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A Note on the NP-hardness of the Topological Via

Minimization Problem
by

Chong S. Rim, Toshinobu Kashiwabara and Kazuo Nakajima

Abstract

Suppose that we are given a two-layer routing area bounded by a closed continuous
curve B, a set of terminals placed on B which are available on both layers, and a set of
two terminal-nets. The topological via minimization problem is the problem of routing
the nets by zero-width wires such that no two wires corresponding to different nets
intersect on the same layer and the number of vias used is minimized. Very recently,
it was reported that this problem is NP-hard but the proof contains a critical flaw. In

this paper, we present a correct NP-hardness proof of the problem.






1. Introduction

Since the introduction of channel routing by Hashimotor and Stevens [9] in 1971,
the problem of minimizing the number of vias between conductors on different layers
has extensively been studied [1-3,5,10-12,14-19]. In the traditional via minimization
problem, the pa,ttel:n of wire segments are already determined, and the problem is to
reassign those wire segments to different layers so as to minimize the number of vias.
For this case, complete complexity results have been obtained. Namely, the problem is
NP-hard [8] when the maximum junction degree is four or more [5] and is polynomially
solvable when it is less than four [3,12,15], where the junction degree is the number of
wire segments which meet at a single point and which are to be electrically connected.

For the case of the so-called topological via minimization (TVM) problem, the situa-
tion has been different. In this problem, we are given a two-layer routing area bounded
by a closed continuous curve B, a set T' of terminals placed on B, and a set N of two-
terminal nets. All terminals are assumed to be available on both layers. The problem
is to route the nets in N by zero-width wires such that no two wires realizing different
nets intersect on the same layer and the number of vias used is minimized.

Hsu [10] introduced this problem in 1983, suspected its NP-hardness, and proposed
a heuristic algorithm. Later, Marek-Sadowska [14] claimed that the problem is NP-
hard. Based on her claim Chang and Du [1] concluded that the “minimum vertex
deletion bipartite subgraph problem” is NP-hard even for circle graphs. The authors
noticed the incorrectness of her proof as pointed out in {16]. Since thfen the complexity

issue of the TVM problem has been sought after and very recently Sarrafzadeh and



Lee [18] reported that the problem is NP-hard. Unfortunately, their proof contains
a critical flaw. In this paper, we preseﬁ’p a correct NP-hardness proof of the TVM

problem.

2. Preliminaries

Let G = (V, E) be an undirected graph where V and E are the sets of vertices and
edges, respectively. Two distinct vertices v and w are gaid to be adjacent to (resp.,
independent from) each other if (v,w) € E (resp., (v,w) & E). If (v,w) € E, the edge
is said to be incident upon v and w. A subset V' of V is called an independent set of G if
any two vertices in V' are independent. A sequence of distinct vertices [v;,, viy, ..., ;]
is called a cycle of length r if (v;,,v;,,,) € E for p=1,2,...,r — 1 and (v;,,v;,) € E.
If r is odd (resp., even), it is called an odd (resp., even) cycle.

A graph G = (V, E) is called a planar graph if it can be drawn in the plane in such
a way that (i) each vertex in V is represented by a point, (ii) each edge (u,v) € E is
represented by a continuous line connecting the two points which represent u and v, and
(iii) no two lines, which represent edges, share any point, except in their ends. Such a
drawing is called a planar embedding of G and is denoted by G. A graph G = (V, E) is
called a bipartite graphif V can be partitioned into two nonempty independent subsets
Vi and V; such that Vi NV, = ¢. It is well known [6] that a graph is bipartite if and
only if there is no odd cycle in it. |

Let S be a set of chords on a circle. A graph G'= (V, E) is called a circle graph
for S if there is a one-to-one correspondence between V and S such that two vertices

in V are adjacent if and only if their corresponding chords in S intersect. We denote
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by G(S) the circie graph for S. Given an instance of the TVM problerﬁ, by mapping
the terminals on B to points on the circumférence of a circle C and regarding the two-
terminal nets in N as chords on C, one can obtain the circle graph G(N) = (N, E). Let
N; and N, be two mutually disjoint independent sets of G(N). The nets correspéﬁding
to the vertices or chords in Ny and those in N; each can be routed without any vias

on their respective layers. Marek-Sadowska [14] showed the following result.

Lemma [14]. Each of the remaining nets in N — N; — N, can be routed with only one
via. O |

This lemma implies that the ;i‘VM problem is equivalent to that of finding two
mutually disjoint independent sets Ny and N; of a circle graph such that |Ny| 4 | Ny} is
a maximum. In general the problem of finding such independent sets of a graph is called
the minimum vertex deletion bipartite subgraph (MVDB) problem. This problem has
been shown to be NP-hard even for cubic graphs and for planar graphs whose maximum
vertex degree is four [5], where the degree of a vertex is the number of its incideI;t edges.
In the following, we formally define the MVDB problem for circle graphs as a decision

problem.

VDB-CIRCLE

Instance: A circle graph G = (V, E) given in the form of a set M of chords on a
circle R and a positive integer K < |M]|.
Question: Is there a subset M’ of M such that [M’| > K and the circle graph G(M’)

is bipartite?



rTwo chords d and d’ are said to be independeni if they do not intersect. An indepen-
dent c?zord set is a set of chords which are pairwise independent. Let S =|dy,ds,...,d,]
be a sequence of distinct cho-rds. If each pair of consecutive chords d; and diy1in S |
intersect for 2 = 1,2,...,7 — 1 but no other intersections occur, S is called a chord
chain (see Fig. 1 (a)). If in addition to the intersection of every consecutive chord
pair, d, and d; intersect, S is called a chord cycle r(see Fig. 1 (b)). In this case r
is called the length of the chord cycle. Furthermore, if r is odd (resp., even), S is
called an odd (resp., even) chord cycle. It is clear that fhe existence of an odd chord
cycle in a set M of chords results in the existence of an odd cycle inr the circle graph
G(M) and vice versa. Thus, G(M) is bipartite if and only if M has no odd chord
cycle. Let My, My, ..., M, C M be independent chord sets. If any sequence of chords
[dy,ds,...,d,] such that d; € M; for + = 1,2,...,r forms a chord chain, we call the
sequence of independent chord sets [My, Ms, ..., M,] an independent chord set chain
(see Fig. 1 (c)). An independent chord set cycle is similarly defined (see Fig. 1 (d)).

Let z and y be two points on a circle such that the Euclidean distance between
them is not equal to the diameter of the circle. These two points define two arcs, the
shorter and the longer arcs. Assume that x and y appear in this order during the
clockwise traversal of the shorter arc. In this situation, x is sald to be to the right of
y, and any point z on this arc, except x and y, is said to be located between x and y
on the circle (see Fig. 2 (a)). Furthermore, if A is the chord with endpoints z and Y,
we call z (resp., y) the right (resp., left) endpoint of h (see Fig. 2 (b)). Finally, for two

sets, P and @, of points or chords, the relation that P is to the right of @ is similarly

defined as long as no ambiguity arises.



3. NP-hardness Proof of the TVM‘Problem

Iﬁ this section, we show that the rI"VM problem is NP;hard by proving the NPZV
completeness of the VDB-CIRCLE problem.
Theorem 1. The VDB-CIRCLE problem is NP-complete.
Proof. Tt is clear thét the VDB-CIRCLE problem belongs to the class NP. Therefore, it
is sufficient to show that a known NP-complete problem is polynomially transformable
to this problem. We use the following problem which was shown to be NP-complete
by Lichtenstein [13]. We denote by (i1, Iz, ..., I,) a conjunctive clause with literals [y,
loy ..oy 1.

Planar 3-Satisfiability (P3SAT)

Instance: A set U = {v; |1 < i < n} of n Boolean variables and a set C' = {¢; |1 <
J < m} of m clauses over U such that each clause ¢; contains exactly three
literals. Furthermore, the following graph is planar:

Ge = (Ve, E¢), where
Voe={¢|1<j<m}uU{v;|1 <i<n} and
E¢ = {(cj,v:) | v; or ¥; is contained in ¢;} U {(vi,vig1) |1 < i <n} U
{(vn, 01)}-
Question: Is C satisfiable? Namely, is there a truth assignment for U such that each

clause in C is true?

Let U = {v; |1 < i< n}and C = {¢;|1 £ j < m} be a given instance of the
P3SAT problem such that G¢ = (Vg, E¢) is planar. Note that Vg consists of two types

of vertices clause vertices ¢, ¢z, ..., ¢m and variable vertices vy, v2, ..., Vn, and that
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G contains the cycle [v1,vy,. .., v,], which we cali, the variéble chle of G¢. Without
loss of generality, we rqssumer that (i) m > 2, (iif) every variable or its complement
is contained in some clause in C, (iii) both a variable and its complerﬁent are not
contained in a single clause, and (iv) no duplicate of a literal is contained in a clause.
In any planar embedding of G, each vertex corresponding to a clause in C is located
either inside or outside the variable csfcle X of G¢. For example, in Fig. 3, we show a
planar embedding of G¢ for the instance U = {vy, v3, vs, v4, v5} and C' = {(v1, D4, s5),
(vi,v3,v4), (v1,v2,04)}. Given a planar embedding Go of -Gc, we construct an instance
of the VDB-CIRCLE problem in the form of a set of chords M. We first draw a
sufficiently large circle R which corresponds to the variable cycle X of Go. We then
create variable gadgets and clause gadgets for the variables in U and the clauses in C,
respectively.

We first show the construction of variable gadgets. Let a; be the number of clauses
which contain v; or ¥;, and let 8; = 4c; + 1. We create an independent chord set chain
[N}, Ni,...,Nj] such that |[N}| = m(B8; — 1)/2 (vesp., m(8: + 1)/2) if j is odd (resp.,
even). We also create independent chord sets 53, Si, ..., Sh_; such that |Si| = mp;
and that N j, S;: and N J’ +1 form an independent chord set cycle for j =1,2,..., 6, — 1.
For example, Fig. 4 illustrates the variable gadget for variable v; with «; = 1 for
the case of m = 3. In the figure, dotted (resp., solid) lines denote odd (resp., even)
numbered chord sets Ni, Ni and Ni (resp., Ni and N}), and heavy solid lines denote
Si, i Siand Si. The number attached to each line indicates the cardinality of the
corresponding chord sef. The even numbered chord sets N3, Ni, ..., N, 4.1 are intended

to correspond to the variable v;, and the odd numbered chord sets Ni, N3, ..., Nj to



its complement ;. We place the variaBle gadgets on the cifcle ‘R in the same order
as the corrééponding vertices are located on the variable cycle X in Go. If niecesksarfy, )
we make the lengths of chords in each gadget sufficiently émé,ll compared with the
diameter of R so that the gadgets are ai)art from each other.

We now describe how to construct clause gadgets. We first assign integers called
indices to edges in G¢ other than those on the cycle X in the following way. For each
variable vertex v;, 1 = 1,2,...,n, we first scan counter-clockwise those incident edges
of v; that lie inside X in @’o, assigning numbers one to the first edge, two to the second
edge, ..., 7 to thé last édge, and then scan clockwise those incident edges of v; that
lie outside X, assigning numbers ~; + 1 to the first edge, +; + 2 to the second edge, ...,
a; to the last edge, where +; is the number of incident edges of v; that lie inside X.
Obviously, every edge other than those on the cycle X is assigned one and only one
index. Note that such an edge corresponds to a literal in a clause. For example, see
Fig. 5.

For each clause ¢; = (I;1,;2,1;3), § = 1,2,...,m, let p;r be the index of the edge
that corresponds to l;,, and g;. be the integer such that l;, = vy, or ¥y, 7 =1,2,3. We
construct the clause gadget for ¢; as follows. We first create an independent chord set
E; of m chords whose endpoints are both located between the leftmost left endpoint of
a chord in Sg' _, (resp., S4,—1) and the rightmost right endpoint of a chord in Sipsit
(vesp., Sap, ) if lj = vy, (vesp., ¥y,,)- We define the clause arc for ¢; as the short arc
on R defined by the endpoints of the innermost chord in Ej, that is, the leftmost right
and the rightmost left endpoints among those of its chords. Note that no endpoint of

the .chords in Ufi_’ll 31 is located on this arc. We then create three chords hjy, hjo,



and hjs such that one 'endpointrof hjr, 7 = 1,2,3, ié located between the rightmost
right endpoint of a chord in N4p _o (resp., Ni;;r_,l); and the leftmost rig-h’rcr enlip@int
of a chord in Sipir—3 (resp., Sipre—2) if lir = vg;, (réspA., Vg0 )5 énd the other on the
clause arc for ¢;. We adjust the éndpoints of hj{, hj2 and hj3 on the clause arc for c;,
if necessary, so that they form an odd chord cycle. For example, Figs. 6 (a) and (b)
show hj; for the cases of Ij; = vy;, and lj; = 9,,,, respectively, where we assume that
g, = 1, and Fig. 6 (c) depicts the clause gadget for clause ¢; = (41, lj2, ljz) = (Va, s,
v,) with pj1 =1, pjz =2 and pj3 =1. In the figures, stfiped lines are used to denote
the chords of Ej.. -

We now have defined the set M of chords. Note that chord hj; intersects exactly
all chords in NZ 3> Nip,—q and Sipsi-3 (resp., N2 Ng., and Sipiy—2) if L1 = g,
(vesp., Bq;, ), and those in Ej, and the chords hjz and hjs. Note also that if [;, = v,,,
(resp., ¥y,,), hjr intersects all chords in Nq;,’ _s (resp., N4pJ _,) and no chord in N
for any even (resp., odd) number s, 1 < s < Bq;., and that any three chords consisting
of hj., a chord in sz’;;r_:)\ (vesp., Zz]; _2) and a chord in S4p _3 (resp., .5'4],J _o) form

an odd chord cycle.

As for the value of K, we set

n (Bi+1)/2 Bi—1
v >R ITIS LIRS R
=1 g=1
= S (m(B? —1)/4 + Bi(Bi — )m) +m* + m.
=1 .

It is well known that given a planar graph G, we can obtain a planar embedding of
G in polynomial time [4,7]. The edge indices can also be set in polynomial time. In the

above transformation, we create O(m?) and O(m) chords for each variable in U and
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each clause in C,'respectiveiy. Therefore, the total number of chords is O(nms), and
.hence the transformation can be done in polyno?nial_;time. As an exa;rr;ple; we depict
in Fig. 7 a complete instance of our Vprvoblem co’nsﬁucted ffom the instance given in
Fig. 3. | |

We now show that C is satisfiable if and only if there is a subset M’ of M such
that |M’| > K and G(M') is bipartité. Suppose that C is satisfiable with a given truth
assignment for U. Let M’ be the chord set consisting of
1. All chords in (U, (U5 S9) U (U, E), |

2. FEither all chords in Y% 9/2 Nj; if v; = true, or all chords in Ugi‘fl)” Ni

=1 sy i v;

= false, for each variable v;, 1 = 1,2,...,n, and

3. Exactly one of the three chords hji, 2j; and hjz whose corresponding literal is true

for each clause ¢;, 7 = 1,2,...,m.

Clearly |M'| = K. We show below that G(M’) is bipartite.

Let H = M' N {hj1, hjo, hjz | 3 = 1,2, ..., m}. M’ — H consists of mutually
disjoint independent chord set chains [S3;_;, Ni;, Si:], 7 =1,2,..., (8 —1)/2, (resp.,
[N, Si1, [S%;, Nsjy S350, 3 =1, 2, ., (B — 3)/2, and [Sh._;, N3]) if v; = true (resp.,
false) for 2 = 1, 2, ..., n. Furthermore, it is easy to see that the chords in each such
chord set chain intersect at most one chord h in H and that h and the chords in M’'— H
do not form an odd chord cycle. For example, see Fig. 8, where we assume that (i)
a; = 2, (i) o = (-, vi,-) and ¢ = (v5,+,+), (iii) v; = true, and (iv) haz and hyy are in H.
Therefore, no chord cycle formed by chords in M’ has a chord contained in a variable
ga;dget, and hence a chord cycle formed by chords in M’ if any, consists of chords in

H only. Let Hy (resp., H2) = M' N {hj1, hj2, hjs | c; lies inside (resp., outside) X in



C;’c,j =1,2,...,m}. Note that H = H, U-H,. Since Ge is a plapar embedding of G,
it is easy to see that H; and H, are indepegdent chord 7sets,‘wihicil implies that no odd
cycle can be formed by chords in H oﬁly. Therefc;re,rM " has no odd cycle and hence
G(M') is bipartite. :

Conversely, suppose that we have a chord set M’ such that |M’| > K and G(M') is
bipartite. If M’ contains a chord in an independent chord set such as E;, S;: and N}, we
can add all the remaining chords of this independent chord set to M’ without violating
the bipartiteness of the corresponding graph. Thus, we assume in the following, that
each such independent chord set is either contained in or disjoint from M’'. If M’ is
disjoint from a chord set E; for some j, 1 < j < m, or a chord set S; for some 7 and
J, 1<t <mnand 1<y < B —1, the following operations will always produce a new
chord set M" such that |M"| > |M'| and G(M") is bipartite.

Case 1. M’ is disjoint from F; for some 7, 1 < j < m.
(a) If two chords in {hj1, ko, hjs} are in M’ (all three can not be in M), remove
one of them from M’, and
(b) M" « M'VU E;.
It is clear that G(M") is still bipartite, and |M"”| > |M’| since |E;| = m > 2.
Case 2. M’ is disjoint from S; forsomezand 7,1 <z <nand 1 <j<m.
(a) If both N} and N},, are subsets of M’, remove N} from M’, or
(b) If Ni C M’ (hence M’V N}, = &) (resp., N;H C M’ (hence M'N N} = ¢)) and
there is a chord k;, in M’ for some j and r, 1 < j <m and 1 < r < 3, such that
>hj7~ intersects the chords in N} (resp., Ni,,), remove the chord hj, from M’, and
(c) M" —~M'US..

10



In case (a), S;Vand N} are in_terchaﬁgedﬁ From the construction of M, it is easy to see
that such an interchange dose not-introduce new odd cyéles: In case (b), the.chords
in S;: intersect only the chords in eithér N]’f or N]’f +1, and Aj.. Thus, in both cases, the
resultant graph is bipartite. Since we remove at rﬁost m(B; +1)/2 + 1 chords but add

mp; chords and §; = 4a; + 1 > 5, |[M"]| > |M'|.

We now assume that M’ contains all chords in -, E; and U?=1(U?:11 S%). Since
M’ contains all chords in UL, (U7 5%), M’ can contain at most §; = m(f7 — 1)/4
chords from the chord set U?;l NJ‘: by including either the odd numbered chord sets
Ni,Ni,..., Nés or the even numbered chord sets Ni, Ni,..., Né,__l for each variable v;,
t1=1,2,...,n. Let N! be a set of chords selected from U?‘:l N7 such that N} C M'. If
|N!| < &, it is easy to see that |N/| < 8; — m. In this case, the following operations
will yield a new chord set M"” such that |M"| > |M'| and G(M") is bipartite:

(a) Remove from M’ all chords in V] and those chords in H that intersect a chord in
U N

i1, and

(b) M" — MU (UG N, _y).

Clearly G(M") is bipartite. Since M’ D E; and G(M') was bipartite, M’ contained at
most one chord in {h;, h;, hjs} for each j =1, 2, ..., m. Thus, operation (a) removed
at most §; —m + m = § chords from M’. Since operation (b) added exactly é; chords
back to get M"”, we have that |[M"| > |M’|. Therefore; we can assume that M’ contains
all chords in either Ugﬁ_‘fl)/z Néj_l or Ugi"l_l)/? Néj for each variable v;, : = 1,2,...,n.
We assign to v; the value true if M’ D Ugﬁfl—l)/z N;; and false it M' D Ug&fl)/z Nii_y.

Clearly, this gives a consistent truth assignment for U.

We now show that each clause ¢; € C, j = 1,2,...,m, is true with this assignment.

11



Since |M'| > K», it is easy to see thét M’ contains no 1ess»thaiurn m chords in H. Since
E; C M', at most one of the three éhords hji, hj2, and h_7:3 is iﬁ M’', and hence, exactly
one of them is in M’. Let hj;; be the chord iﬁ M’ v {kj1, hja, hjz}. Since G(M') is
bipartite, hj; and any chord in Uff__’{ 37t N M’ do not intersect. For otherwise there
would be an odd chord cycle including A;;, a chord in S7* and a chord in N¥* for some
z and s. From the construction of the chord set M, the corresponding literal /;; is equal

95t

to (i) vy, if hj and every chord in Ny’ _5 intersect and (ii) @y, if kj; and any chord in

; . . . . L e—1)/2 :
NZZJ,;_:, do not intersect. Thus, if vy, is assigned true, that is, if Ui{i__(]{t v/ N3 c M,

then hj; and Nj', 5 intersect (for ki intersects Ni’* for some r), and hence I;; must be

vg;,- On the other hand, if vy, is assigned false, then hj; and NZ;;;_3 do not intersect,
and hence [;; must be ¥g,,. In both cases literal /;; gets the value true. Therefore, clause
c; is true. [

By Lemma 1 and Theorem 1, we establish the following result.
Theorem 2. The TVM problem is NP-hard. O

Remark. We now comment on the NP-complete proof of the VDB-CIRCLE problem
given by Sarrafzadeh and Lee [18]. The main difference between our proof and theirs
lie in the structure of variable gadgets. In their construction, they use a chord set cycle
[N{, Ni,...,Ni,.] such that |[Ni| = m, instead of a chord set chain. They also use the
chord sets S}, S%, ..., Sj,, such that |S}| = 2m for j = 1,2,...,20; and Nj_, S}
and N}, and Nj, S’;: and N;"+1 for j = 1,2,...,20; — 1, each form a chord set cycle.
Although they do not describe exactly where to locate the chords of a clause gadget,

which is the same as ours, we may obtain a set of chords as shown in Fig. 9 (a) for

12



SV =

" the instance given in Fig. 3. Suppose that we set vy = false, v, = false, vy = true,

false and vs = true. Cléarly,ﬁthis truth dssigﬁmentr satisfies the instance of Fig. 3.

However, according to this truth assignment, we will obtain such a chord set as shown

in Fig. 9 (b). Since this chord set obviously contains an odd chord cycle, it can not be

a solution to the instance of the VDB-CIRCLE problem. O
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ONS

(a) A chord chain. (b) A chord cycle.
(a) A chord set chain. (b) A chord set cycle.

Fig. 1. A chord chain, chord cycle, chord set chain, and chord set cycle.
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(a) (b)

Fig. 2. (a) Point z is to the left of point y. Point z is located between points z and y.
(b) A chord h with its left endpoint z and right endpoint y.
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Variable
cycle X

Vy

Fig. 3. A planar embedding of G¢ for the instance U = {vy, vz, vs, vs, v5} and C =
{e1 = (v1,04,05), €2 = (v1,v3,04), €3 = (v1,v2,74)} of the P3SAT problem.

Fig. 4. Variable gadget for variable v; with «; = 1 and m = 3.
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T Variable

S

e ",

.
.,
o
g ~

ca=(., Vi,-)

4

Cd:'-( . Vi, .

.

43b=(-,-,vi) g
Ce= N ,‘_].1) S :

Fig. 5. Assignment of indices to edges not on cycle X.
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9y
s¥  clause arc S»
for c;

(a) 11 =vj1. (b) 1 = o;.

(c) Clause gadget for ¢; = ({j1, lj2, {j3) = (va, Up, Uc) With pjy = 1,
Pj2 = 2 and Pi3z = 1.

Fig. 6 Illustrations for the construction of a clause gadget.
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Vs

Fig. 7. A complete instance of the VDB-CIRCLE problem constructed from the in-
stance of Fig. 3.

21



Fig. 8. Chords of the variable component for v; which are contained in M’ when v; =
true.
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: odd chord cycles

(b)
sformation for the instance shown in Fig. 3.
ent v, = false, vy = true, U3 =

Fig. 9. (a) Sarafzadeh and Lee’s (18] tran
(b) The chord set obtained by the truth assignm

false, vg = true and vs = false.
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