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This study proposes a technique which leverages data cache reconfigura-

bility to address the problem of cache interference in multitasking embedded

systems. Modern embedded systems often implement complex applications,

comprising of multiple execution tasks with heavy memory requirements. Data

caches are necessary to provide the required memory bandwidth. However,

caches introduce two important problems for embedded systems. Cache out-

comes in multi-tasking environments are difficult to predict, thus resulting in

very poor real-time performance guarantees. Additionally, caches contribute

to a significant amount of power. We study the effect that multiple concurrent

tasks have on the cache and, subsequently, propose a technique which leverages

work on reconfigurable cache architectures to eliminate cache interference and

reduce power consumption using application specific information. By mapping

parallel tasks to different cache partitions, inter-task interference is completely



eliminated with minimal performance impact. Furthermore, both leakage and

dynamic power is significantly improved.
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Chapter 1

Introduction

Embedded systems are omnipresent in todays world. More and more

products look to embedded systems to allow for increased functionality that

was prohibitive when using traditional technologies such as logic and pure ana-

log circuits. General purpose processors that are found in desktop systems are

to costly and overkill in addressing the design issues of computing in every-

day devices. Embedded processors have stepped in to fill this gap to allow for

cost-effective implementation of computing in modern products. These proces-

sors are found in a plethora of areas including consumer electronics, consumer

products, industrial processes, automobiles and wireless sensor networks.

Modern embedded systems have become increasingly complex as they

find their way into increasingly demanding applications. Embedded applica-

tions impose demanding requirements for performance as they need to handle

various data processing functions. For example current cell phones must be

able to handle speech coding for communication, encoding pictures taken via

on-board camera, decoding pictures to display images, decoding and encod-

ing video streams, compressed audio decoding for music playback and user

interface control. To meet these demands, modern embedded processors have

evolved, and in the process borrowed many concepts from high-performance
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general-purpose microprocessors.

The memory hierarchy is one of these concepts, addressing the problem

of the growing discrepancy between memory and processor speeds. Caches

are used to approach this increasing gap. Caches are placed between the

processor and main memory. Caches are smaller in size than main memory

but have much faster access times to reduce latency. The key to caches is

the exploitation of locality. Locality can be classified as temporal or spacial.

Temporal locality is the case in which data that has been recently accessed will

be accessed again in the near future. Spatial locality is the tendency for data

in a certain part of the address space is needed in clusters. Caches store the

accessed data and data around it when main memory is accessed. By doing

this, the latency to access data can be reduced if the desired data is in the

cache. This speed up comes at the cost of increased power, in some cases as

much as 50% of the total chip power [4] and reduced predictability.

1.1 Embedded System Characteristics

While embedded processors have borrowed many concepts from general

purpose systems there is a conflict in design goals. In general purpose proces-

sors, the main design goal is better performance in terms of average execution

time. To approach this problem more hardware resources can be added. For

example, pipelines are increased to overlap more instructions or branch predic-

tion is used to determine which branch will be taken to achieve faster execution.
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While performance is important, meeting power, cost, and size constraints are

just as important, if not more so in embedded systems. Furthermore, it is the

instantaneous performance which is more important. The instantaneous per-

formance is the amount of execution time everytime a task is run. Often times

this time varies so the worst case execution time is used as a upper bound.

Hardware such as increased pipeline stages and branch prediction may improve

performance but also results in increased power consumption and chip cost.

Characteristics of embedded systems include:

Low power Low power is often essential for two reasons in embedded

systems. Embedded systems are often employed in mobile devices powered

by battery and low power is key in allowing devices such as PDA’s and cell

phones to operate for long periods of time. In some cases such as wireless

sensors, devices are deployed with limited access and must be able to operate

as long as possible on a single charge. Furthermore, high power consumption

also lead to increased heat which can cause to processor to become unreliable.

This problem can be addressed with cooling solutions but this would add to

the size and cost of the system.

Low Cost Products using embedded systems are often in markets where

cost is a major concern. Also these devices can be produced in the millions

so even small increases in cost can lead to large losses in revenue. Designers

must work with very constrained resources to keep products costs down.

Predictability/Reliability Because of the real-time burden that often

exists in these systems, the execution time must predictable. It is necessary
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that the system is well behaved and predictable under all events and condi-

tions. Embedded systems are often place in critical system such as industrial

control and automotive applications. For example, anti-lock braking systems

monitor slipage in car traction. If a deadline to compute the slip amount is not

met, the entire system could fail and lead to a disastrous outcome. For this

reason average performance has little importance as it is not predictable. If

there is a great deal of variance within average performance, a real-time system

must conservatively assume that it executes with the worst time possible.

1.2 Multitasking in Embedded Systems

Moreover, market demands require combined functionality of many ap-

plication domains including multimedia processing (speech, image, and video),

wireless capabilities, security features and user interfaces as mentioned above.

The nature of many of these applications also requires that they are processed

in real-time as a part of their specification. For example on-line speech pro-

cessing algorithms must meet deadlines. If deadlines are not met in this case,

end-users will notice delays in speech and reduced quality. A dedicated pro-

cessor such as a DSP or multiple discrete chips could be used for each task.

However, such a solution is often impractical as it results in increased power

consumption, layout size and cost. Instead it is advantageous to execute mul-

tiple tasks on a single processor as it results in superior hardware utilization.

Recent embedded processors have offered hardware support for multitasking,
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such as Memory Management Units (MMU). Embedded OSes have also be-

come readily available to utilize this hardware and support multitasking. The

need for real-time performance has also lead to the wide availability of real-time

operating systems to ensure execution schedules where deadlines are met. A

multitasking system must address several issues that are not relevant for a sin-

gle task system. One such issue is that during task preemption, the preempted

task must preserve its state so it may properly resume execution regardless of

the activities of the preempting task. This involves saving information such as

the PC, stack pointer and register file. For these smaller hardware structures,

this is fairly simple and can be accomplished in a reasonable amount of time.

Saving and reloading the state of the cache to memory for every task, however,

is infeasible due to the large cache size. As an alternative, the cache is shared

between the tasks without preserving its state.

Virtual memory is an elegant solution in making complex tasks such as

memory allocation, memory sharing and protection transparent to applications

with support from the OS and memory management hardware [5]. With the

increase in multi-tasking virtual memory has found its way into embedded

systems. Tasks access virtual addresses which are mapped to physical memory.

To accelerate the translation from virtual to physical memory, many processors

employ the Translation Lookaside Buffer which acts as a cache for recently

translated addresses. The use of virtual memory leads to several design issues

in caches. The operations in a cache access can be classified as indexing and

tagging. Each of these operations can be implemented using either physical or
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virtual memory [6]. In a virtually-indexed, virtually tagged cache, accesses can

be made without translating the address. This reduces the latency and power

consumption incurred in having to look up the physical translation. This form

of caching suffers from the problems of aliasing and synonyms. Aliasing is when

the same virtual address of multiple tasks map to different physical addresses.

When accessing the cache a task may falsely hit on another tasks tag in the

cache. There are two solutions to this problem. The first is to flush the cache

on every context switch but this has a significant impact on performance.

Alternatively, the tag can additionally store Process ID (PID) which is unique

to each task. This information can be used to ensure that a task hit on it

entry in the cache and not that of another task. The problem of synonyms

occurs when to tasks share a physical address but map to it with different

virtual addresses. This can lead to the situation in which multiple copies

of the physical address are in the cache causing cache coherence problems

if the data is modified. Solutions to this problem are complex and consume

significant amounts of power restricting their usage in embedded systems. The

opposite cache implementation is physically tagged and physically indexed

caches. The problems of aliasing and synonyms are non-existent since all the

physical addresses are unique and multiple copies can not exist. The drawback

is that virtual to physical translation must be done on every access resulting in

increased power and latency. Physically tagged and virtually indexed caches

is a compromise between the above two methods. The tag translation is done

in parallel with the index access to hide the latency. The OS and additional
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hardware can be implemented to eliminate the synonym problem with no

performance drawback.

Sharing the cache, however, leads to inter-task cache interference which

is detrimental not only to performance, but even more importantly to real-

time responsiveness. Cache interference occurs when a task block in the cache

is overwritten by another task. General purpose processors can address this

problem with increased cache sizes to reduce the likelihood of data in the cache

being evicted. On the other hand, embedded systems are resource constrained

thereby precluding an increase in the cache size. Cache interference can be

very problematic for several reasons. Interference complicates Worst-Case

Execution Time (WCET) analysis. The purpose of the WCET is to identify

an upper bound on the tasks execution time to ensure predictability. Unlike

general purpose systems, many real-time applications must meet deadlines

based on WCET in order to operate properly. This analysis is complex, but

well researched in the case of a single task [7, 8, 9], but predictability with

multiple tasks using the cache becomes extremely complex, if not impossible,

and usually results in a overly pessimistic analysis and under utilization of the

processor. Additionally, interference increases the miss-rate of a task running

alone versus running within a group of other tasks. With more tasks there

is an increased likelihood that a task’s data is overwritten and more misses

occur. Both problems can be alleviated with more hardware, but this results

in increased energy and cost and as such is infeasible for embedded
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1.3 Methodology

While embedded systems have become more complex, the set of appli-

cations that they run is well defined during development compared to their

general purpose counter part. To address the inter-task cache interference

problem, we have performed a detailed analysis on the effect of cache interfer-

ence in a multitasking system. Moreover, we introduce a methodology which

leverages configurable caches where the data cache is judiciously partitioned

so that each task has its own part of the cache which other tasks do not affect.

We determine this partitioning by analyzing the cache behavior of a given

set of applications. Identifying the best partitioning of the cache amongst

the task is performed during compile-time and the information regarding the

cache partitions, which consists of control signals to the configurable cache

is transferred to the OS when loading the tasks. During context-switch the

OS configures the cache by activating the cache partition of the preempting

task. The proposed technique has two key benefits. First, techniques used for

WCET analysis for a single task using a cache can be used since inter-task

interference is eliminated. This allows for much better WCET analysis, and

therefore better processor utilization. Second, by using reconfigurable cache

architectures, significant reductions in dynamic and leakage power is achieved

as only a portion of the cache is active at any time. All these benefits are

achieved with minimal impact on the total miss rate as compared to the base-

line where all the tasks share the cache. For some groups of tasks the total
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miss rate is minimally increased, while for others it is decreased due to the

interference elimination.
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Chapter 2

Related Work

2.1 Interference

The effect of cache interference due to multitasking has been shown to

have significant effect on performance. Agrawal et al [10] use a trace driven

simulation in order to study the affect multitask workloads on cache perfor-

mance for general purpose system. Cache interference was studied based on

miss rates of tasks running alone and together for various cache configurations.

Both the effect of the system code on user code and multiple user tasks are

studied. In regard to system and user code interaction, it is shown that sys-

tem code causes significant degradation in performance. Splitting the cache

between user and system space performed worse than a shared cache. This

study should be taken with a grain of salt as the systems simulated are fairly

old and have a large system footprint. It was also shown the effect cache flush-

ing on context switch performs to avoid inadvertent use of data is worse than

using PIDs in virtual caches.

In [11] the authors have focused on the effect interference has on context

switches in a general purpose multi-tasking system. Again traces are gener-

ated and fed into a cache simulator. This study sampled the CPI for some

number of instructions following a context switch. This is then compared to
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the CPI of the task running alone over this interval. It is shown the cost of

interference in the cache is comparable, if not worse, than many other costs

that are associated with context switching such as saving and restoring the

register file. Furthermore, it is shown that increasing the cache size reduces

this penalty and reducing the frequency of context switches can also improve

performance.

The recent growth of multiprocessor systems has lead to many studies of

multiple tasks affect on shared caches. Interference in multithreaded and mul-

tichip systems has become a very important topic and several have proposed

various solutions [12, 13, 14]. Chandra et al developed heuristic and analyti-

cal approaches to study cache contention between tasks in the L2 cache. The

stack distance is profile for each task running alone. The stack distance profile

captures temporal reuse of an application. Prediction and probability models

were created to use this information in order to estimate the additional misses

that occur due to inter-task interference. Their analytical model based on in-

ductive propability estimates the additional interference with an average error

of 3.9%. It is likely that this model would be very inaccurate for the L1 cache

because of the significant amount of increased accesses and dynamic nature at

the L1 cache compared to the L2 cache.

Wang et al approach the problem with a thread-associative cache in

which each ways is further grouped into rails. Each rails corresponds to a

specific thread. In essence all this does is split the cache equally amongst

threads.
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In regards to embedded systems, the effect of interference posed on re-

sponsiveness in a real-time embedded system was recently analyzed [15]. This

study looks at how various RTOS tasks services such as clock tick handler, con-

text switch routine, mutexes and message passing are affected by various tasks

due to cache interference. Certain tasks can cause significant miss rates for

these services leading to unpredictability and a less responsive system. How-

ever, no analysis was presented on how multiple tasks would interfere with

each other.

These studies show that interference in caches can not be neglected.

However, all of these studies look at interference based on the affect on system

performance but not interference explicitly. None of these studies provide

an accurate categorization of misses due to interference or misses that would

inherently occur with no other tasks running.

2.2 WCET in the presence of caches

Architectural features used to improve performance such as pipelining,

branch prediction and caches make WCET much more difficult. WCET is

a critical component in embedded systems as there are often real-time con-

straints that must be met. Unlike general purpose systems, operating in a

timely manner is a necessity for correctness. Having a more accurate knowl-

edge of the WCET allows for better utilization of the processor. Heckmann et

al [7] employ abstract interpretation to analyze the WCET of an application
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on a architectures that implement pipelining, out-of-order execution, caches

and branch prediction. This static analysis approach executes on the control

flow of the graph to determine cache accesses. Must Analysis and May Anal-

ysis are used to predict if an access can be guaranteed to be a hit or a miss

over a part of the control flow of an application. These two approaches are

used to create upper and lower bounds on accesses results. Furthermore, the

impact of pipelining and its effect on the cache is considered. In a conditional

branch, each path can have a different affect on the cache. The damage to

the cache is determined to be the worst case between the two flows of execu-

tion. It also shown that analyzing WCET with the interdependencies between

different processor componenets is much more precise.

While WCET analysis with single tasks is difficult, the unpredictability

of caches with multiple tasks is even more formidable. Interference in the

cache between tasks leads to the pessimistic assumption that a task’s data

is invalid after a context switch. Several approaches propose solutions that

place restrictions on preemption [16, 17] which may be undesirable for many

applications. One method to achieve more accurate WCET analysis is to

partition the cache so tasks are restricted to a subset of the cache. This

eliminates the conflicts between tasks thereby ensuring better predictability.

There have been hardware and software approaches to this method. Software

based approaches employ the compiler to map tasks to only certain parts of

the cache [18, 19]. To achieve this, code must be transformed so a task maps

to only certain portions of the cache. For the instruction cache, the end of
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each partion must have an unconditional jump to the next partition since each

memory mapping must be non-linear to ensure a tasks does not use another

tasks partition. Also changes in control flow across memory mappings requires

additional instructions. In context of the data cache, the compiler must add

more code for structures that exceed the partition size. For example, an array

that fits does not fit in a memory mapping can not simple be indexed since the

compiler must map it in a non-linear fashion in memory to ensure partitions

are maintained. These approaches fail to realize any savings in power and

neither study looks at the impact on performance and code size due to the

transformations.

In [20] the data cache is equally partitioned and each set of tasks with

the same priority level are mapped to a shared equally-sized portion of the

cache. Tasks of the same priority share cache, hence only interference from

higher priority tasks is considered. It is show that there is an impact on

performance because of extra misses from restricting an application’s cache

space but performance is significantly better than eliminating the cache. Cache

locking is used to try to minimize the degradation in performance but no

detailed methodology is proposed on how to partition the cache is given. In

[21] a priority based scheme for a unified cache is proposed which focuses on

worst case response time for higher level tasks. Cache lines deemed important

for a task are locked in the cache. While these studies improve WCET, they

do not use information on tasks cache behavior which can cause significant

increase the miss-rate.
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2.3 Reconfigureable Caches

The goal of reconfigurable caches has been to reduce the power consump-

tion of the cache by configuring it based on the behavior of a task. Certain

tasks can perform just as well with only a subset of the cache resulting in an

unnecessary consumption of power from the underutilized portion. Depending

on the technique used, power savings can be achieved on dynamic or leak-

age power. To address this problem, several contributions have been recently

made in the area of reconfigurable cache architectures [1, 22, 23, 2]. Disabling

associativity ways has been shown to be very efficient in significantly reduc-

ing dynamic power [1]. In [2] a scheme is proposed that uses disabled ways

combined with concatenating ways and varying block sizes. In [23] the cache

is configured by varying the sets that can be accessed to reduce leakage in

the unused portion. The hardware details of these implementations will be

discussed in greater detail in section.

While several architectures are proposed, there has been few little work

on how to configure the cache. One approach has been to use hardware to

dynamically tune the cache for application based on its miss rate [24, 25]. In

both papers, this approach entails counters that track the number of misses

over a certain interval. The cache is than reconfigured and misses are tracked

again over the specified interval. This new miss rate is compared to the previ-

ous to determine the configuration. Different heuristics are used to determine

how to retune the cache including decreasing the cache size while the miss rate
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remains below a specified threshold or an estimation of how the total energy

for on an off chip memory dissipates. The number of cache configurations can

grow very quickly as more configuration options are presented which n lead to

extended periods of time where the configuration is in a suboptimal state.

Hu et al employ a software based technique to reduce data interference

within an application[26]. Compiler directed cache polymorphism is used to

determine an optimal configuration for loop nests to reduce energy with out

impacting performance. The compiler analyzes data reuse within the nested

loops of a single application and the footprint of arrays for nests is determined.

This information used to determine cache configurations that can be tuned to

focus on reducing power or improving performance. The method is restricted

to staticly declared arrays in nested loops and requires some code restructuring.

The methods to leverage reconfigurable caches so far are limited to look-

ing at a single task running alone. A software based way partitioning scheme is

proposed in [27] based on assigning staticly higher priority multiple tasks more

ways. No evaluation of the approach is made. The approach we propose aims

at configuring the cache amidst multiple tasks running at the same time with

the objective of eliminating interference and as such make multitasking with

cache sharing a feasible approach for real-time and energy-efficient embedded

applications.
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Chapter 3

Inter-Task Cache Interference

3.1 Observable Cache Interference

Inter-process cache interference occurs when a cache line belonging to

one task is replaced by another task, which prevents the first task from finding

its data in the cache. We define cache interference to be only those misses

that occur as a result of another task evicting a block which would not have

occurred if the task was running alone and as such would have found the data

in the cache. A task causes an interference miss only if it evicts a block that

will be used by another task once it resumes as opposed to the task resuming

and missing for other reasons. Figure 3.1a shows the memory accesses of a

single task and Figure 3.1b shows a task being preempted. In the single task

scenario, Task 1 reads A resulting a in cold miss, followed by hits on the

following reads of A. In Figure 3.1b, Task 1 is preempted by Task 2. Task

2 reads B causing A to be evicted and D causing C to be evicted. When

Task 1 resumes execution and reads A, it results in a miss because of Task 2’s

execution. Since this would not have occurred had Task 1 not been preempted,

we classify this as an observable interference miss. Note that a preempting

task evicting the preempted tasks block is not sufficient for for a interference

miss. The preempted task must use the line that was evicted to be considered

17



Figure 3.1: Observable cache interference. a) Single task b) A task preempted
then resumed

Figure 3.2: Global and local caches for interference miss classification

an interference miss. In this case, Task 2 evicting C does not constitute an

interference since Task 1 does not use this block again.

3.2 Evaluating the Observable Cache Interference

The difficulty in studying true interference in the cache can be attributed

to the difficulty in knowing the life time of a cache line. That is to say, it is

difficult to dynamically determine liveliness, or how long a cache line will re-

main in the cache and whether it will be used by the task later. The liveness of

registers has been studied to improve context switches [28] since this informa-

tion is know by the compiler. The dynamic nature of data in the cache with

multiple tasks makes this impossible to study from an analytical perspective.
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Normal cache simulations can not determine if an access is an interference miss

because this conclusion relies on future information of whether the block will

be used again and not evicted by the owner task.

In our evaluation of interference misses we have developed a simulation-

based approach, which precisely identifies whether a cache miss is due to an

interference or not. Our approach in determining if a miss is the result of

interference is to assign each task its own local cache which only it has access

to, and a global cache, as shown in Figure 3.2. The global cache acts as a

cache normally would with all tasks accessing it and potentially interfering

with each other. Each task also has its own local cache that only it accesses.

The local cache in essence stores the cache line’s liveliness state because the

only way it can be evicted from the local cache is if the task evicts it itself.

For every access, a task accesses the global cache and its local cache with each

returning a hit or a miss. Based on the results of these caches, the access can

be categorized as follows:

Global Hit, Local Hit. An access that hits in both the global and

local cache. This corresponds to a normal cache hit.

Global Miss, Local Miss. An access that misses in both the global

and local caches. This signifies an access that is a miss regardless of whether

or not there were other tasks and hence does not contribute to interference

and is treated as a normal miss.

Global Miss, Local Hit. An access in which the local cache access hits

while the global cache access misses. Since the block is still in the local cache
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Task 1 Task 2 Task 3 Task 4

Bench 1 LAME Encode ADPCM Decode - -

Bench 2 Matrix Mult JPEG Decode - -

Bench 3 MPEG2 Decode GSM Encode - -

Bench 4 ADPCM Decode JPEG Encode EPIC Encode -

Bench 5 ADPCM Encode GSM Decode G721 Decode -

Bench 6 MPEG2 Encode GSM Encode G721 Encode -

Bench 7 ADPCM Decode GSM Decode Matrix Mult JPEG Decode

Bench 8 MPEG2 Decode G721Encode GSM Encode GSM Decode

Bench 9 EPIC Encode JPEG Encode G721 Decode ADPCM Encode

Bench 10 Lame Encode EPIC Encode GSM Decode ADPCM Decode

Table 3.1: Multi-task benchmark sets

Cache 16KB 4 Ways 16KB 8 Ways 32KB 4 Ways 32KB 8 Ways

Switch Time 33k 100k 33k 100k 33k 100k 33k 100k

B1 1.87 1.73 1.86 1.73 1.31 1.29 1.23 1.24

B2 2.60 2.35 2.57 2.31 2.12 2.28 2.02 2.27

B3 0.11 0.11 0.07 0.07 0.07 0.07 0.05 0.05

B4 1.47 1.44 1.40 1.46 1.12 1.13 1.10 1.11

B5 0.04 0.04 0.02 0.02 0.02 0.02 0.02 0.02

B6 0.12 0.12 0.09 0.10 0.10 0.10 0.08 0.08

B7 2.40 1.89 2.45 1.86 1.86 1.83 1.66 1.83

B8 0.16 0.16 0.09 0.10 0.10 0.09 0.05 0.05

B9 1.10 1.04 1.06 1.06 0.79 0.80 0.76 0.77

Table 3.2: Overall miss rate (percentages)

and is being read it is still alive but was prematurely evicted in the global

cache due to interference. We will refer to this miss type as an interference

miss for the rest of this paper.

Global Hit, Local Miss. A global cache hit and a local cache miss

situation is impossible if there is no data sharing because a task’s data in the

global cache is always a subset of that in the local cache. If tasks are sharing

data, this situation corresponds to one of the tasks “prefetching” the data for

the other.

The memory traces were created using the SimpleScalar [29] simula-
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tion infrastructure. SimpleScalar is a cycle-accurate processor simulator. The

toolset includes varying degrees of simulation from basic instruction execu-

tion with not timing analysis to an out-of-order processor with timing, branch

prediction and cache information. SimpleScalar supports several instruction

sets including Alpha, ARM, x86 and PISA. This study uses the PISA instruc-

tion set using the sim-cache tool which simulates a cache. Unfortunately,

SimpleScalar does not support any form of multi-tasking. To simulate multi-

tasking, SimpleScalar was modified to generate memory traces from appli-

cations. Information generated includes the address of the memory access,

whether it was a read or a write, and the time between memory accesses. The

time between access is maintained to track the execution progress in terms

of the total instruction executed. Figure 3.3 shows the format of the output.

There are two types of trace lines which are generated. The first is the simple

case in which the most significant bit classifies the access as a read or a write,

the next 7 bits correspond to the number of instructions since the last memory

access and the remaining 4 bytes is the address. In some cases the time be-

tween memory accesses was more than what could be represented in 7 bits. To

address this, an extended trace line format was created. For this line the most

significant byte is a 0. This value is guranteed to not conflict with the simple

trace line format since this byte contains the number of instructions since the

last access which must be non-zero (counting the second access itself). The

next bit determines if the access was a read or a write, followed by 15 bits for

the last access and the remaining four bytes the address. While 15 bits for the
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Figure 3.3: Trace Format

last access count could have been used for trace lines, the need for this many

bits was very rare and would have significantly increased the size of the traces

which were already fairly large.

The memory traces created by SimpleScalar were then fed into a custom

cache simulator which was verified against the Dinero cache simulator[30]. The

custom simulator supports varying cache size, block size, and associativity

ways. Entries were additionaly tagged with the process ID for each task to

avoid any conflicts between tasks. To simulate multi-tasking, the simulator

reads a task’s trace until a certain number of instructions were executed. The

instructions executed is determined from the time since last access information

of each trace entry. Once the specified number of instructions are executed,

the task is preempted and the simulator starts reading the next task’s trace

in the same manner. This is continued with each task being scheduled in a

round robin policy until all tasks have completed.

The cache simulator creates a globabl cache and local cache for task as

describe above. For every access, the global cache and the task’s local cache

are accessed. The access is then classified as a normal hit, normal miss or

interference miss based on the results of the cache accesses.
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Memory traces for applications from the MediaBench [31] and the MiBench

[32] benchmarks suits were generated. Below is a description of the bench-

marks used. These applications are fairly representitivoe of applications that

are found in current cell phones and mobile media devices.

JPEG: Lossy image compression method for full-color and gray scale

images.

MPEG2: Encoder and decoder for MPEG-1 and MPEG-2 video bit-

streams.

EPIC: An image data compression utility based on a biorthogonal critically-

sampled dyadic wavelet decomposition and a combined run-length/Huffman

entropy coder.

ADPCM: ADPCM stands for Adaptive Differential Pulse Code Modu-

lation. It is a family of speech compression and decompression algorithms. A

common implementation takes 16-bit linear PCM samples and converts them

to 4-bit samples, yielding a compression rate of 4:1.

GSM: A full-rate speech transcoding algorightm using residual pulse ex-

citation/long term prediction. The implementation turns frames of 160 16-bit

linear samples into 33-byte frames.

G721: Reference implementation of the CCITT (International Telegraph

and Telephone Consultative Committee) G.721 speech coding specification

MMUL: A basic 128x128 element matrix multiplication.

The traces are subsequently used to simulate individual tasks and multi-

tasked benchmarks with cache sizes of 16KB and 32KB sizes and associativities
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of 4 and 8 ways which reflects current embedded processors such as the Intel

XScale and the ARM9. The block size is fixed at 32 bytes. For multi-tasking

scheduling, a simple round robin approach with fixed execution slices of 33,000

instructions and 100,000 instructions are studied to look at how the frequency

of context switches affect interference. These values correspond to 1ms for

33MHz and 100MHz with a CPI of 1.

All the tasks were executed until completion and their memory and ex-

ecution progress traces captured. By grouping together tasks we have con-

structed various multitasking benchmarks, comprising of 2, 3, and 4 parallel

tasks. In this study we evaluate the cache interference between the application

tasks and do not include any kernel code. The context-switch kernel code has

a very small data footprint and, if need be, can be assigned to its own very

small partition of the cache (or bypass the data cache altogether). Complex

kernel operations are not common for embedded applications and, if required,

the kernel can be treated as yet another task in the group, which uses the

data cache and possibly introduces interference. The kernel cache behavior

is very specific to the OS and its particular implementation; it could differ

significantly even across different versions of the same OS. In this paper we

focus on the task interference. Table 3.1 shows the combinations of tasks used

for each multitasking benchmark and Table 3.2 shows the overall miss rates.

Figures 3.4 and 3.5 report the misses for each benchmark with the above

mentioned configurations and the interference encountered by each task. The

crossed out parts of the bars correspond to interference misses. There are
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Figure 3.4: Interference misses for 16KB configurations

several distinct behaviors among the applications. ADPCM, GSM and G721

suffer from significant amounts of interference but have relatively low miss

rates. These applications exhibit strong temporal and spatial locality and as

a result there is an increased propensity that data evicted due to preemption

will be used again. As a result these applications suffer a great deal from in-

terference. On the other hand JPEG, EPIC and LAME, have relatively high

miss rates to begin with so the affect of interference is relatively small. This

high miss rate also mitigates the impact of interference on other task as show

in B1, B4 and B9 of figure 3.4. These applications have higher miss rates since

they do not exhibit much locality. As a result, the liveliness of these blocks

is low and evicting these tasks blocks is not as likely to cause interference.

However, large amounts of data are brought in, thus increasing the interfer-

ence seen by other tasks. These applications are also cache starved which will

be shown later in this paper. Another behavior is exhibited by the streaming
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Figure 3.5: Interference misses for 32KB configurations

applications. A streaming application is one that shows limited temporal lo-

cality with very good spacial locality. These applications incur a large miss

rate but are not impacted by other applications. Streaming applications differ

from the likes of JPEG and EPIC in the fact that they are not cache starved.

A side effect of the poor temporal locality of these applications is that they

create increased amounts of interference in other applications as they bring

large amount of data without reusing it. Matrix Multiply (MMUL) acts simi-

lar to a streaming application. While it is not normally considered a streaming

application, it requires a cache much larger than those studied to successfully

exploit temporal locality. For most of the multitasking benchmarks the lower

context switch frequency results in higher interference since cache block liveli-

ness usually decreases with time. The exception to this is MMUL. As MMUL

acts much like a streaming application, when this type of application is allowed

to run for longer periods of time, it increases the likelihood that another task’s
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data is evicted thereby increasing interference.

In general, the larger 32kB cache configurations suffer less intereference.

The larger cache decreases the likelihood that a cache block is evicted since

there is more space. More tasks usally resulted in a larger percentage of

interference because more tasks would be competing for space. This, however,

depends is highly dependent on the set of tasks becuase some tasks will cause

more interference than others. A higher switching frequency also increase

the amount of interference since tasks bring more data in that will interfere

more often. One interesting observation is that higher set-associativity does

not always reduce the percentage of interference. This can be attributed to

the decrease in total misses resulting in interference misses becoming a larger

percentage.
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Chapter 4

Cache Partitioning for Interference Elimination

The above figures have shown that multiple tasks sharing the cache can

exhibit a significant amount of cache interference. For some benchmarks, inter-

ference misses account for over 50% of the total misses resulting in significant

degradation in performance compared to tasks running by themselves. What

is worse is the loss or predictability in the system. Even for the best case

benchmark, 10% of the misses are attributed to interference. This effect can

not be ignored and must be considered in WCET. In the case where real-time

requirements must be met, ignoring interference will likely yield a system that

does not meet its specification. Alternatively, conservative approaches would

mean the system is not being fully utilized. We address this problem by par-

titioning the cache so each task is limited to a non-overlapping portion of the

cache with a size tuned to the task needs. We refer to this partitioning scheme

a strict partitioning scheme since we allow no overlap. To minimize this, we

partition the tasks based on their cache behavior. By ensuring that tasks

share no parts of the cache, it is guaranteed that no interference occurs. This

makes the system much more predictable and easier to analyze for WCET and

when task cache behavior is used, we can do so with little or no impact on

performance and in some cases even improve performance. Furthermore, we
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evaluate an extension of the strict partitioning, which we refer to as overlapped

partitioning, where some tasks share their cache partitions.

4.1 Configurable Caches

A configurable cache is advantageous over conventional caches because

it can be fine-tuned to a specific task. With multiple tasks running on a

single processor, certain tasks may require a smaller cache size than others for

acceptable performance. This forces the designer to use a chip with a larger

cache. To some tasks the extra cache provides minimal or no benefit at the

cost of increased power consumption. With configurable caches, this cost can

be reduced by disabling portions of the cache for tasks that show marginal

benefit from having access to the full cache.

Figure 4.1 shows how various cache configurations affect applications.

The figures depict several applications and their misses with varying ways and

set sizes which correspond to cache configurations that the can be mapped

too. In Figure 4.1a, we see that the miss rate for ADPCM decode saturates

fairly quickly and increasing the cache size after a certain point has no effect.

MPEG2 decode in Figure 4.1b shows a similar behavior. Increasing the cache

ways or set size starts to converge and after a certain point only minimal

improvements are achieved even when the cache is doubled. We refer to this as

the point of minimal gain. The LAME codec in Figure 4.1c has a continually

downward slope and none of the set lines converge signifying it could still
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Figure 4.1: Cache misses for a) ADPCM Decode b) MPEG2 Encode c)
Lame Encode d) MMUL

benefit from increased cache. MMUL in Figure 4.1d shows an application that

shows a significant amount of misses with increases in cache size having almost

no benefit. This is because the cache size is to small to exploit significant

amounts of temporal locality.

Several techniques for cache reconfiguration exist in order to reduce the

power consumption of caches. Chip power consumption can be classified into

two categories, dynamic and static. Dynamic power corresponds to activity on

the processor, predominantly from the charging or discharging the capacitive

load when switching a gate. Static power on the otherhand is power consumed
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Figure 4.2: Way Shutoff [1] pg 251

simply when the chip is on. The most significant form of static power is

subthreshold leakage current which is the current that leaks between the source

and drain terminals of a transistor and increases with shrinking feature size

[33].

The architecture proposed in [1] selectively disable ways to reduce the

dynamic power. Registers are configured by software to control which ways

are enabled as shown in figure 4.2. The cache way select register is used to

determine which ways to shutdown. The pre-charge signal is gated so when

the cache is accessed, ways that are disabled are not pre-charged and data in

these ways are not read. This reduces pre-charge of bitlines which is one of the

main factor the causes dynamic power consumption in caches. The selected
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Figure 4.3: Way Concatenation [2] pg 374

ways information is also sent to the cache controller to ensure that a hit in the

tag lookup of a disabled way is ignored.

The configurable cache proposed in [2] introduces a hardware that allows

for configurations of the associativity, caches size and block size. Their work

presents the idea of way concatenation in which ways are combined to make

larger sets. Ways are concatenated by using a bit from the index to select

which ways read and limiting dynamic power to these ways as shown in 4.3.

When reg1=1 and reg0=1 the cache acts like a normal 4-way set associative

cache. If reg1=0 and reg0=0 the cache becomes direct mapped with the signal

ci determining which way will be accessed. When either reg1=1 and reg0=0,

or reg1=1 and reg0=0, the cache becomes 2-way set associative and only two

ways are accessed. For example a 4-way set associative cache with 256 sets

could be changed to be a 2-way, 512 set cache or 1-way 1024 set cache by using

one of the index bits to select which group of ways to access. As a result, for

each concatenation, half the ways are read on any access reducing the dynamic
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Figure 4.4: Set Selection hardware

power.

In [34] the number of sets that can be accessed by a cache is configurable

and the use of gated-Vdd is proposed to reduce leakage power in disabled sets.

Gated-Vdd introduces a transistor between the SRAM cell and ground reducing

leakage based on the “stacking effect” of transistors in series. The number of

sets can be configured in powers of two by masking the number of bits used

in the index. Extra tag bits must be used since decreasing the number of

sets requires a larger tag for correctness. For example, a cache with with 256

sets be changed to 128 and 64 sets with two extra tag bits. There are two

potential deficiencies of this hardware for our approach. First, the hardware

presented is limited in that it can only vary the set size but not which set

can be used. However, this can be resolved through a simple manipulation of

the cache index in a manner similar to [35]. Adding OR gates after the mask

can select the group of lines that is being mapped to as shown in Figure 4.4.

As described above the address is first masked to determine the size of the

caches it is mapped to and then it is passed through a second set of gates to
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Figure 4.5: Drowsey cache line circuitry [3] pg 2

determine which portion of the cache it is mapped to.

While providing significant reduction in leakage current, gated Vdd does

not maintain data in the cache resulting in cold start misses when it is turned

back on. An alternative technique is to use drowsy caches [3]. Drowsy cache

techniques place cache lines into a low power mode which reduces leakage

but maintains data in the cache. Such a cache has been implemented in [3]

by using dynamic voltage scaling which reduces leakage by a factor 12. By

increasing the supply voltage, Vdd, to cache lines, leakage power is reduced.

The additional circuirty for drowsey cache lines is shown in Figure 4.5. The

main additions are a drowsey state bit, voltage controller and a wordline gate.

The drowsey state bit determines whether a cache line is in active or drosey

mode and sets which voltage to use. The wordline gate ensures that data is

not read when the cache is in a drowsey state because this data would likeyl

be incorrect. If a cache line is not in a drowsy state, no performance penalty
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is incurred. Lines in a drowsy mode will incur an increased latency penalty

because the line state must be changed to active and reread. Discussion of

drowsy caches in the rest of this paper refers to the implementation presented

by Flautner et al.

Our study leverages the ideas in the above work. We vary the number

of ways and sets used by each task and use the hardware to partition tasks

thereby eliminating interference. The inactive parts of the cache can be placed

in drowsy mode, thus reducing the cache leakage power. Drowsy caches do

not reduce leakage as much as gated Vdd. However, we rely on the ability for

data to be preserved in the disabled portions of the cache for more aggressive

WCET analysis. We allow tasks to use any number of associativity ways as

long as it is less than or equal to the base line configuration including non-

power of two values. Shutting off ways requires a register containing a bit for

each way and adds a gate to determine wether or not to pre-charge a way.

In terms of set configuration, we assume that a cache partition can consist

of either all the sets, half of them, or a quarter of them. Additionally, the

selected set must be aligned at address boundary corresponding to their size.

Set-selection requires a register that maintains the size of the partition and

another which determines the portion of the cache to map to. This hardware

lies on the critical path, however it is shown in [23] how this delay can be

significantly minimized. Drowsy caches increases the cache line by 3% when

implemented on a line by line basis. However, our approach requires only a

coarse-level granularity for associativity-set partitioning. When drowsy cache
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Figure 4.6: Cache partitioning examples

blocks are accessed in a non-drowsy mode, there is no impact on access time.

Since in our approach drowsy lines are never accessed, the cache hit latency is

not deteriorated. The time to turn drowsy cache lines back on is very small

and can be done concurrently with other operations during the context switch.

4.2 The Cache Partitioning Problem

In the proposed partitioning scheme the cache is essentially divided into a

set of rectangles, each consisting of a number of columns (ways) and a number

of rows (contiguous group of sets). Each task configuration can similarly be

abstracted to a rectangle and the set of all such rectangles must fit into the

cache. Figure 4.6 depicts an example of such partitioning. The validity of a set

of partitions is determined by the capabilities of the underlying configureable

architecture. In this example we have a total of 4 ways and sets that can

be configured down to a quarter of the original sets. Figure 4.6a shows a

valid mapping of tasks. Note that none of the tasks overlap and that all

set configurations are powers of 2 as previously discussed. The tasks are not
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required to cover the area and in fact, covering less area while maintaining the

number of misses equates to a even further reduction in power. Figure 4.6b

shows an invalid partitioning that is due to several reasons. First T4 and T3

overlap making it invalid. Additionally, T1 is configured with a set size that

is not a power of 2.

A static off-line approach is used to determine cache partitioning for the

given set of tasks. A run-time approach would require extra hardware which

is often undesirable in an embedded system due to size and power costs. Also

run-time approaches introduce additional unpredicatbility into the system.

While partitioning for a single task in hardware is feasible [23, 2], partitioning

multiple tasks is complex and infeasible to perform at run time because of the

immense number of combinations as the number of tasks and configurability

of the cache increases. Our approach also simplifies hardware and does not

require suboptimal configurations that exist during the tuning stages often

found in hardware approaches.

Partitioning the tasks can be viewed as a set coverage problem. For

each task Ti, we have a partition Pi where i identifies the task associated

to that partition (from 1 to the total number of tasks N). Each Pi is an

equivalent to a rectangle that represents valid configuration as defined by the

cache architecture. This optimization problem can be formally defined as:

maximize

(

N
∑

i=1

UTIL (Pi)

)

where UTIL(Pi) is the hit rate (utilization) of task Ti assigned to its cache
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partition Pi . This is clearly the goal of the proposed technique, as we want to

maximize the cache utilization after partitioning it amongst the tasks in the

system. The set of partitions P must satisfy:

Pi

⋂

Pj = ∅, for i 6= j

N
∑

i=1

COST (Pi) ≤ COST (Cache)

V ALID(Pi) = TRUE for all i

The first condition ensures that the partitions are non-overlapping. The

second constraint specifies that the sum of all cache partitions must not ex-

ceed the total cache; here COST(Pi) refers to the size partition Pi. The third

condition simply constraints the cache partitions to what is implementable by

the underlying configurable cache. This is a combinatorial optimization prob-

lem with exponential complexity as it is a form of the NP-complete minimal

set-cover problem. Systems of 2 or 3 tasks combined with a limited number

of cache configurations (in the tens) are feasible to solve through an exhaus-

tive search. However, the complexity of the problem quickly rises with more

configurations and tasks. To solve this problem we offer a heuristic algorithm.

The pseudocode of this algorithm is outlined in Figure 4.7.

Our heuristic approach starts by setting all tasks to have the smallest

partition possible and adding them to an active list. The solution space is

explored as shown in figure 4.8 by the GROW function. We start from the

smallest partition and first increase size, then associativity. Circles with the

same color signify partitions that are in equal size while the white circles
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1 P = Pi, where Pi is partition of task Ti

2 for all Pi = Smallest V alid Partition

3 Set tolerance value T

4 Add all P i to ActiveList

5
6 while( ActiveList ! = Empty AND COST (P ) < COST (Cache))
7 for( Active P i)
8 if( UTIL(Pi) > BASE(Pi) ∗ T )
9 Remove Pi from ActiveList

10 else

11 GROW (Pi)
12 if(COST (P )) > COST (Cache))
13 // Partitions can no longer grow
14 Option 1: BREAK
15 Option 2: Decrease T; Re-Iterate
16 if( ActiveList == Empty )
17 //Done or Improve Solution
18 Option 1: BREAK
19 Option 2: Increase T; Re-Iterate
20 END

Figure 4.7: Heuristic partitioning algorithm

Figure 4.8: Exploration of partition space

have no equal partitions. Each partition is simultaneously grown until the

tasks utility is greater than BASE ∗ T . BASE function is the sum of normal

and interference misses from the multitasking profile - it corresponds to the

baseline configuration where all the tasks share the cache. The tolerance value

T ∈ [0 : 1] represents how close the task must be to the baseline hit-rate; a

value of 1 enforces that the baseline hit-rate must be met or improved. Once

a partition reaches this point, it is removed from the active list and becomes
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associated to its corresponding task. If all partitions are removed from the task

list then we have a configuration that performs within the tolerance interval

of miss-rate impact for all the tasks. At every iteration the GROW function

must check for partition validity as simply using less space than the entire

cache does not guarantee validity.

4.3 Relaxed Partitioning

In many systems it is possible that only a subset of the tasks must meet

real-time deadlines while other tasks are non-critical. For example, speech

codecs must guarantee deadlines are met to ensure quality but image compres-

sion may occur offline. In this case, interference between non-critical tasks can

be tolerated to provide larger partitions for more critical tasks.

The approach of relaxed partitioning is similar to strict partitioning with

the difference that a subset of non-critical tasks is treated as a single task and

assigned to a single cache partition. In essence, the main distinction is that we

relax the policy of non-overlapping partitions. Tasks are divided into critical

and non-critical tasks. Critical tasks are treated as before given their own

partition. In the relaxed partitioning, non-critical tasks are assigned to share

the cache partition. In this way applications with no real-time constraints but

large memory footprints such as the mp3-encoder LAME, the video compres-

sion MPEG, and image compression JPEG, are associated to one large cache

partition. The relaxed partitioning method allows us to focus resources on
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Figure 4.9: Design flow of the cache partitioning methodology

the most important tasks. To determine the partitioning for this scheme, we

allocate partitions to tasks based whether they are critical or not. We again

use a tolerance value in order to ensure that more than marginal gains are

being achieved by increasing the cache partition. The set of non-critical tasks

are treated as a single task and its cache utilization is profiled like a single

task would be. In this way, the relaxed partitioning problem is reduced to the

strict partitioning after which the heuristic presented above is used.

4.4 Design Flow for Cache Partitioning

Figure 4.9 shows the design flow of our approach. First, tasks are com-

piled and run through a memory trace generator. The use of traces allows for

faster simulation and studying a larger design space. The traces contain infor-

mation regarding both memory accesses and execution progress. Next, traces

are profiled in two ways. The single task profiling consists of profiling the ap-

plication with a cache simulator for all possible configurations allowed by the

underlying cache architecture. The second profile is based on our approach
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used to study interference - it provides the baseline miss-rate and interference

statistics when the tasks share the cache. The last step performed off-line is

the execution of the cache partitioning heuristic. This heuristic is executed on

the set of task deemed to require separate partitions, possibly after merging

the non-critical tasks to implement the relaxed partitioning scheme.

The final step comes in the run-time implementation of setting the con-

trol registers to configure the cache. The configurations for each task must be

maintained by the OS to guarantee the cache is configured correctly during

preemption. Since preemption occurs transparently to the tasks, if a task was

preempted and the cache state is changed by another task, it would not know

the cache needs to be reconfigured. Each task configuration could be stored in

hardware but the overhead in performing the reconfiguration would be negli-

gible. A w bits would be needed for w -ways and 2*s bits for set configuration

(size mask and mapping). This amounts to a load and a reconfigure instruc-

tion that moves the information to the cache control registers. While we do

not look at the interference of the OS, the kernel task could also be given a

cache partition. As the embedded kernels do not exhibit large working sets a

minimal cache partition dedicated to the kernel would often times suffice.
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Chapter 5

Cache Partitioning Evaluation

We have evaluated the proposed cache partitioning techniques (strict and

relaxed) on the set of multitasking benchmarks described in Section 3.2. We

have profiled all the tasks for cache configurations covering all possible parti-

tions including associativity sets of sizes 512, 1024, and 2048 and associativity

ways from 1 up to 4/8 depending on the baseline cache architecture. Sub-

sequently, the cache partitioning heuristic is performed with tolerance value

T=1; if no valid solution for that value is found, the heuristic is re-executed

with a relaxed value of T. Table 5.1

5.1 Performance Impact

Table 5.2 shows a cache partitioning for Bench 7. The first two columns

are the total miss numbers for the shared cache The partitioning for each task

and the resulting misses are shown in the rest of the columns. In this case,

all paritioned tasks perform better than when they share the complete cache.

Cache Switch Time B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

16KB 4-Ways 33,000 1.87 2.60 0.110 1.469 0.039 0.120 2.402 0.161 1.098 0.986

100,000 1.73 2.35 0.110 1.441 0.038 0.119 1.889 0.162 1.044 0.949

16KB 8-Ways 33,000 1.86 2.57 0.074 1.404 0.024 0.094 2.453 0.090 1.055 0.970

100,000 1.73 2.31 0.074 1.459 0.024 0.095 1.860 0.095 1.061 0.991

32KB 4-Ways 33,000 1.31 2.12 0.073 1.119 0.017 0.099 1.859 0.095 0.791 0.505

100,000 1.29 2.28 0.073 1.130 0.017 0.097 1.832 0.093 0.799 0.518

32KB 8-Ways 33,000 1.23 2.02 0.054 1.100 0.015 0.084 1.658 0.048 0.762 0.587

100,000 1.24 2.27 0.054 1.111 0.016 0.084 1.825 0.049 0.733 0.605

Table 5.1: Overall miss rate (percentages)
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Table 5.2: Partition for Benchmark 7, 32kB 8 Way cache

This is because interference misses are elimintated. Also, as will be shown

shortly, dynamic energy is reduced because less ways are accessed at anytime.

Figure 5.1 shows the absolute difference in miss rate of the strictly par-

titioned cache from the baseline cache for the various configurations. In most

cases, the difference for the 8-way set associative caches is lower since it is more

configurable than its 4-way counterpart. Partitioning on the 32KB cache is

better than that for 16KB cache for every benchmark. Not only does the larger

cache allow for more configurations, it also allows partitions to be closer to

the point of marginal gains from increased cache. Benchmarks B1, B4, and

B9 show increases in miss rate in all configurations. This can be attributed

to the poor cache behavior of LAME, JPEG and EPIC encode. As discussed

before these tasks are cache starved and partitioning forces the miss rate to

increase significantly. This increases is especially high for caches with only

4-ways. Most of the opportunity for reconfiguration with a 4-way cache is by

sets which is at a much larger granularity then adjusting ways. The high miss

rate mitigates any gain from reducing interference. Our partitioning scheme

performs very well for Benchmarks 2 and 7 because of MMUL streaming na-

ture. By partitioning the cache, MMUL does not interfere with the other tasks,
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Figure 5.1: Difference of miss-rate for strict partitioning vs. base configuration

where as if allowed to use the entire cache, it would significantly interfere with

the contents of other tasks.

Figure 5.2 compares the difference between the strict partitioning and

relaxed partitioning for each configuration for benchmarks B4, B9 and B10.

The speech applications (ADPCM, GSM, G721) were classified as the criti-

cal tasks while JPEG, EPIC and MPEG2 were classified as non-critical. In

general our overlapped partitioning technique had performance similar to the

strict partitioning with the added benefit of increasing the response time of

critical tasks. In many cases the overlapped partitioning also had better over-
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Figure 5.2: Difference of strict partitioning and overlapped partitioning vs.
base configuration

all performance than simple strict partitioning. This can be attributed to the

fact that the non-critical applications do not exhibit strong temporal locality.

If applications that show poor temporal locality are grouped together, they

can use a larger cache but interference will not have as large of an impact

because of their cache behaviours.As a result the amount of interference in

the non-critical applications is not as significant as the normal misses and the

tasks benefit from the increased cache size offered by overlapping cache. This

is consistent with our study of interference in which these applications suffered

more from normal misses than interference. The amount of improvement over
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Figure 5.3: Dynamic power reduction

strict partitioning is not as significant in 4-way set associative caches because

of the lack of configurability. The granularity of configurability can result in

lower associativity caches using the same amount of cache one task would use

between multiple tasks.

5.2 Impact on Dynamic and Leakage Power

We have evaluated the impact of the proposed cache partitioning tech-

nique on dynamic and leakage power. As only a single cache partition is active

at any moment in time, both dynamic and leakage power are expected to be sig-

nificantly reduced. The inactive parts of the cache are placed in drowsy mode

in order to reduce the cache leakage power. Dynamic and leakage power were
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Figure 5.4: Leakage power reduction

modeled using Cacti-4.2 [36] with 180nm technology. Each cache partition was

modeled as a separate cache and its power characteristics were obtained from

Cacti. Because CACTI does not model associativities that are not a power of

2 this information was extrapolated. Caches misses were modeled as accesses

to a 256KB direct mapped cache. Figure 5.3 shows the the data cache reduc-

tion in dynamic energy for the multitasking benchmarks after applying the

proposed cache partitioning. The baseline configuration is all the tasks share

the cache. Even for benchmarks where the miss-rate was slightly increased

due to the partitioning we see a significant reduction in dynamic energy. In

the worst case, dynamic power is still reduced by 30%. As one would expect

8-way set associative caches due to their higher power consumption show more

improvement than 4-way associative caches.

The leakage power reduction is even more significant. In our evaluation of

leakage power, we have assumed a drowsy cache implementation as proposed
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in [3] controlled at granularity levels of associativity ways and the groups

of associativity sets supported by our cache partitioning approach. Leakage

power for the various cache partitions used in our multitasking benchmarks was

obtained from Cacti-4. The inactive parts of the cache were assumed in drowsy

mode and their leakage power reduced by a factor of 12 [3]. Figure 5.4 shows

the leakage power reductions for our benchmarks. It can be seen that for all

the benchmarks the leakage is reduced from 40% upto 65%. The benchmarks

with 4 parallel tasks achieved consistently better leakage reductions, since with

more tasks in the system, the cache had to be divided into smaller partitions

which explains the trend of leakage redcution increasing with more tasks.
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Chapter 6

Conclusion

In this paper we have introduced a novel methodology for inter-task cache

interference elimination through data cache partitioning. Our methodology

leverages recently proposed configurable cache architectures in order to assign

the set of parallel tasks to non-overlapping cache partitions. We have outlined

a compile-time algorithm, which uses profile-based information regarding the

cache behavior of each task to identify a beneficial partitioning of the cache.

The cache partition information for each task is provided to the OS, which

during context-switch activates the cache partition of the preempting task

while deactivating the one for the preempted task. Our results demonstrate

that the proposed scheme not only eliminates data cache interference, thus

making single-task WCET analysis algorithms applicable, but also significantly

reduces both dynamic and leakage power of the data cache. The proposed

cache partitioning enables the application of multi-tasking support with shared

data caches in real-time and energy-efficient embedded systems.

6.0.1 Future Work

So far our study as assumed that tasks do not share memory. In the

context of memory being shared between tasks, partitioning can cause cache
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coherence problems. One possibility is to flush all dirty cache block on a

context switch. This can cause signficant degredation in performance and

predictability. One way to minimize this penalty is to allow for a transition

period after the context switch. During this period, a hardware mechanism

can be used to write dirty cache blocks to memory. To ensure up to date data

is used by the newly running task, lookups are made on the entire cache and

forwarded accross partitions until all data has been written back to memory.

The partitioning scheme used can also be extended in many ways. Our

current cost approach was to minimize the impact on performance. This can

be extened to focus on reducing energy with a bound on performance degreda-

tion. Furthermore we restrict tasks to a single configuration during the course

of their execution. Applications may show varying cache behavior accross dif-

ferent compute intensive portions of the task and this information can be used

to reconfigure the cache within an application for reduced energy savings.
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