Computing Stable and Partial Stable Models of
Extended Disjunctive Logic Programs *

Carolina Ruiz Jack Minker

Institute for Advanced Computer Studies and
Department of Computer Science
University of Maryland. College Park, MD 20742 U. S. A.

{cruizc, minker }@cs.umd.edu

Abstract

In [Prz91], Przymusinski introduced the partial (or 3-valued) stable
model semantics which extends the (2-valued) stable model semantics de-
fined originally by Gelfond and Lifschitz [GL88]. In this paper we describe
a procedure to compute the collection of all partial stable models of an
extended disjunctive logic program. This procedure consists in transform-
ing an extended disjunctive logic program into a constrained disjunctive
program free of negation-by-default whose set of 2-valued minimal models
corresponds to the set of partial stable models of the original program.

1 Introduction

The partial (or 3-valued) stable model semantics defined by Przymusinski in
[Prz91] is a three-valued semantics for the class of extended disjunctive logic pro-
grams (edlps). This class of programs consists of disjunctive logic programs that
may contain two kinds of negations: negation-by-default and explicit negation.
The definition of this semantics extends the (2-valued) stable model semantics
given by Gelfond and Lifschitz ([GL88]) to the 3-valued disjunctive case.

The original definitions of both the 2-valued and the 3-valued stable model
semantics are not constructive. They give criteria to check whether or not a
given model of the program is (partial) stable. Some procedures to compute
the 2-valued stable model semantics of disjunctive logic programs have been
described ([BNNS93, FLMS93, IKH92]).

The purpose of this paper is to provide a procedure that constructs the
collection of 3-valued stable models of any edlp. To prove that our procedure

*Support for this paper was provided by the Air Force Office of Scientific Research under
grant number 91-0350, and the National Science Foundation under grant numbers IRI-8916059
and IRI 9300691.

1s correct, we introduce a new characterization of the partial stable model se-
mantics in terms of well-supported 3-valued models of edlps. The notion of
well-supported 2-valued models was introduced by Fages ([Fag91]) for the class
of definite normal programs. Here we extend that notion to edlps and to the
3-valued case. As stated by Fages, well-supported models are supported models
with loop-free finite justifications. We show that the notions of partial stability
and 3-valued well-supportedness are equivalent. This result generalizes Fages
work to the 3-valued disjunctive framework. To prove this characterization, we
introduce a fixpoint operator that computes the minimal (with respect to the
truth ordering) 3-valued models of an edlp free of negation-by-default.

It is worth noticing that even for the propositional case, the problem of
constructing the collection of partial stable models of an edlp is not tractable. !
This is a consequence of the fact that skeptical reasoning in this semantics (i.e.
determining if a literal is true in every partial stable model of the program) is
IIZ —complete (see [EG93]).

Our construction of the collection of partial stable models of a given edlp
P is as follows: first P is translated into a new constrained edlp, called P37,
free of negation-by-default whose syntax captures the well-supported semantics
of P, in the sense that P3° contains clauses stating explicitly when there is
support for an atom to be true, false or unknown. Furthermore, constraints
appearing in the clauses are used to guarantee that those supports are loop-
free. Subsequently, the minimal 2-valued models of P3% are computed. These
models, when translated to the language of P, are precisely the well-supported
(and hence the partial stable) models of P.

This paper is organized as follows: Section 2 presents background on the
partial stable model semantics needed in the following sections. Section 3 pro-
vides both a characterization of partial stable models as well-supported 3-valued
models and a fixpoint operator that computes the minimal (with respect to the
truth ordering) 3-valued models of edlps free of negation-by-default. Section 4
is concerned with the computation of the 3-valued stable models of an edip.
We introduce a transformation, called the 3S-transformation, that, given an
edlp P, computes a constrained edlp P3%. We prove that there is a one-to-one
correspondence between the minimal 2-valued models of P3° and the 3-valued
well-supported models (and consequently the 3-valued stable models) of the
original program. An algorithm to compute the minimal 2-valued models of
P39 is given in section 4.2. In section 5 we draw some conclusions.

2 Background

Classical logic assumes that the truth value of every sentence is either {rue or
false. 3-valued semantics allow the additional possibility that the truth value
of a statement is unknown. In this section we make precise what an edlp is and
define the notions of 3-valued interpretation and 3-valued model of an edlp. We
describe alternative orderings on the three truth values and study the orderings

1 Assuming that P # NP.

among 3-valued interpretations that they induce. Finally, the set of 3-valued
stable models of an edlp is defined.

Definition 2.1 (Extended disjunctive logic programs).
Let £ denote a first order language.

1. An extended disjunctive clause is a clause of the form:
lov .. VI — g1, ...y Imynot Iy, ... ,not 1,

where 0 < k < m < n and the I’s are literals (i.e. atoms and explic-
itly negated atoms) in the language £ and not is the negation-by-default
operator.

2. An extended disjunctive logic program (edlp) is a set of extended disjunctive
clauses.

In what follows we sometimes abbreviate an extended digjunctive clause of
the form oV ...V Il — lgg1, ..., lm,not Iypy1, ... ,not I, as H «— B where
H=vVv.. Vipand B=1l41,... ,lm,not Lpy1,... not 1.

Since an edlp is equivalent to the set of all its ground instances, we consider
here only propositional edips, and so the language £ is just a set of propositional
symbols. We require that £ contain special propositions t, f and u, that are
intended to denote true, false and unknown, respectively.

Minker and Ruiz ([MR93, MR94]) give techniques to obtain the semantics of
an edlp in term of the semantics of a corresponding edlp free of explicit negation.
Therefore, without loss of generality we consider in the sequel only programs
free of explicit negation. With this in mind, we say that an edlp is positive when
it 1s free of negation-by-default.

Definition 2.2 (Ordering among truth values).
Consider the following orderings among truth values:

1. Truth Ordering (<;) on truth values:
false <; unknown <; true.
2. Knowledge Ordering (<p) on truth values:
unknown <j false and unknown <y true.

Graphically,

false true

« NS

unknown

<t

Given a propositional language £, a 3-valued interpretation is a 3-valued
truth assignment to the propositions in £. It is commonly represented as a
partial function (hence the name of partial interpretation) I : £ — {true, false}
in which the truth value of a proposition that does not belong to the domain
of I is taken to be unknown. A concise way of writing such a partial function
is as a pair (IT;I7) where It and I~ consist of the propositions in £ that are
mapped to true and to false respectively. (All the remaining propositions are
mapped to unknown.)

Definition 2.3 (3-valued interpretations).
Let P be an edlp written in a propositional language L.

1. A 3-valued interpretation I of P is a pair (I7;1~) where IT and I~ are
disjoint subsets of £ and such that t € It fe I~ andu g It uUi-.

2. A proposition a € £ is true in I if a € IT; a is false in I if @ € I~; and
a 1s unknown in I otherwise. The truth values of more complex sentences
with respect to I are computed using the Kleene truth tables (in which
we have abbreviated true, false and unknown as ¢, f and u respectively):

||] >
g |||
[
|| =] <
e B N B N e
|||
|2 |||~
3
]
O
x
KH
<

3. The truth value of a sentence ¢ with respect to an interpretation I is

denoted by Vi(¢).

4. I denotes £ — (It UT7), i.e., the set of propositions that are unknown
in .

Based on the orderings on truth values given before, the 3-valued interpre-
tations can be ordered in the following ways.

Definition 2.4 (Orderings among 3-valued interpretations).
Let P be an edlp. Given two 3-valued interpretations I = (I*;1~) and J =
(J*;J7), the following are two possible ways of ordering I and J:
1. Truth Ordering (=) on 3-valued interpretations:
I =<4 Jiff Vi(a) <4 Vy(a) for all a € L.

2. Knowledge Ordering (=) on 3-valued interpretations:

1 =< Jaff V[(a) <k Vj(a) for all a € L.

Equivalent definitions of these orderings that appear frequently in the liter-
ature (see e.g [Prz91]) are I <; Jiff T C J* and I~ D J~; and [=<, J iff
ITCJtandI- CJ-.

As usual, a model of an edlp 1s an interpretation that satisfies all the clauses
of the program.

Definition 2.5 (3-valued (minimal) models).
Let P be an edlp.

1. A 3-valued interpretation M is a 3-valued model of P if for every clause
H«—Bin P, Vy(H) > Vu(B).

2. M is said to be a <¢-minimal (respectively <p-minimal) 3-valued model
of P if there is no 3-valued model N of P such that N # M and N < M
(respectively N < M).

A semantics of an edlp is captured by a subcollection of its set of models. In
particular, the 3-valued stable model semantics of an edlp is given by the set of
its 3-valued stable models as defined below.

Definition 2.6 (3-valued (or Partial) Stable Model [Prz91]).
Let P be an edlp and let M be any 3-valued model of P.

1. The Gelfond-Lifschitz transformation PM of P with respect to M is the
edlp free of negation-by-default obtained by replacing in every clause of
P all negated-by-default premises | = not ¢ which are true (respectively
unknown; respectively false) in M by the proposition t (respectively u;
respectively f).

2. M is a 3-valued (or partial) stable model of P if M is a <¢-minimal model
of PM

Given an edlp P, Przymusinski proved the following relationships among the
collections of partial stable models 3-STABLE(P), stable models 2-STABLE(P)
and the well-founded model WFS(P) of P.

Proposition 2.1 ([Prz91]).
Let P be an edlp and let M be a 3-valued model of P.

1. If M € 3-STABLE(P) then M is a <¢-minimal 3-valued model of P.
2. If M € 2-STABLE(P) then M € 3-STABLE(P).

3. If P is a normal logic program and M =WFS(P) then M € 3-STABLE(P).
In addition, M is <p-minimal among the partial stable models of P, i.c.
for all N € 3-STABLE(P), M <j N.

Notice that the notion of partial stability is defined using the truth ordering
<4, and henceforth we consider only this ordering.

3 Characterization of Partial Stable Models of
edlps

In this section we prove a new characterization of the partial stable model
semantics in terms of well-supported 3-valued models of edlps. As stated in
the introduction, the notion of well-supported 2-valued models was introduce
by Fages ([Fag91]) for the class of normal logic programs. In section 3.2 we
summarize the relevant definitions in [Fag91] and extend that notion to edlps
and to the 3-valued case. We show that the notions of partial stability and
3-valued well-supportedness are equivalent. The proof of this characterization
i1s based in the existence of a fixpoint operator that computes the <;-minimal
3-valued models of a positive edlp. We introduce such an operator in section 3.1.

3.1 Computing Minimal Partial Models of Positive edips

We define a fixpoint operator Tp which computes the 3-valued <;-minimal mod-
els of an edlp free of negation-by-default P. It is worth noticing that the Fitting
immediate consequence operator ([Fit85]) for the 3-valued case computes the
<r-minimal models of P and so a different operator is needed to compute with
respect to the truth ordering <.

Definition 3.1 ({Dom, <;)).

1. A set of interpretations 7 is called canonical if all interpretations in 7 are
~<¢-incomparable, i.e. if for all distinet 1,.J € 7,1 4; J and J £; I.

2. Consider the partially ordered set (Dom, <;) defined by:

e Dom is the collection of all sets of canonical interpretations in the
language L.

e the order <4 on interpretations is extended to Dom as follows: Given
two canonical sets of interpretations 7, 7 € Dom,

1 <; J iff for all J € J there exists I € T such that I <; J.

Given a set of interpretations 7 we define min(Z) as the subset of 7 con-
taining just the <;-minimal 3-valued interpretations in 7. Notice that min(7)
1s a canonical set of interpretations.

It is straightforward to check that (Dom, <;) is a lower semi-lattice whose
bottom element is L ={{t}; L—{t,u}), whose top element is T ={(L—{f u}; {f})
and where the greatest lower bound (glb) of a collection X of canonical sets of
interpretations is given by: glb(X)= min(UX).

Definition 3.2 (Tp operator).

Let P be an edlp free of negation-by-default and C' = a1 V... Vai — by,... by
be a clause in P. Let B denote the body of C',i.e. B =by,...,b,. Given an
interpretation I of P, we define the operator Tp on I and C' as the following set
of interpretations:

min[{{IT U{a; }; I~ —{a;}) : 1 <i < k}], if Vi(B) = true
Tp(I,C) =X min[{{IT;I~ —{a;}) : 1 <i <k}, if Vi(B) = unknown
i}, if Vi(B) = false

Lemma 3.1.
Let C' an arbitrary but fived clause. Then, Tp(-,C') is monotonic on its first
argument. In other words, given interpretations I and J, if I <; J then

TP(Ia C) =t TP(‘L C)

Proof. Let C be of the form a1 V...V a; — B. Note first that for any interpre-
tation I, {I'} <; Tp(I,C). Let I and J be interpretations such that I <; J. We
need to show that Tp(I,C) <; Tp(J,C), that is, that for every J' € Tp(J,C)
there is an I' € Tp(I,C') such that I' <, J'.

Case 1: Vi(B) = true. This implies that V;(B) = true and hence, if J' €
Tp(J,C), J"is of the form (J* U {a;}; J~ — {a;}) for some i € {1,... k}.
Since I <¢ J then I = (IT U{a; }; I~ —{a;}) = J'.

Case 2: Vi(B) = unknown. Thisimplies that V;(B) is either true or unknown.
Let J' € Tp(J,C). If V;(B) is true then J' = (J* U{a;}; /= — {a;}) and
if Vy(B) is unknown then J' = (J*;J~ — {a;}), for some i € {1,... k}.
In both cases, I' = (I; I~ — {a;}) <+ J'.

Case 3: Vi(B) = false. This implies that I' = T <, J =< J' for all J' €
TP(‘L C)

In any of these three cases, either I' € Tp(I,C') or there is some I" €
Tp(I,C) such that 1" <, I' <, J'. O

Definition 3.3 (Tp operator).

Let P be an edlp free of negation-by-default and let {Cy,... C,}, for some
n > 0, be the set of clauses in P. The operator Tp on (Dom, <) is defined
as follows: Given a canonical set of interpretations Zy, consider the sequence of
canonical sets of interpretations (Zy,...Z,), defined inductively by:

Tipr = min[|) Te(I,Cita)],
IeZ;

then fp(IO) =7,.

Proposition 3.1.
Tp is monotonic on {Dom, <;).

Proof. Given Z,J € Dom, it is enough to show that 7 <; J implies that
min[{J;ez Te(1, C)] =t min[lJ;c ; Te(J,C)] for every clause C'in P. Assume
Z =4 J and let J' € min[{J;., Tp(J,C)]. Then J' € Tp(J,C) for some J €
J. By hypothesis, there is some I € 7 such that I <; J. By Lemma 3.1,
Tp(I,C) = Tp(J,C) and therefore there is some I' € Tp(I, (') such that I’ <;
J'. Since I' € Uyez Tp(I,C) then there is some I € min[{J;c; Tp(I, C)] for
which I// jt I/ jt J/. O

Lemma 3.2.
Let P be an edlp, M a 3-valued model of P and T a canonical set of interpreta-
tions. For every clause C € P, if T <, {M} then min[{J;c; Tp(1,C)] = {M}.

Proof. Let C' =ay V...Vag «— B. Assume that T <; {M} and let I € 7 such
that T <, M.

Case 1 If V;(B) = true then Vyr(B) = true and therefore there is some a; €
M since M models C. Hence, I' = (IT U{a; }; I~ — {a;}) =4 M.

Case 2 If V;(B) = unknown then Vyr(B) is either true or unknown. Hence,
there is some a; in the head of C for which Vys(a;) >+ unknown and so
I'=(I%1" —{a;}) =4 M.

Case 3 If Vi(B) = false then I' =1 <, M.

In any of these three cases I' € ;o7 Tp(I,C). Therefore, there is some
I'" € min[J; o7 Tp(1, C)] such that [" <, I' <4 M. O

Since the operator Tp is monotonic on the lower semi-lattice (Dom, <4},
then 1t has a least fixed point on the semi-lattice. Furthermore this least fixed
point is given by Tp ™ (L). The following result shows that this least fixed
point consists of the set of <;-minimal 3-valued models of P.

Theorem 3.3.
Tp1™(L) is the canonical set of <;-minimal 3-valued models of P.

Proof. By construction, every I € TPTOO(J_) satisfies all the clauses in P and
therefore [is a 3-valued model of P. Now, let M be a 3-valued model of
P. Since L <4 M, a simple induction together with Lemma 3.2 shows that
prOO(J_) < M. Hence, there exists a 3-valued model M, € prOO(J_) such that
My =< M. This implies that if M is a <;-minimal 3-valued model of P then
M e TPTOO(J_). In other words, TPTOO(J_) contains all the <;-minimal 3-valued
models of P. Since Tp | (L) is a canonical set of interpretations, Tp 1™ (L)
cannot contain any other model of P. Hence TPTOO(J_) contains precisely the
~<;-minimal 3-valued models of P. O

Example 3.1. Consider the following positive edlp P.

P={ Ci: avb — ¢

Cy: d —
Cs: ¢ — dyu }
Tp(L) :
Tp(L,Cy)={L=1}=1,
Tp(Il1,Co) ={ = {t,d};{f,a,b,c})} =15
Tp(l,C3) ={Is = {t,d};{f,a, b} =I5
So, Tp(L) = Zs.
Tpl2 (L) -
Tp(Is,C1) = {1s = ({t,d};{f, a}), Is = ({t,d}; {f,b})} = 74
Tp(l4,Ca) = {14} Tp(Is,Cq) = {15}
Tp(14,C3) = {14} Tp(I5,C3) = {15}
So, Tpl? (L)y=14

Tp1? (L)= Tpl% (L) =1Is.
Hence P has two <¢-minimal 3-valued models, namely I, and Is.

As shown in Theorem 3.3, TPTOO(J_) is the set of <4-minimal 3-valued models
of P. Therefore the least fixed point of Tp is independent of the ordering of the
clauses in the program.

Finally, we point out that for a positive edlp P in which the proposition u
does not appear, TPTOO(J_) consists of the set of minimal (2-valued) models of
P, and so, for this case the least fixed point of T coincides with the least fixed
point of the Minker/Rajasekar fixpoint operator ([MR90]).

3.2 Well-Supported 3-valued Models

We start this section by briefly surveying the definition of 2-valued well-sup-
ported models given by Fages [Fag91] and his characterization of the 2-valued
stable model semantics. Then we introduce our extended definition and char-
acterization for the disjunctive 3-valued case.

Definition 3.4 (Well-supported 2-valued interpretations [Fag91]).

A Herbrand interpretation [is a well-supported 2-valued interpretation of a
normal logic program P iff there exists a strict well-founded partial ordering <
on [such that for any a € I there is a ground instance of a clause

C=a<by,...,bpn,notecy,... note,

B

in P satisfying the following conditions:

1. a>b; forallie{l,... , m} and
2. Vi(B) = true.

Theorem 3.4 (([Fag91])).
Let P be a normal logic program and let M be a Herbrand interpretation of P.
Then, M is a stable model of P iff M is a well-supported model of P.

Condition 2 guarantees that ' is a support for a to be true. Condition 1
guarantees that this support is loop-free, that is, the justifications for the b’s to
be true do not depend on the fact that a is true. We extend those conditions
to disjunctive clauses.

Definition 3.5 (Well-supported 3-valued interpretations).

A Herbrand 3-valued interpretation I is a well-supported 3-valued interpretation
of an edlp P iff there exists a strict well-founded partial ordering < on It U I"
such that for any a € IT U I'™ there is a ground instance of a clause

C=aVarV...Vap <—by,... by,not c1,...,not ¢,

H B

in P satisfying the following conditions:
1. a>b; forallie{l,... , m} and

2. Case 1: If a € I'", then V[(B) = true and V;(H) <; true, or
Case 2: If a € I", then V;(B) = unknown and Vi(H) = false.
(These two cases can be summarized as: Vi(H) <; Vi(B) = Vi(a).)

The 3-valued well-supported models of an edlp P are exactly the 3-valued
stable models of the program as the following theorem shows. The proof of this
result is based on the fact that a 3-valued stable model M of P is a <;-minimal
3-valued model of PM and therefore it can be constructed using the fixpoint
operator Tpa defined in section 3.1 whose iterations provide a well-founded
order on MT U M™.

Theorem 3.5.
Let P be an edlpand let M be a 3-valued interpretation of P. Then, M 1is a
3-valued stable model of P iff M s a well-supported 3-valued model of P.

Proof. “=7 Let Cy,...,Cyh_1 list all the clauses in P. If M is a 3-valued stable
model of P then M is a <;-minimal 3-valued model of PM. Then M can
be rebuilt using the fixpoint operator pr. Let « be the smallest ordinal
for which Tpar 1 (L) is the least fixed point of Tpar. Let

<J—:M0aM1a"'aMnaMn-I—la"'aMzna"'aM(Oz—l)n-I—la"'aMOzn:M)

TemTH(L) Tpoart2(L) Ton1%(L)

10

be a trace of the construction of M, i.e. a sequence of interpretations
that converges to M and such that for all ¢, M; <; M and M;41 €
Tp(M;,Cimodn), Where modn denotes the modulo n function. Such a
trace exists due to Lemma 3.2. Given an element ¢ € Mt U M"Y, we
say that the rank of a, denoted by rank(a), with respect to the trace is
i if ¢ is the smallest integer for which Vs, (@) = Var(a) (notice that the
rank of every element in M+ U M™ is always greater than 0). Let < be
the strict well-founded partial ordering on M+ U M™ given by

a,b € M™* and rank(a) < rank(b) or
a<biff < a,be M"™ and rank(a) < rank(b) or
a €Mt and b€ M™.

This order is a well-supported order on M. To see this, let a € MtuUM©
and suppose that a is of rank ¢+ 1. By definition of Tpa, there is a clause

C=aVa V... Var <—by,... by,not cy,...,not ¢,

H B

in P and consequently there is a clause

C'M:a\/al\/...\/ak%bl,...,bm,VM(not 1)y .., Vu(not ¢,)

H BM
in PM guch that:

Case 1: If a € MZ»'I_'I_l, then Vi, (BM) = true, and so Vi (B) = true,
which implies that ¢ > b; for all ¢ € {1,... ,m}. Furthermore C
can be selected in such a way that Vs, (H) <; true, since otherwise
(M* — {a}; M~) would be a model of PM contradicting the -
minimality of M.

Case 2: If @ € M, then Var,(BM) = unknown which implies that
a > b; for all ¢ € {1,...,m}. Furthermore C' can be selected in
such a way that Vy, (H) = false, because otherwise (M*; M~ U {a})
would be a model of PM contradicting the <;-minimality of M.

Hence, M is a well-supported 3-valued model of P.

Let M be a well-supported model of P. Since M is a model of P then
M is a model of PM. We need to show that M is a <;-minimal model
of PM_ Assume that M is not a <,-minimal model of PM. Tet N be a
~<;-minimal model of PM such that N <; M. Let a be a smallest element
(with respect to the well-founded order <) for which Vi (a) <; Var(a).

Since M is well-supported, there is a clause

C=aVarV...Vap «—by,... by, not cy,...,not ¢, in P such that:

H B

11

1. a>b; forallie{l,... m}and

2. Case 1: If a € M| then Vyr(B) = true and Vy(H) <¢ true. Since
a > b; for all i € {1,... m}, then the truth-values of the b’s are
the same under M and under N so Vx(BM) = Vi (B) = true
and since N <¢ M then Vn(H) <; Vu(H) <; true and so if
Vn(a) <; Vu(a), N would not be a model of PM contradicting
the choice of V.

Case 2: If a € M"Y, then Var(B) = unknown and Vay(H) = false.
Since a > b; for all i € {1,...,m}, then Vx(BM) = Vy(B) =
unknown and since N <; M then Vy(H) = false. Therefore,
if Vy(a) <, unknown then N is not a model of P¥ which is a
contradiction.

Hence, M is a <¢-minimal model of PM.

4 Computing Partial Stable Models of edips

This section is concerned with the computation of the 3-valued stable models
of an edlp. We introduce a transformation, called the 35—transformation, that,
given an edlp P, computes a new edlp P?° free of negation-by-default whose set
of minimal 2-valued models corresponds to the 3-valued stable models of the
original program. An algorithm to compute the minimal 2-valued models of an
edlp free of negation-by-default is given in section 4.2.

4.1 The 3S—transformation

Given an edlp P, the 3S-transformation performs case analysis to construct
all potential justifications or supports for a proposition to be true, false or
unknown. Those justifications are written as constrained clauses and collected
to form a positive edlp called P3°. The constraints ensure that the justifications
are loop-free.

P35 is written in a richer language £ which is obtained by adding to £
new propositional symbols ua and na for each propositional symbol @ € L.
Intuitively, a will be understood as a is true, ua as a is unknown and na as a 1s

false.

Definition 4.1 (Extended language £).
Let £ be a propositional language. £ 1s extended to the propositional language
L ={a,ua,nala € L}.

We introduce operators 7,F and U which, applied to a sentence in the
language £, produce sets of all possible justifications in the expanded language

L under which the given sentence is true, false or unknown respectively. In

12

other words, a sentence ¢ is {rue (resp. false, resp. unknown) if and only if at
least one of the supporting sentences in 7 () (resp. F(yp), resp. U(¢p)) holds.
In what follows we inductively define these operators.

Definition 4.2 (Operators 7, F and i on normal literals).
Let a € £. The operators T, F and U are defined on a and on not a as follows:

7 (a) ={a} T (not a) = {na}
U(a) = {ua} U(not a) = {ua}
F(a) = {na} F(not a) = {a}

A disjunction of propositions H = a1V...Vay, is true when at least one of the
propositions ay, ... ,ay is true; false when all these propositions are false and
unknown when at least one of these propositions is unknown and the remaining
ones are either unknown or false. We codify all possibilities under which H is
unknown by using k-tuples of 0’s and 1’s that contain at least one 1. Such a
tuple (A1,...,A;) can be seen as stating that a; is false if \; = 0 and unknown
if A; = 1. If at least one A; is 1, then H is unknown. We express this formally
in the language L in the following definition.

Definition 4.3 (Operators 7, F and U on disjunctions).
Let H=a;V...Vag, k>0, be an arbitrary disjunction of propositions. The
operators T, F and U are defined on H as follows:

TH)={a1|...|ap}?

F(H)={nay A... Anag}

UH) = {(FItH M (ar) A A(F UM (ag) - (A, ..., M) € B¥}

where:
o BF ={(A1,...) s A1, A €{0, 1 and Fj € {1,... k}, A; =1}

\ Fla), IfA=0
c @ ={ g 2

Notice that when H is an empty disjunction (i.e. when k = 0) the previous
definition makes 7(H) =U(H) = {} = {f} and F(H) = {t}.

We follow a similar process to define the truth value of a conjunction of
normal literals B = by,... b, not c1,... ,not ¢,. B is true if all b’s are true
and all ¢’s are false. It is false if at least one of the b’s 1s false or one of the
¢’s is true. And it is unknown if the truth values of the b’s and (not ¢)’s are
greater than or equal to unknown (i.e. unknown or true) and at least one of
them is unknown. Again, we codify all possibilities under which B is unknown
by using (m + n)-tuples of 0’s and 1’s that contain at least one 1. Such a tuple
(A1,. ., Am4n) can be seen as stating that the b’s and the (not ¢)’s are true if
the corresponding entries in the tuple equal 0 or are unknown if they are equal

2We use the symbol “|” to separate elements in a set.

13

to 1. Since at least one entry is 1, then B is unknown. The following definition
formalizes this in the language L.

Definition 4.4 (Operators 7, F and I/ on conjunctions).
Let B = by,...,bm,not ¢c1,... ,not ¢,, where m,n > 0. The operators T, F
and U are defined on B as follows:
TB)={biA...ANbyy Anci A...Ancy}
F(B)=A{nby|...|nbym|c1]...|cn}
U(B) = { (TIH (b)) A ... AT U (b)) A
(T JU) +1(not e1) A ... A(T JU) m+n(not cp)
(A1, ..y Amgn) € BT}

where:

e ={ e I

When B is an empty conjunction (i.e. when m,n = 0), 7(B) = {t} and
F(B) =U(B) = {} = {f}, according to the previous definition.

We concentrate now on determining when a clause is a support for a propo-
sition with respect to a model M of the clause. Assume that there is a well-
founded partial order < on M TUM™. Let a be an arbitrary but fixed proposition
and let C = aVH «— B, where B=105y,... ,by,notcy,... note,. Cisa support
for a with respect to M if one of the following cases holds.

1. If Var(a) is true then Vyr(H) <4 Vu(B) = true and a > b; for all i €
{1,...,m}.

2. If Var(a) is unknown then Vyr(H) <4 Var(B) = unknown and a > b; for
all i € {1,... m}.

3. If Var(a) is false then Var(H) >4 Var(B) (this happens when Vs (H) is

true, when Vs (B) is false or when both values are unknown).

These three cases are explicitly coded in the operators 7,,U, and F, in the
following definition. A set of constraints {a > b; : 1 < 7 < m} with respect
to a clause C' = aV H «— by,... by, not ¢1,...,not ¢, can be understood as
requiring that if the clause C'is used to support that a is either true or unknown,
then the proofs that the b’s are true or unknown should not rely on the proof
for a. Then we say that a set of constraints is satisfied when < 1s a partial order
(i.e. @ > b and b > a are not required simultaneously). Since the definition of
well-supportedness calls only for the existence of a partial order in the set of
true and unknown propositions of a model, we do not have to add constraints
to clauses supporting a to be false.

Definition 4.5 (Operators 7,, F,, and i,).
Let ae Landlet C =aV H «— by,... by, not c1,...,not ¢, be a clause in P.

B

14

o Let Cyu(B) be the following set of constraints:

Co(B)={a>b;: 1 <i<m}.

e The operators ’]N'a, }N"a, and U, on the clause C' are defined as follows:

T.(H,B) = T(B),[F(H) | U(H)] under constraints Cy(B).
F.(H,B)=F(B) | T(H) | (U(B),U(H)) under no constraints.

L?a(H, B) = (U(B),F(H)) under constraints Cq(B).

The operators «,” and “|” between sets stand for the usual operators “x”
(Cartesian product) and “U” (union) respectively. (We use here “” and

“I” to preserve the flavor of logic programming syntax.)

Example 4.1. Let C' = a «— b,not c. Then, all possible supports for the three
possible truth values of a are listed below:

T.(0), (b, not ¢)) = {b Ane} under Co(B) = {a > b},

]E"a((), (bynot ¢)) = {nb | ¢} under no constraints,

Ug((), (bynot ¢)) = {(ub Anc) | (bAue)| (ubAue)} under Cq(B),
which state that the only justification for a to be true is that b be true and c be
false stmultaneously. There are two supports for a to be false, namely b is false

or c 1s true. All the remaining possibilities support a to be unknown.

We apply now case analysis to construct all possible justifications of a propo-
sition a with respect to a program P. Consider the set of all clauses defining
a in P (i.e. the set of clauses containing a in their heads). With respect to a
well-supported 3-valued model of P, a is true when at least one of these clauses
supports a to be true, a is false if all clauses in its definition support a to be
false, and a is unknown when none of these clauses supports a to be true but
at least one of them supports a to be unknown. Since one of these cases must
hold, the clause @ V ua V na must be satisfied in the well-supported model.

It is worth noticing that if a proposition a is not defined in P (it does not
appear in the head of any clause in P) then there is no support for it to be true
or unknown and therefore it is taken to be false.

Definition 4.6 (3S—transformation).
Let P be an edlp.

1. Let @ € £. Let the definition of a in P consist of the following set of

clauses:
aV H1 — Bl

aVH. — B,
where » > 0. The 35-transformation of the definition of a, denoted by

a3, is given by the following set of clauses:

15

Ifr=0:

na <—

Ifr>0: .
a—{T,(Hy, B1) | .|)}
o — (Bl 01, <fa/
na — Fo(H1,B1), ..., Fo(Hy, By

avuavna «—

f(By)
), DA (He, By) (M, M) € B

e —
(¢ — {41 | ... | ¥n}isashorthand for the set of clauses)
p — Py
where:

(Fu/tho) (1, B) = { S o

2. The 3S-transformation P3° of P is obtained by applying the 3S-trans-
formation to each proposition in the language of P.

The number of clauses in P3° is, in general, exponential on the number of
clauses in P since all possible supports for each truth value of a proposition in
L are considered.

As noted before, the 35—transformation requires that each proposition a
assumes a truth value. However, it may be the case that, say, a and ua are both
true in P3%. Since this is clearly undesirable, we impose a set of denial rules on
the models of P?° to eliminate such possibilities.

Definition 4.7 (Denial rules ICp).
Let P be a disjunctive logic program and let I/C'p denote the following set of
denial rules:

ICp = {< a,ua; < a,na; < ua,na :a € L — {t,u,f}}.

An interpretation I of P3% is any subset of L satisfying the denial rules
ICp. IT,I7 and I“ denote respectively the positive, the negative and the
uncertain parts of I, ie., [T ={a € L:a€ I}, I- ={a€ L :na€l}and
I"={a € L :ua€I}. I? denote the 3-valued interpretation (I7;17).

Associated with each @ € It U I™ there is a collection C! that contains all
the sets of constraints that appear in clauses supporting a (or ua) with respect
to I (for an illustration see Example 4.3 below), i.e.

Cl = {C.(B) :there is a clause @ «— B (or ua «— B) under constraints C,(B)
in P3% such that V;(B) = true}.

Let ¢ = {CI : a € IT UT“}. We say that I satisfies the constraints in
¢! if and only if for every a € I'tT U I there is some C4(B,) € CL such that

16

[Uaer+urm)Ca(Ba)] defines a partial order in Itur.
We make precise now the notion of (minimal) 2-valued models of P3°.

Definition 4.8 (2-valued models of P3%).

1. A 2-valued model of P?° is a subset M of L satisfying all clauses in the
program and the constraints in V.

2. Let M and N be 2-valued models of P3%. We say that M < N iff M+ C
Nt and N~ CM~.

A 3-valued interpretation J of P can be transformed into a 2-valued inter-
pretation J2 of P?° by defining J? = JT U{ua:a € J*}U{na:a € J}.

The set of minimal 2-valued models of P3* (denoted by Mﬁg) is closely
related to the set of 3-valued stable models of P, as the following examples

show.

Example 4.2. Let P ={bV ¢;a < nol b;a — not c}.

P33 ={ b — (uc]|nec) Co=10
nb — ¢
¢ — (ub]|nb) C.=10
ne «— b
a «— nb|ne Ca=10
na «— b,c
ua — (ub,e)| (b, ue)| (ub,uc) Co=10
aVuaVna «—
bvubvnb —
eVucVne — }

ICp = {< z,ux; < x,ne;<ux,nz : z € {a,b,c}}

The minimal 2-valued models of P35 are
M;C;g = {Ml = {Cl, ba nc}, MZ = {Cl, nba C}}

Here, CM = {C}r = {0},¢)" = {0}} and CM2 = {C} = {0}, = {0}}.
Clearly, M, and M,y respectively satisfy the constraints in CM1 and CM2 since
an empty set of constraints defines a partial order on any set. Mi; and M,

correspond to the partial stable models of P: 3-STABLE(P) = {{{a,b}; {c}),
({a, ks {01}

Example 4.3. Let P = {a «— b;b — a;c «— not a}.

17

P39 ={ a — b Co={a>0b}
ua — ub Co = {a>b}
na «— nb

b «— a Cy={b>a}
ub — ua Cy={b>a}
nb — na

¢ — na C.=10
uc — ua C.=10
ne — a

aVuaVna —
bVubvnb
eVucVne — }

ICp = {< z,ux; < x,ne;<ux,nz : z € {a,b,c}}

There are three minimal models of P>°:
My, = {a,b,nc} with CMv = {C, = {a > b},C, = {b > a}},
My = {ua,ub,uc} with CM2 ={C, = {a>b},C={b>a},C ={0}}
M3 = {na,nb,c} with C™>=1{C. =1{0}}.
Notice, however that the sets of constraints on My and on Mo are unsatisfiable
since {a > b,b > a} is not a partial order. Therefore, Mﬁg = {{na,nb,c}}
which corresponds to the unique 3-valued stable (and hence well-founded) model

of P, namely {{{c};{a,b})}.

Indeed, there is a one-to-one correspondence between the minimal models of
the constrained logic program P3° and the 3-valued well-supported (and hence
partial stable) models P as the following theorem shows.

Theorem 4.1.
Let P be an edlp and let M be a 3-valued interpretation of P. Then M 1is a
3-valued well-supported model of P iff M? € Mﬁg.

Proof. “<” Assume M? € Mﬁg. Let a € L.

Case 1: If a € M2, then there is some clause

C=aVar V... Vap <—by,... by,not c1,...,not ¢,

H B

in P for which ’]N'G(H, B) = true, i.e. Var(B) = true, Vyr(H) <y true
and M? satisfies the constraints {a > b; : 1 < i < m}. If there
were no such a clause, then for every clause a V H «— B € P either
fa(H, B) or L?a(H, B) would be true. Hence, either ua or na would
belong to M? contradicting the assumption that M? satisfies ICp.
Case 2: If ua € M?, then there exists some (A1,...,\.) € B", where
r 1s the number of clauses in the definition of a in P, for which

the conjunction (}N"a/ﬂa)kl(Hl, By), ..., (}N"a/ﬂa)AT(Hr, B,)is true in

18

M? (otherwise either a or na would belong to M?). Hence, there is
some A; = 1 and so there is a clause

C=aVar V... Vap <—by,... by,not c1,...,not ¢,

H B

in P for which L?G(H, B) is true in M?, which means that Vy(B) =
unknown, Vyr(H) = false and M? satisfies the constraints {a > b; :
1 <i<m}.

Therefore M is a well-supported model of P.

“=» Assume that M is a well-supported model of P. First, we show that A/? is
a model of P3°. Since M is a 3-valued model, M? satisfies all the clauses
of the form a V ua V na and also satisfies the denial rules ICp. Let a € L
and let the definition of @ in P consist of the following set of clauses:

(01) aVH — B

(Cr) aVH, — B,

where r > 0. The 3S—transformation of the definition of a is given by the
following set of clauses:

Ifr=0:
Ifr>0: e
(tal) a—T(H1, By)
(tar) a—To(H,, B,) N
(ua) ua<—{(]—" /)Al(Hl’Bl)’ cee a(fa/ua)AT(Hr,Br) :
(A1, >el’>”“}
(fa) na—7F, (Hl,Bl) , Fal(H,, Br)

(3vy) aVuaVna—

Notice that if » = 0, there is no support for a to be true or unknown so
a must be false in M and then M? is a model of na —. To prove the
statement when r > 0, we consider three cases corresponding to the three
possible truth values of a with respect to M. It is clear that in each of
these cases the clause (3v,) is satisfied by M.

Case 1: ais true in M.
Clearly, M? models (t,1),...,(tar). Since M is a well-supported
model of P there is some j, 1 < 5 < r for which the clause

Ci=aVarV...Vap <—b,... by, not cy,... not ¢,

H; B

19

in P satisfies the following conditions:

1. a>b; forallie{l,... m}.
2. Vu(B;) = true and VM(i) <¢ true.

Therefore VM(«(Hj, Bj)) =true and consequently Var(Fo(Hj, B;))
=Vul a(i, Bj)) = false and so M? models (f,) and (ug).

Case 2: a is unknown in M.
Clearly, M? models (u4). Notice that there is no clause in the defi-
nition of @ in P for which Vs (B;) = true and Vi (H;) < true. Oth-
erwise @ would have to be ¢rue in M in order for M to be a model
of P. Hence, for every i € {1,...,r}, either Vas (Us(H;, B;)) = true
or Vi (F, (HZ,B)) = true and so, M? models (t,1),...,(ts7).
Since a is unknown in M and M is a well-supported model of P there
is a clause

Ci=aVarV...Vai <—b,... by, not cy,... not ¢,

H; B

in P satisfying the following conditions:

1. a>b; forallie{l,... m}.
2. Vau(Bj) = unknown and Var(H;) = false.

and therefore VM(«(H;,B;)) = true which implies that
Vi (Fa(Hj, B;)) = false and so M? models (f,).

Case 3: ais false in M.

Clearly, M? models (f,). Since a is false in M and M is a model of
P, Vu(Bj) <¢ Vu(H;) for all j,1 <j < 7. This implies that M?
models (¢41),...,(tqsr) and also that VM(«(Hj;, Bj)) = false for all
j and so]\42 models (tq).

Hence, M? is a model of P3®. It remains to be shown that M? is a
minimal model of P3°. Suppose, by way of contradiction, that there is
some N € /\/llag such that N is smaller than M?. It is straightforward
to check that N3 is a 3-valued model of P and that N3 <; M. This
yields a contradiction since M is a <;-minimal 3-valued model of P due to
Proposition 2.1 together with the assumption that M is a well-supported
(and hence, partial stable) model of P.

O

Corollary 4.2.
Let P be an edlpand let M be a 3-valued interpretation of P. Then M s a
3-valued stable model of P iff M? € Mﬁg.

Proof. This follows immediately from Theorems 3.5 and 4.1 O

20

. M :={0}

2. repeat

3. M =M

4. M =0

9. for each I € M do

6. I:=Tpse 1 (I)

7. if I satisfies ICp then

8. if there is some C' = a VuaVna € P53 s.t. I £ C then
9. M =M U{TU{a}, TU{ua}, IU{na}}
10. else M’ := M’ U{I}

11, until M =M’

12. M :=min(M)

13. Mﬁg = {M € M : M satisfies the constraints in CM}

ICp

Figure 1: Algorithm to compute M35

4.2 Computing Minimal 2-valued Models of P>

In this section we give an algorithm to construct the minimal models of P3% and
show how to check which of those models satisfy the constraints in the program.

We start by noticing that P> contains two types of clauses: Horn clauses
and disjunctive facts. Let P3° and P3° denote the subsets of P3° containing
respectively the Horn clauses and the disjunctive facts in P.

An approach to compute the minimal 2-valued models of P3* is the following:
we start with the empty interpretation and apply an immediate consequence
operator to P3° until a fixpoint I is reached. If I satisfies all the clauses in
P3° we are done. Otherwise, we select one clause a V ua V na € P3° that is
not satisfied by I and split I into three interpretations: I'U{a}, I U {ua}, and
IU{na}. For each such interpretation we apply again the immediate consequence
operator with respect to P35 to find a revised fixed point, which is tested to
determine if it models P3°. If it does, we are done and if not, we repeat the
process until all interpretations obtained satisfy every disjunction in P5°. If
at any point during this process an interpretation inconsistent with the set of
denial rules ICp is reached, then that interpretation is thrown away. At the
end of the process, we check which of the resulting interpretations satisfy their
own set of constraints.

Figure 1 provides an algorithm to compute Mﬁg, where TPIe_,Is 1s any im-
mediate consequence operator defined for Horn programs.

We detail now instruction 6 to show how the set of constraints C! associated
with an interpretation I can be computed simultaneously to the iterations of
the fixpoint operator.

21

6.1. repeat

6.2. Iy:=1

6.3. =0

6.4. for each clause z + B under constraints C,(B) in P5°
. such that V;(B) = true do

6.5. I' =Tu{z}

6.6. if « is of the form a or ua for some a € £ then
6.7. Ccl.=ctu{c.(B)}

6.8. I1=r

6.9. wuntil I = I

We point out that instruction 13 can be implemented in terms of a search
in a particular graph. It is easy to see that a set of constraints C of the form
a > b defines a partial order on £ if and only if the directed graph G = (V =
L E= {(a,b) 1 a > b € C}) is acyclic. Checking if this graph is acyclic can be
done in time O(|£|+ |C]) (see e.g. [AHUS3]).

We illustrate how the algorithm works for different edlps.

Example 4.4. Let P = {a < not b;b — not a}.

P33 ={ a «— nb Ca=10
ua — ub Co=10
na +«— b PE’IS
b — na Cr=10
ub — wua Cr=10
nb «— a
aVuaVna —
bVubvnb — P3%}

ICp = {< z,ux; < a,ne;<ux,ne : ¢ € {a,b}}

We start with the empty interpretation I = {}. Since the Horn part of P3°
has no facts, the empty set is the fized point obtained for I. We then select
aVuaVna from PE’)S, which s not satisfied by I and form three interpretations,
as shown by the first level of the tree of Figure 2. We find the fizpoint for
I = {a} with respect to P to obtain nb (on the second level of the tree). The
interpretation I, = {a,nb} now satisfies all the clauses in P3°. The same is
done for Iy = {ua} and for Is = {na} {o obtain ub and b respectively. I, =
{ua,ub} and Iy = {na,b} satisfy all clauses in P>°. Notice that the three
wnterpretations satisfy the denial rules ICp and they are <;-incomparable so
each of them s <;-minimal. Finally, each of them satisfies the associated set of
constraints: CTt = {Cg1 ={0}}, ¢ = {Cié = {@},C,{; ={0}} and C's = {Cié =
{0}}. Therefore, Mﬁg = {{a, nb}, {ua,ub},{na,b}}.

22

e

a ua na
| | |

nb ub b

I I I3

Figure 2: Minimal 2-valued models of P?° in Example 4.4.

The corresponding 3-valued stable models of the program P are {{{a}; {b}),
(0;0), ({b};{a})}. I} corresponds to the well-founded model {;0) of P.

Example 4.5. Let P ={a «— c¢;a «— b;b — a;c «}.

P33 ={ a «— ¢ Co={a>c}
a — b Co=f{a> b
ua +— uc,nb Co={a>c}
ua +— ne,ub Co ={a> b}
ua — uc,ub Co={a>ba>c}
na <« nec,nb
b «— a Co ={b>a}
ub — ua Co ={b>a}
nb — na
c — C.=10
aVuaVna <«
bvubvnb —
eVucVne — }

ICp = {< z,ux; < x,ne;<ux,nz : z € {a,b,c}}

The tmmediate consequence operator applied to PE’IS produces the only model
of P35, namely M = {a,b,c}. The set of constraints associated with M is
CM = {CM = {{a > c}{a > b}},CM = {{b > a}},CM = {0}}. M satisfies
this set of constraints since {a > ¢,b > a} is a partial order on {a,b,c}. Hence,

MICE = {{a,b,¢}} and 3-STABLE(P) = ({a,b,c};0).

The algorithm in Figure 1 constructs every minimal model of P3* and hence,
in the worst case, runs in exponential time on the size of P3°.

A global improvement to the process of computing the partial stable models
of P is to partition P into several connected components using the notion of
semi-stratification described in [FLMS93] and to apply the 3S—transformation
and the algorithm in Figure 1 just to each component of the program.

23

e

w uw nw
| e |
ns S us ns S
| | | | |
i nt i i nt
| | | | |
nw w nw nw w

Figure 3: Computation of the minimal 2-valued models of P?° in Example 4.6.

A local speed—up in the algorithm can be achieved by selecting in instruction
8, a clause from PE’)S that maximizes the number of clauses in PE’IS that are usable
in the next application of the fixpoint operator Tpss.

We end this section by showing how the algorjfthm works with a program
that does not have any partial stable models.

Example 4.6. Let P = {wV sV i;w + notl t;s — nol w;t + not s}.

P33 ={ w — (us|ns), (ut|nt) Co =0
w «— nt Cow =0
ww — (s[t),ut Co =0
nw — (st),t
s — (uwlnw), (ut|nt) C,=10
s — nw C:=10
us — (wft),uw C,=0
ns — (wlt),w
t — (uw|nw), (us|ns) C=10
t «— mns C;=10
ut — (wls),us Ci=10
nt — (wls),s
wVuwVnw
sVusVns <«
tvutvnat — }

ICp = {< z,ux; < e, ne;<ux,nz :z € {w,s,t}}
Figure 3 shows that every interpretation obtained during the computation of
the minimal 2-valued models of P35 is inconsistent with respect to the denial

rules ICp. Then Mﬁg ={} and consequently 3-STABLE(P) = {}.

24

5 Conclusions

We have provided an effective procedure that computes the partial stable models
of an edlp. We have shown that there is a one-to-one correspondence between
the partial stable models of an edlp and the minimal models of a constrained
edlp free of negation-by-default (or equivalently, the well-supported models of an
edlp free of negation-by-default). Strictly speaking, this implies that the use of
negation-by-default under the interpretation of the partial stable model semantic
does not increase the expressive power of constrained positive programs. The
same observation is applicable to the (total) stable model and the well-founded
semantics since these semantics are easily derived from the set of partial stable
models of the program.

Nevertheless, the presence of the negation-by-default operator is undoubtly
useful in the sense that it allows us to write concise programs independent of
the number of truth values being considered.

The procedure presented here to compute the 3-valued stable models of an
edlp is based on case analysis. An implementation of that procedure has been
completed and we expect to experiment with it. We believe that the approach
can be adapted to compute the 2-valued as well as the 4-valued stable models
[Fit93] of the program. We plan to investigate these topics.

References

[AHU83] A. Aho, J. Hopcroft, and J. Ullman. Data Structures and Algorithms.
Addison-Wesley, 1983.

[BNNS93] C. Bell, A. Nerode, R. Ng, and V.S. Subrahmanian. Implementing stable
model semantics by linear programming. In Proceedings of the 1993 Inter-
national Workshop on Logic Programming and Non-monotonic Reasoning,
June 1993.

[EG93] T. Eiter and G. Gottlob. Complexity aspects of various semantics for
disjunctive databases. In Proceedings of the Twelfth ACM SIGART-
SIGMOD-SIGART Symposium on Principles of Database Systems (PODS-
93), pages 158-167. ACM Press, May 1993.

[Fag91] F. Fages. A new fixpoint semantics for general logic programs compared
with the well-founded and the stable model semantics. New Generation
Computing, 9:425-443, 1991.

[Fit85] M. Fitting. A Kripke-Kleene semantics of logic programs. Journal of Logic
Programming, 2(4):295-312, December 1985.

[Fit93] M. Fitting. The family of stable models. Journal of Logic Programming,
17(2, 3 & 4):197-226, 1993.

[FLMS93] J.A. Ferndndez, J. Lobo, J. Minker, and V.S. Subrahmanian. Disjunctive
Ip + integrity constrains = stable model semantics. Annals of Mathematics
and Artificial Intelligence, 8(3-4):449-474, 1993.

[GL8&3] M. Gelfond and V. Lifschitz. The stable model semantics for logic program-
ming. In R. Kowalski and K. Bowen, editors, Proceedings of the Fifth Inter-

25

[IKH92]

[MR90]

[MR93]

[MR94]

[Prz91]

national Conference and Symposium on Logic Programming, pages 1070—

1080, Seattle, WA, USA, Aug. 1988. The MIT Press.

K. Inoue, M. Koshimura, and R. Hasegawa. Embedding negation as failure
into a model generation theorem prover. In D. Kapur, editor, Proceedings
of the Eleventh International Conference on Automated Deduction, pages
400-415, Saratoga Springs NY, USA, June 1992. Springer-Verlag.

J. Minker and A. Rajasekar. A fixpoint semantics for disjunctive logic
programs. Journal of Logic Programming, 9(1):45-74, July 1990.

J. Minker and C. Ruiz. On extended disjunctive logic programs. In J. Ko-
morowski and Z.W. Ra$, editors, Proceedings of the Seventh International
Symposium on Methodologies for Intelligent Systems, pages 1-18. Lecture
Notes in Al Springer-Verlag, June 1993. (Invited Paper).

J. Minker and C. Ruiz. Semantics for disjunctive logic programs with
explicit and default negation. Fundamenta Informaticae, 20(3/4):145-192,
1994. Anniversary Issue edited by H. Rasiowa.

T. C. Przymusinski. Stable semantics for disjunctive programs. New Gen-
eratton Computing, 9:401-424, 1991.

26

