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When the computing environment becomes heterogeneous and applications 

become modular with reusable components, automatic performance tuning is needed 

for these applications to run well in different environments. We present the Active 

Harmony automated runtime tuning system and describe the interface used by 

programs to make applications tunable.  We present the optimization algorithm used 

to adjust application parameters and the Library Specification Layer which helps 

program library developers expose multiple variations of the same API using 

different algorithms. By comparing the experience stored in a database, the tuning 

server is able to find appropriate configurations more rapidly. Utilizing historical data 

together with a mechanism that estimates performance speeds up the tuning process.  

To avoid performance oscillations during the initial phase of the tuning process, we 

use improved search refinement techniques that use configurations equally spaced 

throughout the performance search space to make the tuning process smoother. We 

also introduce a parameter prioritizing tool to focus on those performance critical 

parameters. We demonstrate how to reduce the time when tuning a large system with 

  



many tunable parameters. The search space can be reduced by checking the relations 

among parameters to avoid unnecessary search. In addition, for homogeneous 

processing nodes, we demonstrate how to use one set of the parameters and replicate 

the values to the remaining processing nodes. For environments where parameters can 

be divided into independent groups, an individual tuning server is used for each group. 

An algorithm is given to automatically adjust the structure of cluster-based web 

systems and it improves the system throughput up to 70%. We successfully apply the 

Active Harmony system to a cluster-based web service system and scientific 

programs. By tuning the parameters, Active Harmony helps the system adapt to 

different workloads and improve the performance up to 16%. The performance 

improvement cannot easily be achieved by tuning individual components for such a 

system and there is no single configuration that performs well for all kinds of 

workloads. All the design and experimental results show that Active Harmony is a 

feasible and useful tool in performance tuning. 
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Chapter 1: Introduction 

Applications are no longer monolithic programs written for a specific purpose.  

Instead, most software today makes extensive use of libraries and re-usable 

components. This approach generally results in software that is faster to build and 

more modular. However, one problem with this approach is that the various libraries 

used by an application are not tuned to the specific application’s need.  In addition, 

the applications are frequently used in very different ways. For example, different 

users may employ a single commercial simulation application for radically different 

types of simulations.  As a result of this reuse of software, applications may not run 

well in these varied environments.   

Another trend is Grid [30] computing. It suggests that the resources of many 

computers can be cooperatively managed as a collaboration toward a common 

objective. The transient, rarely repeatable behavior of Grid computing environment 

indicates the need to replace standard models of post-mortem performance 

optimization with a real-time model, one that optimizes application and runtime 

behavior during program execution. To try to address the needs of this type of 

computing environment, the Active Harmony system was developed to allow libraries 

and applications to expose tunable parameters. 

Active Harmony is an infrastructure that allows applications to become tunable by 

applying very minimal changes to the application and library source code. This 

adaptability provides applications with a way to improve performance based on 

current configurations with observed performance results. The types of things that can 
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be tuned at runtime range from parameters such as the size of a read-ahead buffer to 

what algorithm is being used (e.g., heap sort vs. quick-sort). 

A library is a collection of related code that can be used by many programs. Large 

complex computer programs nowadays are built from modules and libraries. This 

method helps programs to be developed incrementally from reusable parts. The 

programmer can develop, debug, and test individual parts separately and then 

integrate them into the program. The reuse of the program library makes software 

development more efficient. 

 Frequently, multiple program libraries with the same or similar functionality 

coexist to serve requests with different characteristics or under different 

circumstances. Each individual program library may be specialized in serving 

requests with specific characteristics. For example, different sorting algorithms are 

appropriate to different situations due to the differences in the problems 

characteristics.  

Another obvious example is the selection of data structures. The data structure 

used in a program can affect the performance dramatically. Take a 2-D table 

implementation as an example. Using a linked list will save memory space but 

increase search time. On the other hand, using arrays will reduce the search time but 

waste memory space. Besides, the properties of the data element will also affect data 

structure selection. It would make the selection more complicated if those 

characteristics change during the execution time. It would be helpful if selection of 

data structures can change at runtime, based on observed behavior.  
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The thesis of this dissertation is that automated performance tuning is useful and 

even critical in many applications. Furthermore, it is possible for programs to adapt 

themselves when the execution environment changes rapidly. To achieve this vision, 

we have refined the Active Harmony system. We have adapted the Nelder-Mead 

simplex method to handle the practical tuning requirements. A Library Specification 

Layer has been developed to tune multiple program libraries with the same or similar 

functionality. 

From the experience learned, we saw the need to speed up the tuning process. We 

do so by making use of the experience we learned in the previous tuning process and 

by avoiding unnecessary bad performance oscillations during configuration 

exploration. Performance oscillations are caused by configurations with extreme 

values that lie on the boundary of the search space. Bad performance due to these 

oscillations can dominate the whole tuning process and thus make online tuning less 

practical. We need an intelligent way to utilize the characteristics of the requests and 

the experience accumulated. In the dissertation, we explain how the Active Harmony 

tuning server may make use of known information, such as historical data, about the 

system or application to be tuned.  

A more sophisticated approach is needed to deal with large systems with 

numerous tunable parameters. Scalability becomes a critical issue as the problem 

complexity increases (i.e., more tunable parameters). The search space increases 

exponentially when the number of parameters increases. This makes the tuning 

process time-consuming. We present techniques to improve the process when tuning 

numerous parameters together. We also show how to decide the relative importance 
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of the parameters in advance (prior to a specific execution) so that Active Harmony 

can focus on performance critical parameters. By examining the relations among 

parameters, we can further reduce the search space. When parameters can be divided 

into performance independent groups (i.e., there is no interaction among groups), we 

tune each group separately. If each group “behaves” similarly, we can only tune a 

representative set of parameters to further reduce burden. 

To understand the effectiveness of the Active Harmony tuning system, we first 

use synthetic data to evaluate the improvements made to the system. Then we apply 

Active Harmony to several practical applications including a cluster-based web 

service system and scientific programs to verify all the improvements we made. We 

show that the techniques we developed are practical and result in a faster, more stable 

tuning process.  

 

Contributions 

The main contributions for my research presented in this thesis are: 

Active Harmony development  

The tuning kernel within Active Harmony tuning server is improved so the 

tuning process is faster and the performance is more stable in the initial 

exploration stage. This is done by not using configurations with extreme values. 

Besides tuning, the Library Specification Layer [22] is introduced so different 

programming libraries with the same or similar functionality can be coordinated. 

This helps the application the select appropriate programming library to achieve 

better performance. 
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Smarter tuning 

In order to speed up the tuning process, we improved Active Harmony to 

utilize historical data from log files to “train” the tuning server and to “prepare” 

the system or application being tuned. Understanding the characteristics of 

requests (e.g., workload for a web server) helps Active Harmony select the right 

historical data set as well as the right programming library. We also extend the 

Resource Specification Language to support functional relations among 

parameters. This helps to constrain the search space and thus speed up the tuning 

process.  

Scalability 

A parameter prioritizing approach is developed so Active Harmony or the user 

can separate performance critical parameters from those that are not. Techniques 

to divide parameters into groups are also developed so Active Harmony can either 

tune a representative set of parameters or have individual tuning servers for each 

group.  

Applied to real applications 

To verify the Active Harmony, we applied it to several practical applications 

including a cluster-based web service system [21] and scientific programs. With 

parameter tuning, the cluster-based web service system can improve throughput 

up to 16%. With smarter tuning, the tuning time can be reduced up to 80%. For a 

climate change modeling code, the simulation time can be reduced up to 17% and 

for GS2 (a plasma physics code), Active Harmony can make it run up to 3.4 times 

faster. 
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Chapter 2: Related Work 

2.1. Performance Tuning and Steering 

There are several projects that have been seeking to develop techniques to allow 

applications to be responsive to their available resources or to allow them to be tuned at 

runtime. Computational Steering provides a way for users to alter the behavior of an 

application during execution.  

CUMULVS [32] (Collaborative User Migration, User Library for Visualization and 

Steering), developed at the Computer Sciences Group at Oak Ridge National Laboratory, 

is a software framework that enables programmers to incorporate fault-tolerance, 

interactive visualization and computational steering into existing parallel programs. The 

CUMULVS software consists of two libraries, one for the application program, and one 

for the visualization and steering front-end (called the "viewer"). It handles collecting and 

transferring distributed data fields to the viewers and oversees adjustments to steering 

parameters in the application. It also manages the dynamic attachment and detachment of 

multiple independent viewers to a running parallel application. In addition, CUMULVS 

provides a user-directed checkpoint/restart mechanism to enable users to integrate fault 

tolerance into a running parallel application.  

Falcon [33] is a set of tools that collectively support on-line program monitoring and 

steering of parallel and distributed applications. It was developed at the Georgia Institute 

of Technology. Falcon’s monitor specification consists of a low-level sensor specification 

language and a high-level view specification language. Falcon captures and analyzes on-
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line information capture and analysis. It provides program steering with graphical 

displays of system information. 

SCIRun [53] is a scientific programming environment that allows the interactive 

construction, debugging and steering of large scale scientific programs. The users can 

design and modify simulations interactively via a dataflow programming model. SCIRun 

enables scientists to design and modify models and automatically change parameters and 

boundary conditions as well as the mesh discretization level needed for an accurate 

numerical solution. The primary goal of SCIRun is to enable the user to interactively 

control scientific simulations while the computation is in progress. This control allows 

the user to vary boundary conditions, model geometries, or various computational 

parameters during simulation. SCIRun is designed to provide high-level control over 

parameters in an efficient way. This is done through graphical user interfaces and 

scientific visualization. 

Active Harmony’s approach is similar in that applications provide hooks to allow 

their execution to be changed. Many computational steering systems are designed to 

allow the application semantics to be altered (e.g., adding a particle to a simulation, as 

part of a problem-solving environment) rather than for performance tuning. Also, most 

computational steering systems are manual in that a user is expected to make the changes 

to the program.  Active Harmony’s goal is to improve the performance rather than alter 

the execution results. 

One exception to this is Autopilot [59, 60], which allows applications to be adapted in 

an automated way. Autopilot (developed at the University of Illinois, Urbana-Champaign) 

integrates dynamic performance instrumentation and on-the-fly performance data 
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reduction with configurable, malleable resource management algorithms. It has a real-

time adaptive control mechanism that automatically chooses and configures resource 

management algorithms based on application request patterns and observed system 

performance. The goal of the Autopilot project is the creation of an infrastructure for 

building resilient, distributed, and parallel applications. It uses sensors to extract 

quantitative and qualitative performance data from executing applications, and provides 

requisite data for decision-making. Artificial Neural Network (ANN) and Hidden Markov 

Model (HMM) are used for classification. Autopilot uses fuzzy logic to automate the 

decision making process. The actuators execute the decision by changing parameter 

values of applications or resource management policies of the underlying system. Active 

Harmony differs from Autopilot in that it tries to coordinate the use of resources by 

multiple libraries and applications. Besides, both the instrumentation using sensors and 

rule-based decision making require more domain knowledge for the program being tuned.  

Active Harmony tries to provide a tuning mechanism where little or no domain 

knowledge is required for tuning. 

The ATLAS (Automatically Tuned Linear Algebra Software) [75] project provides 

automatically tuned software specialized in linear algebra libraries. They have developed 

a methodology for the automatic generation of highly efficient basic linear algebra 

routines for each microprocessor. By using a code generator that probes and searches the 

system for an optimal set of parameters, it can produce highly optimized matrix multiply 

routines for a wide range of architectures. The difference between ATLAS and Active 

Harmony is that our work focuses on general applications that use program libraries 

rather than that of a specific library.  
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John Mellor-Crummey, et al. [47] investigates using data and computation reordering 

to improve memory hierarchy utilization for irregular application in which the data access 

pattern is unknown at compilation time. Besides just moving data closer to where it is 

used, the paper also applies space-filling curves to tune for multiple levels of cache even 

when the size of the caches is unknown. A data reordering involves changing the location 

of the elements of the data, but not the order in which these elements are referenced. A 

computation reordering involves changing the order in which data elements are 

referenced, but not the locations in which these data elements are stored. For two particle 

codes studied, the most effective reordering reduced overall execution time by a factor of 

two and four, respectively. Preliminary experience with a scatter benchmark derived from 

a large unstructured mesh application showed that careful data and computation ordering 

reduced primary cache misses by a factor of two compared to a random ordering. 

Another approach is application level scheduling. AppLeS [12] allows applications to 

be informed of the variations in resources and presented with candidate lists of resources 

to use.  In this system, applications are informed of resource changes and provided with a 

list of available resource sets. Then, each application allocates the resources based upon a 

customized scheduling to maximize its own performance. The Network Weather Service 

[77] is used to forecast the network performance and available CPU percentage to 

AppLeS agents. Active Harmony differs from AppLes in that we try to optimize resource 

allocation between multiple libraries and applications, whereas AppLes lets each 

application or library adapt itself independently. In addition, by providing a structured 

interface for applications to disclose their specific preferences, Active Harmony will 

encourage programmers to think about their needs in terms of options and their 
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characteristics rather than as selecting from specific resource alternatives described by 

the system. 

The Odyssey project [50] developed at the University of California at Berkeley 

focuses on resource awareness at the application level.  In this system, applications are 

informed of resource changes and provided with a list of available resource sets. Then, 

each application allocates the resources based upon a customized scheduling to maximize 

its own performance. Odyssey uses Fidelity as a metric; fidelity refers to changes in 

quality of the produced output. The metric is data dependent.  For examples, with video, 

Fidelity might measure image clarity or compression rate. At all levels of service Fidelity 

must be pre-computed and are available at the server. Odyssey only deals with half of the 

problem.  It only handles read operations; it does not concern itself with issues like 

reintegration, and collaboration with other systems. 

Dome [8] is another parallel programming model which supports application-level 

adaptation using load balancing and checkpointing. While the load balancing for the 

different CPU and network performance is transparent, the programmers are responsible 

for writing suitable checkpointing codes using provided interfaces. 

Kappa-Pi [19] is an automated performance analysis and tuning project at the 

Universitat Autónoma de Barcelona. It tries to give parallel programmers some aid when 

analyzing the performance of their applications. The basic principle of the tool is to 

analyze the efficiency of an application and provide the programmer some indications 

about the most important performance problem found in the execution. It helps to detect 

bottlenecks and provide hints to the developer. The static approach is based on the trace 
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files and source code. Dynamic Kappa-Pi utilizes an application model and a static call 

graph to provide “on the fly” analysis of runtime performance data. 

The Nimrod/O project [5] tries to reduce the search space for engineering design. 

Nimrod/O allows a user to run an arbitrary computational model as the core of a non-

linear optimization process. Nimrod/O allows a user to specify the domain and type of 

parameters to the model, and also to specify which output variable is to be minimized or 

maximized. It applies multiple tuning algorithms including Simplex, P-BFGS, Divide and 

Conquer, Simulated Annealing. The problem involves computing the shape and angle of 

attack of the aerofoil that maximizes the lift to drag ratio. The design for the aerofoil is an 

optimization program that needs to search for the global optima instead the local optima 

in a large search space. They demonstrate their idea is more flexible and delivers better 

results than a program that was developed specifically for the problem. They also show 

that it takes less time to deploy the tool for a new problem and it requires no software 

development. The Active Harmony project focuses on performance issues. Therefore, 

global optima are not always required for performance tuning (configuration searching). 

In other words, finding the configuration with best performance is not a must. Operating 

points (configurations) on local optima are still acceptable in most of cases if the 

performance is adequate. 

2.2. Performance Characterization, Modeling and Benchmarking 

Performance contracts [74] allow the level of performance expected of system 

modules to be quantified and then measured during execution. Application intrinsic 

metrics are performance values that are solely dependent on the application code and 

problem parameters. Examples of such metrics include messages per byte and average 
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number of source code statements per floating point operation. For N metrics, the 

trajectory through N-dimensional metric space is called the application signature. The 

execution signature reflects both the application demands on the resources and the 

response of the resource to those demands. Examples of execution metrics are 

instructions per second and messages per second. Vraalsen, F., et al. [74] project the 

application signature into a high-dimensional space using a scaling factor for each metric. 

Application signatures and projections define expected application behavior and runtime 

measurement capture actual behavior. The early vision of performance contracts includes 

software that uses a fuzzy rule set to quantify the level of performance expected as a 

function of available resources. The project plans to integrate fuzzy rule sets with Markov 

and time-series models to predict resource requirements and identify optimal resource 

allocation. 

Using the application signature together with the convolution method helps to predict 

the performance more rapidly than simulation while scarifying some accuracy. Snavely, 

A., et al. [70] present a framework for performance modeling and prediction that is faster 

than cycle-accurate simulation, more informative than simple benchmarking, and is 

shown to be useful for performance investigations in several dimensions. The 

convolution method used is the computational mapping of an application’s signature onto 

a machine profile to arrive at a performance prediction. 

Predicting application performance on a given parallel system has been widely 

studied [6, 9, 14, 20, 28, 29, 37, 44, 62, 64]. Thomas Fahringer [29] introduces a practical 

approach for predicting some of the most important performance parameters of parallel 

programs, including work distribution, number of transfers, amount of data transferred, 
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network contention, transfer time, computation time and number of cache misses. The 

approach is based on advanced compiler analysis that carefully examines loop iteration 

spaces, procedure calls, array subscript expressions, communication patterns, data 

distributions and optimizing code transformations at the program level. It also considers 

machine specific parameters including cache characteristics, communication network 

indices, and benchmark data for computational operations at the machine level. 

Performance prediction also extends to distributed systems. Kapadia, N.H. et al. [38] 

evaluate the application of three local learning algorithms (nearest-neighbor, weighted-

average, and locally-weighted polynomial regression) for the prediction of the 

performance for a given set of runtime input parameters. This project focuses on the 

accuracy of the performance prediction. However, pursuing maximal predictive accuracy 

may not be appropriate given the variability in a grid computing environment. 

The SPEC HPC2002 [3] suite uses benchmarks derived from real HPC applications. 

The benchmark suite is designed to measure the overall performance of high-end 

computer systems. It tests the performance for the computer’s processors, interconnection 

system (shared or distributed memory), the compilers, the MPI or OpenMP parallel 

library implementation, and the input/output system. The suite consists of three 

benchmarks: SPEC CHEM2002 is based on a quantum chemistry application called 

GAMESS; SPEC ENV2002 is based on a weather research and forecasting model called 

WRF; and SPEC SEIS2002 represents an industrial application that performs time and 

depth migrations used to locate gas and oil deposits. 

The NPB (NAS Parallel Benchmarks) [10] is a set of eight programs. This benchmark 

was designed to help evaluate the performance of parallel supercomputers and is derived 
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from computational fluid dynamics (CFD) applications. They consist of five kernels and 

three pseudo-applications.  

The Livermore Loops benchmark (officially known as the Livermore Fortran Kernels) 

[46] was written by Frank McMahon of LLNL (Lawrence Livermore National 

Laboratory). The benchmark measures floating-point performance for a range of 

compute-intensive loops using a set of 24 (originally 14) Fortran DO loops extracted 

from physics simulation codes at LLNL.  

2.3. Optimization Algorithms 

The kernel of the performance optimization is the function minimization or 

maximization method. In this section we describe several optimization methods used in 

mathematical optimization and operations research. We are focusing on methods that do 

not need derivatives of a function. 

For optimization in one dimension, Golden section search is an analogous version of 

the bisection method. It can be shown that if the new test point is chosen to be a golden 

section portion along the larger sub-interval, measured from the mid-point, then the width 

of the full initial interval will reduce at an optimal rate [58]. 

Parabolic interpolation is another function minimization without using derivatives. It 

uses three points to form a parabolic function. Based on the function, it uses its minimum 

point as the next test point. 

Brent's rule [17] is a mix of the last two techniques: it uses the golden section when 

the function is not regular and switches to a parabolic interpolation when the function is 

sufficiently regular. In particular, it always tries a parabolic step. When the parabolic step 

is useless then the method uses the golden section search. 
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Direction set (Powell’s) method [17] is another method used to find the minimum 

point in a N-dimensional search space. The basic idea behind Powell's Method is to break 

the N dimensional minimization down into N separate 1-dimension minimization 

problems. Then, for each 1-dimension problem a binary search is implemented to find the 

local minimum within a given range. Furthermore, on subsequent iterations an estimate is 

made of the best directions to use for the 1D search. This enables it to efficiently navigate 

along narrow “valleys” when they are not aligned with the axes.  

Linear programming and the simplex method [23] are commonly used in 

optimizations. Linear programming is a class of mathematical programming models in 

which the objective function and the constraints can be expressed as linear functions of 

the decision variables. The simplex method is a general solution method for solving 

linear programming problems. It was developed in 1947 by George B. Dantzig with some 

modification for efficiency by D.M. Simmons [65]. It is an iterative algorithm that begins 

with an initial feasible solution, repeatedly moves to a better solution, and stops when an 

optimal solution has been found. 

The simulated annealing method [40, 41] is another technique used in the 

optimization. The heart of the method of simulated annealing is an analogy with 

thermodynamics, specifically with the way that metals cool and anneal. It has been 

applied to design complex integrated circuits successfully. However, it cannot be applied 

easily for general purpose performance tuning since domain knowledge is required. 

2.4. Performance Tuning and Management for Large-scale Systems 

Others have discussed cluster-based web services with different performance metrics. 

Joel L. Wolf’s work [76] proposed a scheme which attempts to optimally balance the 
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load on the servers of a clustered Web farm. They try to solve the performance problem 

by achieving minimal average response time for customer requests and thus ultimately 

achieve maximal customer throughput.  

ADAPTLOAD [61] developed by Riska, A., et al. models a clustered web server as a 

front-end dispatcher and back-end nodes. They use an online algorithm to decide the 

share of the total workload for each node to achieve load balance. They treat back-end 

nodes as static while Active Harmony tries to configure the clustered system properly to 

achieve better performance. 

Chen, et al. [7] use a reconfiguration mechanism to improve the throughput of a 

clustered system. Their focus is to avoid letting a small number of running jobs with 

unexpectedly large memory allocation block the execution of the majority jobs in the 

cluster. Active Harmony focuses on a general mechanism to improve overall system 

performance by several means.  

Kalogeraki, et al. [10] migrate objects or jobs from hotspots in the cluster to improve 

the performance. Their goal is to achieve load balance while Active Harmony focuses on 

performance improvement.  

Gage [13] focuses on load distribution to provide a performance guarantee for cluster-

based Internet services. This involves support from network level while the Active 

Harmony only tries to tune the system to achieve better performance.  

Levy, et al. [12] use a queuing model to analyze a cluster-based web service system. 

Based on the model built, they implement a prototype for a performance management 

system that is transparent to the system to be tuned.  
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The major difference between Active Harmony and the other large system tuning 

projects is that Active Harmony provides a general solution that does not require the user 

to have domain specific knowledge. The user does not need to analyze the details of the 

system components or build models.  

The K42 project [71] is to develop a new high performance, open source, general-

purpose operating system kernel for cache-coherent multiprocessors. K42 employs 

building-block technology to allow applications to customize and thus optimize the OS 

services they require. This is particularly important for applications, such as databases 

and web servers, where given the ability to control physical resources, they can improve 

performance. K42's design allows implementers on a particular architecture to choose 

what objects of the system should be customized for that architecture, and as a result 

allows the implementers to exploit any architecture specific features to improve 

performance. Active Harmony differs from K42 is that the tuning mechanism does not 

reside within the OS. In order to minimize the overhead and work with existing systems, 

Active Harmony provides tuning using a standalone server that communicates with the 

applications that are being tuned via network. 

2.5. Experiment Design and Parameter Analysis 

Performance often depends on more than one parameter such as the buffer size and 

number of threads waiting for requests. Proper analysis is required so the impact of each 

parameter can be isolated from that of others. Also, it is useful to know the relative 

importance of parameters to decide in which order to tune things. 

Part IV of Jain’s book [36] describes techniques for designing a proper set of 

experiments for measurement or simulation. Types of experimental design discussed 
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include full factorial design and fractional factorial design. Fractional factorial design 

helps to estimate the contribution of each parameter to the performance as well as to 

isolate the measurement errors. It also discusses how to isolate the measurement errors as 

well as estimate confidence intervals for model parameters. There are numerous books on 

design and analysis of experiments including Mason, Gunst, and Hess [45]; Box, Hunter, 

and Hunter [15]; Dunn and Clark [27]; Hicks [34]; and Montgomery [48]. 

 Plackett and Burman [56] described the construction of economical experimental 

designs with the number of runs required being a multiple of four (rather than a power of 

2). Plackett-Burman designs are very efficient screening designs when only main effects 

are of interest. Yi, et al. [78] applied this technique on simulation methodology to 1) 

identify key processor parameters, 2) classify benchmarks based on how they affect the 

processor, and 3) analyze the effect of processor performance enhancements.  

Box and Meyer [16] use a Bayes effect plot to display the probability that each effect 

is active according to the Bayesian analysis. This analysis is especially useful in saturated 

or near-saturated fractional factorial designs. It gives the probability that each effect is 

active when there are not enough degrees of freedom left to estimate error and perform F-

tests on the effects.  

Lenth [43] proposed a method that is appealing and popular because it utilizes an 

adaptive estimate of dispersion which should be more robust to the presence of a few 

large effects.  
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Chapter 3: Active Harmony 

We first introduce the Active Harmony system and its main components: the 

Resource Specification Language, the Harmony parameter API and a parameter 

tuning algorithm. The Resource Specification Language is used to communicate 

between the tunable programs (e.g., application or library) and the Harmony tuning 

server. The Harmony parameter API was developed prior to this thesis. It is included 

here in order to aid understanding the rest of the thesis. The API is used to make 

programs tunable with minimum changes required. The parameter tuning algorithm is 

the kernel of the Harmony tuning server which will adjust the parameter values based 

on observed performance. 

3.1. Active Harmony Runtime Tuning System 

 Application Parameter(s)

 
Harmony Application Programming Interface 

Server Library Monitoring Specification Component Layer 
Adaptation 
Controller Library n Library 1 Library 2 

… 
Parameter(s) Parameter(s) Parameter(s)

System (Execution Environment) 

 

Figure 1: Active Harmony automated runtime tuning system 
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Figure 1 shows the Active Harmony automated runtime tuning system. There are 

parameters inside an application that are performance related. In other words, 

changing the parameter values will only affect the performance but not the 

correctness of operation. The Library Specification Layer provides a uniform API to 

library users by integrating those libraries with the same or similar functionality. This 

layer uses the Harmony Controller to select among different implementations of the 

library. The Library Specification Layer also monitors the performance of the 

libraries. The information is used to guide selection among different libraries. The 

details of the Library Specification Layer will be discussed in Chapter 4. 

The Adaptation Controller is the main part of the Harmony server. The 

Adaptability component manages the values of the different tunable parameters 

provided by the applications and libraries. It adjusts the values of those parameters 

during program execution to achieve better performance for the system. For example, 

tunable parameters exposed by the application or programming libraries may include 

buffer sizes or number of processes. The Adaptation Controller is written in the Tcl 

scripting language. 

3.2. Resource Specification Language1 

The current Harmony Resource Specification Language (RSL) is improved from 

the initial version [35, 39]. It allows the user to describe more types of resource 

requirements, including resource type and time required (e.g., 20 MB memory for 9 

seconds on hostname.cs.umd.edu). The RSL is implemented on top of the Tcl 

                                                 
1 The resource specification language was originally developed by Cristian Tapus and later improved 
by the author with better functionality and bug fixing. 
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scripting language [52]. Tcl was chosen because it provides support for arbitrary 

expression and function evaluation. Tcl also provides the ability to add specific 

functions in C or C++ and export them as Tcl commands. Another reason for 

choosing Tcl was that it permitted the creation of a graphic interface through the use 

of the Tk toolkit.  

The RSL allows applications to describe what resources they need and what 

options they have in the way they perform their function. Once the Active Harmony 

system has this information it processes the descriptions by simply calling a Tcl 

interpreter. Figure 2 shows the general form of an RSL specification for both an 

application and a resource. 

The harmonyApp keyword precedes the description of an application. The 

application description contains tunable parameters, node descriptions and a 

“goodness” function (described below). A tunable parameter of the application, 

defined using the harmonyBundle tag, is characterized by type and range of values. 

The definition of applications and their options is one of the major changes that were 

made to the RSL as part of this thesis. In the initial version, the bundles defined 

mutually exclusive configurations of the application, with static values of parameters 

and resources intrinsically defined. In the current version, a harmonyBundle 

represents a variable of the application. A bundle can be used to define the range of 

allowable values for other bundles as well. For example, consider a program that has 

two parameters one that describes the maximum number of items to be buffered and a 

second that describes the desired number of items. The RSL specification for the 

allowable range of the desired number of items buffered can be expressed as a range 
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from 1 to the maximum number of items that can be buffered.  Thus when the 

maximum is changed by the tuning system, the upper bound of the desired number of 

items will also be adjusted. 

The resource requirements of the application are defined using the node tag.  The 

characteristics of the nodes described by the application are matched against the 

resource description received from different machines that are part of the system. 

This way the Adaptation Controller can make decisions on where different 

applications will be run in the distributed system. The attributes of the node block are 

not restricted to those presented in Figure 2 below. Any attributes can be specified as 

long as they appear in both application and resource descriptions. 

We also allow the user to locally define harmony variables that are not associated 

with application variables. This allows for cleaner descriptions, permitting reuse of 

expressions without having to duplicate them in multiple bundle definitions. 

The final component of the RSL is a performance function. The performance 

function represents a metric of the performance of the application. The performance 

function is required to allow each application to define its own objective function 

such as throughput or response time. 
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HarmonyApp <Application Name> { 
{ harmonyBundle <Parameter Name> { 
  enum {<val1> <val2> … <valk>} | 
  int {<min> <max> <step>} |  
  real {<min> <max> <step>} 
  [global] 
} } 
… 
{ node <Name>  
  {hostname <Host name> } 
  {os <Operating System> } 
  {seconds <Time needed> } 
  {memory <Minimum memory in Mb> } 
   … 
  {replicate <value>} 
} } 
… 
{ let <variableName> <funct. of bundleNames> }  
… 
{link <Node1> <Node2> <Bandwidth>} 
{communication <fct of bundles>} 
{obsGoodness <min> <max> [<#values>] [global]} 
{predGoodness <min> <max>} 
} 

(a) 
HarmonyNode <Name>  
  {hostname <Host name> } 
  {os <Operating System> } 
  {memory <Memory size> } 
  {cpu <cpu speed> } 
  {processors <# processors> } 
  … 
} 

(b) 

Figure 2: The RSL language: (a) Application description; (b) Resource 
description. 

The performance function is described using two different components. The 

obsGoodness tag describes an application-defined metric that is used by the tuning 

algorithm. For example, a scientific simulation might be described by a metric that 

indicates the time required to process a time step of data.  Since a single value of the 

obsGoodness might not be indicative of the overall performance of the application, an 

optional numValues attribute can be defined that indicates the number of values to be 

collected, aggregated, and reported to the optimization algorithm. The need for 

collecting and aggregating different values of the performance function arose because 

some applications may require multiple samples (i.e. time steps) to react to a change 
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in a harmony parameter. The values are aggregated using an aggregation function 

written in Tcl. 

Another important feature of the RSL is the global tag. This tag is used for 

bundles and for the performance function (obsGoodness). The significance of the 

global tag is as follows: different instances of the same application (i.e. processes of a 

SPMD program) can define a global bundle, which is used to simultaneously tune the 

values of the local bundles. 

Application programmers can define their own aggregation function if the default 

one (average) is not appropriate for that application. The functions, written in Tcl, 

include: aggregation_local which combines multiple samples for a single process and 

global_aggregation which combines values from different processes or threads of a 

parallel program. 

The predGoodness tag describes the second component of the performance 

function. This component is also characterized by a range, which specifies the 

expected range of values for the performance function. The obsGoodness tag is used 

to specify how to measure an application’s performance, whereas the predGoodness 

is a mathematical expression of the expected performance based on an analytical 

model. 

The Active Harmony system also includes a graphic console that plots the 

performance function and allows users to manually tune their application.  Figure 3 

shows a screen shot of the user interface.  The box in the middle has three sliding 

controls that allow the user to adjust the values of the three parameters this 

application is exporting (tileSize, maxReads, and lowW).  The graph at the bottom of 
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the picture shows the recent values for the “goodness” function and permits the user 

to browse the history of values as well as to change the thresholds that trigger the 

adaptation mechanism. 

 
Figure 3: Harmony user interface. 

3.3. The Harmony Parameter API 

In order to allow the Harmony server to change library or application parameters, 

we have developed a library of functions that register tunable parameters and provide 

ways for the code to get the new parameters from the Harmony Adaptation Controller. 

The changes required to make a program tunable using this interface are relatively 
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small. For many programs we have “harmonized,” the change amounted to less than 

50 lines of code.   

/* initialize */ 
harmony_startup(0); 
harmony_application_setup_file("adr.tcl"); 
 
/* register tunable parameters */ 
low_watermark = (int*) harmony_add_variable("ADR", "lowW",VAR_INT); 
max_nreads = (int*) harmony_add_variable("ADR","maxReads",VAR_INT); 
tile_size = (int*) harmony_add_variable("ADR","tileSize",VAR_INT); 
 
/* program main loop */ 
/* update tunable parameters’ value */ 
harmony_request_all(); 
... 
/* report performance result */ 
harmony_performance_update(performance_result);  
/* end of program main loop */ 
 
/* finalize */ 
harmony_end(); 

Figure 4: Changes required for a typical application. 

Figure 4 shows the changes made in the main program of a typical harmonized 

application. First the application has to register with the harmony server using the 

harmony_startup function. Next, it sends to the server the description of the 

application, which in this case is read from a file. This file contains the RSL 

specification for the application. This action is performed by the 

harmony_application_setup_file function. Next, the parameters specified by the 

application in its description have to be bound with variables in the main program. 

The harmony_add_variable function takes care of this. This function binds a 

harmony variable to an application variable. The application can then use this bound 

variable, which will be updated periodically by the Harmony system. Finally, the 

application calls the harmony_end function to un-register with the server.  

One more change needs to be applied to the main loop of the program. 

Periodically (typically on a per time step or per query basis) the application sends a 
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value of the performance function to the harmony server by calling 

harmony_performance_update. The application then requests new values for the 

bound variables from the Harmony server invoking harmony_request_all.  

3.4. Parameter Tuning Algorithm 

An earlier version of the Active Harmony system [35] had a simple greedy 

algorithm to handle automatic selection of the appropriate parameters.  However, for 

larger applications a more sophisticated algorithm is needed. 

The problem of selecting good parameters requires finding a k-tuple in the value 

space determined by the values of the tuning parameters specified by the application, 

such that the application performs best. If we consider that better performance is 

represented by a smaller value of the performance function, then the goal is to 

minimize this function.  

The problem is more complex due to the nature of the value space and that of the 

performance function. For example, a simple performance function could be the time 

spent by an application to complete a certain task. However, the value of this 

performance function depends not only on declared application parameters, but also 

on a number of external factors over which we have no real control. These external 

factors include, but are not restricted to, the current load of the machine, the operating 

system, application inputs or workload. Because of this, for fixed values of the tuning 

parameters we might get different values of the performance function even when 

performing the same task.  

Even if we were able to fully isolate performance variation due to external factors, 

trying to find a minimum point in an arbitrary (and unknown) curve would require an 
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exhaustive search of the entire space of values by evaluating performance at each 

point. If the number of different values of each bundle is big this brute force approach 

is not feasible. Hence, we had to come up with heuristics to solve the problem. While 

the goal is to get the best performance possible, we are mostly interested in avoiding 

those k-tuples for which the performance is particularly bad. We have set this goal 

based on our experience in using the interface with a few test applications (including 

a database engine and parallel search algorithm).  We found that there are frequently 

many points near the optimal point and that there is also often another region where 

the application performance is abysmal. Thus, trying to get into the good region even 

if we don’t find the absolute best point achieves most of the benefit of finding the 

optimal solution. 

We had several other goals for our minimization algorithm: 1) it should not 

require too many evaluations of the performance function and 2) it should avoid using 

gradients. Some optimization functions use first or second order derivatives to find 

the minimum or maximum point. This is not feasible for our case since the value 

space for tunable parameters may be discrete such as integer or Boolean variables.  

The algorithm that we developed is based on the simplex method for finding a 

function's minimization [49]. The algorithm makes use of a simplex, which is a 

geometrical figure defined by k+1 connected points in a k-dimensions space. For the 

2-dimensions space, the simplex is a triangle, and for the 3-d space the simplex is a 

non-degenerated tetrahedron. The Nelder-Mead simplex method approximates the 

extreme of a function by considering the worst point of the simplex and forming its 

symmetrical image through the center of the opposite (hyper) face. At each step a 
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better point, making the simplex move towards the extreme, replaces the worst point. 

The concept of the simplex method is shown in Figure 5. This figure shows the search 

for a minimum point in a three dimensional space. At the beginning of a step, there 

are four points: three points with low values are around the shaded triangle and the 

point with high value is at the left bottom corner of the pyramid as shown in Figure 

5(a). Based on this performance result, the possible points will be explored by the 

tuning algorithm will be i) a reflection point, ii) a contraction point, and iii) a multiple 

contraction point as shown in Figure 5(b). 

high low

(a) Beginning of step

Reflection Contraction Multiple contraction

(b) Possible exploration points

 

Figure 5: Possible outcomes for a simplex method step 
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The algorithm described above assumes a well-defined function and works in a 

continuous space.  However, neither of these assumptions holds in our situation. Thus 

we had to come up with a method to adapt the algorithm to deal with this. Rather than 

modifying the algorithm to deal with this problem, we simply used the resulting 

values from the nearest integer point in the space to approximate the performance at 

the selected point in the continuous space. 

3.5. Summary 

In this chapter we introduced the Active Harmony system and its main 

components. Active Harmony provides an API so programs can become tunable with 

few changes. Applications can then specify resource requirements using the Resource 

Specification Language to communicate with the Harmony tuning server. We also 

discussed the algorithm used as the Active Harmony tuning kernel. 
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Chapter 4: Library Specification Layer 

Most software today makes extensive use of libraries and re-usable components. 

This approach generally results in software that is faster to build and more modular. 

However, one problem with this approach is that the various libraries used by an 

application are not tuned to the specific application’s need. Different library 

implementations with the same or similar functionality are used for different 

situations. As a result of this reuse of software, an application may not run as well as 

it could since it does not use the library implementation that is best for its 

requirements. 

The Library Specification Layer is a thin, light-weight layer that is transparent to 

the application. It improves performance by automatically switching among different 

implementations of the same library with little overhead. When no library switching 

is necessary, the layer only redirects function calls and monitors the performance. 

When switching among libraries, the layer performs data structure or state 

transformation if necessary. 

The role of the Library Specification Layer is to help the application use the most 

appropriate underlying algorithm. In other words, it helps the application to select the 

“right code” to execute. To achieve such a goal, it first characterizes the request from 

the application and monitors the performance of underlying program libraries. Based 

on the collected information, it will redirect the function calls to the selected 

underlying program library. 

 The performance metrics commonly used are the utilization of resources by the 

program library such as CPU time or memory space. Library developers can specify 
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multiple program library performance metrics in the Library Specification Language. 

The objective function used for tuning can be a single primitive performance metric 

such as the CPU time, or it can be a user supplied function of multiple primitive 

performance metrics such as (CPU time)×(Memory used), depending on the 

application. The underlying program libraries have to provide function calls in their 

API to support the measurement as well as the estimation of these performance 

metrics. Selecting the appropriate underlying program library is the role of the 

Adaptation Controller. In the current implementation, the Adaptation Controller tries 

to minimize the value of the first performance metric when searching for an 

appropriate underlying program library. 

The Library Specification Language currently supports libraries written in both C 

and Fortran. The Library Specification Language generates header files that interpose 

glue code to allow libraries (or algorithms) with slightly different calling conventions 

to be integrated into a uniform API for application developers.  It also provides the 

indirection to allow runtime switching among the different implementations.  The 

runtime switching code includes the ability for a library writer to specify mapping 

functions that can change the underlying data structures (such as going from a dense 

to sparse matrix representation). 

4.1. Library Specification File 

The Library Specification Language is used to specify the relations between the 

API provided to application developers and the function call mapping of the 

underlying libraries. The syntax describing the API provided is similar to the 

prototype definition in the C programming language. It also defines the variables used 
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by the layer and the metrics used for the performance. The next part specifies the 

underlying program library including the mapping between the API provided and the 

underlying function calls. The last part describes the rules that are used to setup the 

decision agent. 

An example of a program written in the Library Specification Language is given 

in the Figure 6. The language allows library developers to specify the mapping of 

function calls between APIs that will be exposed and the underlying program libraries. 

This is specified in the %interface section. The %variable section defines variables 

used to characterize the requests (e.g., whether the matrix is sparse or not) and other 

internal layer variables. The %metric section defines performance metrics used in 

evaluating the underlying library performance.  

The %method section hooks up the Library Specification Layer with the 

underlying program library API. This section specifies the shared library file from the 

underlying program library. The measurement and estimation subsections define the 

program library performance measured and estimated by subroutines provided in the 

program library. In other words, the performance for the library in use can be 

obtained by calling the function specified in the measurement subsection while the 

estimated performance for libraries not in use can be obtained by calling the function 

specified in the estimation subsection. The convertfrom and convertfrom_est are 

optional sections. The convertfrom section specifies the steps that must be performed 

when switching underlying program libraries. For example, it may be required to 

transform the underlying data structure from a linked list to an array. If nothing has to 

be done when switching the underlying program library, this section may be omitted. 
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The convertfrom_est provides an estimated cost for switching between underlying 

program libraries. This information is used by the adaptation controller to decide if a 

switch is worth the conversion cost. The Library Specification Layer does not define 

the conversion process; it must be implemented as part of one of the underlying 

program libraries. In the example in Figure 6, the library for the linked list method 

supports the data structure transformation when the library is switched from the array 

method to the linked list method. Therefore, the layer will call the ll_fromary() 

function to perform and data structure transformation when switching. 

The %rule section defines the rules used when selecting the underlying program 

library. This information is used to setup the Adaptation Controller. The truthtable 

subsection specifies what underlying program library should be used under certain 

conditions. The decision can be either automatic or manual. When it is set as manual, 

the Library Specification Layer is serving as a “consultant”. It provides performance 

results and suggestions to the application. The application has to call the setmethod()2 

function explicitly to perform the switch. When it is set as automatic, the layer does 

the switch automatically. 

The pre-compiler also generates associated utility functions from the Library 

Specification Language automatically. These functions include initialization and 

finalization of the layer, queries for underlying program library information, 

performance metrics, performance measurement and estimation, and conversion and 

its cost. The upper layer can use those utility functions provided by the Library 

Specification Layer API to have better control over the layer. 

                                                 
2 The detailed utility functions are described in the library specification layer documentation. The 
Active Harmony Software is available at http://www.dyninst.org/harmony. 
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When the programming libraries are designed using object-oriented technology 

(where multiple libraries with exactly the same interface exist), the mapping for 

function calls would be redundant. However, the estimation and measurement of each 

library’s performance as well as the conversion information are still needed to let the 

adaptation controller choose the appropriate underlying programming library. 
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%library Table 
 /* Program Header */ 
 #include "localresource.h" 

... 
%interface c 
 /* Function Prototype(s) */ 
 void init(); 
 int newtable(); 
 int insert(int table_id, int x, int y, void *e); 

... 
%variable 
 /* Variable Definition(s) */ 
 int @sparse=1; 
 void *data; 

... 
%metric 
 /* Performance Metrics */ 
 int memory; 
 float insert_delete_time; 
 ... 
%method 
linklist  { /* Underlying Library */  
 filename  libll.so  
 function  { /* Mapping for functions */} 
  init(): ll_init(&data); 
  newtable(): ll_newtable(); 
  insert(): ll_insert(tid,x,y,e); 

...} 
 estimation {  
  /* Mapping for functions used to estimate the performance */ 
  memory: ll_EstimateMem(); 

...} 
 measurement { 
  /* Mapping for functions used to measure the performance */ 
  memory: ll_memUsed(); 

...} 
 convertfrom { 
  /* Mapping for functions used to convert between method */ 
  array : void ll_fromary(); 
  ...} 
 convertfrom_est { 
  /* Mapping for functions used to estimate the cost for 
conversion */ 
  array : ll_fromary_time(); 

...} 
 } 

... 
%rule 
predicate  {  
  IsSparse: sparse==1 
 ...} 
truthtable {  
  condition (IsSparse): linklist 

...} 
 decision manual 

Figure 6: Library Specification Language example 
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4.2. Algorithm Selection 

In this section, we evaluate the effectiveness of the Library Speciation Layer by 

applying Active Harmony to applications that utilize different libraries with the same 

or similar functionality. All of our tests were run on Redhat Linux with kernel 2.4.0 

on a Pentium-III 667MHz with 384 MB main memory. 

4.2.1. Matrix Inversion 

The first set of program libraries consists of two matrix inversion routines from 

LAPACK [24]. The major characteristic of the matrix is a Boolean indicating if the 

matrix is triangular. If the matrix is triangular, using the dedicated triangular matrix 

inversion library will have better performance. Otherwise, a general matrix inversion 

library must be used. The result is shown in Figure 7. The library compares the 

triangular matrix by applying it to both the dedicated triangular inversion matrix 

library and the general matrix inversion matrix at the beginning. The workload used 

in the experiment is a mixed set of triangular and general matrices. For each request, 

the Library Specification Layer detects whether the supplied matrix is triangular and 

if so, the Library Specification Layer will invokes the matrix inversion library 

optimized for triangular matrices. Otherwise, the Library Specification Layer will just 

apply it to the general matrix inversion library. 
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Figure 7: Matrix inversion test case 

4.2.2. Table Abstraction 

The second set of libraries consists of two libraries. Each of them implements a 

two dimensional array. The two dimensional array is used to store data elements 

similar to a table. The focus of this test case is the ability to select different data 

structures based on API usage patterns. Two program libraries are implemented using 

linked lists and arrays. Each approach has its advantages: linked lists take less 

memory space for storage but longer time for insert, delete, and search operations; 

arrays take more memory but are more efficient in insert, delete, and search 

operations.  
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Figure 8: 2-D table with time metric 

 

We ran the program on a set of random operations to store and retrieve data into 

and from the 2-D table. The first test uses the time to complete each operation as the 

performance metric. The result is shown in Figure 8. The version using the Library 

Specification Layer spends some time using the linked list library. Once it found that 

the performance of the array library is better than the linked list library, it will use the 

array library for the rest of the program execution. The second test uses memory 

utilization as the main metric. We repeated the experiment using the same workload. 

The result is shown in the Figure 9. As expected, the performance of the program 

with the Library Specification Layer is close to the performance of the program with 

the linked list version of the library. Typical applications built on top of the table 

abstraction would be scientific programs involving matrices. When the matrix is 

sparse and access time is not critical, the linked list method is preferred. On the other 
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hand, when the matrix is dense and access time is critical, the array method should be 

used.  

Another difference between this test case and other test cases is the switch 

between underlying program libraries. In this test case, the Library Specification 

Layer has to perform data structure transformation from linked list to array or vice 

versa. This data structure transformation has to be supported by both underlying 

program libraries. 
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Figure 9: 2-D table with memory space metric 

 This experiment shows that proper selection can reduce runtime by a factor of 20 

or more and space by two orders of magnitude for a set of randomly generated 

requests to store and lookup items in a table.  By harmonizing the table, we can 

optimize the compression algorithms for either space or time. 

4.2.3. Compress Library 

In this experiment, we apply the Active Harmony automated runtime tuning 

system to a real compression library.  The compression application uses two possible 
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underlying compression libraries: zlib[31] and LHa[51]. Both of these libraries are 

general-purpose, lossless data-compression libraries.  The deflation algorithm used is 

a variation of LZ77 [79]. They both use hash table and binary trees, plus Huffman 

encoding to compress the data strings.  

There are two performance metrics used in the experiment: time and size ratio. 

The time is the process time used to compress the data file. The size ratio is to 

compare the file size before and after the compression. Each library has its own 

tunable variables. The BUFLEN in the zlib adjusts the buffer used in reading the data 

strings. It will only affect the time to compress a file but not the compression ratio. 

The MAXMATCH in the LHa changes the buffer used but also affects the 

compression ratio. In the original code, those two variables were set to be compile 

time constants. We use the Harmony API [72] to make those two variables tunable 

during the application execution. 

The big file being compressed (with predefined target size) is composed using 

files randomly selected from a UNIX file system. In the experiment, we focus on the 

automatic tuning when using a specific library. We set the library selection to be 

manual in the Library Specification Layer, and focus on tuning a library’s parameters. 

Instead of optimizing a single performance metric, we selected an objective function 

that combines both space and time as metrics.  The objective function is defined as 

the distance between a point (x,y) and the line y-0.015x=0 on a 2-dimensional space. 

Where x represents the buffer size and y represents the compression ratio. This 

objective function is chosen so the tuning will try to reduce buffer size while 

maintaining a similar compression ratio. The constant 0.015 is determined based on 
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the relative ratio of the buffer size and the compression ratio. The results show the 

tradeoff between the buffer size and the performance metric. 

Figure 10 shows the tuning process for LHa compression library. The buffer size 

(compared to the default value) converges quickly after few iterations. Figure 11 

shows the tuning results. The buffer size used is between 3% to 5% of the default one. 

The file size of the compressed file with tuning is 5% to 8.5% larger than that of the 

compressed file without tuning.  
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Figure 10: LHa: changes of buffer size 
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Figure 11: LHa: buffer size and performance after tuning 

Figure 12 and 13 show the results when the Library Specification Layer chooses 

to use the zlib compression library. Figure 12 shows the size of the buffer used by the 

zlib compression library through the tuning iterations (Each iteration is one 

compression run). The buffer size converges after 15 iterations. Figure 13 shows the 

 43 
 



 

tuning results. The buffer size is more than 100 times smaller than the original one 

while the process time increased about 15%.  
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Figure 12: zlib: changes of buffer size 
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Figure 13: Buffer size and performance after tuning 

4.3. Discussion 

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

0 5 10 15 20

Iterations

Bu
ffe

r s
iz

e 
(b

yt
es

)

step=1
step=3
step=20
step=50
step=100

 

Figure 14: Different step d 

There are two major factors that influence the tuning ability of the Harmony 

server. The first one is the selection of the objective function. The objective function 
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should have its minimum value at the desired operation point (e.g., execution time). A 

function that is “smooth” and with few “local minima” is preferred to help speed up 

tuning. The second influence on the search process is the “step” d used for the 

simplex tuning server. This is the minimum distance between the current value and 

the next value of the tunable variable. Figure 14 shows the tuning process with 

different d. In the figure, the x-axis is the iteration which is the number of 

compression tries and the y-axis represents the buffer size which is the tunable 

parameter. Each curve shows a different value for the step size d. If d is too small, the 

Harmony server is affected by the “noise” of the performance data since the tuning 

server is too sensitive to small variations in performance. Therefore in some cases, 

this could prevent the value of the tunable variable from converging. On the other 

hand, if d is too large, the result of the tuning may not be precise enough and the 

value of the tunable variable will keep oscillating. In the example shown in Figure 14, 

d=1 or d=3 are shown be reasonable choices – the tuning process is smooth and 

buffer size converges faster (compared to other d values). 

4.4. Summary 

In this chapter we presented a Library Specification Layer which helps program 

library developers expose multiple variations of the same API using different 

algorithms. The library has been integrated into the Active Harmony automated 

runtime tuning system.  We presented the optimization algorithm based on the 

simplex method that we used to adjust parameters in the application and the libraries. 

We also described how the Library Specification Language helps to select the most 

appropriate program library to tune the overall performance. Based on a simple 
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architecture and with minimal changes to the source code of the applications, Active 

Harmony provides the user the ability to improve the performance of an application 

using an automatic search through algorithms or parameters at runtime. Another 

significant advantage provided by the Active Harmony system is the ability to make 

applications sensitive to the external factors and parameters that characterize the 

environment in which they are executed.  

Finally, we present results that show how the system is able to tune several real 

applications. The results presented demonstrate that the Active Harmony Library 

Specification Layer can bring significant improvement to applications and it opens 

new ways to adapt applications to dynamic environments.   
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Chapter 5: Smarter Tuning 

From our experience in previous work we found several drawbacks in our original 

tuning process in the Active Harmony system. First, the original Active Harmony has 

little or no knowledge about the system or the parameters to be tuned. This makes the 

tuning process lengthy since time can be spent tuning parameters that don’t improve 

performance. Also, the tuning experience is not preserved across executions. In other 

words, when Active Harmony starts to tune a system, it does not utilize the 

experience gained from previous tuning of similar requests or workloads. Finally, in 

the original implementation, some of the initial configuration explorations test 

extreme values for the parameters. The performance for this initial stage is usually 

poor and the time spent in this period may dominate the overall tuning process. 

Unless the program being tuned is expected to run for a very long time, the benefit 

from the tuning may be limited. In order to overcome these problems, we 1) modified 

the Active Harmony to utilize historical data from previous tuning experience and 2) 

changed the search pattern used by the tuning kernel. With these improvements, the 

tuning time is reduced and the tuning process is smoother. 

5.1. Historical Data and Request Characterization 

5.1.1. Concept 

During the tuning process, Active Harmony will keep a record of all the 

parameter values together with the associated performance results. When the system 

restarts, those parameter values and performance results can be fed into the Active 

Harmony tuning server. This is similar to a “review” or “training” stage. Therefore, 

 48 
 



 

the Active Harmony tuning server may save time by not retrying all those 

configurations again from scratch. This is important since for many applications or 

systems, it may take a long time to measure the performance results for a single 

configuration. In order to “train” the tuning server with historical data, we have a 

separate stage that is different from the actual tuning stage. The training stage is 

usually much shorter than the actual tuning stage. In the training stage, it reads data 

from log files and does some computation where the actual running stage requires 

program executions. For example, in the cluster-based web service system tuning 

experiment described in Section 7.5, for each tuning the training stage is usually less 

than one minute while the actual running stage is about two hours. The details are 

shown in the Figure 15(a): training the Active Harmony tuning server and Figure 

15(b): actually running the system. 

 

 
Figure 15: Two stages of tuning (a) Training (b) Actual running 
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In order to utilize the experience from the historical data, we must take the 

associated characteristics of the request (e.g., workloads for a web server) into 

consideration since the characteristics of the request also affect the performance. It 

may be useful when the system is currently serving requests with characteristic A and 

the tuning server was trained using historical data that are recorded when serving 

requests with characteristic A’ (that is “closely” related to A). For example, in a 

cluster-based web service system we use a statistical method to count the frequency 

for each requested web page. The frequency distribution for the web pages is used to 

characterize the workload. Likewise, for a scientific system, better data distribution 

will yield better performance. If the input characteristic is similar to previous runs, 

the system should use the previous data layout as the starting point for tuning and this 

may reduce the tuning time. 

In the original Active Harmony system implementation, input data are handled 

by the system and were processed without any “probing” or “observation” by the 

Active Harmony system. In other words, no characteristics of the input data were 

measured or recorded. During the runtime, the Active Harmony system tries to 

change the system configuration to achieve better performance only based on the 

performance monitored.  It has no knowledge about the input and thus treats the 

system to be tuned as a “black box” every time. This makes the tuning process time 

consuming since it starts the tuning from the scratch and spends a tremendous amount 

of time trying different configurations. 

We introduced a new component, the data analyzer, into the Active Harmony 

system so the system will be able to know the characteristics of the input data. The 
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tuning experience, with associated input request characteristics, will be accumulated 

in a database for future reference. When the input data is fed into the system, the data 

analyzer will first examine or observe a small number of sample requests to probe the 

characteristics of the input data. In order to accomplish such a task, the system to be 

tuned has to provide the method (function) that the data analyzer can use to 

characterize the input requests3. By using the method provided, the data analyzer can 

decide the characteristics of the input requests. For example, calling the function with 

the input matrix as the argument; the function will return the matrix structure (e.g., 

triangular, sparse … etc.) detected. Based on the known experience from the data 

characteristics database, the data analyzer makes the Active Harmony tuning server 

adjust the system more efficiently. For example, in a cluster-based web service 

system the data analyzer may use a statistical method to count the frequency for each 

requested web page. Later based on the frequency distribution for the web pages and 

previous experience, Active Harmony can adjust the parameters more properly.  

For those input data with characteristics that have never been seen before, the 

Active Harmony tuning server may simply use the default tuning mechanism (i.e., no 

training stage). The tuning results will then be treated as a new experience and update 

the data characteristics database for future reference.  

 

                                                 
3 In the current implementation, the user has to provide an application dependent probing function that 
returns observed characteristics (a vector of numbers) of input request. This function is used by Active 
Harmony tuning server for request characterization. 
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Figure 16: Data analyzer 

The details of the data analyzer are shown in Figure 16. The data analyzer will 

first extract the characteristics using the given characteristics definitions and testing 

procedures (provided by the user for the system to be tuned) for the input data. After 

the characteristics of the input data are gathered, the data analyzer will then apply 

machine learning clustering approaches using a predefined method such as a decision 

tree together with known classes defined in the data characteristics database. In the 

current implementation, we use least square error [26] as the classification 
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output is used as the key to retrieve the configurations from previous experience 

stored in the database. Then Active Harmony uses those configurations to setup the 

system being tuned. 

5.1.2. Performance Estimation 

Another important issue is what to do when the configurations and associated 

performance results needed for Active Harmony tuning server training are not 

available. In other words, if the parameter values in the historical data do not match 

those in the current configuration. In this case, it would be necessary to estimate the 

performance results at the target configuration that tuning server requires based on 

those known historical data.  

  
(a) (b) 

Figure 17: Function shape and triangulation4 

                                                 
4 The function is generated using Matlab; it is used as the Matlab logo. It is the solution  
of the wave equation 

),( yxuu =
0=Λ+∆ uu   on a L-shape domain. ∆ is the Laplacian operator in two 

dimensions. The triangulation is generated using SaGA (Spatial and Geometric Analysis toolbox) 
developed by Kirill Pankratov. 
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In order to conquer this difficulty, we use triangulation with interpolation or 

extrapolation to estimate the performance at those “missing” configuration points. As 

shown in Figure 17, the idea of the triangulation is that: we first select vertices to 

form a simplex. A vertex in an N dimensional space represents a configuration with N 

parameters. The projection of the vertex on ith axis is the value for the ith parameter. 

A simplex in an N dimensional space consists of N+1 vertices. For example, a 

simplex in a two dimensional space is a triangle; a simplex in a three dimensional 

space is a pyramid. We then put the simplex in an N+1 dimensional space where the 

N+1th dimension is the associated performance for each vertex (configuration). We 

then use those N+1 vertices on the simplex to estimate the performance of the target 

vertex in an N+1 dimensional space.  

 

Figure 18: Triangulation estimation for configuration with two parameters 
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The example in Figure 18 shows how to use triangulation to estimate a 

configuration with two parameters. First we need to find three configurations C1, C2, 

C3 and use their associated performance to form a plane in the three dimensional 

space. Then we use this plane to estimate the performance Pt at the target 

configuration Ct. 

The algorithm is described as follows: 

1. For a configuration with N parameters, find the “appropriate” k configurations 

(vertices) with associated performance results in the historical data.5  

2. Let  be the ith configuration, where cij represents the 

jth parameter value of the ith configuration. 

[ iNiii cccC L21= ]
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5 Here the appropriate configurations depend on the actual situation: those vertices may be close to the 
target vertex in the distance in the search space or close to the target vertex in terms of the time 
recorded in the historical data. This step is challenging since many issues need to be taken into 
consideration. For example, if the execution environment is static or does not change frequently, 
vertices close to the target vertex may be used for estimation; when the execution environment is 
changing frequently, we may need to use the latest vertices to estimate the target vertex. Currently our 
implementation uses vertices that are close to the target vertex. 
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5.1.3. Synthetic Data Experiments 

To evaluate the concept of utilizing historical data with request characterization, 

we first conduct a study using synthetic data for the experiments. The details for the 

synthetic data generation are given in Appendix A. 

In order to test the effectiveness of performance tuning using historical data, we 

designed the following experiment: a system is facing a workload A. The data 

analyzer in the Active Harmony server first spends a few iterations to characterize the 

incoming workload and decides to use historical data workload A’, where A’ is the 

closest experience to A in terms of the characteristics (computed using techniques 

described in Section 5.1.1).  

Figure 19 shows the relation between the experience workload A’ and current 

workload A for synthetic data based on a web server workload. In both figures, the x-

axis shows the distance between the current configuration A and the stored workload 

A'. Each workload is represented by a vector of numbers. The distance between two 

workload characteristics is calculated using normalized distance in the Euclidean 

space so that characteristic variables with a wide range of values are not given 

excessive weight. This data is again taken from synthetic data generated for a system 

like the cluster-based web service system presented in Appendix A. In Figure 19(a), 

when the characteristics of the historical data are close to those of the current 

workload, it takes less time to tune the system (in this example, a distance less than 4 

should be close enough). The more they differ from each other, the longer for the 

Active Harmony to tune the system to achieve similar performance as shown in 

Figure 19(b). Not surprisingly, this result suggests that when tuning a system with 
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historical data (experience), one should choose to use historical data that is similar to 

the current workload. However, even when the distance from the previously observed 

system is quite large, the system eventually is able to achieve similar performance to 

cases where the difference are small. 

 
(a) Tuning time 

 
(b) Tuning result 
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Figure 19: Tuning using different experiences6 

                                                 
6 Each experiment takes 200 iterations. 
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5.2. Improved

g server does a decent job in performance 

tuning. With few explorations, it can help the system or program being tuned find a 

fairly good configuration for operation. One problem for the original Active Harmony 

tuning kernel is the configurations to use for initial exploration. In the original 

implementation of the Active Harmony system, it takes k+1 iterations to explore the 

values for each of the k parameters. It will start to improve the system to be tuned at 

the k+2th iteration. The configurations used for those k+1 iterations are predefined. In 

particular, the original Active Harmony search will explore the extreme values of the 

k parameters in the k+1 iterations. This is due to the characteristics of the Nelder-

Mead simplex method. However, from the experience we had in our previous work, 

we found that the system usually performs poorly with the parameters at the extreme 

values. Sometimes the time spent by the system on those configurations with poor 

performance dominated the whole tuning process. This makes the tuning results less 

useful compared to the time “wasted”. In addition, for a lot of applications to be tuned, 

the tuning results for the parameter values are far from the extreme values. Consider 

the maximum number of connections for a web server, allowing only one process will 

make the system inefficient; allowing too many processes will cause the system 

thrashing. Only the number of connections that is compatible with the system’s 

capacity will yield the best performance result. Another example is in a climate 

simulation program. In this application, the computing nodes are divided into groups. 

le for part of simulation task (e.g., land, ocean…). 

 Search Refinement 

5.2.1. Concept 

The original Active Harmony tunin

Each group of machines is responsib
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Using only one node for one task will often cause load imbalance and thus make the 

simulation inefficient. Instead, balancing the number of nodes to mach the 

computational complexity of each task will provide the best performance. 

In order to solve this problem, we modified the tuning algorithm to replace 

predefined parameter configurations at extreme values with values that are closer to 

the current configuration but which will evenly cover the search space, as shown in 

Figu

 

(a) Original (b) Improved 

Figure 20: Improved search refinement for configuration with two parameters  

re 20. The rectangle represents the allowed range for the parameter values. The 

circle represents a single configuration and the number inside is the order of the 

configuration to be explored. As shown in the Figure 20(a), the original Active 

Harmony implementation tries the extreme values for the parameters for the initial 

exploration. Figure 20(b) shows one possible alternative initial exploration 

configuration. In the current implementation, we are using configurations that are 

equally distributed in the whole search space. In other words, for each of n parameters, 

we increase 1/n of its extreme values every time in the first n explorations. 
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Reducing the magnitude of performa

and very poor performance) in the initial tuning process is important because what we 

care about in the tuning process is not just getting the best configuration, but also the 

performance of the system while getting there. In other words he effort or cost when 

searching for a desirable configuration versus the performance at the resulting 

configuration should be taken into consideration. Note this is different than most 

optimization techniques which simply count the number of times the objective 

function is evaluated. As it is shown the hypothetical performance curve in Figure 21, 

t

mor

nce oscillations (swings between very good 

, t

uning process A is better if we only look at the tuning result. Tuning process B is 

e stable if we consider the area below the line curve. Therefore, tuning process B 

may be more desirable in a practical application. For the performance tuning, we are 

always looking for a mechanism that not only makes the tuning fast but also makes 

the tuning process more stable with less performance oscillation. 

The Nelder-Mead simplex minimization algorithm uses reflections and 

contractions when it explores the next configuration. Due to this characteristic, initial 

configurations used for exploration should be diverse and evenly distributed in the 

search space. Besides using the pattern shown in the Figure 20(b), we also have tried 

random configuration points with uniform distribution in the search space. However, 

this cannot guarantee an even distribution and thus did not improve the tuning process 

significantly. In future work, we plan to try some other patterns such as points 

decided by the K-mean algorithm [57]. 

 60 
 



 

Time

Pe
rf

or
m

an
ce

Tuning process A 
Tuning process B 

 

Figure 21: Tuning mechanism evaluation 

5.3. Summary 

In this chapter, we improved the tuning process by utilizing the historical data and 

making the tuning process smoother. Request characterization and application 

behavior help to decide which historical data should be used in the training stage of 

e tuning process. Improved search refinement helps to reduce the performance 

oscillations in the in ing time is reduced 

and the tuning process is smoother. 

th

itial stage. With these improvements, the tun
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Chapter 6:  Scalability – High Dimensional Search Space 

mony system to real systems, a practical issue is 

scalability. Tuning can be time-consuming due to the numerous parameters at each 

component in an application.  As expected, it takes a long time for the Active 

Harmony tuning server to adjust numerous parameter values based on one 

performance result (e.g., throughput). In order to make the Active Harmony system 

capable of tuning numerous parameters, we improved the tuning with parameter 

prioritizing, parameter duplication, parameter partitioning, and parameter restriction. 

Parameter prioritizing helps us to focus on those parameters that are performance 

related. Parameter duplication tunes the same parameter on different locations 

concurrently (i.e., in a cluster-based web service system, two application servers may 

have the same parameter to control the number of connections). Parameter 

partitioning helps to tune separate parameters in parallel and Parameter restriction 

reduces the search space by observing the relations among parameters. 

One major problem for tuning numerous parameters together is the size of the 

search space. For a system with 10 parameters where each parameter has 2 possible 

values, the size of the search space would be 210. In the previous implementation of 

the Active Harmony system, tuning using 10 parameters takes 11 initial explorations 

before it starts to improve the performance. Imagine a system with 1,000 parameters, 

the size of the search space would be 21,000 and it would take 1,001 explorations to 

improve the performance. This approach would make tuning impractical since tuning 

would be so time consuming. Even if the values of the parameters will eventually 

converge, the configuration found may be out of date and thus useless. Also when 

When we apply the Active Har
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tuning some applications, even exploring one configuration could take a significant 

amount of time. For example, it may take 5 to 10 minutes to explore one 

conf

6.1. Prioritizing Parameters 

ighbor values. 

The

21

performance results with those different parameter values . We defined the 

iguration for a scientific simulation program, since each exploration requires 

running one or more time steps of the application. 

 

6.1.1. Concept 

When tuning a system or application, it is important to identify those parameters 

that are affecting the performance from those that are not. For a large system or 

application with numerous parameters, it would be helpful to focus on the parameters 

that have greater impact on the performance rather than tuning all parameters at once.  

We have developed a standalone software tool that provides the data required for 

prioritization. It takes possible parameters indicated by the user using the Resource 

Specification Language as the input. Each parameter will be specified with four 

values: minimum, maximum, default value and distance between two ne

 distance between two neighbor values decides the number of sample points the 

software will test. The software tool tests the sensitivity for each of the parameters. 

For each parameter, the tool runs the applications with the possible values while the 

rest of the parameters are fixed with the default value. Assume PPP ,....,,  are the 

sensitivity of a parameter to be 

n

nvvv ,...,, 21

v′∆
, where baba vvvPPPP∆ ′−′=′∆−=∆ , , 

inibinia ...1...1 ==
PPPP min,max == . Also the parameter value is normalized (e.g., 

minmax

min

vv
vv
−
−

v a
a =′ ).  
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The idea of this sensitivity evaluation is to understand the performance impact when 

changing one parameter. If the relative sensitivity value (compared to other 

parameters) for a parameter is large, we expect that changing the value of this 

parameter will affect the performance directly. Hence it should be considered with 

higher priority when considering changes to a configuration at runtime. On the other 

hand, if the relative sensitivity value is small, it has lower priority and may be 

ed later in the tuning. We choose discarded or us ba vvv ′−′=′∆  rather than 

=′∆ minmax vv ′−′  so parameters that affect performance significantly within small 

portion of their valid range will be considered as highly sensitive. For some 

parameters, such as buffer size in a web server, the range of valid values may be large, 

but a significant performance change is only seen in a small range of values. 

v

If we are tuning a large system or program with n parameters and k different 

possible values for each parameter. The search space for such a system or program 

will be huge (i.e., kn ). With help from parameter prioritizing, the Active Harmony 

system can focus on the performance critical parameters and leave the less important 

ones behind at the cost of nj × , where kj ≤  (smaller j may cause a less accurate 

result). This is helpful for a system or program with numerous parameters – a typical 

cluster-based web service system can have 50 or more parameters. 

of synthetic data. This provides a controlled environment to evaluate our approach. 

two out of the fifteen param  

6.1.2. Sensitivity Experiment 

To evaluate parameter prioritization we use the parameter prioritizing tool on a set 

When the data was generated, we specified eters to be

performance irrelevant so changing the values of those two parameters will not affect 
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the performance at all. We also perturb the performance output from 0% to 25% 

randomly. This variance in measured performance is to model the reality that given 

exactly the same environment and input, the performance output will not always be 

the same for two different runs. Details of how the synthetic data was generated are in 

Appendix A. We evaluate our parameter prioritization with regard to this run to run 

variation in application performance. The result is shown in Figure 22 and Figure 23. 

In Figure 22, the parameter prioritizing technique helps to id  parame er H 

s relevant to the performance by comparing the relative sensitivity 

values for all parameters. Even with 25% perturbation in the performance output, the 

parameter prioritizing technique can still correctly identify the parameters that are 

less relevant to the performance. 

entify that t

and M are les
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Figure 22: Parameters sensitivity of the synthetic data  
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(a) Tuning time 

 

(b) Tuning result 

Figure 23: Tuning using only n most sensitive parameter(s) using synthetic data. 
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We next consider the impact of variance in the objective function value and its 

impact on the overall Active Harmony tuning system. In Figure 23, based on the 

parameter ity obtained, we let the system tune the n most sensitive parameters 

while lea est of the parameters with their default values. The bar in Figure 

23(a) sho e it takes for the tuning and the lines indicate the tuning results. 

The associated point in gure 23(b) shows the tuning result. For those cases with less 

variation, the results show that only tuning a few “performance-critical” parameters 

will save a dramatic amount of tuning tim p % le compromising little of 

the performance (less than 8%). In Section 7.7, we evaluate this technique on a real 

application.  

6.2. Parameter Duplication 

When i  large-scale system that uses the SPMD (single program multiple 

data) model, we find that most of the tunable parameters can be categorized into 

different sets. Most sets are the replica of one of the “basic” sets and the environment 

is similar for those sets of parameters. Consider a cluster-based web server where 

there are three tiers and several servers at each tier. Tunable parameters are on all 

nodes in all tiers. We may first categorize all the parameters into sets based on the tier. 

Each node in the same tier has same or similar functionality and for the nodes in the 

same tier, they have same set of tunable pa  the results of our work in 

[21], we also find that the final values of those tunable parameters to be similar. The 

results also suggest that for similar nodes, we simply tune all the parameters on one of 

the representative nodes and replicate those values to all other nodes in the same tier. 

 sensitiv

ving the r

ws the tim
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pt of the parameter duplication is illustrated in Figure 24. We extended 

this concept and integrated it into the Active Harmony system. When sets of 

sic set of parameters and the environment is the 

sam

 

Performance

Duplications Configuration 

Group 1 Group 2Tuning 
Server … Group N

Similar data requests

Figure 24: Parameter duplication 

The conce

parameters are the replica of one ba

e or similar, we may simply tune one set of parameters and replicate the values to 

the rest of associated sets of parameters. 

When the data analyzer and runtime analyzer find that two or more nodes or 

processes are similar in their input and application behavior (application signature), 

the Active Harmony tuning server should only tune one set of parameters from one 

process and duplicate the values from the tuning result to all the other associated 

nodes or processes. The similarity we used is the nearest neighbor method from data 

mining. The similarity in the data request may be the same workload distribution as in 

the cluster-based web service project. The similarity in terms of the environment may 

be the same hardware or software environment such as CPU, memory, and OS in the 

node level. And for the processes level, we can observe their application signature to
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decide whether those two processes are having similar environment. We evaluate this 

technique on the cluster-based web service system in Section 7.9. 

6.3. Paramet ing 

When the number of tunable parameter increases, another method is to increase 

the number of tuning servers to share the burden. If the number of tuning servers can 

increase as the arameters increas lability issue is solved.  

From our experience we find that this is a possible solution for some types of 

systems or applications. server, by observing the 

data

ng server to tune the parameters for each of 

the

parameters should be able to be divided into groups and there should be no interaction 

er Partition

number of the p es, then the sca

For example, in a cluster-based web 

 (requests) flow, we may divide the system into work lines. Each work line group 

consists of at least one server from each tier. A request to the web cluster system is 

only handled exactly by one work line group. In other words, any server in work line 

group A will not generate (serve) requests to (from) a server in work line group B. 

We use a different Active Harmony tuni

 work lines. The results show that using this method not only speeds up the tuning 

process (reducing 33% of the tuning time) but also makes the tuning process more 

stable (reducing the standard deviation from 30 to 9.7). Since each tuning server is 

responsible for fewer tunable parameters, there are fewer configurations to explore 

and it is faster to “converge” to the target. Besides, the impact when changing one 

parameter in a tuning group is limited to that group and will not affect the 

performance of other groups.  

From experience, we find that systems or applications must exhibit certain 

characteristics for the parameter partitioning mechanism to be applied. First, the 
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between groups. Also each group of parameters requires a performance measurement 

to reflect the effect for those parameters. This performance measurement is used as 

the feedback to its associated tuning server. The latter requirement usually makes it 

difficult to partition the parameters into groups. For example, if the parameters are 

par

6.4

Figure 25: Search space reduction by parameter restriction 

We improved the Resource Specification Language to allow the value of one 

parameter to be a function of another parameter value. This can help to reduce the 

search space dramatically. For example, assume there is a fixed number A of total 

processes running on a node. Some number B of those processes are designated to 

A-2 

titioned into groups based on the tiers, it is difficult to decide the performance 

contributed by a particular tier solely.   

. Parameter Restriction 

In Section 3.2, we described the Resource Specification Language which is used 

to communicate between the system to be tuned and the Active Harmony tuning 

server. The system to be tuned specifies the parameters together with their value limit 

boundaries and the distance between two neighbor values for discrete parameter.  

 

 

 

 

 

 

1

1 A-2
B
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handle the disk I/O tasks while some other number C of the processes are designated 

to handle the CPU computational tasks and the remaining D processes are used to 

handle the network connections. Let’s assume B, C, and D are the three tunable 

parameters. When the relation A=B+C+D is known, we may need to tune two 

parameters B and C only, since D=A-B-C will be decided automatically after B and C 

are decided. Furthermore, we may set the value limit boundaries of B to be [1,A-2] 

and set the value limit boundaries of C to be [1,A-B-1] (assume at least one process is 

required for each different type of task) as shown in the Figure 25. Whenever the 

serv

 harmonyBundle  1} }} 

9-$B 1} }} 

-$B-$C 10-$B-$C 1} }} 

Figure 26: Improved Resource Specification Language syntax example 

Figure 26 shows the syntax using parameter restriction. The first line indicates 

that param rameter C 

rang

er needs to “figure out” the next configuration, it decides the value for the 

parameter B first. Then it will decide the value for the parameter C based on the value 

of B. By doing this, we are able to reduce the high-dimensional search space (the 

dashed area in the Figure 25 ). 

 

{  B {  int {1 8

{ harmonyBundle C {  int {1 

{ harmonyBundle D {  int {10

eter B ranges from 1 to 8. The second line indicates that pa

es from 1 to 9-B. The third line defines parameter D as a function of the values 

for parameters B and C. When the Active Harmony tuning server needs to decide the 

values for a new configuration, it will first decide a value for parameter B within the 

range [1, 8]. And then for the parameter C value, the tuning server will make sure it 
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will be within the range [1, 9-$B]. By doing so, only the “meaningful” configurations 

will be explored (e.g., configurations that include B=6 and C=6 will be discarded 

automatically). 

One example use of this feature is to constrain the connectors used on a web 

server. On web servers, there are different types of connectors that handle different 

kinds of requests (e.g., non-secured, secured … etc.). A connector is a process that 

handles incoming requests. The number of connectors decides the number of requests 

that can be handled concurrently. When the total number of connectors is decided, we 

can use this technique to select the number for each type of connectors. We also apply 

this technique when tuning a scientific library in Section 8.1. When tuning the library, 

Active Harmony needs to decide how the matrix with k rows is partitioned into n 

blocks.  

By observing the relations among parameters and eliminating infeasible 

conf uce the search space and thus speeds up the 

tuni

6.5. Summary 

In this chapter, we improved the scalability for the Active Harmony tuning system. 

Rather than tuning all parameters at once, prioritizing parameters helps to focus on 

parameters that have a greater impact on the performance. When the parameters can 

nodes concurrently and parameter partitioning helps to tune separate parameters in 

is reduced by observing the relations among parameters. All these techniques help to 

igurations, this technique helps to red

ng process. 

be categorized into sets, parameter duplication tunes the same parameter on different 

parallel. We also improved the Resource Specification Language so the search space 
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speed up the tuning process when dealing with numerous tunable parameters. In the 

next two chapters we will evaluate these techniques using real applications. 
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Chapter 7:  Cluster-Based Web Service System 

In this chapter we tune a real system, a cluster-based web service system. Cluster-

based web service systems are used as a standard mechanism for online information 

distribution and exchange. In order to provide such service, e-commerce sites require 

large online web systems. Such systems must be capable of running continuously and 

reliably 7 days a week, 24 hours a day. Besides, the systems must be able to 

accommodate widely varying service demands. They should also be adaptive when 

the number or nature of requests changes. 

Clusters of commodity workstations interconnected by a high-speed network are 

frequently used to meet these challenges. The infrastructure can tolerate partial 

failures and allows scaling up by adding more components. The administration 

mechanism for such a large cluster does not have to be reinvented for each new 

service.  

7.1. Cluster-Based Web Service System  

In many web services today, there are (conceptually, at least) three tiers as shown 

in Figure 27: the presentation, middleware, and database. The presentation tier is the 

web server that provides the interface to the client. The middleware tier is what sits 

between the web server and the database. It receives requests for data from the web 

server, manipulates the data and queries the database. Then it generates results using 

existing data together with answers from the database. The third tier is the database, 

which holds the information accessible via the Web.  
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Figure 27: Multi-tier architecture 

ch an architecture, all the cacheable and static data are handled by Tier 1. 

For example, a customer browses the company information or product spec sheets. 

For example, CGI or Java Servlet 

pro

fter a customer places an order, 

Tier 2 first queries the price information from Tier 3. Then it process the transaction 

The server side applications are running in Tier 2. 

grams are in this tier. A customer may interact with the Web server to customize 

his or her merchandise. The request data is received by Tier 1 and then passed to Tier 

2. The interaction is then handled by the server side applications and then returned 

through Tier 1.  

While Tier 2 interacts with the customer and processes data, it may need to 

communicate with Tier 3, the database, for information about pricing, configuration 

parameters, transaction processing information, etc. A



 

based on the query results. Finally the receipt is presented back to the customer 

through Tier 1. 

A scenario for such an architecture can be: the user fill out a form on his(her) web 

browser; the web server receives the request and passes the information to the 

middleware. The middleware translates the information into appropriate SQL and 

queries the database. Tier 2 then takes the data from the database (and does some 

manipulation or calculation if necessary) and turns the results into HTML pages. 

These pages are then sent back to the web server, which in turn serves them out to the 

web browser.  

To increase performance, flexibility, and scalability, dedicated machines for 

different functionality are generally used and multiple machines can be used at each 

tier to increase throughput. In most systems today, software configuration tuning is 

one by either experienced system administrators or from the default configurations 

set by the system

enchmark 

d

 developers. The default configurations are set based on a general 

expectation of the environment in which the system will be executed. Those 

configurations will make the system work in most of environments but the 

performance may vary dramatically due to the difference in each customer’s 

environment.  

7.2. TPC-W B

The major workload we use when tuning the cluster-based web service is the 

TPC-W benchmark. The TPC-W is a transactional web benchmark designed to mimic 

operations of an e-commerce site. The TPC-W workload is made up of a set of web 

interactions. Different workloads assign different relative weights to each of the web 
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interactions based on the scenario. The workload explores the breadth of system 

components together with the execution environment. Like all other TPC benchmarks, 

the TPC-W benchmark specification is a written document which defines how to 

setup, execute, and document a TPC-W benchmark run. The details for each 

workload breakdown are available online [5]. 

 

Web Interaction Browsing 
(WIPSb) 

Shopping 
(WIPS) 

Ordering 
(WIPSo) 

Browse 95 % 80 % 50 % 
 Home 29.00 % 16.00 % 9.12 % 
 New Products 11.00 % 5.00 % 0.46 % 
 Best Sellers 11.00 % 5.00 % 0.46 % 
 Product Detail 21.00 % 17.00 % 12.35 % 
 Search Request 12.00 % 20.00 % 14.53 % 
 Search Results 11.00 % 17.00 % 13.08 % 
Order 5 % 20 % 50 % 
 Shopping Cart 2.00 % 11.60 % 13.53 % 
 Customer 0.82 % 3.00 % 12.86 % 

Registration 
 Buy Request 0.75 % 2.60 % 12.73 % 
 Buy Confirm 0.69 % 1.20 % 10.18 % 
 Order Inquiry 0.30 % 0.75 % 0.25 % 
 Order Display 0.25 % 0.66 % 0.22 % 
 Admin Request 0.10 % 0.10 % 0.12 % 
 Admin Confirm 0.09 % 0.09 % 0.11 % 

Table 1: TPC-W benchmark workloads 

The two primary performance metrics of the TPC-W benchmark are the number 

of Web Interaction Per Second (WIPS), and a price performance metric defined as 

e shopping applications attract users primarily 

interested in browsing, while others attract those planning to purchase. Two 

secondary metrics are defined to provide insight as to how a particular system will 

perform under these conditions. WIPSb is used to refer to the average number of Web 

Interaction Per Second completed during the Browsing Interval. WIPSo is used to 

Dollars/WIPS. However, som
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refer to the average number of Web Interaction Per Second completed during the 

Ordering Interval. 

The TPC-W workload is made up of a set of web interactions. Different 

workloads assign different relative weights to each of the web interactions based on 

the scenario. In general, these web interactions can be classified as either “Browse” or 

“Order” depending on whether they involve browsing and searching on the site or 

w y play an explic the ordering process. The details for each 

workload breakdown are shown in Table 1. 

7 t 

Active Ha stem using a real e-commerce workload, we 

configured a cluster using various components. ary of the environment 

u t is sho ble 2.  The nes used in  ones 

r owsers and ers for prox , application and database 

s e is equ th dual proc  Gbyte memory and runs 

L er, 

Tomcat as the HTTP & application server and MySQL as the database server. All 

computer software components are open-source which allows us to look at source 

code to understand system performance. The TPC-W benchmark version we chose 

simulates a store that sells approximately 10,000 items. 

The effort it took to harmonize a server ranged from half day to two working days. 

The major challenge to harmonize a server is to identify the tunable parameters either 

in the configuration file or inside the source code. Therefore this time can be further 

shortened if the assistance from the server developer or expert is available. Once the 

hether the it role in 

.3. Environmen

To evaluate the rm syony 

T mhe sum

sed for our experimen wn in Ta 10 machi clude the

unning emulated br  the serv y, HTTP

ervices. Each machin ipped wi essors, 1

inux as the operating system ch tier, we quid as the proxy serv. For ea select S
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tunable parameters are identified, Active Harmony API (described in Section 3.3) can 

be applied easily to harmonize the server. 

Hardware 
Processor Dual AMD Athlon 1.67 GHz 
Memory 1Gbyte 
Network 100Mbps Ethernet 
No. of machines 10 

Software 
Operating System Linux 2.4.18smp 
TPC-W benchmark Modified from the PHARM [13] 
Proxy Server Squid 2.5 [4] 
HTTP & Application Server Tomcat 4.0.4 [1] 
Database Server MySQL 3.23.51 [2] 

Table 2: Experiment environment 
ove the overall system performance using Active Harmony.  

We

In this experiment we show that the Active Harmony server can tune the system 

to adjust each tier’s server to provide good performance. We use four machines in 

Our goal is to impr

 first show that there is no single configuration suitable for all the workloads. 

Active Harmony makes the system perform better by using different configurations 

when facing different workloads. Then we investigate Active Harmony’s scalability 

as the number of machines grows. One way to solve this problem is to partition the 

parameters into sets. We show how to use an independent Active Harmony tuning 

server for each set to speed up the tuning process. Another method is to tune a 

representative set of parameters and use duplicated values on the rest of nodes. Later 

we also show how to adjust the number of nodes in each tier dynamically to reduce 

hot spots. 

7.4. Impact of Varying Workload  
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this experiment: one machine for the emulated browsers, one for the proxy server, 

one for the HTTP & application server, and one for the database server. 

In the experiment, we examine th ocesses for two different workloads: 

browsing ing. Both tuning s are started using the default 

configurati he system w  up for 100 seconds and measure the 

performanc  seconds f econds for cooling down. 

We define such a cycle as one “iteration” armony server will adjust the 

configurati lues) betwee

 

e tuning pr

and order processe

on. We then let t arm

e (WIPS) for 1,000 ollowed by 100 s

7. The Active H

on (parameters va n two iterations.  

 
Best configuration after 200 

iterations 
 

Browsing Shopping Ordering 
Improvement 

 compared to the 15% 16% 5% 
default configuration 

 
Figure 28: Applying best configuration after 200 iterations to different 

ads 

 

                                                

worklo

 
7  The 1,200 second-iteration is TPC-W benchmark compliant (i.e., specified in the TPC-W 
documentation). The iteration timescale can be as short as 30 seconds according to our experiment 
experience. 
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Figure 28 shows that for different workloads, the system should apply different 

configurations. Each different colored bar represents the best configuration we found 

afte

ents for those best-tuned 

Table 3 shows the values of all Harmony tunable parameters before and after 

tuning for each of the workloads of the TPC-W benchmark. The results show that for 

the proxy server, it fir es the main size for the prove the 

performan opping and roxy 

rver tries to cache larger objects in the memory (minimum_object_size). For the 

HTTP server (which is part of the applic lts show that it 

spawns more th le th s h g workload 

(AJPminProces ai on for  that  of the requests 

in the ordering workload require high latency operations in the database server (i.e., 

performing update transactions on th  Thus the average response time is 

longer compared to other workloads. As long as it is not over the system capacity, the 

HTTP server should use more threads (minProcessors/maxProcessors) and buffer 

r 200 tuning iterations for a particular workload. We then apply those best 

configurations to the other two workloads for comparison. The results show that 

when using a configuration that is tuned for another workload, the system does not 

perform as well as using a configuration that is tuned for the current workload. The 

results show that there is no universal configuration that is the best for all kinds of 

workloads. The table in Figure 28 shows the improvem

configurations compared to the default configuration. The improvements range from 

5% to 16%. 

st increas  memory cache to im

ce (cache_mem). For the sh  ordering workloads, the p

se

ation server), the tuning resu

reads to hand e request  during t e orderin

sors). We believe the m n reas  this is most

e database).

space (bufferSize) to handle the incoming requests. The waiting queue capacity 

 81 
 



 

should also increase accordingly (acceptCount) as the results show. The same 

situation happens in the worker part (AJP connector) of the application server. For the 

database server, the tuning results show it increases the cache and buffer size when 

the utilization for the database is high (i.e., shopping and ordering workloads). 

However, it shows that reducing the join buffer size does not impact performance 

since the table may not be large enough. 

Best config. after 200 iterations  Default 
Tunable parameters8 config. Browsing Shopping Ordering

cache_mem 8 13 17 21
cache_swap_low 90 91 86 91

Proxy 

cache_swap_high 95 96 96 96
maximum_object_size 4,096 4,096 4,096 5,888

Server 

minimum_object_size 0 0 50 306
maximum_object_size_ 
in_memory 

8 6 256 2,560

store_objects_per_bucket 20 15 25 105
minProcessors 5 1 16 102
maxProcessors 20 11 16 131
acceptCount 10 6 21 136
bufferSize 2,048 2,049 3,585 6,657
AJPminProcessors 5 6 26 136
AJPmaxProcessors 20 86 296 161

Web 
Server 

AJPacceptCount 10 76 306 671
Binlog_cache_size 32,768 63,488 153,600 284,672
Delayed_insert_limit 100 200 400 700
max_connections 100 201 451 701
delayed_queue_size 1000 2,600 9,100 7,100
join_buffer_size 8,388,600 407,552 407,552 407,552
net_buffer_length 16,384 31,744 38,912 34,816
table_cache 64 873 905 761
Thread_con 10 81 91 76

Database 
Server 

Thread_stack 65,535 102,400 1,018,880 773,120
Table 3: Tuning results for different workloads 

From the results we can see that some parameters significantly affect the overall 

system performance such as the number of threads or the buffer size. However, there 

                                                 
8  The parameter names are acquired from configuration files. Parameters with name including 
“Processors” actually relate to the number of threads or processes. 
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are some parameters that we expected to be performance related but turned out not to 

be important. For example, the thresholds (cache_swap_low, cache_swap_high) 

which control whether the proxy server should swap out objects do not impact the 

overall system performance. Determining which parameters are important is useful. 

But it is difficult for system administrators and developers if they do it manually. 

Since it is automated, the Active Harmony tuning process is also helpful for system 

administrators and developers to identify ra  

anc

 those pa meters that actually affect system

perform e. 
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are needed to adapt to the new workload. The Active Harmony tuning server not only 
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igure 29: Tuning veness to t  changin orkloads

nsi to ch work  The

arted with the d ations fo ll of the ervers. We change the 

rkload every 100 iterations. As shown in the figure, the response time for the 

system to adjust itself when the workload changes is fairly short. Only few iterations 

ringBrowsing wsin Browsing Shopping Ordering Shopping 

 83 
 



 

helps the system react to the changing workload, it also makes the adjustments fairly 

quickly. As displayed in the figure, it only takes few iterations for the tuning server to 

react and the performance is improved up to 16%. This is helpful when the system is 

facing real-world traffic that can change at a rate faster than a person could manually 

tune the system. 

Trying one single configuration on a sy

7.5. Utilizing Historical Data 

stem may be time-consuming and the 

tuning pro l ry ec on n   

process, Active Harmony will keep a record of all the parameter values together with 

the associated performance results. This is useful for future reference if the system is 

running with the same or similar workload later. We verify this design using Active 

Harmony on a cluster-based web service system. 

In the cluster-based web service system, the data analyzer will first spend a small 

amount of time to characterize the requests by observing the frequency of different 

web interactions. We expect each different workload will have a different web 

interaction distribution. By observing the frequency distribution for web interactions, 

the data an uring the 

running stage, the configuration used is also stored together with the associated 

request characteristics for future references. Next time when tuning the application, 

the Active Harmony system will first analyze the characteristics (frequency and 

distribution of web interactions in the case of the cluster-based web service 

application) of the incoming requests as described in Section 5.1. It will then compare 

cess shou d avoid t ing unn essary c figuratio s. During the tuning

alyzer can characterize the workload that the system is serving. D
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them with the information stored in the data characteristics database, and then use the 

appropriate historical data to prepare (train) the system to be tuned.  

Shopping workload 

 Convergence 
time (iteration) 

Performance after 
tuning (WIPS) oscillation average 

Initial performance 

(standard deviation) 
Without 

prior 39 56.99 53.34 (9.30) 
histories 

With prior 17 histories 59.30 57.43 (5.72) 

 
Ordering workload 

 Convergence 
time (iteration) 

Performance after 
tuning (WIPS) 

Initial performance 

(standard deviation) 
oscillation Average 

Without 

histories 
prior 23 76.26 59.66 (17.96) 

With prior 19 76.26 71.50 (10.96) histories 
Table 4: Tuning process with and without prior histories 

                                                

In this experiment, we have the system serving a workload A (that the system has 

never served before) both with and without using historical data. In Table 4, when we 

use the shopping or ordering workload, the tuning process is smoother and the 

performance converges faster (56% faster for the shopping workload and 17% faster 

for the ordering workload) when the tuning server is first trained using historical data 

recorded from another workload. For the shopping workload with prior histories, 

there is only one bad performance iteration9 in the tuning process compared to nine 

bad performance iterations when without prior histories. And for the ordering 

workload and prior histories are used, there are three bad performance iterations in 

 
9  The performance is worse than the performance using default configuration. 
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the tuning process compared to eleven bad performance iterations when prior 

histories are not used. 

7.6. I prove fin

ake the tuning process more stable, we rnel 

inside Active Harmony as discussed in Section 5.2. In this section we evaluate these 

m  in the ng algorithm modifications tradeoff between the 

number of configuration evaluated and cumulative performance function. Without 

using nfigurat me a long n the 

other hand, the performance during the tuning ess sho ince 

configurations with extreme values often he system perfo  expect 

th se modif ions, the tuning process will be mor erefore 

time spent in uning time.  

m d Search Re ement 

In order to m modify the tuning ke

odifications  tuni . The 

co ions with extre values, it may take 

 proc

er time for tuning. O

uld be more stable s

 make t rm poorly. We

at with the icat e stable and th

 those iterations with bad performance will not dominate the t

Shopping workload 

 Convergence 
time (iterations) 

Performance after 
tuning (WIPS) 

Worst 
performance  

WIPS 
(std. dev.) 

10

Original 
implementation 90 63 20 (17.6) 

Improved search 
refinement 58 60 27 (6.2) 

Ordering workload 

 Convergence Performance after Worst 
performance 

WIPS time (iterations) tuning (WIPS) 

Original 
implementation 74 79 29 (11.3) 

Improved search 
refinement 46 80 29 (8.9) 

Table 5: Tuning process with and without improved search refinement 

                                                 
10 The worst performance found in the performance oscillation stage. 
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We apply the Active Harmony tuning server with this improved kernel to the 

cluster-based web service system.  The summary of the tuning process is shown in 

Table 5. The convergence time represents the time it takes for tuning. The 

performance column shows the tuning result and the worst performance column 

des

7.7. Par meter Sen

We developed the parameter prioritizing tool (described in Section 6.1) since 

tun er of par ters can be very slow. A long tuning process makes 

the tuning result unusable since the workload and the environment ma anged. 

In this section, we apply the technique to the a real system

We apply our pa ing  in S

pa uster-bas eb service system igure 30 comp lative 

sen rameters. The results are norm ed to show th nsitive 

param  that 

tem’s performance. For 

cribes how smooth the tuning process is. From the summary shown in the table, 

the convergence time is much shorter after improving the tuning kernel while 

maintaining similar performance tuning results. For the improved search refinement, 

the results show that the proposed improvement helps to speed up the tuning process 

by reducing the convergence time by about 35%. We believe this is because the 

desirable configuration points are not at the boundaries of the parameter values. The 

improved search refinement also helps to reduce the magnitude of the initial 

performance oscillation for both workloads as indicated by the standard deviation 

values.  

a sitivity 

ing a large numb ame

y have ch

 to verify our design. 

rameter prioritiz tool introduced ection 6.1 to 10 

rameters in the cl ed w . F ares the re

sitivity for all pa aliz e most se

eter as 100%. When the system faces different workloads, the results show

each parameter has a different degree of importance to the sys
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example, the network buffer size of the MySQL database server is relatively 

important when the system is serving the ordering workload since most requests are 

placing orders and the database server is highly utilized. On the other hand, when the 

system is serving the shopping workload, more browsing activities are coming into 

the proxy server and this kind of request can be served more quickly with static data 

stored in the cache memory. Therefore, the size of the cache memory has more 

impact on the overall system performance. Some parameters like the buffer size for 

the HTTP web server or maximum number of connections allowed by the database 

server are relatively less important for the system when facing shopping or ordering 

workloads.  

0%

10%

30%

Cac
he M

e

ce
pt C

ou

uff
e r L

en
g

Proce
ss

in 
Mem

o

20%

40%

60%

%

80%

XY 

m

 Ac

nt

t B

th

ax 

ors

X

ec
t 

r

50%

70

90%

100%

PRO AJP

MYSQL N
e

AJP
 M

PRO
Y M

ax O
bj

y

H
HTTP

MYSQL D
PRO

SQL M
aTTP

ize

 Ac

un
t

ela
y

ue

X

ec
t

MY

x C

tio
ns

Parameter

S
ity

 Bu ffe
r S

ce
pt 

Co

ed Q
ue

Y M
in 

Obj

onn
ec

en
si

tiv

Shopping Ordering
 

Figure 30: Parameter sensitivity in the cluster-based web service system 

 88 
 



 

0 

200 ) 
50

100 

150 

1 2 3 6 10

n

Ti
m

e 
(it

er
at

io
ns

ShoppingOrdering

 

0 

20

40

60

1 2 3 6 10
n 

P
er

fo
rm

an
c

80

e 
(W

IP
S

) 

Ordering Shopping

 

Figure 31: Tuning using only n most sensitive parameter(s) of the cluster-based 
web service system 

We now consider the question of how many parameters need to be tuned. We 

consider tuning using only the top n most important parameters based on our 

sensitivity analysis. We vary n from 1 to 10. Figure 31 shows that only using a 

limited number of parameters can reduce tuning time significantly. The bars in the 

first figure show the time it takes for the tuning process and the lines in the second 

indicate the tuning results. The lines show that about the same overall performance 

was  the obtained, but the bars indicate that by tuning only the important parameters,
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time required for tuning can be reduced. When tuning a system with numerous 

parameters, it is helpful to first spend some effort separating performance related 

paramete r those that are less relevant to performance. Tuning only those 

performa eters reduces the tuning time (up to 71.8%), while 

compromising a little of  perform  the tuned system (less than 2.5%). 

7.8. Putting together 

In this section, we tune the cluster-based web service system with the improved 

Active Harmony. The experiment starts with 20 parameters. The improved Active 

Harmony that utilizes historical data and improved search refinement selects 10 out of 

the 20 parame  for tuning. As shown in Table 6, even though the improved Active 

Harmony spent iterations to test each parameter, the tuning process is still faster 

compared to the original Active Harmony. On can expec this speedup in the tuning 

process time will be bigger when there are more parameters. Also with improved 

Active Harmony, the tuning process is more stable (with smaller standard deviation). 

Shopping workload 

rs f

nce related param

om 

 the ance in

ters

e t 

Active Tuning time Performance after 
tuning (WIP

Worst performance12 
Harmony (iterations)11 S) WIPS 

(std. dev.) 
Original 205 63 21 (19.6) 

Improved 108 61 25 (12.2) 
Ordering workload Active 

Harmony Convergence time 
(iterations) 

Performance after 
tuning (WIPS) 

Worst performance 
WIPS 

Original 174 80 29 (13.1) 
Improved 96 79 30 (9.3) 

Table 6: Tuning process using original and improved Active Harmony 

                                                 
11 For improved Active Harmony, tuning time includes iterations spent for parameter prioritizing. 
12 The worst performance found in the performance oscillation stage. 
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7.9.  Cluster Tuning 

When the number of servers increases, the number of tunable parameters also 

increases. This makes the tuning process lengthy and the tuning results may not be 

useful since the environment could change during the tuning process.  

In the original Active Harmony system, to tune n parameters at once requires 

ns before improvements to the system will take effect. If 

there are numerous servers in the cluster and each server contains tens of parameters, 

the tuning process will be fairly long. In order to reduce the initial exploration period, 

we partition the components inside the cluster into groups and use separate Active 

Harmony tuning servers for each group.  

There are several ways to group servers. When all the machines in the same tier 

are homogeneous, we try to partition all the servers into tuning groups using two 

methods. The first one is parameter duplication: we only tune one server for each tier, 

and the values for those parameters are duplicated to other servers in the same tier. 

This tuning mechanism is based on the assumptions that (a) servers in the same tier 

wil the sam  behavi onf  

workload is evenly distributed among all t  same tier.

nd way to p nodes, parameter partitioning, is based on a static work 

line. A work lin  at lea each e 

web cluster system is handled by exactly one w line. In other words, any server in 

work e B. 

We use a different Active Harmony tuning server to tune the parameters for each 

exploring n+1 configuratio

l have e or similar or for the same c

he servers in the

iguration and (b) the

  

The seco  grou

e group consists of st one server from  tier. A request to th

ork 

 line group A will not generate (serve) requests to (from) a server in work lin
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work line. The assumption for this tuning mechanism is that (a) all the work lines are 

running in parallel and (b) there is no interaction between any of the work lines.  

WIPS Tuning After tuning13 
(improvement) 

Average 
during tuning

Standard 
Deviation14

Iterationsmethod  
None  
(N 110.4 110.4 2.1 - o Tuning) 
D 130.6 (18.3%) 112.1 30.0 159 efault 
method 
Parameter 
duplication 133.7 (21.2%) 116.6 29.5 33 

Parameter 
partitioning 131.3 (19.0%) 121.8 9.7 107 

Table 7: Performance for different methods for cluster tuning 

e domain knowledge 

about th

Active Harmony as part of the tuning API. 

tuning methods: default, parameter duplication and parameter partitioning. Table 7 

performance result per iteration. The parameter duplication method provides both a 

larger perform

speeds up the tuning process since the tunable parameters are distributed to multiple 

the default method. 

                                                

Both of these approaches to grouping nodes require som

e role of each node. However, grouping of nodes could easily be exported to 

To compare these two approaches, we tuned the system using three different 

shows the tuning results. The results for all three methods are very similar. The 

default method takes the longest time since there are many parameters and only one 

ance improvement and faster convergence to the tuned configuration. It 

tuning servers and there are fewer parameters for each tuning server to tune. The time 

(iterations) spent for the grouping by parameter partitioning method is about 2/3 of 

 
13 Performance for the best configuration after 200 iterations 
14 For the second 100 iterations 
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Based on the time for the tuning process, parameter duplication tuning seems to 

be the best. It takes a much shorter time for tuning. However, if stable performance 

during the tuning process is critical, rtitioning by work lines is a 

reas oice.  

7 tomatic C figura

 advan er-based ervice is th ity to reco ure 

h ly. By d ging th  of servers f fferent w ads, 

it is possi

stem, changing the parameters for all the 

serv

parameter pa

onable ch

.10.  Au luster Recon tion 

One of the tages for a clust  web s e abil nfig

ardware easi ynamically chan e roles or di orklo

ble to make the best of available resources. 

The parameter tuning part of the Active Harmony system helps to tune the 

cluster-based web service at a fine time granularity. However, when the load is not 

balanced among tiers in the web service sy

ers will not provide much help to solve the problem. Instead, it is necessary to 

adjust the infrastructure by changing the number of servers in each tier dynamically 

to reduce the load imbalance.  

Variable Description 
R  Utilization of resource j on node i ij
LTij Low threshold for resource j on node i 
HT  High threshold for resource j on node i ij
Mpq Cost to move a job for node p to node q 
A  Average process time on node i i
F Configuration cost in terms of time 
L List of nodes 
Ni Number of jobs on node i 
Head(L) First node in the List L 
Tier(i) The tier that node i belongs to 
M(t) Number of nodes in tier t 

Table 8: Variable description 
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1. For all node i, resource j do  

If Rij > HTij then add i to the list L1  

2. For all node i do 

If Rij < LTij  

//find out what nodes are highly or over loaded 

for all j then add i to the list L2  

//find out what nodes are lightly loaded 

 //decide the priority for the nodes to be relieved  

1 2

(b) M(Tier(k))  > 1 

k km k

3. Sort L1 based on the “degree of urgency15”  

4. Let i = Head(L ), find the node k in L  such that satisfies (a)(b)(c)     

//find out the appropriate node to be reconfigured 

(a) Tier(i) ≠  Tier(k) 

(c) F +  N  ×  M  – N  ×  A  is minimal, where kk ≠ m and Tier(k) = Tier(m) 

5. Reconfigure k such that Tier(i) = Tier(k) 

//reconfiguration 

Figure 32: Reconfiguration algorithm for external tuning 

The Active Harmony system applies a simple mechanism to achieve load balance 

among tiers. While the tuning is in progress, the Active Harmony system monitors the 

resource utilization for all nodes of all tiers. The resources that are monitored include 

CPU load, memory e, n ctivity (currently 

the system informat  obt odically, Active 

Harmony detects w er (1 s over utilized16, (2) 

all the resources node nd node B is suitable for 

                                   

 usag etwork bandwidth used and disk I/O a

ion is ained using Linux SAR utility tool). Peri

heth ) there is a resource on node A that i

on  B are under utilized a

              
15 The degree of urgency for ea of the application. It may vary 
from case to case. For example, overloading the CPU may cause bigger problem than utilizing all the 
network bandwidth for some applications. Therefore, nodes with overloaded CPUs will have higher 
priority than nodes whose network bandwidth is highly utilized. 
16  Static thresholds (e.g., CPU idle time is less or equal than 5%) are used in the current 
implementation. 

ch node depends on the characteristics 
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reconfiguration. If both situation (1) and (2) exist, Active Harmony tries to 

reconfi ocess as node A. 

ning, which is done for each iteration, the reconfiguration 

algorith  iterations) since it is designed to 

react to verhead to make changes. Table 8 

shows e 32 shows the concept of 

the

Ste  the resource utilization 

against threshold. Step 2 tries to find nodes that are lightly loaded. 

If all th o  m ler 

tha red under utilized. Step 3 finds out 

which node is the m

correct operation (that there is at least one node left in each tier) and decides if the 

reconfiguration should be done immediately (by moving existing requests to the 

neighbor nodes in the same tier) or if it should wait until all existing requests finish. 

Finally Step 5 does the reconfiguration.  

 

F +  Nk  Mkm – Nk  Ak                        (1) 

 

When the result of equation (1) for the selected node k in Step 4(c) is non-

negative, the Active Harmony system will not reconfigure node k immediately until 

gure node B to run the same server pr

Unlike parameter tu

m is run at a lower frequency (e.g., every 50

 longer term trends, and incurs a greater o

the definition for variables in the algorithm and Figur

 reconfiguration algorithm. 

p 1 determines which nodes are overloaded. It checks

 the predefined high 

e resources n the node are idling most of the ti e (i.e., utilization is smal

n the lower threshold), the node is conside

ost “urgent” node that should be relieved first. Step 4 is to ensure 

 ×  ×

all jobs on it are finished. This is because it will be more cost-effective to wait than to 

reconfigure node k immediately. On the other hand, when the result of the equation is 
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negative, the Active Harmony system will reconfigure node k immediately. This is 

because the cost for immediate reconfiguration will be less than waiting for the 

sys

rimental results when applying the reconfiguration 

alg

when the system has a workload dominated 

by ordering, it requires more application servers to handle the dynamic data from the 

dat a rkloads require static data that can be 

served from the proxy servers. Before the adjustment, the application servers are 

hig

tem to be idle to reconfigure. 

Active Harmony can automatically perform node reconfiguration without taking 

the system down. While one node is being reconfigured from one tier to another, all 

the remaining nodes in the system are still serving requests normally. 

Figure 33 shows the expe

orithm. The initial configuration for Figure 33(a) has four nodes serving the proxy 

tier and another two nodes for the application tier; all six nodes are homogeneous. 

The experiment starts with a browsing workload and changes to an ordering workload 

after the 90th iteration (the performance gains between 90th and 100th iterations are 

due to different workloads). We forced the Active Harmony system to do the dynamic 

adjustment checking exactly once, immediately after the 100th iteration of the tuning 

process. Figure 33(a) shows the performance improvement when Active Harmony 

decides to move a node from the proxy server tier to the application server tier based 

on the algorithm. This is expected since 

abase. On the other h nd, most browsing wo

hly loaded (CPU utilization is always close to 100%) and some proxy servers are 

idling most of the time (CPU utilization is close to 0% and there are very few network 

or disk I/O requests). After the adjustment, the average utilization of the application 
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servers is lowered while the average loading for the proxy servers increases a little. 

The major bottleneck is relieved and the system performance is improved about 62%. 
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(a) One node moved from the proxy server tier to the 
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Figure 33: Reconfiguration experiment results 

serving as application nodes. However, the proxy servers are highly utilized under the 

 
(b) One node moved from the application server tier to 

the proxy server tier (Browsing workload) 

Figure 33(b) shows the performance improvement with a different starting 

configuration. There are six nodes, two of them serving as the proxy servers and four 
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browsing workload. Using dynamic adjustment after the 100th iteration, it moved a 

node from the application server tier to the proxy server tier for the adjustment 

automatically. The CPU and disk I/O are highly loaded on the proxy servers before 

the adjustment and some application servers are idling most of the time. After the 

adjustment, the average load on all proxy servers is lowered, the average utilization 

on the remaining application servers is increased and the system performance is 

improved for about 70%. 

7.11.  Summary 

In this chapter, we applied Active Harmony to a cluster-based web service system 

application. We started with tun ce, then demonstrated ideas to 

improve the tuning process: utilizing historical data so the tuning won’t start from 

scratch every time; improved search refinement helps to search the possible 

configurations first; parameter sensitivity helps to focus on performance-critical 

parameters. Finally, due to the characteristics of the cluster-based system, dynamic 

reconfiguration makes the best of available resources. In the experiments, we were 

able to improve the cluster-based web service system throughput up to 16% using 

parameter tuning and up to 70% with dynamic reconfiguration. With parameter 

duplication, the tuning time can be reduced up to 80%. 

ing all parameters at on
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Chapter 8: Scientific Programs Tuning 

ge-scale parallel computers. Even a small percentage 

improvement in the execution time will reduce the cost dramatically.  Alternatively, 

n time, the program can also achieve better results such as 

hig

 Snark[7]. It is widely used in 

optimization, biology, computational fluid dynamics, and wave propagation. 

PETSc uses the MPI standard for all message communication. It integrates 

architecture dependent optimized libraries such as BLAS and LAPACK. It includes 

parallel linear and nonlinear equation solvers that can be easily integrated into C, C++, 

and Fortran programs. PETSc also provides interfaces to Matlab and Mathematica. 

In this chapter, we show that by changing the data and computation distribution, 

we can improve the performance of scientific libraries and applications significantly. 

Scientific library and application tuning is an important problem today. Due to the 

fact that frequently these applications have large computational demands and thus 

need to be run on lar

with improved executio

her resolution, better precision or using a larger data set. Therefore, we try to 

apply the Active Harmony system to some widely used scientific libraries and 

applications. 

8.1. PETSc Library 

PETSc [66] (Portable, Extensible Toolkit for Scientific Computation) is a suite of 

data structures and routines for the scalable (parallel) solution of scientific application 

modeled by partial differential equations. PETSc is intended for use in large-scale 

application projects. Software packages that use or interface to PETSc include 

TAO[11], SCIRun[53], Magpar[63], libMesh[54],  and
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From the performance point of view, it allows users to have detailed control over the 

solution process. For example, the user may specify the details of matrix 

dec

(a) 

s tuning 

abil

omposition for data storage or array distribution for computation. This makes 

performance tuning for this library interesting and challenging since those details are 

environment and problem dependent. 

 

A
B

 
(b) 

Figure 34: Matrix decomposition 

We applied the Active Harmony to two PETSc examples to show it

ity. The first example solves a linear system in parallel with SLES (linear 

equation solver). The key point we are interested in is the matrix decomposition. In 

other words, how the matrix is broken into pieces and stored across processing nodes 

will change the data locality. This will affect the amount of communication 
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throughout the computation and thus has a dramatic impact on the performance. The 

concept is shown in Figure 34(a), the black blocks represent non-zero elements of the 

matrix. There will be better data locality if the matrix decomposition boundary is 

using the line A rather than using the line B. 

We made slight modifications to the source code to allow Active Harmony to 

change the boundary for matrix decomposition. Each partition has at least one row 

and the number of rows for a single partition can be as small as one. Figure 34(b) 

shows the results for a small sample program running on four processing nodes. The 

default configuration (solid lines) decomposes the matrix into four even size 

partitions. After tuning, the result (dashed lines) shows that by changing the 

decomposition boundaries, the performance is improved. Later we run the example 

with a matrix size of 21,025×21,025 using 32 processing nodes. This results in an 

18% improvement in execution time after tuning.   

In order to test the improved Active Harmony, we use a matrix of size 

90,601×90,601 as the input to the program. To achieve simil cution time, the 

program tuned by the improved Active Harmony takes 120 iterations compared to 

133 iterations if the it is tuned using the original Active Harmony. This is about a 

10% improvement in the tuning time. 

The second example  multiple grids in two 

dim

ar exe

 is a nonlinear driven cavity with

ensions. The 2D driven cavity problem is solved in a velocity-vorticity 

formulation. It uses the SNES (non-linear equation solver) object in the PETSc 

library. The Harmony tuning involves computation distribution. The problem consists 

of numerous grid points. The tunable parameter is how the grid points are distributed 
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among processing nodes. The default configuration divides the grid points into 

distributed arrays with equal size. This works well in general when the processing 

nodes are homogeneous (i.e., all the processing nodes have the same processor type 

and speed). When using heterogeneous processing nodes (where there are nodes with 

diff

 

 

 

 

 

 
stribution 

eneous nodes. By comparing Figure 35 (a) and 

(b)

erent characteristics), the performance will be influenced dramatically by the 

layout of the computing grid points. 

 

 

 

 

 

 

Figure 35: Computation di
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mprovement 

Figure 35 shows the configurations for a small example problem before and after 

tuning when using homogeneous and heterogeneous processing nodes. This problem 

consists of 2,500 grid points with 4 processing nodes. The solid lines are the default 

configurations and the dashed lines are the results after tuning. The distribution is 

different for homogeneous and heterog

, it can be seen that when the processing nodes are homogeneous, the grid points 

should be divided into distributed arrays with equal size and in the heterogeneous 

environment, the system should try to utilize the processing nodes (the bottom two 

nodes) that have more computational powerful. 
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We applied Active Harmony to the computation distribution example with 40,000 

grid points using 32 processors. As a result of tuning,  up to an 11.5% improvement 

in the execution time (compared to default partitioning without tuning) was observed. 

With the improved Active Harmony, the tuning time is reduced by 14.3%. 

8.2. Parallel Ocean Program (POP) 

he Parallel Ocean Program (POP) [67, 68] was developed at Los Alamos 

spheric 

Admi

as the ocean ee-dimens for fluid 

motions on a sphere using hydrostatic and B patial 

derivatives are com

adjust the block (a group of grid points) dimensions and parameter values. The 

T

National Laboratory. POP is a descendent of the Bryan-Cox-Semtner class of ocean 

models first developed at the NOAA (National Oceanic and Atmo

nistration) Geophysical Fluid Dynamics Laboratory in Princeton, NJ in the late 

1960s[18]. POP is currently used by the Community Climate System Model (CCSM) 

 component. POP solves thr ional primitive equations 

oussinesq approximations. S

puted using finite-difference discretizations which are formulated 

to handle any generalized orthogonal grid on a sphere, including dipole and tripole 

grids. 

We improved the performance (execution time) by enabling Active Harmony to 

problem size is 3,600×2,400 grid points. The program divides the problem into 480 

blocks (processors) and runs on a large SP-3 at NERSC (National Energy Research 

Scientific Computing Center). The default configuration came with 180×100 as the 

dimension for each block.  
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Figure 36: Block dimension tuning 

Figure 36 shows the tuning result. There are two dimensions in the x-axis. The 

first dimension represents the topology for processing nodes and the second 

dim

e experiment is 48 nodes with 10 processors on each node 

and the best block dimension found by tuning is 150×120. The figure shows that there 

is no single block dimension good for all topologies and the block dimension should 

ension in the parenthesis represents the best block dimension found. The two 

different bars represent the performance for layouts before and after tuning. The first 

bar is the performance for the layout found (block dimension within the parenthesis 

on the x-axis) after tuning. The second bar is the performance using default layout 

(180×100). Consider the second set of bars here. In this application, 48×10 indicates 

that the topology used in th
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be adjusted accordingly (120×150 is best for topologies 30×60, 60×8; 150×120 is 

best for topologies 48×10, 120×4, and 240×2; 45×400 is best for topology 80×6). 

With tuning for block dimension, the execution time can be reduced up to 15%. This 

shows that as the processors topology changes, the layout needs to be changed for 

better 

tfo

p rmance. Similarly, the same scientific program often runs on different 

pla rm with a different number of processors per node, the results in this 

experim  show that the program should be tuned based on the machine 

configuration to achieve better performance. 

from To 

erfo

s 

ent

Iteration Parameter Change 
0 ( use default configuration ) 
1 num  _iotasks 1 32
2 hmix_momentum_ anis del2 choice
3 hmix_tracer_ nt del2 choice ge
4 kappa_choice  variable constant
5 slope_contro ce clip l_choi  notanh 
6 hmix_alignment_choice east grid 
7 s linear tate_choice jmcd 
8 s enforce tate_range_opt ignore 
9 ws_interp_type nearest 4point 
10 shf_interp_type nearest 4point 
11 sfwf_interp_type nearest 4point 
12 ap_interp_type nearest 4point 

Table 9: Parameter changes through iterations17 

Besides changing the block dimension, we also apply the Active Harmony system 

to adjust the parameter values using 32 processors (8 nodes, 4 processors/node) on 

Hockney at NERSC. The POP program has numerous parameters and there are about 

20 parameters that are performance related. There are 2 to 4 possible values for each 

of the parameters. This makes the search space fairly large. However, the tuning 

results show that the Active Harmony system can achieve a 12.1% improvement in 

                                                 
17 Each row shows only the parameter that changes; all the rest parameters remain the same compared 
to the previous iteration. 
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execution time after trying just 12 configurations. In addition, the best improvement 

is 16.7% in execution time after 27 iterations. Table 9 shows how the parameter 

values have changed for initial 12 iterations. Table 10 shows the values for 

parameters that are changed before and after tuning. In this application a harmony 

iteration is one simulation run. Some of these parameters affect scientific results. 

Ultimately tuning scientific programs requires assistance from experts with domain 

knowledge to make the tuning results useful and practical. We include these 

parameters in this experiment since our primary goal was to study the scalability of 

the harmo  and not the prog d. 

 
efault fter 

ning 

ny system, the output of ram being tune

Parameter D A
tu

num 1  _iotasks 4
hmi anis l2 x_momentum_choice de
hmix_tracer_choice gent del2 
kappa_choice constant iable var
slope_control_choice notanh lip c
hmi ice east id x_alignment_cho gr
state_choice jmcd ear  lin
state_range_opt ignore rce enfo
ws_interp_type nearest int 4po
shf_interp_type nearest 4point 
sfwf_interp_type nearest 4point 
ap_interp_type nearest 4point 

Table 10: Parameter tuning 

Computing (SciDAC) program. It is typically used to assess the microstability of 

8.3. GS2 

GS2 [25, 42] is a physics application, developed to study low-frequency 

turbulence in magnetized plasma. Its development is funded primarily by the United 

States Department of Energy, as part of the Scientific Discovery through Advanced 
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plasmas produced in the laboratory and to calculate key properties of the turbulence 

which results from instabilities. It is also used to simulate turbulence in plasmas 

which occur in nature, such as in astrophysical and magnetospheric systems. Each of 

these modes uses the same simulation code on radically different time and space 

scales. The simulation involves billions of mesh points. We tune the program with 

two different collision modes controlled by the collision_model variable (that controls 

which collision operator may be used in the run). 

 

Figure 37: GS2 layout tuning 18 

processors on NERSC Seaborg (8 nodes, 

16 processors/node) system. In order to reduce the execution time, we applied Active 

Harmony to tune the program. By changing the data layout, the program execution 

from 71.08s to 31.55s (2.3× faster) with collision mode. This is for a typical 

                                                

with different environment

The initial analysis was done using 128 

time was reduced from 55.06s to 16.25s (3.4× faster) without collision mode and 

 
18 The dimension A×B following the machine name represents A nodes and B processors per node. 
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benchmarking run of 10 time steps. Production runs tend to have 1,000 or more time 

steps. 

In Figure 37, we compare the tuning results with different topologies on Seaborg 

and a result from a Linux cluster. The Linux cluster has 64 nodes; each node is 

equipped with dual Intel® XeonTM 2.66GHz processors (with Hyper Threading 

enabled), 2GBytes main memory and a Myrinet network. In this experiment we 

consider different data layouts. The data layout is specified with five variables x,y,l,e, 

and s. The variables x and y are the spatial coordinates; l and e are velocity 

coordinates and s is the particle specie. The notation indicates the order of the 

dimensions of the primary 5-dimension array in the simulation. The default data 

layout used by GS2 is “lxyes”. In the figure, it shows that when the data can be 

aligned properly with the topology (Linux 64×2, Seaborg 16×8, Seaborg 8×16), using 

the right data layout (yxles, yxels) will impro  perform  signifi . ve the ance cantly
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Benchmarking run with “lxyes” layout 
Tuning method 

(negrid, ntheta, nodes) 
Tuning time 
(iterations) 

Tuning result – seconds 
(improvement %) 

Default - no tuning 
(16,26,32) - 43.7 

Original 
(8,16,14) 7 28.0 (36.0%) 

Improved 
(8,22,8) 8 18.4 (57.9%) 

Benchmarking run with “yxles” layout 
Tuning method 

(negrid, ntheta, nodes) 
Tuning time 
(iterations) 

Tuning result – seconds 
(improvement %) 

Default - no tuning 
(16,26,32) - 16.4 

Original 
(8,16,20) 7 16.9 (-3.0%) 

Improved 
(8,22,8) 9 14.8 (9.8%) 

Table 11: GS2 tuning result for benchmarking run 

Production run with “lxyes” layout 
Tuning method Tuning time Tuning result – seconds 

(negrid, ntheta, nodes) (iterations) (improvement %) 
Default - no tuning - 1480.3 (16,26,32) 

Original 
(12,18,26) 8 266.7 (82.0%) 

Improved 
(10,20,28) 9 244.2 (83.5%) 

Production run with “yxles” layout 
Tuning method 

(negrid, ntheta, nodes) 
Tuning time 
(iterations) 

Tuning result – seconds 
(improvement %) 

Default - no tuning 
(16,26,32) - 384.9 

Original 
(14,18,32) 18 239.3 (37.8%) 

Improved 
(10,16,18) 11 240.8 (37.4%) 

Table 12: GS2 tuning result for production run 

We then proceed to further improve the performance (execution time19) on the 

Linux cluster.  Based on the layout tuning result, we used Active Harmony to tune the 
                                                 
19 Longest execution time for all nodes. 
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program first using b  then with input for 

producti teps  three rs: ntheta 

(number of grid points per 2 pi segment of field line), negrid (energy grid), and the 

nodes (numbe s). These param rs were identified by the application 

developer who is the expert with dom  knowledge. sult for the 

benchmarki rized in  fo  12. In 

the experiments, we compare the tuning tim rations) a inal 

Active Harmony and the improved version. The three values in the first column are 

the parameter  tuning. There is larger improvement when the data layout 

is “lxyes” comp  the better data 

layout, Active Harmony achieves a better overall performance result.  

The exp  also su per umber 

of process ctor deciding the performance. The dimension of the 

mesh points should be adjusted so the data can be aligned with 

and thus reduce the communication overhead. Therefore even with “poor” data layout 

such as “lxyes”, by ad  processors, it can still 

achieve  res

While ntheta ay affect the sim  resolution, the 

dramatic perf ins possible w nt considering using such parameters. 

Practical scie ram tuning u ately involv th domain 

knowledge who c f these tradeoffs 

can

enchmarking runs (10 time steps) and

on runs (1,000 time s ). There are  tunable paramete

r of node ete

ain The tuning re

ng runs is summa  Table 11 and

e (ite

r production runs in Table

nd results for the orig

values after

ared to a better layout “yxles”. However, starting with

erimental results ggest that pro  data alignment with the n

ors is the major fa

the number of nodes 

justing the resolution and number or

comparable performance ults. 

cha id and nging negr m ulation

ormance ga arra

ntific prog ltim es experts wi

an make informed choices about these tradeoffs. I

 be quantified, other metrics such as fidelity and scheduling policy can also be 
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specified and integrated into the objective function so the system can automate this 

tradeoff. 

In order to compare the tuning result with the search space and to understand how 

well Active Harmony does the tuning, we also explore the whole search space using 

sampling (i.e., using configurations that are evenly distributed in the whole search 

space) for the production runs. The performance distribution is shown in Figure 38.  

The best configuration found in this “exhaustive sampling” is (negrid, ntheta, 

nodes)=(8,16,32) and its performance is 125.8s. However, these are rare points and 

there are only few configurations (less than 2%) in the whole search space with an 

execution time less than 200 seconds. 
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Figure 38: Performance distribution for GS2 configurations 

Compared to the performance gathered from exhaustive sampling, the 

configuration found by Active Harmony is within the top 5% of the configurations. 

Using the improved Active Harmony tuning kernel, the tuning time is further reduced 

Execution time t (seconds)
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from 18 down to 11 iterations (39%). By investing a small amount of effort, Active 

Harmony helps to tune the GS2 program to produce dramatically better performance. 

8.4. Summary 

t 

or 

, as demonstrated in the experiments. 

In this chapter, we demonstrated that in order for scientific programs to achieve 

better performance, it is necessary to adjust the parameter values such as data layou

number of tasks based on the runtime environment such as system capacity or 

topology. With runtime performance tuning, Active Harmony helps scientific 

programs to adapt themselves to the environment. The programs can achieve better 

results, such as reduced execution time
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Chapter 9:  Conclusion 

In this dissertation we have shown how to make automated performance tuning 

t of the Active Harmony system, we showed how to speed up 

the 

ith real 

applications helps to improve the system to make it more practical and robust. This 

thesis demonstrated the following ideas: 

The need for online tuning 

We showed that performance tuning is useful and even critical in many applications. 

When tuned, programs can achieve better results such as higher resolution, better 

precision or the ability to use a larger data set. Another important reason we need 

performance tuning is adaptation. The execution environment may change rapidly 

and there is no single configuration good for all kinds of environments. Manually 

tuning may not be a feasible solution since it can be extremely time consuming and 

the system may have changed again before the manual tuning is completed. Therefore, 

we need the Active Harmony system to do automatic tuning quickly. 

The Library Specification Layer 

With the Library Specification Layer, we have demonstrated the ability to compose 

multiple programming libraries with the same or similar functionality to improve the 

practical. In the contex

tuning process as well as handle the scalability issues when tuning applications 

with numerous parameters. 

To evaluate these ideas, we applied the Active Harmony system to a variety of 

applications. We first tested it with some simple applications to evaluate our approach. 

We then applied it to more complicated applications such as a cluster-based web 

service or scientific programs such as PETSc and GS2. Working w

 113 
 



 

performance of the programs that use those libraries. The experimental results show 

the Library Specification Layer helps to select the most appropriate program library 

and

ion, using libraries with appropriate data structure can 

dra

em makes use of the experience learned in previous runs. 

 system tuning, the results show that tuning only a 

 the overall performance is better or close to the best performance of the 

underlying individual program library. By using the appropriate library, the Library 

Specification Layer reduces the inversion time for matrices (size 4,500) up to 70%. 

For 2-D table implementat

matically improve either the access time or the memory space. 

Using experience and request characterization 

During runtime, the tuning process will benefit from knowing the characteristics of 

the requests as well as the execution behavior of the application. The tuning system 

may make use of stored information to help find the appropriate configurations more 

rapidly. 

The Active Harmony syst

This experience can help to speed up the tuning process since the tuning server may 

start with a better configuration rather than start from scratch. In the cluster-based 

web service system tuning, this technique helps to make the tuning process more 

stable and reduce the tuning time up to 50%. 

Prioritizing tool 

When tuning numerous parameters in a large system, it is critical to prioritize the 

parameters by their relative impact on the performance. The tuning should focus on 

those parameters that most impact performance.  

In the cluster-based web service

few important parameters will improve the performance significantly and reduce the 
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tuning time up to 72%. This technique is useful when tuning a system with numerous 

parameters. 

Parameter duplication and partitioning 

When tuning a large system consisting of many homogeneous nodes, the tuning time 

may be reduced dramatically (79% for the cluster-based web service project) if we 

only tune a representative set of parameters. Another approach would be to divide the 

system being tuned into independent groups and use one tuning server for each group. 

ime. 

ameter duplication, the tuning time can be reduced up to 80%. For the POP 

pro

This method uses about 2/3 of the original tuning t

The ultimate test of the ideas in this thesis is can we make applications run faster? 

For the large applications studied in this thesis we were able to improve the cluster-

based web service system throughput up to 16% (up to 70% with reconfiguration). 

With par

gram, the simulation time can be reduced up to 17% and for the GS2 program, 

Active Harmony makes it run up to 3.4 times faster. We have also shown that Active 

Harmony scales to tune applications running on hundreds of processors. 
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Appendix A: Performance Modeling with Synthetic Data 

In order to understand the tuning process and further test Active Harmony, we 

used DataGen [55, 69, 73] to generate synthetic data that mimics characteristics of 

real applications. The advantage of using synthetic data is to allow us to conduct 

experiments that may not be conducted easily with real systems. For example, with 

the same input, configuration, and execution environment, we can perturb the 

performance output by adding “noise” and observe the impact on the tuning server. 

The time it takes for the experiment can also be reduced significantly with this 

method since it may be time consuming to evaluate each configuration with real 

systems. 

DateGen is a rule-based synthetic data generator. The software generates a set of 

conjunctive normal form rules randomly based on the constraints we specified (e.g., 

number of conjunctions, number of rules … etc.). Each rule is in the form of  Pi ← 

Ca(vj) & Cb(vk) & Cc(vl)…, where Pi  represents the performance result; vj, vk, vl,… 

are the input variables that represent a set of tunable parameters (i.e., one 

configuration) and workload characteristics. Ca, Cb, Cc… are Boolean functions that 

test its input variable (e.g., if vj = 3 or if  2≦ vk < 8).  

To estimate the performance using synthetic data, the program will decide 

whether a rule is satisfied for the given configuration. A rule is satisfied and 

performance Pi is returned when all its Boolean function results in the rule are true. 

The set of rules are carefully generated so that no more than one rule will be satisfied 

for all possible combinations of input variables (i.e., no conflicts). When no rule is 

satisfied, it will return the performance result from the closest rule. 
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By c

p us to evaluate aspects of the 

Active Harmony tuning system

omparing the performance obtained through exhaustive search from a clustered-

based web service system with a shopping workload (described in Chapter 7) and the 

synthetic data; we can assess how well our synthetic data emulates a real measured 

system. Figure 39 shows the closeness of the two performance distributions. The 

normalized performance (1 to 50, 1 is the worst and 50 is the best) is divided into 10 

buckets in the x-axis. The bars show the percentage of points in the search space (y-

axis). We use this synthetically generated data to hel

 that are difficult to measure using data from a live 

system. 
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