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A Distributed Learning Algorithm with Bit-valued
Communications for Multi-agent Welfare Optimization

Anup Menon and John S. Bafas

Abstract

A multi-agent system comprisingy’ agents, each picking actions from a finite set and receiving a
payoff that depends on the action of the whole, is consideFad exact form of the payoffs are unknown
and only their values can be measured by the respectivesagentecentralized algorithm was proposed
by Marden et. al. [1] and in the authors’ earlier work [2] thatthis setting, leads to the agents picking
welfare optimizing actions under some restrictive assionpton the payoff structure. This algorithm is
modified in this paper to incorporate exchange of certaivdliied information between the agents over
a directed communication graph. The notion of an interacgi@ph is then introduced to encode known
interaction in the system. Restrictions on the payoff stmecare eliminated and conditions that guarantee
convergence to welfare minimizing actions w.p. 1 are deriveder the assumption that the union of the
interaction graph and communication graph is strongly ected.

1 Introduction

An important direction of research in cooperative contfanulti-agent systems is game theoretic control.
This refers to the paradigm of: 1. designing individualitytifunctions for agents such that certain solution
concepts (like Nash equilibria (NE)) correspond to des&ralystem-wide outcomes; and 2. prescribing
learning rules that allows agents to learn such equilit8ja Also, the utilities and the learning rules must
conform to the agents’ information constraints. A populasice is to design utilities such that the resulting
game has a special structure so that the correspondindosoldncepts are efficient w.r.t. system-wide
objectives. NE of potential games, for instance, corredgorihe extremal values of the potential function
which can then be chosen so that its extrema correspond it@lolessystem-wide behavior. Examples of
such utility design for specific applications range frontriisited optimization [4] to coverage problems in
sensor networks [5] and power control in wireless netwoéks [

The other advantage of designing utilities with specialdtire is that players can be prescribed already
available learning algorithms from evolutionary gameg tredps them learn to play NE [7], [8], [9]. These
algorithms have the desirable feature of being payoff-thase an agent adjusts its play only on the basis
of its past payoffs and actions, and does not require thetagehave any knowledge of the structure of the
game. However, the success for most learning proceduresdyiggaaranteed under an assumption on the
game such as potential, weakly acyclic or congestion game.

Thus, while an effective paradigm, game theoretic contaslthe following limitations:

e Since available algorithms are provably correct only fotaia classes of games, there is a burden to
design utilities that conform to such structure for eachliapfion.

e If a compromise is made in the utility design phase in ordestitain required game structure, the
resulting utilities may not reflect the desired system-vad&come.

o If the system requirements prohibit design of utilitiesiwépecial structure, equilibrating to NE may
be inefficient w.r.t. desirable outcome (also, may be unssa® in non-strategic situations).
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Science Foundation (NSF) grant CNS-1035655.
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While within the paradigm of game theoretic control, our m@eh is complementary to that of utility
design. Instead, we focus on algorithm design for welfaee the sum of individual utilities) optimization
for arbitrary utilities. To motivate this approach we catesian application where the current paradigm is too
restrictive: the problem of maximizing the total productiof a wind farm [10]. Aerodynamic interactions
between different wind turbines are not well understoodthede are no good models to predict the effects
of one turbine’s actions on another. However, it is cleat tha amount of power a turbine extracts from
the wind has a direct effect on the power production of tubidownstream (such a region of influence
is called a wake, see Figure 1(a)). The information avaglableach turbine is its own power production
and a decentralized algorithm that maximizes the total p@reduction of the farm is sought. Since there
are no good models for the interactions, there is little htwpdesign utilities with special structure that
are functions of such individual power measurements. Thistp towards the need for algorithms that are
applicable when there is little structural information abite utilities (for instance, a turbine can be assigned
its individual power as its utility which, in turn, can depkon the actions taken by others in complex ways).

A decentralized learning algorithm is presented in [1] with intent to address this issue of unknown
payoff structures. This algorithm allows agents to leartfave maximizing actions and does not require any
knowledge about the exact functional form of the utilitissour earlier work [2], we provide conditions that
guarantee convergence of this algorithm. However, comrarg is guaranteed only under an assumption on
the utilities callednterdependencgvhich, for instance, need not hold for the wind farm problem

The contribution of this paper is a distributed multi-aglearning algorithm that:

1. eliminates the need for any structural assumptions outilitees by using inter-agent communication;

2. and, under appropriate conditions, ensures that ageomaconverge to global extrema of the welfare
function.

Regarding the use of inter-agent communication, in [10gleeme using proxy utilities computed by
inter-agent communication over a undirected connecteplgiasuggested to satisfy interdependence and
enable using the algorithm of [1], [2]. In contrast, we deyeh framework for capturing known interaction
in the system and prove results that help design “minimatificnication networks that guarantee conver-
gence. The exchanged information in our algorithm is bitted which has implementation and robustness
advantages. The framework developed also contrasts betwgsicit interaction between the agents via
utilities and explicit interaction via communication. Wis@wish to point out that the problem formulated
here can be thought of as a multi-agent formulation of a ditz¥d extremum seeking problem [11] and the
algorithm provides convergence to global optimal statek f@w restrictions on the functions involved.

The remainder of the paper is organized as follows. In se@iove formulate the problem, develop
the analysis framework, present the algorithm and statentia convergence result. Section 3 introduces
Perturbed Markov Chainand states relevant results. In section 4, the results dio®Be® are used to prove
the main result of section 2. The paper concludes with someenigal illustrations and discussions about
future work.

Notation

The paper deals exclusively with discrete-time, finiteestsppace Markov chains. A time-homogeneous
Markov chain with@ as its 1-step transition probability matrix means thatitheow and;*" column entry
Qi,; = P(Xi41 = j|X¢ = 1), whereX, denotes the state of the chain at titéf the row vecton;, denotes
the probability distribution of the states at timethenn;.1 = n; Q. More generally, ifQ(t) denotes the
1-step transition probability matrix of a time-nonhomogeuns Markov chain at timg then for allm > n,
P(X,, =jX,=1i) = Ql(.f;’m), where the matribQ™™ = Q(n)-Q(n+1)---Q(m—1). The time indices

of all Markov chains take consecutive values from the setadfiral number®. A Markov chain should be
understood to be homogeneous unless stated otherwise. MigedbeN -dimensional vector of all zeros
and all ones by the bold forit and 1 respectively. For a multi-dimensional vectgyrits i*"* component is
denoted byr;; and that ofz; by (z4);.



2 Problem Statement and Proposed Algorithm

2.1 A Multi-agent Extremum Seeking Formulation
2.1.1 Agent Model

We considetV, possibly heterogeneous, agents indexed Bhei'” agent can pick actions from a sd,
2 < |A;| < oo; the joint action of the agents is an element of the4et vazl A;. The action of the*"
agent in the joint action € A is denoted by:,;. Further, given thé!” individual’'s present action is € A;,
the choice of its very next action is restricted to be fréntb) C A;.

Assumption 1. For anyb € A;, b € A;(b) and there exists an enumerati¢b, ..., b 4, } of A; such that
bj+1 S .Az(bj) fij =1,..., (lAll — 1) andb; € ‘Az(b\AJ)

The former allows for the possibility of picking the sameain consecutive steps and the latter ensures
that any element ofl; is “reachable” from any other. Specific instances of sucmtg®dels in literature
include the discretized position and viewing-angle setsriobile sensors in [5], discretized position of a
robot in a finite lattice in [12, 13] and the discretizationtbé axial induction factor of a wind turbine in
[10].

An individual has a private utility that can be an arbitrangeé-invariant function of the action taken by
the whole but is measured or accessed only by the individugnti's utility is denoted byu; : A — RT.
Examples include artificial potentials used to encode mftion about desired formation geometry for
collaborative control of autonomous robots in [12, 13] dmeleasured power output of an individual wind
turbine in [10]. At any timet, agent; only measures or receivéa**); = w;(a;) since neither the joint
actiona; nor any information about;(-) is known to the agent.

The objective of the multi-agent system is to collabordyiveinimize (or maximize) the welfare function
W* = minge 4 W(a), whereW(a) = Zﬁvzl u;(a). Achieving this objective results in a desirable behavior
of the whole like a desired geometric configuration of roli{4 2, 13], desired coverage vs. sensing energy
trade-off in [5] and maximizing the power output of a windrfein [10]. Thus we seek distributed algorithms
for the agents to implement so that their collective acticorsverge in an appropriate sense to the set

A" = {argzréiﬁ W(a)}.

Before proceeding further we must point out that this is aegaincombinatorial optimization problem
and is NP hard. In fact, even if a brute force search were us&dnot clear how elements od* can be
identified if the agents do not exchange any information.

2.1.2 Interaction Model

Interaction in a multi-agent setting can comprise of expiommunication between agents via communi-
cation or can be implicit with actions of an agent reflectimgloe payoff of another. The latter is an artifact
of the given problem at hand and must be modeled appropridte present a general modeling framework
that allows the designer to encode known inter-agent iotienas in the system. The communication network
varies from one application to another and we choose a sigigialing network where only a bit-valued
variable is exchanged amongst the agents.

1. Interaction Graph
Consider a directed graghy (a) for everya € A with a vertex assigned to each agent. Its edge set
contains the directed edgg 7) if and only if 3 b € A; such thatu; (a) # u;(b,a—;).t Thus, for every
action profilea, G;(a) encodes the set of agents whose actions can (and must) taéegayoffs of
other specific agents. We call this graph ihteraction graph

In the case of a wind farm, power production of a turbine ddveasn of another may be affected by
the actions of the latter (see Figure 1). For the collabesatibotics problem, all robots that contribute
to the artificial potential of a given robot constitute thdés in-neighbors in the interaction graph.

1we borrow notation from the game theory literature; denotes the actions taken by the agents in sulb$aam the collective
actiona and the actions of the rest is denotedday ;.
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Figure 1: (a) Schematic diagram of a wind farm; a loop reprissa wind turbine and the dotted lines its
corresponding wake. (b) Solid arrows represent edggs sBnd the dotted arrows edgesdp.

Essentially, the interaction graph is a way of encodingadeficoarse” information about the structure
of the payoff functions even in the absence of explicit kremige of their functional forms.

2. Communication Graph
The agents are assumed to have a mechanism to transmitausvmessage to other agents within
a certain range. The mode of communication is broadcast aadj@nt need not know which other
agents are receiving its message. For each .4, we model this explicit information exchange by
a directed graph over the set of age@itéa) called thecommunication graphA directed edgé€;, )
in G.(a) represents that ageptcan send a message to agéemthen the joint action being played is
a. Let N;(a) denote the in-neighbors of agenin the communication graph. Each transmission is
assumed to last the duration of the algorithm iterate.

The dependence of the above graphsaor A is required for accurate modeling; for instance, in the
collaborative robotics example wherk represents the set of discretized positions of rapbathich robots

are within the interaction or communication range of spe@thers depends on the position of all robots
(e A). Onthe contrary, in the wind farm example, these graphd&eamonsidered constant for alke A (see
Figure 1(b)). We stress that this framework is for modelind analysis at the level of the system designer;
the agents neither know the joint action nor the correspandeighbors irG;(-) or G.(-) and simply go
about measuring their utilities, broadcasting messagdgegeiving such broadcast messages from other
agents whenin range.

2.2 The Decentralized Algorithm

Endow agent with a statex; = [a;, m;]; a; € A; corresponds to the action picked amd is the {0,1}-
valued ‘mood’ of ageni. When the mood variable equalsve call the agent “content” else “discontent”.
The collective state of all agents is denotediby (a, m). Additionally, each agent maintains a variable
which records the payoff it received in the previous iteratet = 0, the agent initializes (mg); = 0, picks
an arbitrary(ap); € A; and records the received payaff = (uJ***);. With slight abuse of notation, we let
Ge(ar) = Ge(t) andA;((ar)i) = Ai(t).

For a certain pre-specified monotone decreasing seqyefgen, with ¢; — 0 ast — oo, and constants
c>W*, 51, B2 > 0, agenti performs the following sequentially at every ensuing timgantt > 0.
Start
Step 1:Receive(m,_, ), fromall j € NV;(t—1), i.e. the in-neighbors afin G.(¢t — 1). Compute temporary
variablem; as follows.

1. If (mt_l)i =0, setm; = 0;



2. else, if(m;_1); = 1 and H (m;_,); =1, setim; = 1;
JEN; (t—1)

3. and if(mt,l)i =1land H (mt,l)j =0,
je./\/i(t—l)
setr; = {0,1} w.p. {1 — /", '},
Step 2: Pick (a;); as follows.
1. If m; = 1, pick (a;); from A; (¢t — 1) according to the p.m.f.

p(b) = { L—¢f if b= (a._1); W

m otherwise.
2. Else, ifm; = 0, pick (a;); according to the uniform distribution

p(b) forallb € A;(t —1). (2)

_ 1

(Ai(t = 1)
Step 3: Measure or receive payofti]™**); (= u;(at)).
Step 4: Update(m;); as follows.

1. Ifm; =1 and((at)l-, (u?es)i) = ((at,l)i,m) , then SE(mt)i =1;

2. else, If’ﬁ’LZ =1 and((at)i, (u;nes)i) 75 ((at_l)i,ﬂi),
set(m;); = {0,1} w.p. {1 — /%, /*};

3. and ifm; = 0, set

(u’VYLeS)i
1 w.p. € "
my);, = mesy 3
(m) { 0 wp 11— ®)

Updatem-(<— u;”es)i.
Step 5: Broadcastm;); to all out-neighbors ig.(t).
Stop
It is easy to see that the algorithm defines a nonhomogeneatMchain on the state spaSe= A x
{0, 1}V,

2.3 Convergence Guarantees

The following is the main convergence result for the de@dizied algorithm described above.
Theorem 1. Let

[e.e]
1. Y e =occand
t=1

2. foreverya € A, G.(a) UGy (a) be strongly connected.
Then, ifX,; = [a;, m,] denotes the collective state of the agents at time

tlim Pla; € A*] = 1.

From a practical view-point, the result provides a systasigher with guidelines on how to guarantee
convergence of the above algorithm. The first assumptiorsiages to a constraint on the sequefiGé cn
(or an “annealing schedule”) on how fast it may approach.zero

The second provides flexibility to design a ‘minimal’ comnization network by utilizing information
about the payoff structure (such a choice is made in Figloe For instance, if the designer has no infor-
mation about the structure of the payoff functigh (-) = @), a communication network such th@t(a) is
strongly connected for all € A can be installed to guarantee convergence. The other exirase is for
all a € A, G;(a) is strongly connected; then the algorithm converges eveharabsence of any explicit
communication (It can be seen that strong connectivity,oimplies interdependence and indeed the result
holds true under analogous weaker but more cumbersometmesnditions.).



3 Perturbed Markov Chains

The analysis of the algorithm described in the previousiaectlies on the theory gberturbed Markov
chainsdeveloped by Young [14]. Consider a homogeneous Markowalidh possibly several stationary
distributions. Perturb the transition matrix of this chhinadding appropriate functions of a certain noise
parametet to obtain an ergodic chain with a unique stationary distidsu These functions are such that,
ase — 0, the transition matrix of the perturbed chain convergestd of the ‘unperturbed chain’ with
individual elements converging to their respective limvitigh asymptotic rates(-,-) (i.e. asO(e"*¥))).
What is interesting is that, under appropriate conditiass,— 0, the stationary distribution of the perturbed
chain converges to a certain stationary distribution ofuthperturbed chain and the support of the latter can
be characterized in terms of the ratés ). Thus, one can effectively “choose” amongst the possiblgise
stationary distributions of the unperturbed chain. Thigisa describes this theory in detail and also proves
results on how to reduceover time while evolving according to the perturbed chaenftering the chain
nonhomogeneous ) while retaining ergodicity.

3.1 Perturbed Markov Chains

Let P(0) be the 1-step transition probability matrix of a Markov ¢han a finite state space We refer to
this chain as thenperturbed chain

Definition 3.1. A regular perturbation of?(0) consists of a stochastic matrix valued funct®(e) on some
non-degenerate intervdl, ] that satisfies, for alk,y € S,

1. P(e) isirreducible and aperiodic for eache (0, al,

2. lin% P, ,(e) = P, ,(0)and
3. if Py y(e) > 0 for some, thend r(z,y) > 0 such thad < lim eT@VP, (€) < 0.

An immediate consequence of the first requirement is thaietheists a unique stationary distribution
u(e) satisfyingu(e)P(e) = u(e) for eache € (0,a]. The other two requirements dictate the way the
perturbed chain converges to the unperturbed ore-as.

It follows that for a sufficiently smalt*, 3 0 < a(x,y) < @(x,y) < oo, such that

Q(I5 y) < 677‘(Iyy)Pz,y(€) < a(I, y), Ve<er.

By denoting min_a(z,y) = a« andmax @(z,y) = @, we have
T, yeSsS x,Yyes

ac@V <P (e) <@ ™Y Ve < et 4

L

LetL = {f € €| f(e) > 0, f(e) = >_ a;e’ for somea; € R,b; > 0} for some large enough but fixed
=1

L € N. The following assumption will be invoked later.

Assumption 2. Forall z,y € S, P, ,(¢) € £.

We develop some notation that will help state the main reegiarding perturbed Markov chains. The
parameter(z, y) in the definition of regular perturbation is called thetep transition resistandeom state
x toy. Notice that(z, y) = 0 only for the one step transitions— y allowed unde(0). A pathh(a — b)

from a staten € Stob € Sis an ordered sefa = z1,22,...,z, = b} C S such that every transition
xr — xp41 in the sequence has positive 1-step probability accordidgyt). The resistance of such a path
n—1

is given byr(h) = > r(xk, Thy1).

Definition 3.2. The resistance from to y is given byp(z, y) = min{r(h)| h(x — y) is a path}.

Definition 3.3. Given a subsetl C S, its co-radius is given b¢'R(A) = mSa\XA miE p(x,y).2
S ye

2These definitions are adopted from relevant literature, [16].



Thus, p(z, y) is the minimum resistance over all possible paths startirsgader and ending at statg
and the co-radius of a set specifies the maximum resistaatentst be overcome to enter it from outside.
We will overload the definition of resistance to include stence between two subsé&tg S, C S:

S1,52) = min z,Y).
p(51,82) = _min p(z,y)

SinceP(e) is irreducible fore > 0, p(S1,52) < oo forall S1,S2 C S.

Definition 3.4. A recurrence or communication class of a Markov chain is a-eompty subset of states
E C S such thatforanye,y € F, 3 h(z — y) and foranyz € Eandy € S\ E, # h(z — y).

Let us denote the recurrence classes of the unperturbed Bi@) as E1, ..., ). Consider a directed
graphGrc on the vertex sefl, ..., M} with each vertex corresponding to a recurrence class. |-gtabe
a spanning subtree §ir¢ that contains a unique directed path from each vertgt jn., M} \ {;j} to j and
denote the set of aji-trees inGrc by 7.

Definition 3.5. The stochastic potential of a recurrence cldssis
v(Ei) = min > o(Ej Ex).
TeTpe (4,k)ET
Let
V"= Ir}gflv(Ei)-
We are now ready to state the main result regarding pertuvizgklov chains.

Theorem 2([14], Theorem 4) Let E, ..., Ej; denote the recurrence classes of the Markov ctiie) on
a finite state spacé. Let P(e) be a regular perturbation oP(0) and letu(e) denote its unique stationary
distribution. Then,

1. ase — 0, u(e) — u(0), wherew(0) is a stationary distribution of(0) and

2. a state is stochastically stable i, (0) > 0 < z € E; such thaty(E;) = v*.

3.2 Ergodicity of nonhomogeneous Markov chains

We now recall some results on ergodicity of a nonhomogenk@ukov chain on a finite state spaewith
Q(t) being the 1-step transition probability matrix at time

Definition 3.6 (Ergodicity). The chain is
e weakly ergodic (WE) if foral’ € Nand allx,y, 2z € S,

Jlim QY — Q2" = 0.

e strongly ergodic (SE) if there exists a probability distrilton 7 on .S such that for any initial distribu-
tionn(0) on S and anyt’ € N,
lim 7(0)Q"Y = x.

t—oo

We callr the limiting distribution of the chain.

Both definitions of ergodicity capture a certain notion afgfetfulness in that the chain forgets where it
started after sufficiently large time steps. It is also clbat SEimplies WE. Before proceeding to results
that give conditions for ergodicity, we make the followingfishition.

Definition 3.7 (Ergodic Coefficient) Given a row stochastic matri@ € R!S1*I51  its ergodic coefficient is
given by
0(Q) = 1= min 3 min{Qu.z Q.:}.

z€S



The following result due to Doeblin provides a characteairafor WE based on the ergodic coefficient.

Theorem 3(Weak Ergodicity, see [17], Theorem 8.2)he chain is weakly ergodic if and only if there exists
a strictly increasing sequence of positive integfrs},.cn such that

D_(1=8(QUn")) = oo, (5)

neN
The next Theorem provides a sufficiency condition$&

Theorem 4 (Strong Ergodicity, see [17], Theorem 8. 3uppose the chain is weakly ergodic and attall
there existsr; such thatr;Q(t) = m and

D Ml = milly < oo, (6)
teN
then the chain is strongly ergodic. Furthermore, the lingtidistributionr as in the definition of SE is the
same as the limit of the sequenieq };cn.

Proof. This standard result can be found in [17], Theorem 8.3, of, [8orem V.4.3. To see why is the
limiting distribution of the nonhomogeneous chain, not {{6) implies (8.12) in [17], pp. 242-243, which
is equivalent to the definition GE O

3.3 Ergodicity of Nonhomogeneous Perturbed Markov Chains

Consider the nonhomogeneous Markov chain resulting fraskipg thee along the evolution ofP(¢) at
time instant as the corresponding elemepbf the sequencée; }:cn. We henceforth refer to this sequence
as the annealing schedule and the resulting Markov chailreasainhomogeneous perturbed chain. Theorem
5 provides conditions on the annealing schedule that gtegamgodicity of the nonhomogeneous perturbed
chain with 1(0) (as in Theorem 2) being the limiting distribution. We dentte time-varying transition
matrix of the nonhomogeneous perturbed chain by the baitiHoi.e. P(t) = P(e;).

We will need the following technical Lemma.

Lemma 3.1. Let > a(n) = o0 anda(n) > a(n+1) ¥n. Thenforany’,l € N, > a(n' +14+n) = co.
neN neN

Proof. The case fot = 1 is trivially true. If I > 1,V n,
a(n’+in) > a(® +In+m), Ym=1,...,1—1
-1
=1l-a(n’+In) > Z a(n’ +In+m).

m=0

-1
Thusl Z a(n’ +1in) > Z Z a(n’ +1In+m)

neN neNm=0
= Z a(n’ +n) = co.
neN
O
Define
= in CR(E). 7
f= pmin (E) (7

Theorem 5([2], Theorem 3) Let the recurrence classes of the unperturbed cliif) be aperiodic and the
parametere in the perturbed chain be scheduled according to the morotimtreasing sequenge; }:cn,
withe; — 0 ast — oo, as described above. Then, a sufficient condition for wegddicity of the resulting
nonhomogeneous Markov chd®{t) is

Z € = o0.

teN
Furthermore, if the chain is weakly ergodic and Assumptidmofls, then it is strongly ergodic with the
limiting distribution beingu(0) as described in Theorem 2.



Proof. Weak ErgodicityLet E* be a recurrent class such tliak(E*) = ~. SinceE* is aperiodic accord-
ing to P(0), there exists afiy € N such that for alln > I, andz,y € £, P;",(0) > 0 (see [17], Theorem
4.3, pp. 75). Since any path undef0) has zero resistance, once the chain enters a statg ihcan remain
there with zero resistance via a path of length greaterthan

Lete* € E* be such thall 2/ € S\ E* such thatr(z/,e*) = ~ i.e. the transitionr’ — e* has the
most resistance among all — e¢*, € S. For allz € S, consider the shortest pathéz — ¢*) such
thatr(h(xz — e*)) = r(z,e*) and denote the length of such pathsiby,e*). Letls, = I;leaggl(x,e*). So

by waiting forl, transitions, there is a path #6* from all statesc € S with resistance (z, ¢*). Thus by
allowing more thar = [ + I transitions, we have for any € S and a sufficiently smak*,

Pl.(e) >a™e", Ve<e, m>1.
From (4), since; — 0, for sufficiently larget,
« ez(z’y) <P, ,0t) <@ ez(z’y).
Consequently, by choosing a subsequence such,that- ¢,, = [, for sufficiently largen,

P(tn,tnﬂ) > Qlé’tynﬂa Vre S

x,e*

Then, for sufficiently large:, we can bound

3 tnytn tn,tn
E mln{P;VZ +1)’P§/,z +1)}
z€S
3 tn7tn tn7tn
> mln{Piye* ), Péye* +1)} > gleznﬁ, Vr,y € S.

Taking minimum ovet, y, for sufficiently largen,

i, > min{PL e P} > ol ®)
Since {t, }nen is an equally spaced subsequence, from Lemma 3.1 and thehleg of the theorem,

> EZHH = oo. In view of this and (8)WEfollows by noting that (5) is verified with) = P.
neN
Strong Ergodicity:Recall the homogeneous perturbed Markov ctajn). Consider a grapi = (5, €)

with the state spacé as the vertex set and a directed edgey) € £ if and only if P, ,(e) > 0 for some
e. For any vertex € S, az-treeis a subset of that forms a spanning tree ¢hsuch that for every vertex
x # z, there exists a unique directed path frerto z. Let 7, be the set of alk-trees inG. Then it is known
(see [14]) that the stationary distributipie) is given by

- qz (6)
Hz (6) - Z 0a (6) (9)

zeS

whereq.(¢) = Z H Py y(€).

T€T, (z,y)eT

Under assumption 2, both the numerator and denominatoedRtH.S of (9) belong t& for a sufficiently
large L. Denoting the derivative w.r.te by primes and suppressing the argument,= (1/( > ¢.)?) -
zeS

(q. ZS Gz — G- ZS q.). Thus, after multiplying and dividing with an appropriatyer ofe, the numerator
TE xe

of 11/, also belongs t& for a sufficiently largel. For a sufficiently smakt, > 0, x., will be dominated by the
term with the least exponent effor all ¢ < ¢,. Thus, the sign of., will be either non-positive or positive

foralle < ¢,. Lete* = miglez, S~ c Sbhesuchthat € S~ & u/, <0Ve<e*andST =S5\ S™. Lett*
zE



be such that; < ¢*, V¢t > t*. Then,

> luler) = plers)lls =D lluler) — plera) i+

S S (e = plers) + 3 (aleren) — paler)
t=t*+1 Lzes~ z€8+
SI25 D SO EAE)
€5 t=t+1
+ Z Z (pz(€r1) — prz(er))
z€8+ t=t*+1

< 0

o
sinceM = Y |lu(e:) — nler1)]|1 is a finite sum of finite terms and successive terms cancelmiitbth
t=1

infinite sums. Since (6) is satisfied with{(t) = u(e:), as shown above, and the chainiE SE follows
from Theorem 4. The limiting distribution, in view of Theane2, is.(0). O

4 Analysis of the Algorithm

The objective of this section is to prove Theorem 1. We wiltficonsider the algorithm of section 2.2
with the parametet, held constant at > 0. The algorithm then describes a Markov chain on the finite
state spacé = A x {0,1}"V and we denote its 1-step transition matrix/a&). The reason for choosing
the same notation here as for the general perturbed Markamw cliscussed in section 3 is that we wish
to view the Markov chain induced by the algorithm as a peddrbhain and analyze it using results from
section 3. SimilarlyP(¢) denotes the 1-step transition probability matrix for theation (¢,¢ + 1) of the
nonhomogeneous Markov chain induced by the algorithm aitbesl in section 3, i.e. with time varying
¢;. Henceforth, the components of any S will be identified with a superscripti.e: = [a®, m*].

Lemma 4.1. The Markov chairP(¢) is irreducible and aperiodic.

Proof. Let us consider the transition probability from stagte S to z € S. Fore > 0, irrespective of the
values of respectivé;, the transition probabilities (1) and (2) let the agent&pigoint actiona’ € A such
thata, # o for any: with positive probability. Then, again irrespective of treues ofm;, by step 4.2
or 4.3, the state can transition fragito [/, 0] with positive probability. Next, starting from stafi€, 0], by
Assumption 1 and transition probability (2), agéntn pick the action? with positive probability in a finite
number of steps and can keep playifgwith positive probability for any arbitrary finite duratidhereafter
while maintainingm; = 0 all the while. Thus there is a positive probability for alleawgs to pick actions
that correspond ta’, i.e. transition from statg/, 0] to [a*, 0]. Finally, in the very next time instant, agent
i can repeat its action with positive probability and updtseriood variable ten? with positive probability
(3). Hence the transitiop to z occurs with positive probability.

Aperiodicity follows by noting that thé, ,.(¢) > 0 for anyz € S: the same action can be picked by the
agents in consecutive time steps with positive probakdlitg (3) permits picking the same mood variable
again with positive probability. O

Lemma 4.1 implies thaP(¢) has a unique stationary distribution which we denote, abénprevious
section, byu(e). It is also clear thaf(¢) is a regular perturbation dP(0) (the latter obtained by setting
e: = 0 in the algorithm). Thus, by Theorem 2(e) — 1(0) ase — 0 whereu(0) is a stationary distribution
of P(0).

10



4.1 Stochastically Stable States: Support gi(0)
Definition 4.1. Let
C%={reSm*=1}and
D° = {z € Sm” = 0}.

Lemma 4.2. If for everya € A, G.(a) U Gr(a) is strongly connected, the recurrence classes of the unper-
turbed chainP(0) are D° and the singletons € C°.

Proof. Consider transitions defined by the algorithm witk- 0. Consequently, in Step 17, = (m—1); -
I jen () (mu—1);. Everyz € CY satisfiesP(X;4+1 = 2|X; = z) = 1 since by (1) the same joint action
a? is picked w.p. 1 resulting in the same payoff which in turrulessin execution of step 4.1. A stagec D°
is also constrained to evolve only D’ since (3) withe = 0 does not permit a transition te; = 1 for anyi.
Also, by Assumption 1 and transition rule (2), there is a pasiprobability of transitioning from any joint
action profile inA to any other. Thu®° and each: € C* are recurrence classesBf{0).

Now consider a state € S\ {C° U D°}. LetJ* = {ilm? =0} C {1, ..., N} be the non-empty subset
of discontent agents. Sin¢k(a”) U G;(a®) is strongly connected, there must exist an outward edgésn th
graph from at least one vertéxe J* to a vertex ¢ J*. Two cases arise.

1. If (¢/,4) belongs tog; (a™), thend b, € A;s that agent’ can pick with positive probability according
to (2) and due to Assumption 1, such th@ta”) # u;(a” ., bi). This changes the mood variable of
agent; from1 to 0 in step 4.2.

2. If (¢,1) belongs taG.(a”), then agent receives & from its in-neighbor’ in step 4.1. Agent sets
m,; = 0 and consequently; is set to0 in Step 4.3.

Thusz transitions tar’ such that.J*| < |J*'| i.e. at least one more agent becomes discontent with p@sitiv
probability. Since there are finite number of agents and lmeaf the strong connectivity assumption,
repeating this argument far yields that there is a positive probability of transitiogifitom = to D°; all
agents eventually become discontent. Hence no stage\ifC® U D} is in a recurrence class. Since all
these transitions are accordingf0), we also have for any € D°,

p(x,y) =0, VaeS\C. (10)
|

Figure 2: The circles represent recurrence classeB(6§ and weights on the arrows the corresponding
p(-,)s. f W(a*) = W*, the zig-zag lines represent edges in the minimum resist&ae rooted at; .

Guided by Theorem 2, we now proceed to calculate the stdclpential of the recurrence classes of
P(0). But first we organize some calculations in the following ean

11



Lemma 4.3. Under the same assumption as Lemma 4.2, fornaayD° andz € C°,

plx,y)=c, Vel (11)
p(y,z) = W(a®), (12)
plz,2) < W(a®), Vo e S\C°, (13)
andp(z',2) > ¢, V2 € C°, 2/ # 2. (14)

Proof. Considerr € C°. For anyi, a change inn? from 1 to 0 must involve some agent picking a different
action. From (1), such a change by an agent has resistafi¢ereforep(x, y) > ¢. Once such an action is
picked by a content agent, its mood can chandewdth a zero resistance transition in step 4.2. From (10),
this intermediate state can now moveste D with zero resistance. Thus (11) is proved.

For anyy € D°, anyh(y — z) must undergaV discontent to content transitions according to (3)

N
(becausen?! = 0 = m; = 0 in the ensuing iterate). Thygy, z) > > u;(a*) = W(a®). Sincern; = 0
=1

for all 4, from (2), all agents can collectively piak via a zero res%stance transition and become content
with resistancéV (a*). Thus there exists ala(x — z) such that(h) = W (a*). Hencep(z, z) = W(a?)
establishing (12). Then (13) follows in view of (10): cormid(x — y) followed byh(y — z).

Forz' € O, 2/ # z, there exists at least one agent playing different actiorteé two states. Thus
anyh(z’ — z), must involve this content agent picking a different actiath resistance: (from (1)) and
becoming content with resistangg or u; (a*) by step 4.2 or 4.3 respectively. Hence (14) is establishég.

From Lemma 4.2, there are exacfl§| + 1 recurrence classes &0); |.4| corresponding to eache A
(i.e. each element af”) and one for the seb®. Let{z, ..., 2.4} be an enumeration far®.

Lemma 4.4. Under the same assumption as Lemma 4.2, the stochastitathe set is{z; € C°|W (a*!) =
W},

Proof. We will show that the minimum potentiattrees inGrc are rooted a{z; € CO|W (a®) = W*}.
The claim then follows as a consequence of Theorem 2. CaniSigere 2 which depicts edges of thec
corresponding to the algorithm. The resistances betweeretturrence classes are as calculated in Lemma
4.3. Forz; € CY consider anyz;-tree in this graph. Any such tree must have one outward edge f
each of the(|A| — 1) states inC? and an outward edge frof°. The former contribute a resistance of at
least(].4| — 1)c and the lattefV (a) for somea € A, hence the least possible stochastic potential for a tree
rooted at a state i is (] A| — 1)c + W*. Itis possible to construct such a tree for any state C° with
W (a*) = W* as denoted by the zig-zag lines in Figure 2. By a similar apinithe stochastic potential
of DV is |A| - c. Sincec > W*, any statex; € C° with W (a*) = W* corresponds to the least stochastic
potential state.

All that is left to prove is that any state € C° with W (a*') > W* has stochastic potential greater than
(JA| = 1)c + W*. Again, consider any;-tree. If the outgoing edge frof" is incident on a state, € C°,
2, # z; With W (a**) = W*, there must exist at least one edge from a sta€&’ito z; and(|.4| —2) outward
edges from the rest of elements@f to complete the tree. Such a tree has resistance strictitegréhan
(JA| — 1)c + W* because of the link between two state<ih Else, if the outgoing edge from"° is to a
statez, € CY with W (a**) > W*, the outward edges from thg4| — 1) states inC? result in a resistance
at least greater thafpd| — 1)c + W (a**). O

4.2 Proof of Theorem 1

We return to the analysis of the nonhomogeneous Markov clinnduced by the algorithm with the

o0
annealing schedulée; }:cny. The proof relies on noting that if the annealing schedutisfées » €,° =
t=1
oo, P is strongly ergodic with the limiting distribution havinggport over states with efficient actions as

described by Lemma 4.4.

Lemma 4.5. Under the same assumption as Lemma 4.2, for the nonhomagekkeokov chain defined on
S by the algorithmy as defined ir{7) equalsc.

12



Proof. From Lemma 4.2 and (7),
k = min{{CR(z)}.cco, CR(D°)}. For anyz € C°, from (13) and (14)C' R(z) > ¢. From (10) and (11),
CR(D) = c. Hencex = c. O

Proof of Theorem 1The Assumption of Lemma 4.2 is included in the statement@fltheorem. All tran-
sition probabilities in the algorithm of section 2.2 beldgg; thus Assumption 2 holds. For agyc D°
andz € C°% P, ,(0) > 0andP, .(0) > 0. Hence the recurrence classes of the unperturbed Markadw cha
are aperiodic and, from Theorem 5 and Lemma 4.5, the chatroisgdy ergodic if

Zetc = o0. (15)

t=1

Next, for any initial distribution, on S and any subsef c S, P(X; € S) = 3 (noP?),. Since
jes
(15) impliesSEwith limiting distributionx(0) as in Theorem 2 and from the definition SE tlim P(X; €
S) =3 u;(0). LetS = {x € S|W(a*) = W*,m* = 1}, then in view of Lemma 4.4,
j€s

thm ]P’[at S A*] =1.

5 Numerical Simulations and Conclusions

To illustrate the setup, we consider the payoff structur€ahble 1. As explained earlier, the agents do not
know this structure, they can only pick actions simultargdptrom A; = {I, h} fori = 1,2, 3 and measure
the resulting payoffs. Let the agents implement the algoriof section 2.2 to learn the welfare minimizing
state. In this example, it is clear (at the level of the systesigner) that agent 3's payoff depends only on its
own actions and are unaffected by actions of agents 1 andu, Te interaction graph.(a) is not strongly
connected for any since there is no incident edge on 3. The plot in Figure 3 sSHdABLAB simulation
runs for the algorithm. The plot on the top is for whénis empty (thereby violating the hypothesis of
Theorem 1) and the one below for whép(a) consists of the directed edgg, 3) for all a € A (thereby
satisfying the hypothesis of Theorem 1). Observe that thiantes where the product of the mood variables
equalsl can be interpreted as “when the agents have learned”.

In the first case, since agent 3 cannot be influenced, it seeiesutn to playh which offers it an in-
dividually rational lower payoff o% as opposed to playingwith a payoffi. Quite intuitively, agents
and2 seem to learn to plagh, h): the welfare minimizing action of the ‘sub-game’ where 3 abesh with
welfare= 2 which is suboptimal to the global welfare minimal gf achieved with(l,/,1). In the second
case, it is observed that when the lifik 3) is added tog.., the agents lean to play the welfare minimal

1,1,0).

Table 1: Payoff structure of a three agent system

Agent 3— j I 7 -
Agent 2— j 7 7 -
Agent 1
T ey 6L Ghw Gng)
h 1,4,hH (G350 (.13

An interesting question is how does the performance of theradhm depend og; andg.. We present
results of some numerical experiments to motivate suchtiguess First of all, we quantify performance as
the percentage of times the welfare minimal actions aregulay a fixed duration. To analyze the effect of
Gy, considerN identical agents withd; = {0.1,1}. Let us endow agentwith utility function u;(a) =

13
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Figure 3: Simulation resuts for the three agent experimvegifare plotted in blue solid lines and product of
moods plotted with red crosses.

1+1—2q Z;fl‘.fq a;, where the operations in the limits of the summation are modThe welfare function
W(a) = vazl a;, ¥ ¢ = 1,...,N/2, with a unique minimum at0.1, ...,0.1). Notice that, for eacly,
G{(a) is the same for alt € A and can be varied by varying= 1,..., N/2. In Table 2 we report the
performance for the cas€ = 10,c = 1.1, 81 = B2 = 0.5, ¢, = % and the algorithm is allowed to run
while ¢; > 10~%. The algorithm is implemented on MATLAB and the reported tiens are averaged over
100 runs for each value af and the standard deviation is reported as well. Since agrealue ofy can be
interpreted as more complex interaction, the result seeragree with the intuitive notion that the speed of
convergence reduces with increased interaction complébatstudy the effect of., we use the same set up

Table 2: Effects of varying/}
Performance Std. Deviation

q

1 93.78% 2.92%
2 62.21% 7.84%
3 48.15% 9.711%
4 45.35% 11.11%
5 44.31% 11.79%

with w;(a) = a;—q fori =2, ..., N andu;(a) = an. ThusG;(a) is a directed ring for al. € A (see Figure
4 (a)). Let directed edg€s, i — ¢q) (where subtraction is mol) for all ; constituteG4(a) forall « € A. Let
G(q) = G2 U G;. The same experiment as before is carried out with differahites ofg; the performance
measure, the length of the longest shortest-path (SB)dn and length of a cycle iid7(¢) are plotted for
values ofg in {0, .., (N — 1)} in Figure 4 (b). The results suggest a heuristic: To impramégsmance, pick
G.(a) to comprise of edges exactly oppositefa) and thereby reducing the cycle lengths.

Before concluding we wish to point out that the free paransgtge 32 > 0 in the algorithm can be tuned
according to the application to get improved performaneeirfstance setting, = max{0, (u}"**); — @; }
can allow the agent to remain content when the change in payof the desired direction in step 4.2.
These parameters can also be interpreted, in some senseigigswon the communication and interaction
graphs as larger values gf andg3; correspond to agents being more sensitive to the informétam the
communication and interaction graphs respectively (sgsst.3 and 4.2 of the algorithm).

An important open question is determining the rate of cogwece of the algorithm. One way to answer
this question is to calculate the rate of convergencgrnef— 1(0)|| ast — oo, wheren; is the density of
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Figure 4. Effects of varyingj. for N = 10. (a) The blue solid arrows represéht and the dotted arrows
denote the edg€l, 1 — ¢) in the corresponding?. (b) Plot of performance, longest SP and cycle length
w.r.t. different values of.

X; = [a;, m,]. This is difficult since the Markov chain is nonhomogenecqu$ e best results we know in
such situations are for the simulated annealing algorith®h [We will address this issue along such lines in
future work. We expect that such an investigation will alsedlight on the issue of how the communication
and interaction graphs play a role in speed of convergence.
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