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Due to the essential nature of wetlands and their historic losses, wetland 

restoration has been a recent focus of conservation activity. The objective of this 

study was to compare selected physical soil properties and those properties and 

processes associated with carbon sequestration in restored and natural freshwater 

depressional wetlands on the Delmarva Peninsula. Three distinct hydrological zones 

within nine restored and five natural wetlands were sampled and monitored over the 

course of a year. As a result of earthmoving activities, restored wetlands 

demonstrated significant compaction, potentially limiting root and hydrological 

infiltration. Restored wetlands also demonstrated shorter periods of saturation, which 

led to increased carbon decomposition rates. As a result of soil disturbance, restored 

wetlands had significantly lower carbon stocks than natural wetlands. Restored 

wetlands also demonstrated no difference in carbon content across the three 

hydrological zones, the time since restoration being too short for carbon stocks to 

appreciably accumulate. 
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Chapter 1: Introduction 

 Wetlands are unique and critical ecosystems, that, until recent decades have 

largely gone unappreciated. The environmental services and functions provide by 

wetlands are numerous. Wetlands play a critical role in stormflow buffering, nutrient 

cycling, and wildlife habitat. Additionally, wetlands are host to some of the highest 

areas of primary productivity found in nature. Additionally, wetlands act as valuable 

carbon sinks, storing carbon in the form of soil organic matter. 

Historically, many of these important roles and functions of wetlands were 

unknown or unappreciated, and therefore wetlands haven’t traditionally been afforded 

the respect they deserve. A large proportion of wetlands (nationally and regionally) 

have been drained for numerous reasons, but primarily to utilize their organic-rich 

soils for agriculture. They have been also drained in an attempt at mosquito and pest 

control, as well as for urban development. It is estimated that over half of the nation’s 

pre-colonial wetlands had been destroyed by the mid-twentieth century. 

It was only relatively recently that the importance of wetlands was recognized 

and they were afforded legal protection. These protections were afforded under such 

laws as the Rivers and Harbors Act, Clean Water Act, and Swampbuster provisions of 

the Food Security Act. While important to preventing further wetland loss, these 

protections, did nothing to address the extensive prior historical loss of wetlands. 

New focus was placed upon restoration of wetlands and expanding wetland 

acreage. Numerous federal programs such as the Wetlands Reserve Program, 

Conservation Reserve Program, and Conservation Reserve Enhancement Program 
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were created in order to restore and/or establish wetland conditions on privately 

owned land. Ultimately, a combination of legal protections and restoration of 

disturbed wetlands have taken us from annual net losses of wetland acreage to net 

gains. 

Wetland restoration is undertaken by attempting to establish saturated soil 

conditions at the soil surface long enough for anaerobic soils conditions to establish 

themselves during the growing season. Efforts to establish wetland plant communities 

often follow. In the Delmarva region of Delaware and Maryland the most common 

way to implement the hydrological component of wetland restoration is through 

scraping – the intentional alteration and removal of soil material in order to raise the 

water table relative to the soil surface (by lowering the soil surface). Given the high 

water tables of the region, this is generally an easy approach, but could lead to several 

possible negative effects. The use of heavy machinery in the scraping process could 

lead to alterations in soil properties and to other serious disturbances to the soil itself. 

One focus of this study was to observe and quantify these disturbances. 

Another major focus of this study was to monitor and quantify a number of 

wetland properties related to the sequestration of carbon. Hydrology, considered the 

“master variable” of wetland conditions, was measured and modeled to document the 

hydroperiod and the duration of saturated soil conditions. Various components of 

carbon dynamics were documented in the form of the measuring decomposition rates, 

which when joined with carbon input data was related to  soil carbon stocks. Using 

this approach, comparisons were made between restored and natural wetlands. 



 

 3 
 

Thus the overall goal of this study was to compare wetlands restored using 

common techniques (scraping) over a 7 to 28 year period with natural wetland 

counterparts with regard to selected physical soil properties and also those properties 

and processes that contribute to the sequestration of organic carbon. 
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Chapter 2: Background 

 

Wetland Functions 

Wetlands are critical and unique environments that provide a bevy of 

environmental services. Wetlands represent the ecotone between terrestrial and 

aquatic ecosystems that fosters a number of highly productive and varied vegetative 

communities adapted to wet conditions (Mitsch & Gosselink, 2007). Additionally, 

wetlands provide habitat for numerous animal species. Fully eighty percent of 

waterfowl species, fifty percent of protected migratory bird species, and ninety five 

percent of commercially harvested fish and shellfish species are wetland-dependent 

(Wharton et al., 1982; Feierabend & Zelazny, 1987). Wetlands modify local 

hydrology by mitigating stormflow. One study of the Chesapeake Bay drainage basin 

found that although wetlands only comprised 4% of the total basin area, they resulted 

in a floodflow reduction of 50% compared to basins without wetlands (Novitzki, 

1985). 

Wetlands play a major role in a number of biologically mediated, redox-

driven, biogeochemical nutrient cycles. Soils are central to the nitrogen cycle, and 

due to their wet nature, wetlands provide an environment facilitating denitrification 

(Brady & Weil, 2008). Aerobic soils, (whether on account of proximity to the soil 

surface or seasonal dryness) allow for nitrification to occur and ammonia to be 

oxidized to nitrate and leached. In contrast, wetland soil under anaerobic conditions 

due to prolonged wetness, allow for denitrification to occur and nitrate to be reduced 
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to nitrogen gas and lost to the atmosphere. Some wetland soils also play an important 

role in the sulfur cycle. Salt marshes, in particular, are the location where tidally-

borne soluble sulfates are reduced to sulfides under strongly anaerobic conditions. 

Under these aerobic conditions, sulfides can either be immobilized and retained in the 

soil by being adsorbed to soil colloids or bonded to metal cations, or they can be 

volatized and released into the atmosphere in the form of hydrogen sulfide. Salt 

marshes are so central to the sulfur cycle that they account for twenty five percent of 

all yearly biogenic atmospheric sulfur input (Gosselink & Maltby, 1993). 

Of particular importance is the role wetlands play in the global carbon cycle. 

Rising atmospheric carbon dioxide levels are the principle driver behind climate 

change, and it is anticipated that their rate of atmospheric accumulation over the next 

few decades will only increase (Raupach et al., 2007). Wetland ecosystems are a 

natural carbon sink, as anaerobic conditions caused by prolonged saturation inhibit 

organic matter decomposition, that allows for carbon to accumulate in the soil 

(Collins & Kuehl, 2001). Globally, wetlands are responsible for storing a total of 513 

Pg, of carbon, which is 23% of all soil carbon storage (Bridgham et al., 2006). Thus, 

restoration of wetland environments to increase soil carbon storage capacity is seen as 

one possible strategy to mitigate accelerating atmospheric carbon dioxide levels (Lal, 

2004). 

Wetland Losses 

Prior to European colonization, North America was home to an abundance of 

wetlands. It is estimated that the lower 48 states alone contained 87 million hectares 

of wetlands pre-settlement (Mitsch & Gosselink, 2007). Many of those wetlands have 
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subsequently been lost. Nationally, it is estimated that 53% of presettlement wetlands 

have been lost. Wetland loss in Maryland and Delaware, the two states of interest of 

this study, has exceeded the national average. These states have lost 73% and 54% of 

their precolonial wetlands, respectively (Mitsch & Gosselink, 2007). 

 Wetland loss has been attributed to various factors, but the primary cause has 

been the intentional draining, dredging, or filling of wetlands by human activity 

(Mitsch & Gosselink, 2007). Wetland soils are often rich in organic matter and have 

been drained in order to be put into agriculture. During the 19th and 20th centuries, 

half a million hectares of land were drained yearly for agricultural use, of which, 65% 

was previously wetland (Gosselink and Maltby, 1993).  To meet the demand for 

additional farmland, bottomland forests, traditionally harvested for timber, were 

clearcut for agriculture. Flood control measures to expand agriculture and human 

settlement along the Mississippi alluvial plain resulted in further wetland disturbance; 

levees resulted in changes to wetland hydrology and sedimentation patterns. Except 

for a decrease during World War II, the rate of wetland loss by conversion to 

agriculture has been remarkably steady during the past two centuries (Gosselink and 

Maltby, 1993). 

 Urban development is another major cause of wetland loss, particularly on the 

East and West coasts of the United States. Two thirds of the world’s population lives 

near the coast, and population expansion often comes at the cost of wetland alteration 

and disruption. Coastal wetlands, as could be expected, are disproportionately 

impacted by drainage and clearance for urban or industrial uses. Nevertheless, 

wetland loss due to urban development accounts for a much smaller percentage of 
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total wetland loss than that due to agriculture, but the rate of loss has accelerated 

greatly since the end of World War II, and is closely tied to locations of high 

population density (Mitsch & Gosselink, 2007). 

 A third major cause for wetland loss has been the ditching of salt marshes in 

an attempt to control mosquito populations. Salt marshes serve as the habitat for the 

larval stage of several species of disease-vector mosquitoes. Shallow pools in the salt 

marshes allow for mosquito larvae to develop while sheltering them from predatory 

fish (Leisnham & Sandoval-Mohapatra, 2011). Parallel ditches were cut into marshes 

to drain these pools and allow mosquito predators access to the larvae. From the 

1930’s to 1950’s, it is estimated that the Civilian Conservation Corps dug a total of 

562,000 miles of parallel ditches into salt marshes from Maine to Virginia (Gedan et 

al., 2009).  Approximately 90% of salt marshes of this region were impacted. 

Although mosquitoes were the target of this control measure, evidence shows that 

grid ditching has had widespread negative impacts on the ecology of salt marshes 

(Bourn & Cottam, 1951). 

Soil Changes Upon Conversion to Agriculture 

Human disturbance of wetlands can result in major changes in soil 

composition and properties. Conversion of wetland soil to an agricultural system 

results in several particular changes. Changes in hydrology are often the most 

noticeable alterations. Prior to modification, wetland soils have a water table at or 

near the surface for a portion of the year, show slow drainage after precipitation 

events, and surface flow is often intermittent. Upon conversion to agriculture, the 

water table is greatly lowered by the installation of tile drains or drainage ditches. 
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Drainage after precipitation events is rapid, and surface flow is redirected towards 

ditches and drains, and is continuous (Bruland et al., 2003). 

 Changes in the hydrology of wetland soils facilitate additional changes in soil 

composition. Wetland hydrology allows the accumulation of soil organic matter, as 

aerobic decomposition is inhibited. The lowering of the water table allows the 

introduction of oxygen and facilitates aerobic decomposition. This greatly increases 

the rate at which soil organic matter is decomposed (Schlesinger, 1999). Liming, a 

common agricultural practice used to raise the pH of the soil, has been shown to 

further increase the rate of organic matter decomposition (Compton & Boone, 2000). 

In particularly organic-rich soils, this increased rate of decomposition can result in 

soil subsidence and loss (Lilly, 1981). 

 Increases in soil compaction have also been shown to accompany the 

conversion of wetland soils to agricultural use. Tillage, in particular, is responsible 

for much of the compaction increase (Brady & Weil, 2008). Tillage often results in 

the creation of a compacted plowpan directly beneath the plow depth, and also an 

increase in subsoil compaction. Surface soil compaction is the result of the use of 

heavy machinery for tillage and planting, as well as the homogenization of existing 

soil horizons during tillage. Tillage also further aerates the soil, contributing to soil 

organic matter loss. Compaction as a result of agricultural activity has been shown to 

deteriorate soil structure, inhibit soil strength, lower hydraulic conductivity, and limit 

root penetration (Lipiec & Hatano, 2003). 
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Wetland Protection/Restoration 

 Modern federal protection of wetlands was established under the 1972 Clean 

Water Act. Regulatory authority over wetlands was established by defining them as 

(or associated with) navigable water bodies. Section 404 of the Clean Water Act 

established a permitting system for controlling wetland disturbance under the 

auspices of regulating discharge of dredge or fill materials into the waters of the US. 

Permitting authority was split between the EPA and the US Army Corps of 

Engineers, the latter of which had previous experience running a permitting program 

under the 1899 Rivers and Harbors Act (Hough & Robertson, 2009). Questions of 

jurisdictional rights between the EPA and the Corps of Engineers led to some 

confusion over permitting rights and requirements. In 1980, the EPA established a set 

of guidelines for wetland regulation called the Section 404(b)(1) Guidelines (EPA, 

1980). Both agencies agreed to adopt the 1980 guidelines in a 1990 joint 

memorandum of understanding (Corps & EPA, 1990). 

 Wetland protection legislation on the state and local level varies greatly by 

locale. In the mid-Atlantic region, the economic and environmental importance of the 

Chesapeake Bay has led to several efforts in Maryland and other states in the 

Chesapeake Bay watershed to protect nontidal wetlands as a means to limit nutrient 

runoff to the Bay. The first multistate, formalized agreement to this end was the 1987 

Chesapeake Bay Agreement. Under this agreement, Maryland, Pennsylvania, 

Virginia, Washington DC, and the federal government committed to cooperation in 

preserving the region’s nontidal wetlands in order to preserve the health of the Bay. 

Under this initiative, the Maryland Department of Natural Resources, Water 
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Resources Administration was put in charge of a subcommittee to devise a wetlands 

policy for the Chesapeake Bay watershed. Their stated goal was a “net resource gain” 

in wetland acreage and function for the region (McNeer, 1992).  

 The state of Maryland put the policy suggestions of the Chesapeake Bay 

Wetlands Policy group into effect with the 1989 passage of the Maryland Nontidal 

Wetlands Protection Act. This law gave the Maryland Department of Natural 

Resource, Water Resources Administration (and later, the Maryland Department of 

the Environment, Water Management Administration) regulatory authority over 

“conservation, enhancement, regulation, creation, and monitoring” of nontidal 

wetlands. A permitting program was put in place in 1991 that required approval for 

all non-exempt activities within 25 feet of a nontidal wetland. Agricultural and 

forestry activities are exempted from this requirement, but still require local Soil 

Conservation District approval of the implementation of best management practices 

for soil conservation, sediment control, and water quality protection. These activities 

also require mitigation for any impacts on nontidal wetlands (McNeer, 1992). 

 The 1980 EPA guidelines codified the protection requirements of the CWA 

into what has come to be known as the “mitigation sequence”(Hough & Robertson, 

2009). This is a tiered series of emphases that should be addressed during the 

regulatory process. This approach emphasizes that impact avoidance is the prime 

concern of wetland protection, such that if an activity would negatively impact 

wetlands, that activity should not be allowed. When complete avoidance is not 

feasible, the subsequent concern should be to minimize any negative impact from the 

activity on wetlands. However, when substantial negative impact cannot be avoided, 
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then the third tier of this approach is to provide compensation for the impact, such as 

repairing, restoring, or rehabilitating impacted wetlands. Wetland creation and 

restoration falls under this category. As stipulated in the CWA, all damages to 

wetlands were required to be compensated with on-site and in-kind restorations. 

 A variety of governmental programs were established to facilitate and 

encourage wetland protection and restoration. In 2003, a series of conservation 

programs were established by and funded through the US Department of Agriculture. 

These programs were aimed at providing private landowners with financial and 

technical support and incentives to engage in conservation activities. Each individual 

program is aimed towards protecting a particular environment of interest, and the 

majority of wetland restorations were done under the auspices of the Conservation 

Reserve (Enhancement) Program (CRP/CREP) and the Wetland Reserve Program 

(WRP) (De Steven & Lowrance, 2011). The WRP alone accounts for 2.3 million 

acres of private land being enrolled in wetland protection. 

 Comprehensive review of conservation policy was undertaken by the National 

Research Council in 2001 (NRC, 2001). Among their findings were that the 

requirements under the CWA, that compensation for wetland impacts must occur as 

in-kind and on-site actions, proved to be problematic. They observed that In-kind 

restorations often resulted in undesirable wetlands being replaced with additional 

undesirable wetlands. The on-site requirement hampered efforts to properly locate 

wetland restorations, as poorly suited upland sites would have to be utilized if there 

were no better on-site locations available. Oftentimes these poorly suited restorations 

would fail or be less desirable than wetlands that were appropriately located or 
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situated, but further away. The NRC recommended moving away from the emphasis 

of in-kind and on-site restorations found in the CWA. By expanding the view of 

wetland restoration to the landscape or watershed level, they argued, emphasis could 

be placed on properly siting wetland restorations in the landscape to maximize both 

the chances for restoration success, but also improved wetland function across the 

watershed. 

 Further review of federal wetland conservation efforts came in the form of the 

establishment of the Conservation Effects Assessment Program (CEAP) in 2003. 

Formed within the USDA, CEAP was intended to assess, review, and quantify the 

benefits of conservation practices implemented under federal Farm Bill programs 

(Goldman & Needelman, 2015). Since its inception, CEAP has been engaged in 

several regional and watershed-scale studies (Brinson & Eckles, 2011). Of particular 

interest to this research has been the CEAP Wetlands Mid-Atlantic Region (MIAR) 

Study, ongoing since 2008. The goal of this (MIAR-CEAP) study has been the 

collection of data on natural wetlands, restored wetlands, and prior-converted 

croplands in MD, DE, and VA. This study has encountered difficulties as privacy 

provisions of the Food Security Act preclude restoration monitoring, and information 

on the implementation of conservation practices is often lacking, thus sometimes 

limiting their ability to document effectiveness of the conservation efforts (De Steven 

& Lowrance, 2011). 
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Critical Elements of Restoration 

Wetlands, as ecosystems, rely on a very specific set of soil, water, and plant 

properties to ensure their proper function and composition. Any restoration or 

creation of a wetland must properly replicate these properties to ensure that the 

restoration behaves like a comparable natural wetland. These properties can be 

broadly divided into three categories: those related to wetland hydrology, those 

relating to wetland vegetation, and those related to wetland soil. 

 Wetland hydrology is often considered the “master variable” of wetland 

properties (Bridgham & Richardson, 1993). It has been shown that proper hydrologic 

conditions are required for wetland biogeochemical function (Richardson, 2001). It 

follows that properly emulating natural wetland hydrology is a critical goal of 

successful wetland restoration. Unfortunately, hydrology is highly variable across 

multiple scales, from local to the watershed level, and affected by a multitude of 

factors, from topography, plant communities, climate, land use, etc. Furthermore, it 

has been shown that natural hydroperiods are critical to wetland function (Zedler & 

Kercher, 2005), so timing of saturated soil conditions must be taken into account, not 

merely their frequency or duration. Wetland plant community composition also 

heavily relies on hydrology; changes in hydrology often benefit invasive species 

(Bunn & Arthington, 2002). Changes in plant community structure can feedback and 

further impact other wetland properties, and, ultimately, wetland function, itself. The 

essential, complex, and interconnected nature of wetland hydrology requires long-

term monitoring to document and ensure that natural hydrology is both restored, and 

that it is sustainable (Hunt, 1996). 
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 The presence of wetland vegetation, or hydrophytes, is one of the three 

defining characteristics of a wetland environment. These plants are well-adapted to 

surviving in the saturated and anaerobic conditions found within wetland ecosystems 

and tend to out-compete dryland species in these environments. Plant communities 

contribute to the function a number of wetland services, including animal habitat, 

stormflow mitigation, and high rates of primary productivity. Plant communities also 

tend to be the most noticeable property of wetlands on account of them being 

primarily located above ground. Perhaps because of this ease of observation, wetland 

plant ecosystems are the most well studied and documented property of wetlands. For 

this reason, plant communities will not be a major focus of this study. 

 Soils have been described as the physical foundation of wetland ecosystems 

(Stolt et al., 2000). A successful restoration should aim to minimize soil disturbance, 

as deviations in soil properties can have cascading effects on multiple wetland 

properties. One instance of this phenomenon occurring was in a section of San Diego 

Bay being restored for the purpose of providing endangered species habitat. The soil 

imported to provide wetland substrate proved to be too sandy to retain sufficient 

nitrogen to support the desired plant density, and the diminished plant cover failed to 

attract the target species. Soil texture proved to be a limiting factor to wetland 

restoration success (Zedler, 1998). 

 The importance of soil properties is further amplified by their slowness to 

respond to restoration activity when compared to wetland hydrology and ecology. 

Though understudied, there are several long-term studies of soil development in 

restored wetlands. A 25-year study of created and natural North Carolina coastal tidal 
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marshes found that, even after 25 years, created marshes still had less organic C than 

reference sites, despite similar accumulation rates (Craft et al., 1999). A longer-term 

study was undertaken by Ballantine and Schneider. They observed restored wetlands 

in New York across a 55-year timespan. They noted a slower, establishment phase of 

wetland development dominated by allocthonous inputs, followed by a successional 

phase of development dominated by autocthonous inputs. Depressional wetlands, due 

to a lack of sedimentary or tidal inputs, respond to restoration even slower. Changes 

in soil properties were observed to be slow at first, but gradually accelerated with 

time. In the top 5 cm of soil, soil organic matter, bulk density, and cation exchange 

capacity were all less than 50% of reference levels after 55 years (Ballantine & 

Schneider, 2009). This sets the time frame for recovery of soil parameters in the range 

of decades to centuries. 

 The capacity for soil recovery and development can be constrained by any 

number of factors, including restoration method, management decisions, and initial 

soil conditions (Zedler & Callaway, 1999). This stresses the importance factoring soil 

properties into restoration planning and maintenance, as well as monitoring of the 

restoration to ensure recovery is occurring along the expected trajectory. Site-specific 

strategies should be employed to address specific changes in soil properties (Zedler, 

2000). 

 

Methods of Restoration 

Methods of freshwater wetland restoration in the Mid-Atlantic region can be 

broadly classified into two categories: scraping and plugging. Scraping is the 
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excavation, modification, or removal of soil material to form a depressional landform. 

Wetland hydrology is established by lowering the soil surface to be closer to the 

existent water table. Scraping is highly disruptive to the soil and plant communities, 

but does not require preexisting wetland hydrology, and thus can be implemented in 

areas regardless of site history. As such, scraping can be considered akin to wetland 

creation. Plugging, in contrast, is the reestablishment of wetland hydrology by 

removal of drains or damming of ditches. Upon removal of the artificial drainage, the 

water table is elevated closer to the soil surface, and hydric conditions result. This has 

a lesser environmental impact than scraping, but is limited to locations that were 

previously wetlands until being hydrologically modified. As such, plugging is more 

akin to true wetland restoration than wetland creation. 

 

Impacts of Scraping Method of Restoration 

The scraping method of restoration is much more common in the Mid-Atlantic 

region than any other means of restoration (Fenstermacher, 2012). As a result, the 

impacts on the soil inherent in its implementation have been widespread. Soil 

compaction as a result of wetland restoration can either be intentional or 

unintentional. Unintentional compaction can be an artifact of the use of heavy 

machinery during the restoration process. Often, however, soil compaction is an 

intended part of the restoration design. Regardless of local hydrology, once soil in the 

restoration area is excavated, water-limiting, clay-rich layers are laid down and 

compacted before being overlain with the excavated soil. Compaction of soil has the 

effect of increasing soil bulk density as well as skewing pore size distribution in favor 
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of smaller micropores by collapsing larger macropores (Brady & Weil, 2008). This 

lowers the hydraulic conductivity of the soil and can alter the hydrology of the 

wetland system. Such low conductivity, clay rich soil horizons have been shown to 

cause water table perching following rain events, as well as promoting rapid, lateral 

water movement (Vadas et al., 2007). In addition to impacting hydrology, these 

confining layers may impact nutrient cycling, as they may limit interaction between 

anoxic sediments and groundwater nitrate (Denver et al., 2014). 

Beyond compaction, scraping has additional soil impacts through the 

disturbance, homogenization, and removal of topsoil. Soil excavation negatively 

impacts soil structure, aerates previously anoxic soil material, encourages rapid 

decomposition of organic material, and can expose underlying soil material (Brady & 

Weil, 2008). This has been shown to have negative effects on the amount of available 

soil carbon, and the degree of surface-groundwater interactions (Goldman & 

Needelman, 2015). 

 

Evaluating Restoration Success 

 In order to evaluate the success of a wetland restoration, it is necessary to 

establish measurable and realistically obtainable criteria to monitor the progress of 

the restoration towards achieving its design goals. These criteria are known as 

wetland performance standards, and must be approved by the US Army Corps of 

Engineers as part of the permitting process for all CWA Section 404 mitigation 

projects (NRC, 2001). In order to be useful, performance standards must be tailored 

to the specific goals of the proposed restoration and the properties of the location 
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where the restoration activity will be undertaken. As such, wetland performance 

indicators as a group are extremely variable. The Wetland Reserve Program provides 

guidance to establishing wetland performance criteria in a 1999 technical note. 

Through an analysis of 300 permit applications, seven distinct approaches to the 

establishment of performance indicator criteria were described. These approaches are 

requirements for survival of planted species, requirements for plant density or plant 

cover, requirements staged over time, requirements based on wetland delineation 

methods, requirements employing wetland indices, comparison to reference wetlands, 

and requirements limiting exotic or nuisance species (Streever, 1999). 

 Vegetation is the major focus of most wetland performance standards. There 

are several reasons for this. Wetland restoration goals are overwhelmingly focused on 

plant communities (Matthews & Endress, 2008), so it is logical that standards to 

measure a restoration’s success towards meeting these goals also focus on plant 

community properties. There is also a practical element to this focus. Plant 

communities tend to respond much more rapidly to the environmental disturbance 

brought about by restoration activities than other aspects of the wetland ecosystem. 

As such, monitoring timeframes can be much shorter than those measuring slower-

changing criteria. In addition, observation of plant community changes can be 

performed relatively easily as compared to observation of other wetland properties. 

Annual sampling of wetland vegetation during the late summer has been shown to be 

sufficient to maximize the number of identifiable species obtained, though this may 

underestimate early-flowering species (Matthews, 2003). 

 Performance indicators relating to vegetation, though highly variable in form 
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and scope, tend to rely on a few common plant community metrics. One commonly 

employed metric is monitoring survival of planted species. A certain percentage of 

species is required to survive over a designated number of growing seasons. This can 

be implemented as generalized planted species, or as different classes such as woody 

species, herbaceous species, or approved natural species. Often times these standards 

are specified to be measured by growing season, necessitating replanting if the 

targeted survival percentage is not met. Another metric to measure vegetative wetland 

performance is by determining percent vegetative cover. Several methods for 

measuring vegetative cover are available (Floyd & Anderson, 1987), but areal cover 

percentage and canopy cover percentage seem to be relatively common. Plant cover 

percentage standards can be established for specific target species, for specific plant 

types, or just generalized for all species. These values can be utilized by themselves, 

used to determine species dominance, or used to calculate a vegetation quality index. 

 Vegetative indices are metrics utilized to quantify numerous plant properties, 

both quantitative and qualitative (i.e. frequency, desirability, resilience) as a single 

variable. Determination of the dominance of species in a system is one such method 

(Delineation., 1989). Species dominance is based solely on plant prevalence, and does 

not incorporate any qualitative metrics. All species present in an area are identified 

and their extent determined. An importance value for each species is calculated based 

on both the species frequency and percent cover in sampled areas. The importance 

values for the most prevalent species in the area are summed until a certain threshold 

is met. These species, as well as any species with 20% total cover, are considered 

dominant. This method can be employed to set standards by species, plant type, 
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invasiveness, or desirability.  

 Two commonly used indices attempting to incorporate qualitative data are the 

coefficient of conservatism (C) and the floristic quality index (FQI). The indices were 

developed for use in the Chicago region (Swink & Wilhelm, 1994), but were later 

adapted for use in other regions of the world as well. The coefficient of conservatism 

is a subjective value established for each native species in a region. Values are based 

upon how tolerant a species is towards environmental degradation. The mean C value 

for each native species in an area is used, in concert with the number of species, to 

calculate the FQI for the area. FQI was developed to rapidly assess and quantify 

environment disturbance and biodiversity. Higher FQI values are associated with a 

less disturbed environment and greater species diversity. Standards can be set by a 

target FQI value to be met over a given timeframe. 

 Beyond vegetation, hydrology is the second most common factor to base 

wetland performance standards upon. One cause for this that hydrology is generally 

more difficult to monitor than vegetation. Monitoring hydrological activity requires 

monitoring equipment (such as recording wells), and, unlike vegetation, which can be 

sufficiently gauged with annual measurement, requires much more frequent 

observation. Multiple seasons of data are often required, as precipitation anomalies 

can greatly affect seasonal data. Hydrology, however, is often considered the master 

variable in a wetland environment, so, even when not monitored directly, it can be 

viewed as being indirectly monitored through its impacts on the soil and vegetative 

community. When hydrology is directly monitored, several metrics can be employed, 

though some are rather vague. One metric to assess wetland hydrological 
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performance is by measurement of areal hydrology (Matthews & Endress, 2008). 

Other performance indicators employed involve assessing the presence or degree of 

saturated soil conditions, or setting standards for water quality or salinity (Streever, 

1999). The most common standard by which hydrologic performance is assessed is 

by inclusion as a factor in a delineation-based assessment of whether the restoration 

meets the 31 growing season days of saturation requirement to meet the jurisdictional 

definition of wetland hydrology (Laboratory, 1987). 

 Beyond being the generally least studied of the three criteria of jurisdictional 

wetland properties, hydric soil conditions also tend to be the least monitored as a 

criteria for restoration success. The reasons for this are manifold. Soil monitoring is 

both labor and skill intensive, requiring a multitude of field descriptions performed by 

technicians knowledgeable in both soil morphology and use of wetland indicators. 

Soil properties tend to be highly variable spatially, particularly in areas disturbed by 

restoration activity. This necessitates additional field descriptions to ensure the 

entirety of the wetland is covered by a monitoring protocol. Changes in soil properties 

also occur over a much longer timescale, requiring monitoring periods much longer 

than those for observation of vegetation or hydrology. On the other hand, the general 

stability of soil properties ensures that properties are not seasonally variable, and 

there is no need for continuous monitoring equipment. 

 Metrics for monitoring of soil properties for evaluation of restoration success 

are rather rare. I was only able to locate one example of a monitoring plan that 

dictated the direct observation of a soil property. A 1999 technical note providing for 

guidance for developing wetland performance standards cited a 1998 creation of a 
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forested/herbaceous mixed wetland calling for the formation of subsurface muck 

layers to be a criteria for restoration success (Streever, 1999). Six inches of muck was 

required to be present in designated areas for the restoration to be considered a 

success. The protocol allotted an extended monitoring period of 25 years for the 

restoration to meet this goal. 

 A much more common approach employed to monitor the formation of 

wetland soil properties is to monitor soils as a part of a delineation-based approach. A 

review of MD, VA, and NJ monitoring protocols shows that all call for the entirety of 

the wetland restoration to meet the 1987 USACOE jurisdictional definition of a 

wetland. Duration of monitoring varies by state, but all three states require regular 

monitoring over a period of 3-10 years. 

 Regardless of the specific criteria monitored, the timeframe over which the 

monitoring is mandated plays an important role in the gauging of restoration success. 

Different wetland properties change at different rates, and observation timeframes for 

individual wetland properties should reflect this. Even the trajectory of change of 

individual properties is shown to be time sensitive. A 25-year study of constructed 

wetlands showed that soil organic matter was lost rapidly upon wetland restoration 

and only slowly re-accumulated. While vegetative and hydrological properties 

recovered quickly, the timeframe for restoration of soil properties was estimated to be 

in the range of decades to centuries (Craft et al., 1999). The typical duration of 

restoration monitoring is in the range of 3-5 years and focused primarily on 

development of plant communities (Matthews & Endress, 2008).  
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 Given these discrepancies in timeframe, it would be useful to examine the rate 

at which redoximorphic features and hydric indicators form. Redoximorphic features 

have been shown to develop quickly under ideal conditions. One study demonstrated 

development of redoximorphic depletions after seven days of ponding (Vepraskas et 

al., 2006). Though resulting from saturated soil conditions, these depletions were, on 

their own, insufficient to meet a hydric soil indicator. The same study, however, 

found that hydric indicators did form in all plots after 3 years of periodic flooding. 

This study relied on ideal conditions for formation of redoximorphic features: 

homogenous, high-organic-matter-content (4.2%) A horizon material ponded for a 

duration longer than minimally required to be jurisdictionally classified as hydric. 

Other studies where soil conditions were less than ideal, show formation of hydric 

soil indicators in a period of five years (Vepraskas et al., 1999). 

 This presents a dilemma for using hydric soil indicators as criteria for wetland 

success. The rate at which hydric soil indicators form is highly variable and 

dependent on a multitude of factors. Soil organic matter content, ponding duration, 

ponding frequency, and temperature all play a role at the rate redoximorphic features 

form and accumulate. A proper monitoring timeframe for measuring restoration 

success is, therefore, difficult to establish, and may well exceed the 3-5 year 

timeframe common for observation of other wetland features. Additionally, hydric 

indicator analysis doesn’t take into account the soil disturbance which occurs during 

restoration activity. Hydric indicators do not differentiate between relict and active 

redoximorphic features. Disturbance of soil material during restoration may result in 

existent features being translocated upwards in the solum where they would not form 
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naturally, or for soil material being moved far from the hydrologic conditions where it 

formed. Soil disturbance may also cause hydric indicator formation to occur in a 

spatially variable manner. Additionally, homogenization of multiple soil horizons is 

common during restoration, resulting in soil material which would artificially meet a 

hydric indicator. 

 Alternative measurements of hydric soil condition should be entertained to 

address the shortfalls of relying exclusively on hydric soil indicators for assessment 

of wetland restoration success. One suggestion would be to use methods which do not 

rely on direct observation of indicator formation, but rather the measurement of the 

conditions required for the formation of reducing conditions. One proven method 

would be use of IRIS tubes (Rabenhorst, 2008). Through measurement of iron oxide 

paint removal from the surface of tubes placed in the soil during the growing season, 

the presence of reducing conditions in the soil can be rapidly assessed (Castenson & 

Rabenhorst, 2006; Rabenhorst & Burch, 2006). Use of IRIS tubes for identification of 

hydric soil conditions is a well-established methodology, and standards have already 

been established for their use (Soils, 2007). Another potential method of assessment 

would be use of α-α-dipyridyl dye to test for the presence of ferrous iron in the soil. 

Reduction of ferric iron to ferrous iron is an important intermediary step in the 

formation of redoximorphic soil features, and has been shown to occur as rapidly as 

within 3 days of soil inundation (Meek et al., 1968). This method can rapidly assess 

the presence of reducing conditions, and, in conjunction with hydrologic data, can 

assess the trajectory of wetland change towards hydric conditions. A third potential 

alternate to current assessment methods of hydric soil formation could be observation 
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of the development of redoximorphic features over time as compared to baseline 

observations taken immediately after restoration. This would have the benefit of 

compensating for relict redoximorphic features and pseudofeatures created by the soil 

disturbance inherent in restoration activity. 

Geographic Setting of this Study 

 This study is focused on the Delmarva Peninsula, a portion of the states of 

Maryland, Delaware, and Virginia bordered on the west by the Chesapeake Bay and 

the east by the Atlantic Ocean. The peninsula is 14,130 km2 in area and comprises the 

largest portion of the Chesapeake Bay watershed. It is located entirely within the 

Atlantic Coastal Plain and is primarily comprised of fluvial and deltaic coastal plain 

sediments. The land is notable for its flat topography, highly permeable soils, and 

generally high water tables. The predominant land use on the peninsula is for 

agriculture, except for areas too wet for agriculture, which typically remain forested.  

There is a widespread history of cultivation and artificial drainage in the region 

(Goldman & Needelman, 2015). Hydrologically, subsurface flow is the favored 

method of groundwater transport, and groundwater is well oxygenated due to the high 

permeability of the soil (Hamilton et al., 1993).  

 The Delmarva lends itself well towards restoration activities for a variety of 

reasons. In its natural state, the peninsula is home to a great deal of depressional 

wetlands known as Delmarva Bays, and, despite agricultural drainage, these wetlands 

remain common throughout its upper and middle portions (Fenstermacher et al., 

2014). The naturally high water table allows for the easy reestablishment of wetland 

hydrologic conditions, and does not necessitate the construction of a confining soil 
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layer to maintain them. In addition, the prevalence and general mutability of 

agricultural land use allows for a great deal of flexibility in restoration siting. 
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Chapter 3: Physical Effects of Wetland Restoration 
 

Introduction 

The importance of wetlands is widely understood today, but as recently as 30 

years ago, this was not the case. Wetlands have often been viewed as obstacles to 

development at best, and breeding grounds for disease vectors at worst. From colonial 

times, wetlands were traditionally drained for use as farmland (Gosselink & Maltby, 

1993). Their organic-rich soil material was highly fertile, but, once drained, was 

subject to rapid organic matter decomposition and soil subsidence (Brady & Weil, 

2008).  During the Great Depression of the 1930s, wetlands became the target of 

mosquito control measures brought on by public works projects. Targeting the habitat 

of malaria-bearing mosquitoes, vast swathes of wetlands were ditched and drained. 

More recently, other causes for land clearing and drainage, such as clearing for urban 

land or future development have emerged as major contributors to wetland loss, but 

agriculture remains the leading cause (Dahl et al., 1991). So extensive were these 

various efforts at land clearing and drainage that it is estimated that 53% of wetlands 

have been lost nationwide (Dahl, 1990).. 

 Fortunately, there has been a recent change in attitude towards wetlands, and 

society now generally acknowledges their positive benefits to both the environment in 

general, and our species in particular. As such, wetlands have been protected from 

development and drainage under a variety of federal laws, from the Clean Water Act 

to “Swampbuster” provisions under the Food Security Act of 1985 (Hough & 

Robertson, 2009). While protection of existing wetlands is necessary, the loss of so 



 

 28 
 

much of their original extent has necessitated efforts to achieve restoration of 

degraded land to its original wetland condition. 

 Various government programs have begun to address this need for wetland 

restoration. One of the primary efforts designed to restore wetland acreage was the 

Wetland Reserve Program (WRP) run through the US Department of Agriculture 

Natural Resources Conservation Service (USDA, 2016). Under this program, the 

federal government leased private land under conservation easements. The Natural 

Resource Conservation Service (NRCS) was charged with implementing efforts to 

restore the leased land to a wetland state. Landowners maintain all rights to the land 

short of development, and may reclaim complete ownership at the end of the 

easement period. After 2014, the WRP program was subsumed under the Agricultural 

Conservation Easement Program (ACEP) with relatively few changes to the program, 

but with some loss in funding. The NRCS has been placed in charge of overseeing 

and assessing the success of these restoration efforts through the Conservation Effects 

Assessment Program (CEAP). 

 Two major methods are implemented in restoring wetlands in the region of the 

Delmarva Peninsula; “plugging” and “scraping” (Fenstermacher, 2012; Goldman & 

Needelman, 2015). Plugging is the damming, filling in, or otherwise obstruction of 

ditches, drains, or other artificial construct that has modified the hydrology of the 

land to be restored. When these drainage structures are effectively removed, the land 

is returned to its native wetland hydrologic character. This allows for the re-

establishment of hydrophytic species of vegetation and wetland hydrology; hydric 

soils are commonly already present. Scraping differs from plugging in that heavy 
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machinery is used to lower the soil surface to the water table. It can result in heavy 

disturbance to the soil profile as surface soil horizons are moved about and 

homogenized, and can also cause compaction of subsurface layers. Soil surface 

compaction is a well-studied phenomena as it pertains to agriculture and is noted as a 

result of machinery traffic during both tilling and planting (Raper, 2005; Brady & 

Weil, 2008). Compaction has been shown to deteriorate soil structure, modifies soil 

strength, lower hydraulic conductivity, and limit root penetration (Lipiec & Hatano, 

2003). Soil compaction has been anecdotally observed at several restored sites within 

the Delmarva region and is hypothesized to be an artifact of restoration 

(Fenstermacher, 2012; Goldman & Needelman, 2015). Additionally, it appears that 

restoration by scraping is far more common in this region than other methods. 

 The primary goal of this study is the documentation of the physical impacts of 

wetland restoration efforts on soil physical properties. In order to accomplish such, 

selected physical properties of wetlands restored through the most common 

restoration process of scraping were evaluated and compared with those of natural 

counterparts. The way in which these physical properties vary across a hydrological 

and topographical gradient and affect wetland soil function were further documented. 

Methods 

Site Selection 

 This study was conducted in the Delmarva region of Maryland and Delaware 

on the Atlantic Coast of the United States. The Delmarva is primarily an agricultural 

region, notable for poultry and feed corn production. The land is relatively flat and 

near sea level (elevation <30 m). Soils in the region were formed from fluvial and 
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deltaic coastal plain sediments, are well developed, and tend to have textures ranging 

from loamy to sandy. The average annual rainfall in the region is 116 cm and occurs 

evenly throughout the year. Seasonal water tables in the region are often found high 

in the soil profile and fluctuate as a result of evapotranspiration. 

Nine restored and five natural sites were selected for study. The restored sites 

were among a group of Conservation Reserve Program, Conservation Reserve 

Enhancement Program, or Wetland Reserve Program sites located across the 

Delmarva Peninsula. As documenting the properties of restored wetlands was a major 

component of this research, a greater proportion of restored sites were included in this 

study. Additionally, because restored sites tend to exhibit a greater variability of 

hydrological and pedological properties, a larger number of restored sites were 

required.   

Both restored and natural sites were freshwater and depressional in nature, but 

seasonally and spatially variable in hydrology. Both display topographic gradients 

that lead to gradual transitions between ponded wetland, saturated wetland, and 

upland zones. Natural sites, however, tend to be dominated by woody vegetation, 

while restored sites tend to mainly contain herbaceous plants. They both, however, 

provide habitat for a variety of emergent vegetative species in their wetter portions. 

An effort was made to try to avoid restorations that featured more abrupt changes in 

topography that resulted in a pond-like wetland. 
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Figure 3-1. Number of wetland sites in this study located within counties of Maryland and Delaware on the 
Delmarva Peninsula. 
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 Research sites were distributed among 6 counties in MD and DE across the 

Delmarva Peninsula. As shown in Figure 3-1, twelve sites were located within the 

state of Maryland, with the remaining two in Delaware. The largest concentration of 

sites was located within Caroline and Queen Anne’s Counties, MD, but sites ranged 

as far northeast as New Castle Co, DE and as far south as Dorchester Co, MD. Sites 

were largely hydrologically isolated, with no major features providing surficial inflow 

or outflow.  

Site Zonation 

 Since research sites were selected based on similarities in hydrology and 

topography, it was possible to define hydrologic zones that represented areas of 

broadly similar hydrologic character common throughout the research sites. During 

field visits, wetland sites were examined and three or four hydrological zones were 

identified at each study sites (0, 1, 2, and 3 - in order of decreasing wetness). 

 Zone 0 was a deeply (and in some cases perennially) ponded (> 35 cm) 

wetland with little or no emergent vegetation present. Zone 0 was not observed at all 

sites, but when present, it was located centrally within the wetland, and often 

represented a small portion (10-20%) of the wetland. Because it was not present in all 

sites, and due to potential difficulty in sampling and the lack of vegetation, zone 0 

was not included for observation in this study. 

 Zone 1 was a seasonally ponded wetland with emergent vegetation present. 

The water table would often draw down during the warmer months, sometimes 

dropping below the soil surface, but typically remained ponded throughout the colder 
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months. Depth of ponding was generally less than 35 cm. This zone was present in all 

study sites, and represented the wettest zone studied. 

 Zone 2 was a seasonally saturated wetland with a variety of vegetative 

wetland species present. This zone was rarely ponded (with a few cm of water) but 

commonly saturated. The water table dropped below the surface as the growing 

season progressed, but remained at or near the surface during the winter and spring. 

Zone 2 was present at all sites and was included in this study. 

 Zone 3 consisted of upland areas adjacent to, but not included in, the wetland. 

This zone lacked hydric soils (and ranged from somewhat poorly drained to well 

drained), and was dominated by growth of non-wetland vegetation. Zone 3 was 

present at all sites, and marked the driest areas of observation in this study. 

Transects 

 Three replicate transects of three plots each were established at each site.  

Each site was considered as if roughly circular in shape, and transects were 

established radially outward from the center. Each transect spanned the hydrologic 

gradient from zone 1 to 2 to 3. 

 A system of stratified randomization was utilized in plot selection. Three 

compass bearings were randomly determined to be 36, 144 and 252 degrees (1, 4 and 

7 tenths).  Then, three transects (of three plots each) were established from the center 

of each wetland along these bearings. 

 Rather than being located randomly along transects, plots were placed 

centrally within each hydrologic zone of interest (1, 2 and 3) using field observation 

and LiDAR DEMs (Digital Elevation Models).  Specifically, evidence of seasonal 



 

 34 
 

water table height, presence/absence of hydric soils, and vegetation type were used to 

help situate plots. 

Penetration Resistance 

 

Figure 3-2. Schematic illustrating the stratified/nested design for measuring penetration resistance. Five 
sets (b) of ten vertical measurements (a) were made in four areas (c) within each plot (d).   

 
Penetration resistance was used as an indicator of soil compaction. It is 

measured by the amount of force required to push a cone of known surface area a 

given distance through the soil, and thus it is a function of the force of resistance 

exerted on the cone and cone size. This reading of pressure is known as the cone 

index, and was recorded using an Eijkelkamp analog handheld penetrometer 

(Hummel et al., 2004). The penetrometer consists of a handheld dynamometer 

attached to a rod with a cone of standard size and shape affixed to the end. The meter 

records the force exerted as the cone is pushed vertically through the soil. The 
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maximum force exerted was recorded for each depth increment of 0-2.5 cm, 2.5-5 

cm, then at 5 cm intervals thereafter to a total depth of 45 cm (Figure 3-2a). Thus, one 

set of penetrometer readings consisted of 10 measurements, at the depths prescribed 

above, as the cone was pushed progressively through the soil. 

 In each plot, sets (of 10 measurements with depth) were taken in 4 groups of 

5, with each grouping (of 5) being clustered within a 0.5 m2 area, and being located 

approximately 1-2 m from the plot center (Figure 3-2b). The four groups (of 5 sets) 

were equally spaced in relation to plot center, with one group towards the center of 

the wetland, one group away from center, and one group each radially left and right 

(Figure 3-2c). Therefore, at each site there were three plots being located along each 

of the three radial (replicate) transects so that a total of 60 sets of penetrometer 

readings were collected for each zone at each wetland site (Figure 3-2d). 

 Penetrometer measurements are highly sensitive to moisture content of the 

soil (Hummel et al., 2004; Kumar et al., 2012). To control for moisture content, 

penetrometer readings in zones 1 and 2 were only taken at times when the water table 

was at or near the surface. Zone 3, being the driest area to be measured, was 

measured in the winter, when soils were moist and at or near field capacity. Zone 1, 

being the wettest, was taken in the summer when the water table drew down near the 

surface. Zone 2 was measured in the spring or fall when the water table was at or near 

the soil surface. 

Soil Morphology 

 Soil morphological characteristics were assessed by means of soil profile 

descriptions generated from observations of samples retrieved using a bucket auger or 
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Macaulay auger at each study plot, for a total of 9 descriptions per research site. The 

soil was described to a depth of 1-2 m. Soil texture by feel, color, coarse fragment 

content, and redox features were described in the field using standard protocols 

(Schoeneberger et al., 2012a).  From these data, soil horizon boundaries were 

established and horizons were described (Staff, 1999). 

Bulk density measurements for the upper 50 cm of the soil were acquired 

using a single 5 cm diameter aluminum core driven 50 cm into, and extracted from, 

each plot. The core was inserted vertically through the soil profile to a depth of 50 

cm. The core was then carefully exhumed to avoid disturbance of the soil profile 

contained within. Once back at the lab, the core was frozen to aid in soil extrusion. 

The soil was extruded, horizonated, and the thickness of each horizon recorded. Bulk 

density of each horizon was determined from the dry weight of the horizon divided by 

its volume (as determined by core cross sectional area multiplied by recorded horizon 

depth).  

	

Results and Discussion 

Site Information 

Location, time since restoration and other site details are presented in Table 3-

1.  The mean time since restoration for the 9 sites included in this study was 15 years, 

with a range of 21 years difference between the minimum and maximum. The site 

ages, however, were not normally distributed across this range. Six sites were 

restored relatively recently (from 2000 to 2007), while sites R-4, R-5, and R-9 were 

much older, having been restored between 1986 and 1993.  
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 As outlined in Table 3-1, all restored sites were restored by scraping, or the 

removal of soil through use of heavy equipment. In addition to loss of soil material, 

this method had the secondary effect of amalgamating existing soil horizons. These 

horizons primarily consisted of surface organic-rich O and A material with associated 

subsurface E and B horizons. The depth to which this homogenization occurred 

varied between sites and location within the wetland, but evidence of this disturbance 

was often found at depths in excess of 50 cm. The regular mowing at site R-6 to 

control the growth of pioneering woody species such as Acer rubrum and 

Liquidambar styraciflua was an additional source of site disturbance. 

 

Table  3-1.  Site information for natural and restored wetland study sites. 

Site		 Wetland	
Type	 County	 State	 Restoration	

Method	
Year	

Restored	 Maintenance	 Additional	Notes	

N-1	 Natural	 New	Castle	 DE	 -	 -	 -	 		
N-2	 Natural	 Caroline	 MD	 -	 -	 -	 		
N-3	 Natural	 Caroline	 MD	 -	 -	 -	 		
N-4	 Natural	 Caroline	 MD	 -	 -	 -	 		
N-5	 Natural	 Caroline	 MD	 -	 -	 -	 		
R-1	 Restored	 Kent	 DE	 Scraped	 2007	 		 		
R-2	 Restored	 Caroline	 MD	 Scraped	 2004	 		 		
R-3	 Restored	 Dorchester	 MD	 Scraped	 2000	 		 		

R-4	 Restored	 Queen	
Anne's	 MD	 Scraped	 1986	 		

Pond-like	
restoration	

R-5	 Restored	 Queen	
Anne's	 MD	 Scraped	 1992	 		

Pond-like	
restoration	

R-6	 Restored	 Queen	
Anne's	 MD	 Scraped	 2002	 Mowed	2-3	

times	yearly	 		

R-7	 Restored	 Queen	
Anne's	 MD	 Scraped	 2004	 		 		

R-8	 Restored	 Queen	
Anne's	 MD	 Scraped	 2004	 		 		

R-9	 Restored	 Talbot	 MD	 Scraped	 1993	 		
Pond-like	
restoration	
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Cone Index 

 Penetration resistance was reported as cone index values, or the pressure 

exerted on a cone as it is pushed or driven through a given distance of soil. The cone 

index has a history of use in the literature as a measure of soil strength, but its use has 

primarily been limited to agricultural settings. In this study, penetration resistance 

was used as an indicator of soil compaction. 

 Figure 3-3 shows penetration resistance data for all sites by hydrologic zone. 

Both restored and natural sites demonstrate a trend of increased penetration resistance 

with depth, but the restored sites show a greater magnitude of increase, as well as 

greater variability between sites. Differences between natural and restored sites 

appear greatest in the zone 1 plots, although it is evident in all 3 zones. 
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Figure 3-3. Penetration resistance data for all sites by hydrologic zone. Each line represents the average of 
penetration resistance measured at three transect plots. 
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 Figure 3-4 demonstrates the magnitude of penetration resistance observed at 

sites to the maximum observed depth (45 cm), grouped by restoration status and 

hydrologic zone. Although there was tremendous variation between restored sites, 

penetration resistance was significantly greater than in natural sites (p<0.0001). 

Among restored sites, the cone index was greatest in hydrologic zone 1 and decreased 

in hydrologic zones 2 and3 (stats) while no similar trend occurred in the natural sites 

(stats). This is believed to be the result of wetland restoration practices that utilized 

heavy equipment, either intentionally to create a confining layer in the soil profile, or 

unintentionally as a part of other activities. 

Figure 3-4. Box and whisker diagram (median, quartiles and range) illustrating the maximum cone index 
measured within 45 cm of the soil surface. The mean is shown by the dot; the central horizontal line is the 
median; the box  represents the 25th and 75th percentiles; the short lines are the 10th and 90th percentiles; the 
whiskers represent the range of the data  Plots with the same letter are not significantly different at the 0.05 
level. 

Figure 3-5, demonstrates that the maximum cone index within 25 cm was also 

much greater for the restored sites, although the magnitude of penetration resistance 

was approximately half that measured within 45 cm. We know that penetration 
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resistance normally increases with depth (Raper, 2005). Nevertheless, the comparably 

high cone index values in the rooting zone (0-25 cm) of the restored sites compared to 

their natural counterparts has important implications both for plant growth and also 

for other soil functions. Excessive compaction generally reduces porosity and 

therefore lowers the rate of groundwater percolation and the soil’s overall water 

retention capacity. These effects delay the delivery of downstream waters until the 

volume storage capacity of the depression is exceeded. In addition, compaction limits 

groundwater discharge into the wetland from the water table. This also limits the 

ability of the soil to properly cycle nutrients, as these processes require hydrological 

connectivity between groundwater and the wetland. 
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Figure 3-5. Box and whisker diagram illustrating the maximum cone index measured within 25 cm of the 
soil surface. The mean is shown by the dot; the central horizontal line is the median; the box  represents the 
25th and 75th percentiles; the short lines are the 10th and 90th percentiles; the whiskers represent the range of 
the data  Plots with the same letter are not significantly different at the 0.05 level. 
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Figure 3-6. Maximum increase in cone index over a 5 cm vertical distance. The mean is shown by the dot; 
the central horizontal line is the median; the box  represents the 25th and 75th percentiles; the short lines are 
the 10th and 90th percentiles; the whiskers represent the range of the data  Plots with the same letter are not 
significantly different at the 0.05 level. 

 

 Figure 3-6 illustrates the maximum increase in penetration resistance between 

two successive depths recorded at each plot. This metric demonstrates the abruptness 

with which these changes in cone index occur.  Similar to the overall penetration 

resistance, restored sites demonstrated a much more abrupt change in penetration 

resistance as compared to their natural counterparts, and the differences were greatest 

in zone 1. The abruptness of the increase in soil penetration resistance may be the 

result of an abrupt change in soil texture, soil compaction, or a combination of the 

both.  We expect that this represents either a pan that was unintentionally formed by 
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heavy machinery when the wetland was ‘scraped’ or the presence of an intentionally 

compacted clay layer laid down as part of the restoration effort. 

 High penetration resistance was also found to be much more common in 

restored than in their natural counterparts. Figure 3-7 demonstrates the proportion of 

plots with a cone index of greater than 1000 kPa at each of two depths. The lower 

depth, 45 cm, was the maximum depth of observation, while the 25 cm was chosen to 

be representative of that portion of the soil profile most important for microbial 

activity and plant rooting. A cone index value of 1000 kPa has been reported to 

negatively affect plant root growth (Raper, 2005; Kumar et al., 2012).  Across all 

hydrologic zones, high penetration values were much more frequently observed in 

restored than natural sites. A total of 86% of restored plots were found to have cone 

index values in excess of 1000 kPa compared to only 24% of natural plots.  A similar 

trend was observed when limiting observation to the upper 25 cm of the soil profile, 

where 58% of restored plots (52 plots) exceeded this value, while only a single 

natural plot did (2%). This further confirms that in restored sites, soil compaction is 

much more prevalent and occurs much shallower in the soil profile. 
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Figure 3-7. Frequency of plots with cone index above 1000 kPa at depths of 45 cm and 25 cm. 

 

Bulk Density 

 In addition to penetration resistance, bulk density is another parameter that 

could reflect soil compaction. Figure 3-8 provides information on the bulk density of 

soil horizons with lower boundaries between 30 and 50 cm (excludes upper horizons).  

The subsoil bulk densities of restored sites were greater than those in natural sites in 

all hydrological zones, although there were no significant differences between 

hydrological zones among the restored sites. Like the greater observed penetration 

resistance, the higher bulk densities also may be related to the heavy equipment 

traffic on these sites during the restoration process. 
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Figure 3-8. Mean (+/- SEM) bulk density (g/cm3) of horizons with lower boundaries between 30 cm and 50 
cm. Columns with the same letter are not significantly different at p=0.05). 

 

Conclusions 

A majority of wetland restoration activity on the Delmarva Peninsula has 

involved substantial earthmoving by heavy equipment (Fenstermacher et al., 2016). It 

appears that traffic from the machinery during wetland restoration/construction has 

resulted in pronounced soil compaction at these sites. This can be seen in higher 

overall penetration resistance, more abrupt increases in penetration resistance, and 

higher penetration resistance near the soil surface of restored sites, when compared to 

their natural counterparts. Additionally, restored sites demonstrated a higher 

subsurface soil bulk density. 

 
 Soil compaction this severe is likely to result in numerous effects on wetland 

plant communities. Soil penetration resistance values observed are high enough to 

have deleterious effects on root penetration and growth of wetland plants. This can 

result in slower growth rates, reduced vegetation spread, and changes in speciation. 
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Additionally, compaction of this degree is likely to slow or reduce the transmission of 

water into and out of the restored wetland.  

 Additionally, wetland soil functions themselves are likely to be impacted by 

soil compaction. Compaction of the degree observed might result in reduction in soil 

hydraulic conductivity, which can limit connectivity between the wetland and the 

surrounding watershed. Besides altering the wetland’s hydrology, this can have the 

effect of hydrologically isolating the wetland and preventing nutrient flux, impeding 

important nutrient cycling functions. This can also affect changes in wetland 

hydroperiod, which can impact amphibians and other wetland dependent species.  

When groundwater is deemed insufficient to maintain wetland conditions, and 

location within the catchment is suitable, compaction may be done intentionally in 

order to create a perched water table that could facilitate the development of wetland 

conditions. Apart from these specific conditions, greater effort should be made to 

utilize alternate strategies for wetland restoration. Less impactful practices (such as 

ditch plugging) can limit soil disturbance during the process of restoration. This will 

reduce the deleterious effects on wetland soil currently observed by the “scraping” 

method of restoration. Ultimately, new restoration strategies and practices should be 

devised and implemented with the goal of facilitating, rather than compromising, high 

levels of wetland function. 
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Chapter 4: Carbon Dynamics in Restored and Natural Wetlands 

Introduction 

The modern view of wetlands as a unique and valued ecosystem did not come 

into being until the mid-20th century. Wetlands were traditionally viewed as obstacles 

to development and/or breeding grounds for disease vectors. Post-colonization, 

American wetlands were often drained for cropland. This land was nutrient- and 

organic matter-rich, but, once drained, was susceptible to rapid carbon loss and soil 

subsidence from aerobic decomposition (Holden et al., 2004). These losses 

necessitated further clearing and draining of wetlands to compensate for decreased 

soil productivity. Further wetland losses occurred as mosquito control efforts resulted 

in systematic draining of wetlands as part of Depression-era stimulus measures. More 

recently, wetland loss due to urbanization has become an area of increasing concern. 

In total, it is estimated that, nationwide, 53% of traditional extent of wetlands have 

been lost (Bridgham et al., 2006). 

 In the last few decades, a shift in attitudes towards wetlands has begun that 

places value on the positive environmental services they offer, as well as their 

intrinsic value as an ecosystem. Wetlands first achieved federal protection by their 

hydrological connection with navigable waters under the Clean Water Act (Hough & 

Robertson, 2009). Additional protection was afforded to them under the 

“Swampbuster” provisions of the Food Security Act of 1985 as well as further 

regulations established on the state and local level (NRCS, 2008).  
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 While protection of existing wetlands was necessary, the degree to which 

wetlands have been disturbed necessitated a strategy to restore previously-degraded 

wetlands to their original state. The Wetland Reserve Program (WRP) was one such 

program, administered through the US Department of Agriculture (USDA), and 

aimed at restoring degraded wetlands on private property through conservation 

easements. The Natural Resources Conservation Service (NRCS) was in charge of 

implementing these restorations, and the Wetlands Conservation Effects Assessment 

Program (CEAP-Wetlands) was initiated to provide feedback and guidance as to the 

success of WRP and similar efforts (USDA, 2016). Following it’s expiration in 2014, 

the WRP program was subsumed under the Agricultural Conservation Easement 

Program (ACEP). 

 Wetland restoration can be viewed as an effort to unify the water table (either 

apparent or perched) and the soil surface (for at least some portion of the year); one 

can either raise the water table to the soil surface, or lower the soil surface to the 

water table. On the Delmarva Peninsula, these goals have mostly been accomplished 

by either of two methods - ‘plugging’ or ‘scraping.’ Plugging is the restoration of 

wetland hydrology by eliminating (plugging or filling) ditches, drains, or other 

artificial structures which altered (removed) the original wetland hydrology. Once 

successfully restored, wetland hydrology often allows for the reestablishment of 

hydrophytic vegetation, and, since hydric soils are typically already present, wetland 

restoration is complete. Scraping, on the other hand, lowers the current soil surface to 

the water table by removal of soil material by heavy machinery. This restores (or 

establishes) saturated hydrologic conditions, which allows for the establishment of 
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hydrophytic vegetation. It also, however, results in extensive soil disturbance as soil 

horizons are moved about, homogenized or relocated. Additionally, it is thought that 

the use of heavy machinery during the process can result in soil compaction, much 

like has been extensively described in agricultural settings (Lipiec & Hatano, 2003; 

Raper, 2005). Soil compaction has been anecdotally observed at several restored 

wetlands in the Mid-Atlantic region (Fenstermacher, 2012). Restoration by scraping 

is far more common in this region than other methods (Fenstermacher, 2012; 

Goldman & Needelman, 2015). 

 WRP-restored wetlands on the Delmarva Peninsula, which are generally 

depressional, have many commonalities with natural depressional wetlands. Both 

wetland types are freshwater wetlands with no tidal influence. They are also 

hydrologically variable, both spatially and seasonally. Both groups of wetlands 

feature small scale topographic changes that result in a gradual transition between 

wetter and drier portions. At a glance, their chief difference may be vegetative; 

natural sites are dominated by woody vegetation, while restored sites tend to be 

dominated by herbaceous vegetation (McFarland et al., 2015).  

The goal of restoration is generally to reinstate various functions and services, 

which are often facilitated by the presence/accumulation of soil organic matter. 

However, the accumulation of soil organic matter in restored wetlands is often a slow 

process. While accumulation of OC is an important process in wetland restoration, 

and one that drives other wetland functions, one should not expect soil OC stocks to 

increase quickly following restoration.  
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 There have been numerous studies comparing carbon in restored and natural 

wetlands. One such study of Virginia wetlands found that cutting and scraping 

activity during restoration resulted in drastically lower C content compared to 

reference sites that remained little changed after 10 years (Stolt et al., 2000). These 

observations confirmed earlier studies that found no relation between restored 

wetland age and C content (Bishel-Machung et al., 1996). More recent studies, 

however, found that longer-term observation was required to document changes in 

SOM content in restored wetlands. One such study of New York wetlands 

demonstrated a increase in SOM content of restored wetlands, after 35-55 years (at a 

depth of 0-15 cm), but even then, SOM levels failed to approach natural levels within 

55 years (Ballantine & Schneider, 2009). 

The objectives of this study were to compare natural and restored wetlands 

with regard to: 1) hydrology and cumulative saturation; 2) decomposition of organic 

matter; 3) and soil carbon stocks. Comparing restored wetlands to their natural 

counterparts will allow us to better judge the success of these efforts, which will, in 

turn, allow us to provide better guidance for future restoration efforts. This study will 

also advance our knowledge of the soil properties and processes involved in restored 

wetlands, an understudied portion of Earth’s critical zone (Lin, 2010). 

Methods 

Study Location 

This study was conducted across the Delmarva Peninsula of Maryland, 

Delaware, and Virginia in the Mid-Atlantic region of the Atlantic coast of the United 

States. The region is notable for it’s relatively flat topography and elevation near sea 
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level (elevation <30 m). Average rainfall is 116 cm and occurs evenly throughout the 

year. Soils of the region are predominantly formed in fluvial and deltaic coastal plain 

sediments, pedogenically mature, and having seasonally high water tables that in 

some cases extend high in the soil profile. The predominant land use in the region is 

agriculture. 

Site Selection 

 Ten restored and five natural wetland sites were initially selected for study on 

the Delmarva Peninsula. One of the restored sites was abandoned mid-study due to 

land owner practices that resulted in loss of data from that site. Restored sites had 

been included in the Conservation Reserve Program, Conservation Reserve 

Enhancement Program, or Wetland Reserve Program and varied in age from 7 to 28 

years. Both restored and natural sites were freshwater, depressional wetlands, and 

were both spatially and temporally variable in hydrology. Additionally, all sites were 

hydrologically isolated from major surface water flows. Sites demonstrated a gradual 

topographic and hydrologic transition from the upland into the ponded wetland, with 

ponding in the deepest portions being generally less than 1 m depth during the winter 

(hydrologically wet) months. 

Zonation 

Research sites were subdivided into three or four hydrologic zones that 

represented a gradient from the wettest (zone 0) to the driest (zone 3). Sites were 

roughly circular, with the wettest zone occurring in the center, with sequentially drier 

zones occurring outward in concentric rings. 
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 Zone 0 was permanently and deeply (> 35 cm) ponded wetland, and 

represented the wettest portion of each site included in the study. No emergent 

vegetation was present, and the water table never drew down below the surface. Zone 

0 did not occur at all sites and thus was excluded from the study (Fig. 4-1). 

 

Figure 4-1. Cross section through a schematic representation of the wetland sites showing 4 distinct 
hydrological zones. Plots were established in zones 1, 2 and 3 but not in zone 0 (which was absent from 
some sites). 

 Zone 1 was seasonally ponded wetland that contained emergent vegetation. 

The water table was above the soil surface during the colder months (generally <35 

cm water depth), but drew down throughout the growing season, sometimes retreating 

below the ground surface.  

 Zone 2 was seasonally saturated wetland containing hydrophytic vegetation 

and hydric soils. This zone was typically saturated during the winter and early spring 
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months, but was rarely ponded. Water tables typically dropped during the growing 

season. 

 Zone 3 was upland located beyond the extent of the wetland proper, contained 

no hydric soils, and was dominated by non-hydrophytic vegetation. This was the 

driest zone addressed in the study. 

Siting Research Plots 

 Three replicate transects were situated within each wetland. Each transect 

consisted of three research plots, with one located in each hydrologic zone previously 

described. Transects extended radially from the center of the wetland site, from zone 

1 to zone 3 (Fig 4-2A). 

 

Figure 4-2. Three radially oriented transects were situated at each site, and plots were located within zones 
1, 2 and 3 (A). Within each plot, 5 sets of replicate birch decomposition sticks were distributed around a 
shallow (50 cm) well (B). 

 The radial direction of transects was determined randomly, but the location of 

each plot along each transect was located centrally within each hydrologic zone of 
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interest (stratified randomization). Transects were situated along compass bearings 

randomly selected at 36, 144 and 252 degrees, from a hypothetical center of the 

wetland. Plots were then located along the transect in the center of each of the three 

hydrologic zones of interest (1-3). Field observations of soil conditions, vegetation, 

water tables, topography and remotely sensed (color IR) imagery were utilized during 

placement of research plots (Fig 4-2B). 

Field Methods 

Hydrology - Two methods were utilized to record shallow water table levels. 

A well was inserted into the soil at the center of each research plot to a depth of 50 

cm, from which the water table height for each plot was measured manually, 

approximately monthly. In addition, a single, continuous water table logger was 

situated within the wettest portion of each wetland site (zone 0 or 1). The water table 

level at this location was recorded at 30-minute intervals. 

IRIS Tubes - IRIS (Indication of Reduction In Soils) Tubes were used to 

measure the extent of reducing conditions in the soil. IRIS Tubes are PVC tubes 

coated in an iron oxide paint that is solubilized and removed in strongly reducing soil 

conditions. One nest of 3 replicate IRIS Tubes was installed within each plot in zones 

1 and 2 in mid-March 2013. Tubes were retrieved in mid-May for analysis 

(Rabenhorst, 2008). 

Soil Sampling - Soils were sampled by horizon at each plot using a single, 5-

cm-diameter, aluminum core that was inserted vertically into the soil to a depth of 50 

cm. Depth from soil surface to the top of the tube was measured both inside and 

outside the tube in order to calculate the degree of soil compaction as a result of the 
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coring process. To ensure that the core was not disturbed by retrieval, soil was 

removed around the core and the bottom of the core was capped before removal. Soil 

cores were packed and capped for transit, and upon return to the lab, stored in a 

freezer until processing. 

Sampling for Soil Inorganic N - Soil samples for nitrate analysis were 

acquired during a previous study (McFarland et al., 2015). In August 2013, two 5 cm 

cores, 10 cm in length were composited into a single soil sample from each plot. The 

sample obtained was dried and ground before analysis. 

Decomposition Stick Installation/Removal - Decomposition was estimated by 

measuring mass loss of wooden sticks inserted into the soil and exhumed 

periodically. Thirty cm long northern white birch (Betula papyrifera) garden stakes 

were dried for 72+ hours at 60°C before being cooled in a desiccator and weighed. 

Sticks were strung in sets of five with baling twine to aid with recovery, and 

identification (Fig 4-3). 
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Figure 4-3. One set of 5 replicate decomposition sticks connected with bailing twine and labeled with an 
aluminum tag. Five sets (of 5) sticks were installed at each research plot. 

 Sticks were installed in January of 2013. Five sets of five sticks each were 

inserted vertically into the soil at each plot, roughly equidistant around the plot center 

(Fig. 4-4). A sharpened steel bar slightly thicker than the decomposition sticks was 

used to create pilot holes to aid with installation. Baling twine was used to connect 

each set of sticks to the plot center stake to aid with retrieval. 
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Figure 4-4. Five sets of decomposition sticks installed in a zone 2 of a research plot around a flagged stake 
for identification. Also shown is the white top of the shallow 50 cm PVC well used for measuring water table 
levels. 

One set of five replicate sticks was exhumed and retrieved from each plot 

quarterly. Retrieval method varied by hydrologic zone, duration of exposure, and 

stick condition. Sticks in wetter hydrologic zones and sticks removed at the end of the 

1st and 2nd quarters could mostly be removed by hand, or with the assistance of pliers. 

In some situations (where sticks were more deteriorated), a steel core was required to 

be driven into the soil around the stick, then the entirety of the core (soil and stick) 

removed. Sticks were briefly rinsed in the field before returning to the lab. 
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Lab Methods 

IRIS Processing - IRIS tubes were gently washed to remove adhering soil or 

other debris. Washed tubes were then photographed and then rotated 180° to collect 

images of both sides of the tube. Pairs of photographs of each tube were composited 

into a single image. Paint removal was then estimated visually (Rabenhorst, 2010) for 

the upper 30 cm of each tube, utilizing percent area standards (Schoeneberger et al., 

2012b) for comparison.  

Soil Core Processing - Frozen cores were partially thawed, and electric sheet 

metal shears were used to cut a slot along each aluminum core lengthwise. The 

partially frozen sample was then gently extruded from the end of the core, taking care 

to keep the core intact and to minimize disturbance. The extruded soil core was 

divided into sections by soil horizons using standard morphological observations 

(Schoeneberger et al., 2012b). The thickness of each horizon was recorded, and the 

entire mass of each horizon was sampled separately, taking care to avoid cross-

contamination. Soil horizons were dried in a 80°C oven for 72+ hours before 

weighing. Horizons were then ground in preparation for analysis. 

Total C and N Analysis - Soil samples from each horizon were crushed in a 

flail grinder and homogenized. Organic horizons were ground, using a modified 

coffee grinder. Approximately 2 grams of each horizon were transferred to glass 

scintillation vials and several small steel rods added to each. Vials were rotated on a 

spinner table for 24 hours to allow for the tumbling of the rods to grind the samples 

finely. Ground samples were then placed in a 100°C oven for 24 hours before 

weighing for analysis. Total C and N were run in duplicate using a LECO CN 
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Analyzer (Nelson & Sommers, 1996). If sufficient agreement between the duplicates 

was not obtained (both CV > 12% and SD > 0.2), additional subsamples were 

analyzed until sufficient analytical replication was achieved to bring these parameters 

below these thresholds. 

Inorganic N Analysis - Soil samples for N analysis were composites of two 

(5cm X 10cm) cores from each plot that were homogenized, ground and dried. 

Duplicate 2.5 g samples of were extracted using 25 mL of 2 M KCl. Samples were 

agitated on a shaker table for 1 hour and filtered through #4 filter paper. The resultant 

filtrate was then centrifuged at 1200 RPM for 10 minutes in order to eliminate any 

residual particulate matter. Ammonium and nitrate were determined on the extract 

using a Lachat 8500 flow injection analyzer (Maynard et al., 2007). 

Processing of Decomposition Sticks - Decomposition sticks collected from the 

field were hand washed to gently remove any remaining soil or organic material that 

adhered to the sticks following extraction. Sticks were then dried at 60°C for 72+ 

hours before being weighed (0.01 g), following the same protocol used initially. 

Hydrological Data Processing - Hydrographs were generated (modeled) by 

combining periodic water table measurements at each plot with continuous water 

table data collected using one central logger at each site. The long-term continuous 

data were adjusted (calibrated and optimized) using the manual measurements at each 

plot. Based on this modeling effort, a continuous water table hydrograph (for two 

years) was created for each individual plot. Using these data, a cumulative frequency 

curve for soil saturation vs depth was also developed for each plot. 
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Weather Data - Monthly rainfall data for the period of the study were 

obtained from the Royal Oak 2 SSW Station (187806, Coop; USC00187806, GHCN - 

Global Historical Climatology Network; Lat: 38.7153, Long: -76.1908), located near 

Easton, MD. These data were compared to long term rainfall data obtained at the the 

same station. 

 

Results and Discussion 

Weather and Hydrology 

As demonstrated in Figure 4-5, 9 of 12 months in 2013 had precipitation 

levels that fell between the 30th and 70th percentiles. The months of June and 

December had precipitation in excess of the 70th percentile and September was 

slightly below the 30th percentile. The total precipitation for 2013 was 1152 mm 

which was within 1% of the long term average of 1165 mm.  For the period leading 

up to, and during the deployment of IRIS tubes, the monthly rainfall and the 3 month 

running average of the rainfall, all fell within the 30th and 70th percentiles. Therefore, 

we concluded that the precipitation of 2013 should be considered a normal year. 
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Figure 4-5. Precipitation data for Royal Oaks, MD compared to 30% and 70% monthly averages. All data 
obtained from the WETS (NRCS Climate Analysis for Wetlands Tables) database. 

 
 
 

 
Figure 4-6. Percentage of the year research plots remained saturated at 30 cm depth. Columns sharing the 
same letter are not significantly different. 

The cumulative percent of the year that the soil was saturated (water table at 

or above) at 30 cm is presented in Figure 4-6. The statistical analysis demonstrates 

that the percent of time the soil is saturated at or above 30 cm is significantly related 

0	
50	

100	
150	
200	
250	

Jan	 Mar	 May	 Jul	 Sep	 Nov	 Jan	

pp
t	(
m
m
)	

2013	Precipitation	

30%	

70%	

Monthly	

3mo	RA	

0%

20%

40%

60%

80%

100%

1 2 3

Pe
rc
en

t	o
f	Y
ea
r

Zone

Cumulative	Saturation	at	30	cm

Natural

Restored

a
b b

c

d
e



 

 63 
 

to the hydrological zone (zone 1, 2 or 3) (p<0.0001) and also by the wetland type 

(natural vs restored) (p=0.0220). There was also a zone by wetland type interaction 

(p<0.0001). Seasonally ponded (zone 1) restored plots maintained saturation for 

fewer days than their natural counterparts, and were not statistically different than 

natural plots in zone 2. Interestingly, restored upland sites (zone 3) demonstrated a 

greater duration of saturation than their natural counterparts. This could be attributed 

to compaction caused from construction, causing a degree of water table perching, or 

it may simply be an artifact of plot selection. Regardless, the percent of time that the 

upland plots were saturated within 30 cm of the surface was minimal (<10%). 

IRIS Paint Removal 

The percentage of IRIS tube paint removed from the upper 30 cm of tubes 

placed in wetland zones 1 and 2 is shown in Fig. 4-7. ANOVA results indicate a 

significant effect on paint removal both by wetland type (p<0.0001) and wetland zone 

(p=0.0246). Interaction of the two effects was insignificant. All plots, however, 

demonstrated paint removal well in excess of the 30% removal required by technical 

standard of the NTCHS (2008) to demonstrate the presence of reducing conditions. 

These data corroborate the previous hydrologic analysis and indicate that zone 1 and 

2 plots underwent extended periods of reducing conditions as well as (during) periods 

of saturation.  

Greater paint removal was observed in restored sites compared to their natural 

counterparts. Three environmental variables can viewed as controlling the degree to 

which paint removal occurs. These variables are saturation, carbon availability, and 

temperature. Since all sites are situated within the same geographic area, temperature 
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should vary little between the sites. Likewise, saturation should remain constant 

between the sites because IRIS tubes were deployed during a period in which both 

natural and restored sites were fully saturated. Carbon availability, however, differs 

between natural and restored sites. Natural sites are woody and the majority of soil 

carbon is added to the soil surface in the form of leaf litter. Restored sites tend to be 

dominated by herbaceous vegetation, which provides the soil with more labile carbon 

within the soil added as fine roots. Restored sites might therefore have more available 

carbon, supporting higher levels of microbial activity, which would result in greater 

iron reduction. 

 
Figure 4-7. Summary of paint removal from the upper 30 cm of IRIS tubes in natural and restored wetland 
zones 1 and 2. Columns with the same letter are not significantly different. 
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Nitrogen Content of the Soils 

Nitrogen data are presented in Figure 4-8 and in Table 4-1. Nitrate levels were 

generally very low, ranging from 5 to 7 mg/kg and did not differ significantly across 

zones and wetland types (Fig. 4-8). Most of the inorganic N was present as 

ammonium. Ammonium was significantly correlated (p<0.001) with total N (r2= 

0.70), and total N was significantly correlated (p<0.001) with organic C (r2= 0.95).  

 
 
 

 

Table 4-1. Nitrogen data (means) for surface (0-10cm) soil samples in three hydrological 
zones from natural and restored sites. There were no significant differences in nitrate 
content among treatment or zones. For ammonium and total N, means followed by the 
same letter were not significantly different at the 0.05 level.  
  Natural Restored 
  N1 N2 N3 R1 R1 R3 
Nitrate mg/kg (NS) 7.1 6.4 5.5 7 7.1 7.5 
Ammonium mg/kg 146a 148a 69b 30c 21c 19c 
Total N g/kg 14.6a 9.3b 4.6c 1.4d 1.8d 1.4d 
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Figure 4-8. Means of inorganic N measured on 10 cm cores collected from plots in zones 1, 2 and 3 in both 
natural (N) and restored (R) sites. Bars with different letters were significantly different at the 0.05 level. 
There were no significant differences in nitrate levels across zones or wetland types. 
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Decomposition of Sticks 

Data for the decomposition sticks are shown in Fig. 4-9, which were examined 

on the basis of wetland type and hydrologic zone. ANOVA demonstrates that both 

wetland type (p=0.0254) and hydrologic zone (p<0.0001) had significant effects on 

the organic matter decomposition, but that these effects showed no significant 

interaction. Decomposition was lowest in zone 1 where the soil was saturated longest. 

Decomposition was also significantly lower in natural wetlands than in restored 

wetlands.  

Because the wooden sticks had such a large C:N ratio (approximately 400:1), 

it was postulated that nitrogen levels in the soil might affect decomposition. Nitrate 

Figure 4-9. Percent of organic matter decomposition as mass loss over a 1-year period. Data connected with the 
same letter are not significantly different at the p = 0.05 level.  
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levels were uniformly low across all zones and treatments and therefore would not be 

expected to have an effect. Ammonium levels, however, were significantly higher in 

natural sites, and decomposition of the sticks was also significantly (p=0.0254) 

greater in the natural sites. Thus, it is possible that ammonium could be enhancing 

decomposition of the sticks. On the other hand, ammonium levels also increased from 

the drier to the wetter zones (Fig. 4.8) where decomposition rates were dramatically 

and significantly lower (p<0.001). Therefore, if ammonium levels in the wetter zones 

contribute positively to the decomposition of the sticks, those effects appear to be 

negated or overwhelmed by the strong impact of wetter hydrological conditions. 

Prior analysis (Fig 4-6) clearly demonstrated that for a given hydrological 

zone, the natural sites remained saturated for a significantly longer period than the 

same zones in restored wetlands. Therefore, further analysis was undertaken to more 

carefully examine the effects of soil saturation on decomposition.  

Using the modeled hydrographs for each site and plot, decomposition was 

analyzed as a function of the percentage of the year the soil was saturated at or above 

a depth of 30 cm (Fig 4-10). Across all hydrologic zones and wetland types, there was 

a strong, statistically significant (p<0.001) exponential correlation (R2=0.6575) 

between stick decomposition and the percentage of the year the plot was saturated 

within 30 cm. Hydrological differences appear to be the major driver of the observed 

differences is organic matter decomposition and can explain about 2/3 of the observed 

variability in decomposition. Separate analysis of natural and restored sites showed 

that there was no difference in stick decomposition as a function of saturation. 
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Figure 4-10. Percent decomposition of sticks after 12 months plotted as a function of the percent of the year 
that the water table occurred within 30 cm of the soil surface.	

 

Carbon Stocks 

Figure 4-11 illustrates the quantity of C stored in the upper 50 cm of soils in 

each of the three hydrological zones and in the two wetland types. Wetland type 

(p<0.0001) and hydrologic zone (p=0.0003) both have highly significant affects on 

soil carbon stocks. A significant interaction was also observed (p<0.0001). In the 

natural sites, C stocks in the two wetland zones (1 and 2), which were not different 
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from each other, were both significantly greater than in the upland zone (3). 

 

Figure 4-11. Carbon stocks in the upper 50 cm of the soil in natural and restored wetland sites. 

 

In the restored sites, however, there were no significant differences in C stocks 

among the hydrological zones. This is most likely due to homogenization, mixing and 

removal of soil horizons during the restoration process, and a lack of sufficient time 

for carbon to accumulate post-restoration (Stolt et al., 2000; Ballantine & Schneider, 

2009). Also of note is that natural upland sites have more carbon than restored 

uplands. This, again, can be attributed to soil and land disturbance associated both 

with normal cultivation and restoration activity, even outside the extent of the 

wetland itself. 
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Synthesis 

A companion study detailing the vegetation communities of these wetlands 

was conducted earlier (McFarland et al., 2015). Using the same research plots as this 

study, annual carbon inputs were estimated as the sum of annual herbaceous growth 

and annual leaf litter fall. Although restored wetlands were dominated by herbaceous 

inputs, and natural wetlands by leaf litter, total plant carbon inputs to restored and 

natural sites were not significantly different. 

We know that the soils in wetland zones 1 and 2 are ponded or saturated 

substantially longer than the soils in the non-wetland zone 3. This leads to 

establishment of anaerobic conditions for extended periods during the wet season as 

evidenced by the IRIS tube data. These saturated and anaerobic soil conditions force 

microbial decomposition to proceed through anaerobic pathways, which generally 

impedes the rates of organic matter decomposition. This is demonstrated by the much 

higher rates of decomposition recorded to sticks in the non-wetland zone 3 sites. 

Since McFarland’s (2015) data indicate that C inputs have been generally uniform 

across the sites, the lower rates of decomposition in the wetland zones 1 and 2 would 

lead us to expect that C stocks in these wetland zones would be greater than in the 

non-wetland sites. However, while we observe this in the natural sites, there is no 

difference in carbon in the restored sites. 

During the period since restoration (7 to 28 years depending on the particular 

site), the quantity of C stored in the restored wetland soils has not become detectably 

greater than in the non-wetland zones. There are likely two reasons for this. First, 

other researchers (Ballantine & Schneider, 2009; Fenstermacher et al., 2016) have 
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demonstrated that the expected timeframe to see significant increases in soil organic 

carbon in restored wetlands can be 30 to 55 years or even more. Secondly, restoration 

activity from earth-moving equipment can introduce variability through mixing of 

soil materials, which can make detection of small changes more difficult. 

Nevertheless, the data from this study indicate that organic carbon should be 

accumulating within the soils of the zones 1 and 2 restored wetlands. Eventually this 

should lead to the development and formation of A and O horizons and the 

accumulation of soil carbon stocks in the restored wetlands that are greater than in the 

surrounding non-wetland areas. 

In order to further evaluate whether organic carbon was measurably 

accumulating in the restored wetlands, the carbon stocks in the zone 1 plots were 

regressed against the time since restoration. This regression was not significant (p = 

0.32).  In addition, the ratio of organic C stocks in zone 1 to those in zone 3 

(wetland:upland) were regressed against the age of the restored wetlands. Although 

this ratio would be expected to increase with restored wetland age, this regression 

also was not significant (p = 0.42). This further confirms that there has been 

insufficient time for organic carbon to appreciably accumulate in these restored 

wetlands.  
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Chapter 5:  Conclusions 

 

The overall goal of this study was to compare selected physical soil 

properties, and also those properties and processes that contribute to the sequestration 

of organic carbon, between natural wetlands and those restored using common 

techniques (scraping). Fourteen freshwater depressional wetlands, including 5 natural 

sites and 9 sites restored over a 7 to 28 year period, were examined across the 

Delmarva Peninsula, and a total of 126 plots were established according to 3 distinct 

hydrological zones (ponded hydric soils; non-ponded hydric soils; and non-hydric 

soils). Each plot was sampled and instrumented in order to measure a number of 

physical and chemical soil properties over the course of a year. The observations 

made can be broadly divided into three categories: those pertaining to the physical 

effects of restoration activities, those pertaining to water tables, and those pertaining 

to soil carbon. 

  The physical impact of restoration activity was primarily evidenced by 

increased soil compaction. This was manifest in both higher bulk density and higher 

penetration resistance in restored sites relative to the natural sites. Penetration 

resistance (as cone index) was higher overall in restored sites. It also increased more 

abruptly and at shallower depths in the soil profile in restored sites than in natural 

sites. This compaction and penetration resistance was most likely the result of 

vehicular traffic on the restored sites where heavy equipment was utilized during 

excavation, scraping, and shaping the land surface. It is also possible that there was 

intentional compacting of the soil during restoration with the goal of creating a 
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perching soil layer to maintain wetland hydrological conditions. The degree of soil 

compaction observed in restored sites was sufficient to be both root restricting and 

hydrologically limiting, which could impact the restored wetland in a number of 

ways. Resistance to root penetration can stunt plant growth, and can also cause 

changes in the plant community (that is better adapted to compacted soil conditions). 

These sorts of changes in wetland plant communities can lead to soil changes in the 

magnitude and form of soil carbon inputs. 

 Two years of water table data were modeled for each plot from monthly 

manual water table readings and automatic water table data obtained from data 

loggers. These data confirmed initial assessments that the 3 zones identified by field 

methods were in fact hydrologically distinct in both restored and natural wetlands. 

Additionally, within each hydrologic zone, natural wetlands maintained longer 

periods of saturated soil conditions throughout the year than restored wetlands. This 

was further reflected in the decomposition rates obtained as mass loss of buried 

wooden sticks. Decomposition rates were correlated with duration of soil saturation, 

and hydric soils had demonstrably lower rates of decomposition than non-hydric 

soils. Other factors, such as quantity of soil nitrogen, did not appear to affect 

decomposition rates, or the effect was masked by the much larger effect of hydrology. 

Despite the observed difference in duration of saturation over the course of a year, 

IRIS tube analysis demonstrated that all the soils (in zones 1 and 2) in all sites were 

sufficiently saturated during the spring to allow the development of anaerobic 

conditions and to facilitate the reduction of iron in the soil. 
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 Soil carbon data were obtained by horizon for each plot to a depth of 50 cm. 

Natural sites demonstrated greater overall carbon stocks than their restored 

counterparts. Additionally, natural sites had more carbon stored within hydric soil 

zones (1 and 2) than in the surrounding non-hydric zones. This was expected, given 

the greater duration of saturation and slower rates of decomposition in the wetter 

zones of natural sites. As a group, the restored sites stored less organic carbon than 

the natural sites. This is likely best attributed to the physical mixing and removal of 

organic-rich surface soil material during restoration, and the drier conditions (and 

resulting higher decomposition rates) post-restoration. Interestingly, restored sites 

showed no significant differences in carbon stocks between the three hydrologic 

zones, despite differences in the duration of inundation. This could be the result of 

homogenization of soil material during restoration activity, but it could also be as the 

result of the relatively short period of time since restoration that these soils have had 

had to accumulate carbon. 

 Analysis of the plant communities and vegetative growth at these same sites 

(undertaken by McFarland in 2015) demonstrated that total carbon inputs to wetlands 

were similar between restored and natural wetlands, and were also similar among the 

three hydrologic zones. The proportion of inputs from herbaceous vegetation and leaf 

litter varied, but the overall carbon input did not. The restored wetlands in this study 

do not appear to have not accumulated appreciable amounts of carbon since 

restoration. This may be due in part to the greater overall decomposition rates 

demonstrated in the restored wetlands. Other studies, however, have demonstrated 

that carbon sequestration in restored wetlands my be a very slow process, and that it 
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may sometimes require in excess of 50 years (perhaps far more), in order for soil 

carbon stocks in restored wetlands to approach levels comparable to their natural 

state. 

 This study suggests several implications for future restoration activity. If the 

goal of restoration is to foster development of natural-like systems, restoration 

methodology should seek to, above all, minimize soil disturbance and compaction. 

Approaches utilizing excavation and intentional compaction will likely result in 

wetlands with soil properties that are strongly contrasting with their natural 

counterparts. Therefore, when this is the primary goal, future restoration efforts 

should seek to target sites that do not require extensive earth moving effort to 

accomplish the restoration. One way to accomplish this would be to focusing 

restoration activity on prior-converted cropland (areas that formerly were wetlands). 

In addition to changes in restoration strategies, here should also be changes to 

restoration monitoring. This study is in agreement with numerous other studies that 

have found that some wetland soil properties are slow to change (such as increased 

accumulation of carbon stocks), often taking many decades to return to levels 

comparable to natural wetlands. Therefore, it should be expected that longer periods 

of monitoring and observation will be required in order to properly demonstrate that 

the soils of restored wetlands are on trajectory to return to a natural state. 

Nevertheless, some short term monitoring strategies (such as IRIS technology) may 

be useful in demonstrating that anaerobic wetland soil functions may be operating 

long before changes in carbon storage could be documented. 

 



Appendix A. Bulk density, percent C and carbon stocks to 50 cm. 

 

Site Plot Segment 
Bottom 

Depth (cm) 
Width 
(cm) Horizon 

Bulk 
Density 

(g/cm^3) 
Mean 

%C 
Total C 

(kg/m^2) 
C Stocks 
(kg/m^2) 

DEK-R-Jr 1-1 1 3.0 3.0 A 1.15 3.44 1.19 3.61 

  
 

2 18.6 15.6 Ap 1.89 0.59 1.74   

  
 

3 26.0 7.4 A/Bt 1.88 0.23 0.31   

  
 

4 38.1 12.1 Btg/A 1.71 0.13 0.27   

    5 42.2 4.1 Btg 1.74 0.13 0.09   

  1-2 1 11.5 11.5 A 1.49 1.18 2.02 4.24 

  
 

2 24.3 12.8 Ap/Btg 1.80 0.73 1.68   

  
 

3 34.6 10.3 Btg 1.84 0.22 0.42   

    4 40.4 5.8 BCg 1.74 0.12 0.12   

  1-3 1 7.0 7.0 A 0.69 3.26 1.59 8.87 

  
 

2 37.9 30.9 A/Btg 1.51 1.13 5.28   

    3 47.0 9.1 A' 1.57 1.41 2.01   

  4-1 1 6.3 6.3 A 1.24 2.59 2.02 4.66 

  
 

2 14.1 7.8 Ap 1.56 1.42 1.72   

  
 

3 21.0 6.9 A/Bt 1.83 0.31 0.39   

  
 

4 39.1 18.1 Btg/A 1.87 0.13 0.45   

    5 42.7 3.6 Btg 2.06 0.12 0.09   

  4-2 1 10.0 10.0 A 0.99 2.69 2.66 6.03 

  
 

2 21.5 11.5 Ap 1.31 1.80 2.72   

  
 

3 36.7 15.2 Btg/A1 1.67 0.18 0.45   

    4 48.5 11.8 Btg/A2 1.89 0.09 0.21   

  4-3 1 5.6 5.6 A 1.11 2.80 1.74 10.87 

  
 

2 20.0 14.4 A/Btg 1 1.52 1.39 3.05   

    3 46.4 26.4 A/Btg 2 1.55 1.49 6.08   

  7-1 1 2.7 2.7 A 1.12 2.99 0.90 2.95 

  
 

2 10.3 7.6 Ap 1.66 1.01 1.27   

  
 

3 17.1 6.8 A/Btg 2.03 0.21 0.30   

  
 

4 38.3 21.2 Btg/A1 1.71 0.11 0.40   

    5 43.7 5.4 Btg/A2 1.58 0.10 0.09   

  7-2 1 12.2 12.2 Ap 1.40 1.56 2.65 3.90 

  
 

2 25.5 13.3 Btg1 1.75 0.33 0.78   

  
 

3 36.3 10.8 Btg2 1.71 0.20 0.36   

    4 40.5 4.2 BCg 1.94 0.13 0.11   

  7-3 1 6.0 6.0 A1 1.07 1.72 1.10 6.32 

  
 

2 16.1 10.1 A2 1.26 1.23 1.56   

76



  
 

3 29.3 13.2 A3 1.24 1.02 1.68   

    4 50.0 20.7 A/Btg 1.56 0.61 1.98   

DENC-N-BB 1-1 1 3.1 3.1 Oe 0.16 35.07 1.78 17.86 

  
 

2 11.9 8.8 Oa 0.51 11.02 4.95   

  
 

3 29.0 17.1 A 0.93 5.93 9.38   

    4 35.2 6.2 AB 1.19 2.39 1.76   

  1-2 1 12.2 12.2 Oe 0.28 25.88 8.86 12.39 

  
 

2 22.9 10.7 A 0.96 2.97 3.04   

    3 39.7 16.8 Btg 1.67 0.18 0.50   

  1-3 1 5.6 5.6 Oe 0.33 14.79 2.71 6.64 

  
 

2 13.5 7.9 A 0.82 3.42 2.21   

  
 

3 27.2 13.7 E 1.44 0.61 1.21   

    4 42.2 15.0 Bt 1.42 0.24 0.51   

  4-1 1 4.9 4.9 Oe 0.20 25.33 2.42 13.69 

  
 

2 13.8 8.9 Oa 0.65 6.66 3.87   

  
 

3 29.8 16.0 A 0.81 5.42 6.98   

    4 34.3 4.5 C 1.36 0.69 0.42   

  4-2 1 2.0 2.0 Oe 0.43 11.82 1.02 17.43 

  
 

2 7.1 5.1 A1 0.76 5.12 1.97   

  
 

3 15.7 8.6 A2 1.24 3.35 3.58   

    4 45.7 30.0 A3 1.26 2.86 10.85   

  4-3 1 3.7 3.7 Oe 0.35 12.80 1.68 6.32 

  
 

2 10.9 7.2 A 0.86 3.17 1.97   

  
 

3 17.5 6.6 E 1.15 1.05 0.80   

  
 

4 31.8 14.3 Bt 1.47 0.61 1.29   

    5 40.8 9.0 AE 1.44 0.45 0.58   

  7-1 1 2.8 2.8 Oe 0.12 30.20 1.04 13.49 

  
 

2 12.5 9.7 Oa 0.48 13.28 6.20   

    3 28.1 15.6 A 0.91 4.40 6.25   

  7-2 1 3.2 3.2 Oe 0.22 26.81 1.92 18.55 

  
 

2 9.0 5.8 A1 0.47 7.92 2.16   

  
 

3 30.4 21.4 A2 1.10 3.81 8.97   

    4 43.8 13.4 AE 1.16 3.53 5.50   

  7-3 1 4.0 4.0 Oe 0.17 32.52 2.24 10.86 

  
 

2 13.2 9.2 A 0.90 5.03 4.15   

  
 

3 29.3 16.1 Bt 1.33 1.22 2.60   

  
 

4 36.5 7.2 Ab 1.31 1.32 1.24   

    5 46.8 10.3 BC 1.54 0.40 0.63   

MDC-N-AB 1-1 1 4.6 4.6 Oe 0.16 41.77 3.12 22.09 

  
 

2 12.1 7.5 A1 0.50 17.98 6.77   

  
 

3 24.3 12.2 A2 0.69 8.18 6.92   
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4 30.0 5.7 BEg 0.92 4.55 2.40   

    5 39.4 9.4 Btg 0.92 3.33 2.87   

  1-2 1 4.2 4.2 Oe 0.32 21.29 2.84 17.10 

  
 

2 20.5 16.3 A 0.86 7.76 10.90   

  
 

3 28.9 8.4 AB 1.40 1.48 1.75   

  
 

4 37.4 8.5 Btg1 1.56 0.70 0.93   

    5 46.7 9.3 Btg2 1.39 0.52 0.68   

  1-3 1 2.9 2.9 Oe 0.36 16.25 1.68 19.29 

  
 

2 18.7 15.8 A 0.79 6.90 8.62   

  
 

3 27.4 8.7 E 0.90 3.26 2.55   

  
 

4 36.9 9.5 Bs 1.12 3.00 3.19   

    5 42.9 6.0 Bhs 0.87 6.27 3.26   

  4-1 1 6.2 6.2 Oe 0.20 36.10 4.44 24.12 

  
 

2 19.2 13.0 A1 0.59 11.09 8.46   

  
 

3 29.6 10.4 A2 0.66 9.94 6.78   

  
 

4 38.7 9.1 AB 0.74 5.04 3.42   

    5 43.9 5.2 Bt 0.66 2.96 1.02   

  4-2 1 2.8 2.8 Oe 0.37 27.56 2.82 21.32 

  
 

2 11.8 9.0 Oa 0.86 9.53 7.40   

  
 

3 26.3 14.5 A 1.11 5.13 8.22   

    4 43.4 17.1 Btg 1.38 1.22 2.88   

  4-3 1 4.2 4.2 Oi 0.14 38.57 2.24 10.26 

  
 

2 10.4 6.2 Oe 0.59 9.35 3.41   

  
 

3 16.6 6.2 AB 1.02 3.17 1.99   

  
 

4 37.8 21.2 Bt 1.34 0.85 2.42   

    5 43.1 5.3 BC 1.62 0.23 0.20   

  7-1 1 3.7 3.7 Oe 0.14 40.95 2.16 26.49 

  
 

2 12.0 8.3 A1 0.44 18.24 6.69   

  
 

3 22.4 10.4 A2 0.65 12.50 8.47   

  
 

4 31.7 9.3 AB1 0.78 6.84 4.98   

    5 41.0 9.3 AB2 0.91 4.94 4.19   

  7-2 1 3.1 3.1 Oe 0.36 30.34 3.41 21.03 

  
 

2 17.6 14.5 Oa 0.59 14.16 12.02   

  
 

3 27.2 9.6 A 1.17 3.12 3.50   

    4 49.6 22.4 Btg 1.57 0.60 2.10   

  7-3 1 5.9 5.9 Oe 0.40 19.98 4.72 9.97 

  
 

2 15.0 9.1 A 1.08 3.04 2.98   

  
 

3 25.9 10.9 AB 1.28 1.01 1.41   

  
 

4 40.0 14.1 Bt1 1.20 0.37 0.62   

    5 46.4 6.4 Bt2 1.57 0.24 0.24   

MDC-N-BC 1-1 1 4.5 4.5 Oe 0.09 45.94 1.87 35.33 
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    2 46.0 41.5 Oa 0.44 18.38 33.47   

  1-2 1 5.7 5.7 Oe 0.25 34.16 4.84 24.26 

  
 

2 24.1 18.4 A1 0.81 8.04 11.93   

  
 

3 35.5 11.4 A2 1.16 3.79 5.03   

    4 41.5 6.0 AB 1.20 3.41 2.47   

  1-3 1 5.5 5.5 Oe 0.23 32.48 4.09 11.03 

  
 

2 9.4 3.9 A1 0.79 6.38 1.96   

  
 

3 15.6 6.2 A2 1.10 2.73 1.86   

  
 

4 27.9 12.3 AB 1.31 1.48 2.38   

    5 50.0 22.1 Bw 1.58 0.21 0.74   

  4-1 1 8.0 8.0 Oe 0.16 36.76 4.67 27.47 

    2 36.0 28.0 Oa 0.30 27.12 22.80   

  4-2 1 9.2 9.2 Oe 0.15 47.00 6.47 30.64 

  
 

2 26.9 17.7 A1 0.62 13.34 14.75   

    3 43.0 16.1 A2 1.10 5.30 9.42   

  4-3 1 4.3 4.3 Oe 0.44 15.22 2.88 6.35 

  
 

2 9.1 4.8 A1 0.79 2.20 0.83   

  
 

3 13.5 4.4 A2 1.42 1.33 0.83   

  
 

4 21.5 8.0 AB 1.37 0.82 0.89   

    5 46.8 25.3 BE 1.58 0.23 0.92   

  7-1 1 5.5 5.5 Oe 0.13 45.53 3.34 26.15 

    2 43.2 37.7 Oa 0.43 14.05 22.81   

  7-2 1 8.0 8.0 Oe 0.15 38.98 4.72 21.53 

  
 

2 18.7 10.7 A1 0.79 7.47 6.33   

  
 

3 37.5 18.8 A2 1.27 3.46 8.26   

  
 

4 42.7 5.2 AB 1.27 1.38 0.91   

    5 47.3 4.6 Ab 1.72 1.67 1.32   

  7-3 1 4.8 4.8 Oe 0.21 30.31 3.12 10.52 

  
 

2 10.8 6.0 A1 1.10 3.88 2.57   

  
 

3 21.2 10.4 A2 0.92 3.16 3.02   

  
 

4 35.8 14.6 BE 1.16 0.81 1.38   

    5 45.9 10.1 Bw 1.46 0.29 0.43   

MDC-N-
BeW 1-1 1 8.2 8.2 Oe 0.16 30.53 4.02 11.48 

  
 

2 18.5 10.3 A1 0.89 3.41 3.11   

  
 

3 30.5 12.0 A2 0.96 1.86 2.15   

    4 42.5 12.0 AB 1.09 1.69 2.20   

  1-2 1 2.6 2.6 Oe 0.51 13.12 1.74 8.30 

  
 

2 11.6 9.0 A 1.03 3.30 3.07   

  
 

3 21.7 10.1 AB 1.47 1.02 1.52   

    4 32.3 10.6 Bt 1.37 1.37 1.98   

  1-3 1 4.0 4.0 Oe 0.34 20.95 2.82 7.11 
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2 14.1 10.1 A 1.09 2.22 2.44   

  
 

3 25.2 11.1 AE 1.37 0.68 1.03   

  
 

4 42.0 16.8 E 1.46 0.22 0.55   

    5 47.3 5.3 Bt 1.83 0.28 0.27   

  4-1 1 7.2 7.2 Oe 0.42 15.40 4.69 15.12 

  
 

2 25.0 17.8 A1 1.13 3.56 7.18   

  
 

3 35.5 10.5 A2 1.30 1.09 1.49   

    4 48.0 12.5 AB 1.28 1.10 1.76   

  4-2 1 5.1 5.1 Oe 0.50 12.60 3.19 10.58 

  
 

2 12.3 7.2 A 0.86 5.61 3.48   

  
 

3 19.9 7.6 Btg1 1.39 1.94 2.04   

  
 

4 28.3 8.4 Btg2 1.26 0.91 0.97   

    5 38.9 10.6 Btg3 1.78 0.48 0.90   

  4-3 1 4.5 4.5 Oe 0.35 19.40 3.03 8.57 

  
 

2 9.2 4.7 A 1.04 2.92 1.43   

  
 

3 17.6 8.4 Bt/A 1.17 1.92 1.89   

  
 

4 34.3 16.7 Bt 1.49 0.72 1.80   

    5 46.5 12.2 BC 1.67 0.21 0.43   

  7-1 1 6.6 6.6 Oe 0.40 14.96 3.95 9.62 

  
 

2 22.0 15.4 A 1.10 2.35 3.98   

  
 

3 39.3 17.3 BEg 1.70 0.44 1.28   

    4 45.7 6.4 Btg 1.56 0.40 0.40   

  7-2 1 4.1 4.1 Oe 0.30 18.76 2.31 9.44 

  
 

2 11.2 7.1 A1 1.10 3.98 3.11   

  
 

3 19.6 8.4 A2 1.37 2.16 2.48   

  
 

4 32.4 12.8 Btg1 1.73 0.55 1.22   

    5 44.5 12.1 Btg2 2.13 0.13 0.33   

  7-3 1 5.3 5.3 Oe 0.54 9.50 2.74 8.79 

  
 

2 10.6 5.3 A1 1.10 3.23 1.89   

  
 

3 18.1 7.5 A2 1.15 1.59 1.37   

  
 

4 28.0 9.9 AB 1.42 1.05 1.47   

    5 45.6 17.6 Btg 1.59 0.47 1.32   

MDC-N-JL 1-1 1 10.0 10.0 Oa 0.34 7.62 2.60 9.06 

  
 

2 20.3 10.3 A 1.54 2.99 4.73   

  
 

3 29.1 8.8 ABg 1.42 0.96 1.20   

    4 38.5 9.4 Btg 1.64 0.34 0.52   

  1-2 1 5.7 5.7 Oe 0.44 12.38 3.13 19.07 

  
 

2 27.4 21.7 A1 1.07 4.13 9.61   

  
 

3 40.2 12.8 A2 1.18 3.63 5.46   

    4 46.4 6.2 A/Bt 1.22 1.17 0.88   

  1-3 1 6.6 6.6 Oe 0.46 15.70 4.74 10.93 
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2 11.0 4.4 A 0.79 4.25 1.47   

  
 

3 21.5 10.5 AB 1.45 2.33 3.55   

    4 43.4 21.9 Bt 1.68 0.32 1.17   

  4-1 1 5.5 5.5 Oe 0.31 19.49 3.30 11.88 

  
 

2 15.5 10.0 A 0.99 4.32 4.29   

  
 

3 32.1 16.6 Ag 1.41 1.26 2.95   

    4 37.5 5.4 Ab 1.16 2.13 1.33   

  4-2 1 6.5 6.5 Oa 0.74 9.96 4.77 17.90 

  
 

2 22.9 16.4 A1 1.38 2.59 5.86   

  
 

3 34.5 11.6 A2 1.35 2.70 4.23   

    4 43.2 8.7 Bt 1.39 2.52 3.04   

  4-3 1 8.5 8.5 Oe 0.32 26.78 7.38 18.80 

  
 

2 14.4 5.9 A/A1 1.16 5.04 3.45   

  
 

3 20.5 6.1 AE/A2 1.04 3.89 2.47   

  
 

4 27.8 7.3 Bhs/A3 0.90 4.29 2.82   

    5 42.7 14.9 Bt/AB 1.39 1.30 2.69   

  7-1 1 5.9 5.9 Oe 0.10 49.90 2.97 11.77 

  
 

2 19.2 13.3 A1 0.88 6.09 7.16   

  
 

3 29.0 9.8 A2 1.39 0.44 0.60   

    4 33.8 4.8 A3 1.30 1.67 1.04   

  7-2 1 3.7 3.7 Oe 0.27 30.63 3.04 21.04 

  
 

2 31.4 27.7 A 0.97 5.56 15.00   

    3 42.6 11.2 AB 1.38 1.94 3.00   

  7-3 1 5.0 5.0 A1 0.47 15.18 3.54 6.88 

  
 

2 18.0 13.0 A2 1.25 1.54 2.51   

  
 

3 30.4 12.4 BE 1.66 0.26 0.52   

    4 44.7 14.3 Bt 1.78 0.12 0.30   

MDC-R-JL 1-1 1 3.2 3.2 Oe 0.48 6.38 0.98 11.03 

  
 

2 19.2 16.0 A 1.49 2.98 7.10   

    3 35.5 16.3 A/Btg 1.34 1.35 2.95   

  1-2 1 15.4 15.4 A 1.08 5.25 8.74 20.06 

  
 

2 27.7 12.3 Ap 1.17 5.54 7.97   

  
 

3 40.3 12.6 A/Btg 1.39 1.58 2.78   

    4 48.4 8.1 Btg 1.42 0.49 0.57   

  1-3 1 6.5 6.5 A 0.93 5.08 3.06 5.57 

  
 

2 11.8 5.3 Ap 1.40 1.15 0.85   

  
 

3 28.9 17.1 ^E/A 1.75 0.20 0.61   

  
 

4 33.9 5.0 ^Btg/A 1.93 0.18 0.17   

    5 47.7 13.8 ^E/A' 1.67 0.38 0.87   

  4-1 1 2.2 2.2 Oe 0.49 9.82 1.06 10.79 

  
 

2 24.5 22.3 A 1.60 2.21 7.88   
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    3 33.5 9.0 AB 1.33 1.54 1.84   

  4-2 1 1.3 1.3 Oe 0.77 8.11 0.81 16.18 

  
 

2 13.5 12.2 A 1.37 2.18 3.66   

  
 

3 33.1 19.6 Ap/Btg 1.64 2.03 6.52   

    4 42.4 9.3 2Ap/Btg2 0.73 7.70 5.19   

  4-3 1 4.6 4.6 A 1.37 2.25 1.42 4.18 

  
 

2 15.5 10.9 Ap1 1.35 0.92 1.35   

  
 

3 25.0 9.5 Ap2 1.71 0.60 0.97   

  
 

4 40.2 15.2 EB 1.89 0.10 0.28   

    5 49.0 8.8 Bt 1.88 0.10 0.17   

  7-1 1 22.0 22.0 A 1.23 3.61 9.77 12.17 

    2 37.0 15.0 A/Btg 1.41 1.14 2.40   

  7-2 1 13.8 13.8 A 0.99 5.24 7.12 22.32 

  
 

2 29.9 16.1 Ap 1.23 4.24 8.39   

    3 45.5 15.6 A/Btg 1.36 3.20 6.82   

  7-3 1 4.1 4.1 A 1.06 2.24 0.97 5.21 

  
 

2 25.1 21.0 Ap 1.49 1.22 3.82   

  
 

3 39.0 13.9 BE 1.73 0.10 0.25   

    4 50.2 11.2 Bt 1.60 0.09 0.17   

MDD-R-Ck 1-1 1 1.0 1.0 A 1.40 0.59 0.08 1.09 

  
 

2 6.2 5.2 Bw 1.84 0.17 0.17   

  
 

3 24.0 17.8 BC 1.64 0.13 0.39   

    4 44.1 20.1 Cg 1.75 0.13 0.45   

  1-2 1 2.3 2.3 A 0.67 5.94 0.91 8.22 

  
 

2 6.6 4.3 Ap 1.50 2.43 1.56   

  
 

3 19.1 12.5 2A1 1.30 1.69 2.73   

  
 

4 29.2 10.1 2A2 1.45 1.40 2.05   

    5 42.8 13.6 A/Btg 1.76 0.40 0.96   

  1-3 1 8.5 8.5 Ap 1.45 2.47 3.04 13.30 

  
 

2 30.0 21.5 Ap/E1 1.43 1.43 4.39   

    3 47.0 17.0 Ap/E2 1.72 2.01 5.87   

  4-1 1 6.4 6.4 Ap 1.30 2.77 2.29 4.67 

  
 

2 13.5 7.1 A/Cg 1.80 0.83 1.07   

  
 

3 21.7 8.2 Cg/A 1.82 0.38 0.56   

  
 

4 34.2 12.5 Cg/Btg 1.76 0.19 0.43   

    5 44.3 10.1 Btg 1.69 0.19 0.32   

  4-2 1 2.2 2.2 A 1.12 3.49 0.86 3.78 

  
 

2 10.2 8.0 Ap/Bt 1.69 1.24 1.68   

  
 

3 20.0 9.8 BA 1.84 0.40 0.71   

  
 

4 34.1 14.1 Btg 1.86 0.12 0.30   

    5 44.3 10.2 BCg 1.80 0.12 0.22   
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  4-3 1 12.9 12.9 Ap1 1.40 2.97 5.37 8.86 

  
 

2 30.0 17.1 Ap2 1.67 1.12 3.19   

  
 

3 34.7 4.7 Btg 1.81 0.15 0.13   

    4 47.0 12.3 BCg 1.96 0.07 0.16   

  7-1 1 4.9 4.9 Ap 1.08 1.47 0.78 2.17 

  
 

2 12.7 7.8 A/Btg 1.79 0.33 0.46   

  
 

3 26.4 13.7 Btg 1.94 0.18 0.47   

    4 43.8 17.4 Btg/A 1.79 0.15 0.46   

  7-2 1 7.5 7.5 Ap 1.30 2.86 2.80 6.22 

  
 

2 16.7 9.2 Ap/Bt 1.50 1.85 2.55   

  
 

3 27.3 10.6 Bt 1.79 0.24 0.45   

    4 48.7 21.4 Btg 1.70 0.12 0.42   

  7-3 1 10.6 10.6 Ap 1.06 2.15 2.42 10.58 

  
 

2 30.6 20.0 Ap/E 1.54 1.04 3.20   

    3 42.0 11.4 Ap' 1.49 2.93 4.97   

MDQA-R-
BsO 1-1 1 12.1 12.1 Ap1 0.91 1.82 2.01 3.14 

  
 

2 23.3 11.2 Ap2 1.71 0.31 0.59   

  
 

3 32.3 9.0 BE 1.75 0.24 0.38   

    4 41.0 8.7 Bt 1.52 0.12 0.16   

  1-2 1 3.1 3.1 A1 1.01 5.77 1.80 6.52 

  
 

2 9.5 6.4 A2 0.96 3.08 1.90   

  
 

3 29.5 20.0 BE 1.36 0.72 1.95   

    4 49.8 20.3 Bt 1.60 0.27 0.87   

  1-3 1 6.2 6.2 A 0.51 13.61 4.31 11.27 

  
 

2 16.6 10.4 Ap 0.90 3.58 3.34   

  
 

3 31.1 14.5 BE 1.21 1.11 1.95   

    4 49.0 17.9 Bt 1.47 0.64 1.67   

  7-1 1 2.1 2.1 Oe 1.06 1.49 0.33 1.93 

  
 

2 10.0 7.9 A 1.32 0.69 0.72   

  
 

3 18.4 8.4 Ap 1.65 0.35 0.49   

  
 

4 31.7 13.3 BA 1.72 0.10 0.23   

    5 47.2 15.5 BE 1.63 0.07 0.17   

  7-2 1 3.3 3.3 A1 0.74 4.24 1.04 2.84 

  
 

2 7.0 3.7 A2 1.05 1.98 0.77   

  
 

3 18.4 11.4 BA 1.53 0.43 0.74   

  
 

4 29.8 11.4 Btg 1.80 0.07 0.14   

    5 48.3 18.5 BCg 1.53 0.05 0.14   

  7-3 1 4.0 4.0 A 1.25 2.20 1.10 3.26 

  
 

2 15.9 11.9 AB 1.44 0.75 1.29   

  
 

3 38.0 22.1 Btg 1.73 0.19 0.74   

    4 47.5 9.5 BC 1.56 0.08 0.12   
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  9-1 1 2.5 2.5 Oe 0.84 2.65 0.55 1.79 

  
 

2 12.7 10.2 A 1.47 0.37 0.55   

  
 

3 21.0 8.3 Ap 1.59 0.15 0.20   

  
 

4 38.5 17.5 Btg 1.51 0.13 0.36   

    5 41.4 2.9 Ab 1.44 0.30 0.13   

  9-2 1 4.8 4.8 A 0.32 19.68 3.00 4.16 

  
 

2 16.5 11.7 BAg 1.32 0.49 0.75   

  
 

3 29.5 13.0 Btg1 1.87 0.07 0.18   

    4 49.2 19.7 Btg2 1.77 0.06 0.22   

  9-3 1 3.0 3.0 A1 1.13 1.95 0.66 2.06 

  
 

2 7.9 4.9 A2 1.43 0.58 0.40   

  
 

3 23.8 15.9 Btg 1.68 0.26 0.70   

    4 48.1 24.3 BCg 1.64 0.07 0.30   

MDQA-R-
BsY 0-1 1 4.5 4.5 Oe 0.61 8.34 2.31 5.02 

  
 

2 11.2 6.7 Ag 1.36 0.72 0.66   

  
 

3 20.2 9.0 ABtg 1.59 0.61 0.87   

  
 

4 28.5 8.3 Btg1 1.70 0.45 0.63   

    5 46.5 18.0 Btg2 1.80 0.17 0.56   

  0-2 1 4.5 4.5 Oe 0.79 4.64 1.65 4.97 

  
 

2 18.1 13.6 Ap1 1.58 0.68 1.46   

  
 

3 36.1 18.0 2Ap2 1.70 0.48 1.45   

    4 49.8 13.7 3Btg 1.79 0.17 0.41   

  0-3 1 9.1 9.1 A 1.13 1.41 1.46 3.79 

  
 

2 37.0 27.9 BE 1.59 0.43 1.92   

    3 46.2 9.2 Bt 1.74 0.26 0.42   

  6-1 1 3.5 3.5 Oe 0.73 6.92 1.77 2.76 

  
 

2 6.9 3.4 Ag 1.66 0.31 0.17   

  
 

3 18.5 11.6 Btg/Ag 1.84 0.13 0.28   

  
 

4 36.1 17.6 Btg1 1.72 0.13 0.40   

    5 42.8 6.7 Btg2 1.83 0.11 0.13   

  6-2 1 6.9 6.9 A 1.24 2.39 2.04 5.18 

  
 

2 21.3 14.4 A/Btg1 1.54 0.57 1.26   

  
 

3 33.8 12.5 A/Btg2 1.59 0.51 1.02   

    4 45.0 11.2 A/Btg3 1.63 0.47 0.86   

  6-3 1 8.4 8.4 A 1.06 2.47 2.19 5.22 

  
 

2 20.1 11.7 AB 1.50 0.72 1.26   

  
 

3 31.8 11.7 BEg 1.60 0.39 0.73   

    4 47.2 15.4 Btg 1.57 0.43 1.03   

  8-1 1 5.3 5.3 Ag 0.75 4.00 1.59 3.51 

  
 

2 10.2 4.9 Btg 1.77 0.46 0.40   

  
 

3 20.0 9.8 Bt1 1.72 0.37 0.62   
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4 28.2 8.2 Bt2 1.79 0.26 0.39   

    5 43.0 14.8 BC 1.61 0.21 0.51   

  8-2 1 5.4 5.4 A1 1.17 1.19 0.75 3.11 

  
 

2 11.6 6.2 A2 1.63 0.45 0.46   

  
 

3 28.8 17.2 A/Btg 1.73 0.43 1.27   

    4 46.4 17.6 Btg 1.81 0.20 0.63   

  8-3 1 6.6 6.6 A 1.19 2.39 1.88 4.04 

  
 

2 23.5 16.9 BA 1.58 0.56 1.49   

    3 46.0 22.5 2Bt 1.75 0.17 0.67   

MDQA-R-
En 1-1 1 3.2 3.2 A 1.22 1.43 0.56 3.81 

  
 

2 17.5 14.3 Ap1 1.47 0.93 1.95   

  
 

3 26.1 8.6 Ap2 1.53 0.44 0.58   

    4 42.7 16.6 Btg 1.48 0.29 0.72   

  1-2 1 8.5 8.5 A 1.42 1.16 1.41 3.63 

  
 

2 17.5 9.0 Ap 1.65 0.85 1.27   

  
 

3 24.5 7.0 Btg1 1.83 0.30 0.39   

    4 42.5 18.0 Btg2 1.82 0.17 0.57   

  1-3 1 6.3 6.3 A 1.09 4.30 2.96 6.06 

  
 

2 12.9 6.6 AB 1.17 1.95 1.50   

  
 

3 21.1 8.2 BA 1.31 0.82 0.88   

    4 42.6 21.5 BE 1.35 0.25 0.72   

  4-1 1 3.8 3.8 A 1.28 1.74 0.84 3.72 

  
 

2 10.9 7.1 Ap1 1.52 1.10 1.18   

  
 

3 20.2 9.3 Ap2 1.76 0.60 0.98   

    4 42.8 22.6 Btg 1.59 0.20 0.72   

  4-2 1 5.0 5.0 A 1.34 1.99 1.34 3.22 

  
 

2 12.5 7.5 Ap 1.82 0.86 1.17   

  
 

3 23.8 11.3 Btg 2.10 0.14 0.32   

  
 

4 35.6 11.8 C1 1.86 0.11 0.25   

    5 43.5 7.9 C2 1.66 0.11 0.14   

  4-3               0.00 

  
 

                

  
 

                

                    

  7-1 1 3.4 3.4 A 0.48 6.91 1.13 3.35 

  
 

2 10.0 6.6 Ap 1.74 0.73 0.84   

  
 

3 15.1 5.1 AB 1.54 0.56 0.44   

  
 

4 30.2 15.1 Btg 1.56 0.26 0.60   

    5 43.7 13.5 CBg 1.84 0.14 0.34   

  7-2 1 3.8 3.8 A 0.93 3.41 1.21 5.74 

  
 

2 19.3 15.5 Ap1 1.56 0.90 2.18   

85



  
 

3 30.9 11.6 Ap2 1.58 0.85 1.55   

    4 49.0 18.1 Btg 1.45 0.31 0.80   

  7-3 1 3.0 3.0 Oe 0.80 7.87 1.88 4.77 

  
 

2 8.5 5.5 A 1.42 1.22 0.95   

  
 

3 16.5 8.0 E 1.65 0.44 0.58   

  
 

4 32.0 15.5 Bt1 1.46 0.37 0.84   

    5 42.0 10.0 Bt2 1.69 0.31 0.53   

MDQA-R-Ss 1-1 1 3.6 3.6 Oe 0.30 10.96 1.20 3.24 

  
 

2 10.0 6.4 Ag 1.00 1.49 0.95   

  
 

3 28.7 18.7 Btg1 1.52 0.22 0.63   

  
 

4 41.0 12.3 Btg2 1.47 0.21 0.38   

    5 45.0 4.0 Btg3 1.36 0.14 0.08   

  1-2 1 2.6 2.6 A 0.54 6.17 0.86 5.46 

  
 

2 11.8 9.2 AB1 1.35 1.23 1.53   

  
 

3 30.6 18.8 AB2 1.52 0.76 2.17   

    4 48.0 17.4 Btg 1.55 0.34 0.91   

  1-3 1 3.1 3.1 A 1.08 2.67 0.89 3.43 

  
 

2 11.4 8.3 Ap1 1.46 0.91 1.10   

  
 

3 21.5 10.1 Ap2 1.63 0.36 0.60   

  
 

4 38.0 16.5 Bt 1.67 0.24 0.65   

    5 45.9 7.9 BC 1.87 0.13 0.19   

  4-1 1 2.0 2.0   0.24 14.37 0.68 5.95 

  
 

2 10.0 8.0   0.98 2.24 1.75   

  
 

3 24.0 14.0   1.52 0.89 1.89   

  
 

4 29.0 5.0   1.38 1.10 0.76   

    5 46.0 17.0   1.56 0.33 0.86   

  4-2 1 4.2 4.2 A 0.71 3.63 1.08 6.00 

  
 

2 15.1 10.9 AB1 1.32 1.40 2.02   

  
 

3 28.9 13.8 AB2 1.58 0.81 1.75   

    4 45.6 16.7 Btg 1.48 0.46 1.14   

  4-3 1 8.6 8.6 Ap 1.37 1.30 1.53 3.33 

  
 

2 17.2 8.6 Ap/Bt 1.44 0.63 0.78   

  
 

3 34.1 16.9 Bt1 1.60 0.25 0.67   

    4 46.2 12.1 Bt2 1.55 0.19 0.35   

  7-1 1 4.0 4.0 Oe 0.27 10.77 1.18 3.47 

  
 

2 10.0 6.0 A 1.12 1.14 0.77   

  
 

3 22.5 12.5 E 1.49 0.40 0.74   

  
 

4 43.0 20.5 Btg1 1.42 0.24 0.68   

    5 46.0 3.0 Btg2 1.82 0.18 0.10   

  7-2 1 1.5 1.5 A 0.52 6.41 0.50 6.49 

  
 

2 10.5 9.0 AB1 1.26 1.30 1.47   

86



  
 

3 27.5 17.0 AB2 1.48 0.86 2.17   

  
 

4 35.6 8.1 Bt 1.27 0.90 0.93   

    5 45.5 9.9 Ab 1.26 1.13 1.42   

  7-3 1 4.2 4.2 A 0.99 1.79 0.74 3.12 

  
 

2 19.1 14.9 Ap 1.54 0.65 1.51   

  
 

3 30.7 11.6 BE 1.74 0.21 0.42   

  
 

4 46.4 15.7 Bt1 1.67 0.15 0.39   

    5 49.6 3.2 Bt2 1.74 0.12 0.07   

MDQA-R-
Ws 1-1 1 2.6 2.6 Oe 0.28 15.52 1.12 4.42 

  
 

2 12.8 10.2 A 1.24 1.22 1.55   

  
 

3 28.0 15.2 ABg 1.51 0.48 1.10   

  
 

4 37.1 9.1 Btg1 1.72 0.21 0.33   

    5 47.0 9.9 Btg2 1.64 0.20 0.32   

  1-2 1 1.9 1.9 Oe 0.50 9.64 0.91 3.68 

  
 

2 18.4 16.5 Ap 1.48 0.80 1.96   

  
 

3 31.3 12.9 Btg1 1.73 0.19 0.43   

    4 47.6 16.3 Btg2 1.82 0.13 0.38   

  1-3 1 6.4 6.4 A  1.05 1.76 1.19 4.35 

  
 

2 27.0 20.6 Ap 1.52 0.77 2.40   

  
 

3 40.0 13.0 BE 1.72 0.22 0.49   

    4 50.3 10.3 Bt 1.62 0.17 0.28   

  4-1 1 2.0 2.0 Oe 0.56 9.07 1.02 3.35 

  
 

2 13.9 11.9 Ag 1.43 0.74 1.26   

  
 

3 20.2 6.3 ABg 1.61 0.54 0.55   

  
 

4 29.6 9.4 Btg1 1.75 0.17 0.28   

    5 41.0 11.4 Btg2 1.81 0.11 0.23   

  4-2 1 2.0 2.0 Oe 0.73 5.90 0.86 4.07 

  
 

2 11.3 9.3 A 1.69 0.88 1.39   

  
 

3 23.0 11.7 AB 2.01 0.43 1.02   

    4 46.6 23.6 Btg 1.60 0.21 0.79   

  4-3 1 2.3 2.3 ^A 0.89 4.00 0.82 4.24 

  
 

2 8.8 6.5 ^C 1.61 0.41 0.43   

  
 

3 34.0 25.2 Ab 1.55 0.61 2.39   

    4 48.6 14.6 Btg 1.64 0.25 0.60   

  7-1 1 5.1 5.1 Ag1 1.30 1.36 0.90 3.16 

  
 

2 21.2 16.1 Ag2 1.47 0.71 1.67   

  
 

3 35.0 13.8 Btg1 1.67 0.16 0.38   

    4 44.4 9.4 Btg2 1.56 0.14 0.21   

  7-2 1 2.0 2.0 Oe 1.12 3.63 0.81 4.91 

  
 

2 15.0 13.0 A1 1.51 0.92 1.80   

  
 

3 27.5 12.5 A2 1.64 0.64 1.32   
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    4 42.5 15.0 Btg 1.58 0.41 0.97   

  7-3 1 18.4 18.4 A 1.34 1.19 2.93 4.35 

  
 

2 27.4 9.0 Ap 1.49 0.56 0.75   

  
 

3 40.5 13.1 BE 1.66 0.23 0.49   

    4 46.5 6.0 Bt 1.70 0.17 0.18   

MDT-R-DF 1-1 1 6.1 6.1 A 1.12 1.88 1.28 2.39 

  
 

2 19.1 13.0 AB 1.79 0.22 0.52   

  
 

3 33.1 14.0 Bt 1.85 0.13 0.33   

  
 

4 43.6 10.5 BC1 1.73 0.10 0.19   

    5 49.0 5.4 BC2 1.51 0.09 0.08   

  1-2 1 2.6 2.6 ^Ag 1.22 2.12 0.67 3.30 

  
 

2 12.6 10.0 ^ABg 1.38 0.48 0.67   

  
 

3 24.0 11.4 ^Cg1 1.61 0.47 0.87   

  
 

4 34.1 10.1 ^Cg2 1.79 0.31 0.56   

    5 50.9 16.8 2Btg 1.75 0.18 0.53   

  1-3 1 6.6 6.6 A1 1.06 1.42 0.99 3.80 

  
 

2 15.4 8.8 A2 1.69 0.44 0.65   

  
 

3 28.3 12.9 A3 1.68 0.37 0.80   

    4 47.7 19.4 Ag 1.68 0.42 1.35   

  3-1 1 4.1 4.1 A 1.10 1.99 0.90 2.76 

  
 

2 15.2 11.1 Ap 1.54 0.53 0.90   

  
 

3 29.5 14.3 Btg1 1.67 0.21 0.49   

    4 46.6 17.1 Btg2 1.75 0.15 0.46   

  3-2 1 3.7 3.7 ^A 0.83 3.88 1.19 3.63 

  
 

2 25.4 21.7 ^Cg(Ag) 1.59 0.53 1.82   

    3 44.6 19.2 2Btg 1.70 0.19 0.63   

  3-3 1 6.5 6.5 A 1.17 1.61 1.22 2.71 

  
 

2 28.7 22.2 A/Btg 1.53 0.36 1.22   

    3 40.0 11.3 Btg 1.76 0.14 0.27   

  4-1 1 4.9 4.9 A 1.20 1.98 1.17 3.79 

  
 

2 13.6 8.7 AB 1.58 0.55 0.76   

  
 

3 30.4 16.8 BA 1.62 0.48 1.30   

    4 45.4 15.0 Btg 1.53 0.25 0.56   

  4-2 1 2.0 2.0 ^A 0.75 5.54 0.83 3.74 

  
 

2 6.2 4.2 ^AB 1.30 1.55 0.85   

  
 

3 24.0 17.8 ^Bg 1.61 0.48 1.39   

  
 

4 35.4 11.4 2Btg 1.59 0.21 0.38   

    5 46.0 10.6 2Btg2 1.89 0.15 0.29   

  4-3 1 3.3 3.3 A1 1.07 1.13 0.40 2.91 

  
 

2 25.4 22.1 A2 1.61 0.43 1.52   

  
 

3 42.0 16.6 A/Btg 1.70 0.28 0.80   
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    4 51.0 9.0 Btg 1.73 0.12 0.19   

MDT-R-Fr 1-1 1 11.0 11.0 Ap 0.74 3.08 2.50 3.04 

  
 

2 23.8 12.8 Cg1 1.76 0.10 0.22   

  
 

3 34.0 10.2 Cg2 1.82 0.07 0.12   

    4 45.0 11.0 2Btg 1.68 0.11 0.20   

  1-2 1 4.0 4.0 Oe 0.46 10.00 1.84 3.47 

  
 

2 6.5 2.5 A 1.83 0.68 0.31   

  
 

3 16.5 10.0 Ap 1.67 0.46 0.77   

  
 

4 29.5 13.0 Cg1 1.58 0.13 0.26   

    5 43.0 13.5 Cg2 1.78 0.12 0.29   

  1-3 1 5.5 5.5 Ap1 1.33 1.48 1.08 3.88 

  
 

2 13.1 7.6 Ap2 1.44 0.74 0.81   

  
 

3 21.5 8.4 EA 1.56 0.57 0.75   

  
 

4 33.0 11.5 E 1.58 0.40 0.73   

    5 49.3 16.3 Btg 1.72 0.18 0.51   

  4-1 1 4.3 4.3 A 0.38 9.96 1.65 3.08 

  
 

2 9.0 4.7 Ap 1.05 1.51 0.75   

  
 

3 19.8 10.8 Btg1 1.24 0.25 0.34   

    4 40.0 20.2 Btg2 1.47 0.12 0.35   

  4-2 1 7.0 7.0 Oa 0.47 6.83 2.23 5.36 

  
 

2 17.0 10.0 A 1.17 1.03 1.20   

  
 

3 33.5 16.5 Btg1 1.43 0.62 1.47   

    4 44.0 10.5 Btg2 1.51 0.29 0.45   

  4-3 1 4.0 4.0 Oe 1.27 1.79 0.91 4.97 

  
 

2 20.0 16.0 A 1.44 0.92 2.12   

  
 

3 33.0 13.0 AE 1.58 0.65 1.34   

    4 44.0 11.0 Bt 1.55 0.35 0.60   

  7-1 1 7.6 7.6 Ap 0.88 3.51 2.34 3.12 

  
 

2 16.6 9.0 Btg1 1.61 0.27 0.39   

  
 

3 32.2 15.6 Btg2 1.61 0.12 0.29   

    4 43.0 10.8 CBg 1.43 0.06 0.10   

  7-2 1 3.5 3.5 Oe 0.61 7.00 1.50 4.27 

  
 

2 10.5 7.0 A 1.54 0.79 0.86   

  
 

3 28.0 17.5 Ap 1.65 0.48 1.39   

    4 43.0 15.0 Btg 1.50 0.23 0.52   

  7-3 1 2.5 2.5 Oe 0.96 2.54 0.61 4.45 

  
 

2 22.0 19.5 A 1.40 0.95 2.60   

  
 

3 37.0 15.0 Bt 1.52 0.37 0.83   

    4 47.0 10.0 Btg 1.55 0.26 0.40   
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Appendix B. Percent of time saturated at 5 cm and 30 cm.   
 
Based upon modeling of hydrographs at each plot over the two year period of July 2012 through June 2014. 

 

Plot Depth 1-1 4-1 7-1 Zone 1 Mean Zone 1 SEM 1-2 4-2 7-2 Zone 2 Mean Zone 2 SEM 1-3 4-3 7-3 Zone 3 Mean Zone 3 SEM

BB N1 5 cm 100.0% 100.0% 100.0% 100.0% 0.0% 0.0% 0.0% 7.4% 2.5% 2.5% 0.0% 0.0% 0.0% 0.0% 0.0%

30 cm 100.0% 100.0% 100.0% 100.0% 0.0% 74.9% 48.7% 88.5% 70.7% 11.7% 0.0% 0.0% 0.0% 0.0% 0.0%

AB N2 5 cm 91.7% 91.7% 91.5% 91.6% 0.1% 63.3% 66.7% 63.3% 64.4% 1.2% 0.0% 0.0% 0.0% 0.0% 0.0%

30 cm 100.0% 100.0% 100.0% 100.0% 0.0% 88.6% 89.0% 88.6% 88.8% 0.1% 1.4% 0.0% 1.1% 0.8% 0.4%

BC N3 5 cm 100.0% 98.2% 99.0% 99.1% 0.5% 71.6% 66.3% 27.0% 55.0% 14.1% 0.0% 0.0% 0.0% 0.0% 0.0%

30 cm 100.0% 100.0% 100.0% 100.0% 0.0% 93.1% 90.5% 83.2% 89.0% 3.0% 0.0% 0.0% 0.0% 0.0% 0.0%

BeW N4 5 cm 88.7% 88.0% 87.3% 88.0% 0.4% 39.4% 16.2% 0.0% 18.6% 11.4% 0.0% 0.0% 0.0% 0.0% 0.0%

30 cm 100.0% 100.0% 100.0% 100.0% 0.0% 79.2% 74.6% 68.5% 74.1% 3.1% 0.0% 0.0% 0.0% 0.0% 0.0%

JLN N5 5 cm 100.0% 97.4% 98.1% 98.5% 0.8% 63.4% 72.8% 74.4% 70.2% 3.4% 0.0% 0.0% 0.0% 0.0% 0.0%

30 cm 100.0% 100.0% 100.0% 100.0% 0.0% 88.1% 96.1% 97.3% 93.8% 2.9% 0.6% 37.4% 4.8% 14.3% 11.6%

Jr R1 5 cm 94.2% 94.1% 94.0% 94.1% 0.1% 39.9% 36.7% 36.7% 37.8% 1.1% 0.0% 0.0% 0.0% 0.0% 0.0%

30 cm 95.3% 95.2% 94.9% 95.2% 0.1% 80.8% 79.1% 79.1% 79.7% 0.6% 0.0% 0.0% 0.0% 0.0% 0.0%

JLR R2 5 cm 81.4% 78.0% 79.2% 79.5% 1.0% 49.2% 45.0% 46.6% 46.9% 1.2% 0.0% 0.0% 0.0% 0.0% 0.0%

30 cm 93.5% 87.7% 89.6% 90.3% 1.7% 77.0% 73.7% 74.5% 75.1% 1.0% 0.0% 6.7% 15.6% 7.4% 4.5%

Ck R3 5 cm 64.6% 63.5% 64.0% 64.1% 0.3% 29.3% 29.3% 23.3% 27.3% 2.0% 0.0% 1.1% 0.0% 0.4% 0.4%

30 cm 70.4% 70.3% 70.3% 70.3% 0.1% 55.5% 55.5% 54.5% 55.2% 0.3% 1.9% 49.3% 3.2% 18.1% 15.6%

BsO R4 5 cm 100.0% 100.0% 100.0% 100.0% 0.0% 12.5% 13.4% 38.1% 21.3% 8.4% 0.0% 0.0% 0.0% 0.0% 0.0%
30 cm 100.0% 100.0% 100.0% 100.0% 0.0% 44.1% 56.1% 96.8% 65.7% 16.0% 0.0% 31.1% 29.9% 20.3% 10.2%

BsY R5 5 cm 66.2% 100.0% 89.1% 85.1% 10.0% 27.4% 0.0% 27.8% 18.4% 9.2% 0.0% 0.0% 1.0% 0.3% 0.3%

30 cm 85.6% 100.0% 100.0% 95.2% 4.8% 40.9% 39.0% 44.1% 41.3% 1.5% 11.4% 23.2% 33.3% 22.6% 6.3%

En R6 5 cm 97.5% 98.2% 97.9% 97.9% 0.2% 34.9% 56.9% 38.9% 43.5% 6.8% 0.0% 0.0% 0.0% 0.0% 0.0%

30 cm 100.0% 100.0% 100.0% 100.0% 0.0% 83.1% 91.8% 83.7% 86.2% 2.8% 0.0% 4.3% 0.0% 1.5% 1.5%

Ss R7 5 cm 95.2% 91.2% 97.2% 94.5% 1.8% 30.7% 11.2% 26.6% 22.8% 5.9% 0.0% 0.0% 0.0% 0.0% 0.0%

30 cm 100.0% 100.0% 100.0% 100.0% 0.0% 57.3% 35.7% 54.3% 49.1% 6.8% 1.6% 6.0% 0.0% 2.5% 1.8%

Ws R8 5 cm 51.5% 55.5% 56.8% 54.6% 1.6% 22.1% 23.8% 35.4% 27.1% 4.2% 4.2% 0.0% 0.0% 1.4% 1.4%

30 cm 59.5% 61.9% 62.9% 61.4% 1.0% 58.0% 58.3% 59.8% 58.7% 0.6% 42.2% 31.0% 0.0% 24.4% 12.6%

Fr R9 5 cm 93.6% 84.0% 100.0% 92.5% 4.6% 36.8% 24.4% 21.9% 27.7% 4.6% 0.0% 0.0% 0.0% 0.0% 0.0%

30 cm 100.0% 86.7% 100.0% 95.6% 4.4% 86.2% 51.9% 70.4% 69.5% 9.9% 12.6% 0.0% 39.4% 17.4% 11.6%
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Plot Site Treatment Zone Transect Tube	1a Tube	1b Tube	2a Tube	2b Tube	3a Tube	3b Tube	1	Mean Tube	2	Mean Tube	3	Mean Plot	Mean
AB	1-1 AB N 1 1 68 59 61 80 59 52 64 71 56 63
AB	4-1 AB N 1 4 42 50 56 51 62 76 46 54 69 56
AB	7-1 AB N 1 7 75 60 46 53 72 64 68 50 68 62
AB	1-2 AB N 2 1 95 92 94 94 83 97 94 94 90 93
AB	4-2 AB N 2 4 94 83 98 90 78 97 89 94 88 90
AB	7-2 AB N 2 7 69 81 68 83 75 76 75
BB	1-1 BB N 1 1 85 95 72 75 79 77 90 74 78 81
BB	4-1 BB N 1 4 87 86 92 100 87 96 91
BB	7-1 BB N 1 7 96 92 94 94
BB	1-2 BB N 2 1 40 40 40 40
BB	4-2 BB N 2 4 14 11 3 0 5 6 13 2 6 7
BB	7-2 BB N 2 7 43 52 16 32 100 93 48 24 97 56
BC	1-1 BC N 1 1 97 90 92 89 99 100 94 91 100 95
BC	4-1 BC N 1 4 69 76 74 81 73 78 75
BC	7-1 BC N 1 7 100 99 72 73 98 96 100 73 97 90
BC	1-2 BC N 2 1 71 73 63 70 57 72 72 67 65 68
BC	4-2 BC N 2 4 74 98 77 97 86 87 87
BC	7-2 BC N 2 7 78 77 76 79 68 72 78 78 70 75
BeW	1-1 BeW N 1 1 41 46 39 61 76 59 44 50 68 54
BeW	4-1 BeW N 1 4 79 76 72 71 75 78 78 72 77 75
BeW	7-1 BeW N 1 7 73 74 68 56 74 62 68
BeW	1-2 BeW N 2 1 11 21 52 53 17 17 16 53 17 29
BeW	4-2 BeW N 2 4 7 13 4 5 16 42 10 5 29 15
BeW	7-2 BeW N 2 7 69 71 16 26 41 31 70 21 36 42
BsO	1-1 BsO R 1 1 42 71 97 100 62 96 57 99 79 78
BsO	7-1 BsO R 1 7 100 100 100 100 100 100 100 100 100 100
BsO	9-1 BsO R 1 9 100 98 100 99 99 100 99
BsO	1-2 BsO R 2 1 99 83 64 73 96 76 91 69 86 82
BsO	7-2 BsO R 2 7 52 74 53 54 49 51 63 54 50 56
BsO	9-2 BsO R 2 9 98 98 100 97 100 100 98 99 100 99
BsY	0-1 BsY R 1 0 100 100 90 80 100 100 100 85 100 95
BsY	6-1 BsY R 1 6 100 100 100 100 99 100 100 100 100 100
BsY	8-1 BsY R 1 8 100 100 100 100 97 100 100 100 99 100
BsY	0-2 BsY R 2 0 99 100 100 100 90 99 100 100 95 98
BsY	6-2 BsY R 2 6 88 71 93 89 94 94 80 91 94 88
BsY	8-2 BsY R 2 8 100 99 100 98 100 100 100 99 100 100
Ck	1-1 Ck R 1 1 92 92 90 91 89 100 92 91 95 92
Ck	4-1 Ck R 1 4 77 92 99 99 100 74 85 99 87 90
Ck	7-1 Ck R 1 7 94 90 99 100 60 86 92 100 73 88
Ck	1-2 Ck R 2 1 7 18 66 52 44 80 13 59 62 45
Ck	4-2 Ck R 2 4 81 54 94 95 93 98 68 95 96 86
Ck	7-2 Ck R 2 7 90 95 90 43 44 61 93 67 53 71
DF	1-1 DF R 1 1 100 100 100 100 100 100 100 100 100 100
DF	3-1 DF R 1 3 100 100 99 94 98 97 100 97 98 98
DF	4-1 DF R 1 4 77 75 100 100 78 83 76 100 81 86
DF	1-2 DF R 2 1 20 18 56 88 13 17 19 72 15 35
DF	3-2 DF R 2 3 96 96 13 31 6 20 96 22 13 44
DF	4-2 DF R 2 4 37 89 29 58 41 67 63 44 54 54

Appendix	C.	IRIS	images	and	percent	paint	removed	from	IRIS	tubes.	
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Plot Site Treatment Zone Transect Tube	1a Tube	1b Tube	2a Tube	2b Tube	3a Tube	3b Tube	1	Mean Tube	2	Mean Tube	3	Mean Plot	Mean
En	1-1 En R 1 1 98 100 99 99 96 98 99 99 97 98
En	4-1 En R 1 4 53 65 100 100 94 100 59 100 97 85
En	7-1 En R 1 7 98 100 99 96 95 92 99 98 94 97
En	1-2 En R 2 1 100 100 99 99 100 100 100 99 100 100
En	4-2 En R 2 4 100 100 100 99 99 98 100 100 99 99
En	7-2 En R 2 7 99 97 96 97 96 99 98 97 98 97
Fr	1-1 Fr R 1 1 100 100 100 100 100 96 100 100 98 99
Fr	4-1 Fr R 1 4 78 81 98 77 98 76 80 88 87 85
Fr	7-1 Fr R 1 7 100 99 100 100 100 100 100 100 100 100
Fr	1-2 Fr R 2 1 98 98 100 100 100 99 98 100 100 99
Fr	4-2 Fr R 2 4 99 98 96 96 81 95 99 96 88 94
Fr	7-2 Fr R 2 7 97 97 96 95 98 96 97 96 97 97
JLN	1-1 JLN N 1 1 95 37 74 48 47 49 66 61 48 58
JLN	4-1 JLN N 1 4 41 80 13 13 43 24 61 13 34 36
JLN	7-1 JLN N 1 7 100 58 59 63 74 75 79 61 75 72
JLN	1-2 JLN N 2 1 74 56 86 64 60 50 65 75 55 65
JLN	4-2 JLN N 2 4 100 100 100 100 100 100 100 100 100 100
JLN	7-2 JLN N 2 7 51 61 47 59 56 53 55
JLR	1-1 JLR R 1 1 74 93 92 91 77 83 84 92 80 85
JLR	4-1 JLR R 1 4 58 82 79 65 47 49 70 72 48 63
JLR	7-1 JLR R 1 7 58 72 56 74 100 98 65 65 99 76
JLR	1-2 JLR R 2 1 96 96 100 97 100 98 96 99 99 98
JLR	4-2 JLR R 2 4 98 100 97 100 100 100 99 99 100 99
JLR	7-2 JLR R 2 7 94 98 43 52 39 50 96 48 45 63
Jr	1-1 Jr R 1 1 100 100 100 100 100 100 100 100 100 100
Jr	4-1 Jr R 1 4 99 98 100 100 98 100 99 100 99 99
Jr	7-1 Jr R 1 7 100 100 100 100 100 100 100 100 100 100
Jr	1-2 Jr R 2 1 97 98 98 97 98 100 98 98 99 98
Jr	4-2 Jr R 2 4 90 68 88 58 78 61 79 73 70 74
Jr	7-2 Jr R 2 7 90 95 96 72 90 97 93 84 94 90
Ss	1-1 Ss R 1 1 42 88 54 99 58 48 65 77 53 65
Ss	4-1 Ss R 1 4 90 64 100 77 100 75 77 89 88 84
Ss	7-1 Ss R 1 7 90 58 45 61 96 89 74 53 93 73
Ss	1-2 Ss R 2 1 70 90 86 98 80 92 86
Ss	4-2 Ss R 2 4 50 28 43 41 3 30 39 42 17 33
Ss	7-2 Ss R 2 7 43 64 42 58 51 63 54 50 57 54
Ws	1-1 Ws R 1 1 90 98 100 95 100 100 94 98 100 97
Ws	4-1 Ws R 1 4 100 100 100 90 100 100 100 95 100 98
Ws	7-1 Ws R 1 7 49 95 96 96 72 96 84
Ws	1-2 Ws R 2 1 25 8 51 22 40 45 17 37 43 32
Ws	4-2 Ws R 2 4 99 97 98 97 96 97 98 98 97 97
Ws	7-2 Ws R 2 7 90 62 35 23 83 85 76 29 84 63
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               Appendix D. Penetration resistance (cone index kPa). 

        Data for each plot represents Means of 20 points per plot 

Site Treatment Transect  Zone 

Max 
resistance 
within 45 

cm 

Max 
increase 
over 5 

cm 

1000 
kPa 

within 
45 cm? 

Depth 
to 1000 

kPa 

2000 
kPa 

within 
45 cm? 

Depth 
to 2000 

kPa 

DENC-N-BB Nat 1 1 332 84 0 >45 0 >45 

DENC-N-BB Nat 4 1 195 71 0 >45 0 >45 

DENC-N-BB Nat 7 1 390 190 0 >45 0 >45 

DENC-N-BB Nat 1 2 674 155 0 >45 0 >45 

DENC-N-BB Nat 4 2 1374 289 1 40 0 >45 

DENC-N-BB Nat 7 2 966 180 0 >45 0 >45 

DENC-N-BB Nat 1 3 577 206 0 >45 0 >45 

DENC-N-BB Nat 4 3 648 127 0 >45 0 >45 

DENC-N-BB Nat 7 3 730 213 0 >45 0 >45 

MDC-N-AB Nat 1 1 390 193 0 >45 0 >45 

MDC-N-AB Nat 4 1 479 198 0 >45 0 >45 

MDC-N-AB Nat 7 1 560 142 0 >45 0 >45 

MDC-N-AB Nat 1 2 1231 228 1 25 0 >45 

MDC-N-AB Nat 4 2 831 122 0 >45 0 >45 

MDC-N-AB Nat 7 2 856 157 0 >45 0 >45 

MDC-N-AB Nat 1 3 1687 495 1 40 0 >45 

MDC-N-AB Nat 4 3 1659 1028 1 45 0 >45 

MDC-N-AB Nat 7 3 1429 491 1 45 0 >45 

MDC-N-BC Nat 1 1 296 88 0 >45 0 >45 

MDC-N-BC Nat 4 1 272 106 0 >45 0 >45 

MDC-N-BC Nat 7 1 324 89 0 >45 0 >45 

MDC-N-BC Nat 1 2 603 117 0 >45 0 >45 

MDC-N-BC Nat 4 2 679 114 0 >45 0 >45 

MDC-N-BC Nat 7 2 798 99 0 >45 0 >45 

MDC-N-BC Nat 1 3 633 117 0 >45 0 >45 

MDC-N-BC Nat 4 3 385 48 0 >45 0 >45 

MDC-N-BC Nat 7 3 770 167 0 >45 0 >45 

MDC-N-BeW Nat 1 1 506 146 0 >45 0 >45 

MDC-N-BeW Nat 4 1 684 182 0 >45 0 >45 

MDC-N-BeW Nat 7 1 1365 446 1 40 0 >45 

MDC-N-BeW Nat 1 2 814 301 0 >45 0 >45 

MDC-N-BeW Nat 4 2 1996 1064 1 45 0 >45 

MDC-N-BeW Nat 7 2 4856 2137 1 30 1 35 
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MDC-N-BeW Nat 1 3 780 156 0 >45 0 >45 

MDC-N-BeW Nat 4 3 800 241 0 >45 0 >45 

MDC-N-BeW Nat 7 3 572 111 0 >45 0 >45 

MDC-N-JL Nat 1 1 679 162 0 >45 0 >45 

MDC-N-JL Nat 4 1 464 94 0 >45 0 >45 

MDC-N-JL Nat 7 1 507 144 0 >45 0 >45 

MDC-N-JL Nat 1 2 1170 167 1 40 0 >45 

MDC-N-JL Nat 4 2 1132 367 1 45 0 >45 

MDC-N-JL Nat 7 2 947 139 0 >45 0 >45 

MDC-N-JL Nat 1 3 995 261 0 >45 0 >45 

MDC-N-JL Nat 4 3 1897 393 1 35 0 >45 

MDC-N-JL Nat 7 3 643 193 0 >45 0 >45 

DEK-R-Jr Res 1 1 5226 1006 1 15 1 25 

DEK-R-Jr Res 4 1 6608 1962 1 25 1 30 

DEK-R-Jr Res 7 1 5807 1041 1 15 1 20 

DEK-R-Jr Res 1 2 1882 686 1 40 0 >45 

DEK-R-Jr Res 4 2 2103 511 1 35 1 45 

DEK-R-Jr Res 7 2 2823 1136 1 25 1 35 

DEK-R-Jr Res 1 3 521 290 0 >45 0 >45 

DEK-R-Jr Res 4 3 781 205 0 >45 0 >45 

DEK-R-Jr Res 7 3 591 235 0 >45 0 >45 

MDC-R-JL Res 1 1 652 258 0 >45 0 >45 

MDC-R-JL Res 4 1 633 137 0 >45 0 >45 

MDC-R-JL Res 7 1 800 203 0 >45 0 >45 

MDC-R-JL Res 1 2 2247 654 1 30 1 45 

MDC-R-JL Res 4 2 1112 448 1 35 0 >45 

MDC-R-JL Res 7 2 1294 355 1 45 0 >45 

MDC-R-JL Res 1 3 3985 726 1 15 1 20 

MDC-R-JL Res 4 3 2638 931 1 25 1 30 

MDC-R-JL Res 7 3 5592 1442 1 20 1 30 

MDD-R-Ck Res 1 1 8295 1517 1 10 1 20 

MDD-R-Ck Res 4 1 1717 355 1 20 0 >45 

MDD-R-Ck Res 7 1 1707 506 1 25 0 >45 

MDD-R-Ck Res 1 2 3785 1116 1 10 1 25 

MDD-R-Ck Res 4 2 3459 946 1 10 1 15 

MDD-R-Ck Res 7 2 4435 1332 1 10 1 15 

MDD-R-Ck Res 1 3 4045 2548 1 20 1 30 

MDD-R-Ck Res 4 3 4731 1797 1 20 1 30 

MDD-R-Ck Res 7 3 2828 1392 1 20 1 35 

MDQA-R-BsO Res 1 1 2613 786 1 25 1 30 

MDQA-R-BsO Res 7 1 5220 1015 1 20 1 25 

MDQA-R-BsO Res 9 1 3760 996 1 20 1 35 
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MDQA-R-BsO Res 1 2 2823 1136 1 25 1 35 

MDQA-R-BsO Res 7 2 4270 1051 1 15 1 20 

MDQA-R-BsO Res 9 2 4916 1637 1 15 1 20 

MDQA-R-BsO Res 1 3 2478 591 1 25 1 40 

MDQA-R-BsO Res 7 3 5341 2863 1 25 1 25 

MDQA-R-BsO Res 9 3 2233 606 1 15 1 35 

MDQA-R-BsY Res 0 1 1637 511 1 15 0 >45 

MDQA-R-BsY Res 6 1 4781 1282 1 15 1 25 

MDQA-R-BsY Res 8 1 6112 1532 1 15 1 20 

MDQA-R-BsY Res 0 2 2313 1071 1 20 1 20 

MDQA-R-BsY Res 6 2 4225 1612 1 25 1 30 

MDQA-R-BsY Res 8 2 1422 360 1 25 0 >45 

MDQA-R-BsY Res 0 3 1712 801 1 15 0 >45 

MDQA-R-BsY Res 6 3 2338 569 1 20 1 40 

MDQA-R-BsY Res 8 3 1717 1046 1 45 0 >45 

MDQA-R-En Res 1 1 2042 446 1 35 1 45 

MDQA-R-En Res 4 1 2178 606 1 15 1 45 

MDQA-R-En Res 7 1 6608 1537 1 20 1 25 

MDQA-R-En Res 1 2 1502 360 1 30 0 >45 

MDQA-R-En Res 4 2 6002 1517 1 20 1 25 

MDQA-R-En Res 7 2 1837 806 1 25 0 >45 

MDQA-R-En Res 1 3 671 182 0 >45 0 >45 

MDQA-R-En Res 4 3 816 225 0 >45 0 >45 

MDQA-R-En Res 7 3 1667 514 1 30 0 >45 

MDQA-R-Ss Res 1 1 1652 531 1 20 0 >45 

MDQA-R-Ss Res 4 1 1472 466 1 35 0 >45 

MDQA-R-Ss Res 7 1 1297 461 1 25 0 >45 

MDQA-R-Ss Res 1 2 1538 552 1 30 0 >45 

MDQA-R-Ss Res 4 2 1636 469 1 15 0 >45 

MDQA-R-Ss Res 7 2 1962 561 1 20 0 >45 

MDQA-R-Ss Res 1 3 1427 285 1 35 0 >45 

MDQA-R-Ss Res 4 3 1442 446 1 35 0 >45 

MDQA-R-Ss Res 7 3 3184 1021 1 35 1 40 

MDQA-R-Ws Res 1 1 1018 357 1 45 0 >45 

MDQA-R-Ws Res 4 1 2253 786 1 35 1 45 

MDQA-R-Ws Res 7 1 2852 1459 1 35 1 45 

MDQA-R-Ws Res 1 2 3484 911 1 20 1 25 

MDQA-R-Ws Res 4 2 1432 481 1 45 0 >45 

MDQA-R-Ws Res 7 2 3549 1282 1 25 1 40 

MDQA-R-Ws Res 1 3 2568 696 1 25 1 45 

MDQA-R-Ws Res 4 3 781 295 0 >45 0 >45 

MDQA-R-Ws Res 7 3 701 245 0 >45 0 >45 
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MDT-R-Fr Res 1 1 6438 1707 1 15 1 25 

MDT-R-Fr Res 4 1 2528 856 1 35 1 45 

MDT-R-Fr Res 7 1 6943 2653 1 30 1 35 

MDT-R-Fr Res 1 2 3835 1427 1 20 1 30 

MDT-R-Fr Res 4 2 1382 461 1 25 0 >45 

MDT-R-Fr Res 7 2 736 245 0 >45 0 >45 

MDT-R-Fr Res 1 3 1367 260 1 35 0 >45 

MDT-R-Fr Res 4 3 1191 205 1 40 0 >45 

MDT-R-Fr Res 7 3 1156 345 1 45 0 >45 
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Appendix E. Stick decomposition data (mean values for each plot). 

 

Site Treatment Transect  Zone 
Decomp 

3 mo 
Decomp 

6 mo 
Decomp 

9 mo 
Decomp 
12 mo 

DENC-N-BB Nat 1 1 0.02% 0.75% 2.35% 2.96% 

DENC-N-BB Nat 4 1 0.41% 1.42% 3.73% 3.67% 

DENC-N-BB Nat 7 1 0.42% 1.55% 2.38% 4.41% 

DENC-N-BB Nat 1 2 0.91% 4.28% 9.56% 16.09% 

DENC-N-BB Nat 4 2 1.27% 11.00% 19.07% 16.60% 

DENC-N-BB Nat 7 2 0.56% 3.88% 8.69% 11.28% 

DENC-N-BB Nat 1 3 -0.09% 12.42% 53.50% 55.23% 

DENC-N-BB Nat 4 3 0.62% 9.84% 16.15% 40.93% 

DENC-N-BB Nat 7 3 0.37% 10.68%   25.56% 

MDC-N-AB Nat 1 1 -0.66% 0.68% 3.19% 3.06% 

MDC-N-AB Nat 4 1 0.53% 1.78% 3.92% 4.49% 

MDC-N-AB Nat 7 1 0.40% 1.54% 2.90% 3.00% 

MDC-N-AB Nat 1 2 -0.60% 0.98% 7.47% 10.46% 

MDC-N-AB Nat 4 2 0.66% 1.08% 5.13% 6.00% 

MDC-N-AB Nat 7 2 0.49% 1.36% 7.68% 7.51% 

MDC-N-AB Nat 1 3 -0.48% 9.13% 16.94% 18.65% 

MDC-N-AB Nat 4 3 0.54% 6.89% 12.84% 20.82% 

MDC-N-AB Nat 7 3 0.67% 6.45% 23.27% 24.27% 

MDC-N-BC Nat 1 1 -0.32% 1.85% 2.06% 2.21% 

MDC-N-BC Nat 4 1 0.72% 1.78% 2.51% 3.02% 

MDC-N-BC Nat 7 1 0.50% 0.85% 2.69% 1.53% 

MDC-N-BC Nat 1 2 -0.45% 1.53% 2.06% 5.00% 

MDC-N-BC Nat 4 2 0.71% 2.13% 5.72% 12.40% 

MDC-N-BC Nat 7 2 0.58% 1.95% 6.36% 9.57% 

MDC-N-BC Nat 1 3 0.25% 5.38% 15.32% 19.11% 

MDC-N-BC Nat 4 3 0.23% 4.22% 17.77% 22.74% 

MDC-N-BC Nat 7 3 0.67% 9.76% 18.01% 31.32% 

MDC-N-BeW Nat 1 1 -0.46% 0.69% 6.95% 9.37% 

MDC-N-BeW Nat 4 1 -0.34% 1.34% 5.70% 4.41% 

MDC-N-BeW Nat 7 1 0.04% 0.74% 7.13% 9.93% 

MDC-N-BeW Nat 1 2 -0.37% 2.32% 5.39% 6.48% 

MDC-N-BeW Nat 4 2 -0.36% 3.60% 4.93% 9.74% 

MDC-N-BeW Nat 7 2 0.46% 2.60% 7.40% 12.34% 

MDC-N-BeW Nat 1 3 -0.60% 15.25% 34.82% 43.39% 

MDC-N-BeW Nat 4 3 -0.24% 7.34% 25.41% 37.48% 

MDC-N-BeW Nat 7 3 0.85% 15.64% 17.32% 34.92% 

MDC-N-JL Nat 1 1 -0.33% 0.86% 2.65% 2.03% 
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MDC-N-JL Nat 4 1 0.35% 0.24% 2.43% 2.87% 

MDC-N-JL Nat 7 1 1.13% 1.72% 2.95% 3.31% 

MDC-N-JL Nat 1 2 0.04% 0.63% 6.62% 7.02% 

MDC-N-JL Nat 4 2 0.94% 1.26% 3.62% 4.22% 

MDC-N-JL Nat 7 2 1.10% 1.59% 3.72% 4.04% 

MDC-N-JL Nat 1 3 -0.01% 11.77% 41.86% 49.79% 

MDC-N-JL Nat 4 3 1.18% 8.08% 28.88% 20.44% 

MDC-N-JL Nat 7 3 0.72% 7.75% 16.10% 26.53% 

DEK-R-Jr Res 1 1 0.11% 0.81% 2.02% 3.44% 

DEK-R-Jr Res 4 1 -0.76% 1.00% 2.37% 3.00% 

DEK-R-Jr Res 7 1 0.11% 1.07% 2.06% 2.11% 

DEK-R-Jr Res 1 2 -0.70% 2.93% 10.77% 10.97% 

DEK-R-Jr Res 4 2 -1.26% 2.50% 14.24% 11.75% 

DEK-R-Jr Res 7 2 -1.12% 2.65% 13.79% 15.79% 

DEK-R-Jr Res 1 3 3.97% 24.02% 29.53% 64.58% 

DEK-R-Jr Res 4 3 -0.65% 11.13% 31.82% 71.49% 

DEK-R-Jr Res 7 3 0.51% 12.88% 38.18% 32.63% 

MDC-R-JL Res 1 1 -1.00% 1.51% 6.05% 8.40% 

MDC-R-JL Res 4 1 -0.29% 1.45% 7.65% 9.71% 

MDC-R-JL Res 7 1 0.27% 1.14% 5.05% 6.90% 

MDC-R-JL Res 1 2 -0.78% 1.11% 10.71% 7.24% 

MDC-R-JL Res 4 2 -0.44% 1.49% 11.43% 18.25% 

MDC-R-JL Res 7 2 0.29% 2.04% 7.65% 11.84% 

MDC-R-JL Res 1 3 0.51% 9.56% 20.58% 23.68% 

MDC-R-JL Res 4 3 0.36% 18.50% 13.15% 25.96% 

MDC-R-JL Res 7 3 1.54% 16.69% 29.19% 27.65% 

MDD-R-Ck Res 1 1 0.32% 1.01% 6.33% 9.83% 

MDD-R-Ck Res 4 1 0.62% 1.00% 3.30% 5.93% 

MDD-R-Ck Res 7 1 0.37% 1.21% 11.85% 15.97% 

MDD-R-Ck Res 1 2 -0.45% 1.15% 4.67% 5.70% 

MDD-R-Ck Res 4 2 0.49% 0.72% 17.77% 13.54% 

MDD-R-Ck Res 7 2 0.52% 0.71% 8.80% 5.97% 

MDD-R-Ck Res 1 3 1.09% 20.59% 26.85% 63.25% 

MDD-R-Ck Res 4 3 1.10% 2.87% 18.21% 15.82% 

MDD-R-Ck Res 7 3 1.18% 14.30% 15.10% 28.64% 

MDQA-R-
BsO Res 1 1 -1.59% 2.33% 5.92% 5.89% 

MDQA-R-
BsO Res 7 1 0.32% 2.68% 9.90% 10.16% 

MDQA-R-
BsO Res 9 1 -0.11% 9.19% 14.84% 17.29% 

MDQA-R-
BsO Res 1 2 -0.76% 4.66% 11.33% 19.19% 
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MDQA-R-
BsO Res 7 2 0.02% 1.33% 8.22% 12.40% 

MDQA-R-
BsO Res 9 2 0.34% 2.16% 13.27% 12.32% 

MDQA-R-
BsO Res 1 3 0.47% 16.50% 36.30%   

MDQA-R-
BsO Res 7 3 -0.24% 4.74% 7.16% 11.14% 

MDQA-R-
BsO Res 9 3 0.56% 6.52% 17.04% 23.49% 

MDQA-R-BsY Res 0 1 -0.01% 3.01% 10.00% 18.84% 

MDQA-R-BsY Res 6 1 0.03% 2.40% 2.61% 3.72% 

MDQA-R-BsY Res 8 1 -0.13% 2.49% 7.17% 9.20% 

MDQA-R-BsY Res 0 2 0.26% 1.15% 23.66% 14.45% 

MDQA-R-BsY Res 6 2 -1.07% 12.09% 29.73%   

MDQA-R-BsY Res 8 2 -0.58% 1.81% 9.51% 19.32% 

MDQA-R-BsY Res 0 3 1.48% 32.18% 33.20% 52.70% 

MDQA-R-BsY Res 6 3 -0.50% 16.85% 19.51% 15.73% 

MDQA-R-BsY Res 8 3 -1.05% 8.66% 35.80% 40.59% 

MDQA-R-En Res 1 1 -0.22% 2.89% 6.45% 6.34% 

MDQA-R-En Res 4 1 0.51% 2.97% 6.90% 5.15% 

MDQA-R-En Res 7 1 -0.12% 1.53% 4.01% 4.73% 

MDQA-R-En Res 1 2 -0.48% 4.47% 28.90% 26.93% 

MDQA-R-En Res 4 2 0.19% 0.68% 6.40% 8.42% 

MDQA-R-En Res 7 2 -0.03% 2.65% 12.17% 19.21% 

MDQA-R-En Res 1 3 1.28% 14.60% 27.48% 34.44% 

MDQA-R-En Res 4 3 1.35% 26.06% 27.19% 38.44% 

MDQA-R-En Res 7 3 0.57% 53.04% 43.46% 94.51% 

MDQA-R-Ss Res 1 1 -1.09% 1.59% 9.19% 5.98% 

MDQA-R-Ss Res 4 1 -0.56% 1.63% 6.91% 7.97% 

MDQA-R-Ss Res 7 1 -1.08% 1.29% 3.38% 2.74% 

MDQA-R-Ss Res 1 2 -1.51% 3.68% 6.53% 11.82% 

MDQA-R-Ss Res 4 2 -0.18% 4.18% 11.50% 15.67% 

MDQA-R-Ss Res 7 2 -1.71% 1.31% 6.08% 12.03% 

MDQA-R-Ss Res 1 3 -0.16% 9.27% 14.29% 20.54% 

MDQA-R-Ss Res 4 3 -0.14% 6.28% 15.92% 16.95% 

MDQA-R-Ss Res 7 3 -0.27% 7.85% 19.53% 16.66% 

MDQA-R-Ws Res 1 1 -0.17% 3.82% 21.57% 25.35% 

MDQA-R-Ws Res 4 1 -0.67% 4.02% 16.95% 13.36% 

MDQA-R-Ws Res 7 1 -0.70% 5.12% 36.59% 16.12% 

MDQA-R-Ws Res 1 2 -0.82% 3.70% 20.69% 17.75% 

MDQA-R-Ws Res 4 2 -1.48% 21.92% 23.76% 25.63% 

MDQA-R-Ws Res 7 2 -0.68% 4.15% 35.54% 56.21% 

114



MDQA-R-Ws Res 1 3 0.17% 8.23% 14.54% 15.05% 

MDQA-R-Ws Res 4 3 -0.48% 16.09% 32.23% 23.57% 

MDQA-R-Ws Res 7 3 1.28% 10.70% 35.11% 48.35% 

MDT-R-Fr Res 1 1 -0.19% 2.47% 6.38% 8.14% 

MDT-R-Fr Res 4 1 0.10% 3.33% 8.73% 9.16% 

MDT-R-Fr Res 7 1 0.09% 3.85% 8.30% 10.56% 

MDT-R-Fr Res 1 2 0.09% 0.95% 12.10% 7.28% 

MDT-R-Fr Res 4 2 -0.16% 0.45% 13.89% 6.55% 

MDT-R-Fr Res 7 2 -0.72% 1.47% 6.16% 7.08% 

MDT-R-Fr Res 1 3 -0.44%   55.07% 62.81% 

MDT-R-Fr Res 4 3 0.49% 17.74% 39.67% 26.25% 

MDT-R-Fr Res 7 3 0.05% 9.16% 49.69% 26.39% 
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Appendix F. Soil morphological descriptions 
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Site MDC-N-AB Date 9/25/2013

Plot Number 1-1 Describers CAP,JV

Observation Method small pit to 40 cm, augered to 142 cm

HS FI

Obs 

Method
Horizon

Field 

Horizon
Depth (cm) Texture (% Clay)

Matrix Color 

Moist
RMF - Conc RMF - Dep Other

SP Oe Oe 8 Mky Pt 5YR 2.5/1

SP Oa A1 24 Mk 10YR 2/1

SP/BA A1 A2 47  Mky SiL (12%) 2.5Y 3/1 Mucky modified

BA A2 AB 71 SiL (15%) 2.5Y 3/1

BA Btg Bt 96 L (20%) 2.5Y 6/1 15% D

BA BCg BC 142+ SiL (13%) 5Y 5/1 5% P

Site MDC-N-AB Date 9/25/2013

Plot Number 4-1 Describers CAP,JV

Observation Method small pit to 40 cm, augered to 191 cm

HS FI

Obs 

Method
Horizon

Field 

Horizon
Depth (cm) Texture (% Clay)

Matrix Color 

Moist
RMF - Conc RMF - Dep Other

SP Oa Oe 11 Mky Pt 10YR 2/1

SP A1 A1 39 Mk 10YR 2/1

BA A2 A2 63 SiL (8%) 10YR 2/1

BA AB AB 103 SiL (17%) 10YR 2/1

BA Abt 115 SiCL (28%) 10YR 3/1 6% D

BA 157 L (11%) 10YR 4/1 3% D

BA 191+ SiL (14%) 5Y 4/1

Site MDC-N-AB Date 9/25/2013

Plot Number 7-1 Describers CAP,JV

Observation Method small pit to 40 cm, augered to 155 cm

HS FI

Obs 

Method
Horizon

Field 

Horizon
Depth (cm) Texture (% Clay)

Matrix Color 

Moist
RMF - Conc RMF - Dep Other

SP Oe Oe 7 Mky Pt 5YR 2.5/1

SP Oa A1 20 Mk 10YR 2/1

SP/BA A1 A2 49 Mk 10YR 2/1

BA A2 AB 69 SiL (20%) 10YR 3/1

BA Bg1 Bt 120 L (25%) 2.5Y 4/1 18% P

BA Bg2 BC 155+ SiL (15%) 2.5Y 5/1 10% P

MDC-N-AB Zone 1 
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Site MDC-N-AB Date 11/20/2013

Plot Number 1-2 Describers CAP,SE

Observation Method small pit to 40 cm, augered to 193 cm

HS FI

Obs 

Method
Horizon

Field 

Horizon
Depth (cm) Texture (% Clay)

Matrix Color 

Moist
RMF - Conc RMF - Dep Other

SP Oe Oe 9 10YR 2/1

SP A A1 33 Mky L (12%) 10YR 2/1

SP/BA EA A2 57 Mky L (15%) 10YR 3/1

BA EAg AE 89 LS (5%) 2.5Y 5/2 15% F 3% gravel

BA Eg E 112 S (2%) 2.5Y 6/2 2% gravel

BA Bg Bt1 131 LS (6%) 2.5Y 7/2 25% P 1% gravel

BA Bw Bt2 147 LS (5%) 2.5Y 6/4 30% P 3% gravel

BA B'g1 Bt3 162 LS (5%) 2.5Y 6/2 8% D

BA B'g2 Btg 178 SL (10%) 2.5Y 6/2 5% gravel

BA CBg CB 193+ S (2%) 2.5Y 7/2

Site MDC-N-AB Date 11/20/2013

Plot Number 4-2 Describers CAP,SE

Observation Method small pit to 40 cm, augered to 194 cm

HS FI

Obs 

Method
Horizon

Field 

Horizon
Depth (cm) Texture (% Clay)

Matrix Color 

Moist
RMF - Conc RMF - Dep Other

SP Oa Oa 8 7.5YR 2.5/1

SP A A 33 Mky SL (8%) 10YR 2/1

SP/BA EAg AE 56 SL (4%) 10YR 4/1

BA Eg EB 79 SL (6%) 10YR 4/1

BA BEg BE 100 SL (9%) 2.5Y 5/2 12% P

BA Btg1 Btg1 140 SL (19%) 2.5Y 6/1 10% D, 4% P

BA Btg2 Btg2 176 SCL (23%) 2.5Y 6/1 8% P

BA CBg CBg 194+ S (2%) 2.5Y 6/2

Site MDC-N-AB Date 11/20/2013

Plot Number 7-2 Describers CAP,SE

Observation Method small pit to 40 cm, augered to 168 cm

HS FI

Obs 

Method
Horizon

Field 

Horizon
Depth (cm) Texture (% Clay)

Matrix Color 

Moist
RMF - Conc RMF - Dep Other

SP Oe Oe 5 10YR 2/1

SP Oa A1 22 10YR 2/1

SP A A2 35 Mky L (12%) 10YR 2/1

BA EAg AB 54 L (8%) 10YR 4/1

BA Eg EB 71 LS (4%) 2.5Y 5/2

BA Btg1 Bt 91 SL (18%) 10YR 4/1 35% P

BA Btg2 Btg 119 SCL (22%) 5Y 6/1 10% P, 20% D

BA Btg3 BC 147 SL (16%) 2.5Y 5/2 5% F

BA BCg CBg 168+ SL (6%) 2.5Y 6/2

MDC-N-AB Zone 2 
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Site MDC-N-AB Date 7/30/2014

Plot Number 1-3 Describers CAP,JR

Observation Method small pit to 40 cm, augered to 182 cm

HS FI

Obs 

Method
Horizon

Field 

Horizon
Depth (cm) Texture (% Clay)

Matrix Color 

Moist
RMF - Conc RMF - Dep Other

SP Oe Oe 6 5YR 3/3

SP A A 24 SL (11%) 10YR 2/1

SP AB AB 39 SL (13%) 10YR 3/3 3% D

BA Bhsm Bhsm 58 SL (15%) 2.5YR 2.5/2 Ortstein

BA Bhs1 Bhs1 69 SL (17%) 2.5YR 2.5/1

BA Bhs2 Bhs2 99 LS (3%) 7.5YR 3/2

BA BC BC 123 SL (12%) 2.5Y 6/2

BA CB CB 146 SL (14%) 2.5Y 6/3 10% D 15% D

BA Cg Cg 182+ SL (13%) 2.5Y 6/1 22% P

Site MDC-N-AB Date 7/30/2014

Plot Number 4-3 Describers CAP,JR

Observation Method small pit to 40 cm, augered to 187 cm

HS FI

Obs 

Method
Horizon

Field 

Horizon
Depth (cm) Texture (% Clay)

Matrix Color 

Moist
RMF - Conc RMF - Dep Other

SP Oe Oe 10 2.5YR 2.5/3

SP A A 17 SL (12%) 10YR 2/2

SP/BA EA AE 43 SL (10%) 2.5Y 5/4

BA E E 74 SL (7%) 2.5Y 6/4

BA Bt Bt 97 SL (10%) 2.5Y 6/4 10% P 9% D

BA Btg Btg 128 SL (10%) 2.5Y 7/1 25% D, 7% P

BA B't B't 172 SL (10%) 2.5Y 6/4 10% D 15% D

BA BCg BCg 187+  Gr SL (10%) 2.5Y 7/2 10% D 20% gravel

Site MDC-N-AB Date 7/30/2014

Plot Number 7-3 Describers CAP,JR

Observation Method small pit to 40 cm, augered to 161 cm

HS FI

Obs 

Method
Horizon

Field 

Horizon
Depth (cm) Texture (% Clay)

Matrix Color 

Moist
RMF - Conc RMF - Dep Other

SP Oe Oe 9 5YR 3/3

SP A A 24 SL (11%) 10YR 3/2

SP EA AE 39 SL (13%) 2.5Y 3/4

BA E1 E1 59 LS (5%) 2.5Y 6/4 25% P 2% D

BA E2 E2 83 LS (3%) 10YR 5/6 20% D

BA Bt1 Bt1 111 SL (6%) 2.5Y 6/3 50% P 10% D

BA Bt2 Bt2 139  Gr SL (9%) 10YR 5/6 5% F 20% gravel

BA Bt3 Bt3 161+ SL (8%) 2.5Y 6/6 5% F

MDC-N-AB Zone 3 
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Site DENC-N-BB Date 9/16/2013

Plot Number 1-1 Describers CAP,JV

Observation Method small pit to 30 cm, augered to 165 cm

HS FI

Obs 

Method
Horizon

Field 

Horizon
Depth (cm)

Texture (% 

Clay)

Matrix Color 

Moist
RMF - Conc RMF - Dep Other

SP Oa Oa1 9 10YR 2/2

SP/BA A1 Oa2 35 10YR 2/1 Possibly mucky A

BA A2 65 SL (7%) 10YR 2/1

BA AB 83 SL (16%) 10YR 3/1

BA Bg1 107 SL (19%) 10YR 5/1 6% P 10YR 3/6

BA Bg2 130 SL (12%) 10YR 5/1 3% D 10YR 4/6

BA Bg3 152 L (14%) 2.5Y 4/1 5% P 10YR 4/6

BA BC 165+ L (14%) 10YR 3/2 1% D 10YR 4/6

Site DENC-N-BB Date 9/16/2013

Plot Number 4-1 Describers CAP,JV

Observation Method small pit to 40 cm, augered to 161 cm

HS FI

Obs 

Method
Horizon

Field 

Horizon
Depth (cm)

Texture (% 

Clay)

Matrix Color 

Moist
RMF - Conc RMF - Dep Other

SP Oa Oa1 7 Mky Pt 10YR 2/1

SP A1 Oa2 28 Mk 10YR 3/1 Possibly mucky A

SP/BA A2 48 Mk 10YR 2/1

BA A3 65 SL (8%) 10YR 3/1

BA AB 83 SCL (23%) 2.5Y 3/1

BA Btg1 103 SiCL (30%) 2.5Y 5/1

BA Btg2 132 SiCL (35%) 2.5Y 6/1

BA Btg3 161+ SiCL (28%) 5Y 6/1

Site DENC-N-BB Date 9/16/2013

Plot Number 7-1 Describers CAP,JV

Observation Method small pit to 40 cm, augered to 139 cm

HS FI

Obs 

Method
Horizon

Field 

Horizon
Depth (cm)

Texture (% 

Clay)

Matrix Color 

Moist
RMF - Conc RMF - Dep Other

SP Oa Oa1 10 Mky Pt 10YR 2/1

SP A1 Oa2 37 Mk 10YR 2/1 Possibly mucky A

BA A2 49 SL (8%) 10YR 3/1

BA ABt 73 SC (38%) 2.5Y 2.5/1

BA Btg1 105 SCL (30%) 2.5Y 4/1

BA Btg2 139+ SL (17%) 2.5Y 4/1

DENC-N-BB Zone 1 
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Site DENC-N-BB Date 3/17/2015

Plot Number 1-2 Describers CAP,MG,CS

Observation Method small pit to 40 cm, augered to 119 cm

HS FI

Obs 

Method
Horizon

Field 

Horizon
Depth (cm)

Texture (% 

Clay)

Matrix Color 

Moist
RMF - Conc RMF - Dep Other

SP Oa Oa 7 PT 2.5YR 2.5/2

SP A A 34 MKY SL (6%) 10YR 2/2

SP/BA Eg Eg 57 LS (4%) 2.5Y 6/2

BA Btg1 83 SL (15%) 2.5Y 6/2 25% P 7.5YR 

5/6

5% F 2.5Y 7/1

BA Btg2 104 SL (10%) 2.5Y 7/2 20% P 7.5YR 

5/6

8% F 2.5Y 7/1

BA BCg 119+ LS (5%) 2.5Y 7/2 30% P 7.5YR 

5/6

Site DENC-N-BB Date 8/27/2013

Plot Number 4-2 Describers CAP,JV

Observation Method small pit to 30 cm, augered to 153 cm

HS FI

Obs 

Method
Horizon

Field 

Horizon
Depth (cm)

Texture (% 

Clay)

Matrix Color 

Moist
RMF - Conc RMF - Dep Other

SP A1 Oe 10 5YR 3/3

SP A2 A1 21 SL (6%) 10YR 2/1

SP/BA A3 A2 50 SL (7%) 10YR 2/1

BA AB AB 69 SL (8%) 10YR 2/2

BA EB EB 91 LS (5%) 2.5Y 5/4

BA Bw Bw 121 SL (6%) 2.5Y 5/3

BA BC BC 153+ LS (3%) 2.5Y 6/3

Site DENC-N-BB Date 8/27/2013

Plot Number 7-2 Describers CAP,JV

Observation Method small pit to 30 cm, augered to 145 cm

HS FI

Obs 

Method
Horizon

Field 

Horizon
Depth (cm)

Texture (% 

Clay)

Matrix Color 

Moist
RMF - Conc RMF - Dep Other

SP Oe Oe 8 5YR 3/3

SP A1 26 SL (8%) 10YR 2/1

SP/BA A2 63 SL (9%) 10YR 2/1

BA Bw 104 LS (3%) 2.5Y 5/4 Heavily intermixed

BA BC 145+ LS (4%) 5Y 5/3

DENC-N-BB Zone 2 

121



Site DENC-N-BB Date 3/17/2015

Plot Number 1-3 Describers CAP,MG,CS

Observation Method small pit to 40 cm, augered to 116 cm

HS FI

Obs 

Method
Horizon

Field 

Horizon
Depth (cm)

Texture (% 

Clay)

Matrix Color 

Moist
RMF - Conc RMF - Dep Other

SP Oe Oe 4 MKY PT 2.5YR 2.5/2

SP A A 17 SL (7%) 10YR 2/2

SP/BA Bw1 45 SL (5%) 2.5Y 5/4

BA Bw2 65 LS (4%) 2.5Y 5/4 5% F 10YR 5/6

BA Bw3 95 LS (3%) 2.5Y 6/3 20% D 7.5YR 

5/6
BA Bw4 116+ S (2%) 2.5Y 7/3 15% D 10YR 5/6 25% D 2.5Y 

7/2

Site DENC-N-BB Date 3/17/2015

Plot Number 4-3 Describers CAP,MG,CS

Observation Method small pit to 40 cm, augered to 107 cm

HS FI

Obs 

Method
Horizon

Field 

Horizon
Depth (cm)

Texture (% 

Clay)

Matrix Color 

Moist
RMF - Conc RMF - Dep Other

SP Oe Oe 8 MKY PT 2.5Y 2.5/2

SP A A 21 SL (6%) 10YR 2/1

SP Bw1 40 LS (5%) 10YR 5/6 3% D 5YR 5/6

BA Bw2 60 S (4%) 2.5Y 5/3

BA Bw3 81 S (2%) 2.5Y 6/3

BA Bw4 107+ S (2%) 2.5Y 6/3

Site DENC-N-BB Date 3/17/2015

Plot Number 7-3 Describers CAP,MG,CS

Observation Method small pit to 40 cm, augered to 110 cm

HS FI

Obs 

Method
Horizon

Field 

Horizon
Depth (cm)

Texture (% 

Clay)

Matrix Color 

Moist
RMF - Conc RMF - Dep Other

SP Oe Oe 4 MKY PT 2.5YR 2.5/2

SP A A 8 SL (6%) 10YR 2/2

SP BA Bw1 25 LS (5%) 10YR 4/4

SP Bw1 Bw2 41 LS (5%) 2.5Y 6/4 3% F 10YR 6/6

BA Bw2 Bw3 59 S (4%) 2.5Y 5/3 3% F 10YR 6/6

BA Bw3 Bw4 80 S (4%) 2.5Y 6/3 15% P 10YR 5/6 5% 2.5Y 6/3

BA Bw4 BC1 101 S (3%) 2.5Y 6/3 30% P 7.5YR 

5/6

10% F 2.5Y 

6/2

BA BC BC2 110+ S (2%) 2.5Y 6/3 40% D 7.5YR 

5/6

3% subrounded gravel

DENC-N-BB Zone 3 
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Site MDC-N-BC Date

Transect	Number 1-1 Describers CAP,JV

Observation	Method	 small	pit	to	40	cm,	augered	to	191	cm

HS	FI

Obs	

Method
Horizon

Field	

Horizon
Depth	(cm) Texture

Matrix	Color	

Moist
RMF Other

SP Oe Oe 8 7.5YR	3/3

SP/BA Oa A 51 10YR	2/2

BA A AB 89 10YR	2/1

BA Bt 107 10YR	4/3 Sand	lens

BA BCg 134 10YR	4/2

BA CBg 191+ 2.5Y	4/1

Site MDC-N-BC Date

Transect	Number 4-1 Describers CAP,JV

Observation	Method	 small	pit	to	50	cm,	augered	to	203	cm

HS	FI

Obs	

Method
Horizon

Field	

Horizon
Depth	(cm) Texture

Matrix	Color	

Moist
RMF Other

SP Oe Oe 11 10YR	2/1

SP Oa A1 45 Mky	SiL	(12%) 10YR	2/1 3	Gr	structure

SP/BA A A2 73 SiL	(16%) 10YR	2/1 2	Gr	structure

BA ABt1 101 SiL	(22%) 10YR	2/1 1	SBk	structure

BA ABt2 130 SiL	(25%) 10YR	2/1

BA BCg 203+ SiL	(8%) 10YR	4/2

Site MDC-N-BC Date

Transect	Number 7-1 Describers CAP,JV

Observation	Method	 small	pit	to	40	cm,	augered	to	179	cm

HS	FI

Obs	

Method
Horizon

Field	

Horizon
Depth	(cm) Texture

Matrix	Color	

Moist
RMF Other

SP Oe Oe 5 7.5YR	3/3

SP Oa1 Oa 13 7.5YR	2.5/2

SP Oa2 A1 37 L	(13%) 10YR	2/2 Mucky	modified,	2-

3	GR	structure

SP/BA A A2 61 L	(15%) 10YR	2/1 1-2	GR	structure

BA BE 85 FSL	(10%) 10YR	3/1

BA Btg 99 L	(20%) 10YR	4/2

BA BCg 144 FSL	(12%) 10YR	4/2

BA CBg 163 SL	(8%) 2.5Y	5/2 Raff	-	prob	mostly	

spoil

BA Cg 179+ LS?	(series	of	

expletives	%)

2.5Y	5/1 Raff	-	prob	mostly	

spoil

9/11/15

9/24/13

9/24/13

MDC-N-BC Zone 1 
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Site MDC-N-BC Date

Transect	Number 1-2 Describers CAP,NG

Observation	Method	 small	pit	to	28	cm,	augered	to	157	cm

HS	FI

Obs	

Method
Horizon

Field	

Horizon
Depth	(cm) Texture

Matrix	Color	

Moist
RMF Other

SP Oe Oe 15 5YR	3/4

SP A1 A1 28 SL	(6%) 10YR	2/1

BA A2 A2 44 SL	(8%) 10YR	2.5/1

BA AB AB 72 L	(15%) 10YR	3/2

BA Bg1 Btg1 92 SL	(16%) 2.5Y	6/2

BA Bg2 Btg2 117 SCL	(21%) 2.5Y	6/2

BA CBg BCg 157+ LCS	(4%) 2.5Y	6/2 10%	fluvial	gravel

Site MDC-N-BC Date

Transect	Number 4-2 Describers CAP,NG

Observation	Method	 small	pit	to	38	cm,	augered	to	192	cm

HS	FI

Obs	

Method
Horizon

Field	

Horizon
Depth	(cm) Texture

Matrix	Color	

Moist
RMF Other

SP Oe Oe 22 7.5YR	2.5/3

SP A A 38 SL	(6%) 10YR	2/1

BA AB AB 46 SL	(8%) 10YR	2/1

BA Bw Bt 60 SL	(17%) 10YR	3/2

BA CBg BC 77 LCS	(3%) 2.5Y	4.5/2

BA C CB 192+ CS	(2%) 10YR	4/3

Site MDC-N-BC Date

Transect	Number 7-2 Describers CAP,NG

Observation	Method	 small	pit	to	50	cm,	augered	to	81	cm

HS	FI

Obs	

Method
Horizon

Field	

Horizon
Depth	(cm) Texture

Matrix	Color	

Moist
RMF Other

SP Oe Oe 24 7.5YR	3/4

SP A1 A1 50 LS	(5%) 10YR	2/1

BA A2 A2 62 LS	(4%) 10YR	2/2

BA Bg Bw 73 LS	(3%) 10YR	4/2

BA C BC 81+ S	(2%) 2.5Y	5/4

8/20/13

8/20/13

8/20/13

MDC-N-BC Zone 2 
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Site MDC-N-BC Date

Transect	Number 1-3 Describers CAP,NG

Observation	Method	 small	pit	to	40	cm,	augered	to	187	cm

HS	FI

Obs	

Method
Horizon

Field	

Horizon
Depth	(cm) Texture

Matrix	Color	

Moist
RMF	-	conc RMF	-dep Other

SP Oe Oe 13 5YR	2.5/2

SP A A 28 SL	(11%) 10YR	2/2

SP EA AE 42 SL	(13%) 2.5Y	6/4

SP/BA E E 53 SL	(7%) 2.5Y	6/4 18%	D	10YR	5/6

BA BE BE 75 SL	(8%) 2.5Y	6/4 25%	D	10YR	5/6 10%	D	2.5Y	7/2

BA Btg Btg 98 SL	(16%) 2.5Y	7/1 15%	D	10YR	5/6 10%	rounded	gravel

BA Bt Bt 120 SL	(13%) 2.5Y	6/4 22%	D	10YR	5/6 7%	2.5Y	7/2

BA B'tg B'tg 140 SL	(16%) 2.5Y	7/2 15%	P	7.5YR	5/8

BA BCg BCg 181 SL	(6%) 2.5Y	7/1 1%	angular	gravel

BA Cg Cg 187+ LS	(3%) 2.5Y	7/1

Site MDC-N-BC Date

Transect	Number 4-3 Describers CAP,JR

Observation	Method	 small	pit	to	40	cm,	augered	to	202	cm

HS	FI

Obs	

Method
Horizon

Field	

Horizon
Depth	(cm) Texture

Matrix	Color	

Moist
RMF	-	conc RMF	-dep Other

SP Oe Oe 5 5YR	3/2

SP A A 18 SL	(12%) 10YR	2/1

SP/BA E1 AE 54 SL	(8%) 2.5Y	5/4

BA E2 EA 85 SL	(6%) 10YR	5/6 2%	F

BA E3 E 102 LS	(4%) 2.5Y	6/4 10%	F 2%	D

BA BE 140 SL	(5%) 2.5Y	6/3 15%	D 25%	P

BA Btg 184 SL	(19%) 5Y	7/1 15%	D

BA Cg 202+ SiL	(8%) 5Y	7/1 15%	D

Site MDC-N-BC Date

Transect	Number 7-3 Describers CAP,JR

Observation	Method	 small	pit	to	40	cm,	augered	to	174	cm

HS	FI

Obs	

Method
Horizon

Field	

Horizon
Depth	(cm) Texture

Matrix	Color	

Moist
RMF	-	conc RMF	-dep Other

SP Oe Oe 6 5YR	3/2

SP A A 15 SL	(12%) 10YR	2/1

SP/BA AE AE 55 SL	(10%) 10YR	3/4

BA E 96 LS	(3%) 2.5Y	6/4 15%	F

BA EB 116 LS	(4%) 2.5Y	6/6 30%	P

BA BE 140 SL	(6%) 2.5Y	6/6 10%	P 5%	D

BA Bt 160 SL	(19%) 10YR	6/6 5%	D 40%	P

BA Cg 174+ S	(2%) 2.5Y	6/2 10%	gravel

8/6/14

7/30/14

7/30/14

MDC-N-BC Zone 3 
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MDC-N-BeW Zone 1 

Site MDC-N-BeW Date 8/8/13

Plot	Number 1-1 Describers CAP,MG

Observation	Method	 small	pit	to	33	cm,	augered	to	151	cm

HS	FI

Obs	

Method
Horizon Field	Horizon Depth	(cm)

Texture	(%	

Clay)

Matrix	Color	

Moist
RMF	-	Conc RMF	-	Dep Other

SP Oa A 18 L	(12%) 2.5Y	3/2

SP Ag BEg 33 L	(14%) 10YR	4/1 C/D	10YR	4/6 C/F	10YR	5/1

BA ABg Btg1 54 L	(22%) 10YR	4/2 M/P	10YR	3/3 C/F	10YR	5/1

BA Bg Btg2 81 CL	(28%) 2.5Y	4/1 C/P	10YR	4/6 C/D	10YR	5/1 Some	evidence	of	disturbance

BA BC ^2C1 97 SCL	(25%) 10YR	3/1 C/P	10YR	4/6 Increase	in	grain	size	of	sand	fraction.	

Evidence	of	disturbance
BA CB ^2C2 114 SCL	(30%) 7.5YR	3/1 C/P	10YR	4/6 Coarse	sand	grading	into	medium	

sand.	Evidence	of	disturbance

BA 2CBg 3BCg 134 L	(20%) 2.5Y	5/2 C/P	10YR	3/3 No	evidence	of	disturbance

BA 2Cg 3CBg 151+ SiL	(16%) 2.5Y	6/1 M/P	10YR	3/3	

C/P	10YR	4/6

Site MDC-N-BeW Date 8/8/13

Plot	Number 4-1 Describers CAP,MG

Observation	Method	 small	pit	to	42	cm,	augered	to	137	cm

HS	FI

Obs	

Method
Horizon Field	Horizon Depth	(cm)

Texture	(%	

Clay)

Matrix	Color	

Moist
RMF	-	Conc RMF	-	Dep Other

SP Oa A 19 SL	(7%) 10YR	3/1

SP Ag BEg 42 L	(11%) 10YR	4/1 C/D	10YR	3/3	

C/P	10YR	4/6

BA BAg Bt1 59 L	(18%) 10YR	3/1 M/P	10YR	5/6	

F/D	10YR	3/3

Evidence	of	disturbance

BA Bw Bt2 114 SCL	(22%) 2.5Y	3/1 M/P	10YR	4/6	

C/P	10YR	5/6

Abrupt	boundary	at	114	cm,	evidence	

of	disturbance

BA 2BCg 2BCg 137+ SiCL	(32%) 2.5Y	5/1 C/P	10YR	4/6	

C/P	7.5YR	3/4

Site MDC-N-BeW Date 8/8/13

Plot	Number 7-1 Describers CAP,MG

Observation	Method	 small	pit	to	38	cm,	augered	to	148	cm

HS	FI

Obs	

Method
Horizon Field	Horizon Depth	(cm)

Texture	(%	

Clay)

Matrix	Color	

Moist
RMF	-	Conc RMF	-	Dep Other

SP A A 20 L	(9%) 10YR	4/1

SP BEg BEg 38 L	(13%) 10YR	5/2 C/P	10YR	3/3	

F/D	10YR	4/6

BA Bg1 Btg1 66 SCL	(24%) 10YR	4/2 C/P	10YR	3/3	

C/D	10YR	4/6

Evidence	of	disturbance

BA Bg2 Btg2 101 SL	(16%) 10YR	4/1 M/P	10YR	5/6	

F/P	10YR	3/3

Coarse	sand,	evidence	of	disturbance

BA 2BC 2Bt 134 SiL	(17%) 10YR	5/6 C/D	10YR	3/3

BA 2BCg 2BC 148+ SiL	(15%) 10YR	5/1 C/P	5YR	3/4	C/P	

10YR	5/6

Meets	A11	-	Depleted	Below	Dark	Surface

Meets	A11	-	Depleted	Below	Dark	Surface
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Site MDC-N-BeW Date 8/6/14

Plot	Number 1-2 Describers CAP,NG

Observation	Method	 small	pit	to	40	cm,	augered	to	200	cm

HS	FI

Obs	

Method
Horizon Field	Horizon Depth	(cm)

Texture	(%	

Clay)

Matrix	Color	

Moist
RMF	-	Conc RMF	-	Dep Other

SP Oe Oe 13 7.5YR	2.5/2

SP A A 23 L	(10%) 10YR	3/1 5%	F	7.5YR	3/4

SP/BA Ag Ag 44 L	(8%) 10YR	4/1 40%	P	5YR	4/6

BA Btg 70 SCL	(23%) 10YR	4/1 45%	D	7.5YR	4/6

BA BCg 95 SL	(12%) 10YR	6/1 5%	D	10YR	5/6

BA CB 115 LS	(4%) 2.5Y	5/3 3%	D	10YR	5/6

BA CBg 142 LS	(4%) 5Y	5/2 5%	F	10YR	5/4

BA Cg1 172 S	(3%) 5Y	5/1 2%	F	2.5Y	5/4

BA Cg2 200+ S	(2%) 5Y	5/1

Site MDC-N-BeW Date 8/6/14

Plot	Number 4-2 Describers CAP,NG

Observation	Method	 small	pit	to	40	cm,	augered	to	196	cm

HS	FI

Obs	

Method
Horizon Field	Horizon Depth	(cm)

Texture	(%	

Clay)

Matrix	Color	

Moist
RMF	-	Conc RMF	-	Dep Other

SP Oe Oe 5 5YR	2.5/2

SP A1 A1 22 L	(12%) 10YR	2/1

SP AE A2 37 L	(10%) 10YR	3/1 5%	D	7.5YR	3/4

BA Btg Btg 53 SL	(15%) 10YR	5/1 15%	P	5YR	3/4

BA BC BC 64 LS	(5%) 10YR	5/4 10%	D	10YR	5/6 5%	D	2.5Y	7/1

BA CBg CBg 87 LS	(4%) 2.5Y	6/1 5%	D	2.5Y	6/6

BA Cg Cg 103 LS	(3%) 2.5Y	6/2 10%	F	2.5Y	6/4

BA C C 124 LS	(3%) 2.5Y	5/3 30%	D	2.5Y	5/4

BA C'g1 C'g1 144 S	(3%) 2.5Y	6/2 30%	D	2.5Y	5/4

BA C'g2 C'g2 179 S	(2%) 5Y	5/1 5%	F	2.5Y	5/3

BA C'g3 C'g3 196+ CoS	(2%) 5Y	5/1

Site MDC-N-BeW Date 8/27/14

Plot	Number 7-2 Describers CAP,NG

Observation	Method	 small	pit	to	40	cm,	augered	to	189	cm

HS	FI

Obs	

Method
Horizon Field	Horizon Depth	(cm)

Texture	(%	

Clay)

Matrix	Color	

Moist
RMF	-	Conc RMF	-	Dep Other

SP Oe Oe 8 5YR	2.5/2

SP A A 29 SL	(10%) 10YR	3/2

SP/BA BE BE 55 S	(3%) 2.5Y	6/3

BA Bw Bw 94 LS	(6%) 7.5YR	4/6 22%	P	2.5Y	6/2

BA BC BC 110 LS	(4%) 10YR	4/3 15%	D	7.5YR	4/6

BA CBg1 CBg1 143 Gr	CS	(2%) 2.5Y	5/2 5%	D	10YR	4/6 20%	gravel

BA CBg2 CBg2 189+ SL	(7%) 2.5Y	5/2

Meets	A11	-	Depleted	Below	Dark	Surface

MDC-N-BeW Zone 2 
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Site MDC-N-BeW Date 8/27/14

Plot	Number 1-3 Describers CAP,NG

Observation	Method	 small	pit	to	40	cm,	augered	to	198	cm

HS	FI

Obs	

Method
Horizon Field	Horizon Depth	(cm)

Texture	(%	

Clay)

Matrix	Color	

Moist
RMF	-	Conc RMF	-	Dep Other

SP Oe Oe 4 5YR	2.5/2

SP A A 23 SL	(10%) 10YR	2/2

SP/BA Bw1 Bw1 59 SL	(8%) 2.5Y	5/4

BA Bw2 Bw2 83 LS	(5%) 2.5Y	5/4 15%	P	10YR	3/6

BA CB1 CB1 116 S	(2%) 2.5Y	6/3 10%	D	10YR	5/6 5%	F	2.5Y	6/2

BA CB2 CB2 171 S	(3%) 2.5Y	6/3 20%	D	10YR	6/6 7%	F	2.5Y	6/2

BA CB3 CB3 198+ LS	(4%) 2.5Y	6/3 10%	P	10YR	4/6 5%	F	2.5Y	6/2

Site MDC-N-BeW Date 8/27/13

Plot	Number 4-3 Describers CAP,NG

Observation	Method	 small	pit	to	40	cm,	augered	to	201	cm

HS	FI

Obs	

Method
Horizon Field	Horizon Depth	(cm)

Texture	(%	

Clay)

Matrix	Color	

Moist
RMF	-	Conc RMF	-	Dep Other

SP Oe Oe 4 7.5YR	5/3

SP A A 16 SL	(14%) 10YR	2/1

SP/BA Bw Bw 66 SL	(10%) 2.5Y	5/4

BA BC BC 100 S	(3%) 2.5Y	5/3 8%	F	2.5Y	4/4 4%	F	5Y	6/2

BA CB1 CB1 134 S	(3%) 2.5Y	6/3 6%	F	2.5Y	4/4 6%	F	5Y	6/2

BA CB2 CB2 164 S	(4%) 2.5Y	6/3 15%	P	7.5YR	5/6

BA CB3 CB3 201+ LS	(4%) 2.5Y	6/3 40%	P	7.5YR	5/6

Site MDC-N-BeW Date 8/27/14

Plot	Number 7-3 Describers CAP,NG

Observation	Method	 small	pit	to	40	cm,	augered	to	203	cm

HS	FI

Obs	

Method
Horizon Field	Horizon Depth	(cm)

Texture	(%	

Clay)

Matrix	Color	

Moist
RMF	-	Conc RMF	-	Dep Other

SP A1 Oe 4 5YR	3/3

SP A2 A1 21 SL	(12%) 10YR	2/2

SP EB A2 39 SL	(10%) 10YR	3/4

BA Bw Bw 79 SL	(8%) 2.5Y	5/4 3%	P	10YR	3/6

BA BC BC 105 S	(3%) 2.5Y	5/3 25%	P	10YR	4/6 5%	D	2.5Y	7/2

BA CB1 CB1 125 S	(4%) 2.5Y	6/3 20%	P	10YR	5/6 10%	D	2.5Y	7/2

BA CB2 CB2 153 LS	(5%) 2.5Y	6/3 10%	D	2.5Y	6/6 30%	D	2.5Y	6/2

BA CB3 CB3 179 LS	(8%) 7.5YR	5/8 30%	P	2.5Y	6/3 10%	P	2.5Y	6/3

BA CB4 CB4 203+ LS	(6%) 2.5Y	6/3 5%	D	10YR	6/6 20%	F	2.5Y	6/2

MDC-N-BeW Zone 3 
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Site MDQA-R-BsO Date

Transect	Number 1-2 Describers CAP,CP,BW

Observation	Method	 small	pit	to	40	cm,	augered	to	109	cm

HS	FI

Obs	

Method
Horizon Field	Horizon Depth	(cm) Texture

Matrix	Color	

Moist
RMF	-	Conc RMF	-	Dep Other

SP ^A A 9 FSL	(6%) 10YR	3/2

SP ^AC1 Ap1 19 FSL	(7%) 10YR	5/3 10%	D	5YR	4/6

SP ^AC2 Ap2 33 FSL	(10%) 10YR	5/3 15%	D	10YR	5/6

SP/BA Btb Bt 74 CL	(30%) 10YR	5/6 25%	D	5YR	5/6 20%	P	10YR	6/1 Bone	dry	-		

aquaclude?

BA Btmgb1 Btg1 90 L	(24%) 10YR	5/1 10%	P	5YR	5/6 Cemented,	bone	dry	-	

aquaclude?

BA Btmgb2 Btg2 109+ SCL	(21%) 10YR	6/1 7%	D	10YR	6/6 Cemented,	bone	dry	-	

aquaclude?

Site MDQA-R-BsO Date

Transect	Number 7-2 Describers CAP,NG

Observation	Method	 small	pit	to	40	cm,	augered	to	157	cm

HS	FI

Obs	

Method
Horizon Field	Horizon Depth	(cm) Texture

Matrix	Color	

Moist
RMF	-	Conc RMF	-	Dep Other

SP ^A A 7 FSL	(14%) 7.5YR	3/2 3%	F	5YR	3/4

SP ^Cg Btg 22 FSL	(12%) 2.5Y	5/2 15%	P	5YR	3/4

SP BCb BC 41 LFS	(5%) 2.5Y	5/3 22%	D	10YR	5/6

BA C1b C1 87 FS	(3%) 2.5Y	6/3 3%	F	10YR	5/6

BA C2b C2 157+ FS	(2%) 2.5Y	5/3

Site MDQA-R-BsO Date

Transect	Number 9-2 Describers CAP,NG

Observation	Method	 small	pit	to	40	cm,	augered	to	154	cm

HS	FI

Obs	

Method
Horizon Field	Horizon Depth	(cm) Texture

Matrix	Color	

Moist
RMF	-	Conc RMF	-	Dep Other

SP Oe Oe 6 7.5YR	3/2

SP ABg ABg 17 FSL	(12%) 2.5Y	5/2 1%	D	10YR	5/6

SP/BA Btg1 BAg 65 FSL	(15%) 2.5Y	6/2 40%	D	2.5Y	6/4		

5%	D	10YR	5/6

BA Btg2 Btg 86 FSL	(18%) 2.5Y	6/1 40%	P	10YR	5/6 3%	rounded	gravel

BA Cg Cg 154+ LFS	(4%) 2.5Y	6/1 25%	D	10YR	5/6

3/18/15

8/6/14

8/6/14

MDQA-R-BsO Zone 2 
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Site MDQA-R-BsO Date

Transect	Number 1-3 Describers CAP,CP,BW

Observation	Method	 small	pit	to	40	cm,	augered	to	105	cm

HS	FI

Obs	

Method
Horizon Field	Horizon Depth	(cm) Texture

Matrix	Color	

Moist
RMF	-	Conc RMF	-	Dep Other

SP Oe Oe 7 MKY	PT 10YR	3/3

SP A A 19 FSL	(12%) 10YR	3/4

SP AE AE 29 FSL	(10%) 10YR	4/4 Platy	structure

SP/BA Bt1 Bt1 60 FSL	(26%) 10YR	5/6 10%	F	7.5YR	5/6

BA Bt2 74 FSL	(24%) 10YR	5/4 10%	D	7.5YR	5/6 15%	D	2.5Y	6/2

BA BC1 85 LFS	(4%) 2.5Y	5/3 5%	D	10YR	5/6 5%	F	2.5Y	6/2

BA BC2 105+ FS	(3%) 10YR	5/4 10%	F	10YR	5/6 20%	F	2.5Y	6/3

Site MDQA-R-BsO Date

Transect	Number 7-3 Describers CAP,CP,BW

Observation	Method	 small	pit	to	40	cm,	augered	to	109	cm

HS	FI

Obs	

Method
Horizon Field	Horizon Depth	(cm) Texture

Matrix	Color	

Moist
RMF	-	Conc RMF	-	Dep Other

SP ^A A 8 FSL	(7%) 10YR	4/3 4%	D	7.5YR	4/6

SP ^AC Ap 31 FSL	(16%) 10YR	6/3 20%	D	7.5YR	4/6

SP/BA Bwb1 Bw1 53 LFS	(5%) 10YR	6/6 25%	D	7.5YR	5/6 18%	D	10YR	6/2

BA Bwb2 Bw2 67 LFS	(3%) 10YR	5/4

BA BCb BC 105+ FS	(2%) 10YR	5/3

Site MDQA-R-BsO Date

Transect	Number 9-3 Describers CAP,CP,BW

Observation	Method	 small	pit	to	40	cm,	augered	to	103	cm

HS	FI

Obs	

Method
Horizon Field	Horizon Depth	(cm) Texture

Matrix	Color	

Moist
RMF	-	Conc RMF	-	Dep Other

SP ^A A 10 FSL	(7%) 10YR	4/3

SP ^AC Ap 36 FSL	(12%) 10YR	5/3 8%	D	10YR	5/6

SP/BA Bwb1 Bw1 56 LFS	(4%) 10YR	6/3 10%	D	7.5YR	5/6

BA Bwb2 Bw2 75 FS	(3%) 10YR	6/3

BA BCb BC 103+ FS	(2%) 10YR	5/3

3/18/15

3/18/15

3/18/15

MDQA-R-BsO Zone 3 
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Site MDQA-R-BsY Date

Transect	Number 0-1 Describers CAP,NG,JV

Observation	Method	 small	pit	to	35	cm,	augered	to	171	cm

HS	FI

Obs	

Method
Horizon Field	Horizon Depth	(cm) Texture

Matrix	Color	

Moist
RMF	-	Conc RMF	-	Dep Other

SP ^A ^Oe 5 10YR	2/2

SP ^Ag1 ^Ag1 20 L	(18%) 10YR	4/2

SP ^Ag2 ^Ag2 35 L	(20%) 10YR	4/1 10%	F	10YR	3/4

BA Bg1 Bg1 53 FSL	(13%) 10YR	6/1 15%	F	2.5Y	6/4

BA Bg2 Bg2 70 FSL	(10%) 10YR	6/1 22%	D	10YR	6/6

BA Bg3 Bg3 83 FSL	(12%) 10YR	6.5/1 22%	D	10YR	6/6

BA BCg BCg 116 FSL	(4%) 2.5Y	6.5/1 15%	D	10YR	6/6

BA CBg CBg 135 LFS	(3%) 2.5Y	6/2 25%	D	10YR	5/6

BA Cg Cg 171+ FS	(2%) 10YR	6/2 30%	D	10YR	4/6

Site XXX Date

Transect	Number XXX Describers XXX

Observation	Method	small	pit	to	XX	cm,	augered	to	XXX	cm

HS	FI

Obs	

Method
Horizon Field	Horizon Depth	(cm) Texture

Matrix	Color	

Moist
RMF	-	Conc RMF	-	Dep Other

Site MDQA-R-BsY Date

Transect	Number 8-1 Describers CAP,NG,JV

Observation	Method	 small	pit	to	35	cm,	augered	to	163	cm

HS	FI

Obs	

Method
Horizon Field	Horizon Depth	(cm) Texture

Matrix	Color	

Moist
RMF	-	Conc RMF	-	Dep Other

SP ^Ag1 ^Ag1 13 SiL	(6%) 10YR	4/2

SP ^Ag2 ^Ag2 20 L	(18%) 7.5YR	4/1

SP ^ABg ^ABg 35 SCL	(23%) 2.5Y	4/4 40%	F	10YR	4/6

BA BAg BAg 49 SL	(4%) 2.5Y	5/2 15%	D	10YR	4/4

BA Bw1 78 SL	(8%) 2.5Y	5/3 10%	D	10YR	4/4 15%	D	2.5Y	6/1

BA Bw2 91 SL	(10%) 2.5Y	5/3 25%	D	10YR	4/4 10%	D	2.5Y	6/1

BA Bg 109 SL	(15%) 10YR	6/1 25%	P	10YR	5/6

BA BCg 134 SL	(5%) 2.5Y	6/2 10%	D	2.5Y	5/3

BA CBg 163+ SL	(5%) 2.5Y	6/2

8/26/13

8/26/13

X/XX/XXXX

MDQA-R-BsY Zone 1 
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MDQA-R-BsY Zone 2 
Site MDQA-R-BsY Date

Transect Number 0-2 Describers AMR, MCR

Observation Method small pit to 32 cm, augered to 198 cm

HS FI almost meets A11 - Depleted Below Dark Surface

Obs 

Method
Horizon Field Horizon

Depth 

(cm)
Texture

Matrix Color 

Moist
RMF Other Depth %C

SP Oe Oe 13 MK PT 5YR 2.5/2 4.5 4.6415
SP A A 20 S 10YR 2.5/1.5 18.1 0.6781
SP Cg1 Cg1 30 S 2.5Y 4.5/2 3-4% org. rich pockets, 

2-10 mm diam., 7.5YR 

2.5/3 and 10YR 3/1.5 36.1 0.4752

H2S smell 49.8 0.1682
SP/BA Cg2 Cg2 56 S 2.5Y 4.5/1.5 H2S smell

BA Cg3 Cg3 82 S 2.5Y 4.5/1 H2S smell

BA 2Ab 2Ab1 99 MK SIL 7.5YR 2.5/2

BA 3Oa 2Oab 109 MUCK 7.5YR 2.5/1

BA 3Cg1 3Cg1 157 S 10YR 4.5/1.5

BA 3Cg2 3Cg2 177 S 2.5Y 3.5/1

BA 4Cg3 3Cg3 198+ COS 2.5Y 3.5/1

Site XXX Date

Transect Number 6-2 Describers AMR, MCR

Observation Method small pit to 32 cm, augered to 198 cm

HS FI almost meets A11 - Depleted Below Dark Surface

Obs 

Method
Horizon Field Horizon

Depth 

(cm)
Texture

Matrix Color 

Moist
RMF Other Depth %C

SP Oe Oe 13 MPT 5YR 2.5/2 surface: ~1 cm pine 

needles, leaf litter 6.9 2.387
SP A A 24 S 10YR 4.5/1.5 5-10% org. rich 

pockets around roots, 21.3 0.5675
SP C1 C1 51 S 10YR 5.5/2 5% org. rich pockets 

around roots, 7.5YR 33.8 0.5147
SP C2 C2 65 S 2.5Y 5.5/2 3% org. rich pockets 

around roots, 7.5YR 45 0.46855
BA C3 C3 92 S 10YR 5/2

BA Cg Cg 119 S 2.5Y 5/1 H2S smell

BA 2Ab1 2Ab1 131 MK SIL 10YR 2/2

BA 3Ab2 2Ab2 136 MK L 10YR 2/1

BA 4Ab3 3Ab 152 LS 10YR 3/1

BA 4ACb 3AC 170 S 2.5Y 3.5/1.5

BA 4Cg 3Cg 196+ S 2.5Y 4.5/1.5

Site XXX Date

Transect 

Number

8-2 Describers AMR, MCR

Observati

on 

Method 

small pit to 

32 cm, 

augered to 

198 cm

HS FI

Obs 

Method
Horizon Field Horizon

Depth 

(cm)
Texture

Matrix Color 

Moist
RMF Other Depth %C

SP Oe Oe 13 MPT 5YR 2.5/2 surface: ~1 cm pine 

needles, leaf litter 5.4 1.1885
SP A A 24 S 10YR 4.5/1.5 5-10% org. rich 

pockets around roots, 11.6 0.4541
SP C1 C1 51 S 10YR 5.5/2 5% org. rich pockets 

around roots, 7.5YR 28.8 0.42555
SP C2 C2 65 S 2.5Y 5.5/2 3% org. rich pockets 

around roots, 7.5YR 46.4 0.1987
BA C3 C3 92 S 10YR 5/2

BA Cg Cg 119 S 2.5Y 5/1 H2S smell

BA 2Ab1 2Ab1 131 MK SIL 10YR 2/2

BA 3Ab2 2Ab2 136 MK L 10YR 2/1

BA 4Ab3 3Ab 152 LS 10YR 3/1

BA 4ACb 3AC 170 S 2.5Y 3.5/1.5

BA 4Cg 3Cg 196+ S 2.5Y 4.5/1.5

Sandy material above the depleted matrix must have value of 3 or less and chroma of 2 or less, and, viewed through at 10x or 15x 

hand lens, at least 70% of the visible soil particles must be masked with organic material

7/27/2011

Sandy material above the depleted matrix must have value of 3 or less and chroma of 2 or less, and, viewed through at 10x or 15x 

hand lens, at least 70% of the visible soil particles must be masked with organic material

7/27/2011

Sandy material above the depleted matrix must have value of 3 or less and chroma of 2 or less, and, viewed through at 10x or 15x 

hand lens, at least 70% of the visible soil particles must be masked with organic material

7/27/2011

almost meets A11 - Depleted Below Dark Surface
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MDQA-R-BsY Zone 3 

Site MDQA-R-BsY Date

Transect Number 0-3 Describers AMR, MCR

Observation Method small pit to 32 cm, augered to 198 cm

HS FI almost meets A11 - Depleted Below Dark Surface

Obs 

Method
Horizon Field Horizon

Depth 

(cm)
Texture

Matrix Color 

Moist
RMF Other Depth %C

SP Oe Oe 13 MK PT 5YR 2.5/2 9.1 1.411
SP A A 20 S 10YR 2.5/1.5 37 0.4315
SP Cg1 Cg1 30 S 2.5Y 4.5/2 3-4% org. rich pockets, 

2-10 mm diam., 7.5YR 

2.5/3 and 10YR 3/1.5 46.2 0.25975

H2S smell

SP/BA Cg2 Cg2 56 S 2.5Y 4.5/1.5 H2S smell

BA Cg3 Cg3 82 S 2.5Y 4.5/1 H2S smell

BA 2Ab 2Ab1 99 MK SIL 7.5YR 2.5/2

BA 3Oa 2Oab 109 MUCK 7.5YR 2.5/1

BA 3Cg1 3Cg1 157 S 10YR 4.5/1.5

BA 3Cg2 3Cg2 177 S 2.5Y 3.5/1

BA 4Cg3 3Cg3 198+ COS 2.5Y 3.5/1

Site XXX Date

Transect Number 6-3 Describers AMR, MCR

Observation Method small pit to 32 cm, augered to 198 cm

HS FI almost meets A11 - Depleted Below Dark Surface

Obs 

Method
Horizon Field Horizon

Depth 

(cm)
Texture

Matrix Color 

Moist
RMF Other Depth %C

SP Oe Oe 13 MPT 5YR 2.5/2 surface: ~1 cm pine 

needles, leaf litter 8.4 2.47
SP A A 24 S 10YR 4.5/1.5 5-10% org. rich pockets 

around roots, 10YR 20.1 0.7186
SP C1 C1 51 S 10YR 5.5/2 5% org. rich pockets 

around roots, 7.5YR 31.8 0.39075
SP C2 C2 65 S 2.5Y 5.5/2 3% org. rich pockets 

around roots, 7.5YR 47.2 0.42825
BA C3 C3 92 S 10YR 5/2

BA Cg Cg 119 S 2.5Y 5/1 H2S smell

BA 2Ab1 2Ab1 131 MK SIL 10YR 2/2

BA 3Ab2 2Ab2 136 MK L 10YR 2/1

BA 4Ab3 3Ab 152 LS 10YR 3/1

BA 4ACb 3AC 170 S 2.5Y 3.5/1.5

BA 4Cg 3Cg 196+ S 2.5Y 4.5/1.5

Site XXX Date

Transect Number 8-3 Describers AMR, MCR

Observation Method small pit to 32 cm, augered to 198 cm

HS FI almost meets A11 - Depleted Below Dark Surface

Obs 

Method
Horizon Field Horizon

Depth 

(cm)
Texture

Matrix Color 

Moist
RMF Other Depth %C

SP Oe Oe 13 MPT 5YR 2.5/2 surface: ~1 cm pine 

needles, leaf litter 6.6 2.385
SP A A 24 S 10YR 4.5/1.5 5-10% org. rich pockets 

around roots, 10YR 23.5 0.5605
SP C1 C1 51 S 10YR 5.5/2 5% org. rich pockets 

around roots, 7.5YR 

4/4 and 10YR 4/3 46 0.16905
SP C2 C2 65 S 2.5Y 5.5/2 3% org. rich pockets 

around roots, 7.5YR 

BA C3 C3 92 S 10YR 5/2

BA Cg Cg 119 S 2.5Y 5/1 H2S smell

BA 2Ab1 2Ab1 131 MK SIL 10YR 2/2

BA 3Ab2 2Ab2 136 MK L 10YR 2/1

BA 4Ab3 3Ab 152 LS 10YR 3/1

BA 4ACb 3AC 170 S 2.5Y 3.5/1.5

BA 4Cg 3Cg 196+ S 2.5Y 4.5/1.5

Sandy material above the depleted matrix must have value of 3 or less and chroma of 2 or less, and, viewed through at 10x or 15x 

hand lens, at least 70% of the visible soil particles must be masked with organic material

7/27/2011

Sandy material above the depleted matrix must have value of 3 or less and chroma of 2 or less, and, viewed through at 10x or 15x 

hand lens, at least 70% of the visible soil particles must be masked with organic material

7/27/2011

Sandy material above the depleted matrix must have value of 3 or less and chroma of 2 or less, and, viewed through at 10x or 15x 

hand lens, at least 70% of the visible soil particles must be masked with organic material

7/27/2011
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Site MDD-R-Ck Date 3/19/15

Plot	Number 1-1 Describers CAP,JF,SM

Observation	Method	 small	pit	to	40	cm,	augered	to	108	cm

HS	FI

Obs	

Method
Horizon Field	Horizon Depth	(cm)

Texture	(%	

Clay)

Matrix	Color	

Moist
RMF	-	Conc RMF	-	Dep Other

SP/BA ^C/A ^C/A 43 LS	(6%)					

LS	(4%)

2.5Y	5/3					

5YR	2.5/2

BA Bgb1 BAgb 65 LS	(5%) 10YR	6/2 4%	D	10YR	6/6

BA Bgb2 Bgb1 93 CoS	(3%) 2.5Y	7/1 2%	F	10YR	5/6

BA Bgb3 Bgb2 108+ LS	(4%) 2.5Y	7/1 Significant	dead	root	matter	present

Site MDD-R-Ck Date 3/19/15

Plot	Number 4-1 Describers CAP,JF,SM

Observation	Method	 small	pit	to	40	cm,	augered	to	103	cm

HS	FI

Obs	

Method
Horizon Field	Horizon Depth	(cm)

Texture	(%	

Clay)

Matrix	Color	

Moist
RMF	-	Conc RMF	-	Dep Other

SP ^A ^A 13 SL	(6%) 10YR	2/1

SP/BA ^Cg ^Cg 49 CL	(30%) 10YR	5/1 20%	P	7.5YR	4/6

BA Egb1 73 CoSL	(10%) 2.5Y	5/1 5%	F	10YR	5/6 Significant	dead	root	matter	present	-	

potential	/A	master	horizon

BA Egb2 91 CoS	(2%) 10YR	5/1 10%	gravel

BA Btgb 103+ C	(70%) 2.5Y	7/1 20%	P	7.5YR	6/8

Site MDD-R-Ck Date 3/19/15

Plot	Number 7-1 Describers CAP,JF,SM

Observation	Method	 small	pit	to	40	cm,	augered	to	101	cm

HS	FI

Obs	

Method
Horizon Field	Horizon Depth	(cm)

Texture	(%	

Clay)

Matrix	Color	

Moist
RMF	-	Conc RMF	-	Dep Other

SP ^A ^A 6 MKY	SL	(6%) 10YR	3/2

SP ^Cg1 ^Ag 16 SL	(9%) 2.5Y	6/1

SP/BA ^Cg2 ^Cg1 46 SCL	(27%) 2.5Y	5/1 12%	D	10YR	5/6

BA ^Cg3 ^Cg2 81 SCL	(22%) 2.5Y	5/1 4%	F	10YR	6/6

BA BCgb BCgb 101+ CoS	(2%) 2.5Y	5/1 1%	D	10YR	6/6

Meets	A11	-	Depleted	Below	Dark	Surface

Meets	A11	-	Depleted	Below	Dark	Surface

MDD-R-Ck Zone 1 
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Site MDD-R-Ck Date 3/19/15

Plot	Number 1-2 Describers CAP,JF,SM

Observation	Method	 small	pit	to	40	cm,	augered	to	108	cm

HS	FI

Obs	

Method
Horizon Field	Horizon Depth	(cm)

Texture	(%	

Clay)

Matrix	Color	

Moist
RMF	-	Conc RMF	-	Dep Other

SP ^A1 ^A1 6 MKY	SL	

(11%)

10YR	3/2

SP ^A2 ^A2 27 L	(10%) 10YR	3/2

SP/BA ^C ^C 51 SL	(15%) 2.5Y	5/3 20%	P	10YR	6/8 5%	F	2.5Y	6/2

BA ^Cg 67 SCL	(22%) 2.5Y	6/1 40%	P	7.5YR	5/8

BA BCgb 87 S	(4%) 2.5Y	7/1 20%	P	7.5YR	5/8

BA CBb 108+ CoS	(2%) 10YR	4/3

Site MDD-R-Ck Date 3/19/15

Plot	Number 4-2 Describers CAP,JF,SM

Observation	Method	 small	pit	to	40	cm,	augered	to	108	cm

HS	FI

Obs	

Method
Horizon Field	Horizon Depth	(cm)

Texture	(%	

Clay)

Matrix	Color	

Moist
RMF	-	Conc RMF	-	Dep Other

SP ^A1 ^Oe 4 MKY	PT 10YR	2/2

SP ^A2 ^A 21 L 10YR	2/2 2%	D	10YR	5/6

SP/BA ^C ^AC 48 S	(4%) 10YR	5/3 15%	P	5YR	4/6

BA ^Cg1 64 S	(3%) 2.5Y	7/1 30%	D	10YR	6/6

BA ^Cg2 78 SCL	(24%) 2.5Y	6/1 10%	D	10YR	6/6

BA Ebgb 87 LS	(5%) 2.5Y	5/1 20%	P	10YR	6/8

BA Btgb 99 SCL	(21%) 2.5Y	6/1 1%	D	10YR	6/6

BA BCgb 108+ S	(2%) 2.5Y	6/2

Site MDD-R-Ck Date 3/19/15

Plot	Number 7-2 Describers CAP,JF,SM

Observation	Method	 small	pit	to	40	cm,	augered	to	114	cm

HS	FI

Obs	

Method
Horizon Field	Horizon Depth	(cm)

Texture	(%	

Clay)

Matrix	Color	

Moist
RMF	-	Conc RMF	-	Dep Other

SP ^A ^A 20 L	(13%) 10YR	3/1

SP/BA ^C ^C 43 SCL	(21%) 10YR	5/4 20%	P	10YR	5/6 30%	D	10YR	6/2

BA Egb 65 S	(3%) 2.5Y	5/1 10%	D	2.5Y	6/6

BA Btgb 94 SC	(36%) 5Y	6/1 15%	D	2.5Y	6/6

BA BCgb 114+ CoS	(2%) 2.5Y	6/2 30%	F	2.5Y	6/6

MDD-R-Ck Zone 2 
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Site MDD-R-Ck Date 3/19/15

Plot	Number 1-3 Describers CAP,JF,SM

Observation	Method	 small	pit	to	40	cm,	augered	to	103	cm

HS	FI

Obs	

Method
Horizon Field	Horizon Depth	(cm)

Texture	(%	

Clay)

Matrix	Color	

Moist
RMF	-	Conc RMF	-	Dep Other

SP ^A1 ^A1 14 SL	(13%) 10YR		3/1

SP ^A2 ^A2 32 SL	(11%) 10YR	3/2

SP/BA ^A/Cg1 ^A/Cg1 51 SL	(8%) 10YR	2/1				

10YR	6/2

5%	P	10YR	6/6 RELICT	REDOX

BA ^A/Cg2 67 SL	(11%) 10YR	3/2			

10YR	6/2

BA ^A' 80 L	(14%) 10YR	3/2

BA Ab 90 L	(12%) 7.5YR	3/3

BA Bgb 103+ SL	(14%) 10YR	5/2 10%	P	7.5YR	5/6

Site MDD-R-Ck Date 3/19/15

Plot	Number 4-3 Describers CAP,JF,SM

Observation	Method	 small	pit	to	40	cm,	augered	to	106	cm

HS	FI

Obs	

Method
Horizon Field	Horizon Depth	(cm)

Texture	(%	

Clay)

Matrix	Color	

Moist
RMF	-	Conc RMF	-	Dep Other

SP Oe Oe 4 MKY	PT 10YR	2/2

SP A A 17 L	(13%) 10YR	2/2

SP Ap Ap 33 SL	(11%) 10YR	2/2 3%	D	7.5YR	4/6

SP/BA Eg Eg 60 SL	(9%) 2.5Y	6/1.5

BA Btg1 88 SCL	(22%) 2.5Y	6/1 15%	F	10YR	6/6

BA Btg2 106+ SL	(12%) 2.5Y	6/1

Site MDD-R-Ck Date 3/19/15

Plot	Number 7-3 Describers CAP,JF,SM

Observation	Method	 small	pit	to	40	cm,	augered	to	108	cm

HS	FI

Obs	

Method
Horizon Field	Horizon Depth	(cm)

Texture	(%	

Clay)

Matrix	Color	

Moist
RMF	-	Conc RMF	-	Dep Other

SP ^A/C ^A/C 16 SL	(10%) 10YR	2/1		

10YR	5/4

SP ^Cg/A ^Cg/A 36 SL	(15%) 10YR	4/3				

2.5Y	6/1

6%	P	10YR	6/6 Platy	structure

BA Ab Ab 74 L	(12%) 10YR	2/1

BA Btgb 90 SL	(17%) 2.5Y	5/1 10%	P	10YR	4/6

BA BCgb 108+ S	(2%) 2.5Y	6/1 3%	P	10YR	6/8

MDD-R-Ck Zone 3 
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Site MDT-R-Fr Date 9/25/13

Plot	Number 1-1 Describers CAP,JV

Observation	Method	 small	pit	to	40	cm,	augered	to	121	cm

HS	FI

Obs	

Method
Horizon Field	Horizon Depth	(cm)

Texture	(%	

Clay)

Matrix	Color	

Moist
RMF	-	Conc RMF	-	Dep Other

SP ^Ag Oa 11 2.5Y	4/2

SP ^Cg1 A 18 2.5Y	5/1

SP/BA ^Cg2 55 SiL	(18%) 2.5Y	6/1 35%	P Conc	decrease	to	5%	by	47	cm

BA 66 LS	(4%) 5Y	6/1

BA 80 SiL	(25%) 5Y	6/1

BA 98 SL	(14%) 2.5Y	4/1

BA 121 S	(2%) 2.5Y	7/1

Site MDT-R-Fr Date 9/25/13

Plot	Number 4-1 Describers CAP,JV

Observation	Method	 small	pit	to	40	cm,	augered	to	168	cm

HS	FI

Obs	

Method
Horizon Field	Horizon Depth	(cm)

Texture	(%	

Clay)

Matrix	Color	

Moist
RMF	-	Conc RMF	-	Dep Other

SP ^A ^Oa 6 2.5Y	3/2

SP ^Ag ^Ag 14 2.5Y	5/1 15%	D

SP ^Cg1 ^Btg 38 SiCL	(28%) 2.5Y	5/1

SP/BA ^Cg2 ^Bt 56 SCL	(32%) 10YR	4/6 10%	P

BA BE 85 LS	(4%) 2.5Y	5/4 Intermixing

BA Btg1 110 SL	(11%) 5Y	6/1 25%	D

BA Btg2 154 SL	(13%) 5Y	6/1 10%	D

BA CBg 168+ LS	(3%) 5Y	6/1 15%	P

Site MDT-R-Fr Date 9/25/13

Plot	Number 7-1 Describers CAP,JV

Observation	Method	 small	pit	to	40	cm,	augered	to	150	cm

HS	FI

Obs	

Method
Horizon Field	Horizon Depth	(cm)

Texture	(%	

Clay)

Matrix	Color	

Moist
RMF	-	Conc RMF	-	Dep Other

SP ^Ag Oa 15 2.5Y	4/2

SP ^Cg1 A 21 2.5Y	5/1 15%	D

SP/BA ^Cg2 49 5Y	6/1 30%	P

BA 62 SL	(12%) 2.5Y	5/4 Intermixed

BA 82 LS	(5%) 2.5Y	5/4 Intermixed

BA 92 SL	(14%) 5Y	6/1 Intermixed

BA 150+ S	(2%) 2.5Y	6/2 20%	F

MDT-R-Fr Zone 1 
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Site MDT-R-Fr Date 3/19/15

Plot	Number 1-2 Describers CAP,JF,SM

Observation	Method	 small	pit	to	40	cm,	augered	to	105	cm

HS	FI

Obs	

Method
Horizon Field	Horizon Depth	(cm)

Texture	(%	

Clay)

Matrix	Color	

Moist
RMF	-	Conc RMF	-	Dep Other

SP ^Ag ^Oa 7 MK 10YR	4/2

SP ^ACg ^Ag 19 SiL	(12%) 10YR	5/2 25%	P	7.5YR	5/8

SP ^Cg1 ^Cg1 33 C	(45%) 2.5Y	6/1 30%	P	7.5YR	5/8

SP/BA ^Cg2 ^Cg2 60 C	(50%) 2.5Y	6/1 15%	P	10YR	5/8

BA ^Cg3 ^Cg3 72 SiCL	(32%) N7 10%P	10YR	4/6 8%	D	5GY	5/1

BA Cb Cb 94 VGr	LS	(4%) 10YR	6/3 8%	P	10YR	5/6 50%	rounded	gravel

BA Cgb Cgb 105+ S	(2%) 10YR	6/2

Site MDT-R-Fr Date 9/25/13

Plot	Number 4-2 Describers CAP,JV

Observation	Method	 small	pit	to	40	cm,	augered	to	168	cm

HS	FI

Obs	

Method
Horizon Field	Horizon Depth	(cm)

Texture	(%	

Clay)

Matrix	Color	

Moist
RMF	-	Conc RMF	-	Dep Other

Site MDT-R-Fr Date 3/19/15

Plot	Number 7-2 Describers CAP,JF,SM

Observation	Method	 small	pit	to	40	cm,	augered	to	107	cm

HS	FI

Obs	

Method
Horizon Field	Horizon Depth	(cm)

Texture	(%	

Clay)

Matrix	Color	

Moist
RMF	-	Conc RMF	-	Dep Other

SP ^A ^Oa 6 MK 10YR	5/3

SP ^ACg ^Ag1 35 SiL	(13%) 2.5Y	5/1 35%	P	7.5YR	5/6

SP/BA ^Cg ^Ag2 50 SiL	(13%) 2.5Y	6/1 40%	P	7.5YR	5/6

BA Btgb1 ^Cg1 73 SiCL	(31%) 2.5Y	6/1 20%	P	7.5YR	5/8 15%	F	2.5Y	7/1

BA Btgb2 ^Cg2 91 SiCL	(34%) 5Y	6/1 20%	P	7.5YR	6/8

BA Btgb3 ^Cg3 107+ SiCL	(32%) 5Y	6/1 15%	P	10YR	6/6

MDT-R-Fr Zone 2 
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Site MDT-R-Fr Date 3/19/15

Plot	Number 1-3 Describers CAP,JF,SM

Observation	Method	 small	pit	to	40	cm,	augered	to	100	cm

HS	FI

Obs	

Method
Horizon Field	Horizon Depth	(cm)

Texture	(%	

Clay)

Matrix	Color	

Moist
RMF	-	Conc RMF	-	Dep Other

SP A A 15 SiL	(16%) 10YR	4/3 2%	F	10YR	5/6

SP BE Ap 38 SiL	(13%) 10YR	5/3 10%	D	7.5YR	5/8 6%	D	10YR	6/1

BA Bt Bt 56 SiCL	(32%) 2.5Y	5/4 30%	P	10YR	6/8 15%	D	10YR	6/1

BA Btg1 85 SiL	(22%) 2.5Y	6/1 25%	P	10YR	6/8

BA Btg2 100+ L	(18%) 2.5Y	6/1 20%	P	7.5YR	6/8

Site MDT-R-Fr Date 9/25/13

Plot	Number 4-3 Describers CAP,JV

Observation	Method	 small	pit	to	40	cm,	augered	to	168	cm

HS	FI

Obs	

Method
Horizon Field	Horizon Depth	(cm)

Texture	(%	

Clay)

Matrix	Color	

Moist
RMF	-	Conc RMF	-	Dep Other

Site MDT-R-Fr Date 9/25/13

Plot	Number 7-3 Describers CAP,JV

Observation	Method	 small	pit	to	40	cm,	augered	to	150	cm

HS	FI

Obs	

Method
Horizon Field	Horizon Depth	(cm)

Texture	(%	

Clay)

Matrix	Color	

Moist
RMF	-	Conc RMF	-	Dep Other

MDT-R-Fr Zone 3 
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Site MDC-N-JL Date 10/9/13

Plot	Number 1-1 Describers CAP,SE

Observation	Method	 small	pit	to	40	cm,	augered	to	143	cm

HS	FI

Obs	

Method
Horizon Field	Horizon Depth	(cm)

Texture	(%	

Clay)

Matrix	Color	

Moist
RMF	-	Conc RMF	-	Dep Other

SP A1 Oe 11 10YR	2/1

SP A2 27 SiL	(14%) 10YR	2/1

SP/BA Eg 48 L	(12%) 2.5Y	5/1 8%	D

BA 66 SCL	(32%) 2.5Y	4/1 15%	P

BA 86 SC	(44%) 2.5Y	5/1 40%	P

BA 109 SCL	(24%) 5Y	6/1 15%	D

BA 143+ SL	(10%) 5Y	6/1 30%	D 2%	gravel,	inc	in	sand	size

Site MDC-N-JL Date 10/9/13

Plot	Number 4-1 Describers CAP,SE

Observation	Method	 small	pit	to	40	cm,	augered	to	160	cm

HS	FI

Obs	

Method
Horizon Field	Horizon Depth	(cm)

Texture	(%	

Clay)

Matrix	Color	

Moist
RMF	-	Conc RMF	-	Dep Other

SP Oe Oe 16 5YR	2.5/2

SP A1 39 SL	(12%) 10YR	2/1

BA A2 55 SL	(13%) 10YR	3/1

BA 83 SL	(6%) 2.5Y	5/1 25%	P 3%	gravel

BA 105 S	(2%) 2.5Y	6/2 10%	P

BA 126 LS	(4%) 2.5Y	6/2 40%	P 2%	gravel

BA 144 S	(2%) 2.5Y	6/3 30%	F 5%	gravel

BA 160+ Gr	LCoS	(3%) 2.5Y	6/2 15%	F 15%	gravel

Site MDC-N-JL Date 10/9/13

Plot	Number 7-1 Describers CAP,SE

Observation	Method	 small	pit	to	40	cm,	augered	to	172	cm

HS	FI

Obs	

Method
Horizon Field	Horizon Depth	(cm)

Texture	(%	

Clay)

Matrix	Color	

Moist
RMF	-	Conc RMF	-	Dep Other

SP Oe Oe 20 10YR	2/1

SP/BA A 47 SL	(10%) 10YR	3/1

BA 67 SL	(13%) 10YR	3/1

BA 94 SL	(16%) 2.5Y	4/1

BA 113 SCL	(25%) 10YR	4/1 25%	P

BA 138 SCL	(22%) 2.5Y	6/1 30%	P

BA 172+ LS	(6%) 2.5Y	6/1 10%	D

Meets	A11	-	Depleted	Below	Dark	Surface

MDC-N-JL Zone 1 
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Site MDC-N-JL Date 3/16/15

Plot	Number 1-2 Describers CAP,MG,CS

Observation	Method	 small	pit	to	40	cm,	augered	to	106	cm

HS	FI

Obs	

Method
Horizon Field	Horizon Depth	(cm)

Texture	(%	

Clay)

Matrix	Color	

Moist
RMF	-	Conc RMF	-	Dep Other

SP A1 Oa 13 MK 10YR	2/2

SP A2 A1 24 MKY	SL	(5%) 10YR	2/1

SP/BA A3 A2 48 SL	(5%) 10YR	3/1

BA Bg 87 SL	(6%) 2.5Y	6/2 2%	subrounded	gravels

BA BCg 106+ LCoS	(4%) 2.5Y	5/2 8%	subrounded	gravels

Site MDC-N-JL Date 3/16/15

Plot	Number 4-2 Describers CAP,MG,CS

Observation	Method	 small	pit	to	40	cm,	augered	to	96	cm

HS	FI

Obs	

Method
Horizon Field	Horizon Depth	(cm)

Texture	(%	

Clay)

Matrix	Color	

Moist
RMF	-	Conc RMF	-	Dep Other

SP A1 Oa 14 MK 5YR	2.5/1

SP/BA A2 A 44 MKY	LS	(3%) 5YR	2.5/1

BA Bhsm 76 LS	(3%) 5YR	2.5/2 Ortstein	city!

BA Bhs 96+ LS	(3%) 5YR	2.5/2

Site MDC-N-JL Date 3/16/15

Plot	Number 7-2 Describers CAP,MG,CS

Observation	Method	 small	pit	to	40	cm,	augered	to	101	cm

HS	FI

Obs	

Method
Horizon Field	Horizon Depth	(cm)

Texture	(%	

Clay)

Matrix	Color	

Moist
RMF	-	Conc RMF	-	Dep Other

SP Oe Oe 11 MKY	PT 5YR	2.5/2

SP A1 Oa 23 PT 10YR	2/1

SP/BA A2 A 56 MKY	SL	(4%) 10YR	2/1

BA Bg1 81 S	(3%) 10YR	5/2

BA Bg2 101+ CoS	(2%) 10YR	6/1

MDC-N-JL Zone 2 
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Site MDC-N-JL Date 3/16/15

Plot	Number 1-3 Describers CAP,MG,CS

Observation	Method	 small	pit	to	40	cm,	augered	to	111	cm

HS	FI

Obs	

Method
Horizon Field	Horizon Depth	(cm)

Texture	

(%	Clay)

Matrix	Color	

Moist
RMF	-	Conc RMF	-	Dep Other

SP Oe Oe 4 MKY	PT 5YR	2.5/2

SP A A 15 SL	(10%) 10YR	2/2

SP AB AB 27 SL	(7%) 10YR	3/3

SP/BA Bw Bw 76 LS	(5%) 2.5Y	5/4 3%	F	10YR	5/6

BA BC1 96 S	(4%) 2.5Y	6/3 20%	P	10YR	4/6

BA BC2 111+ S	(2%) 2.5Y	6/3 35%	P	7.5YR	5/6 10%	D	10YR	6/2

Site MDC-N-JL Date 3/16/15

Plot	Number 4-3 Describers CAP,MG,CS

Observation	Method	 small	pit	to	40	cm,	augered	to	106	cm

HS	FI

Obs	

Method
Horizon Field	Horizon Depth	(cm)

Texture	

(%	Clay)

Matrix	Color	

Moist
RMF	-	Conc RMF	-	Dep Other

SP Oe Oe 5 MKY	PT 5YR	2.5/2

SP A A 38 SL	(6%) 7.5YR	2.5/1

BA Bw1 Bw1 53 SL	(5%) 10YR	4/4 10%	P	5YR	3/3

BA Bw2 96 LS	(3%) 10YR	4/4 15%	P	5YR	3/4

BA BC 106+ S	(2%) 5YR	3/4

Site MDC-N-JL Date 3/16/15

Plot	Number 7-3 Describers CAP,MG,CS

Observation	Method	 small	pit	to	40	cm,	augered	to	108	cm

HS	FI

Obs	

Method
Horizon Field	Horizon Depth	(cm)

Texture	

(%	Clay)

Matrix	Color	

Moist
RMF	-	Conc RMF	-	Dep Other

SP Oe Oe 5 MKY	PT 2.5YR	2.5/2

SP A A 9 SL	(6%) 5YR	2.5/1

SP BE AB 31 SL	(5%) 10YR	4/4

SP/BA Bt1 65 SL	(10%) 2.5Y	5/4 2%	D	7.5YR	5/6

BA Bt2 80 SL	(12%) 2.5Y	5/4 30%	P	7.5YR	5/6

BA Btg 108+ SL	(9%) 2.5Y	6/1 20%	P	7.5YR	5/6

MDC-N-JL Zone 3 
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Site MDC-R-JL Date 10/9/13

Plot	Number 1-1 Describers CAP,SE

Observation	Method	 small	pit	to	40	cm,	bucket	augur	to	172	cm

HS	FI

Obs	

Method
Horizon Field	Horizon Depth	(cm)

Texture	(%	

Clay)

Matrix	Color	

Moist
RMF	-	Conc RMF	-	Dep Other

SP ^A 7 SiL	(15%) 2.5Y	3/1

SP ^Ag 31 SiL	(17%) 2.5Y	4/1

SP/BA ^A' 52 SiL	(12%) 2.5Y	3/1 5%	D

BA 68 SiCL	(37%) 2.5Y	4/1 40%	P

BA 86 C	(48%) 2.5Y	5/1 30%	P highly	disturbed

BA 102 C	(54%) 2.5Y	6/1 30%	P

BA 128 C	(68%) 5Y	5/1 15%	P

BA 172+ SiCL	(33%) 2.5Y	5/1 18%	P 2%	gravel

Site MDC-R-JL Date 10/9/13

Plot	Number 4-1 Describers CAP,SE

Observation	Method	 small	pit	to	40	cm,	bucket	augur	to	179	cm

HS	FI

Obs	

Method
Horizon Field	Horizon Depth	(cm)

Texture	(%	

Clay)

Matrix	Color	

Moist
RMF	-	Conc RMF	-	Dep Other

SP ^A1 21 SiL	(17%) 2.5Y	2.5/1

SP/BA ^A2 54 SiL	(22%) 2.5Y	3/1

BA ^A3 69 SiCL	(28%) 2.5Y	3/1 64-78	cm	intermixed

BA 96 SiCL	(34%) 5Y	6/1 40%	P

BA 132 SiCL	(35%) 5Y	6/1 35%	P

BA 179+ C	(45%) 2.5Y	4/1 3%	gravel

Site MDC-R-JL Date 9/13/13

Plot	Number 7-1 Describers CAP,JV

Observation	Method	 small	pit	to	40	cm,	bucket	augur	to	184	cm

HS	FI

Obs	

Method
Horizon Field	Horizon Depth	(cm)

Texture	(%	

Clay)

Matrix	Color	

Moist
RMF	-	Conc RMF	-	Dep Other

SP ^A1 Oe 5 10YR	2/2

SP ^A2 A1 34 SiL	(13%) 2.5Y	2.5/1

SP/BA ^A3 A2 48 SiL	(15%) 2.5Y	2.5/1

BA BAg ABg 62 SiL	(14%) 2.5Y	4/1

BA Btg1 Btg1 100 SiCL	(28%) 5Y	5/1 45%	P	10YR	5/6	

2%	P	10YR	3/6

BA Btg2 Btg2 127 SiL	(24%) 5Y	6/1 5%	P	7.5YR	4/6	

10%	D	10YR	6/6

BA BCg BCg 184+ SiL	(12%) 5Y	6/1 10%	D	10YR	6/6

Meets	A11	-	Depleted	Below	Dark	Surface

MDC-R-JL Zone 1 
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Site MDC-R-JL Date 8/15/13

Plot	Number 1-2 Describers CAP,MG

Observation	Method	 small	pit	to	40	cm,	augered	to	151	cm

HS	FI

Obs	

Method
Horizon Field	Horizon Depth	(cm)

Texture	

(%	Clay)

Matrix	Color	

Moist
RMF	-	Conc RMF	-	Dep Other

SP Oi Oi 8

SP Ap1 Ap1 20 SiL	(12%) 10YR	2/1

BA Ap2 Ap2 40 SiL	(14%) 10YR	3/1

BA BEg BEg 52 SiL	(17%) 10YR	4/2 F/P	10YR	4/6

BA Bg1 Btg1 75 SiL	(24%) 10YR	6/1 C/P	10YR	5/6

BA Bg2 Btg2 98 SiL	(23%) 2.5Y	6/1 C/P	10YR	5/6	

M/P	10YR	6/6

BA Cg1 Cg1 118 LS	(3%) 2.5Y	6.5/1 C/P	10YR	6/6 3%	subangular	gravel

BA Cg2 Cg2 127 L	(23%) 2.5Y	5/1 F/P	10YR	6/6

BA Cg3 Cg3 138 LS	(5%) 2.5Y	6/1 F/P	10YR	6/6

BA Cg4 Cg4 151+ SCL	(21%) 2.5Y	7/1 5%	subangular	gravel

Site MDC-R-JL Date 3/16/15

Plot	Number 4-2 Describers CAP,MG,CS

Observation	Method	 small	pit	to	40	cm,	augered	to	106	cm

HS	FI

Obs	

Method
Horizon Field	Horizon Depth	(cm)

Texture	

(%	Clay)

Matrix	Color	

Moist
RMF	-	Conc RMF	-	Dep Other

SP ^A1 ^A1 12 SL	(11%) 2.5Y	2.5/1

SP ^A2 ^A2 41 SL	(12%) 2.5Y	2.5/1

BA Agb ^Cg 67 L	(20%) 10YR	4/1 1%	D	7.5YR	4/6

BA Btgb1 88 SiL	(26%) 10YR	4/1 10%	P	5YR	4/6

BA Btgb2 106 CL	(28%) 10YR	6/1 20%	P	7.5YR	6/6

Site MDC-R-JL Date 8/15/13

Plot	Number 7-2 Describers CAP,MG

Observation	Method	 small	pit	to	44	cm,	augered	to	134	cm

HS	FI

Obs	

Method
Horizon Field	Horizon Depth	(cm)

Texture	

(%	Clay)

Matrix	Color	

Moist
RMF	-	Conc RMF	-	Dep Other

SP ^A1 Ap1 24 SiL	(18%) 10YR	2/1 2	SBk,	Fr

SP ^A2 Ap2 44 SiL	(16%) 10YR	2/1 C/F	7.5YR	3/4 2	SBk,	Fi,	2%	subangular	gravel

BA Btgb1 Btg1 68 CL	(30%) 7.5YR	4/1 F/D	10YR	5/6 2%	angular	gravel

BA Btgb2 Btg2 94 CL	(28%) 10YR	5/1 C/P	5YR	3/4				

M/P	7.5YR	4/4	

C/P	10YR	6/4

C/F	10YR	7/1

BA BCgb BC 121 SCL	(23%) 10YR	6/1 C/P	5YR	4/6	C/D	

10YR6/4

BA CBgb CB 134+ SCL	(21%) 10YR	6/1 C/P	10YR	5/6

MDC-R-JL Zone 2 
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Site MDC-R-JL Date 3/16/15

Plot	Number 1-3 Describers CAP,MG,CS

Observation	Method	 small	pit	to	40	cm,	augered	to	100	cm

HS	FI

Obs	

Method
Horizon Field	Horizon Depth	(cm)

Texture	

(%	Clay)

Matrix	Color	

Moist
RMF	-	Conc RMF	-	Dep Other

SP ^A ^A1 4 LS	(4%) 5YR	3/1

SP ^Ag ^A2 17 LS	(2%) 10YR	4/2

SP ^C ^C

34

S	(2%) 10YR	5/3 8%	D	10YR	5/6 10%	P	10YR	7/1

SP/BA ^Cg/A ^Cg/A 56 S	(3%) 10YR	5/2				

2.5Y	4/1		

7.5YR	2.5/1

9%	P	5YR	4/6 10%	D	10YR	

6/1

BA Ab 73 SL	(12%) 10YR	2/1

BA AEb 86 SL	(9%) 10YR	3/1

BA Bwb 100+ S	(3%) 2.5Y	5/1

Site MDC-R-JL Date 3/16/15

Plot	Number 4-3 Describers CAP,MG,CS

Observation	Method	 small	pit	to	40	cm,	augered	to	106	cm

HS	FI

Obs	

Method
Horizon Field	Horizon Depth	(cm)

Texture	

(%	Clay)

Matrix	Color	

Moist
RMF	-	Conc RMF	-	Dep Other

SP A1 A1 10 SL	(6%) 10YR	3/2

SP A2 A2 24 SL	(6%) 10YR	3/2

SP/BA EB EB 51 SL	(6%) 2.5Y	6/4 18%	F	10YR	5/6

BA Bw1 68 SL	(7%) 2.5Y	5/4 40%	P	2.5YR	4/6

BA Bw2 85 SL	(5%) 2.5Y	6/4 21%	P	7.5YR	5/6 13%	D	2.5Y	6/2

BA BC 106+ LS	(3%) 2.5Y	6/3 30%	D	2.5Y	7/2

Site MDC-R-JL Date 3/16/15

Plot	Number 7-3 Describers CAP,MG,CS

Observation	Method	 small	pit	to	40	cm,	augered	to	104	cm

HS	FI

Obs	

Method
Horizon Field	Horizon Depth	(cm)

Texture	

(%	Clay)

Matrix	Color	

Moist
RMF	-	Conc RMF	-	Dep Other

SP A1 A1 7 SL	(12%) 7.5YR	3/1

SP A2 A2 20 SL	(8%) 7.5YR	3/1 3%	rounded	gravel

SP AE AE 31 SL	(9%) 10YR	3/2 8%	D	10YR	5/6 20%	F	10YR	5/3

SP/BA EB 48 LS	(5%) 2.5Y	5/4 1%	P	7.5YR	6/6

BA Bw1 63 SL	(6%) 2.5Y	5/4 12%	P	7.5YR	5/8

BA Bw2 89 LS	(4%) 2.5Y	6/4 20%	P	7.5YR	5/6 20%	P	10YR	7/1

BA BC 104+ S	(4%) 2.5Y	6/4 10%	P	7.5YR	5/6 30%	D	10YR	

7/1

MDC-R-JL Zone 3 
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Site DEK-R-Jr Date 9/24/13

Plot	Number 1-1 Describers CAP,JV

Observation	Method	 small	pit	to	40	cm,	augered	to	192	cm

HS	FI

Obs	

Method
Horizon Field	Horizon Depth	(cm)

Texture	(%	

Clay)

Matrix	Color	

Moist
RMF	-	Conc RMF	-	Dep Other

SP ^A ^Oa 3 10YR	3/2

SP ^Ap ^Ap 17 10YR	3/1

SP ^Bg1 ^Bg1 38 SL	(19%) 2.5Y	6/1

SP/BA ^Bg2 ^Bg2 74 SL	(6%) 2.5Y	7/2 20%	D

BA ^Bg3 92 SL	(16%) 2.5Y	6/2

BA ^Bg4 125 SL	(15%) 2.5Y	6/2 30%	P

BA ^Bg5 153 SL	(10%) 2.5Y	7/2

BA BC1 171 LS	(3%) 2.5Y	6/3

BA BC2 192+ CoS	(2%) 2.5Y	7/2

Site DEK-R-Jr Date 9/24/13

Plot	Number 4-1 Describers CAP,JV

Observation	Method	 small	pit	to	40	cm,	augered	to	196	cm

HS	FI

Obs	

Method
Horizon Field	Horizon Depth	(cm)

Texture	(%	

Clay)

Matrix	Color	

Moist
RMF	-	Conc RMF	-	Dep Other

SP ^A ^Oa 5 10YR	3/2

SP ^Ap ^A 19 10YR	3/1

SP ^Bg1 ^Bg1 33 SL	(14%) 2.5Y	5/1

SP/BA ^Bg2 ^Bg2 45 SL	(12%) 2.5Y	5/1 30%	P

BA ^Bg3 58 SL	(18%) 2.5Y	5/1 20%	D

BA ^Bg4 83 SL	(16%) 2.5Y	5/1 15%	P

BA ^Cg 100 C	(45%) 5Y	6/1 25%	sand

BA Bg5 120 SCL	(22%) 2.5Y	4/1 10%	D

BA Bg6 148 SL	(19%) 2.5Y	7/2 5%	F

BA BC 172 LCoS	(4%) 2.5Y	7/2 30%	P

BA CB 196+ FSL	(10%) 2.5Y	7/2 5%	P

Site DEK-R-Jr Date 9/24/13

Plot	Number 7-1 Describers CAP,JV

Observation	Method	 small	pit	to	40	cm,	augered	to	189	cm

HS	FI

Obs	

Method
Horizon Field	Horizon Depth	(cm)

Texture	(%	

Clay)

Matrix	Color	

Moist
RMF	-	Conc RMF	-	Dep Other

SP ^A A 4 2.5Y	3/2

SP ^Ag Ap 25 2.5Y	4/1 15%	D

SP ^Bg1 ^Bg1 37 LS	(4%) 2.5Y	6/2 35%	F

SP/BA ^Bg2 ^Bg2 49 SL	(8%) 2.5Y	6/1 40%	P

BA ^Bg3 66 LS	(3%) 2.5Y	6/1 20%	P

BA ^Bg4 77 SCL	(22%) 2.5Y	5.5/1 5%	F

BA ^Bg5 91 SL	(10%) 2.5Y	5.5/1.5

BA ^Bg6 118 SL	(14%) 2.5Y	6/1 20%	P

BA ^Bg7 130 SL	(19%) 2.5Y	6.5/1

BA BC1 154 LCoS	(5%) 2.5Y	6/2

BA BC2 176 LS	(4%) 2.5Y	6/2 15%	F

BA BC3 189+ LCoS	(3%) 2.5Y	5/3

Meets	A11	-	Depleted	Below	Dark	Surface

Meets	A11	-	Depleted	Below	Dark	Surface

Meets	A11	-	Depleted	Below	Dark	Surface

DEK-R-Jr Zone 1 
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Site DEK-R-Jr Date 3/18/15

Plot	Number 1-2 Describers CAP,CP,BW

Observation	Method	 small	pit	to	40	cm,	augered	to	104	cm

HS	FI

Obs	

Method
Horizon Field	Horizon Depth	(cm)

Texture	(%	

Clay)

Matrix	Color	

Moist
RMF	-	Conc RMF	-	Dep Other

SP ^Ag Ag1 9 L	(7%) 2.5Y	5/1

SP ^ACg Ag2 23 L	(11%) 2.5Y	4/1 3%	D	10YR	5/6 REDOX	IS	RELICT

SP/BA ^Cg Ag3 44 L	(12%) 2.5Y	5.5/1 15%	D	10YR	5/6

BA Bgb1 Bg1 67 LS	(6%) 2.5Y	6/1 20%	P	10YR	4/6

BA Bgb2 Bg2 89 LS	(4%) 2.5Y	7/1 25%	P	10YR	5/6

BA Bgb3 Bg3 104+ LS	(4%) 2.5Y	7/1 30%	D	10YR	6/6

Site DEK-R-Jr Date 3/18/15

Plot	Number 4-2 Describers CAP,CP,BW

Observation	Method	 small	pit	to	40	cm,	augered	to	104	cm

HS	FI

Obs	

Method
Horizon Field	Horizon Depth	(cm)

Texture	(%	

Clay)

Matrix	Color	

Moist
RMF	-	Conc RMF	-	Dep Other

SP ^A1 ^A1 4 MKY	SL	(7%) 10YR	3/1

SP ^A2 ^A2 30 L	(14%) 10YR	3/2 2%	D	10YR	5/6 3%	D	10YR	6/2 RELICT	REDOX

SP/BA ^Cg ^Cg 48 SiL	(19%) 10YR	5/1 20%	P	7.5YR	5/6

BA Egb Egb 57 S	(2%) 10YR	6/1

BA Btgb Btgb1 78 SCL	(22%) 10YR	5/1 15%	P	10YR	5/6		

20%	F	2.5Y	6/3

BA Btmgb Btgb2 94 SCL	(25%) 2.5Y	7/2 5%	D	10YR	5/6 Cemented!

BA BCg BCg 104+ LS	(5%) 10YR	5/1

Site DEK-R-Jr Date 3/18/15

Plot	Number 7-2 Describers CAP,CP,BW

Observation	Method	 small	pit	to	40	cm,	augered	to	111	cm

HS	FI

Obs	

Method
Horizon Field	Horizon Depth	(cm)

Texture	(%	

Clay)

Matrix	Color	

Moist
RMF	-	Conc RMF	-	Dep Other

SP ^Ag Ag1 14 L	(8%) 2.5Y	5/1

SP ^ACg Ag2 28 L	(12%) 2.5Y	4/1

SP/BA ^Cg Ag3 50 L	(12%) 2.5Y	5/1 3%	F	10YR	6/6

BA Bgb1 Bg1 70 LS	(5%) 2.5Y	6/1 15%	D	10YR	5/6

BA Bgb2 Bg2 86 LS	(3%) 5Y	7/1 30%	P	10YR	5/8

BA Bgb3 Bg3 111+ SL	(6%) 5Y	7/1 5%	D	10YR	6/6

Meets	A11	-	Depleted	Below	Dark	Surface

DEK-R-Jr Zone 2 
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Site DEK-R-Jr Date 3/18/15

Plot	Number 1-3 Describers CAP,CP,BW

Observation	Method	 small	pit	to	40	cm,	augered	to	104	cm

HS	FI

Obs	

Method
Horizon Field	Horizon Depth	(cm) Texture	(%	Clay)

Matrix	Color	

Moist
RMF	-	Conc RMF	-	Dep Other

SP ^Ag ^Ag1 11 L	(10%) 10YR	4/1

SP/BA ^A ^Ag2 59 L	(15%) 10YR	3.5/1

BA ^AC ^Ag3 73 L	(12%) 10YR	3.5/1.5

BA ^Cg1 ^BCg 87 L	(7%) 10YR	4/1

BA ^Cg2 ^CBg 93 SL	(7%) 10YR	6/1

BA ^Cg3 ^Cg 104+ SCL	(21%) 10YR	6/1 25%	P	7.5YR	6/6 Limiting	clay	layer

Site DEK-R-Jr Date 3/18/15

Plot	Number 4-3 Describers CAP,CP,BW

Observation	Method	 small	pit	to	40	cm,	augered	to	113	cm

HS	FI

Obs	

Method
Horizon Field	Horizon Depth	(cm) Texture	(%	Clay)

Matrix	Color	

Moist
RMF	-	Conc RMF	-	Dep Other

SP ^A1 ^A1 8 L	(10%) 10YR	3/1

SP/BA ^A2 ^A2 85 L	(14%) 10YR	3/1 5%	D	10YR	5/6 10%	D	10YR	5/6 REDOX	IS	RELICT,	Layer	is	intermixed	

with	darker	A	material,	large	ant	

colony	seems	to	prefer	this	material,	

potential	krotovina

BA Ab Ab 113+ MKY	L	(6%) 10YR	3/1

Site DEK-R-Jr Date 3/18/15

Plot	Number 7-3 Describers CAP,CP,BW

Observation	Method	 small	pit	to	40	cm,	augered	to	121	cm

HS	FI

Obs	

Method
Horizon Field	Horizon Depth	(cm) Texture	(%	Clay)

Matrix	Color	

Moist
RMF	-	Conc RMF	-	Dep Other

SP ^Ag ^A1 11 L	(9%) 10YR	4/2

SP ^A ^A2 35 L	(7%) 10YR	3/2

SP/BA ^ACg ^Bw1 66 L	(16%) 10YR	4/1 10%	D	10YR	6/6 5%	F	10YR	6/2 ALL	REDOX	IS	RELICT

BA ^Cg2 ^Bw2 100 L	(18%) 10YR	4/1 2%	D	10YR	6/6 3%	F	10YR	6/2 ALL	REDOX	IS	RELICT

BA ^Cg3 ^Bg 112 L	(24%) 2.5Y	5/2 20%	P	7.5YR	5/6 ALL	REDOX	IS	RELICT

BA Ab Ab 121+ MKY	L	(10%) 10YR	4/2

DEK-R-Jr Zone 3 
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Site MDQA-R-Ss Date 9/9/13

Plot	Number 1-1 Describers CAP,JV

Observation	Method	 small	pit	to	30	cm,	augered	to	197	cm

HS	FI

Obs	

Method
Horizon Field	Horizon Depth	(cm)

Texture	(%	

Clay)

Matrix	Color	

Moist
RMF	-	Conc RMF	-	Dep Other

SP Oe Oe 11 10YR	2/2

SP Ag Ag 30 SiL	(14%) 10YR	5/1 8%	P	5YR	5/8

BA Btg1 Btg1 68 SiL	(25%) 2.5Y	5/1 22%	P	7.5YR	6/6

BA Btg2 103 SiL	(26%) 5Y	6/1 40%	P	10YR	5/6

BA Btg3 119 SiL	(16%) 5Y	6/1 35%	P	7.5YR	5/6

BA 2Btg4 131 SCL	(23%) 10YR	5/1 20%	P	10YR	6/6

BA 2Btg5 159 L	(26%) 2.5Y	6/1 25%	P	2.5Y	5/6

BA 2BCg 197+ S	(2%) 2.5Y	5/2

Site MDQA-R-Ss Date 9/9/13

Plot	Number 4-1 Describers CAP,JV

Observation	Method	 small	pit	to	30	cm,	augered	to	190	cm

HS	FI

Obs	

Method
Horizon Field	Horizon Depth	(cm)

Texture	(%	

Clay)

Matrix	Color	

Moist
RMF	-	Conc RMF	-	Dep Other

SP Oe Oe 5 10YR	2/2

SP Ag1 Ag1 20 SiL	(17%) 10YR	5/2 1%	P	5YR	5/8

SP/BA Ag2 Ag2 38 SiL	(20%) 10YR	5/1 1%	D	10YR	5/6

BA BAg BAg 56 SiL	(25%) 10YR	4/1 30%	P	7.5YR	6/6

BA Btg1 106 SiCL	(32%) 2.5Y	6/1 40%	P	10YR	5/6

BA Btg2 152 SiL	(26%) 2.5Y	6/1 35%	P	7.5YR	4/6

BA BCg 190+ SiL	(13%) 2.5Y	6/2 20%	P	7.5YR	6/6

Site MDQA-R-Ss Date 9/9/13

Plot	Number 7-1 Describers CAP,JV

Observation	Method	 small	pit	to	30	cm,	augered	to	203	cm

HS	FI

Obs	

Method
Horizon Field	Horizon Depth	(cm)

Texture	(%	

Clay)

Matrix	Color	

Moist
RMF	-	Conc RMF	-	Dep Other

SP Oe Oe 4 2.5Y	3/2

SP Ag Ag 15 SiL	(12%) 2.5Y	5/1 1%	P	7.5YR	6/6

SP/BA Bg1 Bg1 35 SiL	(24%) 2.5Y	6/1 15%	P	10YR	5/6

BA Bg2 Bg2 57 SiCL	(30%) 2.5Y	5/1 25%	P	7.5YR	6/6

BA Bg3 141 SiL	(25%) 2.5Y	6/1 35%	P	7.5YR	6/6

BA 2BCg1 159 SL	(10%) 10YR	6/1 40%	P	10YR	5/6

BA 2BCg2 176 LS	(5%) 10YR	6/2

BA 2CBg 191 LS	(3%) 7.5YR	5/2

BA 2C 203+ S	(2%) 10YR	5/6 45%	P	2.5Y	6/2

MDQA-R-Ss Zone 1 
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Site MDQA-R-Ss Date 3/17/15

Plot	Number 1-2 Describers CAP,MG,CS

Observation	Method	 small	pit	to	40	cm,	augered	to	110	cm

HS	FI

Obs	

Method
Horizon Field	Horizon Depth	(cm)

Texture	(%	

Clay)

Matrix	Color	

Moist
RMF	-	Conc RMF	-	Dep Other

SP ^Ag1 ^Ag1 8 SiL	(12%) 10YR	4/2 2%	F	10YR	4/6

SP ^Ag2 ^Ag2 26 SiL	14%) 10YR	4/2 3%	F	10YR	4/6

SP ^ACg1 ^Ag3 41 SiL	(15%) 10YR	5/2 3%	F	10YR	4/6

BA ^Cg2 ^Bg 62 SiL	(10%) 10YR	4/1 3%	D	10YR	4/6

BA Bgb1 Btgb1 90 SiL	(24%) 10YR	5/1 20%	P	7.5YR	5/6

BA Bgb2 Btgb2 110+ SiL	(18%) 10YR	6/1 15%	P	7.5YR	5/6

Site MDQA-R-Ss Date 3/17/15

Plot	Number 4-2 Describers CAP,MG,CS

Observation	Method	 small	pit	to	40	cm,	augered	to	106	cm

HS	FI

Obs	

Method
Horizon Field	Horizon Depth	(cm)

Texture	(%	

Clay)

Matrix	Color	

Moist
RMF	-	Conc RMF	-	Dep Other

SP ^Ag1 ^Ag1 11 SiL	(10%) 10YR	4/2

SP ^Ag2 ^Ag2 40 SiL	(16%) 10YR	4/2

BA ^ACg1 ^Bg1 62 SiL	(22%) 10YR	5/1 15%	D	7.5YR	5/6

BA ^ACg2 ^Bg2 73 SiL	(25%) 10YR	6/1 20%	D	10YR	6/6

BA BCgb1 BCg1 94 SiL	(14%) 2.5Y	6/1 10%	D	10YR	6/6 Bone	dry	-	aquaclude?

BA BCgb2 BCg2 106+ L	(14%) 2.5Y	6/1 15%	D	7.5YR	5/6 Bone	dry	-	aquaclude?

Site MDQA-R-Ss Date 3/17/15

Plot	Number 7-2 Describers CAP,MG,CS

Observation	Method	 small	pit	to	40	cm,	augered	to	110	cm

HS	FI

Obs	

Method
Horizon Field	Horizon Depth	(cm)

Texture	(%	

Clay)

Matrix	Color	

Moist
RMF	-	Conc RMF	-	Dep Other

SP ^Ag1 ^Ag1 12 SiL	(6%) 10YR	4/2

SP ^Ag2 ^Ag2 28 SiL	(18%) 10YR	4/2 8%	D	7.5YR	5/6

SP/BA ^ACg ^Bg1 45 SiL	(16%) 10YR	5/2 10%	D	7.5YR	5/6

BA Agb ^Bg2 70 SiL	(12%) 2.5Y	5/1 20%	P	7.5YR	5/6

BA Bgb Btgb 97 SiCL	(30%) 2.5Y	6/1 10%	P	7.5Y	6/8

BA BCgb BCgb 110+ SiL	(16%) 2.5Y	6/1 30%	P	7.5YR	5/6

MDQA-R-Ss Zone 2 
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Site MDQA-R-Ss Date 3/17/15

Plot	Number 1-3 Describers CAP,MG,CS

Observation	Method	 small	pit	to	40	cm,	augered	to	106	cm

HS	FI

Obs	

Method
Horizon Field	Horizon Depth	(cm)

Texture	(%	

Clay)

Matrix	Color	

Moist
RMF	-	Conc RMF	-	Dep Other

SP A1 A 4 L	(15%) 10YR	4/3

SP BA BA 18 L	(23%) 10YR	5/3

SP Bt1 Bt1 33 L	(26%) 10YR	5/3 10%	F	10YR	5/6

SP/BA Bt2 Bt2 56 L	(23%) 10YR	5/3 20%	D	7.5YR	6/6 8%	D	10YR	6/3

BA Bt3 91 SCL	(21%) 10YR	5/3 30%	D	7.5YR	5/6 15%	D	10YR	7/2

BA CB 106+ S	(4%) 7.5YR	5/6

Site MDQA-R-Ss Date 3/17/15

Plot	Number 4-3 Describers CAP,MG,CS

Observation	Method	 small	pit	to	40	cm,	augered	to	102	cm

HS	FI

Obs	

Method
Horizon Field	Horizon Depth	(cm)

Texture	(%	

Clay)

Matrix	Color	

Moist
RMF	-	Conc RMF	-	Dep Other

SP A1 A1 15 L	(13%) 10YR	5/4

SP A2 A2 39 L	(25%) 10YR	5/4 4%	F	10YR	5/6

BA Bt1 Bt1 54 L	(20%) 10YR	5/4 8%	D	7.5YR	4/6

BA Bt2 77 L	(16%) 10YR	5/4 15%	F	7.5YR	6/6 10%	D	10YR	6/2

BA BC1 94 L	(10%) 2.5Y	6/3 20%	D	7.5YR	4/6 5%	F	2.5Y	6/2

BA BC2 102+ L	(12%) 2.5Y	6/3 10%	D	7.5YR	4/6 3%	F	2.5Y	6/2

Site MDQA-R-Ss Date 3/17/15

Plot	Number 7-3 Describers CAP,MG,CS

Observation	Method	 small	pit	to	40	cm,	augered	to	106	cm

HS	FI

Obs	

Method
Horizon Field	Horizon Depth	(cm)

Texture	(%	

Clay)

Matrix	Color	

Moist
RMF	-	Conc RMF	-	Dep Other

SP A1 A1 7 SL	(6%) 10YR	5/4

SP A2 A2 22 SL	(10%) 10YR	4/4

SP/BA Bt1 Bt1 50 L	(18%) 7.5YR	5/6 5%	F	7.5YR	5/6

BA Bt2 70 SiL	(20%) 10YR	5/4 10%	D	7.5YR	5/6 10%	P	10YR	6/2

BA Bt3 94 SiL	(19%) 10YR	5/4 15%	D	7.5YR	5/6 15%	P	10YR	6/2

BA Btg 106+ SiL	(17%) 10YR	6/2 20%	P	7.5YR	6/6

MDQA-R-Ss Zone 3 
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Site MDQA-R-Ws Date 9/9/13

Plot	Number 1-1 Describers CAP,JV

Observation	Method	 small	pit	to	30	cm,	augered	to	193	cm

HS	FI

Obs	

Method
Horizon Field	Horizon Depth	(cm)

Texture	(%	

Clay)

Matrix	Color	

Moist
RMF	-	Conc RMF	-	Dep Other

SP ^Oe ^Oe 5 10YR	2/2

SP/BA ^A ^A 38 L	(15%) 10YR	4/3 3%	D	7.5YR	5/6

BA ^Bg1 ^Bg1 71 L	(25%) 10YR	5/1 25%	P	7.5YR	4/6 10%	D	2.5Y	6/1

BA ^Bg2 90 L	(22%) 2.5Y	6/1 30%	P	10YR	5/6 4%	gravel

BA ^BCg 127 LS	(3%) 10YR	5.5/1 40%	P	10YR	6/6 5%	gravel

BA Btg 138 SCL	(24%) 2.5Y	4/1 25%	P	7.5YR	4/6

BA Cg1 177 CoS	(2%) 10YR	6/1 12%	gravel

BA Cg2 193+ CoS	(3%) 2.5Y	6/2 8%	D	10YR	5/6

Site MDQA-R-Ws Date 8/19/13

Plot	Number 4-1 Describers CAP,NG

Observation	Method	 small	pit	to	31	cm,	augered	to	191	cm

HS	FI

Obs	

Method
Horizon Field	Horizon Depth	(cm)

Texture	(%	

Clay)

Matrix	Color	

Moist
RMF	-	Conc RMF	-	Dep Other

SP A Oe 5 SiL	(8%) 2.5Y	2.5/1 C/D	N2

SP Ag1 Ag1 15 SiL	(6%) 10YR	5/2 1	SBk

SP Ag2 Ag2 31 SiL	(9%) 10YR	5/2 C/D	N2							M/P	

7.5	YR	3/4

2	SBk

BA Btg1 Btg1 51 CL	(36%) 10YR	6/1 C/P	10YR	4/6

BA Btg2 66 L	(22%) 2.5Y	6/1 M/P	10YR	4/6

BA BCg 92 SL	(14%) 10YR	6/1 M/P	10YR	4/6

BA BC 109 SL	(10%) 7.5YR	4/6 M/P	10YR	6/2

BA Cg1 118 SiL	(12%) 2.5Y	7/1 C/D	10YR	5/6

BA Cg2 126 SL	(4%) 2.5Y	5/2 F/P	10YR	5/6

BA C 135 SL	(14%) 7.5YR	4/6 M/P	2.5Y	6/2

BA C'g1 146 L	(13%) 2.5YR	6/1 C/P	7.5YR	4/6

BA C'g2 173 SiL	(18%) 2.5Y	6/1 F/D	10YR	4/6

BA 2Cg 191+ LS	(2%) 7.5YR	6/1 20%	fluvial	gravel

Site MDQA-R-Ws Date 8/19/13

Plot	Number 7-1 Describers CAP,NG

Observation	Method	 small	pit	to	36	cm,	augered	to	154	cm

HS	FI

Obs	

Method
Horizon Field	Horizon Depth	(cm)

Texture	(%	

Clay)

Matrix	Color	

Moist
RMF	-	Conc RMF	-	Dep Other

SP A Oe 4 2.5Y	3/2

SP Ag Ag1 18 SiL	(12%) 2.5Y	5/2 C/D	7.5YR	3/4 10%	fluvial	gravel

SP BAg Ag2 36 SiL	(13%) 2.5Y	5/2 M/P	10YR	6/6

BA Btg1 Btg1 56 CL	(30%) 2.5Y	6/1 M/P	10YR	4/6 10%	fluvial	gravel

BA Btg2 69 CL	(32%) 2.5Y	5/1 M/P	10YR	4/6

BA BCg 88 SCL	(30%) 2.5Y	5/1 M/P	10YR	4/6 C/F	2.5Y	7/1

BA CB 117 SiL	(25%) 2.5Y	5/3 C/P	7.5YR	4/6 C/D	2.5Y	6/1

BA Cg1 130 SL	(15%) 2.5Y	6/2 C/D	10YR	6/6	F/P	

5YR	3/4

BA Cg2 142 SL	(17%) 2.5Y	6/2 C/P	7.5YR	5/8 20%	fluvial	gravel

BA Cg3 154 SCL	(21%) 2.5Y	7/1 C/P	10YR	6/8 25%	fluvial	gravel

MDQA-R-Ws Zone 1 
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