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ABSTRACT

A sparse matrix is a matrix with very few nonzero elements. Many applica-
tions in diverse fields give rise to linear systems of the form Az = b, where A
is sparse. The problem in solving these systems is to take advantage of the
preponderance of zero elements to reduce both memory use and comutation
time. The purpose of this paper is to introduce students (and perhaps their
teachers) to sparse matrix technology. It is impossible to treat all the tech-
niques developed since the subject started in the 1960’s. Instead, this paper
constructs a sparse solver for positive definite systems that would have been
state of the art around 1980, emphasizing equally theory and computational
practice. It is hoped that a mastery of this material will allow the reader to
study the subject independently.

1. Introduction

A matrix A of order n is said to be sparse if it has a very small number of nonzero
elements. In this paper we will be concerned with solving sparse linear systems of the
form

Az =b. (1.1)

Sparse systems arise in many connections — fluid dynamics, structural engineering, lin-
ear programming, economic models, electrical circuits, just to name just a few. The car
you drive was designed in part by solving large sparse systems.

Sparsity is a desirable property. If A is dense —if most of its elements are nonzero —
then solving the system requires work proportional to n3. On my PC, I can solve a
system of order one thousand in about eight seconds. The n-cubed law says that it
would take over two hours to solve a system of order ten thousand, and ten thousand
is not especially large in many applications. Sparsity represents a hope of getting out
of the n-cubed trap by taking advantage of the large number of zero elements.

Storage is also a problem. The memory needed to store a dense matrix increases
as the square of its order. To store a dense matrix of order one thousand requires a
million words of eight-byte floating-point words or about eight megabytes — well within
the range of a garden variety PC. On the other hand a matrix of order ten thousand
requires eight hundred megabytes, which is not found on your typical PC or workstation.
But if the same matrix has only, say, ten elements in a row, the storage requirement for
the nonzero elements is eight hundred kilobytes. The savings are obvious, although as
we shall see later bookkeeping overhead raises the storage count somewhat.
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We will be concerned with direct as opposed to iterative methods for solving (1.1).
Most direct sparse matrix solvers are based on some variant of Gaussian elimination.
The broad outline is the same as for dense solvers. The matrix A in question is factored
into the product

A=LU, (1.2)

where L is lower triangular and U is upper triangular. The system Ax = b can then be
solved in two stages.

1. Solve Ly =10

2. Solve Uz =1y (1.3)

Since L and U are triangular, the systems in (1.3) can be solved efficiently by standard
algorithms that require no further reduction of L or U.

The purpose of this paper is to provide a look at the technology people use to take
advantage of sparsity. We will do this by building a sparse solver for symmetric positive
definite systems. Now the sparse matrix ball started rolling in the 1960s, and it is
impossible to include all the sophisticated techniques developed over the past thirty
five years in a single expository paper. Instead we will build an old-fashioned solver —
one that would have been considered state-of-the-art around 1980. The situation is
analogous to describing a car of the late 1920s, cars that first exhibited the standard
features of today’s cars. Cars and solvers have come a long way from their beginnings.
They’ve been streamlined and supercharged. Their infrastructures—the roads and
computers they run on—have improved immeasurably. But in a modern car there is
the soul of a Model-A Ford. Likewise, the heart of most sparse solvers is a relative of
the old-fashioned solver we describe here.

This paper is organized as follows. In the next section we will discuss generalities
about sparse matrices and solvers and introduce a specific class of sparse matrices to
use as an example later. In Section 3, we will treat the Cholesky algorithm, a variant of
Gaussian elimination that factors a symmetric positive definite matrix A into a product
LL", where L is lower triangular (L is called the Cholesky factor of A). We will also
show how this algorithm generates fill-in —nonzero elements in L where A had zero
elements. In Section 4 we will describe a useful pictorial technique for tracking fill-in as
it occurs. In Section 5, we will introduce the data structure we will use to represent a
sparse matrix and illustrate its manipulation by two algorithms. The next two sections
are the mathematical heart of the paper. Section 6 gives a brief treatment of the graph
theory required to derive our algorithm. Section 7 is devoted to the definition and
properties of a particular graph, called the elimination tree, that is the basis of our
subsequent algorithms. In Section 8, we will show how to compute the structure of
the Cholesky factor L so that we can set up a data structure to hold it. This process,
called symbolic factorization, is followed by the actual numerical factorization, which is
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treated in Section 9. Finally, in Section 10 we briefly discuss modern additions to our
sparse solver. The paper concludes with some bibliographic notes.

In the course of the exposition, we will present several algorithms. They will be
written in a pseudocode that should be readable by anyone reasonably familiar with
one of the standard high level languages; e.g., Fortran 95 or C. It is a hodge-podge
that tilts toward Fortran. In particular, all arrays begin indexing at one, and subpro-
gram parameters are passed by reference, so that modifications made to them in the
subprogram are passed back to the calling program.

A word on notation. Matrices will be written with upper-case letters and vectors
with lower-case letters. Scalars will be written with lower-case Roman or Greek letters.
In particular, elements of A, L, and U will always be denoted by the Greek letters «,
A, and v.

The reader is assumed to be familiar with the basics of matrix computations: the use
of partitioned matrices to derive algorithms and especially Gaussian elimination. From
this standard background, however, the paper quickly moves into uncharted territory,
and the reader should be prepared to pore over passages until understanding comes. A
note pad and a pencil equipped with a good eraser are essential tools. I hope that when
the reader comes to the end of the journey he or she will feel that the effort was well
spent.

2. Sparse Matrices and Sparse Solvers

In this section we will consider generalities about sparse matrices and sparse solvers.
We begin with a discussion of what constitutes a sparse matrix.

2.1. Sparse matrices

The notion of a sparse matriz is one of those concepts that is most useful if it is not
pinned down too tightly. The reason is that matrices come in so many varieties that
the attempt to give a formal definition of sparseness is likely to exclude matrices that
someone would naturally consider sparse. Nonetheless, there are some guidelines.

First, the number of nonzero elements must be small enough. Most people would not
consider a triangular matrix sparse, since only about half its elements are zero. When
the positions of the nonzero elements of a matrix —its structure we call it— depends
on its order, the matrix is commonly called sparse if the number of nonzero elements
is O(n). But many matrices cannot be treated this way — models of electric circuits
fall in this category. In that case the most useful definition is operational: a matrix is
sparse if its manipulation can benefit from sparse technology.

Second, many people would exclude matrices that can be treated by minor extensions
of dense matrix technology. For example, a tridiagonal matriz is one whose nonzero
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elements lie only on the diagonal, the superdiagonal, and the subdiagonal of the matrix.
It is about as sparse as you can get. But a tridiagonal system can be solved by an
obvious variant of Gaussian elimination that simply ignores the zero elements. Band
matrices, where nonzero elements cluster in a band about the diagonal, constitute an
intermediate case. If the band is dense, then a variant of ordinary Gaussian elimination
applies. (It is significant that algorithms for dense band matrices are generally found
in dense matrix packages such as LAPACK.) On the other hand, if the band is sparse,
it may pay to use an appropriate sparse solver.

The discussion in the last paragraph suggests that the structure of the matrix plays
an important role in the construction of a sparse solver. For example, symmetric positive
definite matrices have special properties that distinguish them from general nonsym-
metric matrices, and the best solver for one is not suitable for the other. Thus sparse
matrices fall into classes that require different algorithms. However, each class occurs
frequently enough in applications to justify the design and implementation of a general
algorithm for the class in question. In this paper, as we said earlier, we will be concerned
with a general sparse solver for symmetric positive definite systems.

2.2. Sparse solvers

Gaussian elimination is at once the simplest and most complicated of algorithms. It is
so simple that it can be taught to undergraduates—even high schoolers. But it is so
flexible that it yields many different algorithms that are not obviously related. This is
as true of dense systems as sparse ones, although the useful variants are not necessarily
the same for each category. Thus the first task in the design of a sparse solver is to
choose an appropriate form of Gaussian elimination.

Having decided on a variant of Gaussian elimination, the designer of a sparse matrix
solver faces some additional decisions.

1. How can the matrix A be represented so that only nonzero elements are stored?

2. The process of computing L and U from A will generate additional nonzero ele-
ments, called fill-in. Fill-in creates two problems.

1. Interchanging rows and columns of A and the corresponding components of b,
simply interchanges the same components of x, so that solution is essentially
undisturbed. But it also affects the course of Gaussian elimination and hence
the amount of fill-in. It is therefore natural to ask if we can order A to reduce
fill-in.

2. An efficient algorithm will need to know in advance where fill-in occurs so
that it can allocate storage and set up data structures for L and U. This
process is called symbolic factorization (or analysis).
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3. Once the symbolic factorization has been accomplished, one must perform the
actual numerical factorization. In general, the algorithms for symbolic and nu-
merical factorization are quite different, with the symbolic factorization being the
cheaper and, paradoxically, the more complicated.

4. Finally, one must solve the triangular systems in (1.3). Since L and U are not
represented as arrays, the sparse algorithms are different from their textbook
counterparts.

Thus a typical sparse solver proceeds through stages of ordering, symbolic factoriza-
tion, numerical factorization, and triangular solution. It should be stressed that these
stages are often combined or omitted. But you will not go far wrong in understanding
a sparse solver if you ask if and how it implements each of the above steps.

Ordering is something of an exception in the above list. More than the other steps, it
depends on the details of the application generating the matrix. For example, problems
associated with two-dimensional manifolds generate matrices for which a good ordering
can often be found by a process called nested dissection. Because of the specificity of
ordering algorithms, we will not treat them in this paper.

2.3. Grid-graph matrices

In this subsection we will introduce a class of sparse matrices associated with cer-
tain elliptic partial differential equations defined on a square, say on the interval Q =
[0,1]x[0,1]. Without going into details, the problem is turned into a matrix problem
by placing an (N +1)x (NN + 1) grid on the square as shown in Figure 2.1. Each interior
grid point (j, k) is associated with an approximation to the solution u; at that point.
(Note that the indexing is not the same as for a matrix: the j is the column index, k
is the row index, and indexing starts from the southwest corner.) From the differential
equation we can derive a linear relation that involves wj; and its neighboring approxi-
mations wu; 1k, Ujt1k, Ujk—1 and ujgy1. Thus we have n = N? linear equations in n
unknows, which can be solved for the u;;. The corresponding matrix is sparse because
each row involves only the unknown Uj;, and its four neighbors.
The matrix is also structured. If we order the unknowns wuj; rowwise thus

U1, U21,-- -, UNL, U12,U22,-- -, UN2,- -+, (2-1)
then the matrix of the system has the form
T D
Dy T Do
A= ,
Dy_s Tn-1 Dy
Dy TIn
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N+1

u(3,4

N+1

Figure 2.1: A Discretization Grid

where the T; are tridiagonal of order N and the D; are diagonal. This matrix, which
we will call a grid-graph matriz, can be shown to be symmetric positive definite. It is
also a band matrix with a sparse band and therefore a candidate for a sparse solver.
We have introduced it because we know a great deal about its Cholesky factorization.
Specifically:

For n large, there is an ordering of A (called a nested dissection ordering)
such that A can be factored in approximately

10n2 floating-point additions and multiplications.

(2.2)
Moreover, the Cholesky factor L of A has approximately

4n log, m nonzero elements.

Up to order constants these results are optimal.

We will use these results later in assessing the effects of overhead in our algorithms.
The result (2.2) shows the importance of ordering in sparse factorization. For the

natural ordering (2.1) the band of the Cholesky factor is essentially full and has about

ny/n nonzero elements. Thus the ratio of nonzeros of the natural ordering to the nested

dissection ordering is 41:)@”. When n = 90,000, corresponding to a 300x300 grid, the

natural ordering requires about 4.5 times the storage as the nested dissection ordering.
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3. The Cholesky Decomposition and Fill-in

Our sparse solve will be based on the Cholesky algorithm, a variant of Gaussian elim-
ination that factors a symmetric positive definite matrix into the product LLT of a
lower triangular matrix and its transpose. In this section we will first sketch a proof
the existence of such a factorization. We will then describe the variant of Cholesky’s
algorithm that we will use here. The remainder of the section is devoted to a discussion
of fill-in.

3.1. Existence

It might be expected that the LU decomposition A = LU of a nonsingular, symmetric
matrix should itself be symmetric; i.e., that we can write it in the form

A=LL", (3.1)

where L is lower triangular. Unfortunately, this is not always the case. For suppose
that « is nonzero. Then because L is nonsingular, y = LTz # 0. It follows that

e’ Az =o' LL s =y y =3, 47 > 0.
Thus only matrices satisfying
r#0 = z'Az >0 (3.2)

can have a Cholesky decomposition of the form (3.1). We call any such matrix a sym-
metric positive definite matrix.

Being symmetric positive definite is not only necessary for a matrix to have a
Cholesky decomposition, it is also sufficient.

Let A be symmetric positive definite. Then there is a unique lower triangular
matrix L with positive diagonal elements such that A = LL".

The various proofs of this result lead to variants of Gaussian elimination. For example,
one proof begins by partitioning the factorization A = LL" in the form

a ab (A 0\ [A A

a A) \¢ L)\o LT)"
Then computing the (1, 1)-element of the partition, we find that o = A?, so that that
A = /a. Thus we have computed the (1,1)-element of L. Similarly by computing
the (2,1)-block of the partition, we get £ = A~'a. Finally from the (2,2)-block of the

partition we find that
LY =A—-w'=5,
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so that L is the Cholesky factor of S (which is called the Schur complement of «). The
matrix S can be shown to be positive definite (that is the tricky part), so that L exists
by an obvious induction.

This proof leads naturally to an algorithm in which the first column of L is computed,
the matrix S is formed, and the process is repeated recursively on S. This algorithm,
which corresponds to classical Gaussian elimination, is widely used in sparse solvers.
However we will base our solver on an algorithm that builds up L column by column.
This algorithm is also widely used, and for our purposes it has the advantage that it
provides insight into the dynamics of fill-in.

3.2. A columnwise algorithm

The columnwise algorithm can be derived as follows. Suppose we have computed the first
k—1 columns of L and wish to compute the kth. Consider the partitioned decomposition

A11 a1 Agl L11 0 0 Lrl[‘l 621 Lgl
a;Fl 92 a3TZ = fgl )\22 0 0 )\22 [3% ,
A31 a3z Ass L3 fl32 Lz 0 0 L

in which A;; is of order k—1. Computing the kth column of this partition, we find that

as1 Lyi149

T 2
a9 = 621621 + )\22
as2 L31la1 + Aooys,

From this we see that

Ao = \Jam — Bt and €3 = Al (azs — Larbor), (33)

which gives the kth column of L.

Algorithm 3.1 implements this columnwise scheme. Here we use colon notation
to designate a range. For example, L[k:n,k] represents the vector formed from the
elements k, k+1,..., n of column k of L. We have also used the convention that
incounsistent loops are not executed; e.g., the loop in statement 4 when k is equal to one.
Finally, we have computed the quantities oy — Z;Flﬁgl and a3y — L31£91 in (3.3) together
in the loop on j, and then adjusted them in statements 7 and 8.

This algorithm and the classical variant sketched above are numerically stable. The
computed Cholesky factor satisfies L' L = A+E, where E of of the order of the rounding
unit compared with A. It is worth noting that in the nonsymmetric case one must pivot
(i.e., interchange rows and columns of A) to achieve similar stability. Thus an important
distinction between symmetric positive definite and nonsymmetric sparse solvers is that
the former can reorder solely to minimize fill-in, whereas the latter must balance fill-in
and numerical stability in its ordering schemes.
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Colchol computes the Cholesky factor of the symmetric positive definite matrix A.

1. Colchol(A, L)

2 Move the lower half of A to L

3 for k=1 ton

4. for j=1 to k-1

5. Llk:n,k] = L[k:n,k] - L[k,jl*L[k:n,j]
6 end for j

7 L[k,k] = sqrt(L[k,k])

8 L[k+1:n,k] = L[k+1:n,k]/L[k,k]

9. end for k
10. end Colchol

Algorithm 3.1: The columnwise Cholesky algorithm

3.3. The columnwise algorithm and fill-in

The algorithm Colchol allows us to understand how fill-in occurs in the Cholesky factor
of a sparse matrix. To see this, let us rewrite the loop 4 in a form that better reflects
the realities of sparse computation —namely, that only some of the columns of L are
actually accumulated inside the loop.

1. for j=1,k-1

2. if (L[k,j] .ne. 0)

3. Llk:n,k] = L[k:n,k] - L[k,jl*L[k:n,j] (3.4)
4. end if

o. end for j

Recall that at the outset L[k:n,k] is initialized to A[k:n,k]. Except for some final ad-
justment — corresponding to statements 7 and 8 in Algorithm 3.1 — the vector L[k:n,k]
is computed by subtracting multiples of a subset of the truncated columns L[k:n, j]
of L. This subset is precisely those columns for which L[k, j] is nonzero. Thus the
columns we subtract are determined by the nonzero structure of the row L[k,1:k-1]
of L.

The loop shows how fill-in occurs in sparse elimination. Suppose in statement 3 the
truncated column L[k:n,j] has a nonzero entry L[i,j] and A[i,j] is zero. Then the
calculation will put a nonzero element in L[i, j]; i.e., the originally zero element A[i, j]
will be filled in by the elimination process. Actually, we must be a little careful here.
There is always the possibility that fortuitous cancellation will produce a zero element
where a nonzero is expected. However, this situation is unstable—a small change in
an appropriate element of A will cause the nonzero to reappear. Consequently, we will
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ignore this possibility and assume that fill-in occurs wherever our formulas lead us to
expect it.
To examine the properties of fill-in more carefully, it will be convenient to drop

(k)

our programming notation. Let a; ’ be the truncated kth column of A beginning with

gk —i.e., Alk:n,k] —and let Eg-k) be the truncated jth column of L beginning with
Agj—ie., L[k{:}n, j]. Then the fragment (3.4) computes the vector

1) (3.5)

which has the same pattern of nonzero elements as E,(ck), since it differs from E;k) only

by a nonzero scaling factor. From the discussion above, it follows that the pattern of
nonzeros in E;k) is composed of the pattern of a;k) and the patterns of the truncated
columns of L that begin with a nonzero component.

We can write this fact more succinctly by introducing some notation. Define the

structure of E;k) to be
str(6)) = {i > k: Ay # 0}

In other words the structure of Eg-k) is the set of all row indices 4 for which the corre-
sponding component is nonzero. Define the structure of the truncated columns of A

analogously. Then

k—1
str(6y) = str(af) U | str(el?). (3.6)
Ao

In Section 2 we used the term symbolic factorization to refer to the process of
determining the structure of L so that we could set up a data structure to hold it.
Equation (3.6) would seem to provide a way of performing symbolic elimination, since
it furnishes the wherewithal to determine the structure of successive columns of L in
terms of their predecessors. Unfortunately, this procedure mimics Gaussian elimination
too closely. To determine the structure of the current column we need the structures
of the preceding columns — and storing and manipulating those structures is no easier
than storing and manipulating the elements of L itself.

A cure for this problem is to recognize the fact that it may not be necessary to work
with all columns for which Ag; # 0. As an extreme example, suppose that column E,(Ck)
fills in completely. Then every subsequent column also fills in, and the computation in
(3.6) becomes unnecessary. In practice, it turns out that as the elimination progresses,
only a few of the columns in (3.6) are needed to determine the structure of the kth
column of L. The problem is to determine which columns are needed — or equivalently
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which columns to prune from the union in (3.6). The answer is provided by an auxiliary
structure called the elimination tree, which will be introduced in Section 7.

3.4. Alpha-precursors

Fill-in cannot occur unless there is something to do the filling in. If, for example, the
elements «;1,...,q; (i > k) are all zero, it follows by an induction on (3.5) that the
corresponding elements of L are also zero. Consequently, an element A;; # 0 of L for
which a;r = 0 must depend on some nonzero element of A proceeding it in row 7. We
call such elements «a-precursors of A\jx. Since a-precursors will prove important later,
we will now show how to construct them.

Suppose that A;z # 0—i.e., 7 belongs to str(é,(ck)). Now if a; # 0, then oy itself is
an a-precursor of \jx. If not, from (3.5) we have

k—1
Mk == > Mjhij.
j=1

Ajj #0

Since there must be at least one nonzero term in this sum, there is a k1 < k such that
ik, # 0 and Mg, # 0. Now if a;,, # 0, it is an a-precursor. Otherwise we have,

ki—1
Nty == D> Ak
Jj=1

Moy 70

Thus there is a ko < ki such that A\jx, # 0 and Az, # 0. If oy, # 0 we have our
a-precursor. Otherwise we continue backtracking as above. The result is a decreasing
sequence of indices k > ky > kg9 > --- such that j\ikr #0 (r=0,1,...). The sequence
either terminates with a nonzero element of A or with 5\“ # 0, in which case a; =
Ai1 # 0 is an a-precursor.

We have arrived at the following result.

If ¢ lies in the structure of the kth column of L, then \;. has an a-
precursor o, # 0. Specifically, there is a sequence of indices ¢ = k, <
kp—1 <...,<ki < ko =k such that (3.7)

1. a’i,kp 7& 07
2. Mgy 70, r=p—1,... L
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(i,k3)- - - - - =(i,k2)- - - (i,k1)

Figure 4.1: Reflection diagram for (3.7)

4. Reflection diagrams

In view of our construction of g, it would seem that statement 1 in (3.7) should read
ik, 70 and Njy, #0 (r=p—1,...,1). However, this extended statement is implied
by the original. To see this we will introduce a pictorial method for tracking fill-in as
one moves around in a matrix. The diagram in Figure 4.1 represents (3.7) for the case
p = 3. It is to be understood as follows. The diagram represents a grid corresponding to
the elements in the lower half of a matrix, although we do not explicitly draw the grid.
Points on the diagonal are identified with diagonal elements; e.g., k3, k2, k1, and i in
the diagram. Points in the interior represent subdiagonal elements of the matrix. The
row index of the element is the index of the diagonal to the east of it; the column index
is the index of the diagonal north of it —e.g. (k2,k3) in the above diagram. Thus each
pair of distinct diagonal elements subsumes a unique element of the matrix.

One is permitted to pass between two diagonals provided the element they subsume
is nonzero. Such a transition is always shown as proceeding through the subsumed
element, as in the path from k3 to k2. The diagram is called a reflection diagram
because if we place a mirror pointing northeast at, say, (k2,k3) a southward beam of
light beginning at k3 will be reflected to k2.

The connection with fill-in is illustrated by the element (i,k3) in the figure. Here
we suppose that the underlying matrix is the Cholesky factor L. Because the element
(k2,k3) is nonzero, (3.6) implies that the structure of L(k2:n,k3) is contained in the
structure of L(k2:n,k2). In particular, if element (i,k3) is nonzero, a fill-in must
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occur at (i,k2), as shown by the dashed arrow. Similarly, the passage from k2 to k1
reveals a fill-in at (i,k1). Thus the connection shows that only the statement a;g, # 0
(which implies Ajx, # 0) is necessary in (3.7).

One can also move backward in a reflection diagram—and we will later on— but
backward movement does not reveal fill-in. It is an instructive exercise to figure out
why.

5. Representing and manipulating sparse matrices

Having decided on a numerical algorithm, we must now decide how to represent a sparse
matrix. The conventional representation as a square array of numbers is untennable. For
example, a grid-graph matrix has roughly 5n nonzero elements, whereas the conventional
representation would take n? words of memory — the overwhelming majority of them
zero. In this section we introduce a structure that only stores the nonzero elements of a
matrix, but at the cost of some additional bookkeeping arrays. We will then illustrate
the use of this structure by developing two algorithms, one for computing a matrix
vector product and the other for traversing a matrix by rows.

5.1. A data structure

To represent a sparse matrix by storing only its nonzero elements we must provide
additional information that enables us to determine where an element lies. For example,
we could represent a sparse matrix as a collection of triplets

(val,rx, cx)

where val represents the value of the element and rx and cx are its row and column
indices. In other words if the matrix in question is A, then a;, o, = val.

This coordinate representation is simple and natural. It has the advantage that it
makes it very easy for a user to generate a sparse matrix on a computer. For example,
the matrix could be represented by a structure of the form

1. coordmat structure

2. int nrow ! Number of rows

3. int ncol ! Number of columns

4. int nnz ! Number of nonzero elements

o. int rx[] ! Array of row indices (5-1)
6. int cx[] ! Array of column indices

7. real vall[] ! Array of values

8. end structure

Then to initialize a sparse matrix, the user could write a program like the following.



An Old-Fashioned Sparse Solver 15

coordmat A

A.nrow = number of rows

A.ncol = number of columns

A.nnz = number nonzero elements

for k =1 to A.nnz
generate i, j, and aij
Arx[k] = i; A.cx[k] = j
A.vallk] = aij

end for k

© XN T W

Unfortunately, the representation (5.1) is good for little other than entering a sparse
matrix. For example, there is no convenient way to pass along a row or down a col-
umn of a sparse matrix so represented. This illustrates an important point about the
representation of sparse matrices: the representation must not only be economical in
storage, but it must allow the efficient implementation of whatever operations must be
performed on the matrix. Since there are many conceivable operations that one might
want to perform, we are left with the possibility that no one structure can serve to
represent a sparse matrix in all capacities.

Fortunately, when it comes to solving symmetric positive definite systems we basi-
cally want to do two things: compute a Cholesky factorization of the matrix in question
and solve sparse triangular systems involving the Cholesky factor. Although the former
will require that a number of operations in addition to those of Gaussian elimination be
performed on the matrix, it turns out that there is a representation for a symmetric pos-
itive definite matrix that permits all these operations to be performed with reasonable
efficiency.

The idea behind the structure is to store the nonzero elements a linear array (val)
in column-major order — that is, in a linear array with the nonzero elements of the first
column in their natural order follow by those of the second column, and so on. Because
of symmetry we need only store the entries of a column from the diagonal downward.
A parallel array of integers (rx) gives the row index of each element. To distinguish the
columns, we have another array (colp) pointing to the beginning of each column. We
call this structure packed column representation.

1. define pcmat structure

2 int n ! The order of the matrix

3 int nnz ! Number of nonzero elements

4. int colpl] ! Array of start of column pointers
) int rx[] ! Array of row indices

6 real vall] ! Array of off-diagonal values

7. end structure
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To illustrate the structure consider the matrix

46 0.0 1.3 0.0 00 25
00 64 1.7 00 0.0 3.9
1.3 1.7 73 21 0.0 3.1

0.0 00 21 69 2.8 0.0 (52)
0.0 0.0 0.0 2.8 4.7 0.0
25 39 3.1 0.0 00 99
The corresponding pcmat is

n 6

nnz 13

colp 1 4 7 10 12 13 14 (5.3)

rx 1 3 6 2 3 6 3 4 6 4 5 5 6

val 4.6 1.32.56.41.73.97.32.13.16.92.84.709.9
Note that colp has n+1 entries, with the last pointing to the nonexistent entry
val [nnz+1]. The reason is that it allows us to loop through the elements of a column
of A. For example, the following fragment prints the lower half of A by columns.

1. for j=1 to A.n

2 for ii=A.colp[j] to A.colp[j+1]-1

3. print (A.rx[iil, j, A.val[iil) (5.4)
4. end for ii

5. end for j

When k = n, the loop correctly prints only the value val[nnz].

At this point we must say something about memory management. Originally, sparse
matrix code was written largely in Fortran 66, and later in Fortran 77. These languages
had no mechanisms for allocating storage. Thus the user had to hard-wire the necessary
storage into the main program and pass it to the various components of the solver
through their argument lists. In order to do this, the user had to know or estimate the
amount of memory needed. Nothing could be done about a bad guess but return with
an error flag and let the user recompile the program with a larger amount of storage.

At present Fortran 95 and the C family of languages have methods for allocating
storage, and memory management can be relegated to the sparse solver. However, to
allocate memory, the solver needs to know how much is needed. This is particularly
important in the symbolic factorization step, where we must know the nonzero count
for L so that the arrays rx and val can be allocated. This problem will be treated in
Section 7.

We must also say something about auxiliary arrays. In many of our algorithms we
will need to allocate extra storage to hold intermediate quantities. Such allocations
usually come in two sizes: arrays of length n and arrays of length nnz. Since memory
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is limited, any additional arrays will reduce the size of the problems we can solve; but
clearly an array of length n will do less harm than an array of length nnz. Even here we
must distinguish between arrays of length A.nnz for the original matrix and arrays of
length L.nnz for the Cholesky factor. Owing to fill-in, the latter will be larger than the
former; hence the allocation of an array of length A.nzz will have relatively less effect.
In our solver, the only auxiliary arrays will be of length n.

5.2. Matrix-vector multiplication

We turn now to two examples of programs that use the pcmat data structure. The
first example is matrix-vector multiplication. Although we will not actually use this
algorithm here, it illustrates some important points about manipulating sparse matri-
ces. Moreover, matrix-vector multiplication is important in its own right, especially in
iterative methods for solving large linear systems.

To derive an algorithm we begin with the usual definition of the product y = Az:

Yi = 22 T (5.5)
In a naive implementation of this formula, to compute y; we must access the elements
Q15 G2y v v vy O 1, iy Q] - -« Qi

of A. But in a pcmat, we store only the lower half of A. Hence we must access the
elements
Qil, Qi2, - - - Qi1 (5.6)

followed by
(677 8) ai+1,i7 <oy Qg (57)

i.e., we must go across row i of A until we reach the diagonal and then down column 1.
In a pcmat the references in (5.7) are easy to do—see (5.4). But it is not clear how to
implement the passage along a row required by (5.6).

A cure for this problem is to reinterpret the formula (5.5). If we start with y = 0
and if o;; # 0, we must update y by adding «;jz; to y;. For ¢ > j, we can do the
updates by traversing the pcmat by columns. But whenever we encounter an nonzero
element «;; (¢ > 7) in the structure, by symmetry we also have the value of «j; = ;.
Thus at that time we can also update y; by «;jx;, which takes care of the case 1 < j.

Algorithm 5.1 implements this strategy. There are three comments to make about
it.

e The diagonal elements must be treated specially, since they cause only one update.

e The inner loop of Mvmult illustrates a convention we will use in the remainder of the
paper. A double index like ii will refer to a position in the arrays rx and val. The
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Given a pcmat A and two vectors x and y, Mvprod computes y = A*x.

1. Mvmult(A, x, y)

2 y =0

3 for j=1 to A.n

4 y[31 = y[j1 + x[jl*A.val[A.colp[j]]
9. for ii=A.colp[jl+1 to A.colp[j+1]-1
6 i =A.rx[ii]

7 y[il = y[il + x[jl*A.val[iil

8 y[j1 = y[3] + x[il*A.val[ii]

9. end for ii

10. end for j

11. end Mvmult

Algorithm 5.1: Computation of y = Az

corresponding single index like i = rx[ii] will refer to the row index of the element
pointed to by ii.

® The number of floating-point additions and multiplications is about nnz. For a full
matrix the count is about to n? which can be much greater than nnz. For example,
for a grid-graph matrix the operation count is approximately 4n log, n [see (2.2)]. The
ratio of the dense count to the sparse count is n/4logs n. When n = 90,000, this factor
is about 1,367. It pays to take advantage of sparsity!

5.3. Traversing a pcmat by rows

The trick used in the matrix-vector multiply algorithm to avoid accessing a pcmat by
rows serves its purpose well, but there are times when we actually need the elements of
a row of a sparse matrix. This is not an easy task to perform efficiently. For example,
consider the following code to output the values of the nonzero elements in the lower
half of a pcmat in row order.
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for k=1 to A.n
for j=1 to k
for ii=A.colp[j] to A.colp[j+1]-1
i = A.rx[ii]

1.
2
3
4.
5. if (i > k) leave ii; fi (5.8)
6
7
8

if (i = k) print(i, j, val[iil); leave ii; fi
end for ii
end for j
9. end for k

To find the nonzero (j,k)-element, if it exists, the code searches down column j. This
loop could be improved by storing the most recent values of ii (one for each column)
and restarting the search from that value when k changes. But in point of fact, no
amount of optimization could render this code acceptable. For the first two loops imply
that the work is at least O(n?). For many sparse matrices this is much greater than
the work required to factor the matrix. For example, the work required to factor the
grid-graph matrix is O(n%)

The problem with (5.8) is that it treats each row independently. It turns out that
if we take a peek ahead each time we process an element in a row, we can accumulate
enough information to traverse subsequent rows without searching. To see this consider
the following Wilkinson diagram of lower half of the matrix (5.2):

X

0 X

X X X

0 0 X X (5.9)
0 00 X X

X X X 00 X

Here an X represents an element that is presumed to be nonzero, and 0 an element
that is exactly zero. Now we can traverse the first row immediately, since we know the
position of «q; in val and rx. As we do, we can learn that the position of agzq: it is
simply the position of a1 plus 1. We also learn that ao; is zero. This means that we
can traverse the second row. As we do, we learn the position of ags. This means that
we can traverse the third row, at the same time learning the positions of aus3, agi, ago.
The following table shows this process carried to its conclusion.
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After traversing row we know the positions of

0 Q11 2 033 QU4 55 Qe
Q22 (31 (33 Q44 (55 Q66
Q31 (32, (33 Qlaq Q55 Qe
Q43 Qg4 Q55 Q1 62 66
Q54 Q55 (1 Q2 (g3 (L6
Qg1 62 (63 Qlpe

Gl W N~

Note that after we have processed row ¢ we have all the information we need to process
row ¢ + 1.

We have to decide how to encode this information. We will keep it in an array
link of length n, whose contents may be described as follows. As suggested above, the
traversal of row i begins with the ith element. Then i1 = 1ink[i] is the column index
of another element in the row. Similarly, i2 = 1ink[il] locates yet another element.
The list ends when for some ip the value of 1ink[ip] is zero. A second array, pos,
gives the positions of the elements in the arrays rx and val. This method is feasible
for two reasons. First, we never need to store more than n links, provided we discard
the links associated with a row as it is traversed. Second, the links for different rows
cannot overlap, so that two untraversed rows can live together in 1ink. We will use this
linking technique again when we implement symbolic factorization.

We will package this algorithm in a routine RowTrav that produces elements of the
matrix row by row. Each call to the routine gives a new element. After a row has
been processed, RowTrav returns an end of row indication to allow the calling code
to take any action required when passing from one row to the next. A drawback of
RowTrav that it does not return the elements of a row in their natural order; but in
many applications—ours in particular—that is not necessary.

More specifically, the program has the calling sequence RowTrav(A, i, j, posij).
Here is an illustration of how it traverses the lower part of the dmat A row by row.

1. 1i=-1

2. RowTrav(A, i, j, posij)

3. for ix=1 to A.n

4. while (RowTrav(A, i, j, posij) != 0)

d. process element (i, j) (5.10)
6. end while

7. process row i

8. end for

The first call, with i negative initializes the routine. Subsequent calls traverse the rows
of A, producing the row subscript i, the column subscript j and the position posij of
the element in the arrays rx and val. The (i,i)-element of row i is produced first,
but the order of the other elements of the row has no useful pattern. After the ith row
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has been traversed, the routine returns a zero as an end-of-row indication. Under no
circumstances should the user change the values of i and j while the pcmat is being
traversed.

Algorithm 5.2 contains the code for RowTrav. Here are some comments.

e The best way to see what is going on is to work through a small example —say for
the matrix (5.9) —tracking the entries in 1ink and pos as the algorithm proceeds. An
interesting feature is that the program must squirrel away the next value of j—i.e.,
link[j] —in nextj, since the value of 1ink[j] may change when 1link is updated.

® RowTrav depends heavily on variables like link, pos, and nextj that must retain
their values between calls to RowTrav. Such variables are said to be static, and most
programming languages provide them.

® Since the links have to be updated, the row traversal is more expensive than a straight-
forward column traversal. However, there is only one update per nonzero element of A,
so that the algorithm runs in time proportional to A.nnz.

e The algorithm carries a storage overhead of 2n integers for the arrays 1ink and pos.
In light of the comments above, this does not appear to be excessive.

6. Graphs

We have decided on a numerical algorithm for factoring a matrix and a data structure
for representing a sparse matrix. Our job now is to bring them together in harmonious
wedlock. It is no easy task.

Symbolic factorization is the key. If we know, the structure of L, we can place the
lower half of A in it and implement Algorithm 3.1 using the techniques developed in
the last section. But efficient algorithms for symbolic factorization require considerable
mathematical support, which is customarily couched in the language of graph theory.
This section is devoted to a review of the fundamentals. The next section will treat
a particular graph associated with a sparse matrix —the elimination tree. These two
sections are the heaviest going in this paper. But don’t despair. When you emerge from
them you will have arrived at the point where you can read much of the sparse matrix
literature on your own.

An undirected graph consists of a set of nodes (also called vertices) and a set of edges
connecting the nodes. The graph G(A) of a symmetric matrix A of order n has nodes
{1,2,...,n} (which may conveniently be identified with the diagonals of A). The set
of edges is the set of pairs {4,j} for which ¢ # j and «;; # 0. Traditionally, an edge
is represented by drawing a line between the two nodes. For example, the matrix (5.2)
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RowTrav traverses rowwise the lower part of a pcmat as shown in (5.10).

1. RowTrav(A, i, j, posij)

2. if (1 < 0)
! Initialize.

3. link[1:A.n] = 0

4. pos[1:A.n] =0

o. j=0;1=0

6. return j

7. end if

8. if (j =0)
I Set up for row 1i.

9. i=id+1; j =i

10. posij = A.colplil

11. else
! Get the next element of row 1i.

12. j = nextj;

13. if (j = 0) return j; fi ! End of row

14. posij = posl[j]

15. end if

16. nextj = link[j]

17. link[j] = 0

18. nextdown = posij + 1

19. if (nextdown < A.colp[j+1]1)
! There is an element in column j. Link it up.

20. pos[j] = nextdown

21. id = rx[nextdownl]

22. link[j] = link[id]

23. link[id] = j;

24. end

25. return j

Algorithm 5.2: Row traversal
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has a structure described by the following Wilkinson diagram:

X0 X 0 0 X
0 X X 00X
X X X X 0 X
0 0 X XX O (6.1)
0 00X X O
X XX 0 0 X

(Here an X stands for an element presumed to be nonzero a 0 stands for a zero element.)
The graph of this matrix is

1 2 3 4 5 € (6.2)

It is a useful exercise to convince yourself that the graph of a grid-graph matrix looks
like the grid in Figure 2.1.

In addition to our symmetric positive definite matrix A, we will be interested in a
graph associated with its Cholesky factor L. Now L is not a symmetric matrix; but
L+L" is, and from that matrix we can form a graph. For brevity we will abuse notation
and write G(L) for G(L+ L"). The graph G(A) can be regarded as a subgraph of G(L)
by the expedient of dropping all the edges in G(L) that are not in G(A). These edges
correspond to filled-in elements.

Changing the numbering of the nodes in the graph of a matrix affects the structure
of the matrix. Specifically, let p1,p2,...,p, be a permutation of the integers 1,2, ..., n.
We can get a new graph from from G(A) by the following procedure. If {p;,p;} is an
edge of G(A) replace it by {7,5}. This graph has exactly the same structure as the
original graph since all we have done is move around the numbers of the nodes. For
example, under the permutation

p1=3 p2=95 p3=06 p1=1 ps=4 ps=2

the graph (6.2) becomes
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However, the Wilkinson diagram of the corresponding matrix is

0 X0 0XDO
X 0 X X 0 X
X0 X X 0O (6:3)
X X 00XDO
X XX 0 0 X

We have already observed that reordering a matrix will change the fill-in in its
Cholesky factor. The matrices (6.1) and (6.3) are examples of this. The Cholesky
factor of (6.3) fills in completely after two elimination steps, leaving only four zero
elements. On the other hand, the factor of (6.1) has fill in at only Ag4 and Ags5, leaving
six zero elements. Graphs are especially well-suited for finding orderings that reduce
fill-in, since renumbering nodes is easier than manipulating the structure of the original
matrix.

A path in an undirected graph is a sequence of nodes i1,i2,...,% such that i; is
connected to ¢j;1 by an edge. If there is a path between i and j, we say that ¢ and j
are connected. A subset of a graph is said to be connected if all its nodes are connected.
By convention, each node in a graph is connected to itself. Transitions in a reflection
diagram, like the transition from k3 to k1 in Figure 4.1, are paths in the graph of the
matrix in question.

The property of being connected is an equivalence relation between nodes, and
hence the nodes of any graph can be partitioned into disjoint, connected sets that
are not connected to one another. They are called the connected components of the
graph. When the graph is associated with a matrix, this partition has an important
interpretation. Suppose, for example, that G(A) has two connected components C; and
Cy. Suppose further that C; has m nodes, and renumber the nodes of G(A) so that nodes
1,2,...,m belong to C;. Then the matrix corresponding to the renumbered graph has

the form
AH 0
0 Axp)’

Thus the matrix reduces to a block diagonal form.

In applications, this means that the sparse system decomposes into two unconnected
systems that can be treated separately. For this reason, sparse matrix solvers often try
to find the connected components of G(A) as part of the ordering step. We will assume
that this has been done and that G(A) is connected. In this case, we also say that the
matrix A is irreducible. Throughout the remainder of this paper we will assume that A
is irreducible.

A cycle is a path i1,%9,...,i,_1,%1 in which the nodes i1,...,%,—1 are distinct. In
other words, a cycle is a nontrivial path that starts and ends at the same node without
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intersecting itself. A graph without cycles is said to be acyclic. A connected acyclic
graph is called a tree. Given a tree, we can choose any node as a root of the tree. Since
the graph is connected, there is a path from the root to any other node, and because
the graph is acyclic this path is unique. Paths in a tree cannot be extended indefinitely,
and their terminal nodes are called leaves of the tree. Paradoxically, trees are usually
drawn upside down with the root at the top. For an example see Figure 8.1. Trees can
be described by a very simple data structure. Let 1" be a tree, and let the node r be its
root. Let ¢ be a node. Then, as noted above, there is a unique path r, 71, ..., jx, ¢ from
r to i. We will call the node jj the parent of i and write j, = parent(i). The parent
relation uniquely determines the tree. More generally a parent relation specifies a graph
whose edges are {i, parent(i)}; however, this graph need not be a tree. The following
result gives conditions under which a parent relation produces a tree.

Let a parent relation defined on the nodes 1,2, ..., n have following prop-
erties.

1. The node n does not have a parent. (6.4)
2. For i # n, parent(i) > i.

Then the graph T whose edges are {i,parent(i)} (i = 1,...,n—1) is a
tree with root n.

To see this, we must show that 7" is connected and acyclic. To show the former,
we will show that all the nodes are connected to n. Let ¢ # n be a node in T. Then
the sequence parent(i), parent[parent(z)],... is strictly increasing and bound by n. It
follows that it must terminate with the integer n.

To show that T is acyclic, suppose there is a cycle in 7', and let ¢ be the smallest
node in the cycle. Then ¢ must be connected to two distinct nodes 7 > ¢ and k£ > i. But
then 7 and k must both be parents of 7. The contradiction establishes the result.

The term “parent” suggests a natural nomenclature for expressing relations among
the elements of a tree. If k is the parent of j, we call j a child of k. If j < k and there
is a path from j to k& we say that k is an ancestor of j and j is a descendent of k. We
will use this nomenclature freely in what follows.

7. The Elimination Tree

In Section 3.3 we derived the following relation for the structure of the kth column of
the Cholesky factor L:
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Although the union over j has too many terms to make this formula suitable for a
symbolic factorization algorithm, we suggested that it might possible to prune terms
from union. The device for doing this is a tree called the elimination tree. Not only
will the elimination tree lead naturally to a symbolic factorization algorithm, but it will
provide us with an algorithm for determining the number of nonzero elements in L.

7.1. Definition and basic properties

There seems to be no good way of motivating the definition of the elimination tree.
Instead we simply define it to be the tree generated by the following parent relation:

parent(k) = min{j > k: A\, # 0}.

Otherwise put, if we take the Cholesky factor L and retain only the first element below
the subdiagonal in each column, then the graph of the resulting matrix is the elimination
tree.

This construction assumes that each column of L has a subdiagonal element, in
which case (6.4) implies that the parent relation defines a tree. However, it is not trivial
to show that the necessary subdiagonal elements exist. We begin with the following
technical result.

Let j > k. If there is a path k,ki,...,ky,j from k to j in G(L) with (7.1)
kl,...,kp < k, then A];ﬁéO

We will use reflection diagrams of L to prove this assertion. We first show that we
can assume that k1 > ... > k, —i.e., that we move backward in the reflection diagram
until very last. Suppose to the contrary that there are forward jumps, and consider the
first one. If it is the very first jump from k to ki, we must have ky = j and Aj; # 0.
Thus we can assume the first forward jump is preceded by a backward jump.

The two reflection diagrams in Figure 7.1 illustrates what can happen. In diagram A
we backtrack along abc and then move forward along dce. However that transition
shows that there must be a nonzero at £. Hence we can get from a to e by the transition
afe, which is backward. Thus we can eliminate the forward jump from the path. This
also includes the degenerate case where a = e and the backward and forward jumps
simply cancel one another.

Consider now the diagram B. Here the net jump abc and cde is forward. However,
the presence of £ shows that it can be replaced by the smaller forward jump afe. If we
continue this process (note the preceding backward jump changes with each step), one
of two things must happen.

1. We find ourselves in case A and can eliminate the forward jump.
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Figure 7.1: No forward jumps

d=—"")C

Figure 7.2: Illustrating A;i # 0

2. The length of the forward jump becomes one, and we again find ourselves in the
case A.

Thus we can eventually eliminate the forward jump. Continuing this process with
subsequent forward jumps, we end up with only backward transitions.

To complete the proof of (7.1) consider the reflection diagram in Figure 7.2. The
path makes two backward transitions kbc and cde followed by the forward transition
efj to j. But the transition edc (a legal transition even if it goes against the arrows)
insures that g will be nonzero, and hence the transition cbk insures that h will be
nonzero. But h occupies the position of \ji, which is therefore nozero. Except for the
specific number of backward jumps, this argument is perfectly general and establishes
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p----->q ->r--->% k

Figure 7.3: A\y; #0 = j € T[K]

(7.1).

Returning now to the elimination tree, to show that it is well defined we must show
that each column of L has a subdiagonal element. As stated above, we will assume that
A is irreducible. Let k < n be given and let j > k. Then there is a path in G(L) from
k to j. Let ¢ be the first node in the path with ¢ > k. Then by (7.1), A\jx # 0. In other
words, L has an element in column £ below the subdiagonal.

We will denote the elimination tree of the Cholesky factor L by T'. Let k be given.
The graph consisting of all the descendents of k in 1" along with k itself is obviously a
tree. We will denote it by T'[k]. These trees will play an important role in what follows,
and it will be useful to know what elements lie in them. The following result shows that
T'[k] contains the structure of row k of L.

If A # 0 then j € T[k]. (7.2)

To see this, consider the reflection diagram in Figure 7.3. Since Ag; # 0, the element
p is nonzero. If follows that b = parent(j) < k. If it is equal, then we are through:
there is a path from j to k in 7. If not, then there is a fill-in at q under b. Hence
d = parent(b) < k. If d is equal to k, we are once again through. Otherwise, there is a
fill-in at r. Proceeding in this manner, we must either generate a path in 7" from j to
k, or we must eventually arrive at the node k-1. Since there is a fill-in at s, we must
have parent(k—1) = k, which completes the path.

It is worth pointing out that T[k] can be bigger than str(L[k, 1:k]). For example,
the structure the kth row of a tridiagonal matrix is {k,k—1}. But T[k] = {1,...,k}.
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7.2. Constructing the elimination tree

Although we have defined elimination trees and shown them to exist, we have not shown
how to construct them. In this subsection we will remedy this deficiency and in the
process obtain a count of the number of nonzero elements in the Cholesky factor L—a
count we will need to implement the symbolic factorization.

We first observe that if we can build up the structure of L row by row in its natural
order, we can determine the parent relation that defines the elimination tree. Specifi-
cally, we can initialize an array parent of length to zero. Now for each index j, parent(j)
is the row index ¢ of the first nonzero element of L below A;;. Thus when we find a
nonzero element A;; in the course of traversing row 7, we check parent (j) to see if the
latter is nonzero. If it is then we have already determined its value while traversing a
previous row. If not, we can set parent(j)=i. At the end of the process we have the
elimination tree of L.

On the other hand, if we know the parent relation we can determine the structure of
any row. Specifically, consider the reflection diagram in Figure 4.1. Here \; ;, # 0 and
@ ks 1s an a-precursor of A; . But by (7.2), k3 € T'[ky] and ky € T'[k;]. Consequently
we can find k1 —the column index of A; ;, — by starting at k1 —a row index of an -
precursor of A; ;, —and using the parent relation to move up the elimination tree to
k1. Since every nonzero element in row ¢ has an a-precursor, we can determine the
row structure of the ith row of L by following the elimination tree up from the nonzero
elements of row i of A.

At this point it looks like we have a vicious circle. If we know the row structure, we
can compute the elimination tree; if we know the elimination tree we can compute the
row structure. But where to start? Surprisingly, we can start with the structure of the
first row, which we know, and build up both the elimination tree and the row structure
simultaneously.

Specifically, suppose we have determined the row structures of rows 1,...,i—1 and
have determined the parent relation insofar as is possible with this information. We will
say that an index j < 4 is untouched if

1. it is not known whether j belongs to the structure of row ¢ or

2. it belongs to the structure of row ¢ but the parent relation as so far determined
does not define a path from j to .

Before we start searching the ¢th row, we mark the indices 1,...,¢ as untouched.
Let «;; be an element of row 7 of A. We now use the parent relation to move from
J up the elimination tree. Eventually one of two things must happen.

1. As we move up the tree, we encounter a node we have previously touched. This
case is illustrated by the reflection diagram in Figure 7.4, in which j2 is the
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a--—=b-—>c¢

Figure 7.4: Searching a row

touched node. Since a and b are nonzero, j and j1 are in the structure of row
i. Moreover, since j2 is touched, there is a path from j2 to i. Thus j and j1
become touched.

2. We reach a node whose parent has not yet been defined. This case is again
illustrated by the diagram in Figure 7.4, where it is now assumed that j2 has no
parent. But since we have already search the proceeding rows, there can be no
element of L between ¢ and j2, so that i is the parent of j2. Thus j, j1, and j2
become touched, and we have added parent (j2)=i to the parent relation.

Since every element of row ¢ of L has an a-precursor and we start searching at every
element of A in row ¢ the result is the complete row structure of row ¢ and an updated
parent relation.

There is one technical point that we must dispose of before we can write down code.
A natural way of indicating if an node has been touched is to initialize an array touched
of length n to zero and set touched[j] to one when node j has been touched. This
works well enough row by row. But when we finish a row and go on to the next, we
must reinitialize the array touched. If this is done for all n rows, the result is an O(n?)
algorithm, which is forbidden [see the comments after (5.8)]. The cure to the problem
is to set touched[j] to i when we reach node j in the search of row i. At the start
of the search all components of touched are strictly less than i, so that this procedure
marks the touched elements without any reinitialization whatsoever.

Algorithm 7.1 contains a routine to construct the elimination tree of a pcmat and
count the nonzeros in its Cholesky factor. The routine uses RowTrav (Algorithm 5.2)
to produce elements from the rows of A. Etgen requires 4n units of auxiliary storage
for the arrays parent and touched as well and the arrays link and pos in RowTrav
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Given a pcmat A, Etgen returns the parent structure of its elimination tree and the the

nonzero count nnz for its Cholesky factor.

1. Etgen(parent, nnz)

! Initialize.
2. nnz = 0
3. touched[1:A.n] = O
4. parent[1:A.n] = 0O

! Traverse the rows of A.
d. i=-1
6. RowTrav(A, i, j, posij)
7. for ix=1 to A.n
8. while (RowTrav(A, i, j, posij) != 0)
9. if (1 = j)

! Process diagonal element.
10. nnz = nnz + 1
11. touched[j] = i
12. else
I Off diagonal element. Search the tree.

13. js =]
14. while (touched[js] != i)
15. touched[js] = i
16. nnz = nnz + 1
17. if (parent[js] = 0)
18. parent[js] = i
19. leave while
20. end if
21. js = parent[js]
22. end while
23. end if
24. end while
25. end while

26. end Etgen

Algorithm 7.1: Constructing an elimination tree
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(Algorithm 5.2). Since we have taken care to minimize retouching, the algorithm runs
in time proportional to the nonzero count of the Cholesky factor. (To see this, note that
the each iteration in the while loop beginning at statement 8 increases nnz by one.)

8. Symbolic Factorization

Now that we have a nonzero count for L, we can allocate storage for the symbolic fac-
torization. To complete the factorization we need to be able to determine the structure
of the columns of L. We now turn to that task.

8.1. The column structure of L

We have already observed (twice) that the formula

k—1
str(6))) = str(af”) U | str(el?). (8.1)
j=1
#0

is not suitable for determining the structure of E;k) because the union of j in general

has too many terms. To prune the range of the union, we begin by observing that if j

is a child of k£ in the elimination tree, then str(ﬂgk)) C str((,(ck)). This fact follows from

the fact that Ay; # 0, so that Eg-k) is in the union (8.1). This implies that:

If j is a descendent of k in the elimination tree, then str(ﬁg-k)) C str(ﬁgﬁ)). (8.2)

Now note that by (7.2) all the terms of the union (8.1) have indices in T'[k]. Consider
column £ of L and assume that j is one of its children. Then str(ﬁg-k)) is in the union
(8.1). Moreover, by (8.2) columns with index ¢ € T'[j] with ¢ < j can be omitted from the
union. Thus all nodes in T'[k] that are descendents of a child of k£ can be pruned, and we

(k)

are left with only the structure of a;,” and the structures of the columns corresponding
to the children of k. Hence

n
str(6y”) = str(afyu | str(el). (8.3)
Jja C{lﬁcll of k
We have thus reduced the set of columns of L that we must merge from those for which
Akj 7 0 to those for which j is a child of k£ in the elimination tree. In general, the latter
set is far smaller than the former.
A simple example may make this point clearer. Consider the node 11 in the elimi-

nation tree in Figure 8.1. The union in (8.1) may range over as many as all the nodes
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Figure 8.1: An elimination tree

1 through 10. But by (8.2), the column structures of nodes 1, 5, and 6 are a subset of
that of 9, and the column structures of the nodes 2, 3, 4, 7, and 8 are subsets of the
that of 10. Thus we can prune the structures of columns 1-8 from the union.

A difficulty with this approach is that we need to know the children of the nodes of
the elimination tree. Although we have shown how to compute the parent relation that
defines the tree, it is not of much help in finding children. (Strange parents that don’t
know their own children!) It turns out, however, that we can compute the children as
we compute the structure of L. Specifically, suppose we have computed the structure
of E,(Ck), so we can find the first nonzero element below the diagonal of E,(Ck) —call it Aj.
Then k is a child of j. If we store this information, by the time the process reaches
column j we will have a list of all the children of j.

8.2. Implementation

Having the characterization (8.3) of the structures of the columns of L, we are now
ready to implement the symbolic factorization phase of our old-fashioned solver. We
have five problems to tackle.

1. How do we represent the matrix L?
2. How do we determine the storage needed to represent L7

3. How can we keep track of the children of a node?
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4. How can we merge the sets in (8.3)?7 The problem here is to keep the row indices
in order.

5. Having computed the structure of the kth column of L, how do we update the
structure?

The representation of the matrix L is simple. We can put it in a pcmat L. The
components of the structure will have slightly different meanings—e.g., L.colp(k)
points to the first nonzero entry in the kth column— but that causes no problems. We
have already done something like this in referring to the graph G(L + LT) as G(L).

The second problem stems from the fact that we must allocate storage to contain
the arrays val and rx in the pcmat structure. The length of these arrays is nnz —the
number of nonzero elements in L — which is initially unknown. Fortunately, we can
use Etgen (Algorithm 7.1) to compute nnz. The auxiliary storage required for Etgen is
proportional to the order of the original matrix, which is known at the outset.

There is an elegant way of keeping track of the children. We create an array bs
(for baby sitter) of length n and initialize it to zero. When we find a child of, say,
node 7 we put its number in bs[j]. If we find another child, we place it in bs[bs[j1],
and so on. After we have computed the structure of column j, we zero out the cor-
responding components of bs. Note that if j has, say, two children then the contents
of bs[bs[bs[jl1] will always be zero, because node bs[bs[j1], being a child of j,
will have already been processed. Thus when we encounter a zero component in the
sequence bs[j], bs[bs[j1], ..., we will have processed all the children of j.

By way of illustration, Figure 8.2 exhibits the contents of the baby-sitter array as
we proceed through the tree in Figure 8.1. The number to the side in a row is the node
that has just been processed. The number at the top is the position in the baby-sitter
array.

The merging problem arises from the fact that the columns structures of the children
of a node will not all be the same. For example, if the column structure of node j;
is {4,7,9} and that of jo is {5,7,10}, then we must merge these structures to get
{4,7,9,10}. A natural way to proceed is to initialize and array of n integers to zero.
When we encounter a new element of the structure, we set the corresponding entry of
the array to one. The trouble with this approach is that at the end of determining
the structure of column k, we must search entries k,...,n of the array to recover the
structure. Repeated n times, this gives an O(n?) algorithm.

The alternative we will use also requires an auxiliary array, ma (for merge array), of
length n. Its use is best seen through an example. Suppose that we are accumulating
the structure of column 3, of a matrix of order 10, and suppose the current state of the
structure set is {3,5,6,9}. Then the merge array contains the following entries.

11 11 511 6 9 11 11 11 11
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123 45 6 78 9 10 11 12
1: 000010O0O0OO0OCO0O O O
2: 00001020 0 0 0 O
3: 00001023 0 0 0 O
4: 00 401023 0 0 0 O
5: 00400023 5 0 0 O
6: 00406 023 5 0 0 O
7: 00 406 003 5 7 0 0
8: 00 0O0CG6GO080 5 7 0 O
9: 00O 00080 0 7 9 0
10: 0 00000 O0OO0OT10 0 9 0
1: 0 0 000000 0 0 0 11
12: 00 0000O0OO0OO0O O O O

Figure 8.2: A baby-sitter array

Thus the first element of the structure is 3 (the number of the column under consider-
ation), the second element is ma[3] = 5, the third is ma[5] = 6, and so on. Note that
unused members of ma are set to n+1, so that if m[il=n+1 we are at the end of the merge
list.

To keep things simple, we will assume that we have at hand a routine

Merge(B, j, k, ma)

that merges the structure of column j of B into the current structure for column k. We
will later give code for Merge.

The problem of filling in the columns of the pcmat for L is relatively simple, but
again for convenience we relegate this computation to a function

Makecol(k, ma, L)

that takes the output of Merg and transfers it to the kth column of the pcmat L. This
routine also reinitializes the merge array.

Algorithm 8.1 performs symbolic factorization. It is relatively straightforward. It
uses Merge to initialize ma to the kth column of A, after which it folds in the structures
of the children of node k. It then generates the kth column of L from ma and uses it
to update the baby sitter. The loop beginning with statement 11 is the heart of the
algorithm. Since a child can have only one parent, the call to Merge is executed only
n-1 times.

Algorithm 8.2, merges column structures. It depends on the facts that the structure
of column k starts at k, that the row indices from column j of B are strictly increasing,
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Symbolfac computes the symbolic factorization of the matrix in the pcmat A and places
it in the pcmat L, which is assumed to be suitably initialized.

1. Symbolfac(A, L)

2. pcmat A, L
3. int bs[n], mal[n]
! Initialize.
4. for i=1 to n
5. bs[i] = 0
6. mali] = A.n + 1
7. end for i
! Main loop on columns of A.

8. for k=1 ton

! Compute the structure of the kth column.
9. Merge(A, k, k, ma)
10. j = bs[k]
11. while (j !'= 0)
12. Merge(L, j, k, ma)
13. jt = bsl[jl; bsl[jl = 0; j = jt
14. end

! Set up the kth column of L.
15. Makekcol(k, ma, L)

I Update the baby sitter.
16. if (k !'= n)
17. j = L.rx[L.colp[k] + 1] ! j is the parent of k
18. while (j !'= 0) jt = j; j = bs[jl; end
19. bs[jt] = k
20. end if

21. end for k
22. end Symbolfac

Algorithm 8.1: Symbolic factorization




An Old-Fashioned Sparse Solver 37

Merge merges the structure of the jth column of B into the current structure of column
k as represented by ma.

1. Merge(B, j, k, ma)

2. m=k
! Loop over elements in column j of B.
3. for ii=B.colp[jl+2 to B.colp[j+1]-1
4, i = B.rx[ii]
I Search for m and ml1 with m < i <= ml.
5. ml =m
6. while (i > ml)
7. m = mi;
8. ml = ma[m]
9. end while
10. if (4 !'= ml)
! ITnsert i in ma.
11. ma[m] = i
12. mal[i] = mil
13. end if
14. m=1i
15. end for ii

16. end Merge

Algorithm 8.2: Merging structures
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Makecol takes the structure for column k contained in ma and transfers it to the kth
column of the pcmat L. It also reinitializes the merge array ma.

1. Makecol(k, ma, L)

2 if (k = 1) L.colp[1] = 1; fi
3 ii = L.colp[k]

4. m=k

d. while (m < L.n+1)
6 L.rx[ii] = m
7 ii = 1ii + 1

8 mt = ma[m]

9. ma[m] = L.n+1
10. m = mt

11. end while

12. L.colplk+1] = ii
13. end Makecol

Algorithm 8.3: Generate a column of L

and that the unused parts of ma are set to n+1. By initializing m to k and resetting it to
i = B.rx[ii] after element i has been processed, we can be assured that at statement 6
we have m < i. Thus we have a starting point to search for a bracket [m,m1] satisfying

m < i <= ma[m] = mi.

Once this bracket has been established, we can easily incorporate i into ma. The fact
that the unused parts of ma are set to n+1 makes the algorithm work when we are
appending an element to the end of the list.

The merging starts with the third element in column j. The reason is that the first
element is the jth, which cannot be in the structure of column k, since j<k. The second
element of column j has the row index k, since j is a child of k, and therefore j was
entered into the structure of column k when the kth column of A was processed.

At worst any call to merge involves passing through the number of elements in k,
and merge must be called for each child of k. if CMAX is the maximum number of
children any node has, then total time spent merging will be bounded by CMAX*L .nnz.
In practice, nodes in an elimination tree are an infertile lot and tend to have only one
or two children.

Algorithm 8.3 takes the merge array and generates a column of L. Essentially it
traverses the array ma and transfers the row indexes to L.rx. The reinitialization of
the merge array ma illustrates a point about the economics of sparse elimination —one
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that we have already encountered in connection with the generation of the elimination
tree. In the program Symbolfac we initialized the array ma in statement 6, and it would
seem more natural to reinitialize it by moving the initialization inside the loop on k.
However, that would result in O(n?) operations, which we have seen is unacceptable.
On the other hand, Makecol only reinitializes the components of ma that have actually
been changed, so that the total work in maintaining ma is proportional to the number
of nonzero elements of L.

9. The Numerical Coda

The object of the long development above is to put us in a position where we can solve
the sparse system Ax = b. As we have seen earlier we can do this by computing the
Cholesky factor L of A and solving the systems Ly = b and L'z = . Because we have
predetermined the structure of L, the numerical factorization and triangular solves are
something of an anticlimax — a straightforward translation of standard algorithms into
the language of pcmats. We will begin with the factorization.

9.1. Numerical factorization

The numerical factorization is an implementation of the algorithm Colchol (Algo-
rithm 3.1). It heart is the computation of the sum

k—1
a,(ck) — Z )\kjfg-k),
A p o0

where a;k) = Alk:n, k] and Eg-k) = L[k:n, j]. There are two problems associated with this
computation.

The first problem is how to locate the columns j for which Az; # 0. But these
columns correspond to the nonzero elements in row k of L. Thus we can locate them
using the routine RowTrav (Algorithm 5.2). In fact RowTrav will turn out to be the
driver of our algorithm.

The second problem is where to accumulate the sum. One possibility is to accumu-
late it in the kth column of the pcmat L. This can certainly be done, but the indexing
is complicated, since Eg-k) will generally have fewer nonzeros that E,gk). An alternative, is
to use an accumulator array accum of length n. We zero out the components of accum

(k)

corresponding to the nonzero elements of £, and then load the nonzero components of
a,gk) into their natural positions. After the sum has been accumulated in the array, it is
modified to give the kth column of L and returned to the kth column of the pcmat.

Algorithm 9.1 performs the numerical factorization. Note the nice way RowTrav
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Numfac overwrites the pcmat L with the Cholesky factor of A.

I el e e R e e e el
XX WO

21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.

© NG w N

Numfac(A, L)
k=-1
RowTrav(L, k, j, poskj)
for kx = 1 to L.n ! Process column k
while (RowTrav(L, k, j, poskj) != 0)
if (j = k) ! Initialize accum.
for ii=L.colp[k] to L.colp[k+1]-1
accum[L.rx[ii]] = O
end for ii
for ii=A.colp[k] to A.colp[k+1]-1
accum[A.rx[ii]] = A.vall[ii]
end for ii
else ! Subtract L[k:n,j] from L[k:n,k]
Lkj = L.val[poskj];
for ii=poskj to L.colp[j+1]-1
i =L.rx[ii];
accum[i] = accum[i] - Lkj*L.val[ii]
end for ii
end if
end while

Move L[k:n,k] from accum to L, adjusting its components.
for ii=L.colp[k] to L.colp[j+1]-1
i = L.rx[ii]
if (i = k)
L.val[ii] = sqrt(accum[i])
Lkkinv = 1/L.val[ii]
else
L.val[ii] = Lkkinv*accum[i]
end if
end for ii
end for kx
end Numfac

Algorithm 9.1: Numerical factorization
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supports the algorithm. The first element it returns in row k is the kth, which is just
what we need to initialize accum. Moreover, when we get the jth element, poskj points
to the top of the vector Zg-k).

There are four comments to be made about this algorithm.

e The use of an accumulator has the disadvantage that references are spread out
unsystematically across an array of memory consisting of n words. Such references
are known to reduce cache performance —i.e., to slow the rate at which items are read
from or written to memory. If we perform the elimination within the pcmat L, the
references are less separated in memory, which improves cache performance at the cost
of additional indexing.

e The only part of the array accum that needs to be initialized at each stage are the
(k)

components corresponding to the nonzeros of £;”’. Thus the initialization costs are
proportional to L.nnz.

e The elements of A are automatically transferred to L in the process of initializing
accum.

® In some applications we must repeatedly solve systems of the same structure but
with different numerical values. Because the Cholesky factors will also have a common
structure, we can reuse L when we perform the numerical factorizations.

9.2. Triangular solves

As we have seen earlier, we can solve the system Ax = b by solving the two systems
Ly = band LTz = y. We will now show how to solve these systems when L is represented
by a pcmat.

Since in a pcmat column traversals are more efficient that row traversals, we should
use a column oriented algorithm to solve the system Ly = x. We can derive one as
follows. Partition the system in the form

A0\ [(n\ _ (B
¢ L)\g) \b)"
Then from the first row of the partition, we get

An =B,

from which we find

From the second row, we get
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Let the lower triangular matrix L be contained in the pcmat L and let b be contained
in an array b. Lsolve overwrites b with the solution of the system Ly = b.

1. Lsolve(L, b)

2 for j=1 to L.n

3 b[j] = b[jl/L.vallL.colp[jl]

4 for ii=L.colp[jl+1 to L.colp[j+1]-1
5. i = L.rx[ii]

6 bli] = b[i] - b[jI*L.vall[iil

7 end for ii

8 end for j

9. end Ltsolve

Algorithm 9.2: Solution of Ly = b

from which we find R
Lj=0b—nt.

This is a linear system of order one less than the original, which can be solved by a
recursive application of the above process.
All this leads to the following algorithm.

1. y=b

2. For j=1 ton

3 y[3j1 = bl[j1/LLj,]]

4, for i=j+1 ton (9.1)
5 y[il = y[i]l - y[jl*LI[i,j]

6. end for i

7. end for j

The algorithm destroys the original right-hand side b, which in many applications is not
needed. In fact, we can arrange for the algorithm to overwrite b with the solution y by
replacing all references to y with references to b.

Algorithm 9.2 overwrites b with the solution of Ly = b. It is a straightforward
implementation of (9.1) for a pcmat L. Note that it touches each nonzero element of L
only once. Hence it runs in time proportional to L.nnz.

Turning now to the solution of L'z = b, we first note that if we set U = L', then U
is upper triangular. Since the columns of L correspond to the rows of U, we must now
find a row oriented algorithm for solving Uz = b.

The algorithm, which is the classical back-substitution algorithm taught in connec-
tion with Gaussian elimination, can be derived as follows. Partition the system Uz = b
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as follows.

Then from the last row we have
and from the first row

Thus if we have already solved for & (by a recursive application of our algorithm), we
can solve for ¢ in the form

1, T

E=v u L.

The following algorithm, in which x overwrites b, implements this scheme.

1. for i=n to 1 by -1

2 for j=i+l ton

3 b[i]l = b[i] - b[j]1*U[i,j]
4. end for j

5 b[i] = b[i]/U[i,i]

6. end for i

When we write the algorithm in terms of L, we get

1. for j=n to 1 by -1

2 for i=j+1 ton

3 b[jl = bl[jl - blil*L[i,jl
4. end for i

5 blj] = b[j1/LL],]]

6. end for j

Algorithm 9.3 overwrites b with the solution of L'z = b. Like its counterpart for
Ly = b, it runs in time proportional to L.nnz.

10. Back to the future

We have completed the construction of our old-fashioned sparse solver. It is not a toy.
Around 1975, highly skilled researchers were working hard to perfect a solver like ours.
But neither is it a state-of-the-art, twenty-first century solver. To give you a feel for
what came after, we will look at two ideas that have played an increasingly important
role in sparse matrix technology: supernodes and multifrontal elimination.

Both these ideas address a problem that we have mentioned in connection with Algo-
rithm 9.1 for numerical factorization: namely references to elements in the accumulator
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Let the lower triangular matrix L be contained in the pcmat L and let b be contained
in an array b. Ltsolve overwrites b with the solution of the system L'z = b.

1. Ltsolve(L, b)

2 for j=n to 1 by -1

3 for ii = L.colp[jl+1 to L.colp[j+1]-1
4. i = L.rx[ii]

o. b[j] = b[j] - bl[il*L.vall[iil

6 end for ii

7 b[j]l = b[jl/L.val[L.colp[j]l]

8 end for j

9. end Ltsolve

Algorithm 9.3: Solution of LTz = b

jump around irregularly over n memory locations. This not only can slow down memory
access, but it also makes it difficult to vectorize the computations. Both approaches
mitigate this problem by concentrating at least some of the memory references into a
compact, fully utilized region of memory.

The purpose of this section is to sketch in outline, and we will not present things in
detail as in the earlier sections. If you like, look on the statements here as postgraduate
exercises, where you have the opportunity to test your mastery of the subject.

10.1. Supernodes

A supernode is a maximal sequence of consecutive of column indices of L, whose columns
have essentially the same structure. Specifically, the sequence s,...,s+t—1 form a
supernode if

str(fs) = str(ls4e—1) U{s,s+1,...,s+t—2}.

Since s, ..., s+t—1 are in the structure of /5, the the lower triangle of the matrix L(s:s+
t—1, s:s+t—1) must be full. Moreover, the structure of the columns below this triangle —
i.e., columns L(s+t:n,j) (j = s,...,s+t—1)—must have the same structure. The
structure of a supernode is illustrated in Figure 10.1. It might be thought that the
supernode structure is so special that it is unlikely to arise in practice. On the contrary,
many problems give rise to matrices with a rich supply of supernodes.

In our packed column representation, all the nonzero elements of a supernode end
up stored columnwise in the contiguous region of memory from L.val(L.colp(s)) to
L.val(L.colp(s+t)-1). This has an important implication for the numerical factor-
ization phase of our old-fashioned solver. Suppose that the columns of a supernode have
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B B D4 O BB O O O B4 bd Dd B
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Figure 10.1: A typical supernode

been generated, and they need to be used to generate a subsequent column. Ordinarily,
a multiple each column of the supernode would be subtracted from the accumulator in
Algorithm 9.1. But alternatively, we can compute the sum of each contribution directly
from the array array L.val, which can be done quite efficiently because of the supernode
structure. This sum can then be added into the accumulator as usual.

A less significant savings must be had when the supernode itself must be factored.
Namely, one can apply columns 1,...,s—1 to all the columns of the supernode in the
usual way, and the factorization can be completed in the array L.val.

There are many applications of supernodes that cannot be illustrated by our old-
fashioned solver. For example, they can be used to reduce effective size of the graph of
L. This is done by regarding the set {s,...,s+t—1} as a single node (whence the name
supernode) and adjusting the edges so that any edge involving one of the nodes, is now
associated with the supernode. This trick can save considerable time in manipulations
with the graph of L.

Supernodes can be calculated directly from the packed column structure of L. In
fact, one only needs to know the number 7(j) of nonzero elements in column j of L.
Specifically, {s,...,s+t—1} is a supernode if and only if it is a maximal set of nodes
such that s+i—1 is a child of s+¢ in the elimination tree and

n(s) =n(s+t—1)+¢t— 1. (10.1)

However, there are other ways of detecting supernodes, and which one is most suitable
will depend on the details of the solver.
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10.2. The multifrontal method

We will introduce the multifrontal method by considering the classical Gaussian elimi-
nation algorithm sketched Section 3.1. The matrices in this method are associated with
rows of A and L, and will be convenient to extend our previous notation. Recall that

(k)
J
ward —i.e., L(k:n, 7). In what follows we use the superscript ¥) for the part of a vector
associated with rows k through n, or the trailing principal submatrix of a matrix that
begins with its (k, k)-element.

Let the equation A = LLT be partitioned in the form

(0551 agZ)T _ A11 0 )\11 EEZ)T
al?  A® 42 @)\ o por)

Then as in Section 3.1, we find that
L A= /an,
2 -1 (2
2. 25 )= >‘111ag1)
3. LOLAT = 4@ _ /27T = 4@ 4y

we used £’ to represent the part of the jth column of L extending from Aj; down-

where U1(2) is called an update matriz.
Conventional Gaussian elimination would continue the process with the matrix

A®) — U1(2). But the computations can be arranged differently. Instead of incorporating

the updates in Ul(Z) and its successors into the current matrix, we can accumulate them

in update matrices and use them to generate L column by column. Specifically, let
k
Ul = =3 M er, (10.2)

be the (k—1)th update matrix. We now partition

k k+1)T
U(k) — Ul(c—)l u/(c—+1 :
k—1 u(k-i—l) U(k+1)

k—1 k-1

and form the frontal matriz

Fo=| 0% V) s ST W (P A

al(c 1 ugckjll) Uélil) ggcﬂ) Uélil)
From (10.2) it follows that the first column of Fj is a;k) with updates and is therefore
the vector é,gk) in equation (3.5). Consequently \gp = V/ A1, and E,(Ckﬂ) = Afllélgk+1).
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Thus we have computed the kth column of L. The next update matrix is given by

Ulgkﬂ) _ Ulglil) _ glgk+l)£](€k+l)T.
Proceeding in this manner we can compute all the columns of L.

On the face of it, this is a perfectly silly way to implement Gaussian elimination.
Computing a column of ¢ by adding an update matrix into a mostly empty matrix is
plainly inefficient. But this is only because for a general dense matrix the order of
elimination is fixed —a fact reflected in its elimination tree, which is a straight line
going from its root at node n to its single leaf at node 1.

Things are otherwise for a sparse matrix whose elimination tree has many branches.
In particular, because the kth column of L depends only on the columns of A cor-
responding to T'[k], we can compute it without having to to compute any columns
corresponding to the set complementary to T'[k]. To see this, let j be a child of k, and

define the update matrix U;k) by
k k) ,(k
Uf = S BT, (10.3)
1eT'[j]

If we sum the U](k) over the children of k, it can be verified (this is your final exam in
elimination trees) that the first column of the sum is precisely the vector that must be

added to a,(ck) to get EA,(Ck)
All this leads to the following algorithm for computing E;k) and U ,gp ), where p =
parent (k).

1. Assemble the frontal matrix

(k) (k+1)T % (k+1)T

are 0 LY Akk

B = ( (k-+1) )"‘ > < (1) ](k+1)> = <A(k+1) Frny |- (10.4)
A 0 j achild of & \%j U; t, Fy

2. Compute
>\kk == \/ j\kk and fl(ck—i—l) = )\Izklél(ck—i—l)

3. Let p = parent(k) and compute
T

By executing this algorithm for kK = 1,...,n, we can compute the Cholesky factor of A.
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This is still not a working algorithm, since it consumes too much storage. In the
first place, the update matrices are symmetric. This problem may be solved by storing
only the lower half of of these matrices, and likewise for the frontal matrices.

More important, the update and frontal matrices are sparse. For from (10.3) and
the fact that

i € Tj] = str(£")) c str(el),

it follows that if ¢ ¢ str(ég-k)) then the row and column of U](k) corresponding to ¢ are
zero. A similar statement holds for the frontal matrices. The cure is to remove these
empty rows and columns to give full dense matrices. When we do this, however, the
assembly of the frontal matrix becomes more difficult, since the update matrices U](k)
in (10.4) are no longer of the same size. What one has to do is to calculate where each
element in the update matrices goes in the frontal matrix and add it in. This creates
additional overhead for the algorithm. But at least we are working with dense matrices.

A final adjustment of the algorithm is necessary. We can form update matrices in
any order as long as we form the update matrix for the children of ;5 before we form
the update matrix for 5. However, no update matrix can be discarded until it has been
used to compute the update matrix of its parent. For example, if in the elimination
tree of Figure 8.1 we generate elimination trees in the natural order, at one point we
will have to store the five update matrices corresponding to columns 2, 3, 4, 5, and 6.
On the other hand, if we generate update matrices in the order 1, 5, 6, 9, 3, 4, 8, 2, 7,
10, 11, 12 we never have to store more that two update matrices at any one time. This
latter is an example of a postordering of a tree, and it is not surprising that consumers
of multifrontal algorithms are keenly interested in finding optimal postorderings.

Supernodes mix well with the multifrontal approach. With proper organization, the
method requires only one update matrix per supernode. If there are many nice fat
supernodes the savings will be proportionately great.

11. Bibliographical notes

Just as it was impossible to present a fully modern sparse solver in this paper, it is
equally impossible to give a full bibliographical survey of the subject. The following
notes contain some primary references along with more recent references containing
surveys and bibliographies.

11.1. Sparse matrices and solvers

In 1968 Ralph Willoughby organized a meeting on sparse matrices at the IBM Research
Center at Yorktown Heights and edited its proceedings [27]. This meeting marks the
emergence of the subject as a coherent field. It was followed by a sequence of meetings,
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whose proceedings give a history of the development of the subject over a little more
than a decade [2, 4, 6, 17, 19].

It is only fair, however, to note that many of the techniques that would prove
important after the first sparse matrix meeting were in place before it began. In a 1963
paper Sato and Tinney [22] describe a compressed row storage scheme for the sparse
factors and the use of an accumulator in the numerical factorization. In addition, they
propose a primitive ordering scheme, which today we should call a minimum degree
ordering based on the original rows. In 1967 Tinney and Walker [26] described the
classical minimum degree ordering. Although they do not say how they computed it,
they comment

At the completion of the optimal ordering algorithm [scheme 2) or 3)], the ex-
act form of the table of factors is established and this information is recorded
in various tables to guide the actual elimination.

In other words, in a combined ordering and symbolic factorization, they set up the struc-
ture for the subsequent numerical factorization —just like subsequent sparse solvers.
The terms symbolic factorization, numerical factorization, and solve, along with a com-
pressed row storage scheme, were introduced by Chang [3] at the 1968 sparse matrix
meeting.

There are not a large number of textbooks on the subject of sparse matrices. George
and Liu’s Computer Solution of Large Sparse Positive Definite Systems [10], although
somewhat dated, is still valuable, and I have drawn heavily on it for this paper. Duff,
Erisman, and Reid’s Direct Methods for Sparse Matrices [5] is an excellent introduction
to the basics with a hands-on flavor. Unfortunately, both books are out of print.

Grid-graph matrices arises from elliptic partial differential equations discretized on
a square. They had traditionally served as model problems for the solution of linear
systems by iterative methods, and their factorization naturally became an important
problem in direct sparse algorithms. The nested-dissection ordering is due to George [8]
as are the operation and fill-in counts given here. For the optimality of nested dissection
see [11].

There is a large literature on ordering, which we cannot survey here. The texts
cited above contain much useful material. Saad’s Iterative Methods for Sparse Linear
Systems [21] contains a brief survey of ordering methods with pointers to the more
recent literature.

A happy practice of the sparse community is that they implement their algorithms
in high quality software. The solver of this paper is a cousin of two excellent packages
produced in the 1970’s: The Yale Sparse Matrix Package [7] and SPARSEPACK [10,
Appendix A], developed at the University of Waterloo.
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11.2. The Cholesky decomposition and fill-in

For the basic variants of Gaussian eliminate see [24, Ch. 3]. The columnwise algorithm,
which we use here, has a rowwise analogue, which can also been used to implement
sparse solvers.

The result (3.7) on a-precursors is an example of a general class of theorems that
go under the rubric of path theorems. In terms of graph theory (3.7) says that if
Aik # 0 then there is a path k, ki,...,kp,i in G(L) with the k; < k and a5, # 0. The
granddaddy of path theorems is the elegant result, due to Rose, Tarjan, and Lueker
[18], that A\;, # 0 if and only if there is a path k, ki, ..., kp, 7 in G(A) with the k; < k.

I devised reflection diagrams in an attempt to simplify the proofs in the literature.
However lain Duff has told me that he has used such diagrams informally. They also
appear in an unpublished manuscript by Gibert and Lui.

11.3. Representing and manipulating sparse matrices

There are many other schemes for representing sparse matrices than packed column
format. Saad [20] gives descriptions of the most important ones along with programs
for converting from one to the other.

The row traversal algorithm was designed specifically for this paper, but it was
inspired by the numerical factorization code in George and Liu [10].

11.4. Graphs

Parter [16] was the first to relate graphs and Gaussian elimination applied to sparse
matrices. As George [9] points out, however, the graph-theoretic results most useful in
sparse applications have been developed independently of classical graph theory. On
the other hand, algorithms for manipulating graphs, developed primarily by computer
scientists, are widely used in sparse matrix technology. Two standard references are
[1, 25].

11.5. The elimination tree

The elimination tree is so useful that it or its near equivalents were invented and rein-
vented by several people (for a list of references see [12, p.130]). Liu [13] gives a mag-
isterial survey of the elimination tree and its applications, which has greatly influenced
this paper.

Algorithm 7.1 for generating the elimination tree is due to Liu [12, 13]. It is less
efficient than it might be, taking time proportional to L.nnz. We can improve it by a
process known a path compression. Specifically, in a separate array we record the most
distant ancestor currently found for each node. When it comes time to start searching
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from node i we can use this information to jump over already touched nodes. The
process reduces the time to O(A.nnz logn). (This algorithm is also due to Liu [12].) For
our solver there is not much to choose between the two since the work in the numerical
factorization is generally much greater than O(L.nnz).

11.6. The numerical coda

Schrieber [23] gives an algorithm for numerical factorization that avoids using an accu-
mulator. It is based on two observations.

First, the elimination tree can be used to guide the computation of the correction in
column k. To illustrate this, consider the node 10 in the elimination tree in Figure 8.1.
Assuming that all the nodes below 10 form the row structure of row 10 of L, we can
combine column 2 with 7, columns 3 and 4 with 8, and finally columns 7 and 8 with 10.
This can be done quite efficiently with a stack of auxiliary storage. Get storage for 10,
then 7. Combine 2 and 7, then 7 and 10, popping the storage for 7. Get storage for 8,
combine 3, 4, and 8, then 8 and 10, popping the storage for 8.

The advantage of this scheme is that the storage for a top node of a combination is
exactly the size of the column structure of the that node— generally much smaller than
the size n of an accumulator. Consequently, there is less jumping around of memory
references and better cache performance.

The second observation is that instead of storing row indices for a column of L, we
can store the relative indices of where the elements will end up when the column is
combined with its parent column. This not only makes combining columns easy, but
it also reduces storage overhead, since the relative indices are smaller than row indices
and can be packed into a smaller part of memory.

11.7. Back to the future

A good source of references for supernodes is [15], which contains the condition (10.1).
Liu [14] gives a survey of multifrontal methods, including references for the use of
supernodes and relative indices.
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