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Abstract

Given two subspaces M and N of a Hilbert space, and frames associated with each
of the subspaces, the question addressed in this report is that of determining when the
union of the two frames is a frame for the direct sum space M & N. We provide sufficient
conditions for the union of the two frames to be a frame for M @ N and also estimates for
the frame bounds. The results discussed here are given in terms of the relative geometry
of subspaces. Some simple examples in which the frame bounds can be expicitly computed
are provided to demonstrate accuracy of the frame bound estimates.

1 Introduction

Any vector in a seperable Hilbert space can be expanded via an orthonormal basis, i.e. written
as a linear combination of the basis elements. Thus orthonormal bases provide orthogonal
decompositions of Hilbert spaces. As a natural generalization of orthonormal bases, Duffin
and Schaeffer [3] introduced the concept of frames for Hilbert spaces. Frames define non-
orthogonal decompositions of a Hilbert space. Any vector in a Hilbert space can be written as
a linear combination of the frame elements where the expansion coefficients can be computed
via the frame operator (see Section 2). In most applications of frame decompositions (e.g.
wavelet transforms) the approach has been to start with a frame for the space of interest and
then use the frame to decompose vectors in the space. Here we consider the situation where
we start with frames for subspaces of a larger Hilbert space and construct a frame for the sum
of two subspaces by taking unions of the subspace frames. Succesive approximation schemes
(cf. [6]) in which approximations to functions are successively refined provide examples of
applications in which this approach is useful.

We show in Section 3 that given subspaces M and N of a Hilbert space, and frames
associated with each of the subspaces, the union of the two frames is a frame for M @ N
whenever the minimum angle, 6,, between the two subspaces is bounded away from zero. We
also show that the lower frame bound for the union of the two frames can be bounded below
in terms of the quantity (1 — cos ,,), and bounded above by the minimum of the lower frame
bounds associated with the frames for M and N individually.
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2 Hilbert Space Frames

Definition 2.1 Given a Hilbert space H and a sequence of vectors {hntpez CH, {hn} is
called a frame if there ezists constants A > 0 and B < 0o such that

AllfIP <301 < fuha > 12 < BIISIP, (1)

for every f € H. A and B are respectively the lower and upper frame bounds.
Remarks:

o A frame {h,} with frame bounds A = B is called a tight frame.

o Every orthonormal basis is a tight frame with A = B = 1.

o A tight frame of normalized vectors for which A = B = 1 is an orthonormal basis.

Given a frame {h,} in the Hilbert space H, with frame bounds A and B, the frame operator
S :H — H can be defined as follows. For any f € H,

SF=3"< fhn> hn (2)

We list in the form of a theorem some properties of the frame operator which we shall find
useful. Proof of these and other related properties of frames can be found in [5] and/or [2].

Theorem 2.1
(1) S is a bounded linear operator with AI < S < BI, where I is the identity operator in H.
(ii) S is an invertible operator with B~ < §71 < A~1],

(iii) The sequence {S~'h,} is also a frame, called the dual frame, with frame bounds B!
and A71,

(iv) Given any f € H, f can be written in terms of the frame elements as

F=3 <85 e > by =3 < fihy > S hy. (3)

(v) Given f € H, if there exists another sequence of coefficients {a,} (other than the sequence

{< f,S7 hy, >}) such that f = 3 aphy, then the a,’s are related to the coefficients given
in (3) by the formula,

Slaal? =3 1< £,57 0 > P4+ Y1 < £,5 by > —anl?. (4)



3 Frames Generated by Subspace Addition

Definition 3.1 Given two subspaces M and N of a Hilbert space H, the smallest angle 0.,
between M and N is defined as,

cos O, = sup sup |< =,y >,
zEM yEN
Hel{=1]y||=1

where 8,, € [0,7/2].

We shall make use of the following Theorem in proving the main result (Theorem 3.2) of this
section.

Theorem 3.1 Let M and N be subspaces of a Hilbert space Hwith M NN = {0}. And let Py
and Py be orthogonal projectors on M and N respectively. Then
(P = Pr)all _ g
z€MON, lal|#0 [k
Proof: See [7] |

Theorem 3.2 Let M and N be nontrivial, closed subspaces of a Hilbert space H. Let {z;} be
a frame for M with frame bounds Apyr and By, and {y;} be a frame for N with frame bounds
AN and By. Define Q = Span({z;} U{y;})-

Let 0,,, denote the minimum angle between the subspaces M and N .

Then if, 0, > 0 {z;,y;} is a frame for Q with frame bounds

Ag > Ag =min(Ay, An) (1 — cosby,)

~ 1
< = i _
Bg £ Bg = max(By, By)min(2, T cost,.

) (5)
Proof:

Note that M N N = 0 by the hypothesis that 6,, > 0. So Q = M & N and thusif g € Q
there is a unique decomposition of g as g = =+ y where z € M and y € N.

Lower Frame Bound:

Take g € @ and let Pys and Py be orthogonal projection operators onto M and N respec-

tively.

dil<gzi>P+<g,y > dI< Pugoz;> P+ < Png,y; > |

J J
> Am||Pugl® + An||Png|®
> min(Asr, An) {| Pugll” + || Pvall”} (6)
Now,
I Prgll® + |Pngll? = ||Pvg — Pngl® + 2Re {(Parg, Prg)
, Py — P 2
> [uglf”(—MmNﬂ] 9l = 21(Prrg, Png)|

sin? 0, ||gl|* — 2 {(Pamg, Png)|
sin? 0, |19]12 — 2|| Pmgl|l|| Pngl] cos b,

sin B |92 = (Il Pargll® + [ Pagl?) cos by

v v

(7)



Therefore,
(1Pl + [ Pgll2) (1 -+ c056) > sin? B,llg2 (8)

Or equivalently,

— cos? 6,
1+ cosb,,

sin? 4,
~ 14 coséb,

Thus from (6) and (9) we get

1Pagll? + 1 Pngll* > ———2—llgll* = —————"lgll* = (1 — cos bm) llg|® (9)

dYol<gz;>P+]|<g,y; > |> > min(Awm, An) (1 — cosb,,) ||g]|
3

Upper Frame Bound:

Yol<gzi>P+1<gy > < BulPugl’®+ Byl Prgl?
J
< Bumllgll* + Bnllgll* £ 2max(Bum, By)llglf*  (10)
Also,
|1 Prgl? + |Pngll> = ||Pug — Pl + 2Re (Pug, Png)
< |lglf* + 2Re (Pung, Prg)
< lgll* +2[Puglll| Pngl| cos 6
< gl + (IPagl® + | Puglf?) cos 6,
(11)
Thus,
2 2\ « 2
(12wl +11PrglP) < 3= lol (12)
So we also have,
1
Zl <g,z;>P4+l<g,y>°< max(BM,BN)1 llglI? (13)
j m
Therefore (by (10) and (13)),
~ 1
Bg < Bg = max(Bp, By) min(2, —————
Q Q ( 9 ) ( 1 — cos om)
n

It should be noted that the conditions under which Theorem 3.2 guarantees the union of two
frames to be a frame for their combined span, are only sufficient conditions. In fact in all finite-
dimensional cases, these conditions are not necessary. In these cases, estimates of the frame
bounds can be made using knowledge of the correlations ({z;,2;)) among the frame elements
themselves. However as we show by example in the next section, in an infinite-dimensional
setting, the union of two frames can fail to form a frame if 6, = 0.

As can be seen from Equation (5), the estimate .ZQ of Theorem 3.2 for the lower frame
bound Ag is always less than or equal to min(Aas, An). We now show that the actual lower
frame bound Ag must indeed be less than or equal to min(Aps, Ax). To show this we first
prove the following lemma.



Lemma 3.1 Let M and N be nontrivial, closed subspaces of a Hilbert space H, MNN = {0}.
Define @ = M ® N. ThenVz* € M, 3 ¢* € Q such that

Pyg* =2 and Png™ = 0. (14)

In particular,
g* = (I — Py)(I — Py Py) ta*,

satisfies (14).
Proof: First note that V2 € Q, (I — Py)z € N+ N Q Secondly since ||PyPyn| < 1,
(I — PyPn)™! exists and is given by

o0

(I - PyPy) 'z =) (PuPn)*z. (15)
k=0

For any ¢ € M, (I — PyyPy)~ta € M since every term of the series in the right hand side of
Equation (15) is in M and M is closed. Now let © = (I — Py Py)~1z* and let g* = (I — Py)z.
Clearly Pyg* = 0. Also,

Pyg* = Py(I - Py)(I - PyPy)~ta*
= Py(I — Py Py)~'a* — PyyPn(I — PyrPy) 12
(I — PyPn)'2* — Py Pn(I - PyyPy) "'z (since (I — Py Py) '2z* € M)
= (I - PyPyn)(I~ PyPy)'z" =2~ (16)

Theorem 3.3 Let M and N be subspaces of a Hilbert space H. Let {z;} be a frame for M
with frame bounds Apyr and By , and {y;} be a frame for N with frame bounds Ay and By .
Let 8,,, > 0 denote the minimum angle between the subspaces M and N and define Q = M@ON.
Then if Aq is the lower frame bound for the frame {z;}{J{y;} of @,

Ag < min(Ap, An).

Proof:
Without loss of generality, assume Apy < Ay. Thus since Aps is the lower frame bound for
the frame {z;} of M, for any € > 0, 3 2* € M such that

> Ha™s2)* < (Au + )l

By Lemma 3.1 3 ¢g* € @ such that Pyg* = «* and Pyg* = 0. Therefore,

2Kt e+ 2 Ke™ s wadl®

(l

S UPug™, wi) 4+ > (Prg®, i)
> a2 +0
(Ap + o)l < (A + O)llg™ I

i

IA

Thus Ag < Apr + € and since € > 0 is arbritary we have that Ag < Ay = min(Ap, Ay). ®



4 Examples

In this section we consider a few finite-dimensional examples in which the frame bounds can
be explicitly computed. The general methodology in these examples is as follows.

Let T : H — [2 be defined such that T : f — {< f,z; >} where {z,} is a frame for H.
Therefore the frame operator § = T*T. If we let {¢;} be an orthonormal basis for H then the
matrix representation of T with repect to this basis is given by

W = [’U)z]] = [(-77276.7)] .

Hence the upper and lower frame bounds are given by the upper and lower spectral limits of
W*W. In the finite dimensional case, the frame bounds can be computed as the maximum
and minimum eigenvalues of W*W or equivalently, the squares of the maximum and minimum
singular values of 7.

Example I: A frame for R? from frames for 1-D subspaces

Let, z = (1,0)" and y = (sinf,cos8)’. Define M = Span{z}, N = Span{y}; so z is a
frame for M with frame bounds Ap; = By = 1 and y is a frame for N with frame bounds
An = By = 1. In this case ,,, = 6. Clearly for any angle 8 > 0, Span{z,y}=R? = Q. Using
the standard orthonormal basis for IR?, we get

1 0
W= l sinf cosé ]

Hence
Ag = dnin(W*W) = 1-cosf
Bg = Anax(W*W) = 14 cosl

Since here the lower frame bound is equal to the lower frame bound estimate of Theorem 3.2,
in this case Theorem 3.2 provides both necessary and sufficient conditions. Figure 1 shows the
actual upper and lower frame bounds for this example.

Upper and Lower Frame Bounds For 2-D Example

frame bounds
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Figure 1: Actual upper and lower frame bounds for two-dimensional example



Example II: A Frame for R? from frames for IR? and R

Let zy = (1,0,0)T, z, = (0, 1,O)T and y = (cosw cos @, sin w cos §, sin O)T. Let M = Span{zy,z2}
and N = Span{y}. Here 6,, = 6. So for any § > 0 M & N = R>. For this example,

1 0 0
W= 0 1 0

coswcosf sinwcosf sind
In this example as well, we have,

Ag = dm(W*W) = 1-cosb
Bg Amax(W*W) = 14 cosf

Example III: Other Frames for R® from frames for R? nd RR.

Let z; = (1,0,0)T, Zo = (c0s7,sin"/,0)T and y = (cosw cosf,sinw cos ¥, sin H)T. Let M =
Span{zy,z2} and N = Span{y}. Here Ay =1, Apy = 1 — cosy and 6,, = 6. So for any 6 > 0
M@ N =R3. So,
1 0 0
W = cos 7y sin y 0
coswcosf sinwcos@ sind
In this case, analytical expressions for the eigenvalues of W*W are quite complicated. Therefore
we shall demonstrate the lower frame bounds numerically for a few values of 7 and w. Figures
2-6 each show for a particular value of v, the actual lower frame bounds and the estimate
provided by Theorem 3.2 for different values of w. It can be seen that the lower frame
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Figure 2: Example III with v = m/4. Solid Line: Lower frame bound estimate; Dashed lines:
Actual lower frame bound for different values of w

bound estimate becomes increasingly accurate as v approaches 7/2. For small v the estimate
is quite conservative for certain values of w, however in these cases, there also exist values of w
for which the lower frame bound is close to the estimate of Theorem 3.2. In this loose sense,
the estimate of Theorem 3.2 is as good an estimate as can be derived using knowledge of the
minimum subspace angle alone.
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Figure 3: Example III with ¥ = 7/3. Solid Line: Lower frame bound estimate; Dashed lines:
Actual lower frame bound for different values of w
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Figure 4: Example III with 4 = 7/6. Solid Line: Lower frame bound estimate; Dashed lines:
Actual lower frame bound for different values of w

Example IV: Violation of Lower Frame Bound when 6,, =0

By this infinite-dimensional example (which can be found in [4]) we show that the lower frame
bound can indeed be zero in the case where §,, = 0.

Let {e;} be the standard orthonormal basis for [? and let ¥; = e3j, ¢; = /1 —1/j e3; +
V/'1/7 esjy1. Thus the sequences {4/;}, and {¢;} are orthonormal sequences and thereby frames
for their respective closed spans. However if we consider the union of the two frames and take
ear+1 € Span{t;, ¢;} as a test vector, it is easily seen that

1 1
> Heskan, 93) 4+ 3 Heatrn, &) = 1 = Lllearall™
J J

Hence since % — 0 as k — o0, the sequence {1;, ¢;} is not a frame for its span.
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Figure 5: Example III with v = 37/8. Solid Line: Lower frame bound estimate; Dashed lines:
Actual lower frame bound for different values of w
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Figure 6: Example III with v = 77 /16. Solid Line: Lower frame bound estimate; Dashed lines:
Actual lower frame bound for different values of w

5 Conclusions

In this report we have provided a geometric characterization of conditions which guarantee
that the union of two frames is a frame for the appropriate direct sum space. The main result
of this report is contained in Theorem 3.2 which says that given frames for subspaces M and N,
the union of the frames is a frame for the direct sum space M @ N provided that the minimum
angle between the two subspaces is bounded away from zero. An estimate for the lower frame
bound can be made in terms of the quantity 1 — cos#,,. As mentioned in Section 4, the lower
frame bound estimate in Theorem 3.2 is in a sense the best estimate which can be made using
the minimum subspace angle alone. Furthermore, we have shown that the lower frame bound
is nonincreasing with respect to the lower frame bounds for the original subspaces.



6 Acknowledgements

The author wishes to thank Dr. P. S. Krishnaprasad and Dr. Jim Gillis for helpful discussions.

References

[1] Ake Bjorck and Gene H. Golub. Numerical methods for computing angles betweeen linear
subspaces. Mathematics of Computation, 27(123), July 1973.

[2] Ingrid Daubechies. The wavelet transform, time-frequency localization and signal analysis.
IEEFE Transactions on Information Theory, 36(5), September 1990.

[3] R. J. Duffin and A. C. Schaeffer. A class of nonharmonic fourier series. Trans. Amer.
Math. Soc., 72:341-366, 1952.

[4] J. Gillis. Reconstruction of stochastic processes using frames. Technical Report SRC-TR-
91-14, University of Maryland, Systems Research Center, College Park, MD, 1991.

[5] Christopher E. Heil and David F. Walnut. Continuous and discrete wavelet transforms.
SIAM Review, 31(4):628-666, December 1989.

[6] Y. C. Pati and P. S. Krishnaprasad. In preparation.

[7] G. W. Stewart. Error and perturbation bounds for subspaces associated with certain
eigenvalue problems. SIAM Review, 15(4), October 1973.

10



