38).  Instead of Chinar, we used spinach leaves to 

extract chlorophyll due to their high concentration of chlorophyll, as stated previously.  

Approximately 5 g of leaves were dried in air and then ground with a mortar and pestle 

using petroleum ether.  The liquid was separated out and the ground leaves air-dried.  

Afterwards, 20 mL of acetone was mixed with the leaves.  Since chlorophyll and acetone 

are both polar, the chlorophyll separated into the acetone.  The acetone solution was 

collected and stored at -18C. 

Xanthophyll was extracted from chrysanthemum flowers.  Approximately 5 g of 

yellow chrysanthemum leaves were ground with a mortar and pestle using a solution of 

60% ethanol and 40% petroleum ether.  The liquid, which contained xanthophyll, was 

filtered and diluted to 20mL with a 60% ethanol-40% petroleum ether solution.  The 

pigment solution was stored at -18°C.  The purity of the pigments was verified by 

obtaining their absorption spectra as described previously.  Although this extraction 

provided much better results than the previous method, the purity of each solution could 

not be established conclusively. 

A1.1.3. Final Plan: 

When enough funding was obtained, stock solutions of beta-carotene, 

xanthophyll, and chlorophyll a were acquired from Sigma-Aldrich (Sigma-Aldrich Inc, 

St. Louis, MO, USA).  Each pigment was diluted in ethanol to a final concentration of 

1.119 x 10-4M.  The pigments were stored in the dark at -18°C. 
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A1.2. Absorption Spectral Analysis 

Absorption spectra of the beta-carotene, xanthophyll, and chlorophyll a pigment 

solutions were measured from 390-700 nm using a Shimadzu Model UV-2550 Dual 

Beam Spectrophotometer (Shimadzu Inc, Kyoto, Japan).  After the spectra were 

collected, a value we deemed the S-value was computed for each pigment combination.  

The S-value was calculated by multiplying the intensity of sunlight at 100mW/cm2 for air 

mass (AM) 1.5 at every wavelength in the visible spectrum by the recorded absorption of 

the specific pigment combination at the corresponding wavelengths.  The S-value of the 

sensitizing pigment combination was used to predict the output of a particular pigment 

combination relative to a different pigment solution. 	
  Mathematically this can be shown 

as: 

 

Equation A1.1. Original S-value equation. 
 

Table A1.1. Table of the computed S-values from every pigment combination’s absorbance spectrum. 



 128 
 

 

A1.3. TiO2 Paste 

Though our final methodology involved electrodes and counter electrodes pre-

spread with TiO2 and platinum, respectively, we initially made and spread those pastes 

ourselves.   

A1.3.1. Initial Trials 

The TiO2 paste was made by adding step-wise 10 g of AEROXIDE® TiO2 P 25 

powder (Evonik Degussa) and 20 mL of 0.1 M nitric acid.  We used a mortar and pestle 

to vigorously grind the mixture together for 20 minutes.  Finally, 50 drops of Triton X 

100 surfactant were added.  Although the source for this recipe, Wongcharee et al. 2007 

called for polyethylene glycol, Dr. Michael Grätzel, when he visited us in November 

2010, warned us against its use because it plays the same surfactant role as the Triton X 

100 (89).  Using both the polyethylene glycol and Triton X 100 would have added too 

much surfactant to the mixture.   

A1.3.2. Hand Mixer: 

Our initial method for mixing the paste was time consuming and not consistent 

between team members and trials.  Aiming for uniformity, we ultimately agreed to use an 

electric Hamilton Beach hand mixer commonly used in the kitchen.  As the TiO2 powder 

and 20 mL of 0.1M nitric acid were added step-wise, the mixture was blended with the 

hand mixer.  The mixture was then further ground with a mortar and pestle for 20 
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minutes.  Finally, 50 drops of Triton X-100 surfactant were added to the paste.  The TiO2 

paste was stored in plastic vials at room temperature. 

After coating and testing cells of size 10cm x 10cm with this TiO2 paste, 

correspondents at DyeSol informed us that mixing the TiO2 with an electric blender 

actually destroyed the mesoporous nature of the TiO2.  Consequently, the TiO2 could not 

adequately absorb the dye and sensitize the cell.  Because the TiO2 was essentially 

ruined, the results from this trial were worthless. 

A1.3.3. Spreading 

A1.3.3.1. Thickness Tests of TiO2 

In the preliminary trials of testing our cells, the TiO2 layer of the electrode was 

prone to flaking off either while baking, while being soaked in the pigment solution, or 

after cell assembly.  To solve this problem, we did a few rudimentary tests to find out 

what was causing the flaking.  First, we manipulated the components of the paste: 

increasing and decreasing relative acid levels, thinking that a more or less watery paste 

might behave differently.  We found that no matter the ratio of acid to powder, the paste 

still flaked off the electrode. 

           Next, we varied the thickness of the paste.  We baked several electrodes 

simultaneously with the same batch of TiO2 paste, but with different thicknesses of paste 

spread on each.  The only electrode that maintained a smooth, non-flaking layer of TiO2 

was the thinnest layer.  Additionally, inconsistencies in spreading created variability in 

the TiO2 thickness on each electrode.  The thicker regions on each electrode always 

flaked off.      
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We concluded that at very high temperatures, the TiO2 molecules preferred to 

bind to each other, rather than to the glass.  Since the TiO2 paste did not adhere to the 

plate when it was spread in thicker layers, it peeled away from the glass when soaked or 

handled.  We thus determined that the thinnest layer possible of TiO2 was necessary to 

obtain accurate measurements of each cell’s efficiency.  As discussed in the literature 

review, many different methods of sputtering and spraying TiO2 are used in the industry, 

but we sought to develop a similarly consistent method for our less industrial lab. 

A1.3.3.2. Metal Spreader 

We first developed a hand-held metal spreader that was angled and sharpened to 

produce an even, sharp edge.  This spreader was used to spread TiO2 on the 2.54 cm x 

2.54 cm glass plates.  Prior to spreading the TiO2, clear tape was placed on three sides of 

the conductive glass plate to approximately cover 3 millimeters on each side.  TiO2 was 

then placed on the surface of the glass plate with a metal spatula and distributed as evenly 

as possible with the metal spreader.  A designated person spread the TiO2 on all cells 

using this method to reduce variability in spreading thickness and distribution.   

A1.3.3.3. Automated Spreading Technique 

Following preliminary trials involving different spreading techniques, we decided 

to develop an automated spreader that would eliminate spreading inconsistencies   Since 

an automated process for spreading the paste would produce uniformity in coating 

thickness and consistency, it was advantageous over our previous methods that could not 

remove human error.  An automated spreader was built on an aluminum u-channel base 

to provide mechanical rigidity (see Figure A1.1).  The aluminum base measured 
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approximately 21.25 inches in length.  A geared electric motor was attached to one end of 

the base.  The motor was powered by an alternating current wall source through an 

adaptor and produced an estimated linear speed of one-quarter inch per second.   The 

motor was coupled to a threaded rod by a flexible shaft collar.  When the motor was 

turned on, it caused the threaded rod to spin and push or pull a white Delrin block linearly 

along the aluminum base.  Another piece of white Delrin was cut to precisely hold a 10 

cm x 10 cm glass plate.  This removable plate mount fit over the Delrin sliding block. 

 

Figure A1.1. Finished model of the automated spreader. 
 

The spreading blade was also cut from white Delrin and sharpened to create a 

defined edge.  The blade was mounted on a rigid steel triangular frame with a steel cross 

bar to maintain precision.  The height and tilt of the blade was adjusted with two different 

micrometer heads.  Two couples that rotated freely in the spreading blade connected the 

micrometer heads to the blade.  

In order to spread the TiO2 on the plate, TiO2 was placed on one edge of the 

conductive side of a glass plate.  The TiO2 was distributed with a metal spatula along the 

side to facilitate even spreading.  The glass plate was then placed on the plate mount with 

the side covered with TiO2 closest to the plate.  The motor was then turned on causing the 
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plate to move towards the spreading blade with constant velocity.  As the glass plate 

moved under the blade, the blade spread the TiO2 over the conductive surface. 

A1.3.3.4. Glass Pipette 

Because the automated spreader produced significant variation in the TiO2 that 

could not be prevented, we decided to employ a simpler technique using a glass pipette to 

push the TiO2 paste over the surface.  Although this process was not automated, it 

produced less variability in the thickness and distribution of the paste.  As with the 

automated coating process, clear tape was placed along three edges of the conductive side 

of a glass plate.  TiO2 was placed on one edge and spread across the glass surface by 

sliding the length of a glass pipette over the surface towards the edge not covered with 

tape.  The thickness of the coating was approximated to the thickness of the tape, or about 

1 mm. 

A1.3.3.5. Final Method Choice for TiO2 and Spreading – TiO2-coated Test Cell 

Glass Plates 

While the glass pipette method provided uniform coating, the thickness of the 

coat was limited by the thickness of the tape.  During our meeting with Dr. Grätzel in 

November 2010, we were informed that the TiO2 paste should appear clear when applied 

to the glass plates.  Because any spreading method available to us could not produce a 

thin enough layer and after suffering those devastating results, we discovered the 

availability of TEC15 transparent TiO2-coated test cell FTO glass plates from DyeSol 

(DyeSol, Queanbaven, NSW, Australia).  The dimensions of the electrodes were 20 mm 

x 23 mm (460 mm2) with an active area of 8 mm x 11 mm (88 mm2) and a thickness of 



 133 
 

3.2 mm each.  The electrodes were purchased as a plate of size 161 mm x 80 mm, and the 

uncut plates were then cut into 28 individual, pre-coated electrodes.  Since the TiO2 was 

already made, spread, and baked onto these plates, the most time-consuming part of our 

methodology was eliminated.  

A1.4. Electrode 

After the TiO2 paste was evenly spread onto the electrodes, the electrodes were 

baked to adhere the paste to the glass and to expel any moisture from the TiO2, so that the 

pigment could bind.  Our preliminary baking of the electrodes focused on heating the 

electrode on a hotplate on the highest setting until we saw a color change in the TiO2 

paste from white to brown all the way back to white.  The hotplate was then turned off 

and the electrode cooled until it could be moved without cracking.   
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However, in some of the glass plates, this method produced cracks in the glass 

due to uneven heating of the plates.  Our subsequent electrodes were baked according to a 

firing profile protocol provided by DyeSol on a Fisher Scientific Isotemp Digital 

ceramic-top hotplate (Fisher Scientific, Pittsburgh, PA, USA).  The glass plates were 

placed in the center of the hotplate to avoid uneven heating. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Table A1.2. Firing Profile for Working Electrode from DyeSol. 
After the electrodes cooled to 90°C, they were placed in Petri dishes containing a 

35 mL solution of different combinations of xanthophyll, beta-carotene, and chlorophyll.  

The Petri dishes were sealed with Parafilm and placed in the dark for 24 hours at room 

temperature.  Three electrodes were soaked in each of the following 17 combinations: 

 Pigment Combination 
1 Blank 
2 100% Chlorophyll 
3 100% Chlorophyll 
4 100% Beta-carotene 

 Time minutes WE set T°C WE set T°F 

0 0 25 77 

10 10 325 617 

5 15 325 617 

5 20 375 707 

5 25 375 707 

5 30 450 842 

15 45 450 842 

5 50 500 932 

15 65 500 932 

60 125 25 77 
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5 1:1 Chlorophyll: Beta-carotene 
6 1:1 Chlorophyll: Xanthophyll 
7 1:1 Xanthophyll: Beta-carotene 
8 1:2 Chlorophyll: Xanthophyll 
9 1:2 Chlorophyll: Beta-carotene 
10 1:2 Xanthophyll: Chlorophyll 
11 1:2 Xanthophyll: Beta-carotene 
12 1:2 Beta-carotene: Chlorophyll 
13 1:2 Beta-carotene: Xanthophyll 
14 1:1:1 Chlorophyll: Xanthophyll: Beta-carotene 
15 2:1:1 Chlorophyll: Xanthophyll: Beta-carotene 
16 1:2:1 Chlorophyll: Xanthophyll: Beta-carotene 
17 1:1:2 Chlorophyll: Xanthophyll: Beta-carotene 

 
 

Table A1.3. Pigment combinations used to sensitize electrodes. 

A1.4.1. Final Method for Electrode 

When using the pre-spread plates from DyeSol, we heated the cells to 80-90oC to 

get rid of any moisture, and then placed them in triplicates in each combination of 

pigments.  The same concentrations and combinations were used as listed in Table A1.3 

above. 

 

A1.5. Counter electrode 

A1.5.1. Carbon Catalyst 

We initially coated the conductive side of the counter electrode with a carbon 

catalyst produced by holding a flame to the glass plate and rapidly moving the flame over 

the plate to produce an even coating without burning the cell.  However, despite our 

efforts to produce an even carbon layer, this method did not provide consistent results.  
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Further, although the flame coated the 2.54 cm x 2.54 cm cells adequately, it was not a 

reasonable option for the much larger 10 cm x 10 cm cells.   

A1.5.2. Platinum Catalyst: 

We decided to use Platinum Paste PT1 to prevent additional inconsistencies 

(DyeSol, Queanbaven, NSW, Australia).  As previously mentioned in the literature 

review, platinum catalysts are commonly incorporated in solar cells.  Although platinum 

catalysts are more expensive than carbon catalysts, methods for coating the counter-

electrode with carbon are not automated and are thus subject to human errors (57).   

Clear tape was placed along three edges of the conductive side of the 10 cm x 10 

cm counter-electrode to cover 1 cm on each side covered by tape.  Platinum paste was 

placed on one edge of the glass plate and spread with a glass pipette using the same 

method used to spread the TiO2 paste.  The thickness of the platinum paste was about as 

thick as the thickness of the tape.  After the tape was carefully removed, the counter-

electrode was baked on a hot plate according to a baking protocol provided by DyeSol.     

 

 

 

 Time minutes WE set T°C WE set T°F 

0 0 25 77 

10 10 235 455 

5 15 235 455 

5 20 285 545 
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5 25 285 545 

5 30 360 680 

5 35 360 680 

5 40 410 770 

15 55 410 770 

60 115 25 77 

 
Table A1.4. Firing profile for the counter electrode (CE) from DyeSol. 

A1.5.4.3. Pre-coated counter-electrodes: 

After deciding to order pre-treated TiO2 electrodes from DyeSol, we also ordered 

the matching Pt-coated test cell TEC15 glass plates.  

 

A1.6. Cell Assembly   

After the electrodes soaked in the pigment solutions for 24 hours, they were 

carefully removed form the solutions with tweezers and allowed to air dry.  The electrode 

was placed on top of the counter electrode in such a manner to maximize contact between 

the TiO2 and platinum.  Binder clips were placed along the edges of the cell to hold the 

glass plates together.  Once the plates were secure, KI electrolyte solution was dropped 

onto the edge of the cell and spread between the glass plates through capillary action to 

cover the entire active area.  Excess electrolyte was wiped off the solar cell.  As 

previously discussed in the literature review chapter, KI is an affordable and common 

electrolyte, even though it is not the optimal choice.     
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As the last step of the construction process, copper tape was placed along the 

protrusions on the top and bottom of each cell.  The copper tape served as a point of 

contact to which wires could be attached to complete circuits with the cells with minimal 

resistance.  The glass plates we bought carried a sheet resistance of 15 ohms, but a point 

contact with any wires could raise the resistance due to the glass significantly.  Placing 

copper tape along the edges allowed for any electrons created by the cells to travel more 

freely and with the written resistivity. 

 

A1.7. Testing 

Three cells of each pigment combination were tested concurrently in a Conviron 

Model BDW36 Growth Chamber (Conviron, Pembina, ND, USA).  The chamber was 

equipped with 20 GE MVR400/HOR/MOG metal halide lamps (General Electric, 

Fairfield, CT, USA) filtered with a 1/8 inch Plexiglass type G barrier to remove most of 

the ultraviolet radiation from the chamber.  The spectral irradiance inside the chamber is 

shown in Figure 3.1.  The cells were evaluated at a temperature of 22oC and 15% relative 

humidity.  Lights were turned on for the first 30 minutes, off for the next 30 minutes, then 

on again for the final 30 minutes.  The average voltage and current of each cell were 

measured every 10 minutes using a 21X Datalogger (Campbell Scientific).  Data were 

recorded with PC200W Datalogger Starter Software (Campbell Scientific). 
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APPENDIX 2: RESULTS 

A2.1. Spectral Data 

The following graphs are absorption spectra for the pigment combinations used 

on the DSSCs.  All absorption spectra were normalized with a blank of ethanol and are 

displayed as the average of three readings by the Shimadzu Model UV-2550 Dual Beam 

Spectrophotometer (Shimadzu Inc, Kyoto, Japan). 

 
Figure A2.1.1. 
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 Figure A2.1.2. 

 



 141 
 

 
 Figure A2.1.3. 
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Figure A2.1.4. 
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Figure A2.1.5. 
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 Figure A2.1.6. 
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 Figure A2.1.7. 
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Figure A2.1.8. 
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 Figure A2.1.9. 
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 Figure A2.1.10. 
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A2.2. Cell Output Data 

The following graphs are all Voltage versus Time graphs for DSSCs sensitized 

with the pigment combination described in the title of the graph.  The Blank Cell 

contained no sensitizing solution, but all blank DSSCs we constructed produced a very 

low electrical output, as seen in the literature (79).  The 3 colored lines correspond to the 

3 cells, tested and constructed identically in triplicate. 

 

 

Figure A2.2.1 
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Figure A2.2.2. 
 
 

 

Figure A2.2.3. 
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Figure A2.2.4. 
 
 

 

Figure A2.2.5. 
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Figure A2.2.6. 
 
 

 

Figure A2.2.7. 
 



 153 
 

 

Figure A2.2.8. 
 
 

 

Figure A2.2.9. 
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Figure A2.2.10. 
 
 

 

Figure A2.2.11. 
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ABBREVIATIONS 

A – Amperes 
AC – alternating current 
AM – air mass 
APCE – absorbed photon to current efficiency 
ATP – adenosine triphosphate 
BOS – balance of system 
BP – British Petroleum 
C – Celsius 
CuI – Copper iodide 
DOE – Department of Energy 
DSSC – dye-sensitized solar cell 
eV – electron volts 
FF – fill factor 
FTO – fluorine-doped tin oxide 
ICAM – International Conference on Advance Manufacture 
IPCE – incident photon to current efficiency 
IR - infrared 
ITO – tin-doped indium oxide 
Jsc – short-circuit current 
KI – Potassium iodide 
kWh – kilowatt hour 
LSD – Least Significant Differences 
MW – megawatts 
N3 - cis-bis(4,4-dicarboxy-2,2-bipyridine)dithiocyanato ruthenium(II) 
NADPH – nicotinamide adenine dinucleotide phosphate 
NASA – National Aeronautic and Space Administration 
NREL – National Renewable Energy Laboratory 
nm - nanometers 
Ω – Ohms 
OPEC – Organization of Petroleum Exporting Countries 
PEDOT – poly(3,4-ethyl-enedioxythiophene) 
PET-ITO - polyethylene terephthalate - tin-doped indium oxide 
Pm – total solar power 
Pmax – maximum power 
PV - photovoltaic 
Redox – reduction-oxidation 
REPiS – Renewable Electric Plant Information System 
SWCNT – single wall carbon nanotube 
TEC – total electron content  
TEMPO – 2,2,6,6-tetramethryl piperidine-N-oxyl 
TiO2 – titanium dioxide 
TW – terawatts 
UV - ultraviolet 
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V - Voltage 
Voc – open-current voltage 
Wp – peak watts 
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