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Abstract

A multi-agent system comprisingN agents, each picking actions from a finite set and receiving a
payoff that depends on the action of the whole, is considered. The exact form of the payoffs are unknown
and only their values can be measured by the respective agents. A decentralized algorithm was proposed
by Marden et. al. [1] and in the authors’ earlier work [2] that, in this setting, leads to the agents picking
welfare optimizing actions under some restrictive assumptions on the payoff structure. This algorithm is
modified in this paper to incorporate exchange of certain bit-valued information between the agents over
a directed communication graph. The notion of an interaction graph is then introduced to encode known
interaction in the system. Restrictions on the payoff structure are eliminated and conditions that guarantee
convergence to welfare minimizing actions w.p. 1 are derived under the assumption that the union of the
interaction graph and communication graph is strongly connected.

1 Introduction

An important direction of research in cooperative control of multi-agent systems is game theoretic control.
This refers to the paradigm of: 1. designing individual utility functions for agents such that certain solution
concepts (like Nash equilibria (NE)) correspond to desirable system-wide outcomes; and 2. prescribing
learning rules that allows agents to learn such equilibria [3]. Also, the utilities and the learning rules must
conform to the agents’ information constraints. A popular choice is to design utilities such that the resulting
game has a special structure so that the corresponding solution concepts are efficient w.r.t. system-wide
objectives. NE of potential games, for instance, correspond to the extremal values of the potential function
which can then be chosen so that its extrema correspond to desirable system-wide behavior. Examples of
such utility design for specific applications range from distributed optimization [4] to coverage problems in
sensor networks [5] and power control in wireless networks [6].

The other advantage of designing utilities with special structure is that players can be prescribed already
available learning algorithms from evolutionary games that helps them learn to play NE [7], [8], [9]. These
algorithms have the desirable feature of being payoff-based, i.e. an agent adjusts its play only on the basis
of its past payoffs and actions, and does not require the agents to have any knowledge of the structure of the
game. However, the success for most learning procedures is only guaranteed under an assumption on the
game such as potential, weakly acyclic or congestion game.

Thus, while an effective paradigm, game theoretic control has the following limitations:

• Since available algorithms are provably correct only for certain classes of games, there is a burden to
design utilities that conform to such structure for each application.

• If a compromise is made in the utility design phase in order toobtain required game structure, the
resulting utilities may not reflect the desired system-wideoutcome.

• If the system requirements prohibit design of utilities with special structure, equilibrating to NE may
be inefficient w.r.t. desirable outcome (also, may be unnecessary in non-strategic situations).
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Science Foundation (NSF) grant CNS-1035655.

†The authors are with the Institute for Systems Research and the Department of Electrical and Computer Engineering at theUniver-
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While within the paradigm of game theoretic control, our approach is complementary to that of utility
design. Instead, we focus on algorithm design for welfare (i.e. the sum of individual utilities) optimization
for arbitrary utilities. To motivate this approach we consider an application where the current paradigm is too
restrictive: the problem of maximizing the total production of a wind farm [10]. Aerodynamic interactions
between different wind turbines are not well understood andthere are no good models to predict the effects
of one turbine’s actions on another. However, it is clear that the amount of power a turbine extracts from
the wind has a direct effect on the power production of turbines downstream (such a region of influence
is called a wake, see Figure 1(a)). The information available to each turbine is its own power production
and a decentralized algorithm that maximizes the total power production of the farm is sought. Since there
are no good models for the interactions, there is little hopeto design utilities with special structure that
are functions of such individual power measurements. This points towards the need for algorithms that are
applicable when there is little structural information about the utilities (for instance, a turbine can be assigned
its individual power as its utility which, in turn, can depend on the actions taken by others in complex ways).

A decentralized learning algorithm is presented in [1] withthe intent to address this issue of unknown
payoff structures. This algorithm allows agents to learn welfare maximizing actions and does not require any
knowledge about the exact functional form of the utilities.In our earlier work [2], we provide conditions that
guarantee convergence of this algorithm. However, convergence is guaranteed only under an assumption on
the utilities calledinterdependence(which, for instance, need not hold for the wind farm problem).

The contribution of this paper is a distributed multi-agentlearning algorithm that:

1. eliminates the need for any structural assumptions on theutilities by using inter-agent communication;

2. and, under appropriate conditions, ensures that agent actions converge to global extrema of the welfare
function.

Regarding the use of inter-agent communication, in [10], a scheme using proxy utilities computed by
inter-agent communication over a undirected connected graph is suggested to satisfy interdependence and
enable using the algorithm of [1], [2]. In contrast, we develop a framework for capturing known interaction
in the system and prove results that help design “minimal” communication networks that guarantee conver-
gence. The exchanged information in our algorithm is bit-valued which has implementation and robustness
advantages. The framework developed also contrasts between implicit interaction between the agents via
utilities and explicit interaction via communication. We also wish to point out that the problem formulated
here can be thought of as a multi-agent formulation of a discretized extremum seeking problem [11] and the
algorithm provides convergence to global optimal states with few restrictions on the functions involved.

The remainder of the paper is organized as follows. In section 2 we formulate the problem, develop
the analysis framework, present the algorithm and state themain convergence result. Section 3 introduces
Perturbed Markov Chainsand states relevant results. In section 4, the results of Section 3 are used to prove
the main result of section 2. The paper concludes with some numerical illustrations and discussions about
future work.

Notation

The paper deals exclusively with discrete-time, finite state space Markov chains. A time-homogeneous
Markov chain withQ as its 1-step transition probability matrix means that theith row andjth column entry
Qi,j = P(Xt+1 = j|Xt = i), whereXt denotes the state of the chain at timet. If the row vectorηt denotes
the probability distribution of the states at timet, thenηt+1 = ηt Q. More generally, ifQ(t) denotes the
1-step transition probability matrix of a time-nonhomogeneous Markov chain at timet, then for allm > n,
P(Xm = j|Xn = i) = Q

(n,m)
i,j , where the matrixQ(n,m) = Q(n) ·Q(n+1) · · ·Q(m−1). The time indices

of all Markov chains take consecutive values from the set of natural numbersN. A Markov chain should be
understood to be homogeneous unless stated otherwise. We denote theN -dimensional vector of all zeros
and all ones by the bold font0 and1 respectively. For a multi-dimensional vectorx, its ith component is
denoted byxi; and that ofxt by (xt)i.
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2 Problem Statement and Proposed Algorithm

2.1 A Multi-agent Extremum Seeking Formulation

2.1.1 Agent Model

We considerN , possibly heterogeneous, agents indexed byi. Theith agent can pick actions from a setAi,
2 ≤ |Ai| < ∞; the joint action of the agents is an element of the setA =

∏N
i=1Ai. The action of theith

agent in the joint actiona ∈ A is denoted byai. Further, given theith individual’s present action isb ∈ Ai,
the choice of its very next action is restricted to be fromAi(b) ⊂ Ai.

Assumption 1. For anyb ∈ Ai, b ∈ Ai(b) and there exists an enumeration{b1, ..., b|Ai|} ofAi such that
bj+1 ∈ Ai(bj) for j = 1, ..., (|Ai| − 1) andb1 ∈ Ai(b|Ai|).

The former allows for the possibility of picking the same action in consecutive steps and the latter ensures
that any element ofAi is “reachable” from any other. Specific instances of such agent models in literature
include the discretized position and viewing-angle sets for mobile sensors in [5], discretized position of a
robot in a finite lattice in [12, 13] and the discretization ofthe axial induction factor of a wind turbine in
[10].

An individual has a private utility that can be an arbitrary time-invariant function of the action taken by
the whole but is measured or accessed only by the individual.Agenti’s utility is denoted byui : A → R+.
Examples include artificial potentials used to encode information about desired formation geometry for
collaborative control of autonomous robots in [12, 13] and the measured power output of an individual wind
turbine in [10]. At any timet, agenti only measures or receives(umes

t )i = ui(at) since neither the joint
actionat nor any information aboutui(·) is known to the agent.

The objective of the multi-agent system is to collaboratively minimize (or maximize) the welfare function
W ∗ = mina∈A W (a), whereW (a) =

∑N
i=1 ui(a). Achieving this objective results in a desirable behavior

of the whole like a desired geometric configuration of robotsin [12, 13], desired coverage vs. sensing energy
trade-off in [5] and maximizing the power output of a wind farm in [10]. Thus we seek distributed algorithms
for the agents to implement so that their collective actionsconverge in an appropriate sense to the set

A∗ = {argmin
a∈A

W (a)}.

Before proceeding further we must point out that this is a general combinatorial optimization problem
and is NP hard. In fact, even if a brute force search were used,it is not clear how elements ofA∗ can be
identified if the agents do not exchange any information.

2.1.2 Interaction Model

Interaction in a multi-agent setting can comprise of explicit communication between agents via communi-
cation or can be implicit with actions of an agent reflecting on the payoff of another. The latter is an artifact
of the given problem at hand and must be modeled appropriately. We present a general modeling framework
that allows the designer to encode known inter-agent interactions in the system. The communication network
varies from one application to another and we choose a simplesignaling network where only a bit-valued
variable is exchanged amongst the agents.

1. Interaction Graph
Consider a directed graphGI(a) for everya ∈ A with a vertex assigned to each agent. Its edge set
contains the directed edge(j, i) if and only if ∃ b ∈ Aj such thatui(a) 6= ui(b, a−j).1 Thus, for every
action profilea, GI(a) encodes the set of agents whose actions can (and must) affectthe payoffs of
other specific agents. We call this graph theinteraction graph.

In the case of a wind farm, power production of a turbine downstream of another may be affected by
the actions of the latter (see Figure 1). For the collaborative robotics problem, all robots that contribute
to the artificial potential of a given robot constitute the latter’s in-neighbors in the interaction graph.

1We borrow notation from the game theory literature:aJ denotes the actions taken by the agents in subsetJ from the collective
actiona and the actions of the rest is denoted bya−J .
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Figure 1: (a) Schematic diagram of a wind farm; a loop represents a wind turbine and the dotted lines its
corresponding wake. (b) Solid arrows represent edges inGI and the dotted arrows edges inGc.

Essentially, the interaction graph is a way of encoding certain “coarse” information about the structure
of the payoff functions even in the absence of explicit knowledge of their functional forms.

2. Communication Graph
The agents are assumed to have a mechanism to transmit a bit-valued message to other agents within
a certain range. The mode of communication is broadcast and an agent need not know which other
agents are receiving its message. For eacha ∈ A, we model this explicit information exchange by
a directed graph over the set of agentsGc(a) called thecommunication graph. A directed edge(j, i)
in Gc(a) represents that agentj can send a message to agenti when the joint action being played is
a. LetNi(a) denote the in-neighbors of agenti in the communication graph. Each transmission is
assumed to last the duration of the algorithm iterate.

The dependence of the above graphs ona ∈ A is required for accurate modeling; for instance, in the
collaborative robotics example whereAi represents the set of discretized positions of roboti, which robots
are within the interaction or communication range of specific others depends on the position of all robots
(∈ A). On the contrary, in the wind farm example, these graphs canbe considered constant for alla ∈ A (see
Figure 1(b)). We stress that this framework is for modeling and analysis at the level of the system designer;
the agents neither know the joint action nor the corresponding neighbors inGI(·) or Gc(·) and simply go
about measuring their utilities, broadcasting messages and receiving such broadcast messages from other
agents when in range.

2.2 The Decentralized Algorithm

Endow agenti with a statexi = [ai, mi]; ai ∈ Ai corresponds to the action picked andmi is the{0, 1}-
valued ‘mood’ of agenti. When the mood variable equals1 we call the agent “content” else “discontent”.
The collective state of all agents is denoted byx = (a, m). Additionally, each agent maintains a variableui,
which records the payoff it received in the previous iterate. At t = 0, the agenti initializes(m0)i = 0, picks
an arbitrary(a0)i ∈ Ai and records the received payoffui = (umes

0 )i. With slight abuse of notation, we let
Gc(at) = Gc(t) andAi((at)i) = Ai(t).

For a certain pre-specified monotone decreasing sequence{ǫt}t∈N, with ǫt → 0 ast→∞, and constants
c > W ∗, β1, β2 > 0, agenti performs the following sequentially at every ensuing time instantt > 0.
Start
Step 1:Receive(mt−1)j from all j ∈ Ni(t−1), i.e. the in-neighbors ofi in Gc(t−1). Compute temporary
variablem̃i as follows.

1. If (mt−1)i = 0, setm̃i = 0;
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2. else, if(mt−1)i = 1 and
∏

j∈Ni(t−1)

(mt−1)j = 1, setm̃i = 1;

3. and if(mt−1)i = 1 and
∏

j∈Ni(t−1)

(mt−1)j = 0,

setm̃i = {0, 1} w.p. {1− ǫβ1

t , ǫβ1

t }.

Step 2:Pick (at)i as follows.

1. If m̃i = 1, pick (at)i from Ai(t− 1) according to the p.m.f.

p(b) =

{

1− ǫc
t if b = (at−1)i

ǫc

t

|Ai(t−1)|−1 otherwise.
(1)

2. Else, ifm̃i = 0, pick (at)i according to the uniform distribution

p(b) =
1

|Ai(t− 1)|
for all b ∈ Ai(t− 1). (2)

Step 3:Measure or receive payoff(umes
t )i(= ui(at)).

Step 4:Update(mt)i as follows.

1. If m̃i = 1 and((at)i, (u
mes
t )i) = ((at−1)i, ui) , then set(mt)i = 1;

2. else, ifm̃i = 1 and((at)i, (u
mes
t )i) 6= ((at−1)i, ui),

set(mt)i = {0, 1} w.p. {1− ǫβ2

t , ǫβ2

t };

3. and ifm̃i = 0, set

(mt)i =

{

1 w.p. ǫ
(umes

t
)i

t

0 w.p. 1− ǫ
(umes

t
)i

t .
(3)

Updateui(← u
mes
t )i.

Step 5:Broadcast(mt)i to all out-neighbors inGc(t).
Stop
It is easy to see that the algorithm defines a nonhomogeneous Markov chain on the state spaceS = A ×
{0, 1}N .

2.3 Convergence Guarantees

The following is the main convergence result for the decentralized algorithm described above.

Theorem 1. Let

1.
∞
∑

t=1
ǫc
t =∞ and

2. for everya ∈ A, Gc(a) ∪ GI(a) be strongly connected.

Then, ifXt = [at,mt] denotes the collective state of the agents at timet,

lim
t→∞

P[at ∈ A
∗] = 1.

From a practical view-point, the result provides a system-designer with guidelines on how to guarantee
convergence of the above algorithm. The first assumption translates to a constraint on the sequence{ǫt}t∈N

(or an “annealing schedule”) on how fast it may approach zero.
The second provides flexibility to design a ‘minimal’ communication network by utilizing information

about the payoff structure (such a choice is made in Figure 1.b). For instance, if the designer has no infor-
mation about the structure of the payoff function (GI(·) = ∅), a communication network such thatGc(a) is
strongly connected for alla ∈ A can be installed to guarantee convergence. The other extreme case is for
all a ∈ A, GI(a) is strongly connected; then the algorithm converges even inthe absence of any explicit
communication (It can be seen that strong connectivity ofGI implies interdependence and indeed the result
holds true under analogous weaker but more cumbersome-to-state conditions.).
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3 Perturbed Markov Chains

The analysis of the algorithm described in the previous section relies on the theory ofperturbed Markov
chainsdeveloped by Young [14]. Consider a homogeneous Markov chain with possibly several stationary
distributions. Perturb the transition matrix of this chainby adding appropriate functions of a certain noise
parameterǫ to obtain an ergodic chain with a unique stationary distribution. These functions are such that,
as ǫ → 0, the transition matrix of the perturbed chain converges to that of the ‘unperturbed chain’ with
individual elements converging to their respective limitswith asymptotic ratesr(·, ·) (i.e. asΘ(ǫr(x,y))).
What is interesting is that, under appropriate conditions,asǫ→ 0, the stationary distribution of the perturbed
chain converges to a certain stationary distribution of theunperturbed chain and the support of the latter can
be characterized in terms of the ratesr(·, ·). Thus, one can effectively “choose” amongst the possibly several
stationary distributions of the unperturbed chain. This section describes this theory in detail and also proves
results on how to reduceǫ over time while evolving according to the perturbed chain (rendering the chain
nonhomogeneous ) while retaining ergodicity.

3.1 Perturbed Markov Chains

Let P (0) be the 1-step transition probability matrix of a Markov chain on a finite state spaceS. We refer to
this chain as theunperturbed chain.

Definition 3.1. A regular perturbation ofP (0) consists of a stochastic matrix valued functionP (ǫ) on some
non-degenerate interval(0, a] that satisfies, for allx, y ∈ S,

1. P (ǫ) is irreducible and aperiodic for eachǫ ∈ (0, a],

2. lim
ǫ→0

Px,y(ǫ) = Px,y(0) and

3. if Px,y(ǫ) > 0 for someǫ, then∃ r(x, y) ≥ 0 such that0 < lim
ǫ→0

ǫ−r(x,y)Px,y(ǫ) <∞.

An immediate consequence of the first requirement is that there exists a unique stationary distribution
µ(ǫ) satisfyingµ(ǫ)P (ǫ) = µ(ǫ) for eachǫ ∈ (0, a]. The other two requirements dictate the way the
perturbed chain converges to the unperturbed one asǫ→ 0.

It follows that for a sufficiently smallǫ∗, ∃ 0 < α(x, y) < α(x, y) <∞, such that

α(x, y) < ǫ−r(x,y)Px,y(ǫ) < α(x, y), ∀ ǫ < ǫ∗.

By denotingmin
x,y∈S

α(x, y) = α and max
x,y∈S

α(x, y) = α, we have

α ǫr(x,y) < Px,y(ǫ) < α ǫr(x,y), ∀ ǫ < ǫ∗. (4)

Let L = {f ∈ C∞| f(ǫ) ≥ 0, f(ǫ) =
L
∑

i=1

aiǫ
bi for someai ∈ R, bi ≥ 0} for some large enough but fixed

L ∈ N. The following assumption will be invoked later.

Assumption 2. For all x, y ∈ S, Px,y(ǫ) ∈ L.

We develop some notation that will help state the main resultregarding perturbed Markov chains. The
parameterr(x, y) in the definition of regular perturbation is called the1-step transition resistancefrom state
x to y. Notice thatr(x, y) = 0 only for the one step transitionsx→ y allowed underP (0). A pathh(a→ b)
from a statea ∈ S to b ∈ S is an ordered set{a = x1, x2, . . . , xn = b} ⊆ S such that every transition
xk → xk+1 in the sequence has positive 1-step probability according to P (ǫ). The resistance of such a path

is given byr(h) =
n−1
∑

k=1

r(xk , xk+1).

Definition 3.2. The resistance fromx to y is given byρ(x, y) = min{r(h)| h(x→ y) is a path}.

Definition 3.3. Given a subsetA ⊂ S, its co-radius is given byCR(A) = max
x∈S\A

min
y∈A

ρ(x, y).2

2These definitions are adopted from relevant literature [15],[16].
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Thus,ρ(x, y) is the minimum resistance over all possible paths starting at statex and ending at statey
and the co-radius of a set specifies the maximum resistance that must be overcome to enter it from outside.
We will overload the definition of resistance to include resistance between two subsetsS1, S2 ⊂ S:

ρ(S1, S2) = min
x∈S1,y∈S2

ρ(x, y).

SinceP (ǫ) is irreducible forǫ > 0, ρ(S1, S2) <∞ for all S1, S2 ⊂ S.

Definition 3.4. A recurrence or communication class of a Markov chain is a non-empty subset of states
E ⊆ S such that for anyx, y ∈ E, ∃ h(x→ y) and for anyx ∈ E andy ∈ S \ E, ∄ h(x→ y).

Let us denote the recurrence classes of the unperturbed chain P (0) asE1, ..., EM . Consider a directed
graphGRC on the vertex set{1, ..., M} with each vertex corresponding to a recurrence class. Let aj-treebe
a spanning subtree inGRC that contains a unique directed path from each vertex in{1, ..., M} \ {j} to j and
denote the set of allj-trees inGRC by T j

RC .

Definition 3.5. The stochastic potential of a recurrence classEi is

γ(Ei) = min
T∈T i

RC

∑

(j,k)∈T

ρ(Ej , Ek).

Let
γ∗ = min

Ei

γ(Ei).

We are now ready to state the main result regarding perturbedMarkov chains.

Theorem 2 ([14], Theorem 4). Let E1, ..., EM denote the recurrence classes of the Markov chainP (0) on
a finite state spaceS. LetP (ǫ) be a regular perturbation ofP (0) and letµ(ǫ) denote its unique stationary
distribution. Then,

1. asǫ→ 0, µ(ǫ)→ µ(0), whereµ(0) is a stationary distribution ofP (0) and

2. a state is stochastically stable i.e.µx(0) > 0⇔ x ∈ Ei such thatγ(Ei) = γ∗.

3.2 Ergodicity of nonhomogeneous Markov chains

We now recall some results on ergodicity of a nonhomogeneousMarkov chain on a finite state spaceS, with
Q(t) being the 1-step transition probability matrix at timet.

Definition 3.6 (Ergodicity). The chain is

• weakly ergodic (WE) if for allt′ ∈ N and allx, y, z ∈ S,

lim
t→∞

|Q(t′,t)
x,z −Q(t′,t)

y,z | = 0.

• strongly ergodic (SE) if there exists a probability distributionπ onS such that for any initial distribu-
tion η(0) onS and anyt′ ∈ N,

lim
t→∞

η(0)Q(t′,t) = π.

We callπ the limiting distribution of the chain.

Both definitions of ergodicity capture a certain notion of forgetfulness in that the chain forgets where it
started after sufficiently large time steps. It is also clearthatSE impliesWE. Before proceeding to results
that give conditions for ergodicity, we make the following definition.

Definition 3.7 (Ergodic Coefficient). Given a row stochastic matrixQ ∈ R|S|×|S|, its ergodic coefficient is
given by

δ(Q) = 1− min
x,y∈S

∑

z∈S

min{Qx,z, Qy,z}.

7



The following result due to Doeblin provides a characterization for WEbased on the ergodic coefficient.

Theorem 3(Weak Ergodicity, see [17], Theorem 8.2). The chain is weakly ergodic if and only if there exists
a strictly increasing sequence of positive integers{tn}n∈N such that

∑

n∈N

(1− δ(Q(tn,tn+1))) =∞. (5)

The next Theorem provides a sufficiency condition forSE.

Theorem 4 (Strong Ergodicity, see [17], Theorem 8.3). Suppose the chain is weakly ergodic and at allt,
there existsπt such thatπtQ(t) = πt and

∑

t∈N

‖πt+1 − πt‖1 <∞, (6)

then the chain is strongly ergodic. Furthermore, the limiting distributionπ as in the definition of SE is the
same as the limit of the sequence{πt}t∈N.

Proof. This standard result can be found in [17], Theorem 8.3, or [18], Theorem V.4.3. To see whyπ is the
limiting distribution of the nonhomogeneous chain, note that (6) implies (8.12) in [17], pp. 242-243, which
is equivalent to the definition ofSE.

3.3 Ergodicity of Nonhomogeneous Perturbed Markov Chains

Consider the nonhomogeneous Markov chain resulting from picking theǫ along the evolution ofP (ǫ) at
time instantt as the corresponding elementǫt of the sequence{ǫt}t∈N. We henceforth refer to this sequence
as the annealing schedule and the resulting Markov chain as the nonhomogeneous perturbed chain. Theorem
5 provides conditions on the annealing schedule that guarantee ergodicity of the nonhomogeneous perturbed
chain withµ(0) (as in Theorem 2) being the limiting distribution. We denotethe time-varying transition
matrix of the nonhomogeneous perturbed chain by the bold-fontP, i.e.P(t) = P (ǫt).

We will need the following technical Lemma.

Lemma 3.1. Let
∑

n∈N

a(n) =∞ anda(n) ≥ a(n + 1) ∀ n. Then for anyn′, l ∈ N,
∑

n∈N

a(n′ + l + n) =∞.

Proof. The case forl = 1 is trivially true. If l > 1, ∀ n,

a(n′ + ln) ≥ a(n′ + ln + m), ∀m = 1, ..., l− 1

⇒ l · a(n′ + ln) ≥
l−1
∑

m=0

a(n′ + ln + m).

Thusl
∑

n∈N

a(n′ + ln) ≥
∑

n∈N

l−1
∑

m=0

a(n′ + ln + m)

=
∑

n∈N

a(n′ + n) =∞.

Define

κ = min
E∈{Ei}

CR(E). (7)

Theorem 5([2], Theorem 3). Let the recurrence classes of the unperturbed chainP (0) be aperiodic and the
parameterǫ in the perturbed chain be scheduled according to the monotone decreasing sequence{ǫt}t∈N,
with ǫt → 0 ast→∞, as described above. Then, a sufficient condition for weak ergodicity of the resulting
nonhomogeneous Markov chainP(t) is

∑

t∈N

ǫκ
t =∞.

Furthermore, if the chain is weakly ergodic and Assumption 2holds, then it is strongly ergodic with the
limiting distribution beingµ(0) as described in Theorem 2.
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Proof. Weak Ergodicity:Let E∗ be a recurrent class such thatCR(E∗) = γ. SinceE∗ is aperiodic accord-
ing toP (0), there exists anl1 ∈ N such that for allm ≥ l1 andx, y ∈ E∗, Pm

x,y(0) > 0 (see [17], Theorem
4.3, pp. 75). Since any path underP (0) has zero resistance, once the chain enters a state inE∗, it can remain
there with zero resistance via a path of length greater thanl1.

Let e∗ ∈ E∗ be such that∃ x′ ∈ S \ E∗ such thatr(x′, e∗) = γ i.e. the transitionx′ → e∗ has the
most resistance among allx → e∗, x ∈ S. For all x ∈ S, consider the shortest pathsh(x → e∗) such
thatr(h(x → e∗)) = r(x, e∗) and denote the length of such paths byl(x, e∗). Let l2 = max

x∈S
l(x, e∗). So

by waiting for l2 transitions, there is a path toE∗ from all statesx ∈ S with resistancer(x, e∗). Thus by
allowing more thanl = l1 + l2 transitions, we have for anyx ∈ S and a sufficiently smallǫ∗,

Pm
x,e∗(ǫ) > αmǫγ , ∀ ǫ < ǫ∗, m ≥ l.

From (4), sinceǫt → 0, for sufficiently larget,

α ǫ
r(x,y)
t < Px,y(t) < α ǫ

r(x,y)
t .

Consequently, by choosing a subsequence such thattn+1 − tn = l, for sufficiently largen,

P
(tn,tn+1)
x,e∗ > αlǫγ

tn+1
, ∀x ∈ S.

Then, for sufficiently largen, we can bound

∑

z∈S

min{P(tn,tn+1)
x,z ,P(tn,tn+1)

y,z }

≥min{P
(tn,tn+1)
x,e∗ ,P

(tn,tn+1)
y,e∗ } > αlǫγ

tn+1
, ∀x, y ∈ S.

Taking minimum overx, y, for sufficiently largen,

min
x,y∈S

∑

z∈S

min{P(tn,tn+1)
x,z ,P(tn,tn+1)

y,z } > αlǫγ
tn+1

. (8)

Since{tn}n∈N is an equally spaced subsequence, from Lemma 3.1 and the hypothesis of the theorem,
∑

n∈N

ǫγ
tn+1

=∞. In view of this and (8),WE follows by noting that (5) is verified withQ = P.

Strong Ergodicity:Recall the homogeneous perturbed Markov chainP (ǫ). Consider a graphG = (S, E)
with the state spaceS as the vertex set and a directed edge(x, y) ∈ E if and only if Px,y(ǫ) > 0 for some
ǫ. For any vertexz ∈ S, az-treeis a subset ofE that forms a spanning tree inG such that for every vertex
x 6= z, there exists a unique directed path fromx to z. Let Tz be the set of allz-trees inG. Then it is known
(see [14]) that the stationary distributionµ(ǫ) is given by

µz(ǫ) =
qz(ǫ)

∑

x∈S

qx(ǫ)
(9)

whereqz(ǫ) =
∑

T∈Tz

∏

(x,y)∈T

Px,y(ǫ).

Under assumption 2, both the numerator and denominator of the R.H.S of (9) belong toL for a sufficiently
largeL. Denoting the derivative w.r.t.ǫ by primes and suppressing the argument,µ′

z = (1/(
∑

x∈S

qx)2) ·

(q′z
∑

x∈S

qx − qz

∑

x∈S

q′x). Thus, after multiplying and dividing with an appropriate power ofǫ, the numerator

of µ′
z also belongs toL for a sufficiently largeL. For a sufficiently smallǫz > 0, µ′

z will be dominated by the
term with the least exponent ofǫ for all ǫ < ǫz. Thus, the sign ofµ′

z will be either non-positive or positive
for all ǫ < ǫz. Let ǫ∗ = min

z∈S
ǫz, S− ⊂ S be such thatz ∈ S− ⇔ µ′

z ≤ 0 ∀ ǫ < ǫ∗ andS+ = S \ S−. Let t∗

9



be such thatǫt < ǫ∗, ∀t > t∗. Then,

∞
∑

t=1

‖µ(ǫt)− µ(ǫt+1)‖1 =

t∗
∑

t=1

‖µ(ǫt)− µ(ǫt+1)‖1+

∞
∑

t=t∗+1

[

∑

z∈S−

(µz(ǫt)− µz(ǫt+1)) +
∑

z∈S+

(µz(ǫt+1)− µz(ǫt))

]

= M +
∑

z∈S−

∞
∑

t=t∗+1

(µz(ǫt)− µz(ǫt+1))

+
∑

z∈S+

∞
∑

t=t∗+1

(µz(ǫt+1)− µz(ǫt))

<∞

sinceM =
t∗
∑

t=1
‖µ(ǫt) − µ(ǫt+1)‖1 is a finite sum of finite terms and successive terms cancel within both

infinite sums. Since (6) is satisfied withπ(t) = µ(ǫt), as shown above, and the chain isWE, SE follows
from Theorem 4. The limiting distribution, in view of Theorem 2, isµ(0).

4 Analysis of the Algorithm

The objective of this section is to prove Theorem 1. We will first consider the algorithm of section 2.2
with the parameterǫt held constant atǫ > 0. The algorithm then describes a Markov chain on the finite
state spaceS = A × {0, 1}N and we denote its 1-step transition matrix asP (ǫ). The reason for choosing
the same notation here as for the general perturbed Markov chain discussed in section 3 is that we wish
to view the Markov chain induced by the algorithm as a perturbed chain and analyze it using results from
section 3. Similarly,P(t) denotes the 1-step transition probability matrix for the duration(t, t + 1) of the
nonhomogeneous Markov chain induced by the algorithm as described in section 3, i.e. with time varying
ǫt. Henceforth, the components of anyx ∈ S will be identified with a superscript i.e.x = [ax, mx].

Lemma 4.1. The Markov chainP (ǫ) is irreducible and aperiodic.

Proof. Let us consider the transition probability from statey ∈ S to z ∈ S. For ǫ > 0, irrespective of the
values of respectivẽmi, the transition probabilities (1) and (2) let the agents pick a joint actiona′ ∈ A such
thata′

i 6= ay
i for any i with positive probability. Then, again irrespective of thevalues ofm̃i, by step 4.2

or 4.3, the state can transition fromy to [a′,0] with positive probability. Next, starting from state[a′,0], by
Assumption 1 and transition probability (2), agenti can pick the actionaz

i with positive probability in a finite
number of steps and can keep playingaz

i with positive probability for any arbitrary finite durationthereafter
while maintainingmi = 0 all the while. Thus there is a positive probability for all agents to pick actions
that correspond toa′, i.e. transition from state[a′,0] to [az,0]. Finally, in the very next time instant, agent
i can repeat its action with positive probability and update its mood variable tomz

i with positive probability
(3). Hence the transitiony to z occurs with positive probability.

Aperiodicity follows by noting that thePx,x(ǫ) > 0 for anyx ∈ S: the same action can be picked by the
agents in consecutive time steps with positive probabilityand (3) permits picking the same mood variable
again with positive probability.

Lemma 4.1 implies thatP (ǫ) has a unique stationary distribution which we denote, as in the previous
section, byµ(ǫ). It is also clear thatP (ǫ) is a regular perturbation ofP (0) (the latter obtained by setting
ǫt ≡ 0 in the algorithm). Thus, by Theorem 2,µ(ǫ)→ µ(0) asǫ→ 0 whereµ(0) is a stationary distribution
of P (0).

10



4.1 Stochastically Stable States: Support ofµ(0)

Definition 4.1. Let

C0 = {x ∈ S|mx = 1} and

D0 = {x ∈ S|mx = 0}.

Lemma 4.2. If for everya ∈ A, Gc(a) ∪ GI(a) is strongly connected, the recurrence classes of the unper-
turbed chainP (0) areD0 and the singletonsz ∈ C0.

Proof. Consider transitions defined by the algorithm withǫ = 0. Consequently, in Step 1,̃mi = (mt−1)i ·
∏

j∈Ni(at−1)(mt−1)j . Everyz ∈ C0 satisfiesP(Xt+1 = z|Xt = z) = 1 since by (1) the same joint action

az is picked w.p. 1 resulting in the same payoff which in turn results in execution of step 4.1. A statey ∈ D0

is also constrained to evolve only inD0 since (3) withǫ = 0 does not permit a transition tomi = 1 for anyi.
Also, by Assumption 1 and transition rule (2), there is a positive probability of transitioning from any joint
action profile inA to any other. ThusD0 and eachz ∈ C0 are recurrence classes ofP (0).

Now consider a statex ∈ S \ {C0 ∪D0}. Let Jx = {i|mx
i = 0} ⊂ {1, ..., N} be the non-empty subset

of discontent agents. SinceGc(a
x) ∪ GI(a

x) is strongly connected, there must exist an outward edge in this
graph from at least one vertexi′ ∈ Jx to a vertexi /∈ Jx. Two cases arise.

1. If (i′, i) belongs toGI(a
x), then∃ bi′ ∈ Ai′ that agenti′ can pick with positive probability according

to (2) and due to Assumption 1, such thatui(a
x) 6= ui(a

x
−i′ , bi′). This changes the mood variable of

agenti from 1 to 0 in step 4.2.

2. If (i′, i) belongs toGc(a
x), then agenti receives a0 from its in-neighbori′ in step 4.1. Agenti sets

m̃i = 0 and consequentlymi is set to0 in Step 4.3.

Thusx transitions tox′ such that|Jx| < |Jx′

| i.e. at least one more agent becomes discontent with positive
probability. Since there are finite number of agents and because of the strong connectivity assumption,
repeating this argument forx′ yields that there is a positive probability of transitioning from x to D0; all
agents eventually become discontent. Hence no state inS \ {C0 ∪ D0} is in a recurrence class. Since all
these transitions are according toP (0), we also have for anyy ∈ D0,

ρ(x, y) = 0, ∀ x ∈ S \ C0. (10)

z1 z|A|zk

D0

> c

> c

W (a1) W (a|A|)
cc

Figure 2: The circles represent recurrence classes ofP (0) and weights on the arrows the corresponding
ρ(·, ·)s. If W (az1) = W ∗, the zig-zag lines represent edges in the minimum resistance tree rooted atz1.

Guided by Theorem 2, we now proceed to calculate the stochastic potential of the recurrence classes of
P (0). But first we organize some calculations in the following lemma.

11



Lemma 4.3. Under the same assumption as Lemma 4.2, for anyy ∈ D0 andz ∈ C0,

ρ(x, y) = c, ∀ x ∈ C0, (11)

ρ(y, z) = W (az), (12)

ρ(x, z) ≤W (az), ∀ x ∈ S \ C0, (13)

andρ(z′, z) > c, ∀ z′ ∈ C0, z′ 6= z. (14)

Proof. Considerx ∈ C0. For anyi, a change inmx
i from 1 to 0 must involve some agent picking a different

action. From (1), such a change by an agent has resistancec. Thereforeρ(x, y) ≥ c. Once such an action is
picked by a content agent, its mood can change to0 with a zero resistance transition in step 4.2. From (10),
this intermediate state can now move toy ∈ D0 with zero resistance. Thus (11) is proved.

For anyy ∈ D0, any h(y → z) must undergoN discontent to content transitions according to (3)

(becausemy
i = 0 ⇒ m̃i = 0 in the ensuing iterate). Thusρ(y, z) ≥

N
∑

i=1

ui(a
z) = W (az). Sincem̃i = 0

for all i, from (2), all agents can collectively pickaz via a zero resistance transition and become content
with resistanceW (az). Thus there exists anh(x → z) such thatr(h) = W (az). Henceρ(x, z) = W (az)
establishing (12). Then (13) follows in view of (10): considerh(x→ y) followed byh(y → z).

For z′ ∈ C0, z′ 6= z, there exists at least one agent playing different actions in the two states. Thus
anyh(z′ → z), must involve this content agent picking a different actionwith resistancec (from (1)) and
becoming content with resistanceβ2 or uj(a

z) by step 4.2 or 4.3 respectively. Hence (14) is established.

From Lemma 4.2, there are exactly|A|+1 recurrence classes ofP (0); |A| corresponding to eacha ∈ A
(i.e. each element ofC0) and one for the setD0. Let {z1, ..., z|A|} be an enumeration forC0.

Lemma 4.4. Under the same assumption as Lemma 4.2, the stochastically stable set is{zi ∈ C0|W (azi) =
W ∗}.

Proof. We will show that the minimum potentialz-trees inGRC are rooted at{zi ∈ C0|W (azi) = W ∗}.
The claim then follows as a consequence of Theorem 2. Consider Figure 2 which depicts edges of theGRC

corresponding to the algorithm. The resistances between the recurrence classes are as calculated in Lemma
4.3. Forzi ∈ C0, consider anyzi-tree in this graph. Any such tree must have one outward edge from
each of the(|A| − 1) states inC0 and an outward edge fromD0. The former contribute a resistance of at
least(|A| − 1)c and the latterW (a) for somea ∈ A, hence the least possible stochastic potential for a tree
rooted at a state inC0 is (|A| − 1)c + W ∗. It is possible to construct such a tree for any statezi ∈ C0 with
W (azi) = W ∗ as denoted by the zig-zag lines in Figure 2. By a similar argument, the stochastic potential
of D0 is |A| · c. Sincec > W ∗, any statezi ∈ C0 with W (azi) = W ∗ corresponds to the least stochastic
potential state.

All that is left to prove is that any statezi ∈ C0 with W (azi) > W ∗ has stochastic potential greater than
(|A| − 1)c + W ∗. Again, consider anyzi-tree. If the outgoing edge fromD0 is incident on a statezk ∈ C0,
zk 6= zi with W (azk) = W ∗, there must exist at least one edge from a state inC0 to zi and(|A|−2) outward
edges from the rest of elements ofC0 to complete the tree. Such a tree has resistance strictly greater than
(|A| − 1)c + W ∗ because of the link between two states inC0. Else, if the outgoing edge fromD0 is to a
statezk ∈ C0 with W (azk) > W ∗, the outward edges from the(|A| − 1) states inC0 result in a resistance
at least greater than(|A| − 1)c + W (azk).

4.2 Proof of Theorem 1

We return to the analysis of the nonhomogeneous Markov chain, P, induced by the algorithm with the

annealing schedule{ǫt}t∈N. The proof relies on noting that if the annealing schedule satisfies
∞
∑

t=1
ǫt

c =

∞, P is strongly ergodic with the limiting distribution having support over states with efficient actions as
described by Lemma 4.4.

Lemma 4.5. Under the same assumption as Lemma 4.2, for the nonhomogeneous Markov chain defined on
S by the algorithm,κ as defined in(7) equalsc.

12



Proof. From Lemma 4.2 and (7),
κ = min{{CR(z)}z∈C0, CR(D0)}. For anyz ∈ C0, from (13) and (14),CR(z) > c. From (10) and (11),
CR(D0) = c. Henceκ = c.

Proof of Theorem 1.The Assumption of Lemma 4.2 is included in the statement of the Theorem. All tran-
sition probabilities in the algorithm of section 2.2 belongto L; thus Assumption 2 holds. For anyy ∈ D0

andz ∈ C0, Py,y(0) > 0 andPz,z(0) > 0. Hence the recurrence classes of the unperturbed Markov chain
are aperiodic and, from Theorem 5 and Lemma 4.5, the chain is strongly ergodic if

∞
∑

t=1

ǫt
c = ∞. (15)

Next, for any initial distributionη0 on S and any subset̃S ⊂ S, P(Xt ∈ S̃) =
∑

j∈S̃

(η0P
(1,t))j . Since

(15) impliesSEwith limiting distributionµ(0) as in Theorem 2 and from the definition ofSE, lim
t→∞

P(Xt ∈

S̃) =
∑

j∈S̃

µj(0). Let S̃ = {x ∈ S|W (ax) = W ∗, mx = 1}, then in view of Lemma 4.4,

lim
t→∞

P[at ∈ A
∗] = 1.

5 Numerical Simulations and Conclusions

To illustrate the setup, we consider the payoff structure inTable 1. As explained earlier, the agents do not
know this structure, they can only pick actions simultaneously fromAi = {l, h} for i = 1, 2, 3 and measure
the resulting payoffs. Let the agents implement the algorithm of section 2.2 to learn the welfare minimizing
state. In this example, it is clear (at the level of the systemdesigner) that agent 3’s payoff depends only on its
own actions and are unaffected by actions of agents 1 and 2. Thus, the interaction graphGc(a) is not strongly
connected for anya since there is no incident edge on 3. The plot in Figure 3 showsMATLAB simulation
runs for the algorithm. The plot on the top is for whenGc is empty (thereby violating the hypothesis of
Theorem 1) and the one below for whenGc(a) consists of the directed edge(1, 3) for all a ∈ A (thereby
satisfying the hypothesis of Theorem 1). Observe that the instances where the product of the mood variables
equals1 can be interpreted as “when the agents have learned”.

In the first case, since agent 3 cannot be influenced, it seems to learn to playh which offers it an in-
dividually rational lower payoff of110 as opposed to playingl with a payoff 1

4 . Quite intuitively, agents1
and2 seem to learn to play(h, h): the welfare minimizing action of the ‘sub-game’ where 3 choosesh with
welfare= 2

5 which is suboptimal to the global welfare minimal of9
20 achieved with(l, l, l). In the second

case, it is observed that when the link(1, 3) is added toGc, the agents lean to play the welfare minimal
(l, l, l).

Table 1: Payoff structure of a three agent system
Agent 3→ l l h h

Agent 2→ l h l h

Agent 1

l ( 1
10 , 1

10 , 1
4 ) (1

2 , 1, 1
4 ) (3

4 , 3
4 , 1

10 ) (1, 1
2 , 1

10 )

h (1, 1
2 , 1

4 ) (3
4 , 3

4 , 1
4 ) (1

2 , 1, 1
10 ) (1

4 , 1
4 , 1

10 )

An interesting question is how does the performance of the algorithm depend onGI andGc. We present
results of some numerical experiments to motivate such questions. First of all, we quantify performance as
the percentage of times the welfare minimal actions are played in a fixed duration. To analyze the effect of
GI , considerN identical agents withAi = {0.1, 1}. Let us endow agenti with utility function ui(a) =

13



0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

 

 

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

 

 

W
el

fa
re

an
d

p
ro

d
u

ct
o

fm
o

o
d

s
W

el
fa

re
an

d
p

ro
d

u
ct

o
fm

o
o

d
s

Results withGc = ∅
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Figure 3: Simulation resuts for the three agent experiment;welfare plotted in blue solid lines and product of
moods plotted with red crosses.

1
1+2q

∑i+q
j=i−q aj , where the operations in the limits of the summation are modN . The welfare function

W (a) =
∑N

i=1 ai, ∀ q = 1, ..., N/2, with a unique minimum at(0.1, ..., 0.1). Notice that, for eachq,
Gq

I (a) is the same for alla ∈ A and can be varied by varyingq = 1, ..., N/2. In Table 2 we report the
performance for the caseN = 10, c = 1.1, β1 = β2 = 0.5, ǫt = 1

c
√

t
and the algorithm is allowed to run

while ǫt > 10−4. The algorithm is implemented on MATLAB and the reported numbers are averaged over
100 runs for each value ofq and the standard deviation is reported as well. Since a greater value ofq can be
interpreted as more complex interaction, the result seems to agree with the intuitive notion that the speed of
convergence reduces with increased interaction complexity. To study the effect ofGc, we use the same set up

Table 2: Effects of varyingGq
I

q Performance Std. Deviation

1 93.78% 2.92%
2 62.21% 7.84%
3 48.15% 9.71%
4 45.35% 11.11%
5 44.31% 11.79%

with ui(a) = ai−1 for i = 2, ..., N andu1(a) = aN . ThusGI(a) is a directed ring for alla ∈ A (see Figure
4 (a)). Let directed edges(i, i− q) (where subtraction is modN ) for all i constituteGq

c (a) for all a ∈ A. Let
G(q) = Gq

c ∪ GI . The same experiment as before is carried out with differentvalues ofq; the performance
measure, the length of the longest shortest-path (SP) inG(q) and length of a cycle inG(q) are plotted for
values ofq in {0, .., (N − 1)} in Figure 4 (b). The results suggest a heuristic: To improve performance, pick
Gc(a) to comprise of edges exactly opposite ofGI(a) and thereby reducing the cycle lengths.

Before concluding we wish to point out that the free parametersβ1, β2 > 0 in the algorithm can be tuned
according to the application to get improved performance; for instance settingβ2 = max{0, (umes

t )i − ui}
can allow the agent to remain content when the change in payoff is in the desired direction in step 4.2.
These parameters can also be interpreted, in some sense, as weights on the communication and interaction
graphs as larger values ofβ1 andβ2 correspond to agents being more sensitive to the information from the
communication and interaction graphs respectively (see steps 1.3 and 4.2 of the algorithm).

An important open question is determining the rate of convergence of the algorithm. One way to answer
this question is to calculate the rate of convergence of||ηt − µ(0)|| ast → ∞, whereηt is the density of

14



1

2

3

4

5

6

7

8

9

10

q = 1

q = 3

q = 5

q = 7

(a)

0

0

00

1

1

1

2
2

2

2

3

3 3

3

20%

4

4

4
4

4

40%

5

5

5

5

6

6

6

6

6

60%
80%

100%

7

7

7

7

8

8

8

8

8

9

9

9

9

10

10 Length of longest shortest-path

Length of a cycle

Performance

Different values ofq

Different values ofq

Different values ofq

(b)

Figure 4: Effects of varyingGc for N = 10. (a) The blue solid arrows representGI and the dotted arrows
denote the edge(1, 1 − q) in the correspondingGq

c . (b) Plot of performance, longest SP and cycle length
w.r.t. different values ofq.

Xt = [at,mt]. This is difficult since the Markov chain is nonhomogeneous and the best results we know in
such situations are for the simulated annealing algorithm [19]. We will address this issue along such lines in
future work. We expect that such an investigation will also shed light on the issue of how the communication
and interaction graphs play a role in speed of convergence.
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