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ABSTRACT

The QRD RLS algorithm is generally recognized as having good numerical properties
under finite-precision implementation. Also, it is very suitable for VLSI implementation
since it can be easily mapped onto a systolic array. However, it is still unclear how to
obtain the dynamic range of the algorithm such that a wordlength can be chosen to ensure
correct operations of the algorithm. In this paper, we first propose a quasi-steady state
model by observing the rotation parameters generated by boundary cells will eventually
reach quasi steady-state regardless of the input data statistics if A is close to one. With this
model, we can obtain upper bounds of the dynamic range of processing cells. Thus, the
wordlength can be obtained from upper bounds of the dynamic range to prevent overflow
and to ensure correct operations of the QRD RLS algorithm. Then we reconsider the
stability problem under quantization effects with more general analysis and obtain tighter
bounds than given in a previous work [13]. Finally, two fault-tolerant problems, the missing
error detection and the false alarm effect, that arise under finite-precision implementation

are considered. Detail analysis on preventing missing error detection with a false alarm free
condition is presented.
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1 Introduction

Least-squares (LS) problems have been an integral part of modern signal processing and
communications applications such as adaptive filtering, beamforming, array signal process-
ing, channel equalization, etc.. Efficient implementation of the recursive LS (RLS) algo-
rithm is desirable to meet the high throughput and speed requirement of modern signal
processing. Among many techniques to implement the RLS algorithm, QR Decomposi-
tion (QRD) RLS algorithm is one of the most promising algorithms in that it is numerical
stable as well as suitable for parallel processing implementation in a systolic array [1,8].
Gentleman and Kung [6] have proposed a QRD triangular systolic array based on Givens
rotation, and McWhirter [20] used the systolic array to implement the QRD RLS algorithm
efficiently. Since then, many researchers have considered and proposed various RLS algo-
rithms (either constrainted or non-constrainted) based on methods such as Givens rotation,
modified Gram-Schmids, and Householder transformation for parallel processing architec-
tures [3,4,9,10,14,16,21,24]. In [15], Liu and Yao also present an efficient algorithm-based
fault-tolerant scheme that can be easily incorporated with the QRD RLS systolc array. An
error resulting from a temporary or permanent faulty cell can be detected in real-time and
the faulty cell can be reconfigurated out of service to prevent future contamination of the
array. This make the systolic implementation of the RLS algorithm more attractive in the
practical real-time applications. In the RSRE (Royal Signals and Radar Establishment) of
the United Kingdom, a test bed of the QRD RLS systolic array has been built for radar
applications [19]. Furthermore, the same systolic array can be used to solve SVD and
eigenvalue problems [17,5] which is the heart of many signal processing applications such
as high-resolution spectral estimation, direction of arrivals problems. and speech /image
processing.

One of the most important problems that has not been solved is the dynamic range
of the QRD RLS systolic algorithm. Without knowing the dynamic range of a algorithm,
we are unable to predict the wordlength (number of bits per word) required to ensure cor-
rect operations. Furthermore, the wordlength of an algorithm is one of the most crucial
factors in designing hardware and circuit [22] since the wordlength affects the hardware
complexity. Usually, shorter arithmetic wordlength would realize smaller and faster hard-

ware implementation [22]. At the same time. we also do not want the overflow happens



during the computation. Unfortunately, the dynamic range of the QRD RLS algorithm is
still unclear.

In this paper, we first observe that the cosine parameters generated by boundary cells
will eventually reach quasi steady-state if A is close to one which is the usual case. We will
show that the quasi steady-state and ensemble values of sine and cosine parameters are the
same for all boundary cells. It is independent of the statistics of the input data sequence
and the position of the boundary cell which generates the sine and cosine parameters.
Simulation results are presented to support this observation. These results yield the tools
needed to further investigate many properties of the QRD RLS systolic algorithm. Then,
we can obtain upper bounds of the dynamic range of processing cells. Thus, lower hounds
on the wordlength can be obtained from upper bounds of the dynamic range to prevent
overflow and to ensure correct operations of the QRD RLS algorithm.

Though the QRD RLS algorithm is generally recognized as having good numerical prop-
erties such as numerical stability under finite-precision implementation [1,13], there is no
mathematical proof of this until a recent paper by Leung and Haykin [13]. With the above
results, we reconsider the stability problem under quantization effects with a more general
analysis and obtain tighter bounds than given in previous work [13].

Given a finite wordlength, the computational precision is thus limited. Two important
factors of the fault-tolerant capability, the missing error detection and the false alarm
effects, resulting from the finite-precision implementation are also considered in this paper.
They are of tradeoff in nature. We will present analyses to find a system that is capable of
detecting given small error size without false alarm problem.

The organization of this paper is as follows. First, a brief review of the fault-tolerant
QRD RLS systolic array is given in Section 2. Then quasi steady-state of the rotation
parameters is discussed in Section 3. Dynamic range and lower bound on wordlength are
derived in Section 4. Stability and quantization effects are considered in Section 5. Finally.

the fault-tolerant capability is presented in Section 6 and a conclusion is given in Section 7.

2 Fault-tolerant QRD RLS Systolic Array

Without computing weight vector explicitly, the systolic implementation of the QRD RLS
algorithm proposed by McWhirter [20] can obtain the optimal residuals efficiently. The



systolic array is shown in Fig.1. It consists of two parts: a triangular array for computing
QRD and a linear column array called response array (RA) for computing LS residual. One
of the major features of the array is that multiple RAs can be added to obtained optimal
residuals for multiple desired responses.

In [15], Liu and Yao proposed a real-time concurrent error detection scheme for this sys-
tolic array based on the algorithm-based fault-tolerance [2,11]. The basic idea is that since
the residuals of different desired responses can be computed simultaneously, an artificial
desired response can be designed to detect an error produced by a faulty processor. [15]
has shown that if the artificial desired response is designed as some proper combinations of
the input data, the output residual of the system will be zero if there is no fault. However,
any occurring fault in the system will cause the residual to be non-zero and the fault can
be detected in real-time. The fault-tolerant QRD RLS systolic array is shown in Fig.2.
As we can see, above the QRD triarray, a horizontal linear array called encoding array is
used to add up the incoming row (the checksum) to be the artificial desired response. The
processing cell of the encoding array is an adder which adds both inputs and passes to the
next cell. artificial desired response then serves as the input to the new RA called error
detection array (EDA) at the right side of the QRD triarray. The output of the EDA., (.
now serves as the error detector. If there is no error, e will always be zero. Whenever
there is a faulty cell occurs during the computation, the error generated by the faulty cell
will cause eg # 0 and thus the error is detected in real-time [15]. All of these results are
based on the assumption that the computation is infinite precision. Under finite-precision
computation, there are two major effects, the missing error detection and false alarm effect,

which will be considered in a later Section.

3 Quasi Steady-state Model

From the updated recursive equation of the boundary cell (see Fig.1), we have

k
PPk 1) = Nr(k) 4 2?(k) = D0 AT (k- 0), (1)
1=0



where 0 < A < 1 is the exponentially forgetting factor [8]. Assume the input sequence {z}

is zero-mean with variance o2, the expected mean of r2(k + 1) is

) k . 1 — )\2(k+1)
i=0 -
When k is very large
2
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leEOE[T (B)] = T (3)

Since /- is a concave function, from Jensen's inequality [23]

kli—>nolo B(r(k) < dm -y Elra(k)] = ‘/1(1 N2 (4)
and from (1)
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where |2m4z| and |2mi,| are the maximum and minimum values of sequence {|z|}.

The cosine parameter of the Givens rotation is computed by ¢(k + 1) = Ar(k)/r(k+ 1).
The steady-state of this parameter exists if limg_,o, ¢(k) exists. For the sequence {c(+)} to
have a steady-state, we need limy_o 7(k)/r(k+ 1) = a, where a is a constant. If o < 1,
then the sequence {r(-)} is unbounded which conflicts with (5) that indicates {r(-)} should

be bounded; if & > 1, then limg_ ., 7(k) = 0 which, again, conflicts with (5). Therefore, a

has to be a unity to guarantee the steady-state of {c(-)} exists. That is,

. r(k) \
i i = ®

and the steady-state value of cosine, if exists, is

by "

- i
Jim e(k) = lim (k)

From (1), we can see that if A = 1, then lim—.. 7(k) — oo such that limy_,., 7(k)/r(k+1) =
1. In this case, though the steady-state of {c(-)} exists, {r(-)} is unbounded. Usually A is
chosen between .99 and 1 which is very close to one3. When we update r(k) to r(k + 1)
using (1), a A portion of r(k) is forgotten and an input (k) is added into it. If Ais close
to one, when k is very large, r(k) will come close to r(k + 1) and the input 2(k) plays less
and less significant role in computing r(k 4 1) as the case when A = 1. It is obvious that

lim Er(k)= klim Er(k+1).

k—oo

3For different expressions as in [8,13,20], A is between .98 and 1



Therefore, from the averaging principle [18] which has been used successfully in many

situations, the expected cosine can be approximated by

. Er(k-1)
(k) 2 A——— = A
klg(r)loEc( )~ A Er(h) A (8)
When A is close to one, from above discussions, we have
) N Ar(k)
dm, ) = Jliny Sy = A+ ), )

where 6(A, z) represents the small deviation due to the forgotten A portion of r and input
of z. If § is very small such that it is negligible when % is large, we say that the sequence
{c(-)} reaches the quasi steady-state.

Generally, it is almost impossible to quantitatively describe §(A, z). Simulations will be
used to demonstrate how small the quantity § is. Here we model the input signal to the

systolic array as a second-order AR process described by
w(n) + agu(n — 1) 4+ agu(n — 2) = v(n), (10)

where v(n) is a white Gaussian noise process of zero mean and unit variance. Choose of
different AR parameters a; and ag will give us different realizations of the AR process [8].
In our simulations, three different categories of signal are encountered. The first category
consists of three stationary AR processes which are AR1 (a1 = —0.1, a2 = —0.8), AR2
(a7 = 0.1, ag = —0.8) with real roots and AR3 (a; = —0.975, az = 0.95) with complex-
conjugate roots. The second category is a non-stationary AR process, AR4 (a; = —0.6,
az = —0.5), and the third category is a white Gaussian noise process, WN, with zero mean
and unit variance. All of the AR processes are normalized to unit variance. Table 1 shows
the mean distribution of cosine parameters for different input data with different A values.
This table justifies the result in (8). Table 2 shows the variance distribution of 6 for different
input data with different A value. The values of those variances are in the order of 10~ to
1078 which implies that 6 is indeed very small. They can be closely approximated by using

quadratic polynomials as follows,

AR1: o%()) 1.5938 — 3.182) 4 1.5882)2

AR2: o2(\) = 1.5991 — 3.1919) + 1.5928)

AR3: o02(\) = 1.5812— 3.1595\ + 1.5784)°



AR4: o)) = 1.4492 — 2.8936) + 1.4444)\?
AR5 : o2())

1.6437 — 3.2904) + 1.6431)2, (11)

where 0.98 < \ < 1.

We can see, though the statistics of input data are different, the variances can be de-
scribed by A in a very similar way (see Fig.3). This means, when X is close to one and the
quasi steady-state is reached, the size of the variation é is majorly governed by A instead of
the statistics of the input data. Fig.3 shows the plots of the variances in dB scale.

With these results, we conclude that the sequence {¢(-)} reaches the quasi steady-state

regardless the input statistics if A is close to one. Thus, we can write

12

klim ck+1) klim Ee(k+1) = A,

klim Es(k+1)~ 1~ A2 (12)

[2

klim s(k+1)

The quasi steady-state and ensemble values of sine and cosine parameters are the same for
all boundary cells. It is independent of the statistics of the input data sequence and the
position of the boundary cell which generates the sine and cosine parameters. These results
yield the tools needed to further investigate many properties of the QRD RLS systolic
algorithm.

4 Dynamic Range and Lower Bound on Wordlength

Denote PE;; as the (3, j) processing cell of the array, from Fig.1 the dynamic range of the
content of the boundary cell PFq; can be upper bounded by

k k 2

Jim rhi(h +1) = Jim 3Nk =) < Jim e 3N = T2 (9
1=0 =0
Therefore,
. Immaxl A
JHim lri (k)] < Niestin s (1-1)

For internal cell PEy; (of the first row), we have

il

r1;(k 4+ 1) [s(k)z(k) + c(k)Ary;(k)]

= |s(k)z(k) + c()A[s(k — Da(k = 1) + c(k — )Ary;(k = 1)]|
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ko i—1
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From the basic relation between the geometric mean and the arithmetic mean, we know

ay+day+ -+ ay

n

(

' > ay-az---ay. (16)

If n is large enough, then from the law of large number, we know

lim Gifat:  +dn — E(a).
n—od ’n
Therefore,
E(a)" > H a;,
i=1
when 7 is large. We can further simplify the bound for & — oo by using this inequality as
{ollows,
k . .
m |r(k+ 1) < |mae| Im Y Ns(k = i) E(c(k - i)’
k—oc0 k—o0 =0

k
7 Tmax g
= fomanl 3 -Ml—)@:%:?}?. (17)

From (14) and (17), we can see the steady-state dynamic range of the first row is upper
bounded by R for both boundary and internal cells. The dynamic range of the second row

depends on the output of internal cells of the first row. Denote the output of the first row

as Zout, From Fig.1l we have
Tout(k + 1) = c(k)a(k) — s(k)Ar(k). (18)
The first term of the right-hand side of (18) can be bounded by
Jim Je(k)a()] < Mz (19)
and from (17) the second term is bounded by

. ‘7. . |%maz] .
Jim ls(R)Ar(k)| < V1—AZ- /\\/—1—?——3\‘5 = MZmaz|- (20)

There are two possible cases:



Case 1: Highly fluctuated input

The value of (k) may vary differently from time to time such that for most of the

time, s(k)r(k) may have opposite sign of 2(k). For this case
klim |2oue(F)] € 2N Zman]- (21)
Case 2: Smooth input

For this case, the input data sequence does not change its value rapidly, therefore

s(k)r(k) may have the same sign as z(k) for most of the time. The bound is
klim [Zout(R)] < Al2maz]- (22)

From (14) and (17), it is obvious the steady-state dynamic range of the second row is

bounded by
2N T an|

i (kY < .
kl-lﬁrgo 'TQJ(,")| = m 2>\§R7 (22)
for the highly fluctuated input and
klim |rei(k)] < AR, (21)

for the smooth input. From above results, the steady-state dynamic range of the m** row

is bounded by
klim [Pmi ()] € (20)™7 1 R, (25)

for the highly fluctuated input and
klim [Pmi(R)] < (A)Y™1R, (26)

for the smooth input. For Case 1, the dynamic range is increasing exponentially with a
factor of 2X, and for Case 2, however, decreasing exponentially with a factor of A.

From (25) and (26), we can see that the dynamic range may increase or decrcase with
row. It depends on how fast changing the input signal is. For a given row, its dynamic
range may follow (25) for some periods (increasing) and then switch to (26) for some periods
(decreasing). Either way, (25) represents the worst case scenario.

h

Denote B,, as the wordlength of the m!* row, to prevent overflow and to ensure the

correct operation of the QRD RLS algorithm. we require 287 > (2X)"~ 'R for fixed point

operation, and therefore

B, > [(m — 1)(1 + logy M) + log, R]. (27)



For the fluctuated input, when (2A)"~! = 2, one more bit is needed for the wordlength of

the following rows. The number of rows n for each bit increase is

1

= T

(28)

which is a monotonically decreasing function of A. If A < 0.5, then there is no such m
exists. That is, the wordlength of the array can be fixed at ® without the overflow problem.
For smooth input, when A?~! = %, one bit can be discarded from the wordlength of the

following rows. The number of rows n for each bit decrease is

n=[1- @X]’ (29)
which is a monotonically increasing function of A. For A < 0.5, n = 2. That is, for every
two rows we can discard one bit for the wordlength.

Our simulations verified the above results. Here we provide some examples. Fig.4 shows
a simulation of the contents of internal and boundary cells of different rows as well as the
upper bound R under AR3 input signal for A = 0.991 and p = 3. Table 3 compares the upper
bound R and the maximum value of contents of boundary and internal cells for different
input signals. From these, we can see that ¥ is a good upper bound for both houndary
and internal cells. From (27), we can choose the minimum wordlengths for the AR3 input
signal. We found that it needs three bits for the wordlength of the first row, four bits for

the second row, and five bits for the third row. As shown in Fig.5, the resultant contents

are almost identical to that of Fig.4 which is the results of double-precision implementation.

5 Stability and Quantization Effect

In this Section, we consider the stability under quantization effect. Here, the stability is
defined in the sense of bounded input/bounded output (BIBO) as in [13]. From (21) and

(22), the output of the m** row is bounded by
M [Zouty,] < (20)™ 7 Zmasl, (30)
k00

for the highly fluctuated input and

lim Ixoutml < ’\m—1|xmaa:| (31)
k—co



for the smooth input.

The order of least-squares p is always finite. The output of the last row of the QR
triarray is bounded, in the worst case, by limg_co |Zour,| < (2X)P7|21a0]. The residual is

then asymptotically bounded by
Tim Je(R)] = Tim 3(B)2ou, (k)] < (207 [ mel, (32)

where (k) = [T5-; ci(k) and c’s are related cosine parameters [20]. Thus, for A < 1, if the
input data are bounded, that is, |24 < 00, the output is always bounded. The QRD RLS
systolic array constitutes a BIBO stable system under unlimited precision implementation.
Practically, the wordlength of each processing cell is finite-precision. Leung and Haykin
[13] first considered the stability under this effect and showed the QRD RLS algorithm is
stable under finite-precision implementation. Here we reconsider this problem and give a
more general analysis and a tighter bound.

Denote @(-) as the quantization operator and & as the quantized value of 2. Since the
quantization error for the additions of quantized parameters is much smaller than that of
the multiplications of them, to make the analysis simplier, we may express the guantization

error for additions as
7

Q) di) =) di+ b, (33)
1 i=1

1=

From (1), the square of the quantized content of the boundary cell is

k
Pk + 1) = QN (R)) + Q(a%(k)) = 3 QUAE(k = 1) + br41. (31)

The quantization operator ) is a bounded operator such that |Q(z)] < I|z| for all  and

some K [13], (34) can be bounded by

[7(k + 1) Kol A%22(0)] + K| A2F=Da2(1)| + - - - + Ky|#2(k)] + 6pa

IA

< Kpag - 82, (14 A2 4 4 320, (35)

where &4, is the maximum quantized value of sequence #. The asymptotic behavior can

be obtained by taking the limit on both sides, it becomes

1
< Kooz a':f,mxl R (36)

Jim 709

10



for the smooth input.
The order of least-squares p is always finite. The output of the last row of the QR

triarray is bounded, in the worst case, by limg_.oo |Zout,| < (2A)P7! |2 piae|. The residual is

then asymptotically bounded by

25, 1¢18)

= khln 7(k)|$outp(k)| < (2)\)p_1|17max]a (32)

where (k) = [T\, ¢i(k) and c}s are related cosine parameters [20]. Thus, for A < 1, if the
input data are bounded, that is, |244] < 00, the output is always bounded. The QRD RLS
systolic array constitutes a BIBO stable system under unlimited precision implementation.
Practically, the wordlength of each processing cell is finite-precision. Leung and Haykin
[13] first considered the stability under this effect and showed the QRD RLS algorithm is
stable under finite-precision implementation. Here we reconsider this problem and give a
more general analysis and a tighter bound.

Denote Q(-) as the quantization operator and # as the quantized value of z. Since the
quantization error for the additions of quantized parameters is much smaller than that of
the multiplications of them, to make the analysis simplier, we may express the quantization

error for additions as
n n
Q) d)=) di+6, (33)
From (1), the square of the quantized content of the boundary cell is

k

Pk +1) = QAN (R) + Q% (k) = D QY& (k — 1)) + bryr. (34)

i=0
The quantization operator @ is a bounded operator such that |@(z)] < A|z| for all x and

some K [13], (34) can be bounded by

P+ 1) < Ko|A*82(0)] + Ky N2FEDa3(1)] 4 -+ K| #2(k)| + 5

S I(maa? * i‘?na,at(l + XQ + tr + /\2k)5 ‘35)

where #,,4, is the maximum quantized value of sequence &. The asymptotic behavior can

be obtained by taking the limit on both sides, it becomes

A 1 ,
lim |#2(E)| € Ko - ©2 (36)
k—o0

Vmawl _ /'\2‘

10



Therefore, the quantized content is

B P = fim, @O/ ()

' |Tmazl A& ., -
I max m - I max%' (3‘)

With the same arguments as in Section 3, we then have

F(k)
1}2207‘ kL+1

IA

~ 1, 38)
) (
if A is close to 1. and the quantized steady-state value of cosine is

klim ¢k+1)= lim r(lc)

A D S (39)

and the quantized steady-state value of sine is

lim 3(k+1) = Q(\/1-X).

Analogous to Section 3, we can further obtain limg_., E¢(k) = N and limgo o, E3(k) =
Q(V1 =)

Now consider the quantized content of the internal cell, from (15)

P15k + 1) = |Q(Q( k) (U)*‘Q(E(’C)/\?‘(k)ﬂ
= ZQ &k — )3k = D ] é(k — 3)) + br4a
7=0
< K7 marlEmazl Z ;\1|§(k — 1) ]_:_[ ek —j), (40)
=0 7=0

where K” 4, results from quantization error including ;4. From Section 4 and (39), (410),
the quantized steady-state dynamic range of the internal cell is bounded by
. ~ ez I(i' | &3] s »
kl_l_fgo |7'1j(k)| <K maaz‘—\/—ini:x;\ = N7 e ““11)

The output of the m!”* row is bounded. under the quantization eflect, by
lim |71;(k)] < B mae(20)™ IR (42)
k—o0

for the highly fluctuated input and

Jim [71;(k)| € K pae( M) 7R (43)

11



for smooth input.

From these results, the quantized asymptotic value of the residual can be obtained as

Jim [é(k)] < K7 maa(20)P7R. (44)

Thus, if A < 1 and the input data are bounded, the QRD RLS systolic array constitutes a
BIBO stable system under the quantization effect.

6 Finite Wordlength Effects of Fault-tolerant Capability

In this Section, we discuss the finite-length effects of the fault-tolerant capability. The first
problem is that of missing error detection which results from the cumulative multiplications
of the cosine value with a small error. Since |cosine] < 1, the error will be then getting
smaller and smaller. With a finite-precision implementation, this may result in a failure of
error detection. The minimum wordlength to circumvent this problem is then derived. The
second problem is called the false alarm. With the quantization effects, the system without
fault may produce quantization errors to cause the false alarm problem. A threshold device

is then introduced to tackle this problem.

6.1 Missing Error Detection

By missing error detection we mean that a small error generated by a faulty processing cell
is not detected due to the finite-precision computation. Assume a fault occurs in an internal
cell PE;;,1 # 7, at a faulty moment. The output of this faulty cell is thus erroneous and
can be described by z¢,; = %out + 8§, where z,,; is the fault-free output and § is the error

generated by the fault. The error propagation path can be described by
PEij — PE(iq); — -+ — PEj;,

and then PEy, k> j, | > j are all contaminated [15]. From the operations executed by
the internal cell, the error is modified to ¢;116 by PE;4y; and the cumulative modifications

of the error before reaching the boundary cell, PE;;, is

it
n=2= H ch, (45)

k=:+1

12



where c; is the cosine parameter generated by the boundary cell PE;;. Let ¢; and s} denote

the erroneous ¢; and s; respectively. The ¢ and s’ are then given by

o Ar o = Tin + 1
J \//\27,2 + (mm + 77)2’ J \/)\27,2 + (xm + 77

In this case, s; is no longer proportional to ;,, a(j) will not be zeroed out by the Gt cell

(46)

of the EDA [15]. The size of the error generated by this cell is
Arg

\/7,/2 + 29z, + 02

n; = c;"::m - s;/\r = — = ——c;n, (47)

where #' = /A?r? + 22 _is the new updated uncontaminated value of the content of PE;;.
When 7; propagates down to the output of the EDA, n; is influenced by the contaminated
cosines ¢’ of each following row. The error output at eg due to an error § generated at PLE;;

is then given by

P
eg(i,j) = —v [ cuni= ’YHCmW

m_-]+1
P
= — H ck - Hc;né (48)
k=—i+4+1 m=

where v = H{ i [Th=; ¢k [20]. It becomes

i J=1 p
—Hcl H cl H 5. (49)

=1 k=i+1 m=j
Next, assume a fault occurs in a boundary cell, PE;;, 1< j < p, at the faulty moment.
Both erroneous cg- and s produced by PE;; can be written by

’ )\7’+6c ' $1n+5s
¢ = s = ——"

v

{
. (50)

W
76 €

where 6. and 65 represent errors in the numerators while 7/ represents the erroneous content
of the denominators of ¢; a nd s;. The error produced by the j** cell of the EDA is then

given by
Einbe — AT :
nj = i — SiAr = T2 (51)

) !
Te

and the output error at eg due to a faulty boundary cell is given by

o k Tinbe — Ard
eo(d:i) = v I[ =
m=j+1 €
J P
= [[a- I1 <2 (52)



From (49) and (52), we can see that e§ # 0, under unlimited precision condition, if there is
a fault occurs in the system, except when u;,6. = Arés in (51). However, this is unlikely to
happen. From [15,20], we have 0 < ¢; < 1. The error may not be detected after multiple
multiplications of ¢; in (49) and (52) under finite-precision implementation. It is obvious
there is no such problem when ¢ is large. Since r in (46) tends to be a large number
asymptotically, it is reasonable to assume the error size § generated by a fault is much
smaller than r when 6 is small. Under this circumstance, from (46), we have ¢; = ¢;. In
the quasi steady-state, the asymptotic behavior of erroneous cosine is ¢’ = ¢; = A. Irom

J
(49) and (52), the error output ¢} due to an error size § is then approximated by

(i, 7) 2 —AP=i6 (53)

for a faulty internal cell and

e(5,5) = N#ip; (54)

for a faulty boundary cell. Denote Ba be the wordlength of each memory and register of
fixed point arithmetics. That is, each wordlength is of Ba bits and let A = min(é,7;). To

ensure the detection of error size /\, we need
APTIA > ATPA > 2784, (55)

Therefore, the wordlength should be at least
Ba > [—2plog, A — log, Al (56)

such that the small error size A can be detected. The second term of the right-hand size is
obvious since the error size A\ must be detected; the first term is to account for the effects
that the error propagates through the array of LS order p with forgetting factor A.

We can verify this by the following example. A systolic array with order p = 3, A = 0.999
has an error § = 3-10~% occurring at the internal cell PE, at time 25. Due to the asymptotic
behavior of the cosine parameters, 7; can be approximated as 7; = A-é6 = 2.997- 10~* and
A = 5;. From (56), we have Ba > 12. Fig.6 shows that the small error size can be detected
for BA = 12 at time 30. However, as shown in Fig.7 for smaller wordlength Ba = 5, the
error size that can be seen at the output becomes very small and is buried in the noise

resulted from the quantization effect of small wordlength. The detector not only miss the

error but also has the false alarm phenomenun that will be mentioned in the next Section.
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6.2 False Alarm

Due to the finite-precision implementation, the residual output of the EDA will not be an
actual zero if there is no fault in the system. we call this effect a false alarm. Fig.8 shows
the false alarm problem for the above example with wordlength equals nine hits. Here,
we are going to model and quantitatively describe the false alarm effect and introduce a

threshold device to overcome this problem.

6.2.1 Cancellation Principle

Suppose now we have a fault-tolerant QRD RLS array of order p = 3. Denote the first
and second rows of data input as (w1, 2,@3,@1 + @2 + x3) and (@], h, ¥, 2] + ¥y + ¥3)
respectively, where the checksums 21 + =3 + @3 and @} + 2} + @} are inputs to the EDA.
After both data pass through the array, according to the operations of the processing cells,

the contents of the cells of the first row are

— 2
i1 o= e+,

19 = sx'z + ca9,
riz = STh+ cT3,
_ / N N .
riy = s(@] + a5+ 23) + c(z1 + 22 + 23), (57)

where ¢ = x1/r;; and s = ¢ /r11 are the rotation parameters generated by the boundary

cell and 7;; is the content of PE;;. The output of the internal cells are

219 = €T — STa,
213 = CTh— 83,
g = () +ah +23) - s(21+ 22+ 3). (58)

Since sz} + cay = \a? + 2% and ca} — szy = 0, we have rig = ri1 + 712 + 7113 and
214 = 712 + z13. That is, both the contents and the outputs of the first row still meet the

checksum. The output of the first cell of EDA, 244, can be rewritten as
24 = c(ah + %) — s(xg + z3). (59)

We can see that the data from the first column got cancelled out by the first cell of the

EDA. Since the outputs meet the checksum, with the same principle, the data from the
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second column will get cancelled out by the 2"? cell of the EDA. Thus, this observation can

be generalized and stated as bellowed:

Cancellation Principle: With the checksum encoding data inputted to EDA, the data
from the ¢** column got cancelled out by the i** cell of the EDA.C]

For a finite-precision implementation, due to the roundoff error, the data from the %"

column will not be totally cancelled out by the i cell of the EDA. This effect results in

the false alarm problem.
6.2.2 Finite-precision Floating Point Error Model
A floating point number f can be represented by [7]
f=ddydy- - dyx 5 0<di < B,di #0,L<e<U, (60)

where 3 is the base, ¢ is the precision, and [, U] is the exponent range. The floating point

operator fl can be shown to satisfy [7]

= fl(z) = 2(l+e¢)
fllaopd) = (aopb)(l+e) | <, (61)

where u is the unit roundoff defined by
1 .
u= Eﬂl‘t for rounded arithmetics.

and op denote any of the four arithmetic operations +, —, X, +.

6.2.3 Roundoff Analysis

For a QRD RLS systolic array of order p with finite-precision floating point arithmatics,

denote the first row of input vector as (:El,:izg,'--,a”vp,Zf:l Z; + €), where &; = fl(z;),
e = €(5F_; &), and |e] < u is a constant?, and the second row of input vector as
(29,85, +, 2y, 2ty &1 + €). The content of the first boundary cell is given by

i = fIVaE 4 ) = Va2 + 8401+ o), (62)

*To simplify the notation, we do not give indexs to different ¢’s.

16



and the rotation parameters are é = fI(#;/#11) and § = fl(&}/#11). The contents of the

internal cells can then be obtained as

Foj o= JICFU(3E5) + fl(éd;))
= [825(1+e)+éd;(1+e))(1+¢)
~ (L+2)(88)+¢é8;), 1<j<p (63)

and the content of the first cell of the EDA is

Il

1 p+1

SUSUS L+ ) + U i+ )

X

b
§Z@;+cz &) + 6. (64)

=1

From (62), (63), and (64), the mismatch 7; resulted from the finite precision computation

P
R ~2 . a o
71 = b€y, — (e\lcv% + a'y + 2¢ E (8.12 + éi;))

of the first row is

(65)
=2
and it can be bounded by
1] < 6plemac| + |2€8maz] + 4(p — 1)|€maz]
= (10p — 2)|exmaz| < 10p|eX ozl (66)

For the second row, with the same principle. the mismatch is bounded by 10(p — 1)|e@mqz]-

The total mismatch from the whole array is given by

»—1
Ir] < Z 10(p — )| exmar| = 5p(p + 1)|ezmaz]- (67)
i=0

The possible mismatch is thus bounded by

7| < 5p(p + 1)|€xmazl- (68)

This bound can be interpreted as: For each row of input, each processing cell contributes
about |ex,,q,| amount of roundoff error. Since there are about p(p+ 1) processing cells, the
total possible roundoff error is then p(p + 1)|ezmqz|.

In order to prevent the false alarm, a threshold device is needed at the output of ey and
the threshold has to set at least |7|. Suppose 8 = 2,t = 16, then u = 2716, Given an scaled
input data such that |2,,,,] = 1, the threshold of a QRD RLS array of order p = 20 is

th > |T|mes ~ 520 -21- 2716 = 0.032. (69)
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Table 4 shows the comparisons of the maximum values of the output residuals eg obtained
from a period of n = 10* and the threshold ¢/ derived from (68). We can see that the
estimated threshold can prevent the false alarm problem. Since the threshold is obtained
from a conservative derivations, it can always provide a false alarm free outpus. However,
as shown in Table 4, the estimated threshold may be much higher than that of the actual
maximum of the residuals. We can relax the estimated threshold from information obtained
in previous data to ensure the threshold will not be too high. A high threshold usually means

a small error size may not be able to be detected.

6.3 Overall Wordlength Consideration

To prevent missing error detection, we want to detect the error size A = min(é, ;) as small
as possible. While to prevent the false alarm, we also want to choose a threshold high
enough for a false alarm free condition. Both situations cannot be satisfied simultaneously
since they are of tradeoff in nature.

To detect the error size A, from (53), (54), and (55), we need the threshold th < AZPA.
Otherwise, the propagated error will be eventually truncated to zero by the threshold device.
Accordingly,

Ba < [~log, th], (70)

since a smaller error size is unable to be detected. From (56), a criterion to choose Bna is
then given by
Ba = min([-2plog, A —log, A], [—log, th]). (71)

If Ba = [—log, th], the minimal detectable error size is A = A~?P . th. For a threshold set
at th = 10 as given in (69) and a LS order p = 50 and A = 0.98, we have A = 7.54-10~%.
However, for a smaller LS order p, a smaller error size can be detected. For example. with
p = 20, we have A = 1.5-107%. To prevent overflow, from (27), the minimum wordlength
of the m** row is

By, = [(m — 1)(1+1ogy ) + log, R]. (72)

For a QRD RLS systolic array to detect small error size A without false alarm and overflow

h

problems, the minimum wordlength of the m'* row should be

Biin(m) = max(B,,, Ba). (73)
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7 Conclusions

We present an important observation that the rotation parameters of the RLS algorithm
based on Givens rotation method will eventually reach the quasi steady-state if the forget-
ting factor A is very close to 1. With this model, the dynamic range of each processing cell
can be derived and from this, a proper wordlength can be chosen to ensure correct oper-
ations of the algorithm. Our proposed solutions are simple and effective. Our simulations
have demonstrated that the wordlengths chosen by the proposed dynamic range work very
well. Also, we can prove the stability of the QRD RLS algorithm under finite-precision
implementation with this observation. Finally, the missing error detection and false alarm
problems are considered based on the results obtained from the model. We present a design
of the wordlength which is overflow free without missing error detection and false alarm
problems,

The results in this paper is of practical importance. Not only can we design a finite-
precision QRD RLS systolic array with a minimum wordlength that ensures correct oop-
erations, but also provide a fault-tolerant system that can detect a given error size and is

false alarm free under the quantization effect.
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AR1 AR2 AR3 AR4 WN
A=980] .9800 .9800 9802 9799 9801
A=9851 .9849 .9849 9851 9848 9850
A=990| .9897 .9897 9900 9897 .9899
A=9911 .9907 .9907 9910 9907 .9909
A=9931 .9927 9927 9930 9927 9929
A=9951 .9947 .9947 9950 9947 9949
A=997] .9967 9967 9970 9967 .9969
A=999] 9985 9985 L9987 _9985 9986

Table 1 Mean distributation of cosine parameters for different input signals.

AR1

AR2

AR3

AR4

WN

A= 980
A=.985
2=.990

=.991

=993
A=.995
A=.997
A=.999

7.3885¢e-4
4.3970e-4
2.0903¢-4
1.7154e-4
1.0991e-4
5.9724e-5
2.3007e-5
4.1127e-6

7.5465¢e-4
4.5144¢-4
2.1463e-4
1.7875e-4
1.1390e-4
6.0796¢-5
2.4735e-5
3.1590e-6

6.8163e-4
3.9577e-4
1.8376e-4
1.4883¢e-4
9.1016e-5
4.6789%¢-5
1.6808e-5
3.5167e-6

6.6721e-4
3.9517e-4
1.8918¢-4
1.5562¢-4
9.6440¢-5
5.1856¢-5
1.9908e-5
4.3511e-6

7.3367¢-4
4.3308¢c-4
2.0080¢-4
1.665%¢-4
1.0323e-4
5.3525e-5
2.0504e-5
4.6490e-6

Table 2 Variance distributation of § for different input signals.
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ARI1 AR2 AR3 | AR4
iy 47.5737 1 16.6493 | 6.8209 | 17.1317
Max r; [12.1135(5.6755 |2.5770 | 6.3590
Max r;; [5.4948 |3.3982 |0.9036 | 4.2805

Table 3 Comparisons of the upper bound R and the maximum values of the contents

of the boundary and internal cells.

Wordlength | 6 T 9 12 16 20 24 _
Max € 2.114e-3 [ 2.12e-4 | 3.41e-5 2.011e-9 | 6.7de-13 | 5.696Ge-13 4.5%36e-13
Threshold 0.375e-1 | 4.69¢e-1 | 1.172e-1 | 1.465¢-2 | 9.1e-4 5.722e-5 | 3.58e-6

Table 4 Comparisons of the thresholds and the maximum values of eo.
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Fig.1a QRD RLS systolic array using Givens rotation method.
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(1) Boundary Cell
Yin

(e, 8)

'7out

(2) Internal Cell

In

l

(c,8) — 7 |—» (c, )

l

Tout

(3) Final Cell

Yin z,,

zout

If Zin=20 then
C 1; § O; Yout +— Yin;
r=Ar,
otherwise

r'= /A2 L 7.

in
Ce=Ar/r'y s — Zin /7’
,I
Fer ’ 701.11 = C’)/z'n
end

Zout “— CZyp — sAr

r — 8z;n+chr

Zout = VinZ;p

Fig.1b Processing cells of the Givens rotation method.
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Fig.2 Fault-tolerant QRD RLS systolic array.
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Fig.3 Plots of variances in dB scale.
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Fig.4 Plots of the contents of processing cells with AR3 signal for A =

p = 3: (a) The first row, (b) The second row, (c) The third row.
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Fig.5 Plots of the contents of the first row processing cells with finite wordlengths: 3

bits (row 1), 4 bits (row 2), 5 bits (row3), and 4 bits for others.

28



.0003

.00C2

le0(t)]

.0001

le0(t)|

.0003

.0002

.0001

20 40 60
Time

80 100

Fig.6 The error size § = 3.10-4 occurring at PEj3 can be detected for Bo = 12.
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It is too small and is buried in the noise resulted from quantization.
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