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ABSTRACT

A simple, linear, system model is presented for a lathe with a toolpost that
incorporates active vibration suppression. The toolpost model is built from linear
dynamic models of the component parts of the toolpost design: the actuator and
drive circuitry, and the mechanical toolpost. The toolpost model is then combined
with linear models for the lathe dynamics and cutting process to produce a model
of the entire mechanical system. This model is used as the basis for a controller
design that uses a measurement of the actuator current for a sensor signal, and the
voltage applied to the actuator by the power amplifier as a control signal.

The controller design uses the H*® design methodology. The performance criteria
for the toolpost design are interpreted as measures on transfer functions associated
with the system model, and predictions of the performance of the design are made
on the basis of these measures. The conclusion drawn from this work is that with
careful design, the active control of vibration in turning processes is a promising
application for stack piezo-ceramic actuators.
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1 INTRODUCTION

This report presents a simple, linear system model for the dynamics of a lathe tool-
post that incorporates active vibration suppression. The toolpost described in the
report was designed and built at the University of Maryland, College Park by Pro-
fessor Guangming Zhang and his students during a project that was undertaken as
a task under the ARPA SMS program!. This report presents the work that I have
done on system modeling and controller design in conjunction with this project.
The emphasis in the work is directed towards design issues rather than theoretical
issues, and I have attempted to avoid theoretical technicality wherever possible.
While much of the work is an application of well established design methodology,
my approach to modeling the piezo-ceramic actuator as a linear two port system is
not standard practice. This approach does offer the advantages that it potentially
eliminates the need for an extra electro-mechanical motion sensor, and that it com-
pletely models the interactions between the mechanical and electrical components
of the system within the framework of the linear assumptions.

The development of a system model is an important step in system design. A
system model provides a means both to evaluate whether the proposed design is
capable of meeting the design requirements and to determine which system compo-
nents need precise characterization. A model can aid in understanding how decisions
made in the design of system components affect the overall behavior of the entire
system, as an illustration of this point, this report includes a controller design for
the active toolpost that is based on the linear system model.

The starting point for establishing a system model has to be the objectives of
the final design — the system model needs to be sufficiently powerful to determine
whether the system design objectives are being met. In short the system design
objective for the toolpost project is a demonstration that a machine fitted with an
active toolpost produces a measurably better surface finish than a machine fitted
with a conventional toolpost under identical machining conditions. The quality of a
machined surface is related to the amplitude and direction of the vibrational motion
of the tool tip relative to the workpiece. Motion of the tool tip in a direction normal
to the workpiece surface produces variation in the depth of cut which appears in the
final product as an irregularity in the surface finish. The goals of the system design
are to minimize the component of the vibrational motion of the tool relative to the
workpiece surface that lies in the direction that is normal to the workpiece surface, to
maintain the tracking performance of the tool tip with respect to the low frequency
signal that controls the depth of cut, and to maintain robust stability of the system
about the equilibrium cut in the face of variations in the plant parameters.

Two explanations for the source of mechanical vibration seem pertinent to this
problem. The first is that vibration is caused by exogenous disturbances such as
prior surface roughness, inhomogeneities in the workpiece material, vibration trans-
mitted through the lathe structure, or cutting force variations resulting from built
up edge or other phenomena associated with the mechanics of the cutting process.

1ARPA Agreement No.: MDA972-93-H-0003



2 Dynamic Model for an Active Toolpost

The second explanation is that the vibration is caused by non-linear system dynam-
ics; that is to say that the system trajectory that corresponds to an equilibrium cut
is unstable, and that the actual system trajectory is close to a stable limit cycle;
a demonstration of a model exhibiting this type of behavior has been given in an
earlier report. The two types of vibration generally exhibit quite different char-
acteristics. A vibration that results from an exogenous disturbance will look like
a filtered noise signal and typically will have broad spectral peaks and low phase
coherence. A vibration that results from a system trajectory that follows a stable
limit cycle will have a peaky spectrum with harmonics, and high phase coherence.
(Exceptions to these tendencies include exogenous disturbances that are highly pe-
riodic, and nonlinear dynamics of systems with strange attractors.) Simultaneous
control of both types of vibration leads to competing system design objectives. The
effects of exogenous disturbances are diminished by increasing the open loop gain
of the system, while the stability of equilibrium trajectories is generally maintained
by keeping the open loop gain small.
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Figure 1. Schematic of System Dynamics.

An appropriate initial model for system design is a linear model with the struc-
ture illustrated in Fig 1. The linear model should be interpreted as representing
the system dynamics linearized around a constant equilibrium trajectory represent-
ing a stable unperturbed cut. The reasons for the choice of this system structure
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and the choices of the models for the system components are largely pragmatic —
simple linear models are easy to work with and give good intuition as to where non-
linearities in the system may be important. A second reason for choosing a simple
model is that aspects of the system model such as the cutting process and the lathe
dynamics are poorly defined or highly variable even within a single cutting task,
consequently it does not make much sense to over-model the system and then tune
the design for a particular system model when in fact the design should be robust
to large variations in the system dynamics.

The remaining sections in the report describe the details of the models for the
various system components, emphasis has been placed on providing both time do-
main and frequency domain descriptions of the linear sub-systems. While the time
domain descriptions are important for simulation of the system, the transfer func-
tion matrices of the various components give a much better description of the system
behavior. A controller design is computed, and an initial estimate of the expected
system performance is made.

2 LINEAR MODEL FOR ACTUATOR AND DRIVE CIRCUIT
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Figure 2. Detail of Actuator Geometry.

This section presents a simple linear model for the actuator based on linear con-
stitutive equations for a piezo-electric material. It is assumed that the actuator
is lossless. The geometry of the actuator is defined in Figure 2, and in addition
the cross-sectional area is denoted by .4 = wR2. The constitutive parameters are
the relative permitivity K, the Young’s modulus Y, and the parameter g which is
defined by the expression

strain developed
applied charge density

free mechanical boundary
open circuit field
applied stress

open circuit electrical boundary
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The parameter g is related to the piezo-electric constant d by?

_d
9= K €0 '
A model for the actuator that expresses the extension of the actuator and the

voltage across the actuator in terms of the force applied to the actuator and the
total charge produced on the positive electrodes is given by

z | _| Pu P f 1)
Vv Py Py Q
in which
L L d
Py = —— p, = ¢
N T Ay " NA Ke
L d L 1
Py = — — Poy =
' T NA Ke 2T N?AKe
Note that
1
P, 2 =
capacitance free mechanical boundary
1
= = e
stifiness open circuit electrical boundary

From the point of view of control system design it is more convenient to con-
sider the extension of the actuator £ and the voltage across the actuator V¢ as
the inputs to the actuator, and force produced by the actuator f,.¢ and the current
entering the actuator I,¢, as the outputs. However, considering the current as an
output results in an improper transfer-function matrix, a difficulty that is resolved
with the realization that that the voltage and current on the electrical side of the
actuator can not be determined independently, but are constrained by the charac-
teristics of the drive circuitry. In particular, the output impedance of the amplifier
which is connected in parallel with the electrical impedance of the actuator greatly
influences the transfer function of the combined actuator-drive circuitry. Conse-
quently a simple model of the drive amplifier needs to be included in the system
model; Figure 3 contains an appropriate circuit.

In addition to the piezo-electric equation (1), the equations for the model are

RoVin — R1Vact
V, = Ag(=24n=tYact
8 ol ( Rl + R-g )
Vaet = Vo — LR,

d
Iy = EQact-

2¢0 = 8.85 x 10~ 12Fm~1!
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Figure 3. Electrical schematic of actuator and drive circuitry

These reduce to two equations

. R P, P,
RsQaA:t + (1 + Aol ! ) (P22 - M) Qact

Ry + Ry Py
R, Ry Py
= Ag—2 vy (14 ag—t )2
01R1+R2 in ( + OIR1+R2> Pllwa,ct
Tact P2
fact S

= B, _P_uQa.ct,

which yield a state-space model for the actuator of the form

é.a,ct = Aa/ctCact + BactUact
Yact = Cactlact + DactUact
with
Cact = [Qact]a Uact = [ ‘;li:n :l y  Yact = |: {:: :|
and
[ —L Ry
= — (K VY14 Ag————
Aset _R,,NMK%?,( 0 +d'Y) ( AT Rz)]
[ dY R1 Aol R2
= |— {14+ A4, ———— —_—
Bact |R,NKeo < T A, +R2) R, Ry +R2]
[ dY
Ca,ct — L NKG() R
- 1
| VAR (Keo + d*Y) (1 + Aol R1 +R2>
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ne :

D t = L

* _dar 1+ 4 _ B Aa Ry
R,NKeg ol R, + R, R; R1 + Ry

3 MODELLING THE TOOLPOST

The dynamics of the mechanical toolpost structure are modeled by the simple mass-
spring system illustrated in Figure 4. The force from the ceramic actuator acts in
parallel with the cutting force on the rigid body, mass M,, to which the cutting
tool is attached. The spring K; and the damping C; model the membrane spring
that supports the mass Mj.

act
cut

AN

X

Figure 4. Mechanical Schematic for a Linear Model of the Tool-Post

The equation of motion for the dynamics of the linear tool-post model is
0=fcut—fact+K1$1 +01£I‘7+M151:‘, (2)
which yields a system of state equations

Ztool = AtoolZtool + BroolUtool

in which the state vector and input vector are given by

T fcut
Ttool = ( z ) Utool = ( fact s
ac

and the matrices Agoot and Btool are given by

-G _K
Ao = (T )

=1 1
By = ( A(l)l A(/-I)’ )
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The output vector from the model is

_ Ztool
Ytool ( a )

which has components a, the signal from an accelerometer attached to the mass
M, and z¢o01, the position of M;. The output equation is

Yool = CroolZtool + DioolUtool

in which the matrices Cioo1 and Dyoo1 are given by

0 1
Croar = (_g:. _&)
M M,
0 0
Dgoot = <—_1 L)'
My M

The transfer function for the system is found by taking the Laplace transform
of equation (2) and ignoring the initial conditions, this gives:®

Ozfcut _fact+301(i7+K1£i?+82M1fI. (3)
Solving for #; in terms of the input signals fcut and fact gives

Ms?24+Cs+ K’

The transfer functions with respect to the two input forces differ only in sign; each
has a pair of poles at

&=

-0 £+/OT T4k M,
- 2M; '

The model for the mechanical part of the toolpost may be combined with the
model for the actuator to give a transfer function matrix that relates the tool
dlsplacement £iool, the acceleratlon measurement @ and the actuator current mea-
surement [ to the cutting force fcut and the voltage signal applied to the actuator
drive amplifier Vin.

Zoo1(8) t11(8) ti2(8) 2
W) | = |l ) | [ @], @
I(s) t31(s) taa(s) m

Appendix A contains a MATLAB?* script for the Toolpost model, and Bode plots of
the elements of the transfer function matrix t;1(s) ... t32(s) are presented in Figure

3A hat over a signal indicates the Laplace transform of the signal, so f is the the Laplace
transform of the force signal f.
4MATLAB is a trademark of The MathWorks Inc.
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Figure 5. Bode plots of transfer functions for toolpost structure
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5. The model parameters that were used for these plots are given in Table 1. The
model parameters that quantify constitutive properties of the piezo-ceramic material
are taken from Vernitron data, sheets for PZT ceramics. The geometric parameters
were measured or guessed from sample actuators produced by AVX. The stiffness
Kace that appears in Table 1 is the open circuit stiffness of the actuator and is given
by the formula

Koo TR?KegY
* T LKeo + d2Y
Parameter | Value
Actuator Parameters
L 1.8 x 1072
R 3.5 x 1073
N 150
K 1300
d 350 x 10~12
Y 9.9 x 1010
Drive Circuitry Parameters
Aol 10°
Ry 2 x 1039
R,y 28 x 103
R, 100
Toolpost Structure Parameters
M 02 Kg
M, 0.04 Kg
K, Kact/lo N/m
K2 Kact/IOO N/m
& 0.03
& 0.03

Table 1. Parameters for model of toolpost and actuator dynamics

If the controller is assumed to take the form

Vin(s) = Qu(s)i(s) + Q2(s)1(s)
then the transfer function of the combined toolpost with controller may be written
as Zeut () = Trool(5) feut(s) with

t21(8)Q1(s) + t31(s)Q2(s) (5)
— t22(5)Q1(s) — t32(s)Q2(s)”

Ttoor(s) = t11(s) +tr2(s)7

4 MODEL OF LATHE

The model for the lathe presented in this section is a simple model based on the
ideas of Merritt [4] who models the turning process with a dynamic system that is
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composed of three parts. The first part is a kinematic equation that expresses the
chip load u(t) as a function of y(t) and y(t — 7), the distances between the tool tip
and the center of the workpiece at successive revolutions of the workpiece.®

u(t) =y(t) —py(t—7) (6)

In this equation 7 denotes the transport delay associated with one revolution of the
workpiece, and pu is the overlap factor which is a function of the feed-rate and the
period of a revolution T'.

The second part of the model is the relationship between the cutting force fous
and the chip load u(t). It is to be expected that an accurate characterization
of this relationship would involve a complicated non-linear model of the cutting
process, but as a first approximation the variation in cutting force is assumed to be
proportional to the variation in the depth of cut and is given by the linear equation

fcut(t) - _kcu(t)- (7)

The value for k. depends on a variety of factors including tool geometry, the material
composition of the workpiece and the equilibrium value of the depth of cut. In any
specific instance k. is calculated from an empirical model; this report uses a model
from The PhD dissertation of Zhang [5]. Zhang gives the relationship

7500 X d

ke = f015 % N0.05

for the cutting stiffness of a standard diameter aluminum test piece as a func-
tion of cutting speed N (in rpm), depth of cut d (in mm), and feedrate f (in
mm /revolution). The values used for N, f, and d in the model are

N = 2400 f=15 d=5.

The third part of the model is a description of the dynamics of the mechani-
cal systems that comprise the lathe and the workpiece. Merritt assumes that the
tool-post is infinitely rigid, and describes the lathe dynamics with a linear n-degree
of freedom model. Here, a linear model that combines the dynamics of the me-
chanical toolpost design with the dynamics of the controller is used to describe the
behavior of the toolpost, and a single degree of freedom model is used to describe
the behavior of the lathe and workpiece. The lathe model may be interpreted as a
model of the first resonant mode of the combined lathe workpiece structure; with
this interpretation the lathe model is expressed by the equation

f cut (t) =M ila.the (t) + Cfi;lathe (t) + K Zrathe (t)v (8)

where M, C, and K denote the effective mass, stiffness and damping coefficients of
the dominant mode.

5 All variables should be interpreted as variations around an equilibrium value that corresponds
to a (possibly unstable) equilibrium cut.
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Figure 6. Detail of Cutting Process.

Figure 6 illustrates the the relationship between the mechanical signals that
describe the cutting process. In the figure the position of the workpiece, Zjathe is
kept constant in successive rotations in order to keep the illustration simple. The
variable y is the difference in the positions of the tool tip and the workpiece.

Y = Zlathe — Ztool- (9)

The signal associated with this variable represents the variation in surface height
of the machined workpiece along a curve that traces the path of the tool tip on the
workpiece, and which is parameterized by the cutting speed. This signal is impor-
tant in the evaluation of the design because variations in y(t) represents variations
in the surface height, and therefore quality, of the machined surface.

Figure 7 is a schematic of the dynamics of the combined system of lathe and
toolpost. A disturbance fgis is introduced as a pair of forces of equal magnitude
acting in opposite directions on the workpiece surface and the tool tip. A low
frequency control signal oyt is introduced as an offset on the position of the tool tip.
Varying Zcont varies the depth of cut. The toolpost, which includes the controller,
is modeled by a linear system with transfer function Tt that relates the signals
Feuts Teons and oo by the equation

{i’tool = -'i‘cont + Ttoolfcut-

Equations for the lathe model are derived from Figure 7 as follows. Balancing
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Xlathe
Figure 7. Mechanical schematic of lathe model with disturbances
forces on the mass M gives the equation
f dist — kc'& = 32M i'lathe + SC{if'lathe + K {ilathe, (10)
And balancing forces at the tool tip gives
fdist — ket = feut- (11)

Substituting (9) into (6) and taking Laplace transforms gives
4= (1 - I-‘e_sr)(i'lathe - jtool)
which, in turn may be substituted into (10) and (11) to give the pair of equations

(32M +sC+ K+ kc(l - /J:e—sr))iilathe

fdist + kc(]- - ,U'e_sr)i'tool
fdist + kc(l - ﬂe—sr)i'tool = fcut + kc(l - Ier_ST))ilathe- (12)
Eliminating Zja4ne gives

M +sC+K

SEM + 50 + K + kol — pao—or Jdist

f cut

ko(1— pe™*")(s’M + sC + K) 4
52M + sC + K + ke(1 — pe—s7) ool

(13)

Recalling that § = Z1athe — £tool1, & rearrangement of (12) gives

kc(l - ,ue‘”)ﬁ = fdist - fcut,
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and substituting the equation for fe,; (13) gives

. 1 \
T 2M 4 5C + K 4 ko(1 — pe—7) Jaist

SM+sC+K R
M + 5C + K + ko(l — pre—7) "t

To summarize, the model for the Lathe may be written as

PREEI
feut Ty1 Ta Ztool

with
Tu(s) = :
= OM 5O+ K + ko(l— pe—o7)
—(s2M +sC + K)
T =
12(s) $?M + sC + K + k(1 — pe—*7)
To(s) = M +sC+K
T @M A sC+ K + ko(1— peo)
k(1 —pe=®")(s’M +sC+ K
T22(S) — C( /J’ )( )

$2M + sC + K + k(1 — pe—*7)’

The delay in the lathe model prevents the model being written in terms of a
differential equation on a finite dimensional state space. Rather than making a
finite dimensional state-space approximation to the model, computations involving
the lathe model are all performed in the frequency domain where the model is
expressed by the transcendental transfer functions T3; ...7T5s. The Matlab M-file
that computes these transfer functions is given in Appendix B. The values of the
model parameters that were used for the computations are given in Table 2, and
the Bode plots for the lathe transfer functions are presented in Figure 8.

5 CONTROLLER DESIGN

The first problem that needs to be addressed in control system design is that of
finding an appropriate way of representing the design objectives in terms of a com-
putable measure on the system model. As mentioned in the introduction, the im-
portant criteria in the toolpost design are: performance of the system with respect
to tracking the low bandwidth input that controls the depth of cut, rejection of
the disturbances caused by perturbations in the cutting force, and robust stability
of the closed loop system with respect to perturbations in the plant model. Fol-
lowing a traditional, frequency domain, H*® approach, these criteria are expressed
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Figure 8. Transfer functions for model of Lathe
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Parameter Value
ke 5.0 x 108 N/m
T 0.02 s
I 0.8
K 5.0 x 106 N/m
w 500 rad/s
13 0.03

Table 2. Parameters for Turning Process

within the linear theory that has been developed as measures on the magnitudes of
appropriately selected closed loop transfer functions.

The linear system model for the toolpost and lathe is represented by the signal
flow diagram on the left of Figure 9. The signals Tcont and fais¢ are exogenous
inputs to the system: the first models the low-bandwidth control signal, and the
second models the higher frequency disturbances that perturb the cutting force.
The signal y is the distance from the surface of the workpiece to the rotational axis.
This signal determines system performance since variations in the radius of the
workpiece appear as surface roughness in the finished workpiece. The signals a and
I are the accelerometer and current sensor signals that are available to the controller,
and the signal V is the actuator voltage signal that the controller regulates. From
the toolpost model in Section 3, it is apparent that under the assumptions made
when determining the linear model the acceleration signal a is proportional to the
derivative of the current signal I. Consequently, observability of the plant is not
lost by ignoring the signal q in a simplified initial design for the controller. In a final
design, consideration of sensor noise, nonlinearity and dynamic range will determine
what arrangement of the two sensors should be used. So, ignoring the acceleration
signal, the dynamics of the toolpost without controller may be modeled by the three
input, two output transfer function matrix on the right of Figure 9. The entries in
the transfer function matrix, Pi; to Ps3, are given by the formulae

T2t T T1otyo T1y
Py=Ty+-224r  p, iz po 12
H U (=1, T) 27 (0~ t11Tae) 13 (1 - t11T29)
31751 t31Tat91 t31T22
Py = ——— Pyy =t39 + ————— =
T A =t Th) BT A ot Te) 2 (1—t1Tn)

The performance of the controlled system is evaluated in terms of the closed loop
transfer functions that relate the disturbance signal f4is; and the control signal T¢ont
to the measured output y. A design that performs well is one that achieves low gain
between fqist and y over the bandwidth where the spectral density of fgist is large
(frequencies between 100 Hz and 5 kHz), yet maintains unity gain with = phase-
shift between the signals zcont and y over the bandwidth where the spectral density
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Figure 10. Configuration for Four Block H* Problem

of the control signal Z¢ens is high (frequencies less than 3 Hz). In practice it is found
that the second requirement, which is a tracking requirement, is easy to satisfy, and
the effort in the controller design is directed towards meeting the first requirement
which is a disturbance rejection requirement.

The H* design methodology is used to calculate a controller that performs well
according to the criteria that have been established. Figure 10 illustrates how the
controller design problem is reformulated as the standard four block H* problem
described in [3] — notice that the input signal zcont is disregarded in the controller
design which is directed towards satisfying the disturbance rejection requirement.
The resulting H* problem is solved using the Robust Control Toolbox®. Details on
the use of the Robust Control Toolbox, and the algorithms it uses may be found in
the User’s Guide [1]. The paper of Doyle et al. [2] describes the key algorithm used
to compute the H* controller. This algorithm computes a controller C' that ensures
that the closed loop transfer function matrix T;)(s) that relates the vector of input
signals (w1, w2) T to the vector of output signals (21,22) " has largest singular value
7(Ta), a function of s, bounded above by &(T) < 1 uniformly on the vertical axis of
the complex plane, s = jw. In order that this algorithm can be successfully applied
two technical requirements need to be satisfied: the first is that the open loop
transfer function matrices that relate the actuator signal V' to the measured output
(z1,22)7, and that relate the exogenous inputs (w1, ws) T to the control sensor signal
I should retain full rank in the asymptotic limit as s — joo, the second is that the
open loop transfer function matrix should have neither poles nor zeros on the jw
axis. The first requirement is satisfied with the introduction of the extra input

5The Robust Control Toolbox is a product of The MathWorks Inc. that provides additional
functionality to their software product MATLAB.
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wy and the extra output 2zo. In addition to ensuring that the rank condition is
satisfied, this input-output pair introduce an extra row and column to the closed
loop transfer function matrix and adds a measure of robustness to the performance
measure that is already being optimized. Francis [3] shows with an application of
the small gain theorem that minimizing the L norm of the closed loop transfer
function relating w3 to 22 maximizes the size (in L™) of the smallest perturbation
of the transfer function P,; that would destabilize the closed loop system. The
second requirement, a restriction on the position of the open loop poles and zeros,
is satisfied by using a bilinear transform of the complex plane to move the zeros of
the open loop transfer function that appear at the origin to positions in the right

half plane. This technique is explained in the Robust Control Toolbox guide [1].
The key to successfully using the H* design method for the design of a con-
troller that yields good closed loop performance lies in the selection of the weighting
functions WL, W2, W}, and W2,,. In the application presented in this report, the
closed loop transfer function matrix that relates the inputs (w;,w;) " to the outputs

(21, ZQ)T is

T, = [ Tan Taie ]

Tan Taie

with
Tann = Wl (Pu + 1—:0—132;) Wi
Taz = W,
Tan = W2

Tz = W2

The closed loop transfer function norms that are important for the evaluation of
the design are ||Pi1 + Pi3CPyo/(1 — CPy3)||0o, which is a measure of disturbance
rejection, and ||Pa3C/(1 — CPag)|leo which is a measure of robustness. The ideal
design algorithm would produce a controller transfer function C that maintains sta-
bility in the closed loop system while minimizing a combination of the two norms,
the combination being chosen to reflect the relative importance of the two crite-
ria, disturbance rejection and robustness, at different frequencies. What the H*®
design algorithm actually gives is a controller that minimizes the norm || (Z¢1)||co,
and it is the choice of weights, W, W1 ., W2 and W2,,, that controls the rela-
tionship between the size of ||o(Ta)llco and the magnitude of the transfer functions
norms that are used to evaluate system performance. In applications, the problem
of choosing appropriate weights is the central problem in controller synthesis by
H* methods. The particular approach to design that is considered in this report
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falls under the general procedure called p-synthesis for systems with structured un-
certainty which is discussed by Chiang and Safonov in [1]. Generally the problem
of choosing appropriate weights is a difficult optimization problem. The usual ap-
proach to its solution is an iterative process of synthesis and either simulation or
evaluation of performance measures. The designer attempts to resolve conflicting
design objectives at each iteration by altering the weights. Current research in the
area of p-synthesis aims to provide tools that will help the designer in this task.

The approach taken here to the problem of choosing weights is straight-forward.
The weights W}, and W}, are initially identical stable first order low-pass filters,
the weights W2 and W?out are initially identical stable first order high pass filters,
and the initial choice of the filter gains ensures the existence of a solution to the
initial H* design problem. The H* design algorithm then iteratively solves the H*®
design problem while increasing the gain of weight W), until a solution no longer
exists. At this point the resulting design is evaluated and the closed loop transfer
functions Tu11, Ta12, Tei21, and Ter22 are inspected. An adjustment of the weights,
and another iteration of the procedure can improve the system performance by
promoting diagonal dominance, or adjusting the relative magnitudes of the diagonal
elements in the closed loop transfer function matrix.

Weighted CL Transfer Functions
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~~~~~ CLTF12
-100f
o
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/
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Figure 11. Closed Loop Transfer functions Ty ;;

The Matlab M-file that is used for the computation of the controller is given in
Appendix C. The M-file calls two other files, Toolpost.mand Lathe.m to calculate
the models for the toolpost and the lathe. Toolpost.mis listed in Appendix A, and
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Lathe.m produces a low dimensional state-space approximation to the transcenden-
tal Lathe transfer functions of the Lathe model in Appendix B. The closed loop
transfer functions and system responses-illustrated in Figures 12 to 18 are calcu-
lated in the frequency domain with a system model that is composed of the lathe
model of Appendix B, the toolpost model of Appendix A, and the Controller that
is calculated in C. An important practical consideration that arises when perform-
ing computations is that of numerical conditioning. The M-file that calculates the
controller includes model reduction of both the open loop plant model and the final
computed controller to improve conditioning in both the controller design algorithm
and the subsequent system performance calculations.

The results of the design are presented in figures 11 to 18. The first figure
gives an indication of which elements in closed loop transfer function matrix are
contributing to the singular value #(7,;). The first column of the matrix dominates
at low frequencies, and the entry 7,22 dominates at high frequencies. Figures 12
to 15 illustrate the System performance with respect to disturbance rejection. The
transfer function plot in Figure 12 shows 40 dB improvement in disturbance rejection
for frequencies up to 1 kHz for the actively compensated toolpost when compared to
the performance of the toolpost with open circuited actuator. At 5 kHz, the actively
controlled system still shows about 30 dB of improvement. This improvement is
again illustrated in Figure 14 which compares the response of the compensated
system to a pulse shaped disturbance force with the response of the uncompensated
system to the same disturbance. Figure 15 plots the important signals associated
with the closed loop system as it experiences the disturbance force plotted in Figure
13. These signals scale linearly with the magnitude of the disturbance pulse (since
the model is linear) and provide a useful estimate of dynamic range required in the
various system components. The tracking performance of the system is illustrated
in Figures 16 and 17. Figure 16 shows that the compensated system displays a
60 dB improvement in tracking between 10~! Hz and 10 Hz, and Figure 17 shows
the response of the tracking error signal to a low-bandwidth unit pulse signal on
the position control input Zcont. The anomalous D.C. offset that appears in the
compensated response is an artifact of the computation, there is a loss of accuracy
in the transfer function computations for frequencies close to zero. Finally, Figure
18 compares the sensitivity functions associated with the lathe-toolpost loop for
the compensated and uncompensated toolposts. The magnitude of this transfer
function is inversely related to a lower bound on the size of perturbation that would
be needed in the open loop transfer function to destabilize the closed loop system.
It can be seen from the graph that the compensator sightly improves this measure
of robustness.
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6 CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE
WORK

In this report a simple, linear, system model has been developed for the design of
an active toolpost, and the model has been used as a basis for a controller design
for that toolpost. The principal conclusions that come out of this work are, that
active control of toolpost vibration is a feasible way to improve the quality of the
surface finish in turning operations, and that the toolpost design considered in this
report is a good candidate for active vibration suppression. The results presented
show that under the assumptions made, a compensated toolpost is able to provide a
high degree of disturbance rejection in the cutting process without sacrificing robust
stability or accuracy. Furthermore, an analysis of the signal amplitudes associated
with the toolpost model indicate that during normal operation the tool-post com-
ponents are operating well within their designed ranges. It is worth stressing that
the promising nature of the results presented here should not be regarded as the
proof of a successful design, but rather as strong justification for continued refine-
ment and evaluation of the current design. In particular, there are several areas
where the rather severe assumptions made in this report need to be more closely
examined.

The first of these are the assumptions that were made in the introduction about
the causes of vibration in the cutting process. Two types of vibration were men-
tioned there, one the result of instabilities combining with non-linear dynamics to
produce limit cycle trajectories, and the other the result of amplification of exoge-
nous disturbances in the cutting force. Because the models developed in this paper
are all linear, the first type of vibration is only considered tangentially by placing
requirements on robust stability of the linear model — a more thorough consider-
ation would require an investigation of the nonlinear dynamics associated with the
cutting process. The second type of vibration is dealt with directly by incorpo-
rating exogenous disturbances to the cutting force in the lathe model of Section 4.
Suppression of this source of vibration is a problem in disturbance rejection, and
in order to gauge the effectiveness of a design with respect to this criterion it is
necessary to have an accurate model of the expected disturbance signals. Such a
model should be built on experimental data from cutting tests.

A second group of assumptions that need careful evaluation are the assumptions
that were made about system components in order to produce a linear model. The
three places where these assumptions are likely to have the greatest impact on sys-
tem behavior are in the actuator model, the model of the lathe dynamics, and the
model of the cutting process. The model of the actuator presented in Section 2
is calculated from typical linear constitutive parameters for PZT material a more
accurate model should be obtained from an experimental study of the actual actu-
ators that are to be used. In particular, attention should be paid to the operating
range over which a linear model is valid, and to the effect on the device of power
dissipation and the heating associated with it. The lathe dynamics affect the sys-
tem by restricting the bandwidth over which control is achievable. In Section 4 the
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complicated dynamics associated with the dynamics of the workpiece and the lathe
machinery is modeled by a simple one degree of freedom system. Accurate model
of the lathe dynamics, and the dynamics of the-cutting process are, of course, an
unrealistic expectation, and not really needed, what is needed though is an accurate
estimate of the bandwidth over which the simple second order model is accurate,
and an estimate of the sensitivity of the system model to the incremental stiffness k.
that relates cutting force to chip-load. Both the lathe model and the model of the
cutting process are highly dependent on the details of a specific cutting operation,
and a desirable feature of an improved controller would be an ability to estimate
these models and adaptively alter the control law.

Another area for future work is the design of the physical implementation of the
controller. The intention has been to implement the controller in a digital signal
processing chip with an effective bandwidth in the high audio range. This choice
permits the use of commercial signal processing boards that interface with personal
computers. The highest frequency poles in the controller that was described in
Section 5 have frequencies near 4 x 10* kHz, which is at the high end of this range,
and it may be that some performance has to be sacrificed if the controller bandwidth
needs to be reduced.

Finally, although the work described in this report is my own, it was undertaken
as part of a larger project, the ARPA SMS project. I would like to acknowledge
the useful interaction that I have had over the past year with the other members
of the project team. In particular I would like to thank Professor Guangming
Zhang, his team of graduate students, undergraduate students and post-docs, and
Mark Regelbrugge of Lockheed, who have listened to, read, and discussed many
presentations of parts of this work over the past year, and my advisor Professor
John Baras who has supported me during this project.
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A M-FILE FOR TOOLPOST MODEL

% This file contains linear models for the toolpost and the actuator.

% The system schematic for the Toolpost with actuator is given by
% the diagram

% r - |

% 1| 1] 12 {2

% f_cut ---| I |-===]-- a_tool
% S —— | | |

A 2| 2} i1 2| Toolpost | |

% Vin ——-|--——- ! [-~==—————e- | It 1

%4 | | Actuator | | |~=~=|-=- x_tool
% | | and Drive | R

% | 1} 12 [k

% I ---i | I-~ I_act
% | T PO | o

% I o

% | ]

% | |

%

A The numbers on the signal lines give the index of the

% signal in the correponding input and output signal vectors

% Actuator Parameters and constants

epsilon_0 = 8.85 * 10"(-12);

L=1.8 % 10°(-2);
R = 3.5 * 107(-3);
N = 150;
K = 1300;
d = 360 * 10"(~-12);
Y =9.9 x 107(10);

Area = pi*R"2;

% Drive circuit parameters
A_ol = 1076;

R_1 =2 % 10°3;
R.2 = 28 * 10°3;
R.s = 10;



28 Dynamic Model for an Active Toolpost

% Toolpost mechanical structural parameters
K_act = Area * K*epsilon_0 * Y/(L*(Kxepsilon_0 + d~2*Y));

WM_1 = 0.2;

M_1 = 0.04; ¥ Value calculated from measured resonance and measured
% stiffness =--- see Nov Report.

M_2 = 0.01;

YK_1 = K_act/10;

K_1 =5 * 1076; Y Value measured from toolpost -- see Nov Report

K_2 = K_act/100;

xi_1 .1;
xi_2 .1;

% Toolpost computed coefficients

C_1 = sqrt(4 = K_1 * M_1 * xi_1"2/(1 - xi_1"2));
C_2 = sqrt(4 * K_2 * M_2 * xi_2°2/(1 - xi_2"2));

omega_1 = sqrt(C_1"2 - 4 * K_1 * M_1)/(2+M_1);
omega_2 = sqrt(C_2"2 - 4 x K_2 * M_2)/(2*M_2);

% Actuator computed coefficients

P_11 = -L/(AreaxY);
d*L/(N*AreaxK*epsilon_0);
P_21 = P_12;

_22 = L/(N~2+Area*K*epsilon_0);

he -]
-
N
1]

o~}
N
[ %)

]

|>
-
o
I

- L/(R_s*N~2*Area*K~2%epsilon_0"2)*...
(K*epsilon_0 + d~2+Y) * (1 + A_ol*R_1/(R_1 + R_2));
B_11 = d*Y/(R_s*NxKxepsilon_0)*(1 + A_ol*R_1/(R_1 + R_2));
.12 = A_o1*#R_2/(R.s*(R_1 + R_2));

1

-

[
]

% Actuator Model

Aact = [A_11];
Bact = [B_11, B_12];
Cact = [d*Y/(N*K*epsilon_0), A_11]’;

Dact

[-Area*Y/L, 0; B_11, B_12];
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% Toolpost computed coefficients;
Alpha = 1 + A_ol»R_1/(R_1 + R_2);
Beta = P_21*P_12/P_11;

Gamma = A_ol*R_2/(R_1 + R_2);
Delta = P_22 - P_12+P_21/P_11;

K_.tool = K_2/(K_2"2 - K_2*(K_1+K_2));

% Toolpost Model

Amech = [ -C_1/M_1 , -K_1/M_1
1 . 0 1;
Bmech = [ -1/M_1, 1/M_1
o , 0 1;
Cmech = [ 0 , 1
-C_1/M_1, “K_1/M_t 1;
Dmech = [0, 0
-i/M_1, 1/M_1];
Ain = [J1;
Bin = [1;
Cin = [1;
Din = [1,0;0,0;0,0;0,1];
Adout = [];
Bout = []1;
Cout = [];
Dout = [1,0,0,0
0,1,0,0
0,0,0,13;
%

% Construct Toolpost with controller
% final model has 2 inputs and 3 outputs

% inputs : f_cut outputs: x_act
% V_in a_tool
% I_act

[Atool,Btool,Ctool,Dtool] = ...
append (Amech,Bmech,Cmech,Dmech,Aact,Bact,Cact,Dact) ;

[Atool,Btool,Ctool,Dtool] = cloop(Atool,Btool,Ctool,Dtool, [1,3],[3,2]);

[Atool,Btool,Ctool,Dtool] = ...
series(Ain,Bin,Cin,Din,Atool,Btool,Ctool,Dtool);

[Atool,Btool,Ctool,Dtool]l = ...
series(Atool,Btool,Ctool,Dtool,Aout,Bout,Cout,Dout);
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K_11 = - P_11#Delta/(Delta*(K_1*P_11 - 1) - Beta);
K_12 = - P_12+Gamma/(Alpha*(K_1*P_11%Delta - (Delta + Beta)));
K_31 = P_21/(K_1+P_11*Delta - (Delta + Beta));

K_32 = Gamma*(X_1*P_11 - 1)/(Alpha*(K_1#P_l1*Delta - (Delta + Beta)));

% Toolpost model for open circuit condition on Actuator
% inputs to actuator are (x,I) and outputs are (f,V)

A_open = [1e-15];

B_open [0,1];

C_open [Y*d/(N~2¥K*epsilon_0); L*(d~2+Y + N*K)/(N~3+#K~2+Area*epsilon_0)];
D_open = [-Area*Y/L, 0; -dxY/(N*Kxepsilon_0), 0];

% Combine with mechanical model

[Atool_op,Btool_op,Ctool_op,Dtool_op] =
append (Amech ,Bmech,Cmech,Dmech,A_open,B_open,C_open,D_open) ;

[Atool_op,Btool_op,Ctool_op,Dtool_opl =
cloop(Atool_op,Btool_op,Ctool_op, Dtool -op,[1,31,[3,2]);

[Atool_op,Btool_op,Ctool_op,Dtool_op] = .
series(Ain,Bin,Cin,Din,Atool_op,Btool_op,Ctool_op.Dtool_op);

[Atool_op,Btool_op,Ctool_op,Dtool_op] =
series(Atool_op,Btool_op,Ctool_op,Dtool_op,Aout,Bout,Cout,Dout);
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B M-FILE FOR LATHE MODEL

function answer = Tlathe(s)

% Returns a matrix with colummns [T_11, T_12, T_21, T_22] where each
% column is a transfer function evaluated at the frequencies in the
% input vector s

sz = size(s); if sz(2)>sz(l) size = size’; end;
%

% Cutting Process

% The model used for the cutting process is a simple model that treats
% the variation in cutting force as a linear function of the variation
% in depth of cut. The proportionality constant K_c is taken from

% Guangming Zhang’s PhD dissertation and applies to machining of

%4 aluminium pieces of fixed diameter. The cutting parameters are

N = 2400; Y Cutting speed (rpm)
f = 1.6; Y% feed rate (mm/rev)
d = 0.05; Y% depth of cut (mm)

% and the empirical formula for the cutting stiffness in N/m is
k_c = 1000 * 7500/ (£~(0.15)*N"(0.08))* d;

% Note, Guangming Zhang states that the units in the paper are N/mm,
% hence the extra factor of 1000 in the above formula.

#Lathe Parameters

mu = 0.8; % Overlap factor
tau = 60/N; ) Transport delay associated with one revolution of the workpiece

K = 5.0 *10°8; % Stiffness of Lathe structural mode

omega = 10000; % Natural frequency of structural resonance

M = (k_c + K)/(omega~2); % Equivalent mass of Lathe structural mode
xi =0.1; % Percent damping of Lathe structural mode

C = 2xxi*sqrt(KsM); % viscous parameter for Lathe structural mode
terml k_c*(1 ~ mu*exp(~s*tau));

term2 = M*s."2 + C*s + K;
denom = terml + term2;

% answer = [T_11, T_12, T_21, T_22]
answer = [1./denom, -term2./denom, term2./denom, terml.*term2./denom];

return
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C M-FILE FOR CONTROLLER DESIGN

% This file produces an Hinfty controller for the Toolpost

% problem. The block diagram for the augmented plant is as follows

%

A e e e e e e e e e e e e e e e e e e e e e e e e e e

% emmmmee e

4 . 581 3 |6 1 —-mmmmmmmmme— 1 6l 4 [7.

% Wlewwomm >t 1]-======== >(1 1 === >t 1|--=->z1
% . | Wit | | | | wor | .

=2

%4 . ] 2 1]<~-

100 6 |11

|
|
|
|
A | + >i1 1]--->22
A . 91 5 |0V + I | wo2 | .
% W2-=—=mm >l 11-->0 [
4 . I Wi2 | + | |
Y e v 11 [
Ao . - |
% 7 |
% 1 04 | |
4 | | |
pA === |
% 112 |
2N o v o o v o e I o e oo e e
% | |
% v |
A
%4 y u
A
Toolpost;

Lathe;
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% Make the weights and ancillary blocks

AI4 = [J;

BI4 = [J;

c14 = [J;

DI4 = [1];

nui = 10°3;

nu2 = 1074;

nu3 = 10°3;

nud = 10°4;

rho_1 = 1 * 107(B);
rho_2 = 0.1;

nWIl = rho_1*[0 , 1];
awIt = [1/nul, 1];
[AWI1, BWI1, CWI1, DWI1) = tf2ss(nWI1l,dWIl1);

nW0l = rho_1x[0 , 1];
dwol = [1/nul, 1];
[AWO1, BWO1, CW01, DWO1} = tf2ss(nW01,dW01);

nWI2 = 1/3%rho_2*[1/nu3, 1, 0];
dWI2 = [1/nu4, 1+nu2/nuéd, nu2l;
[AWI2, BWI2, CWI2, DWI2] = t£2ss(nWI2,dWI2);

%nW02 = 3*rho_2*[1/nud, 1, 0];
%dW02 [1/nu3, 1+nu2/nu3, nu2];
% [AW02, BW02, CW02, DW02] = tf2ss(nW02,dwW02);

nW02 = 3*rho_2%[1/nu4, 0];
dWo2 [1/nu3, 1];
[AW02, BW02, CW02, DW02] = tf2ss(nW02,dW02);

% Connect the toolpost and lathe together and perform model reduction

[Ap, Bp, Cp, Dpl = append(...
A_lathe, B_lathe, C_lathe, D_lathe,...
Atool, Btool, Ctool, Dtool);

q = [2,8;3,2];
Inputs = [1, 4];
Outputs = [1, 6};

[Ap, Bp, Cp, Dp]l = connect(Ap, Bp, Cp, Dp, Q, Inputs, Outputs);
[ab,bb,cb,db,totbnd,hsv] = schmr(Ap,Bp,Cp,Dp,3);
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REDUCED MODEL

% 3l 2 I3 1 1 4 3 |4
4 wi----—- >[1 1f==~nm- > 1 e >11 1|=-->z1
4 I Wit | | | I wotr |

v mmmm——— | ToolPost and [

% | Lathe |

% | ]

%4 | |

A | |

%4 1 |

A 2 | 12

%4 =>| -

%4 1 I

A | |

%4 | |

%4 | r mmm———

A | | 6l 5 6.
% | |—====—-- >|1 1[===>z3
% I e | | wo2 |
%4 | 5] 4 I8 V+ = em————-

% w3 + >i1 1]-->0

%4 | Wi2 | + |

4 e V7

% i

% | I 6 |

A | | 04 |

%4 | | |

A i

%4 | 7

A N . R

%4 | |

%4 I v

A

4 y u

% Add input and output weights

[Ap, Bp, Cp, Dpl
(Ap, Bp, Cp, Dp]
CAp, Bp, Cp, Dp]
[Ap, Bp, Cp, Dp)
[Ap, Bp, Cp, Dpl

append (Ap, Bp,
append (Ap, Bp,
append(ip, Bp,
append (Ap, Bp,
append (Ap, Bp,

Cp,
Cp,
Cp,
Cp,
Cp,

Dp,
Dp,
Dp,
Dp,
Dp,

AWI1, BWI1, CWI1, DWI1);
AWO1, BWO1, CWO1, DWO1);
AWI2, BWI2, CWI2, DWI2);
AW02, BWO2, CWO2, DW02);
AI4, BI4, CI4, DI4);
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Q=101, 3, 0; 4, 1, 0; 6, 2, 0; 7, 2, B];
Inputs = [3, 5, 2];
Outputs = [4, 6, 7];

[Ap, Bp, Cp, Dpl = conmnect(Ap, Bp, Cp, Dp, Q, Inputs, Outputs);

% The Augmented system has a zero at the origin which causes problems
% when calculating Hinfty controllers so we introduce a Bilinear

% transform of the Augmented plant to better condition the problem
%

YParameters for Bilinear Transform

p-1 = 10;
p.2 = 10710;

[Ap,Bp,Cp,Dp] = bilin(Ap,Bp,Cp,Dp,1,’Sft_jw’,[p_2,p_11);

/Partition system for hinfty function

A = Ap;

Bl = Bp(:,[1, 2]);

B2 = Bp(:,3);

€1 = Ccp([1, 21,:);

€2 = Cp(3,:);

D11 = Dp([1,2],[1,2]);
D12 = Dp([1,2],3);
D21 = Dp(3,[1,2]);
D22 = Dp(3,3);

TSS_P = mksys{A, B1, B2, C1, C2, D11, Di2, D21, D22, ’tss?’);
[rho_opt, ss_f, ss_cl] = hinfopt(TSS_P,1);

[Af,Bf,C£,Df] = branch(ss_f);
[Acl,Bcl,Ccl,Dcl] = branch(ss_cl);

YTransform Controller Back
[Af,Bf,Cf,Df] = bilin(Af,Bf,Cf,Df,-1,’Sft_jw’,[p_2,p_11);
[Acl,Bcl,Ccl,Del] = bilin(Acl,Bcl,Cel,Decl,-1,’SEt_jw’,[p_2,p_11);
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% Reduce Controller Order
[Af,Bf,Cf,Df ,totbnd,hsv] = schmr(Af,Bf,Cf,Df,3);
[Atool2,Bto0l2,Ctool2,Dto0l2] = ...
append (Atool,Btool,Ctool,Dtool,Af ,Bf,Cf,Df) ;
[Ato0l2,Bto0l2,Ct00l2,Dt0012] = ...
cloop(Atool2,Btool2,Ctool2,Dtocl2, [3,4],[3,2]1);
Compensator = mksys(Af, Bf, Cf, Df, ’ss’);

save Compensator Compensator;
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