
University of Maryland College ParkInstitute for Advan
ed Computer Studies TR{2003{95Department of Computer S
ien
e TR{4527
Building an Old-Fashioned Sparse Solver�G. W. StewartyAugust 2003ABSTRACTA sparse matrix is a matrix with very few nonzero elements. Many appli
a-tions in diverse �elds give rise to linear systems of the form Ax = b, where Ais sparse. The problem in solving these systems is to take advantage of thepreponderan
e of zero elements to redu
e both memory use and
omputationtime. The purpose of this paper is to introdu
e students (and perhaps theirtea
hers) to sparse matrix te
hnology. It is impossible to treat all the te
h-niques developed sin
e the subje
t started in the 1960's. Instead, this paper
onstru
ts a sparse solver for positive de�nite systems that would have beenstate of the art around 1980, emphasizing equally theory and
omputationalpra
ti
e. It is hoped that a mastery of this material will allow the reader tostudy the subje
t independently.

�This report is available by anonymous ftp from thales.
s.umd.edu in the dire
tory pub/reportsor on the web at http://www.
s.umd.edu/�stewart/.yDepartment of Computer S
ien
e and Institute for Advan
ed Computer Studies, University of Mary-land, College Park, MD 20742 (stewart�
s.umd.edu).

Building an Old-Fashioned Sparse SolverG. W. StewartABSTRACTA sparse matrix is a matrix with very few nonzero elements. Many appli
a-tions in diverse �elds give rise to linear systems of the form Ax = b, where Ais sparse. The problem in solving these systems is to take advantage of thepreponderan
e of zero elements to redu
e both memory use and
omutationtime. The purpose of this paper is to introdu
e students (and perhaps theirtea
hers) to sparse matrix te
hnology. It is impossible to treat all the te
h-niques developed sin
e the subje
t started in the 1960's. Instead, this paper
onstru
ts a sparse solver for positive de�nite systems that would have beenstate of the art around 1980, emphasizing equally theory and
omputationalpra
ti
e. It is hoped that a mastery of this material will allow the reader tostudy the subje
t independently.1. Introdu
tionA matrix A of order n is said to be sparse if it has a very small number of nonzeroelements. In this paper we will be
on
erned with solving sparse linear systems of theform Ax = b: (1.1)Sparse systems arise in many
onne
tions|
uid dynami
s, stru
tural engineering, lin-ear programming, e
onomi
 models, ele
tri
al
ir
uits, just to name just a few. The
aryou drive was designed in part by solving large sparse systems.Sparsity is a desirable property. If A is dense| if most of its elements are nonzero|then solving the system requires work proportional to n3. On my PC, I
an solve asystem of order one thousand in about eight se
onds. The n-
ubed law says that itwould take over two hours to solve a system of order ten thousand, and ten thousandis not espe
ially large in many appli
ations. Sparsity represents a hope of getting outof the n-
ubed trap by taking advantage of the large number of zero elements.Storage is also a problem. The memory needed to store a dense matrix in
reasesas the square of its order. To store a dense matrix of order one thousand requires amillion words of eight-byte
oating-point words or about eight megabytes|well withinthe range of a garden variety PC. On the other hand a matrix of order ten thousandrequires eight hundred megabytes, whi
h is not found on your typi
al PC or workstation.But if the same matrix has only, say, ten elements in a row, the storage requirement forthe nonzero elements is eight hundred kilobytes. The savings are obvious, although aswe shall see later bookkeeping overhead raises the storage
ount somewhat.2

An Old-Fashioned Sparse Solver 3We will be
on
erned with dire
t as opposed to iterative methods for solving (1.1).Most dire
t sparse matrix solvers are based on some variant of Gaussian elimination.The broad outline is the same as for dense solvers. The matrix A in question is fa
toredinto the produ
t A = LU; (1.2)where L is lower triangular and U is upper triangular. The system Ax = b
an then besolved in two stages.1. Solve Ly = b2. Solve Ux = y (1.3)Sin
e L and U are triangular, the systems in (1.3)
an be solved eÆ
iently by standardalgorithms that require no further redu
tion of L or U .The purpose of this paper is to provide a look at the te
hnology people use to takeadvantage of sparsity. We will do this by building a sparse solver for symmetri
 positivede�nite systems. Now the sparse matrix ball started rolling in the 1960s, and it isimpossible to in
lude all the sophisti
ated te
hniques developed over the past thirty�ve years in a single expository paper. Instead we will build an old-fashioned solver|one that would have been
onsidered state-of-the-art around 1980. The situation isanalogous to des
ribing a
ar of the late 1920s,
ars that �rst exhibited the standardfeatures of today's
ars. Cars and solvers have
ome a long way from their beginnings.They've been streamlined and super
harged. Their infrastru
tures| the roads and
omputers they run on|have improved immeasurably. But in a modern
ar there isthe soul of a Model-A Ford. Likewise, the heart of most sparse solvers is a relative ofthe old-fashioned solver we des
ribe here.This paper is organized as follows. In the next se
tion we will dis
uss generalitiesabout sparse matri
es and solvers and introdu
e a spe
i�

lass of sparse matri
es touse as an example later. In Se
tion 3, we will treat the Cholesky algorithm, a variant ofGaussian elimination that fa
tors a symmetri
 positive de�nite matrix A into a produ
tLLT, where L is lower triangular (L is
alled the Cholesky fa
tor of A). We will alsoshow how this algorithm generates �ll-in|nonzero elements in L where A had zeroelements. In Se
tion 4 we will des
ribe a useful pi
torial te
hnique for tra
king �ll-in asit o

urs. In Se
tion 5, we will introdu
e the data stru
ture we will use to represent asparse matrix and illustrate its manipulation by two algorithms. The next two se
tionsare the mathemati
al heart of the paper. Se
tion 6 gives a brief treatment of the graphtheory required to derive our algorithm. Se
tion 7 is devoted to the de�nition andproperties of a parti
ular graph,
alled the elimination tree, that is the basis of oursubsequent algorithms. In Se
tion 8, we will show how to
ompute the stru
ture ofthe Cholesky fa
tor L so that we
an set up a data stru
ture to hold it. This pro
ess,
alled symboli
 fa
torization, is followed by the a
tual numeri
al fa
torization, whi
h is

4 An Old-Fashioned Sparse Solvertreated in Se
tion 9. Finally, in Se
tion 10 we brie
y dis
uss modern additions to oursparse solver. The paper
on
ludes with some bibliographi
 notes.In the
ourse of the exposition, we will present several algorithms. They will bewritten in a pseudo
ode that should be readable by anyone reasonably familiar withone of the standard high level languages; e.g., Fortran 95 or C. It is a hodge-podgethat tilts toward Fortran. In parti
ular, all arrays begin indexing at one, and subpro-gram parameters are passed by referen
e, so that modi�
ations made to them in thesubprogram are passed ba
k to the
alling program.A word on notation. Matri
es will be written with upper-
ase letters and ve
torswith lower-
ase letters. S
alars will be written with lower-
ase Roman or Greek letters.In parti
ular, elements of A, L, and U will always be denoted by the Greek letters �,�, and �.The reader is assumed to be familiar with the basi
s of matrix
omputations: the useof partitioned matri
es to derive algorithms and espe
ially Gaussian elimination. Fromthis standard ba
kground, however, the paper qui
kly moves into un
harted territory,and the reader should be prepared to pore over passages until understanding
omes. Anote pad and a pen
il equipped with a good eraser are essential tools. I hope that whenthe reader
omes to the end of the journey he or she will feel that the e�ort was wellspent.2. Sparse Matri
es and Sparse SolversIn this se
tion we will
onsider generalities about sparse matri
es and sparse solvers.We begin with a dis
ussion of what
onstitutes a sparse matrix.2.1. Sparse matri
esThe notion of a sparse matrix is one of those
on
epts that is most useful if it is notpinned down too tightly. The reason is that matri
es
ome in so many varieties thatthe attempt to give a formal de�nition of sparseness is likely to ex
lude matri
es thatsomeone would naturally
onsider sparse. Nonetheless, there are some guidelines.First, the number of nonzero elements must be small enough. Most people would not
onsider a triangular matrix sparse, sin
e only about half its elements are zero. Whenthe positions of the nonzero elements of a matrix| its stru
ture we
all it|dependson its order, the matrix is
ommonly
alled sparse if the number of nonzero elementsis O(n). But many matri
es
annot be treated this way|models of ele
tri

ir
uitsfall in this
ategory. In that
ase the most useful de�nition is operational: a matrix issparse if its manipulation
an bene�t from sparse te
hnology.Se
ond, many people would ex
lude matri
es that
an be treated by minor extensionsof dense matrix te
hnology. For example, a tridiagonal matrix is one whose nonzero

An Old-Fashioned Sparse Solver 5elements lie only on the diagonal, the superdiagonal, and the subdiagonal of the matrix.It is about as sparse as you
an get. But a tridiagonal system
an be solved by anobvious variant of Gaussian elimination that simply ignores the zero elements. Bandmatri
es, where nonzero elements
luster in a band about the diagonal,
onstitute anintermediate
ase. If the band is dense, then a variant of ordinary Gaussian eliminationapplies. (It is signi�
ant that algorithms for dense band matri
es are generally foundin dense matrix pa
kages su
h as LAPACK.) On the other hand, if the band is sparse,it may pay to use an appropriate sparse solver.The dis
ussion in the last paragraph suggests that the stru
ture of the matrix playsan important role in the
onstru
tion of a sparse solver. For example, symmetri
 positivede�nite matri
es have spe
ial properties that distinguish them from general nonsym-metri
 matri
es, and the best solver for one is not suitable for the other. Thus sparsematri
es fall into
lasses that require di�erent algorithms. However, ea
h
lass o

ursfrequently enough in appli
ations to justify the design and implementation of a generalalgorithm for the
lass in question. In this paper, as we said earlier, we will be
on
ernedwith a general sparse solver for symmetri
 positive de�nite systems.2.2. Sparse solversGaussian elimination is at on
e the simplest and most
ompli
ated of algorithms. It isso simple that it
an be taught to undergraduates|even high s
hoolers. But it is so
exible that it yields many di�erent algorithms that are not obviously related. This isas true of dense systems as sparse ones, although the useful variants are not ne
essarilythe same for ea
h
ategory. Thus the �rst task in the design of a sparse solver is to
hoose an appropriate form of Gaussian elimination.Having de
ided on a variant of Gaussian elimination, the designer of a sparse matrixsolver fa
es some additional de
isions.1. How
an the matrix A be represented so that only nonzero elements are stored?2. The pro
ess of
omputing L and U from A will generate additional nonzero ele-ments,
alled �ll-in. Fill-in
reates two problems.1. Inter
hanging rows and
olumns of A and the
orresponding
omponents of b,simply inter
hanges the same
omponents of x, so that solution is essentiallyundisturbed. But it also a�e
ts the
ourse of Gaussian elimination and hen
ethe amount of �ll-in. It is therefore natural to ask if we
an order A to redu
e�ll-in.2. An eÆ
ient algorithm will need to know in advan
e where �ll-in o

urs sothat it
an allo
ate storage and set up data stru
tures for L and U . Thispro
ess is
alled symboli
 fa
torization (or analysis).

6 An Old-Fashioned Sparse Solver3. On
e the symboli
 fa
torization has been a

omplished, one must perform thea
tual numeri
al fa
torization. In general, the algorithms for symboli
 and nu-meri
al fa
torization are quite di�erent, with the symboli
 fa
torization being the
heaper and, paradoxi
ally, the more
ompli
ated.4. Finally, one must solve the triangular systems in (1.3). Sin
e L and U are notrepresented as arrays, the sparse algorithms are di�erent from their textbook
ounterparts.Thus a typi
al sparse solver pro
eeds through stages of ordering, symboli
 fa
toriza-tion, numeri
al fa
torization, and triangular solution. It should be stressed that thesestages are often
ombined or omitted. But you will not go far wrong in understandinga sparse solver if you ask if and how it implements ea
h of the above steps.Ordering is something of an ex
eption in the above list. More than the other steps, itdepends on the details of the appli
ation generating the matrix. For example, problemsasso
iated with two-dimensional manifolds generate matri
es for whi
h a good ordering
an often be found by a pro
ess
alled nested disse
tion. Be
ause of the spe
i�
ity ofordering algorithms, we will not treat them in this paper.2.3. Grid-graph matri
esIn this subse
tion we will introdu
e a
lass of sparse matri
es asso
iated with
er-tain ellipti
 partial di�erential equations de�ned on a square, say on the interval
 =[0; 1℄�[0; 1℄. Without going into details, the problem is turned into a matrix problemby pla
ing an (N +1)�(N +1) grid on the square as shown in Figure 2.1. Ea
h interiorgrid point (j; k) is asso
iated with an approximation to the solution ujk at that point.(Note that the indexing is not the same as for a matrix: the j is the
olumn index, kis the row index, and indexing starts from the southwest
orner.) From the di�erentialequation we
an derive a linear relation that involves ujk and its neighboring approxi-mations uj�1;k, uj+1;k, uj;k�1 and uj;k+1. Thus we have n = N2 linear equations in nunknows, whi
h
an be solved for the ujk. The
orresponding matrix is sparse be
auseea
h row involves only the unknown Ujk and its four neighbors.The matrix is also stru
tured. If we order the unknowns ujk rowwise thusu11; u21; : : : ; uN1; u12; u22; : : : ; uN2; : : : ; (2.1)then the matrix of the system has the formA = 0BBBBB�T1 D1D1 T2 D2.DN�2 TN�1 DN�1DN�1 TN
1CCCCCA ;

An Old-Fashioned Sparse Solver 7

0 1 2 3 4 5 6
0

1

2

3

4

5

6

u(3,4)

N+1

N+1

Figure 2.1: A Dis
retization Gridwhere the Ti are tridiagonal of order N and the Di are diagonal. This matrix, whi
hwe will
all a grid-graph matrix,
an be shown to be symmetri
 positive de�nite. It isalso a band matrix with a sparse band and therefore a
andidate for a sparse solver.We have introdu
ed it be
ause we know a great deal about its Cholesky fa
torization.Spe
i�
ally:For n large, there is an ordering of A (
alled a nested disse
tion ordering)su
h that A
an be fa
tored in approximately10n 32
oating-point additions and multipli
ations.Moreover, the Cholesky fa
tor L of A has approximately4n log2 n nonzero elements.Up to order
onstants these results are optimal. (2.2)
We will use these results later in assessing the e�e
ts of overhead in our algorithms.The result (2.2) shows the importan
e of ordering in sparse fa
torization. For thenatural ordering (2.1) the band of the Cholesky fa
tor is essentially full and has aboutnpn nonzero elements. Thus the ratio of nonzeros of the natural ordering to the nesteddisse
tion ordering is pn4 log2 n . When n = 90; 000,
orresponding to a 300�300 grid, thenatural ordering requires about 4:5 times the storage as the nested disse
tion ordering.

8 An Old-Fashioned Sparse Solver3. The Cholesky De
omposition and Fill-inOur sparse solve will be based on the Cholesky algorithm, a variant of Gaussian elim-ination that fa
tors a symmetri
 positive de�nite matrix into the produ
t LLT of alower triangular matrix and its transpose. In this se
tion we will �rst sket
h a proofthe existen
e of su
h a fa
torization. We will then des
ribe the variant of Cholesky'salgorithm that we will use here. The remainder of the se
tion is devoted to a dis
ussionof �ll-in.3.1. Existen
eIt might be expe
ted that the LU de
omposition A = LU of a nonsingular, symmetri
matrix should itself be symmetri
; i.e., that we
an write it in the formA = LLT; (3.1)where L is lower triangular. Unfortunately, this is not always the
ase. For supposethat x is nonzero. Then be
ause L is nonsingular, y = LTx 6= 0. It follows thatxTAx = xTLLTx = yTy =Pi y2i > 0:Thus only matri
es satisfying x 6= 0 =) xTAx > 0 (3.2)
an have a Cholesky de
omposition of the form (3.1). We
all any su
h matrix a sym-metri
 positive de�nite matrix.Being symmetri
 positive de�nite is not only ne
essary for a matrix to have aCholesky de
omposition, it is also suÆ
ient.Let A be symmetri
 positive de�nite. Then there is a unique lower triangularmatrix L with positive diagonal elements su
h that A = LLT.The various proofs of this result lead to variants of Gaussian elimination. For example,one proof begins by partitioning the fa
torization A = LLT in the form�� aTa Â� = �� 0` L̂��� `T0 L̂T� :Then
omputing the (1; 1)-element of the partition, we �nd that � = �2, so that that� = p�. Thus we have
omputed the (1; 1)-element of L. Similarly by
omputingthe (2; 1)-blo
k of the partition, we get ` = ��1a. Finally from the (2; 2)-blo
k of thepartition we �nd that L̂L̂T = Â� ``T � S;

An Old-Fashioned Sparse Solver 9so that L̂ is the Cholesky fa
tor of S (whi
h is
alled the S
hur
omplement of �). Thematrix S
an be shown to be positive de�nite (that is the tri
ky part), so that L̂ existsby an obvious indu
tion.This proof leads naturally to an algorithm in whi
h the �rst
olumn of L is
omputed,the matrix S is formed, and the pro
ess is repeated re
ursively on S. This algorithm,whi
h
orresponds to
lassi
al Gaussian elimination, is widely used in sparse solvers.However we will base our solver on an algorithm that builds up L
olumn by
olumn.This algorithm is also widely used, and for our purposes it has the advantage that itprovides insight into the dynami
s of �ll-in.3.2. A
olumnwise algorithmThe
olumnwise algorithm
an be derived as follows. Suppose we have
omputed the �rstk�1
olumns of L and wish to
ompute the kth. Consider the partitioned de
omposition0�A11 a21 AT31aT21 �22 aT32A31 a32 A331A = 0�L11 0 0`T21 �22 0L31 `32 L331A0�LT11 `21 LT310 �22 `T320 0 LT331A ;in whi
h A11 is of order k�1. Computing the kth
olumn of this partition, we �nd that0�a21�22a321A = 0� L11`21`T21`21 + �222L31`21 + �22`321AFrom this we see that�22 =q�22 � `T21`21 and `32 = ��122 (a32 � L31`21); (3.3)whi
h gives the kth
olumn of L.Algorithm 3.1 implements this
olumnwise s
heme. Here we use
olon notationto designate a range. For example, L[k:n,k℄ represents the ve
tor formed from theelements k, k+1,..., n of
olumn k of L. We have also used the
onvention thatin
onsistent loops are not exe
uted; e.g., the loop in statement 4 when k is equal to one.Finally, we have
omputed the quantities �22� `T21`21 and a32�L31`21 in (3.3) togetherin the loop on j, and then adjusted them in statements 7 and 8.This algorithm and the
lassi
al variant sket
hed above are numeri
ally stable. The
omputed Cholesky fa
tor satis�es LTL = A+E, where E of of the order of the roundingunit
ompared with A. It is worth noting that in the nonsymmetri

ase one must pivot(i.e., inter
hange rows and
olumns of A) to a
hieve similar stability. Thus an importantdistin
tion between symmetri
 positive de�nite and nonsymmetri
 sparse solvers is thatthe former
an reorder solely to minimize �ll-in, whereas the latter must balan
e �ll-inand numeri
al stability in its ordering s
hemes.

10 An Old-Fashioned Sparse SolverCol
hol
omputes the Cholesky fa
tor of the symmetri
 positive de�nite matrix A.1. Col
hol(A, L)2. Move the lower half of A to L3. for k=1 to n4. for j=1 to k-15. L[k:n,k℄ = L[k:n,k℄ - L[k,j℄*L[k:n,j℄6. end for j7. L[k,k℄ = sqrt(L[k,k℄)8. L[k+1:n,k℄ = L[k+1:n,k℄/L[k,k℄9. end for k10. end Col
holAlgorithm 3.1: The
olumnwise Cholesky algorithm3.3. The
olumnwise algorithm and �ll-inThe algorithm Col
hol allows us to understand how �ll-in o

urs in the Cholesky fa
torof a sparse matrix. To see this, let us rewrite the loop 4 in a form that better re
e
tsthe realities of sparse
omputation|namely, that only some of the
olumns of L area
tually a

umulated inside the loop.1. for j=1,k-12. if (L[k,j℄ .ne. 0)3. L[k:n,k℄ = L[k:n,k℄ - L[k,j℄*L[k:n,j℄4. end if5. end for j (3.4)Re
all that at the outset L[k:n,k℄ is initialized to A[k:n,k℄. Ex
ept for some �nal ad-justment|
orresponding to statements 7 and 8 in Algorithm 3.1|the ve
tor L[k:n,k℄is
omputed by subtra
ting multiples of a subset of the trun
ated
olumns L[k:n,j℄of L. This subset is pre
isely those
olumns for whi
h L[k,j℄ is nonzero. Thus the
olumns we subtra
t are determined by the nonzero stru
ture of the row L[k,1:k-1℄of L.The loop shows how �ll-in o

urs in sparse elimination. Suppose in statement 3 thetrun
ated
olumn L[k:n,j℄ has a nonzero entry L[i,j℄ and A[i,j℄ is zero. Then the
al
ulation will put a nonzero element in L[i,j℄; i.e., the originally zero element A[i,j℄will be �lled in by the elimination pro
ess. A
tually, we must be a little
areful here.There is always the possibility that fortuitous
an
ellation will produ
e a zero elementwhere a nonzero is expe
ted. However, this situation is unstable|a small
hange inan appropriate element of A will
ause the nonzero to reappear. Consequently, we will

An Old-Fashioned Sparse Solver 11ignore this possibility and assume that �ll-in o

urs wherever our formulas lead us toexpe
t it.To examine the properties of �ll-in more
arefully, it will be
onvenient to dropour programming notation. Let a(k)k be the trun
ated kth
olumn of A beginning with�kk|i.e., A[k:n,k℄|and let `(k)j be the trun
ated jth
olumn of L beginning with�kj |i.e., L[k{:}n,j℄. Then the fragment (3.4)
omputes the ve
tor^̀(k)k = a(k)k � k�1Xj=1�kj 6=0 �kj`(k)j : (3.5)whi
h has the same pattern of nonzero elements as `(k)k , sin
e it di�ers from `(k)k onlyby a nonzero s
aling fa
tor. From the dis
ussion above, it follows that the pattern ofnonzeros in `(k)k is
omposed of the pattern of a(k)k and the patterns of the trun
ated
olumns of L that begin with a nonzero
omponent.We
an write this fa
t more su

in
tly by introdu
ing some notation. De�ne thestru
ture of `(k)j to be str(`(k)j) = fi � k : �ij 6= 0g:In other words the stru
ture of `(k)j is the set of all row indi
es i for whi
h the
orre-sponding
omponent is nonzero. De�ne the stru
ture of the trun
ated
olumns of Aanalogously. Then str(`(k)k) = str(a(k)k) [k�1[j=1�kj 6=0 str(`(k)j): (3.6)In Se
tion 2 we used the term symboli
 fa
torization to refer to the pro
ess ofdetermining the stru
ture of L so that we
ould set up a data stru
ture to hold it.Equation (3.6) would seem to provide a way of performing symboli
 elimination, sin
eit furnishes the wherewithal to determine the stru
ture of su

essive
olumns of L interms of their prede
essors. Unfortunately, this pro
edure mimi
s Gaussian eliminationtoo
losely. To determine the stru
ture of the
urrent
olumn we need the stru
turesof the pre
eding
olumns|and storing and manipulating those stru
tures is no easierthan storing and manipulating the elements of L itself.A
ure for this problem is to re
ognize the fa
t that it may not be ne
essary to workwith all
olumns for whi
h �kj 6= 0. As an extreme example, suppose that
olumn `(k)k�lls in
ompletely. Then every subsequent
olumn also �lls in, and the
omputation in(3.6) be
omes unne
essary. In pra
ti
e, it turns out that as the elimination progresses,only a few of the
olumns in (3.6) are needed to determine the stru
ture of the kth
olumn of L. The problem is to determine whi
h
olumns are needed|or equivalently

12 An Old-Fashioned Sparse Solverwhi
h
olumns to prune from the union in (3.6). The answer is provided by an auxiliarystru
ture
alled the elimination tree, whi
h will be introdu
ed in Se
tion 7.3.4. Alpha-pre
ursorsFill-in
annot o

ur unless there is something to do the �lling in. If, for example, theelements �i1; : : : ; �ik (i > k) are all zero, it follows by an indu
tion on (3.5) that the
orresponding elements of L are also zero. Consequently, an element �ik 6= 0 of L forwhi
h �ik = 0 must depend on some nonzero element of A pro
eeding it in row i. We
all su
h elements �-pre
ursors of �ik. Sin
e �-pre
ursors will prove important later,we will now show how to
onstru
t them.Suppose that �ik 6= 0|i.e., i belongs to str(`(k)k). Now if �ik 6= 0, then �ik itself isan �-pre
ursor of �ik. If not, from (3.5) we have�̂ik = � k�1Xj=1�kj 6=0 �kj�ij:Sin
e there must be at least one nonzero term in this sum, there is a k1 < k su
h that�ik1 6= 0 and �kk1 6= 0. Now if aik1 6= 0, it is an �-pre
ursor. Otherwise we have,�̂ik1 = � k1�1Xj=1�k1j 6=0 �k1j�ij :Thus there is a k2 < k1 su
h that �ik2 6= 0 and �k2k1 6= 0. If �ik2 6= 0 we have our�-pre
ursor. Otherwise we
ontinue ba
ktra
king as above. The result is a de
reasingsequen
e of indi
es k > k1 > k2 > � � � su
h that �̂ikr 6= 0 (r = 0; 1; : : :). The sequen
eeither terminates with a nonzero element of A or with �̂i1 6= 0, in whi
h
ase �i1 =�̂i1 6= 0 is an �-pre
ursor.We have arrived at the following result.If i lies in the stru
ture of the kth
olumn of L, then �ik has an �-pre
ursor �iq 6= 0. Spe
i�
ally, there is a sequen
e of indi
es q = kp <kp�1 < : : : ; < k1 < k0 = k su
h that1. �i;kp 6= 0,2. �kr;kr+1 6= 0; r = p� 1; : : : ; 1. (3.7)

An Old-Fashioned Sparse Solver 13

i

k2

(i,k2)

k3

k1

(k2,k3)

(k1,k2)

(i,k3) (i,k1)Figure 4.1: Re
e
tion diagram for (3.7)4. Re
e
tion diagramsIn view of our
onstru
tion of �iq, it would seem that statement 1 in (3.7) should read�i;kp 6= 0 and �i;kr 6= 0 (r = p� 1; : : : ; 1). However, this extended statement is impliedby the original. To see this we will introdu
e a pi
torial method for tra
king �ll-in asone moves around in a matrix. The diagram in Figure 4.1 represents (3.7) for the
asep = 3. It is to be understood as follows. The diagram represents a grid
orresponding tothe elements in the lower half of a matrix, although we do not expli
itly draw the grid.Points on the diagonal are identi�ed with diagonal elements; e.g., k3, k2, k1, and i inthe diagram. Points in the interior represent subdiagonal elements of the matrix. Therow index of the element is the index of the diagonal to the east of it; the
olumn indexis the index of the diagonal north of it|e.g. (k2,k3) in the above diagram. Thus ea
hpair of distin
t diagonal elements subsumes a unique element of the matrix.One is permitted to pass between two diagonals provided the element they subsumeis nonzero. Su
h a transition is always shown as pro
eeding through the subsumedelement, as in the path from k3 to k2. The diagram is
alled a re
e
tion diagrambe
ause if we pla
e a mirror pointing northeast at, say, (k2,k3) a southward beam oflight beginning at k3 will be re
e
ted to k2.The
onne
tion with �ll-in is illustrated by the element (i,k3) in the �gure. Herewe suppose that the underlying matrix is the Cholesky fa
tor L. Be
ause the element(k2,k3) is nonzero, (3.6) implies that the stru
ture of L(k2:n,k3) is
ontained in thestru
ture of L(k2:n,k2). In parti
ular, if element (i,k3) is nonzero, a �ll-in must

14 An Old-Fashioned Sparse Solvero

ur at (i,k2), as shown by the dashed arrow. Similarly, the passage from k2 to k1reveals a �ll-in at (i,k1). Thus the
onne
tion shows that only the statement �ik3 6= 0(whi
h implies �ik3 6= 0) is ne
essary in (3.7).One
an also move ba
kward in a re
e
tion diagram|and we will later on|butba
kward movement does not reveal �ll-in. It is an instru
tive exer
ise to �gure outwhy.5. Representing and manipulating sparse matri
esHaving de
ided on a numeri
al algorithm, we must now de
ide how to represent a sparsematrix. The
onventional representation as a square array of numbers is untennable. Forexample, a grid-graph matrix has roughly 5n nonzero elements, whereas the
onventionalrepresentation would take n2 words of memory|the overwhelming majority of themzero. In this se
tion we introdu
e a stru
ture that only stores the nonzero elements of amatrix, but at the
ost of some additional bookkeeping arrays. We will then illustratethe use of this stru
ture by developing two algorithms, one for
omputing a matrixve
tor produ
t and the other for traversing a matrix by rows.5.1. A data stru
tureTo represent a sparse matrix by storing only its nonzero elements we must provideadditional information that enables us to determine where an element lies. For example,we
ould represent a sparse matrix as a
olle
tion of triplets(val; rx;
x)where val represents the value of the element and rx and
x are its row and
olumnindi
es. In other words if the matrix in question is A, then arx;
x = val.This
oordinate representation is simple and natural. It has the advantage that itmakes it very easy for a user to generate a sparse matrix on a
omputer. For example,the matrix
ould be represented by a stru
ture of the form1.
oordmat stru
ture2. int nrow ! Number of rows3. int n
ol ! Number of
olumns4. int nnz ! Number of nonzero elements5. int rx[℄ ! Array of row indi
es6. int
x[℄ ! Array of
olumn indi
es7. real val[℄ ! Array of values8. end stru
ture (5.1)
Then to initialize a sparse matrix, the user
ould write a program like the following.

An Old-Fashioned Sparse Solver 151.
oordmat A2. A.nrow = number of rows3. A.n
ol = number of
olumns4. A.nnz = number nonzero elements5. for k = 1 to A.nnz6. generate i, j, and aij7. A.rx[k℄ = i; A.
x[k℄ = j8. A.val[k℄ = aij9. end for kUnfortunately, the representation (5.1) is good for little other than entering a sparsematrix. For example, there is no
onvenient way to pass along a row or down a
ol-umn of a sparse matrix so represented. This illustrates an important point about therepresentation of sparse matri
es: the representation must not only be e
onomi
al instorage, but it must allow the eÆ
ient implementation of whatever operations must beperformed on the matrix. Sin
e there are many
on
eivable operations that one mightwant to perform, we are left with the possibility that no one stru
ture
an serve torepresent a sparse matrix in all
apa
ities.Fortunately, when it
omes to solving symmetri
 positive de�nite systems we basi-
ally want to do two things:
ompute a Cholesky fa
torization of the matrix in questionand solve sparse triangular systems involving the Cholesky fa
tor. Although the formerwill require that a number of operations in addition to those of Gaussian elimination beperformed on the matrix, it turns out that there is a representation for a symmetri
 pos-itive de�nite matrix that permits all these operations to be performed with reasonableeÆ
ien
y.The idea behind the stru
ture is to store the nonzero elements a linear array (val)in
olumn-major order|that is, in a linear array with the nonzero elements of the �rst
olumn in their natural order follow by those of the se
ond
olumn, and so on. Be
auseof symmetry we need only store the entries of a
olumn from the diagonal downward.A parallel array of integers (rx) gives the row index of ea
h element. To distinguish the
olumns, we have another array (
olp) pointing to the beginning of ea
h
olumn. We
all this stru
ture pa
ked
olumn representation.1. define p
mat stru
ture2. int n ! The order of the matrix3. int nnz ! Number of nonzero elements4. int
olp[℄ ! Array of start of
olumn pointers5. int rx[℄ ! Array of row indi
es6. real val[℄ ! Array of off-diagonal values7. end stru
ture

16 An Old-Fashioned Sparse SolverTo illustrate the stru
ture
onsider the matrix0BBBBBB�4:6 0:0 1:3 0:0 0:0 2:50:0 6:4 1:7 0:0 0:0 3:91:3 1:7 7:3 2:1 0:0 3:10:0 0:0 2:1 6:9 2:8 0:00:0 0:0 0:0 2:8 4:7 0:02:5 3:9 3:1 0:0 0:0 9:9
1CCCCCCA (5.2)The
orresponding p
mat isn 6nnz 13
olp 1 4 7 10 12 13 14rx 1 3 6 2 3 6 3 4 6 4 5 5 6val 4.6 1.3 2.5 6.4 1.7 3.9 7.3 2.1 3.1 6.9 2.8 4.7 9.9 (5.3)Note that
olp has n+1 entries, with the last pointing to the nonexistent entryval[nnz+1℄. The reason is that it allows us to loop through the elements of a
olumnof A. For example, the following fragment prints the lower half of A by
olumns.1. for j=1 to A.n2. for ii=A.
olp[j℄ to A.
olp[j+1℄-13. print(A.rx[ii℄, j, A.val[ii℄)4. end for ii5. end for j (5.4)When k = n, the loop
orre
tly prints only the value val[nnz℄.At this point we must say something about memory management. Originally, sparsematrix
ode was written largely in Fortran 66, and later in Fortran 77. These languageshad no me
hanisms for allo
ating storage. Thus the user had to hard-wire the ne
essarystorage into the main program and pass it to the various
omponents of the solverthrough their argument lists. In order to do this, the user had to know or estimate theamount of memory needed. Nothing
ould be done about a bad guess but return withan error
ag and let the user re
ompile the program with a larger amount of storage.At present Fortran 95 and the C family of languages have methods for allo
atingstorage, and memory management
an be relegated to the sparse solver. However, toallo
ate memory, the solver needs to know how mu
h is needed. This is parti
ularlyimportant in the symboli
 fa
torization step, where we must know the nonzero
ountfor L so that the arrays rx and val
an be allo
ated. This problem will be treated inSe
tion 7.We must also say something about auxiliary arrays. In many of our algorithms wewill need to allo
ate extra storage to hold intermediate quantities. Su
h allo
ationsusually
ome in two sizes: arrays of length n and arrays of length nnz. Sin
e memory

An Old-Fashioned Sparse Solver 17is limited, any additional arrays will redu
e the size of the problems we
an solve; but
learly an array of length n will do less harm than an array of length nnz. Even here wemust distinguish between arrays of length A.nnz for the original matrix and arrays oflength L.nnz for the Cholesky fa
tor. Owing to �ll-in, the latter will be larger than theformer; hen
e the allo
ation of an array of length A.nzz will have relatively less e�e
t.In our solver, the only auxiliary arrays will be of length n.5.2. Matrix-ve
tor multipli
ationWe turn now to two examples of programs that use the p
mat data stru
ture. The�rst example is matrix-ve
tor multipli
ation. Although we will not a
tually use thisalgorithm here, it illustrates some important points about manipulating sparse matri-
es. Moreover, matrix-ve
tor multipli
ation is important in its own right, espe
ially initerative methods for solving large linear systems.To derive an algorithm we begin with the usual de�nition of the produ
t y = Ax:yi =Pj �ijxj : (5.5)In a naive implementation of this formula, to
ompute yi we must a

ess the elements�i1; �i2; : : : ; �i;i�1; �ii; �i;i+1 : : : �inof A. But in a p
mat, we store only the lower half of A. Hen
e we must a

ess theelements �i1; �i2; : : : ; �i;i�1 (5.6)followed by �ii; �i+1;i; : : : ; �ni; (5.7)i.e., we must go a
ross row i of A until we rea
h the diagonal and then down
olumn i.In a p
mat the referen
es in (5.7) are easy to do|see (5.4). But it is not
lear how toimplement the passage along a row required by (5.6).A
ure for this problem is to reinterpret the formula (5.5). If we start with y = 0and if �ij 6= 0, we must update y by adding �ijxj to yi. For i � j, we
an do theupdates by traversing the p
mat by
olumns. But whenever we en
ounter an nonzeroelement �ij (i > j) in the stru
ture, by symmetry we also have the value of �ji = �ij .Thus at that time we
an also update yj by �ijxi, whi
h takes
are of the
ase i < j.Algorithm 5.1 implements this strategy. There are three
omments to make aboutit.� The diagonal elements must be treated spe
ially, sin
e they
ause only one update.� The inner loop of Mvmult illustrates a
onvention we will use in the remainder of thepaper. A double index like ii will refer to a position in the arrays rx and val. The

18 An Old-Fashioned Sparse SolverGiven a p
mat A and two ve
tors x and y, Mvprod
omputes y = A*x.1. Mvmult(A, x, y)2. y = 03. for j=1 to A.n4. y[j℄ = y[j℄ + x[j℄*A.val[A.
olp[j℄℄5. for ii=A.
olp[j℄+1 to A.
olp[j+1℄-16. i =A.rx[ii℄7. y[i℄ = y[i℄ + x[j℄*A.val[ii℄8. y[j℄ = y[j℄ + x[i℄*A.val[ii℄9. end for ii10. end for j11. end MvmultAlgorithm 5.1: Computation of y = Ax
orresponding single index like i = rx[ii℄ will refer to the row index of the elementpointed to by ii.� The number of
oating-point additions and multipli
ations is about nnz. For a fullmatrix the
ount is about to n2 whi
h
an be mu
h greater than nnz. For example,for a grid-graph matrix the operation
ount is approximately 4n log2 n [see (2.2)℄. Theratio of the dense
ount to the sparse
ount is n=4 log2 n. When n = 90;000, this fa
toris about 1;367. It pays to take advantage of sparsity!5.3. Traversing a p
mat by rowsThe tri
k used in the matrix-ve
tor multiply algorithm to avoid a

essing a p
mat byrows serves its purpose well, but there are times when we a
tually need the elements ofa row of a sparse matrix. This is not an easy task to perform eÆ
iently. For example,
onsider the following
ode to output the values of the nonzero elements in the lowerhalf of a p
mat in row order.

An Old-Fashioned Sparse Solver 191. for k=1 to A.n2. for j=1 to k3. for ii=A.
olp[j℄ to A.
olp[j+1℄-14. i = A.rx[ii℄5. if (i > k) leave ii; fi6. if (i = k) print(i, j, val[ii℄); leave ii; fi7. end for ii8. end for j9. end for k (5.8)
To �nd the nonzero (j,k)-element, if it exists, the
ode sear
hes down
olumn j. Thisloop
ould be improved by storing the most re
ent values of ii (one for ea
h
olumn)and restarting the sear
h from that value when k
hanges. But in point of fa
t, noamount of optimization
ould render this
ode a

eptable. For the �rst two loops implythat the work is at least O(n2). For many sparse matri
es this is mu
h greater thanthe work required to fa
tor the matrix. For example, the work required to fa
tor thegrid-graph matrix is O(n 32).The problem with (5.8) is that it treats ea
h row independently. It turns out thatif we take a peek ahead ea
h time we pro
ess an element in a row, we
an a

umulateenough information to traverse subsequent rows without sear
hing. To see this
onsiderthe following Wilkinson diagram of lower half of the matrix (5.2):0BBBBBB�XO XX X XO O X XO O O X XX X X O O X

1CCCCCCA (5.9)Here an X represents an element that is presumed to be nonzero, and O an elementthat is exa
tly zero. Now we
an traverse the �rst row immediately, sin
e we know theposition of �11 in val and rx. As we do, we
an learn that the position of �31: it issimply the position of �11 plus 1. We also learn that �21 is zero. This means that we
an traverse the se
ond row. As we do, we learn the position of �32. This means thatwe
an traverse the third row, at the same time learning the positions of �43, �61, �62.The following table shows this pro
ess
arried to its
on
lusion.

20 An Old-Fashioned Sparse SolverAfter traversing row we know the positions of0 �11 �22 �33 �44 �55 �661 �22 �31 �33 �44 �55 �662 �31 �32, �33 �44 �55 �663 �43 �44 �55 �61 �62 �664 �54 �55 �61 �62 �63 �665 �61 �62 �63 �66Note that after we have pro
essed row i we have all the information we need to pro
essrow i+ 1.We have to de
ide how to en
ode this information. We will keep it in an arraylink of length n, whose
ontents may be des
ribed as follows. As suggested above, thetraversal of row i begins with the ith element. Then i1 = link[i℄ is the
olumn indexof another element in the row. Similarly, i2 = link[i1℄ lo
ates yet another element.The list ends when for some ip the value of link[ip℄ is zero. A se
ond array, pos,gives the positions of the elements in the arrays rx and val. This method is feasiblefor two reasons. First, we never need to store more than n links, provided we dis
ardthe links asso
iated with a row as it is traversed. Se
ond, the links for di�erent rows
annot overlap, so that two untraversed rows
an live together in link. We will use thislinking te
hnique again when we implement symboli
 fa
torization.We will pa
kage this algorithm in a routine RowTrav that produ
es elements of thematrix row by row. Ea
h
all to the routine gives a new element. After a row hasbeen pro
essed, RowTrav returns an end of row indi
ation to allow the
alling
odeto take any a
tion required when passing from one row to the next. A drawba
k ofRowTrav that it does not return the elements of a row in their natural order; but inmany appli
ations|ours in parti
ular| that is not ne
essary.More spe
i�
ally, the program has the
alling sequen
e RowTrav(A, i, j, posij).Here is an illustration of how it traverses the lower part of the dmat A row by row.1. i = -12. RowTrav(A, i, j, posij)3. for ix=1 to A.n4. while (RowTrav(A, i, j, posij) != 0)5. pro
ess element (i, j)6. end while7. pro
ess row i8. end for (5.10)
The �rst
all, with i negative initializes the routine. Subsequent
alls traverse the rowsof A, produ
ing the row subs
ript i, the
olumn subs
ript j and the position posij ofthe element in the arrays rx and val. The (i,i)-element of row i is produ
ed �rst,but the order of the other elements of the row has no useful pattern. After the ith row

An Old-Fashioned Sparse Solver 21has been traversed, the routine returns a zero as an end-of-row indi
ation. Under no
ir
umstan
es should the user
hange the values of i and j while the p
mat is beingtraversed.Algorithm 5.2
ontains the
ode for RowTrav. Here are some
omments.� The best way to see what is going on is to work through a small example|say forthe matrix (5.9)| tra
king the entries in link and pos as the algorithm pro
eeds. Aninteresting feature is that the program must squirrel away the next value of j|i.e.,link[j℄|in nextj, sin
e the value of link[j℄ may
hange when link is updated.� RowTrav depends heavily on variables like link, pos, and nextj that must retaintheir values between
alls to RowTrav. Su
h variables are said to be stati
, and mostprogramming languages provide them.� Sin
e the links have to be updated, the row traversal is more expensive than a straight-forward
olumn traversal. However, there is only one update per nonzero element of A,so that the algorithm runs in time proportional to A.nnz.� The algorithm
arries a storage overhead of 2n integers for the arrays link and pos.In light of the
omments above, this does not appear to be ex
essive.6. GraphsWe have de
ided on a numeri
al algorithm for fa
toring a matrix and a data stru
turefor representing a sparse matrix. Our job now is to bring them together in harmoniouswedlo
k. It is no easy task.Symboli
 fa
torization is the key. If we know, the stru
ture of L, we
an pla
e thelower half of A in it and implement Algorithm 3.1 using the te
hniques developed inthe last se
tion. But eÆ
ient algorithms for symboli
 fa
torization require
onsiderablemathemati
al support, whi
h is
ustomarily
ou
hed in the language of graph theory.This se
tion is devoted to a review of the fundamentals. The next se
tion will treata parti
ular graph asso
iated with a sparse matrix|the elimination tree. These twose
tions are the heaviest going in this paper. But don't despair. When you emerge fromthem you will have arrived at the point where you
an read mu
h of the sparse matrixliterature on your own.An undire
ted graph
onsists of a set of nodes (also
alled verti
es) and a set of edges
onne
ting the nodes. The graph G(A) of a symmetri
 matrix A of order n has nodesf1; 2; : : : ; ng (whi
h may
onveniently be identi�ed with the diagonals of A). The setof edges is the set of pairs fi; jg for whi
h i 6= j and �ij 6= 0. Traditionally, an edgeis represented by drawing a line between the two nodes. For example, the matrix (5.2)

22 An Old-Fashioned Sparse Solver
RowTrav traverses rowwise the lower part of a p
mat as shown in (5.10).1. RowTrav(A, i, j, posij)2. if (i < 0)! Initialize.3. link[1:A.n℄ = 04. pos[1:A.n℄ = 05. j = 0; i = 06. return j7. end if8. if (j = 0)! Set up for row i.9. i = i+1; j = i10. posij = A.
olp[i℄11. else! Get the next element of row i.12. j = nextj;13. if (j = 0) return j; fi ! End of row14. posij = pos[j℄15. end if16. nextj = link[j℄17. link[j℄ = 018. nextdown = posij + 119. if (nextdown < A.
olp[j+1℄)! There is an element in
olumn j. Link it up.20. pos[j℄ = nextdown21. id = rx[nextdown℄22. link[j℄ = link[id℄23. link[id℄ = j;24. end25. return j Algorithm 5.2: Row traversal

An Old-Fashioned Sparse Solver 23has a stru
ture des
ribed by the following Wilkinson diagram:0BBBBBB�X O X O O XO X X O O XX X X X O XO O X X X OO O O X X OX X X O O X
1CCCCCCA : (6.1)(Here an X stands for an element presumed to be nonzero a O stands for a zero element.)The graph of this matrix is

1 2 3 4 5 6 (6.2)It is a useful exer
ise to
onvin
e yourself that the graph of a grid-graph matrix lookslike the grid in Figure 2.1.In addition to our symmetri
 positive de�nite matrix A, we will be interested in agraph asso
iated with its Cholesky fa
tor L. Now L is not a symmetri
 matrix; butL+LT is, and from that matrix we
an form a graph. For brevity we will abuse notationand write G(L) for G(L+LT). The graph G(A)
an be regarded as a subgraph of G(L)by the expedient of dropping all the edges in G(L) that are not in G(A). These edges
orrespond to �lled-in elements.Changing the numbering of the nodes in the graph of a matrix a�e
ts the stru
tureof the matrix. Spe
i�
ally, let p1; p2; : : : ; pn be a permutation of the integers 1; 2; : : : ; n.We
an get a new graph from from G(A) by the following pro
edure. If fpi; pjg is anedge of G(A) repla
e it by fi; jg. This graph has exa
tly the same stru
ture as theoriginal graph sin
e all we have done is move around the numbers of the nodes. Forexample, under the permutationp1 = 3 p2 = 5 p3 = 6 p4 = 1 p5 = 4 p6 = 2the graph (6.2) be
omes
34 56 1 2

24 An Old-Fashioned Sparse SolverHowever, the Wilkinson diagram of the
orresponding matrix is0BBBBBB�X O X X X XO X O O X OX O X X O XX O X X O OX X O O X OX X X O O X
1CCCCCCA : (6.3)We have already observed that reordering a matrix will
hange the �ll-in in itsCholesky fa
tor. The matri
es (6.1) and (6.3) are examples of this. The Choleskyfa
tor of (6.3) �lls in
ompletely after two elimination steps, leaving only four zeroelements. On the other hand, the fa
tor of (6.1) has �ll in at only �64 and �65, leavingsix zero elements. Graphs are espe
ially well-suited for �nding orderings that redu
e�ll-in, sin
e renumbering nodes is easier than manipulating the stru
ture of the originalmatrix.A path in an undire
ted graph is a sequen
e of nodes i1; i2; : : : ; ik su
h that ij is
onne
ted to ij+1 by an edge. If there is a path between i and j, we say that i and jare
onne
ted. A subset of a graph is said to be
onne
ted if all its nodes are
onne
ted.By
onvention, ea
h node in a graph is
onne
ted to itself. Transitions in a re
e
tiondiagram, like the transition from k3 to k1 in Figure 4.1, are paths in the graph of thematrix in question.The property of being
onne
ted is an equivalen
e relation between nodes, andhen
e the nodes of any graph
an be partitioned into disjoint,
onne
ted sets thatare not
onne
ted to one another. They are
alled the
onne
ted
omponents of thegraph. When the graph is asso
iated with a matrix, this partition has an importantinterpretation. Suppose, for example, that G(A) has two
onne
ted
omponents C1 andC2. Suppose further that C1 hasm nodes, and renumber the nodes of G(A) so that nodes1; 2; : : : ;m belong to C1. Then the matrix
orresponding to the renumbered graph hasthe form �A11 00 A22� :Thus the matrix redu
es to a blo
k diagonal form.In appli
ations, this means that the sparse system de
omposes into two un
onne
tedsystems that
an be treated separately. For this reason, sparse matrix solvers often tryto �nd the
onne
ted
omponents of G(A) as part of the ordering step. We will assumethat this has been done and that G(A) is
onne
ted. In this
ase, we also say that thematrix A is irredu
ible. Throughout the remainder of this paper we will assume that Ais irredu
ible.A
y
le is a path i1; i2; : : : ; in�1; i1 in whi
h the nodes i1; : : : ; in�1 are distin
t. Inother words, a
y
le is a nontrivial path that starts and ends at the same node without

An Old-Fashioned Sparse Solver 25interse
ting itself. A graph without
y
les is said to be a
y
li
. A
onne
ted a
y
li
graph is
alled a tree. Given a tree, we
an
hoose any node as a root of the tree. Sin
ethe graph is
onne
ted, there is a path from the root to any other node, and be
ausethe graph is a
y
li
 this path is unique. Paths in a tree
annot be extended inde�nitely,and their terminal nodes are
alled leaves of the tree. Paradoxi
ally, trees are usuallydrawn upside down with the root at the top. For an example see Figure 8.1. Trees
anbe des
ribed by a very simple data stru
ture. Let T be a tree, and let the node r be itsroot. Let i be a node. Then, as noted above, there is a unique path r; j1; : : : ; jk; i fromr to i. We will
all the node jk the parent of i and write jk = parent(i). The parentrelation uniquely determines the tree. More generally a parent relation spe
i�es a graphwhose edges are fi;parent(i)g; however, this graph need not be a tree. The followingresult gives
onditions under whi
h a parent relation produ
es a tree.Let a parent relation de�ned on the nodes 1; 2; : : : ; n have following prop-erties.1. The node n does not have a parent.2. For i 6= n, parent(i) > i.Then the graph T whose edges are fi;parent(i)g (i = 1; : : : ; n�1) is atree with root n. (6.4)
To see this, we must show that T is
onne
ted and a
y
li
. To show the former,we will show that all the nodes are
onne
ted to n. Let i 6= n be a node in T . Thenthe sequen
e parent(i);parent[parent(i)℄; : : : is stri
tly in
reasing and bound by n. Itfollows that it must terminate with the integer n.To show that T is a
y
li
, suppose there is a
y
le in T , and let i be the smallestnode in the
y
le. Then i must be
onne
ted to two distin
t nodes j > i and k > i. Butthen j and k must both be parents of i. The
ontradi
tion establishes the result.The term \parent" suggests a natural nomen
lature for expressing relations amongthe elements of a tree. If k is the parent of j, we
all j a
hild of k. If j < k and thereis a path from j to k we say that k is an an
estor of j and j is a des
endent of k. Wewill use this nomen
lature freely in what follows.7. The Elimination TreeIn Se
tion 3.3 we derived the following relation for the stru
ture of the kth
olumn ofthe Cholesky fa
tor L: str(`(k)k) = str(a(k)k) [k�1[j=1�kj 6=0 str(`(k)j):

26 An Old-Fashioned Sparse SolverAlthough the union over j has too many terms to make this formula suitable for asymboli
 fa
torization algorithm, we suggested that it might possible to prune termsfrom union. The devi
e for doing this is a tree
alled the elimination tree. Not onlywill the elimination tree lead naturally to a symboli
 fa
torization algorithm, but it willprovide us with an algorithm for determining the number of nonzero elements in L.7.1. De�nition and basi
 propertiesThere seems to be no good way of motivating the de�nition of the elimination tree.Instead we simply de�ne it to be the tree generated by the following parent relation:parent(k) = minfj > k : �jk 6= 0g:Otherwise put, if we take the Cholesky fa
tor L and retain only the �rst element belowthe subdiagonal in ea
h
olumn, then the graph of the resulting matrix is the eliminationtree.This
onstru
tion assumes that ea
h
olumn of L has a subdiagonal element, inwhi
h
ase (6.4) implies that the parent relation de�nes a tree. However, it is not trivialto show that the ne
essary subdiagonal elements exist. We begin with the followingte
hni
al result.Let j > k. If there is a path k; k1; : : : ; kp; j from k to j in G(L) withk1; : : : ; kp < k, then �jk 6= 0 (7.1)We will use re
e
tion diagrams of L to prove this assertion. We �rst show that we
an assume that k1 > : : : > kp|i.e., that we move ba
kward in the re
e
tion diagramuntil very last. Suppose to the
ontrary that there are forward jumps, and
onsider the�rst one. If it is the very �rst jump from k to k1, we must have k1 = j and �jk 6= 0.Thus we
an assume the �rst forward jump is pre
eded by a ba
kward jump.The two re
e
tion diagrams in Figure 7.1 illustrates what
an happen. In diagram Awe ba
ktra
k along ab
 and then move forward along d
e. However that transitionshows that there must be a nonzero at f. Hen
e we
an get from a to e by the transitionafe, whi
h is ba
kward. Thus we
an eliminate the forward jump from the path. Thisalso in
ludes the degenerate
ase where a = e and the ba
kward and forward jumpssimply
an
el one another.Consider now the diagram B. Here the net jump ab
 and
de is forward. However,the presen
e of f shows that it
an be repla
ed by the smaller forward jump afe. If we
ontinue this pro
ess (note the pre
eding ba
kward jump
hanges with ea
h step), oneof two things must happen.1. We �nd ourselves in
ase A and
an eliminate the forward jump.

An Old-Fashioned Sparse Solver 27
ab

c

d e

f

ab

c

d ef

A BFigure 7.1: No forward jumps
e

c

b

d

f g h

k

jFigure 7.2: Illustrating �jk 6= 02. The length of the forward jump be
omes one, and we again �nd ourselves in the
ase A.Thus we
an eventually eliminate the forward jump. Continuing this pro
ess withsubsequent forward jumps, we end up with only ba
kward transitions.To
omplete the proof of (7.1)
onsider the re
e
tion diagram in Figure 7.2. Thepath makes two ba
kward transitions kb
 and
de followed by the forward transitionefj to j. But the transition ed
 (a legal transition even if it goes against the arrows)insures that g will be nonzero, and hen
e the transition
bk insures that h will benonzero. But h o

upies the position of �jk, whi
h is therefore nozero. Ex
ept for thespe
i�
 number of ba
kward jumps, this argument is perfe
tly general and establishes

28 An Old-Fashioned Sparse Solver

p q r s

a b

c d

e

j

k−1

kFigure 7.3: �kj 6= 0 =) j 2 T [k℄(7.1).Returning now to the elimination tree, to show that it is well de�ned we must showthat ea
h
olumn of L has a subdiagonal element. As stated above, we will assume thatA is irredu
ible. Let k < n be given and let j > k. Then there is a path in G(L) fromk to j. Let i be the �rst node in the path with i > k. Then by (7.1), �ik 6= 0. In otherwords, L has an element in
olumn k below the subdiagonal.We will denote the elimination tree of the Cholesky fa
tor L by T . Let k be given.The graph
onsisting of all the des
endents of k in T along with k itself is obviously atree. We will denote it by T [k℄. These trees will play an important role in what follows,and it will be useful to know what elements lie in them. The following result shows thatT [k℄
ontains the stru
ture of row k of L.If �kj 6= 0 then j 2 T [k℄. (7.2)To see this,
onsider the re
e
tion diagram in Figure 7.3. Sin
e �kj 6= 0, the elementp is nonzero. If follows that b = parent(j) � k. If it is equal, then we are through:there is a path from j to k in T . If not, then there is a �ll-in at q under b. Hen
ed = parent(b) � k. If d is equal to k, we are on
e again through. Otherwise, there is a�ll-in at r. Pro
eeding in this manner, we must either generate a path in T from j tok, or we must eventually arrive at the node k-1. Sin
e there is a �ll-in at s, we musthave parent(k�1) = k, whi
h
ompletes the path.It is worth pointing out that T [k℄
an be bigger than str(L[k; 1:k℄). For example,the stru
ture the kth row of a tridiagonal matrix is fk; k�1g. But T [k℄ = f1; : : : ; kg.

An Old-Fashioned Sparse Solver 297.2. Constru
ting the elimination treeAlthough we have de�ned elimination trees and shown them to exist, we have not shownhow to
onstru
t them. In this subse
tion we will remedy this de�
ien
y and in thepro
ess obtain a
ount of the number of nonzero elements in the Cholesky fa
tor L|a
ount we will need to implement the symboli
 fa
torization.We �rst observe that if we
an build up the stru
ture of L row by row in its naturalorder, we
an determine the parent relation that de�nes the elimination tree. Spe
i�-
ally, we
an initialize an array parent of length to zero. Now for ea
h index j, parent(j)is the row index i of the �rst nonzero element of L below �jj. Thus when we �nd anonzero element �ij in the
ourse of traversing row i, we
he
k parent(j) to see if thelatter is nonzero. If it is then we have already determined its value while traversing aprevious row. If not, we
an set parent(j)=i. At the end of the pro
ess we have theelimination tree of L.On the other hand, if we know the parent relation we
an determine the stru
ture ofany row. Spe
i�
ally,
onsider the re
e
tion diagram in Figure 4.1. Here �i;k1 6= 0 and�i;k3 is an �-pre
ursor of �i;k1 . But by (7.2), k3 2 T [k2℄ and k2 2 T [k1℄. Consequentlywe
an �nd k1|the
olumn index of �i;k1 |by starting at k1|a row index of an �-pre
ursor of �i;k1 |and using the parent relation to move up the elimination tree tok1. Sin
e every nonzero element in row i has an �-pre
ursor, we
an determine therow stru
ture of the ith row of L by following the elimination tree up from the nonzeroelements of row i of A.At this point it looks like we have a vi
ious
ir
le. If we know the row stru
ture, we
an
ompute the elimination tree; if we know the elimination tree we
an
ompute therow stru
ture. But where to start? Surprisingly, we
an start with the stru
ture of the�rst row, whi
h we know, and build up both the elimination tree and the row stru
turesimultaneously.Spe
i�
ally, suppose we have determined the row stru
tures of rows 1; : : : ; i�1 andhave determined the parent relation insofar as is possible with this information. We willsay that an index j < i is untou
hed if1. it is not known whether j belongs to the stru
ture of row i or2. it belongs to the stru
ture of row i but the parent relation as so far determineddoes not de�ne a path from j to i.Before we start sear
hing the ith row, we mark the indi
es 1; : : : ; i as untou
hed.Let �ij be an element of row i of A. We now use the parent relation to move fromj up the elimination tree. Eventually one of two things must happen.1. As we move up the tree, we en
ounter a node we have previously tou
hed. This
ase is illustrated by the re
e
tion diagram in Figure 7.4, in whi
h j2 is the

30 An Old-Fashioned Sparse Solver
j

j1

j2

ia b cFigure 7.4: Sear
hing a rowtou
hed node. Sin
e a and b are nonzero, j and j1 are in the stru
ture of rowi. Moreover, sin
e j2 is tou
hed, there is a path from j2 to i. Thus j and j1be
ome tou
hed.2. We rea
h a node whose parent has not yet been de�ned. This
ase is againillustrated by the diagram in Figure 7.4, where it is now assumed that j2 has noparent. But sin
e we have already sear
h the pro
eeding rows, there
an be noelement of L between
 and j2, so that i is the parent of j2. Thus j, j1, and j2be
ome tou
hed, and we have added parent(j2)=i to the parent relation.Sin
e every element of row i of L has an �-pre
ursor and we start sear
hing at everyelement of A in row i the result is the
omplete row stru
ture of row i and an updatedparent relation.There is one te
hni
al point that we must dispose of before we
an write down
ode.A natural way of indi
ating if an node has been tou
hed is to initialize an array tou
hedof length n to zero and set tou
hed[j℄ to one when node j has been tou
hed. Thisworks well enough row by row. But when we �nish a row and go on to the next, wemust reinitialize the array tou
hed. If this is done for all n rows, the result is an O(n2)algorithm, whi
h is forbidden [see the
omments after (5.8)℄. The
ure to the problemis to set tou
hed[j℄ to i when we rea
h node j in the sear
h of row i. At the startof the sear
h all
omponents of tou
hed are stri
tly less than i, so that this pro
eduremarks the tou
hed elements without any reinitialization whatsoever.Algorithm 7.1
ontains a routine to
onstru
t the elimination tree of a p
mat and
ount the nonzeros in its Cholesky fa
tor. The routine uses RowTrav (Algorithm 5.2)to produ
e elements from the rows of A. Etgen requires 4n units of auxiliary storagefor the arrays parent and tou
hed as well and the arrays link and pos in RowTrav

An Old-Fashioned Sparse Solver 31
Given a p
mat A, Etgen returns the parent stru
ture of its elimination tree and the thenonzero
ount nnz for its Cholesky fa
tor.1. Etgen(parent, nnz)! Initialize.2. nnz = 03. tou
hed[1:A.n℄ = 04. parent[1:A.n℄ = 0! Traverse the rows of A.5. i = -16. RowTrav(A, i, j, posij)7. for ix=1 to A.n8. while (RowTrav(A, i, j, posij) != 0)9. if (i = j)! Pro
ess diagonal element.10. nnz = nnz + 111. tou
hed[j℄ = i12. else! Off diagonal element. Sear
h the tree.13. js = j14. while (tou
hed[js℄ != i)15. tou
hed[js℄ = i16. nnz = nnz + 117. if (parent[js℄ = 0)18. parent[js℄ = i19. leave while20. end if21. js = parent[js℄22. end while23. end if24. end while25. end while26. end EtgenAlgorithm 7.1: Constru
ting an elimination tree

32 An Old-Fashioned Sparse Solver(Algorithm 5.2). Sin
e we have taken
are to minimize retou
hing, the algorithm runsin time proportional to the nonzero
ount of the Cholesky fa
tor. (To see this, note thatthe ea
h iteration in the while loop beginning at statement 8 in
reases nnz by one.)8. Symboli
 Fa
torizationNow that we have a nonzero
ount for L, we
an allo
ate storage for the symboli
 fa
-torization. To
omplete the fa
torization we need to be able to determine the stru
tureof the
olumns of L. We now turn to that task.8.1. The
olumn stru
ture of LWe have already observed (twi
e) that the formulastr(`(k)k) = str(a(k)k) [k�1[j=1�kj 6=0 str(`(k)j): (8.1)is not suitable for determining the stru
ture of `(k)k be
ause the union of j in generalhas too many terms. To prune the range of the union, we begin by observing that if jis a
hild of k in the elimination tree, then str(`(k)j) � str(`(k)k). This fa
t follows fromthe fa
t that �kj 6= 0, so that `(k)j is in the union (8.1). This implies that:If j is a des
endent of k in the elimination tree, then str(`(k)j) � str(`(k)k). (8.2)Now note that by (7.2) all the terms of the union (8.1) have indi
es in T [k℄. Consider
olumn k of L and assume that j is one of its
hildren. Then str(`(k)j) is in the union(8.1). Moreover, by (8.2)
olumns with index i 2 T [j℄ with i < j
an be omitted from theunion. Thus all nodes in T [k℄ that are des
endents of a
hild of k
an be pruned, and weare left with only the stru
ture of a(k)k and the stru
tures of the
olumns
orrespondingto the
hildren of k. Hen
estr(`(k)k) = str(a(k)k) [n[j=1j a
hild of k str(`(k)j): (8.3)We have thus redu
ed the set of
olumns of L that we must merge from those for whi
h�kj 6= 0 to those for whi
h j is a
hild of k in the elimination tree. In general, the latterset is far smaller than the former.A simple example may make this point
learer. Consider the node 11 in the elimi-nation tree in Figure 8.1. The union in (8.1) may range over as many as all the nodes

An Old-Fashioned Sparse Solver 33

1

5 6 7 8

2 3

9 10

11

12

4Figure 8.1: An elimination tree1 through 10. But by (8.2), the
olumn stru
tures of nodes 1, 5, and 6 are a subset ofthat of 9, and the
olumn stru
tures of the nodes 2, 3, 4, 7, and 8 are subsets of thethat of 10. Thus we
an prune the stru
tures of
olumns 1{8 from the union.A diÆ
ulty with this approa
h is that we need to know the
hildren of the nodes ofthe elimination tree. Although we have shown how to
ompute the parent relation thatde�nes the tree, it is not of mu
h help in �nding
hildren. (Strange parents that don'tknow their own
hildren!) It turns out, however, that we
an
ompute the
hildren aswe
ompute the stru
ture of L. Spe
i�
ally, suppose we have
omputed the stru
tureof `(k)k , so we
an �nd the �rst nonzero element below the diagonal of `(k)k |
all it �jk.Then k is a
hild of j. If we store this information, by the time the pro
ess rea
hes
olumn j we will have a list of all the
hildren of j.8.2. ImplementationHaving the
hara
terization (8.3) of the stru
tures of the
olumns of L, we are nowready to implement the symboli
 fa
torization phase of our old-fashioned solver. Wehave �ve problems to ta
kle.1. How do we represent the matrix L?2. How do we determine the storage needed to represent L?3. How
an we keep tra
k of the
hildren of a node?

34 An Old-Fashioned Sparse Solver4. How
an we merge the sets in (8.3)? The problem here is to keep the row indi
esin order.5. Having
omputed the stru
ture of the kth
olumn of L, how do we update thestru
ture?The representation of the matrix L is simple. We
an put it in a p
mat L. The
omponents of the stru
ture will have slightly di�erent meanings|e.g., L.
olp(k)points to the �rst nonzero entry in the kth
olumn|but that
auses no problems. Wehave already done something like this in referring to the graph G(L+ LT) as G(L).The se
ond problem stems from the fa
t that we must allo
ate storage to
ontainthe arrays val and rx in the p
mat stru
ture. The length of these arrays is nnz|thenumber of nonzero elements in L| whi
h is initially unknown. Fortunately, we
anuse Etgen (Algorithm 7.1) to
ompute nnz. The auxiliary storage required for Etgen isproportional to the order of the original matrix, whi
h is known at the outset.There is an elegant way of keeping tra
k of the
hildren. We
reate an array bs(for baby sitter) of length n and initialize it to zero. When we �nd a
hild of, say,node j we put its number in bs[j℄. If we �nd another
hild, we pla
e it in bs[bs[j℄℄,and so on. After we have
omputed the stru
ture of
olumn j, we zero out the
or-responding
omponents of bs. Note that if j has, say, two
hildren then the
ontentsof bs[bs[bs[j℄℄℄ will always be zero, be
ause node bs[bs[j℄℄, being a
hild of j,will have already been pro
essed. Thus when we en
ounter a zero
omponent in thesequen
e bs[j℄, bs[bs[j℄℄, . . . , we will have pro
essed all the
hildren of j.By way of illustration, Figure 8.2 exhibits the
ontents of the baby-sitter array aswe pro
eed through the tree in Figure 8.1. The number to the side in a row is the nodethat has just been pro
essed. The number at the top is the position in the baby-sitterarray.The merging problem arises from the fa
t that the
olumns stru
tures of the
hildrenof a node will not all be the same. For example, if the
olumn stru
ture of node j1is f4; 7; 9g and that of j2 is f5; 7; 10g, then we must merge these stru
tures to getf4; 7; 9; 10g. A natural way to pro
eed is to initialize and array of n integers to zero.When we en
ounter a new element of the stru
ture, we set the
orresponding entry ofthe array to one. The trouble with this approa
h is that at the end of determiningthe stru
ture of
olumn k, we must sear
h entries k; : : : ; n of the array to re
over thestru
ture. Repeated n times, this gives an O(n2) algorithm.The alternative we will use also requires an auxiliary array, ma (for merge array), oflength n. Its use is best seen through an example. Suppose that we are a

umulatingthe stru
ture of
olumn 3, of a matrix of order 10, and suppose the
urrent state of thestru
ture set is f3; 5; 6; 9g. Then the merge array
ontains the following entries.11 11 5 11 6 9 11 11 11 11

An Old-Fashioned Sparse Solver 351 2 3 4 5 6 7 8 9 10 11 121 : 0 0 0 0 1 0 0 0 0 0 0 02 : 0 0 0 0 1 0 2 0 0 0 0 03 : 0 0 0 0 1 0 2 3 0 0 0 04 : 0 0 4 0 1 0 2 3 0 0 0 05 : 0 0 4 0 0 0 2 3 5 0 0 06 : 0 0 4 0 6 0 2 3 5 0 0 07 : 0 0 4 0 6 0 0 3 5 7 0 08 : 0 0 0 0 6 0 8 0 5 7 0 09 : 0 0 0 0 0 0 8 0 0 7 9 010 : 0 0 0 0 0 0 0 0 10 0 9 011 : 0 0 0 0 0 0 0 0 0 0 0 1112 : 0 0 0 0 0 0 0 0 0 0 0 0Figure 8.2: A baby-sitter arrayThus the �rst element of the stru
ture is 3 (the number of the
olumn under
onsider-ation), the se
ond element is ma[3℄ = 5, the third is ma[5℄ = 6, and so on. Note thatunused members of ma are set to n+1, so that if m[i℄=n+1 we are at the end of the mergelist.To keep things simple, we will assume that we have at hand a routineMerge(B, j, k, ma)that merges the stru
ture of
olumn j of B into the
urrent stru
ture for
olumn k. Wewill later give
ode for Merge.The problem of �lling in the
olumns of the p
mat for L is relatively simple, butagain for
onvenien
e we relegate this
omputation to a fun
tionMake
ol(k, ma, L)that takes the output of Merg and transfers it to the kth
olumn of the p
mat L. Thisroutine also reinitializes the merge array.Algorithm 8.1 performs symboli
 fa
torization. It is relatively straightforward. Ituses Merge to initialize ma to the kth
olumn of A, after whi
h it folds in the stru
turesof the
hildren of node k. It then generates the kth
olumn of L from ma and uses itto update the baby sitter. The loop beginning with statement 11 is the heart of thealgorithm. Sin
e a
hild
an have only one parent, the
all to Merge is exe
uted onlyn-1 times.Algorithm 8.2, merges
olumn stru
tures. It depends on the fa
ts that the stru
tureof
olumn k starts at k, that the row indi
es from
olumn j of B are stri
tly in
reasing,

36 An Old-Fashioned Sparse Solver
Symbolfa

omputes the symboli
 fa
torization of the matrix in the p
mat A and pla
esit in the p
mat L, whi
h is assumed to be suitably initialized.1. Symbolfa
(A, L)2. p
mat A, L3. int bs[n℄, ma[n℄! Initialize.4. for i=1 to n5. bs[i℄ = 06. ma[i℄ = A.n + 17. end for i! Main loop on
olumns of A.8. for k=1 to n! Compute the stru
ture of the kth
olumn.9. Merge(A, k, k, ma)10. j = bs[k℄11. while (j != 0)12. Merge(L, j, k, ma)13. jt = bs[j℄; bs[j℄ = 0; j = jt14. end! Set up the kth
olumn of L.15. Makek
ol(k, ma, L)! Update the baby sitter.16. if (k != n)17. j = L.rx[L.
olp[k℄ + 1℄ ! j is the parent of k18. while (j != 0) jt = j; j = bs[j℄; end19. bs[jt℄ = k20. end if21. end for k22. end Symbolfa
Algorithm 8.1: Symboli
 fa
torization

An Old-Fashioned Sparse Solver 37
Merge merges the stru
ture of the jth
olumn of B into the
urrent stru
ture of
olumnk as represented by ma.1. Merge(B, j, k, ma)2. m = k! Loop over elements in
olumn j of B.3. for ii=B.
olp[j℄+2 to B.
olp[j+1℄-14. i = B.rx[ii℄! Sear
h for m and m1 with m < i <= m1.5. m1 = m6. while (i > m1)7. m = m1;8. m1 = ma[m℄9. end while10. if (i != m1)! Insert i in ma.11. ma[m℄ = i12. ma[i℄ = m113. end if14. m = i15. end for ii16. end Merge Algorithm 8.2: Merging stru
tures

38 An Old-Fashioned Sparse SolverMake
ol takes the stru
ture for
olumn k
ontained in ma and transfers it to the kth
olumn of the p
mat L. It also reinitializes the merge array ma.1. Make
ol(k, ma, L)2. if (k = 1) L.
olp[1℄ = 1; fi3. ii = L.
olp[k℄4. m = k5. while (m < L.n+1)6. L.rx[ii℄ = m7. ii = ii + 18. mt = ma[m℄9. ma[m℄ = L.n+110. m = mt11. end while12. L.
olp[k+1℄ = ii13. end Make
olAlgorithm 8.3: Generate a
olumn of Land that the unused parts of ma are set to n+1. By initializing m to k and resetting it toi = B.rx[ii℄ after element i has been pro
essed, we
an be assured that at statement 6we have m < i. Thus we have a starting point to sear
h for a bra
ket [m,m1℄ satisfyingm < i <= ma[m℄ = m1.On
e this bra
ket has been established, we
an easily in
orporate i into ma. The fa
tthat the unused parts of ma are set to n+1 makes the algorithm work when we areappending an element to the end of the list.The merging starts with the third element in
olumn j. The reason is that the �rstelement is the jth, whi
h
annot be in the stru
ture of
olumn k, sin
e j<k. The se
ondelement of
olumn j has the row index k, sin
e j is a
hild of k, and therefore j wasentered into the stru
ture of
olumn k when the kth
olumn of A was pro
essed.At worst any
all to merge involves passing through the number of elements in k,and merge must be
alled for ea
h
hild of k. if CMAX is the maximum number of
hildren any node has, then total time spent merging will be bounded by CMAX*L.nnz.In pra
ti
e, nodes in an elimination tree are an infertile lot and tend to have only oneor two
hildren.Algorithm 8.3 takes the merge array and generates a
olumn of L. Essentially ittraverses the array ma and transfers the row indexes to L.rx. The reinitialization ofthe merge array ma illustrates a point about the e
onomi
s of sparse elimination|one

An Old-Fashioned Sparse Solver 39that we have already en
ountered in
onne
tion with the generation of the eliminationtree. In the program Symbolfa
 we initialized the array ma in statement 6, and it wouldseem more natural to reinitialize it by moving the initialization inside the loop on k.However, that would result in O(n2) operations, whi
h we have seen is una

eptable.On the other hand, Make
ol only reinitializes the
omponents of ma that have a
tuallybeen
hanged, so that the total work in maintaining ma is proportional to the numberof nonzero elements of L.9. The Numeri
al CodaThe obje
t of the long development above is to put us in a position where we
an solvethe sparse system Ax = b. As we have seen earlier we
an do this by
omputing theCholesky fa
tor L of A and solving the systems Ly = b and LTx = y. Be
ause we havepredetermined the stru
ture of L, the numeri
al fa
torization and triangular solves aresomething of an anti
limax|a straightforward translation of standard algorithms intothe language of p
mats. We will begin with the fa
torization.9.1. Numeri
al fa
torizationThe numeri
al fa
torization is an implementation of the algorithm Col
hol (Algo-rithm 3.1). It heart is the
omputation of the suma(k)k � k�1Xj=1�jk 6=0 �kj`(k)j ;where a(k)k = A[k:n; k℄ and `(k)j = L[k:n; j℄. There are two problems asso
iated with this
omputation.The �rst problem is how to lo
ate the
olumns j for whi
h �kj 6= 0. But these
olumns
orrespond to the nonzero elements in row k of L. Thus we
an lo
ate themusing the routine RowTrav (Algorithm 5.2). In fa
t RowTrav will turn out to be thedriver of our algorithm.The se
ond problem is where to a

umulate the sum. One possibility is to a

umu-late it in the kth
olumn of the p
mat L. This
an
ertainly be done, but the indexingis
ompli
ated, sin
e `(k)j will generally have fewer nonzeros that `(k)k . An alternative, isto use an a

umulator array a

um of length n. We zero out the
omponents of a

um
orresponding to the nonzero elements of `(k)k and then load the nonzero
omponents ofa(k)k into their natural positions. After the sum has been a

umulated in the array, it ismodi�ed to give the kth
olumn of L and returned to the kth
olumn of the p
mat.Algorithm 9.1 performs the numeri
al fa
torization. Note the ni
e way RowTrav

40 An Old-Fashioned Sparse Solver
Numfa
 overwrites the p
mat L with the Cholesky fa
tor of A.1. Numfa
(A, L)2. k = -13. RowTrav(L, k, j, poskj)4. for kx = 1 to L.n ! Pro
ess
olumn k5. while (RowTrav(L, k, j, poskj) != 0)6. if (j = k) ! Initialize a

um.7. for ii=L.
olp[k℄ to L.
olp[k+1℄-18. a

um[L.rx[ii℄℄ = 09. end for ii10. for ii=A.
olp[k℄ to A.
olp[k+1℄-111. a

um[A.rx[ii℄℄ = A.val[ii℄12. end for ii13. else ! Subtra
t L[k:n,j℄ from L[k:n,k℄14. Lkj = L.val[poskj℄;15. for ii=poskj to L.
olp[j+1℄-116. i = L.rx[ii℄;17. a

um[i℄ = a

um[i℄ - Lkj*L.val[ii℄18. end for ii19. end if20. end whileMove L[k:n,k℄ from a

um to L, adjusting its
omponents.21. for ii=L.
olp[k℄ to L.
olp[j+1℄-122. i = L.rx[ii℄23. if (i = k)24. L.val[ii℄ = sqrt(a

um[i℄)25. Lkkinv = 1/L.val[ii℄26. else27. L.val[ii℄ = Lkkinv*a

um[i℄28. end if29. end for ii30. end for kx31. end Numfa
Algorithm 9.1: Numeri
al fa
torization

An Old-Fashioned Sparse Solver 41supports the algorithm. The �rst element it returns in row k is the kth, whi
h is justwhat we need to initialize a

um. Moreover, when we get the jth element, poskj pointsto the top of the ve
tor `(k)j .There are four
omments to be made about this algorithm.� The use of an a

umulator has the disadvantage that referen
es are spread outunsystemati
ally a
ross an array of memory
onsisting of n words. Su
h referen
esare known to redu
e
a
he performan
e| i.e., to slow the rate at whi
h items are readfrom or written to memory. If we perform the elimination within the p
mat L, thereferen
es are less separated in memory, whi
h improves
a
he performan
e at the
ostof additional indexing.� The only part of the array a

um that needs to be initialized at ea
h stage are the
omponents
orresponding to the nonzeros of `(k)k . Thus the initialization
osts areproportional to L.nnz.� The elements of A are automati
ally transferred to L in the pro
ess of initializinga

um.� In some appli
ations we must repeatedly solve systems of the same stru
ture butwith di�erent numeri
al values. Be
ause the Cholesky fa
tors will also have a
ommonstru
ture, we
an reuse L when we perform the numeri
al fa
torizations.9.2. Triangular solvesAs we have seen earlier, we
an solve the system Ax = b by solving the two systemsLy = b and LTx = y. We will now show how to solve these systems when L is representedby a p
mat.Sin
e in a p
mat
olumn traversals are more eÆ
ient that row traversals, we shoulduse a
olumn oriented algorithm to solve the system Ly = x. We
an derive one asfollows. Partition the system in the form�� 0` L̂���̂y� = ��̂b� :Then from the �rst row of the partition, we get�� = �;from whi
h we �nd � = �=�:From the se
ond row, we get �`+ L̂ŷ = b̂;

42 An Old-Fashioned Sparse SolverLet the lower triangular matrix L be
ontained in the p
mat L and let b be
ontainedin an array b. Lsolve overwrites b with the solution of the system Ly = b.1. Lsolve(L, b)2. for j=1 to L.n3. b[j℄ = b[j℄/L.val[L.
olp[j℄℄4. for ii=L.
olp[j℄+1 to L.
olp[j+1℄-15. i = L.rx[ii℄6. b[i℄ = b[i℄ - b[j℄*L.val[ii℄7. end for ii8. end for j9. end Ltsolve Algorithm 9.2: Solution of Ly = bfrom whi
h we �nd L̂ŷ = b� �`:This is a linear system of order one less than the original, whi
h
an be solved by are
ursive appli
ation of the above pro
ess.All this leads to the following algorithm.1. y = b2. For j=1 to n3. y[j℄ = b[j℄/L[j,j℄4. for i=j+1 to n5. y[i℄ = y[i℄ - y[j℄*L[i,j℄6. end for i7. end for j (9.1)The algorithm destroys the original right-hand side b, whi
h in many appli
ations is notneeded. In fa
t, we
an arrange for the algorithm to overwrite b with the solution y byrepla
ing all referen
es to y with referen
es to b.Algorithm 9.2 overwrites b with the solution of Ly = b. It is a straightforwardimplementation of (9.1) for a p
mat L. Note that it tou
hes ea
h nonzero element of Lonly on
e. Hen
e it runs in time proportional to L.nnz.Turning now to the solution of LTx = b, we �rst note that if we set U = LT, then Uis upper triangular. Sin
e the
olumns of L
orrespond to the rows of U , we must now�nd a row oriented algorithm for solving Ux = b.The algorithm, whi
h is the
lassi
al ba
k-substitution algorithm taught in
onne
-tion with Gaussian elimination,
an be derived as follows. Partition the system Ux = b

An Old-Fashioned Sparse Solver 43as follows. �� uT0 Û ���̂x� = ��̂b� :Then from the last row we have Û x̂ = b̂and from the �rst row �� = uTx̂Thus if we have already solved for x̂ (by a re
ursive appli
ation of our algorithm), we
an solve for � in the form � = ��1uTx̂:The following algorithm, in whi
h x overwrites b, implements this s
heme.1. for i=n to 1 by -12. for j=i+1 to n3. b[i℄ = b[i℄ - b[j℄*U[i,j℄4. end for j5. b[i℄ = b[i℄/U[i,i℄6. end for iWhen we write the algorithm in terms of L, we get1. for j=n to 1 by -12. for i=j+1 to n3. b[j℄ = b[j℄ - b[i℄*L[i,j℄4. end for i5. b[j℄ = b[j℄/L[j,j℄6. end for jAlgorithm 9.3 overwrites b with the solution of LTx = b. Like its
ounterpart forLy = b, it runs in time proportional to L.nnz.10. Ba
k to the futureWe have
ompleted the
onstru
tion of our old-fashioned sparse solver. It is not a toy.Around 1975, highly skilled resear
hers were working hard to perfe
t a solver like ours.But neither is it a state-of-the-art, twenty-�rst
entury solver. To give you a feel forwhat
ame after, we will look at two ideas that have played an in
reasingly importantrole in sparse matrix te
hnology: supernodes and multifrontal elimination.Both these ideas address a problem that we have mentioned in
onne
tion with Algo-rithm 9.1 for numeri
al fa
torization: namely referen
es to elements in the a

umulator

44 An Old-Fashioned Sparse SolverLet the lower triangular matrix L be
ontained in the p
mat L and let b be
ontainedin an array b. Ltsolve overwrites b with the solution of the system LTx = b.1. Ltsolve(L, b)2. for j=n to 1 by -13. for ii = L.
olp[j℄+1 to L.
olp[j+1℄-14. i = L.rx[ii℄5. b[j℄ = b[j℄ - b[i℄*L.val[ii℄6. end for ii7. b[j℄ = b[j℄/L.val[L.
olp[j℄℄8. end for j9. end Ltsolve Algorithm 9.3: Solution of LTx = bjump around irregularly over n memory lo
ations. This not only
an slow down memorya

ess, but it also makes it diÆ
ult to ve
torize the
omputations. Both approa
hesmitigate this problem by
on
entrating at least some of the memory referen
es into a
ompa
t, fully utilized region of memory.The purpose of this se
tion is to sket
h in outline, and we will not present things indetail as in the earlier se
tions. If you like, look on the statements here as postgraduateexer
ises, where you have the opportunity to test your mastery of the subje
t.10.1. SupernodesA supernode is a maximal sequen
e of
onse
utive of
olumn indi
es of L, whose
olumnshave essentially the same stru
ture. Spe
i�
ally, the sequen
e s; : : : ; s+t�1 form asupernode if str(`s) = str(`s+t�1)[fs; s+1; : : : ; s+t�2g:Sin
e s; : : : ; s+t�1 are in the stru
ture of `s, the the lower triangle of the matrix L(s:s+t�1; s:s+t�1) must be full. Moreover, the stru
ture of the
olumns below this triangle|i.e.,
olumns L(s+t:n; j) (j = s; : : : ; s+t�1)|must have the same stru
ture. Thestru
ture of a supernode is illustrated in Figure 10.1. It might be thought that thesupernode stru
ture is so spe
ial that it is unlikely to arise in pra
ti
e. On the
ontrary,many problems give rise to matri
es with a ri
h supply of supernodes.In our pa
ked
olumn representation, all the nonzero elements of a supernode endup stored
olumnwise in the
ontiguous region of memory from L.val(L.
olp(s)) toL.val(L.
olp(s+t)-1). This has an important impli
ation for the numeri
al fa
tor-ization phase of our old-fashioned solver. Suppose that the
olumns of a supernode have

An Old-Fashioned Sparse Solver 45X O O OX X O OX X X OX X X XO O O OO O O OO O O OX X X XX X X XO O O OX X X XX X X XX X X XFigure 10.1: A typi
al supernodebeen generated, and they need to be used to generate a subsequent
olumn. Ordinarily,a multiple ea
h
olumn of the supernode would be subtra
ted from the a

umulator inAlgorithm 9.1. But alternatively, we
an
ompute the sum of ea
h
ontribution dire
tlyfrom the array array L.val, whi
h
an be done quite eÆ
iently be
ause of the supernodestru
ture. This sum
an then be added into the a

umulator as usual.A less signi�
ant savings must be had when the supernode itself must be fa
tored.Namely, one
an apply
olumns 1; : : : ; s�1 to all the
olumns of the supernode in theusual way, and the fa
torization
an be
ompleted in the array L.val.There are many appli
ations of supernodes that
annot be illustrated by our old-fashioned solver. For example, they
an be used to redu
e e�e
tive size of the graph ofL. This is done by regarding the set fs; : : : ; s+t�1g as a single node (when
e the namesupernode) and adjusting the edges so that any edge involving one of the nodes, is nowasso
iated with the supernode. This tri
k
an save
onsiderable time in manipulationswith the graph of L.Supernodes
an be
al
ulated dire
tly from the pa
ked
olumn stru
ture of L. Infa
t, one only needs to know the number �(j) of nonzero elements in
olumn j of L.Spe
i�
ally, fs; : : : ; s+t�1g is a supernode if and only if it is a maximal set of nodessu
h that s+i�1 is a
hild of s+i in the elimination tree and�(s) = �(s+t�1) + t� 1: (10.1)However, there are other ways of dete
ting supernodes, and whi
h one is most suitablewill depend on the details of the solver.

46 An Old-Fashioned Sparse Solver10.2. The multifrontal methodWe will introdu
e the multifrontal method by
onsidering the
lassi
al Gaussian elimi-nation algorithm sket
hed Se
tion 3.1. The matri
es in this method are asso
iated withrows of A and L, and will be
onvenient to extend our previous notation. Re
all thatwe used `(k)j to represent the part of the jth
olumn of L extending from �jk down-ward| i.e., L(k:n; j). In what follows we use the supers
ript (k) for the part of a ve
torasso
iated with rows k through n, or the trailing prin
ipal submatrix of a matrix thatbegins with its (k; k)-element.Let the equation A = LLT be partitioned in the form �11 a(2)T1a(2)1 A(2)! = �11 0`(2)1 L(2)! �11 `(2)T10 L(2)T! :Then as in Se
tion 3.1, we �nd that1: �11 = p�11;2: `(2)1 = ��111 a(2)113: L(2)L(2)T = A(2) � `(2)1 `(2)T1 � A(2) + U (2)1 ;where U (2)1 is
alled an update matrix.Conventional Gaussian elimination would
ontinue the pro
ess with the matrixA(2)�U (2)1 . But the
omputations
an be arranged di�erently. Instead of in
orporatingthe updates in U (2)1 and its su

essors into the
urrent matrix, we
an a

umulate themin update matri
es and use them to generate L
olumn by
olumn. Spe
i�
ally, letU (k)k�1 = � k�1Xi=1 `(k)i `(k)Ti ; (10.2)be the (k�1)th update matrix. We now partitionU (k)k�1 = �(k)k�1 u(k+1)Tk�1u(k+1)k�1 U (k+1)k�1 !and form the frontal matrixFk = �kk 0a(k+1)k 0!+ �(k)k�1 u(k+1)Tk�1u(k+1)k�1 U (k+1)k�1 ! = �̂kk u(k+1)Tk�1^̀(k+1)k U (k+1)k�1 ! :From (10.2) it follows that the �rst
olumn of Fk is a(k)k with updates and is thereforethe ve
tor ^̀(k)k in equation (3.5). Consequently �kk = p�̂11, and `(k+1)k = ��111 ^̀(k+1)k .

An Old-Fashioned Sparse Solver 47Thus we have
omputed the kth
olumn of L. The next update matrix is given byU (k+1)k = U (k+1)k�1 � `(k+1)k `(k+1)Tk :Pro
eeding in this manner we
an
ompute all the
olumns of L.On the fa
e of it, this is a perfe
tly silly way to implement Gaussian elimination.Computing a
olumn of ` by adding an update matrix into a mostly empty matrix isplainly ineÆ
ient. But this is only be
ause for a general dense matrix the order ofelimination is �xed|a fa
t re
e
ted in its elimination tree, whi
h is a straight linegoing from its root at node n to its single leaf at node 1.Things are otherwise for a sparse matrix whose elimination tree has many bran
hes.In parti
ular, be
ause the kth
olumn of L depends only on the
olumns of A
or-responding to T [k℄, we
an
ompute it without having to to
ompute any
olumns
orresponding to the set
omplementary to T [k℄. To see this, let j be a
hild of k, andde�ne the update matrix U (k)j byU (k)j = � Xi2T [j℄ `(k)i `(k)Ti : (10.3)If we sum the U (k)j over the
hildren of k, it
an be veri�ed (this is your �nal exam inelimination trees) that the �rst
olumn of the sum is pre
isely the ve
tor that must beadded to a(k)k to get ^̀(k)k .All this leads to the following algorithm for
omputing `(k)k and U (p)k , where p =parent(k).1. Assemble the frontal matrixFk = �kk 0a(k+1)k 0!+ Xj a
hild of k �(k)j u(k+1)Tju(k+1)j U (k+1)j ! = �̂kk f (k+1)Tk^̀(k+1)k F (k+1)k ! : (10.4)2. Compute �kk =q�̂kk and `(k+1)k = ��1kk ^̀(k+1)k3. Let p = parent(k) and
omputeUpk = F (p)k � `(p)k `(p)Tk :By exe
uting this algorithm for k = 1; : : : ; n, we
an
ompute the Cholesky fa
tor of A.

48 An Old-Fashioned Sparse SolverThis is still not a working algorithm, sin
e it
onsumes too mu
h storage. In the�rst pla
e, the update matri
es are symmetri
. This problem may be solved by storingonly the lower half of of these matri
es, and likewise for the frontal matri
es.More important, the update and frontal matri
es are sparse. For from (10.3) andthe fa
t that i 2 T [j℄ =) str(`(k)i) � str(`(k)j);it follows that if i 62 str(`(k)j) then the row and
olumn of U (k)j
orresponding to i arezero. A similar statement holds for the frontal matri
es. The
ure is to remove theseempty rows and
olumns to give full dense matri
es. When we do this, however, theassembly of the frontal matrix be
omes more diÆ
ult, sin
e the update matri
es U (k)jin (10.4) are no longer of the same size. What one has to do is to
al
ulate where ea
helement in the update matri
es goes in the frontal matrix and add it in. This
reatesadditional overhead for the algorithm. But at least we are working with dense matri
es.A �nal adjustment of the algorithm is ne
essary. We
an form update matri
es inany order as long as we form the update matrix for the
hildren of j before we formthe update matrix for j. However, no update matrix
an be dis
arded until it has beenused to
ompute the update matrix of its parent. For example, if in the eliminationtree of Figure 8.1 we generate elimination trees in the natural order, at one point wewill have to store the �ve update matri
es
orresponding to
olumns 2, 3, 4, 5, and 6.On the other hand, if we generate update matri
es in the order 1, 5, 6, 9, 3, 4, 8, 2, 7,10, 11, 12 we never have to store more that two update matri
es at any one time. Thislatter is an example of a postordering of a tree, and it is not surprising that
onsumersof multifrontal algorithms are keenly interested in �nding optimal postorderings.Supernodes mix well with the multifrontal approa
h. With proper organization, themethod requires only one update matrix per supernode. If there are many ni
e fatsupernodes the savings will be proportionately great.11. Bibliographi
al notesJust as it was impossible to present a fully modern sparse solver in this paper, it isequally impossible to give a full bibliographi
al survey of the subje
t. The followingnotes
ontain some primary referen
es along with more re
ent referen
es
ontainingsurveys and bibliographies.11.1. Sparse matri
es and solversIn 1968 Ralph Willoughby organized a meeting on sparse matri
es at the IBM Resear
hCenter at Yorktown Heights and edited its pro
eedings [27℄. This meeting marks theemergen
e of the subje
t as a
oherent �eld. It was followed by a sequen
e of meetings,

An Old-Fashioned Sparse Solver 49whose pro
eedings give a history of the development of the subje
t over a little morethan a de
ade [2, 4, 6, 17, 19℄.It is only fair, however, to note that many of the te
hniques that would proveimportant after the �rst sparse matrix meeting were in pla
e before it began. In a 1963paper Sato and Tinney [22℄ des
ribe a
ompressed row storage s
heme for the sparsefa
tors and the use of an a

umulator in the numeri
al fa
torization. In addition, theypropose a primitive ordering s
heme, whi
h today we should
all a minimum degreeordering based on the original rows. In 1967 Tinney and Walker [26℄ des
ribed the
lassi
al minimum degree ordering. Although they do not say how they
omputed it,they
ommentAt the
ompletion of the optimal ordering algorithm [s
heme 2) or 3)℄, the ex-a
t form of the table of fa
tors is established and this information is re
ordedin various tables to guide the a
tual elimination.In other words, in a
ombined ordering and symboli
 fa
torization, they set up the stru
-ture for the subsequent numeri
al fa
torization| just like subsequent sparse solvers.The terms symboli
 fa
torization, numeri
al fa
torization, and solve, along with a
om-pressed row storage s
heme, were introdu
ed by Chang [3℄ at the 1968 sparse matrixmeeting.There are not a large number of textbooks on the subje
t of sparse matri
es. Georgeand Liu's Computer Solution of Large Sparse Positive De�nite Systems [10℄, althoughsomewhat dated, is still valuable, and I have drawn heavily on it for this paper. Du�,Erisman, and Reid's Dire
t Methods for Sparse Matri
es [5℄ is an ex
ellent introdu
tionto the basi
s with a hands-on
avor. Unfortunately, both books are out of print.Grid-graph matri
es arises from ellipti
 partial di�erential equations dis
retized ona square. They had traditionally served as model problems for the solution of linearsystems by iterative methods, and their fa
torization naturally be
ame an importantproblem in dire
t sparse algorithms. The nested-disse
tion ordering is due to George [8℄as are the operation and �ll-in
ounts given here. For the optimality of nested disse
tionsee [11℄.There is a large literature on ordering, whi
h we
annot survey here. The texts
ited above
ontain mu
h useful material. Saad's Iterative Methods for Sparse LinearSystems [21℄
ontains a brief survey of ordering methods with pointers to the morere
ent literature.A happy pra
ti
e of the sparse
ommunity is that they implement their algorithmsin high quality software. The solver of this paper is a
ousin of two ex
ellent pa
kagesprodu
ed in the 1970's: The Yale Sparse Matrix Pa
kage [7℄ and SPARSEPACK [10,Appendix A℄, developed at the University of Waterloo.

50 An Old-Fashioned Sparse Solver11.2. The Cholesky de
omposition and �ll-inFor the basi
 variants of Gaussian eliminate see [24, Ch. 3℄. The
olumnwise algorithm,whi
h we use here, has a rowwise analogue, whi
h
an also been used to implementsparse solvers.The result (3.7) on �-pre
ursors is an example of a general
lass of theorems thatgo under the rubri
 of path theorems. In terms of graph theory (3.7) says that if�ik 6= 0 then there is a path k; k1; : : : ; kp; i in G(L) with the ki < k and �i;kp 6= 0. Thegranddaddy of path theorems is the elegant result, due to Rose, Tarjan, and Lueker[18℄, that �ik 6= 0 if and only if there is a path k; k1; : : : ; kp; i in G(A) with the ki < k.I devised re
e
tion diagrams in an attempt to simplify the proofs in the literature.However Iain Du� has told me that he has used su
h diagrams informally. They alsoappear in an unpublished manus
ript by Gibert and Lui.11.3. Representing and manipulating sparse matri
esThere are many other s
hemes for representing sparse matri
es than pa
ked
olumnformat. Saad [20℄ gives des
riptions of the most important ones along with programsfor
onverting from one to the other.The row traversal algorithm was designed spe
i�
ally for this paper, but it wasinspired by the numeri
al fa
torization
ode in George and Liu [10℄.11.4. GraphsParter [16℄ was the �rst to relate graphs and Gaussian elimination applied to sparsematri
es. As George [9℄ points out, however, the graph-theoreti
 results most useful insparse appli
ations have been developed independently of
lassi
al graph theory. Onthe other hand, algorithms for manipulating graphs, developed primarily by
omputers
ientists, are widely used in sparse matrix te
hnology. Two standard referen
es are[1, 25℄.11.5. The elimination treeThe elimination tree is so useful that it or its near equivalents were invented and rein-vented by several people (for a list of referen
es see [12, p. 130℄). Liu [13℄ gives a mag-isterial survey of the elimination tree and its appli
ations, whi
h has greatly in
uen
edthis paper.Algorithm 7.1 for generating the elimination tree is due to Liu [12, 13℄. It is lesseÆ
ient than it might be, taking time proportional to L.nnz. We
an improve it by apro
ess known a path
ompression. Spe
i�
ally, in a separate array we re
ord the mostdistant an
estor
urrently found for ea
h node. When it
omes time to start sear
hing

An Old-Fashioned Sparse Solver 51from node i we
an use this information to jump over already tou
hed nodes. Thepro
ess redu
es the time to O(A:nnz log n). (This algorithm is also due to Liu [12℄.) Forour solver there is not mu
h to
hoose between the two sin
e the work in the numeri
alfa
torization is generally mu
h greater than O(L:nnz).11.6. The numeri
al
odaS
hrieber [23℄ gives an algorithm for numeri
al fa
torization that avoids using an a

u-mulator. It is based on two observations.First, the elimination tree
an be used to guide the
omputation of the
orre
tion in
olumn k. To illustrate this,
onsider the node 10 in the elimination tree in Figure 8.1.Assuming that all the nodes below 10 form the row stru
ture of row 10 of L, we
an
ombine
olumn 2 with 7,
olumns 3 and 4 with 8, and �nally
olumns 7 and 8 with 10.This
an be done quite eÆ
iently with a sta
k of auxiliary storage. Get storage for 10,then 7. Combine 2 and 7, then 7 and 10, popping the storage for 7. Get storage for 8,
ombine 3, 4, and 8, then 8 and 10, popping the storage for 8.The advantage of this s
heme is that the storage for a top node of a
ombination isexa
tly the size of the
olumn stru
ture of the that node|generally mu
h smaller thanthe size n of an a

umulator. Consequently, there is less jumping around of memoryreferen
es and better
a
he performan
e.The se
ond observation is that instead of storing row indi
es for a
olumn of L, we
an store the relative indi
es of where the elements will end up when the
olumn is
ombined with its parent
olumn. This not only makes
ombining
olumns easy, butit also redu
es storage overhead, sin
e the relative indi
es are smaller than row indi
esand
an be pa
ked into a smaller part of memory.11.7. Ba
k to the futureA good sour
e of referen
es for supernodes is [15℄, whi
h
ontains the
ondition (10.1).Liu [14℄ gives a survey of multifrontal methods, in
luding referen
es for the use ofsupernodes and relative indi
es.12. A
knowledgementsI grateful to Joeseph W. Liu for detailed
omments on the �rst half of this paper. Iam indebted to the Mathemati
al and Computational S
ien
es Division of the NationalInstitute of Standards and Te
hnology for the use of their resear
h fa
ilities.

52 An Old-Fashioned Sparse SolverReferen
es[1℄ A. V. Aho, J. E. Hop
roft, and J. D. Ullman. The Design and Analysis of ComputerAlgorithms. Addison{Wesley, Reading, MA, 1974.[2℄ J. R. Bun
h and D. J. Rose, editors. Sparse Matrix Computations, New York, 1976.A
ademi
 Press.[3℄ A. Chang. Appli
ation of sparse matrix methods in ele
tri
 power system analysis.In R. A. Willoughby, editor, Sparse Matrix Pro
eedings, pages 113{122, YorktownHeights, 1969. IBM. Te
hni
al Report RQ 1 (#11707).[4℄ I. S. Du�, editor. Sparse Matri
es and their Uses, New York, 1981. IMA Numeri
alAnalysis Group Conferen
e, Reading, 1980, A
ademi
 Press. 1981.[5℄ I. S. Du�, A. M. Erisman, and J. K. Reid. Dire
t Methods for Sparse Matri
es.Clarendon Press, Oxford, 1986.[6℄ I. S. Du� and G.W. Stewart, editors. Sparse Matrix Pro
eedings 1978, Philadelphia,1979. SIAM.[7℄ S. C. Eisenstat, M. C. Gursky, M. H. S
hultz, and A. H. Sherman. Yale sparse ma-trix pa
kage I: The symmetri

odes. International Journal for Numeri
al Methodsin Engineering, 18:1145{1151, 1982.[8℄ J. A. George. Nested disse
tion of a regular �nite element mesh. SIAM Journal onNumeri
al Analysis, 10:345{363, 1973.[9℄ J. A. George. Dire
t solution of sparse positive de�nite systems: Some baisi
 ideasand open problems. In I. S. Du�, editor, Sparse Matri
es and Their Uses, pages283{306, New York, 1981. A
ademi
 Press.[10℄ J. A. George and J. W. H. Liu. Computer Solution of Large Sparse Positive De�niteSystems. Prenti
e{Hall, Englewood Cli�s, NJ, 1981.[11℄ A. J. Ho�man, M. S. Martin, and D. J. Rose. Complexity bounds for regular�nite di�eren
e and �nite element grids. SIAM Journal on Numeri
al Analysis,10:364{369, 1973.[12℄ J. H. W. Liu. A
ompa
t row storage s
heme for
holesky fa
tors. ACM Transa
-tions on Mathemati
al Software, 12:127{148, 1986.[13℄ J. H. W. Liu. The role of elimination trees in sparse fa
torization. SIAM Journalon Matrix Analysis and Appli
ations, 11:134{172, 1990.

An Old-Fashioned Sparse Solver 53[14℄ J. H. W. Liu. The multifrontal method for sparse matrix solution: Theory andpra
ti
e. SIAM Review, 34:82{109, 1992.[15℄ J. W. H. Liu, E. Ng, and B. W. Peyton. On �nding supernoes for sparse matrix
omputations. SIAM Journal on Matrix Analysis and Appli
ations, 14:242{252,1993.[16℄ S. V. Parter. The use of linear graphs in Gauss elimination. SIAM Review, 3:119{130, 1961.[17℄ J. K. Reid, editor. Large Sparse Sets of Linear Equations, New York, 1971. A
a-demi
 Press.[18℄ D. J. Rose, R. E. Tarjan, and G. S. Lueker. Algorithmi
 aspe
ts of vertex elimina-tion on graphs. SIAM Journal on Computing, 5:266{283, 1976.[19℄ D. J. Rose and R. A. Willoughby, editors. Sparse Matri
es and Their Appli
ations,New York, 1972. Plenum Press.[20℄ Y. Saad. SPARSEKIT: A basi
 tool kit for sparse matrix
omputations. Availableat http://www-users.
s.umn.edu/ saad/software/SPARSKIT/sparskit.html,1994.[21℄ Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia, 2003.[22℄ N. Sato and W. F. Tinney. Te
hniques for exploiting the sparsity of the networkadmittan
e matrix. IEEE Transa
tions on Power Apparatus and Systems, 82:944{950, 1963.[23℄ R. S
hreiber. A new implementation of sparse gaussian elimination. ACM Trans-a
tions on Mathemati
al Software, 8:256f{276, 1982.[24℄ G. W. Stewart. Matrix Algorithms I: Basi
 De
ompositions. SIAM, Philadelphia,1998.[25℄ R. E. Tarjan. Network Stru
tures and Network Algorithms. SIAM, Philadelphia,1983.[26℄ W. F. Tinney and J. W. Walker. Dire
t solution of sparse network equations byoptimally ordered triangular fa
torization. Pro
. IEEE, 55:1801{1809, 1967.[27℄ R. A. Willoughby (Editor). Sparse matrix pro
eedings. Report RA1 (#11707),IBM Resear
h, Yorktown Heights., 1968.

