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ABSTRACT

The channelized receiver which is optimal for the detection of unknown non-coherent
frequency-hopped waveforms bases its decision on a fixed-length block of input data. In this
paper we present a sequential method of interception according to which whenever a new data
element is collected, a decision is made as to the presence or non-presence of a frequency-
hopped waveform. If that decision was indeterminate, another data element is collected. An
optimal sequential test is derived, under the assumption that the waveform signal-to-noise ratio
(S/N) is known. It is shown that this sequential test requires less data, on average, than the
fixed length method to make a decision with the same reliability. '

Also derived is a truncated sequential method where a decision is forced, if still indeter-
minate, after some set amount of data is collected. The truncated test is shown to improve the.
number of samples needed for a decision when the input signal-to-noise ratio defers greatly
from that assumed in the derivation of the test. Furthermore it is shown, that the truncated test
yields a limited degree of robustness when the input S/N defers slightly from that assumed. A
detailed analysis of the performance of these tests is conducted from which a method for
finding an optimal truncation point follows. Numerical results which are based on this analysis
as well as on simulation of the interceptor’s performance are presented to prove the claims
made above.

This research was supported in part by Contel/Federal Systems Division and in part by the Systems Research Center at the
University of Maryland, College Park, through the National Science Foundation's Engineering Research Centers Program: NSF
CDR 8803012.



1 Background and Introduction

This paper applies and extents previously published results in sequential detection to the problem ‘
of the optimal detection of noncoherent frequency-hopped (FH) waveforms. By using likelihood
function methods, the problem was previously solved in [2] for the case of a frequency-hopped
waveform with a known signal-to-noise ratio and epochs with known starting times and durations.
However, in this approach, the decision was based on a data segment of fixed-size. Here, a sequential
approach is taken, meaning that whenever a new data element is collected, a decision is attempted
as to the presence or nonpresence of a frequency-hopped waveform. If no decision was reached,
another data element is collected.

The sequential approach to detection has a rich history. For the binary hypothesis probiem with
discrete-time independent identically distributed (i.i.d. ) data, Wald [3] has derived the optimal
sequential test. This test is optimal in the sense that no other test can reach a decision of the
same Neyman-Pearson reliability within a smaller average time. This result has been extended to
continuous time data in reference [4] and [5]. Others have suggested tests that must make a decision
within a prescribed time. These are the “truncated” tests given in [6], [7], and [8]. Truncation is
desirable not only for implementation reasons but to improve the performance of a sequential test
when the input statistics differ from those assumed in designing the test. In particular, Tantaratana
and Poor in reference [9] derived a truncated sequential test for i.i.d. Gaussian data with an
unknown mean. This work is the foundation of the bulk of the results included in this paper.

The process of development of the sequential test is begun by defining the observations model
for a composite hypothesis problem. Specifically, given the observation y(t), the problem is one of

choosing between Ho, which is the hypothesis that a FH waveform is not present and H..,, which is



the hypothesis that a FH waveform is present with a signal-to-noise ratio ¥’ where 0 < 4’. Exactly,

the model is
Hy: y(t) = n(t)

Np
Zz.-(t) + n(t) 0<%

=1

versus

, (1)

H,: y(t)

where
zi(t) equals V25’ sin(wi,t + 6;) for iT, <t < (¢ + 1)T}.

n(t) is white Gaussian noise with two-sided spectral density %‘1
for 1 < k; £ K, is one of a family of known frequencies within the

spread spectrum bandwidth with these being uniformly random for
each epoch.

Wk
0; is random phase with uniform distribution.
S’ is the average signal energy.

T,  is the epoch, or time duration, of each hop.

N;  is the number of hops over message duration.

The hypothesized signal-to-noise ratio 4’ is related to the other model parameters by

, STy
7 - -NO

(2)

Because a reliable test cannot be devised for FH waveform with an arbitrarily small signal-
to-noise ratio, the preceding composite hypothesis problem is simplified to a binary hypothesis

problem: Hg versus H., where 7 is specified as the smallest signal-to-noise ratio that is to accurately
detected. The quantity v has value

T=E N 3)
with S being the corresponding signal energy. Also of use will be a quantity which is identified as

the relative signal-to-noise ratio r = \/7'/~.



Using the above observations model, the design of a sequential test for the detection of FH signals
will be approached as follows. An asymptotically optimal test will be derived by applying likelihood -
function theory to the simplified binary hypothesis problem: Hg versus H,. The parameters of this
test will be specified to ensure a maximum probability of detection for a given probability of false
alarm. This binary hypothesis test will then be applied to the more generalA composite hypothesis
problem with a resulting degradation for the small signal-to-noise case that will be shown to be
partially controllable by properly truncating the test procedure.

The derivation of the asymptotically optimal test will begin with the derivation of the likelihood
function for a single-epoch observation which is appropriately called the Single-Epoch Likelihood
Function (SELF). Next by invoking the central limit theorem, Gaussian densities will be found
that are asymptotic to the actual SELF densities as the number of frequencies becomes large. In
determining these densities, the SELF’s means and variances will be explicitly computed under
each hypothesis. By next considering individual SELFs as the observations, the problem will be
reduced to a binary hypothesis problem with Gaussian i.i.d. observations. This simplification will
be justified because each epoch of FH waveform has independent statistics and because the SELF’s
statistics do not depend on the particular hop frequency. Using these equivalent observations and
their asymptotic densities, the Asymptotic Log-Likelihood Function (ALLF) will be derived. The
ALLF will then be used to synthesize tests for the binary hypothesis problem. This procedure will
require extending the previously published sequential tests to the cases of data with variances which
depend on the hypothesis. Applying these results, a Fixed-Sample Size (FSS) test, a Sequential
Probability Ratio Test (SPRT), and a Truncated Sequential Test (TST) will be designed.

Each of the three tests will be analyzed by approximating the test statistic by a Wiener process



and then employing the classical theory of diffusion as outlined in references {5] and [6]. This

analysis will be more general than that used to design the tests in that it will allow the performance - -

of each test to be evaluated for the composite hypothesis problem rather than the assumed binary
hypothesis problem. This analysis will yield the average sample time of each test as a function of
the input signal-to-noise ratio and will yield the operating characteristic of each test. From these
results, a test will be designed that is optimal in the sense that the maximum average sample
number with respect to the input signal-to-noise ratio is minimum. Finally, a computer simulation
will confirm these analytical results.

To further extend these results to the case of a test that was synthesized under the expectation
of detecting a FH waveform with extremely small signal-to-noise ratio, an asymptotic analysis
of a different sort will be undertaken. This analysis will show how the above tests perform for
the composite hypothesis problem as the minimum reliably detectable signal-to-noise ratio of the
FH waveform becomes increasingly small. Numerical results for this case will be given but a
corresponding computer simulation is not possible due to the rate of increase of the number of

computations required as the signal-to-noise ratio diminishes.

2 Likelihood Function: One Epoch

The statistical test for the composite hypothesis problem is defined by finding an asymptotically
optimal test for a binary hypothesis problem and applying that test to the composite case and
accepting the resulting degradation. This simplified binary problem consists of the two hypotheses
H, where no signal is present and H., where a signal is present with signal-to-noise ratio 4. For this

binary hypothesis problem, Appendix A contains a derivation of the SELF which is the likelihood



function A; of the ith-epoch observation y(t) for iT), < t < (i + 1)T. The SELF is expressed as

Ay) £ EilAi(y/k)] @)
e-v K=1
- F b (vevrE+ai) (5)
where I is the zeroth order modified Bessel function of the first kind and
P, = 2 (T y(t) coswy,t dt
VNoT, Jit,, )
2 (i+1)T},

Qr = TN S, y(t) sinwy,t dt
Because of the statistical independence between their respective observations, the likelihood func-
tion of the n-epoch observation is then []7; Ay, i.e. , the product of these individual single-epoch
likelihood functions.

The SELF is nicely interpreted as the configuration of well-known devices as indicated in Fig-
ure 1. That is, the SELF is channelized where each channel has a matched filter that is tuned
to a particular hop frequency and whose output is envelope-detected and emphasized by a Bessel

function non-linearity. The output of each channel, after scaling by €= /K, is summed to produce

the SELF.

3 Asymptotic Log-Likelihood Function

The Asymptotic Log-likelihood Function (ALLF) is asymptotic to the n-epoch likelihood function,
[1%; Ai), as the number of FH channels becomes large. The critical idea behind the derivation of
the ALLF is the application of the central limit theorem to yield asymptotic densities for the SELF
from which, using an n-epoch collection of SELF’s as an equivalent observation set, the ALLF will

be determined.
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Figure 1: Block Diagram of Single-Epoch Likelihood Function




The SELF (5) was computed assuming a binary hypothesis problem, i.e. , Hop is the hypothesis

that no FH waveform is present, while, H., is the hypothesis that a FH waveform exists of a known . .

signal-to-noise ratio 7. The following analysis will assume that a FH waveform, if present, will have
a signal-to-noise ratio 4’ or equivalently an average signal energy S’ that is not necessarily equal to
the average signal energy 5 assumed known in the binary case. This generalization is not necessary
to derive the ALLF but will be needed to analyze the performance of the ALLF in the composite
hypothesis problem.

Proceeding with the derivation of the ALLF, the central limit theorem is to applied to the
SELF to obtain an asymptotic density under all hypothesis’s, 0 < 4’. The central limit theorem
is justified here because the SELF’s output is the sum of many channels whose statistics will be
shown to be nearly independent and nearly identical. The central limit theorem requires only the
mean and variance of each channel and thus only the statistics of the matched filter outputs need
be determined exactly since the SELF’s mean and variances can be determined from these moments

alone.

3.1 Matched Filter Output Statistics

To determine the matched filter output statistics, assume the signal present is in the kth channel

then the match filter output in the I/th channel can be found from (6) as

/321 pG+1)T,

P = 2——7—/ " sin(wit + 0) coswyt dt + y; (7)
Tn Jim,
a1 pi+1)T,

Q = 2v2y ’ sin(wt + @) sinwit dt + & (8)

Th Jim
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where .
A 2 (t+1)Th
vy = T J; n(t) coswit dt
(s+1)T,
6 & ,N._To / " n(t) sinwit dt
By applying a trigonometric identity, the first components of the matched filter outputs are rewrit-
ten as
P=é+etuy (10)
where
VI (AN,
é sin(wy — wy)t dt 11
T, Jit, (wi 1) 4 (11)
/3~ r(i+1)T
e = XX sin[(wi + wi)t + 26 Jdt (12)
T, Jit,

But assuming the channel frequencies are orthogonally spaced, i.e. (wg — w;)Th/27 is an integer

and applying the inequality

4 s oL (13)
we have
Hz{;(/ﬁsinb-{-m fglr';;: (14)
whenever
(wr + w))Th > 2¢/27" for all I,k (15)

By similar reasoning, and under the same assumptions, the second component of the matched filter

output is

V27 cosf+§& forl=k
Qi ~ {g, for | # k (16)
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The two assumptions made in determining these approximate expressions for the matched filter
outputs can be described below. The first assumption is that wiT), is large and is equivalent to. -
requiring a large number of carrier cycles over a single epoch. The second assumption of orthog-
onally spaced channels [i.e. (wx — w;)Th/27 is an integer] means, in essence, that the channels are
isolated from one another. Another condition implying channel isolation is wide spacing between
the channels (i.e. (wx — w;)T} is large). In a practical implementation, smooth window functions
could also have been used in the matched filter implementation to achieve the channel isolation
assumed here. The matched filter outputs for no signal present hypothesis Hy are the special case
of the above expressions for 4’ = 0 except they are exact, i.e. ,

P = y
Q = &

Simplified expressions for the match filter outputs, (14), (16), and (17) have been derived. The

(17)

statistical nature of their noise components, {¢} and {£}, will be determined next. From (9), it
follows that the random variables {v;}, {£;} are Gaussian with zero mean and unity variance. Under

the isolated channel assumption, it is easy to show that

Elvmvn] = 0 form#n 1<m,n< K
Efvné) = 0 foralm,n 1<mn< K (18)
E[(nén] = 0 form#n 1<m,n<K

Thus {v}, {€;} are mutually independent, since they are Gaussian. These relations also determine

the joint density of 1; and £ as

1 __
PV, &) = 2—1r€ 07+€7) (19)

The equations (14), (16), (17), and (18) along with the joint density of v; and & (19), constitute a

complete statistical description of the matched filter outputs {P;} and {Q;}.
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3.2 SELF Moments

The statistics of {P;}and{Q;} were found in order to determine the mean and variance of the
SELF (5). The SELF moments are needed to apply the central limit theorem and thus ultimately
produce the ALLF. A few conditions for the application of the central limit theorem will be es-
tablished now. First, since the random variables {P;} and {Q;} are mutually independent, each
channel output of the SELF is also independent. Furthermore, the channel outputs are all identi-
cally distributed except for the output of the channel with the signal present. This deviant channel
output will be shown to have a variance comparable to that of the other channel outputs and thus,
the central limit theorem still applies and with it, we get an density asymptotic to the actual SELF
density.

To continue, we need explicit expressions for the mean and variance of the SELF. Assuming a
signal is present with a relative signal-to-noise ratio of r = /777, then the matched filter outputs

of the channel containing the signal are by (14) and (16)

P, = /29'sinf + y 20
Qi = V29'cosb+ & (20)

If 4, and o? are defined to be the mean and variance for this channel output, then (19) implies

e = E[L(vE/P+@})] (21)
= o [ [ n(vE/R+ Qe it Dandg (22)

With the rectangular-to-polar conversion, P, = pcos#, ¢; = psinf, and applying the identity

1 2 CcOo8
Io(a) = 5- /0 e* <=9 dg (23)
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the integral becomes

pr = 6"'/0 oI (VEip) Io (v/Z7p) €~ T dp (24)
= 67.[0(2\/:77) (25)

This integral was evaluated in [10], §13.31(1). The variance is now evaluated as follows

ot +ul = E[B(vE/PF+0Q7)] (26)
= = [ B(vE/R+@)etet+tang (27)

which becomes with rectangular-to-polar conversion, and applying (23)
ol +pul = 6’”’/0 o1 (VETp) Io (vETp) €~ T dp (28)
This integral is evaluated by applying a formula from [10], §11.41(16) which states
%_[r Jo(a? + b* — 2ab cos8)d8 = Io(a)lo(b) (29)

where Jg is the zeroth-order Bessel function. Application of this formula and an interchange of
integrations reduces the integral (28) to a simpler integral solved in [10], §13.31(1). The net result
is
e 2y
o2+ u?= - / e 27 ¢ I, (4+/77 sin %)dq& (30)
0

Summarizing, for a signal in channel ! with signal-to-noise v/, the channel moments are
g

pe = €Io(2ry)

o2 = et |1 [T e-tveons] (4rvsin$) do - 12 (2ry) 3D
=  Jo o(4rysin 3 o <7y

where r = /7'/~.
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The above calculations give expressions for the channel moments for a channel with a signal

present. The moments for the case of a channel without a signal present are special cases of the . .

above with r = 0 and are thus denoted po and 03. From (31) and the Bessel function identity (23),

they are

Ho
o}

= e
= e [Iy(27) - 1]

(32)

Likewise, moments for channel / containing a signal of the maximum strength 4 correspond tor = 1

and are thus denoted y, and o%.

Expressions for the mean and variance of the SELF are now immediate since the SELF is the

sum of all K channels scaled by e~7/K

Mo=

Vo =

M =

W =

. The expressions are

€ o

e~
K
e

2
%

T [(K - 1)/‘0 4+ P’r]

e~
K2
e

[(& - 1)03 + 0?]

A (K = 1)po + ]

e~
K2

[(K -1)ad + af]

(33)

(34)
(35)
(36)
(37)

(38)

where M, is the mean of the SELF when a signal of strength v’ is present while My and M; are

special cases of M, when r = 0 and r = 1, respectively. The variances, V,, Vp, and V; are defined

similarly.

3.3 Derivation of the ALLF
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With the first two moments of the SELF determined, the central limit theorem gives approxi-

mating densities to the SELF, A;, under the composite hypothesis problem. These densities are

SA‘-LO{ 22
(39)

versus

Hp: A,’ ~ 72-1;%-6—
1 —(BiMr)? /
H.yr : A,’ ~ me r for 0 < ¥y <y

which gives a simplified statistical characterization of the SELF. That is, the SELF outputs, {A;},
are Gaussian i.i.d. variables whose means and variance depend on the hypothesis.

As was the procedure in deriving the SELF, the asymptotic log-likelihood function (ALLF)
will be designed using the simpler binary hypothesis problem. For a single-epoch, likelihood ratio

theory and (39) implies a log-likelihood ratio of

Li(A)) = coA? + c1Ai + o (40)
where
171 1

« = 3(%-7%) “1)
(M Mo>

‘= ( 1 Vo (42)
1 (MZ M Vo

o = 2(V0 a7 +lnvl- (43)

T,=Y_ L (44)

And the ALLF has now been found.

3.4 Moments of the ALLF
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For the analysis to follow, it will prove useful to derive the moments of L; from which the ALLF

moments follow trivially from (44). Starting with the mean,

M, & E[Li(A)]
= 02E(A'2) + CIE(A") +co

= o (M?+V.)+aM, +c
which expands in terms of the SELF moments to
M, =z %’ + (Vo)™ [(M: = Mol Vi + (M, — My) Vo + (Vi - Vo) V]
Now to compute the variance of L;.
V, = Var[L; (A))]

which upon substitution of (40) yields,

V» = Var [ch? + A+ co]

= Var [(czM,2 + 1M, + co) + (2c2M, + ¢1)v + Cg‘vz]
where v = A; — M, Proceeding,
V, = Var [(2c2M,. +ca)v+ czvz]
= (2e2M, + 1)’ V; + 2c3V7

which simplifies to

V21 1\2 1 1 My My\1?
r= | - = - | Mr KT T r
Vr= (Vo vl) +[(Vo Vl) +(Vl Vo)] v

(45)

(46)

(47)

(48)

(49)

(50)

(51)

(52)

(53)

(54)
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The special cases, r = 1 and r = 0, of the moments of L; are included here for convenience. They

are

Mo = %m%’wivl[vl-%—(Ml-Mo)uVl] (55)
My = %1n%+2i%[m-vo+(Ml-Mo)2+Vo] (56)
Vo = 3 (%’ - 1)2 + %(Ml — My)? (57)
n o= (% - 1)2 %(Ml - Mo)? (58)

3.5 Summary

A log-likelihood function for the binary hypothesis problem, designated the ALLF, has been derived
that is asymptotic to the true log-likelihood function as the number of channels becomes large. The
ALLF was found with likelihood ratio theory by considering an n-epoch collection of SELFs as a
set of i.i.d. observations, assumed Gaussian by the central limit theorem. The Gaussian assumption
was justified by showing that each SELF was the sum of nearly independent and nearly identical
random variables. Also derived were various means and variances that will prove useful in future

discussions. The ALLF will now be used to design a FSS test, SPRT, and a TST.

4 Test Design

The results above reduced the problem of detecting a FH waveform to that of discriminating
between two sets of Gaussian i.i.d. data with different means and variances. A Fixed Sample Size
(FSS) test, a Sequential Probability Ratio Test (SPRT), and a Truncated Sequential Test (TST)

based on this simplified model will be discussed.
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4.1 FSS Test Design

As the name suggests, a FSS test consists of comparing a test statistic T, based on a fixed
number L of observations, to a threshold 7. Then if the test statistic is greater than 7, the
hypothesis H; is chosen while correspondingly a test statistic less than 7 indicates hypothesis Hy.

Symbolically this is,

27 = H
TL{<T = Hy (59)

In our case, the test statistic is the L-epoch ALLF and the test parameters, L and r, are specified
to correspond to prescribed false alarm Pr and detection Pp probabilities. To determine L and 1','
the density of the 77, is needed for each hypothesis. Although this density equals the non-central
x? density, an approximate Gaussian density, derived via the central limit theorem, is used instead
to yield simplified expressions for the test parameters. From these densities, Pp and Pr can be
computed in terms of L and 7 and solved to yield,

1
2

1 2
[v;* ®-1(1— Pp) - Vie-1(1 - Pp)]

L = - (M1—Mo)2 (60)

L}
(M1 = Mo)

T

[Véria7 1 - Br) - viMor~1(1 - Po)] (61)

4.2 SPRT Design

Wald’s sequential probability ratio test (SPRT) can now be defined as a test with test statistic
Tn, based on n observations and two thresholds, a and b. The SPRT works as follows. Upon the

nth observation, if T, is greater than a, then the hypothesis H; is chosen. If T}, is less than &, then
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the hypothesis Hg is chosen. If, instead, T, is between a and b, the test statistic is updated to

include n + 1 observations and the process is iterated. Symbolically this test is described as

2a = H;
for each n, T, <b = Hy (62)
€ (a,b) = take another sample

The threshold values, a and b, are assigned to give the desired Neyman-Pearson probabilities;
probability of detection Pp and probability of false alarm Pr. Relationships between the thresholds

and the Neyman-Pearson probabilities are given by Wald’s approximations [3],

1-Pp
o ~ (132) (63)
b ln(PF) (64}

which completes the specification of Wald’s SPRT.

4.3 TST Design

TST is a hybrid of the above two tests. Specifically, TST follows the rules of a sequential test
with test statistic T, and with thresholds, a and b, but has the added feature of forcing a decision

at time L (if no decision has yet been made) by comparing the test statistic to a threshold 7.

Symbolically,
>a = H;
foreachn< L, T, <b = Hy
€ (a,b) = take another sample
(65)
>T7 = H
but forn =1L, TL{(T = H

Two relations secure the specification of the TST parameters, a, b, L, and 7. If Py and Py, are

the actual Neyman-Pearson probabilities for the TST, then from [7]

Py < PESS + PEPRT (66)
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(1-Pp) < (1- PE5%)+ (1 - PFPRT) (67)

where PESS is the probability of false-alarm for the TST if L = co and PEPRT is the false-alarm -
probability for the TST if a = —b = co. PESS and PSPFT are defined similarly. Thus, the errors
of the TST can be viewed as a mixture of the errors of a FSS test with parameters, L and 7 and
a SPRT with parameters, a and b. These inequalities can be verified by viewing the ALLF, T,,, as
a discrete stochastic process with time index n, and enumerating it’s sample paths. For instance,
a sample path leading to a false alarm must either cross threshold a before threshold b and before
time L or be greater than threshold 7 at time L. Since these events also correspond to false alarms
in either the FSS test part or the SPRT part of the TST, the inequality (66) mulsf follow.

The above inequalities can be used to specify a TST whose actual error probabilities, Pz and
1 — Pp, are less than any specified error probabilities, Pr and 1 — Pp. Thus, the TST can be
designed by partitioning the bounding errors, (1 — Pp) and Pr among the SPRT and FSS test
parts of the TST and then using the appropriate parameter equation, given above, to compute
the parameters; L, 7, a, and b for TST [7]). Specifically, this partitioning is quantified with the
introduction of two constants, 0 < C; < 1 and 0 < C; < 1, which are defined as TST mixture

constants, the following can be constructed

PESS = CyPp (68)
PEPRT = (1-C1)FPr (69)
(1-P5%%) = C(1- Pp) (70)
(1-P3PRT) = (1-Co)(1- Pp) (71)

for the error probabilities of the FSS test and SPRT parts of the TST. From the above inequalities
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and (60), (61), (63), and (64), the TST parameters are determined as follows

[vie1a - pgss) - vie1a - pss)]

L = YRR (72)

r = (.MI—L_%M-O—)[VéMIQ‘l(l—P{fss)—-vl%MoQ“l(l—Pgss)] (73)

¢ = In (——wiiﬁfm) (74)
SPRT

b = In (I;:;WT-) (75)

Note that (66) and (67) guarantee that the actual detection errors;

Pr < Pr (76)

1-Pp < 1-Pp (77)

The mixture constants, C; and C3, reflect proportions of the FSS test and SPRT parts of the TST
since if C; = C; = 1, a pure FSS test is defined and if C; = C; = 0, a pure SPRT is defined.

Criteria for choosing the mixture constants will be discussed in Section 6.

5 Performance of Tests

The preceding tests, the FSS test, the SPRT, and the TST were designed under the assumption of
binary hypotheses. These hypotheses are Ho, FH waveform is not present, and H., FH wa,veforﬁl
is present and has signal-to-noise ratio 4. Of concern here is the performance of the three tests
when the actual signal-to-noise ratio 4’ of the FH waveform is more generally 0 < v’ < 7. Two
parameters characterize a test’s performance for a particular 4. The first, denoted by E(N/v’),

is the Average Sample Number (ASN) which is defined as the average of the number of samples
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needed to reach a decision. The second parameter, denoted Po(v’), is the Operating Characteristic

(OC) which is defined as the probability of declaring the absence of a FH waveform for a given v'. . .

5.1 Analysis

For the FSS test, the ASN is obviously L, while the OC can be determined by approximating the
ALLF at time L by a Gaussian random variable with the same moments. This central-limit-theorem

argument produces

r—LM,)

Po(r) =2 ( o (78)

for the OC.

For the sequential test, the analysis is harder but can be approached as a diffusion problem.
Here, we approximate the test statistic by a Wiener process. Specifically, if 7'(¢) is a Wiener process
with variance function V,t and mean function M,t, then the ALLF, T,,, converges weakly to T'(t)
at integer times t = n provided n is sufficiently lg,rge. This last restriction is needed to ensure that
T, has approximately a Gaussian density as implied by the central limit theorem. In terms of the
approximating Wiener process T'(t), the problem of finding the OC function is now the problem
of finding the probability that T(t) will “touch” the lower threshold b before the upper threshold
a. Likewise, the problem of finding the ASN is now the problem of finding the average time that
T(t) first “touches™ either threshold,(a or b). This time is also called the average stopping time.

Expressions for these quantities are given in [5] and [6] as

e~ BVE _ 1
M M M, #0
Py(v) = e ®Vr _e v (79)
? M, =0 »

a->b
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aP(y') + b(1 = P(y) Mo £0
ENM) = {0 M (80)
v M,=0

The diffusion technique also applies to the TST, albeit more involved. The ASN is by [5],

(=2}
n N —kn
E(N/y)=A Zl(_l) gz Bn(e L _1) (81)
where
V.7
B, = e sin = _ eV sin nrb (83)
a-1b a—-b
M?  Vnlr?
kn, = 2V, + 2a by (84)

The OC function defined is by [6],

- i e lna=(n-1)t]g (T — LM, —2[na—(n - l)b])

r=1 VLV,
+ez=“,{'-rr-n(a—b)§ ('r - LM:/;v2rn(a - b))
+e2FEnb-(n-1)al g (2[nb —(n _2:11]),— T+ LMr)
_e?¥En(-a)g <2n(b - a\)/%vr_f LMr) (85)

These equations represent a complete characterization of the FSS test, SPRT, and TST.
The fact that the diffusion technique yields accurate expressions for the ASN and OC functions

will not be proved here but will be verified below by a computer simulation.
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Figure 2: ASN from Simulation versus S/N, vy =1

5.2 Numerical Results

The FSS test, SPRT, and TST were simulated, by computer, to prove the assumptions of
the analysis and as an independent measure of the relative performance of the three tests. The
simulated detector consists of 512 channels and each test was synthesized to ensure a probability of
false alarm P; of no more than 1% and a probability of detection Pp of at least 99 %. Under these
specifications, the detector was simulated until 1000 decisions were reached for each of 11 signal-
to-noise ratios evenly spaced between 0 and 4. The decisions that no FH waveform was present
were averaged to estimate the OC, while the number of observations taken to reach a decision were
averaged to estimate the ASN. Additionally, the standard deviation of ASN average was measured

to indicate the ASN estimation error.

Figure 2 and Figure 3 are, respectively, the ASNs by simulation and by theory when the
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Figure 3: ASN from Theory versus S/N, v = 1

assumed signal-to-noise ratio 7 = 1 while Figure 4 and Figure 5 are the corresponding curves for
(v = 0.3). As promised, the ASN is greatly reduced, by about 57%, for the SPRT in the regions
around 7' = 0 and 9’ = 4. These curves exemplify a general property of the SPRT. That is, the
SPRT performs very well when the observations statistics are close to those assumed, but the SPRT
exhibits a degraded performance, often to the point of being worse than the FSS test, when the
observations statistics are different. In our context, this degradation is evidenced by a large ASN
for the SPRT when the actual signal-to-noise 4’ is midway between the two assumed values 0 and
7. The TST reduces the ASN’s poor performance in this “no man’s land” as shown by the figures
but it does this at the expense of performance in the regions around 7' = 0 and 7' = 7. Despite this
preformance loss, truncation is necessary for implementation reasons. Plus, it will be shown that
the TST has the desirable property of being more sensitive than the SPRT at small signal-to-noise

ratio’s and that through optimization of the mixture constants, the TST can regain much of what
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Figure 6: OC from Simulation, vy = 1

it lost in ASN around 4’ = 0 and 4/ = 7.

Focusing on the OCs (Figures 6 and 7 for v = 1, Figures 8 and 9 for v = 0.3), it is obvious
that F'SS test is slightly more sensitive for small signal-to-noise ratios while the SPRT has degraded
performance in this region. Notice, these test performances are reversed for signal-to-noise ratios
close to ¥. The OCs also show that the TST’s actual detection errors Pr and 1 — Pp are within
79% of their bounds use in the TST specification.

Throughout the analysis, various simplifying approximations were made whose accuracies were
hard to quantify, especially the Wiener process approximations to the ALLF. Thus, the computer
simulation was compared quantitatively to results predicted by theory as a validation of assumptions
made. Table 1 for ¥ = 1 and Table 2 for ¥ = 0.3 show how well the simulation of the three
tests correspond to the analysis. The quantity AASN is the normalized difference between the

theoretical ASN and the simulation ASN where the normalizing factor is the estimated standard
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Table 1: Comparison Between Theory and Simulation for y=1

Figure 9: OC from Theory, v = 0.3

FSS test SPRT TST

7 |AASN[AOC|AASN[AOC|AASN][AOC
0.00 0.00 0.84 -1.19 -0.03 -1.47 0.03
0.10 0.00 1.11 -0.48 2.77 -0.76 2.03
0.20 0.00 0.45 -1.05 1.92 -1.84 1.02
0.30 0.00 0.18 1.16 -0.09 1.19 -0.18
0.40 0.00 -0.25 1.09 0.89 0.20 -0.40
0.50 0.00 0.73 0.60 0.83 -0.64 1.53
0.60 0.00 0.22 0.23 0.02 -0.14 -0.15
0.70 0.00 0.37 -1.47 1.64 -2.35 3.20
0.80 0.00 -2.16 -0.94 2.25 0.76 1.17
0.90 0.00 -1.33 -1.38 0.83 -1.88 1.02
1.00 0.00 -0.84 -1.16 3.50 -1.38 1.29
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Table 2: Comparison Between Theory and Simulation for y=0.3

FSS test SPRT TST
v |AASN]AOC|AASN]AOC] A ASN] A OC

0.00 0.00 -0.71 -1.92 0.02 -1.04 2.09
0.03 0.00 -0.73 0.32 -1.75 1.38 -2.18
0.06 0.00 0.34 1.59 -0.82 -0.71 -1.03
0.09 0.00 0.68 -0.65 -0.49 0.07 0.28
0.12 0.00 -0.24 -1.72 0.33 -0.14 0.08
0.15 0.00 -2.17 -1.09 0.17 -0.48 0.69
0.18 0.00 0.91 -0.96 -0.19 -2.32 0.16
0.21 0.00 0.88 -1.04 -1.83 -2.49 -1.93
0.24 0.00 0.56 0.98 0.09 0.78 0.43
0.27 0.00 -0.18 1.79 2.02 1.70 2.68
0.30 0.00 -0.30 -0.70 1.67 0.63 0.20

deviation of the average used to estimate the ASN. The AASN values show a good correspondence
between theory and simulation since they are within two standard deviations 86% of the time.
The quantity AOC is the normalized difference between the theoretical OC and the simulation
OC. Here, the normalizing factor is the standard deviation of OC average assuming theoretical OC

value is correct. In other words, the normalizing factor for a theoretical OC of Py(v’) and 1000

simulation runs is ooc = +/Po(7')|1 — Po(7’)}/1000. Here again, a good correspondence between
theory and simulation is apparent.

The purpose of the computer simulation was to validate the assumptions made in the spec-
ification and analysis of the three tests, the FSS test, SPRT, and TST. The accuracy in which
the analysis predicts quantities measured by simulation, as shown above, lends credence to the

assumptions made.
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6 Optimal TST

The analytical expressions; (81) for the ASN and (85) OC of the TST, can be used to determine
an TST with an optimum mixture of FSS and SPRT parts. Specifically, the maximum ASN with
respect to the signal-to-noise ratio 4 varies as a function of the mixture constants C; and C,. This
function is graphed in Figure 10. The figure indicates that the optimal TST should have a greater
mix of SPRT than that of one half used previously since the maximum ASN of smallest value occurs
for smaller values of the mixture constants, C; and C3. This minimum was found numerically and
corresponds to mixture constant values of Cy = 0.286 and C; = 0.284. The ASN and OC of the
optimal TST are shown in Figures 11-12. It is interesting that by minimizing the maximum ASN,
the ASN in the extreme regions about 4/ = 0 and 4’ = v are also reduced. This is believed to be
a consequence of the optimal TST having a greater SPRT mix than the half-and-half arbitrarily

picked before and, therefore, exhibits properties closer to a pure SPRT . Of course, if the first TST
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was specified to be a primarily SPRT mix, then optimization would have increased the ASN in the

extreme regions. The optimal TST offers a good compromise between the need to maximize the . |

ASN performance about the extreme regions and the need to minimize the maximum ASN.

7 Asymptotic Efficiencies

The previous analysis failed to evaluate the performance of the tests when the assumed signal-to-
noise ratio v is small. This case will be examined here. Since the ASN and OC are functions of both
7 and the actual signal-to-noise ratio 4/, the ASN and OC can be recast as functions of 4 and the
relative signal-to-noise ratio r = \/9’/7. In this section, the ASN and OC are defined as functions
of v and r, and will be written as E(N/r,v) and Po(r,v), respectively. Test performance in the
dwindling signal-to-noise ratio case is captured by t'he limit of the ASN and OC as v diminishes
while r is held constant. For the OC, this is a finite limit, but the ASN limit balloons. Thus, rather
than compare the ASNs directly, the limit of the ASN times 42 is computed. In other words, a

quantity, identified as the asymptotic ASN, E(N /r), will be defined as
E(N/r) = lim y*E(N/r,7) (86)

The asymptotic ASN is useful because it preserves the relative efficiencies between the ASN’s
as v diminishes. For instance, consider the FSS test ASN, EFSS(N/r,'y), and the SPRT ASN,

ESPRT(N/r +), then

im ZE5S(N/ry) _ EFSS(N/r)
lim = =
¥—0 ESPRT(N[r,4) ~ ESPRT(N/r)

(87)
where EFSS(N/r) are ESPRT(N/r) are the asymptotic ASNs of the FSS test and SPRT, respec-

tively. The asymptotic OC is simply defined as

Po(r) = lim Po(r,7) (88)
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As an aid in evaluating these limits, we have asymptotic expressions for moments of the single-

epoch ALLF derived in Appendix B are defined as follows

M, = M*+0(7%) (89)

Ve = Vil +0(+%) (90)
where

M, = %(r—%) (91)

v = 2 (92)

Here and throughout this discussion, the quantity O(9™) represents any function, say f(v), spch
that |
7" ling f(7) < 00 (93)
The particular function represented by O(y") is determined from the context of the equation in
which it appears.
To ease the expression of the asymptotic ASN and asymptotic OC, the variables, I, 7, &, and
b are defined. They will be labeled the asymptotic test parameters. Depending on the test type,
they have expressions that correspond to that test type’s parameter equations where M, is replaced
with M, and likewise V;, is replaced with V,. For instance, the FSS asymptotic test parameters

are from (60) and (61)
[phe11 - Po) - her21- pr)]

= AR (94)
(A - A1)
A (4 #8710 - Pe) - W At02711 - o) (95)
(M1 = Mo) L° '
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Figure 13: Asymptotic ASN of FSS Test, SPRT, and TST

By using the asymptotic expressions (89) and (90), we have proved that the asymptotic ASN
and OC of a test are exactly the ASN and OC of a test with the corresponding asymptotic test

parameters. For example, this fact implies from (78) that for the FSS test the asymptotic ASN is

EFSS(NIr =1 (96)
while the FSS test’s asymptotic OC is
- F— LM,
Bor)=# (—M—) (97)
Ly,

" The ASN and OC for the three different tests were plotted and are compared in Figures 13
and 14. The relative relationship between the test’s asymptotic ASNs is almost exactly like that
between the ASN’s for v = 1 and 4 = 0.3 shown in Figures 2-5. This indicates that the three
tests have already reached their asymptotes even for 4 = 1. This comment also applies to the OCs.

The usefulness of this asymptotic analysis, beyond verifying that the relative gains between tests
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“Figure 14: Asymptotic UC Function of F'SS ‘lest, SPRT, and TST
remain the same for diminishing signal-to-noise ratio, is that it simplifies the dependence of the
test parameters with respect to the parameter 4. Thus for each test, we could choose parameters:

L=Iy2r=%a=a,and b = b, and have comparable performance for any small ~. This

feature simplifies any adaptation with respect to v that might be added to this detection scheme.
8 Conclusions

Methods for the detection of noncoherent fast FH waveforms have been developed. In the process,
the FH waveform was modeled to have an information component which consisted of a series of
chips with a known constant epoch where each chip frequency is one of a known ensemble of
frequencies. In the model, a particular chip frequency is independently determined by a uniform
random variable on the frequency ensemble. The FH waveform was also assumed to have an additive

white noise component. By assuming the modeled FH waveform was of a known signal-to-noise
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ratio, likelihood-ratio theory spawned the optimal detector based on a single-epoch observation
(SELF). SELF was the sum of many nearly identical and nearly independent random variables and -
thus had nearly Gaussian statistics. This central limit argument allowed a multiepoch collection
of SELFs to be considered an equivalent set of Gaussian i.i.d. variables. From these simplified
observations, a log-likelihood ratio (ALLF) was computed that was asymptoﬁc to the exact log-
likelihood ratio as the number of possible hop frequencies becomes large. ALLF became the test
statistic from which three detection tests were based. The tests were: the FSS test, SPRT, and
TST. These were defined to ensure that detection errors were below desired levels. By modeling
the ALLF as Wiener process, diffusion theory yielded the performance of the three tests not only
for a FH waveform of the assumed signal-to-noise but, more generally, the test performance for all
signal-to-noise ratios below the one assumed. This analysis compared favorably with a computer
simulation of the detector and thus validated the analysis. The analysis also became a tool used to
numerically optimize performance of the TST when the actual FH signal-to-noise deviated from that
assumed. In order to capture the performance of tests synthesized by assuming an extremely small
FH signal-to-noise, expressions for the asymptotic test efficiencies were computed. This asymptotic
analysis also yielded simplified test parameter expressions applicable to the small signal-to-noise
ratio case.

A significant feature of the SPRT, exposed by the analysis, is that, with the same error prob-
abilities, a frequency-hopped waveform with a known signal-to-noise ratio can be detected in less
than half the time of the corresponding fixed sample size test. This reduction in detection time
can be used to develop a more sensitive detector which is especially significant for Low Probability

of Intercept (LPI) applications where the transmissions are purposely short. For the pure SPRT,
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detection time increased whenever the observed signal-to-noise ratio differed from that assumed

in the test’s synthesis. And in some instances, it was even comparable to the corresponding FSS = .

test. The TST significantly improves this anomaly while sacrificing little performance over that of
the purely sequential test. Plus, the optimal TST can regain much of this lost performance while
still smoothing out the SPRT anomaly. The decrease in the detection time of the sequential tests
can be used to robustify the test with respect to the input signal-to-noise ratio with it still having
performance exceeding that of the FSS test. The simplified test parameter expressions derived
' by asymptotic methods may be useful for any schemes to adapt these tests for FH signal-to-noise
ratios.

It is apparent that other simplifications and extensions to these results are possible. For instance,
it was assumed that the starting time and duration of the chip epoch were known. This first
restriction might be relaxed by redefining the SELF to perform sliding window integration instead
of the integrate and dump operation now performed. This, of course, would degrade the detector’s
performance for some values of epoch starting time, but it would probably exhibit a better average

performance. There are also possible simplifications to the SELF to improve it’s implementability.

A Derivation of SELF

Proceeding from Appendix B of [1], the likelihood function, given the carrier phase 6 and the

channel k, the conditional likelihood function for the ith epoch is
_E 2 (G
Ai(y/k,0) = e Toets fa, " =i (t)a (98)
where E is the single-epoch energy of the FH signal, i.e.

(i+1)Tn
E= / 25 sin2(wy, t + 6)dt (99)
Ty
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By applying a half-angle trigonometric identity, the energy integral becomes

E=S(Th+¢€) (100)
where
(i+1)Th
€= / cos( 2wy, t + 20)dt (101)
T,
But since
le] < — (102)
* o
we have
E =~ ST}, for wy, Th > 1 : (103)

Substituting this approximation for E into the conditional likelihood function (98) and expanding

z;(t) yields

Ai (y/k,8) = e~ veV P (Pusinb+Qy conf) (104)
where
P 2 [T ) cosuwnt dt
= COB Wk;
k NoT; T y ki
} (105)
Q 2 [ ) sinwt dt
= sin wy,
k NoT; T y ki
Taking Expectations with respect to @ defines

Ai(y/k) & Eo[Ai(y/k,6)) (106)

which is the likelihood function conditional only on the channel. This expectation can be evaluated
as follows

-y 2m .
Eq[Ai(y/k,0)]) = %; /0 v/ (Pusin64Qy cos ) g (107)

- 27
= & [ e/m/ARRL e 44 (108)
0
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where ¢ = Arg(Px + jQk). Now by the periodicity of the integrand

- 2r
Es[Ai(y/k,0)] = S [ eVPVFFQGcomsgg (109)"

2r 0
= el (VAR +a)) (110)
by the identity

1 2m
Io(a) = 27/() €204 (111)

where Ip is the zeroth order modified Bessel function of the first kind. Taking expectations with

respect to the channel k yields the Single-Epoch Likelihood Function (SELF)

Ai(y) &  Ex[Ai(y/k)] (112)
—y K-1
= EA_ kz_: I (m\/Pg + Qi) (113)

B Asymptotic Expressions of the ALLF Moments

We want to examine the behavior of the ALLF moments when signal-to-noise ratio 4 diminishes
while the relative signal-to-noise ratio r is held constant. The asymptotic expressions derived here
encapsulate this behavior. To derive asymptotic expressions for the mean and variance of the
ALLF, we need only consider the mean and variance, M, and V,, of the single-epoch ALLF. To
this end, it will be useful to derive asymptotic expression of two functions of the channel moments:

Uy /00 and o2 /o. Starting with the first expression and substituting equations (31),

pi _ I3(2ry)
a3 = ho(2y) - 1] (114)

We will need a partial power series expansion of Ip(z), i.e.

I )—1+33+fi+0(z6) 115
oZ) =147 +5 (118)



40

Here and throughout this discussion, the quantity O(z™) represents any function, say f(z), such
that
z™" linbf(:r) < oo (116)
T—
The particular function represented by O(z") is determined from the context of the equation in

which it appears. With the above power series for I, (114) becomes

a3 73+ 474+ 0(r%)

1+2ry2+ O(v%)
= 118
13+ 374+ 0(+%) (118)
= v+ (2r— 1) +0(s?) (19)

2
= [+ (r-3) 7+ 00 (120)
thus
Br _

o =7 T+ (r-§) 7+ 002 (121)

Now to evaluate the second channel moment function. Using equations (31) and (115), plus the

power series for €%, we get after carrying out the multiplications

2 1 /7
_::_;2 = [Io(27) - 1] [;/0 e~2veod In(4rysin g)dcﬁ— Ig(2r‘7)] (122)

OF (2. 1.4 o]t )1 [
%% = [+ 1+ 0(®) ;/0

)
%
[ 1-2ycos ¢+ 2y2cos? ¢ — %7(;0534,3 + %cos“ &1t + O(75) ] x

123
[1 + 4ry2sin® % + 4r2y4sin* 4‘;— + 0(76)] d¢ (123)

- [1 +ry2 4 ity + 0('7“)]2 }
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2 -1 1 [
g%z [72+%74+0(76)] _/ [1—2cos¢7
0 TJo

o
+ (4r sin? § + 2 cos? ¢) 4% — (8rcos ¢sin? £ + # cos® ¢) 3
(124)

+ (% cos? ¢ + 87 cos? ¢sin? g + 4r?sint {,3) 14 4+ O(¢,7°%) ] d¢

- [1 +2ry2 + 3r24% 4 0(76)] }

Let f(#,7°) be the particular function represented by the symbol O(¢,~>) under the integral then
T m
lim s [*f(@7) = [ lmaf(87°) < 0 (125)
70 0 0o 10

implying that [5 f(¢,7%) € O(7®). The interchange of the limit and integration is justified as
follows. The function f(¢,4°) inherents continuity on the compact set {¢,7 : ¢ € [0,7] and
4 € [0,1]} from the integrand of which it is a component. Therefore v~°f(¢,~"), which is has a
finite limit at the origin, is also continuous on this compact set and hence is bounded, say by B,
on this set. The function B is integrable on ¢ € [0,7] by which tl;e interchange follows by the

Lebesgue Dominated Convergence theorem. The interchange implies that (124) can be integrated

term-wise to yield

0F 2. 1.4 6y] !
;g—['r +37140(%)] " x
{f+@r+r+2r2 2+ (G +2r+ 3204 + o(+%) (126)

- [1 +2ry2 + ;23_,.274 + 0(76)]}
which simplifies to

2
ar 2
—ag = 14 2ry 4+ 2ry* + O(73) (127)

With these asymptotic expressions for y,/dg and 02/0Z, we proceed with the derivation of asymp-

totic expressions for the ALLF moments. The ALLF mean is expressed in terms of the SELF



moments as

1, V _
M, ==In ng + [2VAVo] 7 {[M; — Mo Vi + [M, — My]* Vo + [V - VO]V,}
1

2

The last three terms can be evaluated as follows

[2viVo] ™! {[Mr - Mo Vi 4 [M, = My Vo + V4 - Vo]Vr}

Now for the final term. We will need the the following power series expansion for In(z)

o] {2 e
ol )

o3 [K +274+ 0] { [ry + O(*)]* (K + O(7)]
—K [(r=1)7 + 0(+?)* x

(K +2r7+ O(1?)] [27+ 292 + O(+%)] }

(K+2 K -4

Kz Tt gz )72+0(73)

5
K+

2l
In(l+4z)=2— 1”5 + 0O(z®)

ww,o o2 K ' Ko

- L 2 ;2. a]
= —2ln[1+K7+K')' +0(7?)
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(128)

(129)

(130)

(131)

(132)

(133)
(134)

(135)
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combining (131) and (135)

K+2 1
M, = EE2 (- 3) 22+ 00) (136) . .
Now to proceed with the variance.
V21 1\? 1 1 My  Mp\1?
V, = el el Iy 17 r I - x5 r
(v tlm-w)w (5 K (137)
The first term can be evaluated as
2 2742
91 _ _1+ &
v? (i _ l)2 - 1 ["3 ] [K T ”3} (138)
2 \Vo V; T 2K? 2 '
2 Vi [K N ]
%
2
_ 1 [[v+ 006K + O()] (139)
2K? (K + O(7)]
242
= %z + O0(~?) ) (140)

The second term of (137)

[K -1+ Zg'] 2 21)?
-1 %ol 114 -1 [(K—l)“—°+ﬁ]+K Bi_to (141)
2 a? o} oo Og og Og ag
[Is -1+ —12]
%
1 [K+ O(7)] -
- FW(‘%F { [27+ 272+ 0(2%)] [Kv™" + O(7)] (142)

+K [77 + I+ O(r%)

-K [7'1 -3+ 0(73)] [1 +2y+29°+ 0(73)] }2
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K+0 2
=%[-[I}—_:—O%{ 2K +2K7+ O(y))] + K [-2~ v+ O(?)] } (143)- -
=7f2 +0(7%) (144)

Combining (140) and (144) yields

K +2
Ve = =557 4+ 0(1) (145)
Summarizing these results
_ K+2 1\ 3
M, = = (T 2)7 +0(7%) o (146)
K+2
V, = —Ki;— 24 0(v3) (147)
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