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Abstract

We consider a model of a parallel processing system consisting of K distributed homo-
geneous processors each with private memory in which tasks queue before being served.
Jobs arriving to the system consist of a set of tasks which can be executed independently of
each other and we consider a job to be completed only after all of its compor;ent. tasks have
finished execution. A central dispatcher schedules the tasks on the processors at job arrival
instants using information on the number of tasks currently scheduled on each processor.
We model this system as a distributed fork/join queueing system and derive the structure
of the individually optimal scheduling policy. Qur results show that the individually opti-
mal policy Is a mixture of policies corresponding to sequential job execution (all tasks are
scheduled on a single processor) and parallel scheduling (tasks are distributed among several
processors in a manrner that tends to equalize queue lengths). We show that, under condi-
tions that include the case of moderate to heavy loads, the individually optimal scheduler
schedules tasks according to the sequential policy which runs counter to the intuition that
parallel processing is desirable. Because we do not include certain overheads associated with
executing jobs in paralle]l in our model, our results are biased towards parallel rather than
sequential processing. Thus our results strongly suggest that for actual distributed memory
systems the benefits of parallel processing can be achieved only in conditions of light load.
Response time properties of the individually optimal scheduler are derived and compared
by simulation to other scheduling policies.






1 Introduction

In this paper we consider a simple model of a parallel processing system consisting of multiple
distributed processors that service jobs consisting of a number of independent tasks. Tasks can
be executed on any processor and we assume that a job is completed when all of its tasks have
finished executing, a time which we term a synchronization point. These assumptions on the
workload are strongly biased in favor of parallel processing since we assume that there is no
overhead associated with parallel execution and that no data dependencies exist between tasks.
Although the model ignores these system overheads, it does include the effects of random service
times. For example, even if all tasks begin executing simultaneously, variations in service time
imply that the finishing times will be staggered and thus that some tasks must wait for their

siblings to finish executing before synchronization.

Our objective in the paper is to determine the “best” way to schedule the tasks composing a
job. There are two scheduling disciplines that motivate our investigations. In the fully parallel
policy all tasks composing a job are spread “evenly” among the processors of the system,
thus attempting to achieve the maximum possible parallel job execution. Clearly, for such a
scheduling discipline the time needed to reach a synchronization point is also maximized. The
second scheduler is fully sequential and avoids synchronization altogether by scheduling all tasks
composing a job on a single processor. In essence, these two policies correspond to the extremes
of scheduling independent tasks; the optimal scheduler we derive bridges the gap between them
and reveals in greater detail the subtleties of the trade-off between fully parallel and fully
sequential execution. An indication of this trade—off is found in the fact, as we later show, that
the optimal scheduler converges to an extreme policy under appropriate load conditions; the
optimal policy is fully parallel in light load and fully sequential in heavy load. The scheduling
policy depends upon the distribution of task service demand and generally favors sequential
execution as the variance of service time increases. A principle result of our analysis is that , for
all distributions with non-zero variance, the fully parallel policy is a poor choice in heavy load
conditions. Since we expect future distributed parallel systems to be often run under conditions
of heavy load, this suggests that such systems might be better served by sequential scheduling
algorithms.

The above conclusions are even more striking considering that our model tends to favor



parallel execution since it ignores system overheads that are found in actual systems. Such
costs range from contention for shared resources such as memory access and interconnection
bandwidth, to overheads associated with synchronizing the computation among the tasks [11,
18, 33]). Synchronization costs include the time and resources used in the synchromization
protocol to establish when all tasks have finished execution as well as inherent randomness
associated with task execution times. Previous work on these issmes has been carried out in
both deterministic and probabilistic frameworks. Deterministic models that assume unbounded
parallelism and include effects of the synchronization protocols are discussed in [1, 10, 11, 17,
18]; models that ignore these costs and analyze the effects that randomness in task execution
time have on synchronization are considered in [2, 3, 4, 5, 34, 35]. Work relating the effects
of scheduling policies on response times on a parallel processing environment that include

synchronization overheads can be found in [24, 27, 38, 41].

In our model we assume that once a task is scheduled on a given processor it will be executed
on that processor. That is, we concern ourselves with static scheduling policies, in contrast to
dynramic policies which allow tasks to migrate between processors as a function of the state of the
system. We point the reader to references [13, 14, 15, 22, 23, 26, 30, 31, 40] where migration
policies for sequential jobs are analyzed under various system architectures. Our model is
applicable to situations where such migrations are not allowed. Such a restriction might be
imposed on the scheduler to limit scheduling complexity or because the benefits of a dynamic
policy are determined to be small with respect to the costs associated with migrating tasks. The
results we present here can, we believe, be used to guide the construction of dynamic policies
for distributed systems. For example, it might be reasonable to initially schedule tasks in the
system according to the static policy under the assumption that there is a large probability that
no migrations take place before a scheduled job completes execution. Examples of applications
of our model are that of a set of independent processors that communicate over a local area
network. An example of such a system is the Condor system at the University of Wisconsin
which provides facilities for distributed processing over a set of workstations [25]. Another
situation that can be modeled can be found in computer systems with non-uniform memory

access (NUMA) where the cost to access nonlocal memory is very expensive.

In 19, 35] a similar model was analyzed under the assumption that all tasks of a job were

evenly distributed among the processors of the system while in [36] all tasks were assumed



scheduled on the processor that had a minimal number of tasks in its local queue (these polices
correspond to the two extreme policies discussed above). Here we identify the policy which
minimizes the expected execution time of each individual job. This policy, termed the ind:-
vidually optimal policy, differs from a socially optimal policy which attempts to minimize the
expected job response time for all job arrivals to the system. The individually optimal policy
can be derived in first—come first-serve systems by not accounting for the effects that scheduling
decisions have on future arrivals. Although future arrivals do influence the expected response
time averaged over all arrivals, we believe that the policy derived here is sufficiently close to the
socially optimal policy to be of practical use. Perhaps more importantly the analysis reveals
some interesting tradeoffs found in parallel processing scheduling, some of which contradict the

intuition that parallel processing is always beneficial.

The paper is organized as follows: Section 2 presents the mathematical model that we use
to establish properties of the optimal scheduler. Section 3 first reviews the properties of the
optimal policy for the case K = 2. This case was analyzed in a companion paper [28] and is
used as a touchstone for developments of the more complicated general case. Section 3 then
develops some auxiliary results that are used to obtain the properties of the optimal schedule
in the case of an arbitrary number of processors. In section 4 we present comparison results on
the expected response time for the optimal policy, and we compare them to the two extreme
policies mentioned above, namely the one which schedules all the queues evenly and the one
which only schedules the shortest queune. In section 5 we present our conclusions and suggest
future research. The appendices contain several technical results which are not essential for

understanding the main conclusions of the paper.

A few words on the notation used in this paper: We denote the set of non-negative integers

by IV, and the set of all real numbers by IR. Throughout the paper, K always denotes a given

positive integer. For every positive integer L, the I** component of any element x in IRE is
denoted by z;, I =1,...,L, so that x = (z1,...,z1). Moreover, we denote the cardinality of a
set £ by |E|.



2 The Model and The Scheduling Problem

In this paper, we consider a queneing model, depicted in figure 1, consisting of K > 2 homoge-
neous single server queues. Each queue has infinite capacity. Task service times at the queues
are independent and identically distributed (i.i.d.) non-negative random variables (r.v.’s). We
let X be the r.v. denoting the generic service time at any one of the gueues and we denote
its expected value by X and its variance by ¢%. Each incoming job is assumed to comsist of
a random number of tasks described by an integer-valued r.v. B. A job is considered to be
finished when all its tasks have finished execution. This corresponds to a synchronization event

in the underlying parallel processing model.

We denote by ny the number of tasks in queue k,k = 1,2,..., K, at a job arrival instant
and we write n = (n3,ng,...,nk) for the vector state of the system (which is an element of
IN¥). Upon job arrival, the value b of B is declared and a dispatcher schedules the job’s tasks
on the queues using the values of n and B. We are interested in determining the scheduling
policy which, for each arriving job, schedules tasks so that the expected response time of the
incoming job is minimized. This policy is the individually optimal policy for the system, and as
noted in the introduction, differs from the socially optimal policy which minimizes the expected
response time over all job arrivals. To avoid cumbersome language, henceforth when we say

optimal policy, we mean individually optimal policy.

To define the optimal scheduling problem considered in this paper, let {X]" J=12,... k=

1,2,..., K} be ii.d. non-negative r.v.’s distributed as X and set
S5=3"X;, k=12,...,K, n=12,... (1)
=1

with the convention S§ = 0. Note that ES¥ = nX. The value of S* is assumed to be the
time needed to execute all the jobs scheduled on processor k£ given that its queue contains n
tasks. This assumption implies that scheduling decisions are made using information that can
be summarized by the number of tasks already on processor queues. In particular, we assume
either that tasks in the servers have just started execution upon job arrival or that the remaining
service time (i.e., residual life) has an identical distribution to that of a service time (in which

case the service times are necessarily exponentially distributed).



An admissible scheduling policy is a mapping

7:IN x NX - INX : (b,n) — n(b;n) = (71(b;n),...,7x(b;n)) (2)
satisfying
K
Zn(b;n):b, b=1,2,..., ne WK (3)
k=1

In words, when the system is in state n and the incoming job is made up of b tasks, policy =
schedules 74(b;n) of the incoming tasks on processor k , k = 1,2,..., K. The resulting response

time of this incoming job is given by

Ch) — k _ K
Tr(b;n) = k:xf?b?rjf»o {Snk+n(b;n)} , b=1,2,..., ne IN". (4)
We let ,
T.(b;n) = ET.(b;n), b=1,2,..., ne N¥ (5)

be the expected response time of the incoming job of size b when the state of the system at

time of arrival is n and policy = is used.

The collection of all admissible scheduling policies is denoted by P. We seek to determine
the scheduling policies in P which minimize the expected response time (5). We denote any

such optimal policy by ¥ which is characterized by
Tg(bn)<Tx(bsn), 7€P, b=1,2,..., ne NK. (6)

In discussing the properties of the optimal schedule ¥, it is clear that we can relabel the quenes
without loss of generality in our results. This is a direct consequence of the underlying statistical
assumptions and of the symmetry property of the maximum operator. To simplily the notation
at various places in the exposition, it will be convenient to sometimes assume a labeling of the

queues so that ny <np; < ... < ng.

3 K =2 - The Optimal Policy

In this section we review the structure of the optimal policy for the case where K = 2; these

results were derived in [28] to which the reader is referred for additional details: We assume



that the state upon the arrival of a tagged job is given by n = (n1,ns) and that there are
b > 1 tasks to be scheduled. As pointed out earlier, it is convenient to assume, with no loss of
generality, a labeling of the queues so that n; < na. Thus we can consider queue 1 (resp. 2) to

be the shortest (resp. longest) queue (with the convention that queue 1 is shortest if ny = nj).
We also define An = ny — ng.

The optimal policy can be described as operating in two steps. First the policy must
determine whether one or both queues are to be scheduled. If only one queue is to be scheduled,
then the policy must determine which queue is allocated the b tasks. If both queues are to be
scheduled, it then suffices to determine how many tasks are assigned to each queue. These

properties are described below.

3.1 Load Balancing Properties of The Optimal Policy

As in [28], we say that if, for the given state n, the policy ¥ schedules the b tasks on more
than one queue, then BQ (both queues) is satisfied in state n, otherwise if ¥ schedules all b
tasks on a single queue, then SQ (single queue) is satisfied in state n. The collection of all

non-degenerate allocation vectors for assigning b tasks to both queues is the set B(b) given by
B(b) = {b = (b1,b2) € IN? : 0 < b1, b2 < b; by +by = b}. )

From these definitions, we see that BQ (resp. SQ) is satisfied in state n when scheduling b
tasks provided the condition

blél[i??b)Egal‘xZ{S:k-Fbk} S (Iesp' Z)km=iln2 ES:g+b (8)

holds with the convention that the minimum over an empty set is +co.

We can summarize the optimal policy as follows. If only one queune is to be scheduled, then
the optimal policy puts all b tasks on the shortest queue. If, on the other hand, both queues
are to be scheduled then the optimal policy divides tasks among both queues in such a way
that the final configuration of tasks makes the two queunes as even as possible. In what follows,

{ | and [ ] denote the floor and ceiling functions, respectively ([21], p. 37).

Theorem 1. Suppose that in state n, the optimal policy ¥ schedules b > 1 tasks. If either
b=1o0r1<b< An, then SQ is necessarily satisfied. Otherwise,



1. If SQ is satisfied in state n, then ¥ schedules all b tasks on queue 1.

2. If BQ is satisfied in state n, then necessarily 2 < b and An < b, and ¥ schedules I4(b;n)
tasks on queue k, k = 1,2, with [x(b;n) given by

An+ &2 k=1,

Ik(b;n) = , (9)
[b"—,?—n—-], k=2.

Theorem 1 indicates how tasks are to be scheduled once the number of queues to schedule
is determined. If SQ is satisfied then all tasks are scheduled on the shortest queue whereas if
BQ is satisfied then tasks are assigned to each queue in a way that tends to equalize their final

lengths or in other words to evenly balance the load across both processors.

If SQ is satisfied then it is clear that the minimum expected job response time is obtained
when the shortest queue is assigned all b tasks and thus the expected response time is given
by ESy oy =(n1+ b)X. Combining Theorem 1 with (8), we thus see that BQ (resp. SQ) is

satisfied in state n when scheduling b tasks provided

n

E&%{Skﬁ,k(bm)} < (resp. 2)ES, 4 = (n1+b)X. (10)

In view of Claim 1 of Theorem 1 it seems more appropriate to read SQ as meaning shortest
queue rather than single queue as previously defined and we adopt this nomenclature in the

remainder of this section.

If BQ is satisfied in state n, then the optimal policy allocates ix(b;n) tasks to queue k ,
k = 1,2, with I,(b;n) given by (9), and this corresponds to a load balancing property of the
optimal policy: First An tasks are given to the shortest queue (queue 1) making it even with

the largest queue (i.e. n1 + An = n3). The remaining b — An tasks are then evenly distributed

b—An
2

b—An
2

among the two queunes, | | being given to queue 1 and [ ] to queue 2. As another way

to look at this, we observe that the state n* = (ny + 1(b;n), ny + I2(b;n)) resulting from the

allocation (9) satisfies

An® =2 ‘QA“] - Lb‘zAnJ =0,1. (11)




3.2 Parallel versus Sequential Processing

Theorem 1 points to two policies, mentioned in the introduction, which are naturally associated
with the conditions BQ and SQ, respectively. In terms of the underlying parallel processing
model, these two policies correspond to sequential and parallel processing, respectively, and
the tradeoff between these policies depends heavily on distributional properties of X and of
the maximum operator. One might think that if the number of tasks were larger than the
difference between the queue lengths, i.e., & > An, then it would be beneficial to distribute
some of the tasks to the larger queue thus gaining the potential benefits of parallel processing.
This policy is optimal if ¢% = 0 (i.e., if X is deterministic). However, as ¢% increases, the

. k
maximum maxk=1,2{5nk+lk

(b;n)} also “increases” (i.e., becomes more variable) and therefore it
might not be beneficial to incur potential delays associated with synchronizing with the second
queue. Indeed, as stated in Theorem 3 below, for each value of b, there exists an integer n*(b)
such that if the queue lengths satisfy ny > n*(b),k = 1,2, then sequential processing is optimal.
In practical systems, the r.v. B is bounded and for system loads resulting in large queues,
Theorem 3 thus implies that the optimal scheduler would most frequently route complete jobs
to the shortest queue and thus do very little paralle] processing. This result runs counter to

the intuition that parallel processing or load sharing is beneficial.
We first recall a monotonicity property of the SQ policy ([28], Lemma 4).

Lemma 2. Consider a state n with n; < np. If SQ is satisfied in state n when scheduling
b > 1 tasks, then SQ is also satisfied in states (n1,ny + 1) and (n; — 1,n2) (with n; > 1) when
scheduling these b tasks.

The second key structural property of the optimal scheduling policy W is contained in
the next proposition which follows essentially from an argument based on the Central Limit
Theorem ([28], Theorem 35).

Theorem 3. Assume o’% > 0. For each integer b > 1 there exists a non-negative integer
n*(b) such that SQ is optimal for scheduling b tasks when in states n satisfying nx > n*(b),
k=12

Combining Lemma 2 and Theorem 3 provides a fairly complete picture of the form of

the optimal policy ¥. The value of n*(b) for the case where service times are exponentially



distributed is determined by the solution to a simple algebraic equation ([28], Eqn. (50))

4 Some Preliminary Results

For an arbitrary number of processors, the structure of the optimal policy is far more complex
than in the case K = 2. In particular, describing the load balancing properties of the optimal
schedule requires a multi-dimensional version of Proposition A.1 from {[28]. This extension,
contained in Theorem 4 below, is developed later in this section, along with some additional
auxilary results; they will be used in section 5 to determine the structure of the optimal policy.
These results are best formalized with the help of notions of majorization and stochastic ordering

which we now introduce.

We start with majorization; for additional information on this material we refer the reader
to the monograph of Marshall and Olkin [29]: Given a positive integer L > 2, for any element
x in IRE, let '

z() <. S z(r) . (12)
denote the components zi,...,z of x arranged in increasing order. For x and y in IRL, we

say that x is majorized by y (in IRL), and we write x < y, if

i i
ZI(i)ZZy(;‘y I=12,...,L -1, (13)
1=1 s

and
L

PEEDINOL (14)
=1

It is often convenient to interpret x < y as saying that x is more balanced than y. The binary
relation on IRL defined by (13)-(14) is reflexive, transitive but not anti~symmetric, so that <

is a preorder, and not an order, on IRL.

We also recall the definition of the increasing convex ordering on the collection of IR-valued
r.v.’s [37, 39]: Let X and Y be two such r.v.’s. We say that the r.v. X is smaller than the r.v.

Y in the increasing convex ordering, and we write X <. Y, if

E¢(X) < E¢(Y) (15)



for every convex increasing mapping ¢ : IR — IR, provided the expectations in (15) exist.

4.1 A Stochastic Comparison Result

In this section we establish a key stochastic comparison result that already reveals some of the
structural properties of the optimal schedule. In short, we show in Theorem 4, that if exactly
L queues are scheduled, then the more balanced (as made precise by majorization) the state

achieved by an allocation, the better the performance of the allocation.

Theorem 4. Let n and m be two elements of INX for some arbitrary integer L > 2. If

n < m in IV, then we have

! i
22 {5} Swee 12X {5} (16)
and therefore
i {
Elrglast{Sn,} < Ellglast{Sm,}- (17)

To facilitate the discussion, we introduce for each integer L > 2 the notation

— ! L
Tp(n) = lrglg{sn,}, neN”. (18)
We can view the r.v. Ty(n1,n2,...,nz) as the job response time corresponding to an allocation
of tasks to L queues which result in a state where queue [ has n; tasks, I =1,..., L.

We first consider the case L = 2 in the following proposition.
Theorem 5. Theorem 4 holds true for L = 2.

Proof. Theorem 5 will follow from the seemingly weaker Proposition A.l. proved in the
appendix. Indeed, consider any two distinct elements n and m of IN? such that n < m; there
is no loss of generality in assuming n; < nz and m; < mg with m; < ny;. The definition of
majorization readily implies the existence of vectors m) s=1,...,r, with r =ny —my +1,
such that

n=m <m V<. .. <m®<m®=m (19)

10



For s =1,...,r -1, the vector m(**1) is generated from m(*) by transferring one unit from the
largest component of m(*) to its smallest component, i.e., m{s+1) = (m(l’) +1, mg’) -1). Itis
then clear from Proposition A.1 that To(m{+V)<; . To(m(*)), and the desired result follows
from (19) in the form T;(n)<;, T2(m) [ ]

In order to use Theorem 5 in establishing the general case, i.e., L > 2 arbitrary, we need to
introduce the notion of a transfer operation on elements of IRY: For given indices i # j (with
i,7 =1,..., L), the transfer from i to j, or (4, j)-transfer, is the mapping RL — IR that maps
a vector x in IR into another vector x’ of IR” given by } = z; — 1, 2} = z, + 1 and 2 = 1%

otherwise, k = 1,..., L. We call this vector x’ the (1, j)~transfer of x.

This notion of transfer has already been invoked in the proof of Theorem 5 in the form of

(2, 1)-transfers (on IV?).

Lemma 6. Consider a pair of indices + # j (with 1,7 = 1,..., L), and let n be an element of
IVE such that n, > 1. Then the (4,;)-transfer n’ of n is also an element of INL, and we have

n’ < nif and only if n, < n,, in which case

Tr(n') <iex Tr(n). (20)

Proof. The first part follows readily from the definition of majorization. Now, let n be an
element of INY such that 0 < n, < n; for some pair of indices i # j (with 7,7 = 1,...,L). By
the first part of the proof, the (i, j)-transfer n’ of n is an element of INL such that n’ < n (in

INL). Applying the two—dimensional result of Proposition A.1 to the vector (n,,n,), we obtain
max{s;;.-%—lxszx,—l} S%CI ma‘x{'s:z,’sz;]} (21)

To proceed, we use the representations

_ { s 3]
Tr(n) = max {lglélﬁ(#hj{sm},max{sm, Sn,}} (22)
and
"N o { 1 2
Tr(n') = max {lgxsnﬁ;ﬁJ{Sm},max{Sn‘,H, Sn,—l}} (23)

11



with the observation that each of the 1.v.’s max{S}, 53} and max{S}, 41, Si}_l} is independent

of the r.v. max;<i< LJ#(J{SL'} under the enforced statistical assumptions. A direct application

of Proposition 8.5.4 of [37] yields (20) with the help of (21), (22) and (23) since the maximum

operator is increasing convex in its arguments. | |
We are now ready to conclude the proof of Theorem 4.

Proof of Theorem 4. Let n and m be two elements of IV¥ such that n < m. Invoking a

theorem of Muirhead ([29], Lemma D.1, p. 135), [32], we can assert the existence of vectors
m(*), s = 1,...,r, such that (19) holds and such that for each s = 1,...,7 — 1, the vector

m(*1) is generated from m(*) by a transfer. These facts and Lemma 6 complete the argument.

4.2 A Majorization Result

Theorem 4 suggests that the allocation resulting in the most balanced state will be optimal. In
this section we show the existence of at least one allocation which achieves the most balanced
state. The argument is a constructive one, and relies on properties of the scheduling policy that

successively adds a task to the queue with the current minimal length.

To facilitate the presentation, we find it convenient to introduce several auxiliary notions:
For each b > 1, an allocation of b tasks on the K quenes is any element b of INX such that
Y& bk = b. The collection of all such allocations of b tasks on the K queues is denoted by
A(b). Moreover, for any non—empty subset I of {1,..., K}, we define an I-allocation of b to be
any allocation b in A(b) such that

bp>1, kel, b,=0, k¢l (24)

We note that A;(b) reduces to a singleton if |[I| = 1, and is empty if b < |I|; moreover, for
K =2 we have Ay 5)(d) = B(b).

Next, for k = 1,..., K, let e* denote the element of INX with components all zero except
for the k** one which is 1. We set

i(n) = min{k:1< k < K,nx = min{ny,...,nx}}, neN¥ (25)

12



and define
p(m)=e™, ne VK. (26)
The vector u(n) can be interpreted as the element of A(1) which assigns a single task on the

smallest queue with smallest index. Starting with n in IVX, we now define recursively the

states {n{*), s=0,1,...} by
n® =qn, 00+ = n® 4 @), s=0,1,... (27)

The state n(*) is the state that results from allocating s tasks on K queues, one task at a time
on the smallest queue with smallest index. As we shall see, in some sense this procedure yields
the optimal allocations. To do so, we first present two preliminary results on the single task
allocations (26).

The first such result is contained in Lemma 7.
Lemma 7. For any element n of INX we have

n+pn)<n+e, j=1,2,... K. (28)

Proof. Without any loss of generality, we can assume that the components of n are ordered with
ny < ny <...< ng,in which case (28) is equivalent to n+e! <n+e forall j =1,2,... K.
These comparisons are easy consequences of the definition (13)-(14), with the proof left to the

interested reader. n
The second preliminary result is discussed in Lemma 8; its proof is given in Appendix B.

Lemma 8. Let n and m be elements of INX. Whenever n < m, we have the comparison

n+ p(n) < m + p(m). (29)

|

We conclude this section with a key result on the structure of the set of all possible states
{n+ b, b € A(b)} that result from allocating b tasks on K processors when the system is in

state n.
Theorem 9. For every state n in INX, we have the comparison result
n® <n+b, beA®), b=1,2,... (30)

13



Proof. The proof proceeds by induction: If b = 1, then (30) follows directly from Lemma
7, thus establishing the basis step. Now, assuming that (30) is true for some b > 1, we shall
show that (30) also holds true for b + 1. Let b be an arbitrary allocation in A(b). By the

induction hypothesis, we have n{®) < n + b, so that
2 = a® 4 p(a®) <n+ b+ p(n +b) (31)
upon invoking Lemma 8, while Lemma 7 implies
n+b+um+b)<n+b+e, j=1,... K. (32)
Combining (31)-(32), we see that
n®™ <n+b+e, j=1,...,K (33)

and the induction step readily follows once we observe that {b+ej, i=12,...,K, be Ab)}
coincides with A(b + 1). ]

Theorem § expresses the fact that the set {n + b, b € A(b)} has a “root” or minimal
element with respect to the preorder <. However, it is noteworthy that any two vectors in this
set are not necessarily comparable under majorization as the following example indicates: For
K =3, consider the situation where n = (1,2,3) and b = 16. The allocations b = (2,6,8) and
b’ = (3,4,9) are both in 4(16), yet the resulting states n+b =(3,8,11) and n+b’ = (4,6,12)
are not comparable under majorization since 4 > 3 but 44+ 6 = 10 < 11 = 3 + 8. Here the root

is (8,7,7) and we indeed have (8,7,7) < (3,8,11) and (8,7,7) < (4,6,12).

5 General K — Properties of the Optimal Policy

We are now ready to characterize the structure of the optimal policy for an arbitrary number
of processors. This will done in several steps. First, on the basis of Theorems 4 and 9, we shall
identify in section 5.1 a natural candidate policy for optimality. As this candidate policy may
be suboptimal, we explore in section 5.2 its structure and find ways to improve its performance,
thus exposing in the process the load balancing prooperties of optimal pohcies. In section 5.3,

we summarize all the structural properties of the optimal policy.
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5.1 A Near-Optimal Policy

We begin the discussion by restating Theorem 9 in the form
n® <n+7(b;n), ne NX, b=1,2,..., 7P (34)

On the other hand, upon iterating (27), we obtain
b1
n® =n+35 p@®), neN¥, b=1,2,... (35)
s=0
and this leads to the introduction of the scheduling policy « in P defined by
b—1
7(b;n):‘:—Zp(n(’)), b=1,2,..., ne INK, (36)
s=0

The policy v tends to equalize queue lengths since it sequentially allocates a task to the queue

having the current minimal length.

Now, with Theorem 4 in mind, we might suspect from (34) that the scheduling policy ¥
exhibits some form of optimality. We explore this in Theorem 10 below. For each admissible
policy 7 in P, we define

L.(b;n) = |I,(b;n)], b=1,2,..., ne N¥ (37)

where
Lbn)={ke{l,...,K}:m(b;n) >0}, b=1,2,..., ne N¥, (38)

In words, Lr(b;n) is the number of queues scheduled by policy .

Theorem 10. The scheduling policy v defined by (36) is optimal in the following sense:
For any admissible policy = in P such that

L(b;n) < Le(bin), b=1,2,..., neINK, (39)

we have

T,(b;n) < Tr(b;n), b=1,2,..., ne INK (40)



Proof. Fix the state n in INX and the number b > 1 of tasks to be scheduled on the K queues.
Obviously the result (39) will follow if for any subset I of {1,... K'} with |I| > L,(b;n), we can
show that

k k
ker;},gn){sn’ﬁ“(b;n)} Stc.z Iilea“}({snt-f-bk}) be AI(b) (41)

In proving (41), there is no loss of generality in assuming that the components of the state
n are arranged in increasing order, ie, n1 < ny < ... < ng, as we do from now on in
this proof. In that case, it follows from Lemma C.1 that (41) need only be established for
subsets I of the form {1,...,L} with L,(b;n) < L < K. We also note that, by construction,
I(b;n) ={1,...,L4(b;n)}.

Now, let I be any subset of the form {1,...,L} with Ly(b;n) < L < K. By Theorem 9, we
have
n+y(b;n) <n+b, beAfb) (42)
For every b in A;(b), since v(b;n) = by =0for i =L+ 1,..., K, we see that (42) is equivalent
to
(nl+71<b;n):--~5nL+7L(b;n)) '<(n1+bl,"‘;nL+bL) i-nIZVL3 (43)
and upon applying Theorem 4 (in conjunction with (43)), we obtain

k

ma‘x{'snk+‘u(b;n)} Sz Iggf{sﬁk"'bk}’ b e A;(b). (44)

kel

On the other hand, the assumption L,(b;n) < L and the non-negativity of the involved 1.v.’s

readily imply

k k
k=1,.r,n.,%f(b;n){5nt+‘7k(b;ﬂ)} < I}‘lg‘}{{sﬂﬁ"n(b;n)} (45)
and the desired conclusion (41) follows upon combining (44)-(45). |

Theorem 10 can be restated as follows: When in state n, the policy v allocates b tasks on
eractly L(b;n) queues, and this allocation is best among all allocations that schedule these b
tasks on at least as many queues. However, it should be emphasized that the policy v does not
necessarily determine the best allocation in all possible states n. Indeed, it cannot be inferred

from Theorem 10 that allocating the b tasks on fewer than L.(b;n) queues is not optimal.

The (possible) suboptimality of the policy v can be traced back to the fact that (41) derives

essentially from the comparison (30), a purely algebraic property which makes no account for

16



the variability of the service time distribution! However, Theorem 10 does point the way to a
natural characterization of the optimal policy ¥. Before developing this characterization, we

present a useful result which is an immediate consequence of Lemma C.1.

Lemma 11. Suppose that in state n, the optimal policy ¥ schedules b > 1 tasks on the
quenes with indices in J. Then the I-allocation ¥(b;n) can always be selected so that all b
tasks are allocated on the |I| shortest queues.

From now on we shall assume that the optimal schedule ¥ is of the form given in Lemma

8. We note that by construction the policy 7 also enjoys this property.

5.2 Load Balancing Properties

We shall complement Theorem 10 by Theorem 13 below. This latter result expresses the load
balancing property of the optimal po]icy; i.e., if the optimal policy W schedules a subset of
the queues, it does so in a way that tends to equalize their queue lengths. Before discussing
Theorem 13, we extend the notation introduced in section 4.2, in order to more easily describe
W(b;n) once it is known in state n on which queues to allocate the b tasks. Let I be a non—empty

subset of {1,..., K'}. We set
i7(n) = min{k € I : nx = min{n,, i€ I}}, ne N¥ (46)
and define
pr(n)=e™  ne N, (47)

We see that p;(n) is the element of A(1) which allocates a single task on the smallest quene with
smallest index in I. Starting with n in IN¥, we now define recursively the states {n{/*), s =
0,1,...} by

0 = n, n# D) = n9) 4y (a9 s =0,1,... (48)

and the state n{/»*) is thus the state that results from allocating s tasks on queues with index
in I, one task at a time on the smallest queue with smallest index in I. In analogy with (36),

we introduce the allocations

b—-1
71(b;n)52p1(n(1")), b=1,2,..., ne INK. (49)

$=0
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Note that i;(n), g;(n) and y/(b;n) reduce to i(n), #(n) and v(b;n), respectively, when [ =
{1,...,K}. Alternatively, we can think of the definitions (46), (47) and (49) as being the

definitions (25), (26) and (36) but on IV/!, rather than on IVX,

Among other things, Theorem 12 presents conditions under which the allocations (49) are

I-allocations. To that end, for each n in IV, we find it convenient to define

Ayn = Nk+1) = N(k)s k=1,2,...K-1 (50)
and we set
k
Tin=) lAm, k=1,2,... ,K-1 (31)
=1

with Ton = 0. To lend an interpretation to (51) we rewite it as
k
rkn:Zn(k+1)—n(1), k=1,2,...,K—1 ) (52)
=1

which shows that Txn is the total number of tasks required to make each of the k shortest

queues have queue lengths equal to n(; ) tasks.

Theorem 12. Suppose that in state n, with ny < ny < ... < ng, it is required to
schedule b > 1 tasks on K queues. For any non-empty subset I of the form {1,..., L} for some

1< L < K, the following statements are true.

1. The allocation y/(b;n) is an I-allocation if and only if

Fp-yn+ L < (53)
2. Under (53), we have
n+7/(b;n)<n+b, be Al®b) (54)
and therefore
max{Sy  rom)} Sies ax{S, 10, }, b€ As(b) (55)
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3. If (53) does not hold, then there exists a non—empty subset J of I such that ¥/(b;n)
is a J-allocation of b, with 7/(b;n) = 77(b;n). Moreover, the set J is of the form
{1,..., L(b;n)}, where

L(b;n)=max{l:1<I< K, Tjin+1<b}, b=1,2,... (56)

and this time we have

Hklgf{‘g:w'y{(b;n)} <iex 1113}({5,’:&%‘:}, b € A;(b). (57)

Proof. Since we assume n; <ny <...<ngx,weget Ayn=np4y—npfork=1,2,... K -1.

(Claim 1) That (53) is a necessary and sufficient condition for the allocation v/(b;n) to be
an I-allocation follows from (46)-(49) by direct inspection.

(Claim 2) Under (53), ¥/(b;n) is an I-allocation by Claim 1, so that
vi(bin)=b =0, I=L+1,...,K, be Aub). (58)

It is now clear from the definitions (46)-(49) (and remarks following (49)) that Theorem 9

(when interpreted in IN%) implies the comparison
(n1+Y{(bn),...,np +vi(b;n)) < (ny 4+ b1,...,np +bz), be Ab) (in INY).  (59)

The comparison (54) follows by combining (58) and (59) by means of an elementary concate-
nation property ([29], Prop. A.7, p. 121). The stochastic comparison (55) is now obtained by
applying Theorem 4 with (59).

(Claim 3) If (53) fails, then by Claim 1 we already know that y/(b;n) is not an I-allocation
of the b tasks, as it assigns them on fewer than L queues. In fact, it is straightforward from (46)-
(49) that v/(b;n) assigns the b tasks on the L(b;n) smallest queues; is is clear that L(b;n) < L
under the enforced assumptions. With J = {1,...,L(b;n)}, we obviously get that y/(b;n) is
now a J-allocation, and the identification 4%(b;n) = 47(b;n) readily takes place. To prove
(57), it suffice to notice that (54) is still valid, whence (55) also holds. We conclude that (57)

{ollows from these remarks upon observing that

k k
Tg'}{sng-i-‘v!(b;n)} < I'Eea‘f{sng-}-w{(b;n)}’ (60)
an obvious fact given that the involved r1.v.’s are non-negative and |J| < |I]. |
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5.3 Properties of the Optimal Policy

First we present the load balancing properties of the optimal policy .

Theorem 13. Suppose that in state n, with n; < na < ... < ng, it is required to schedule
b > 1 tasks on X queues. The optimal allocation ®(b;n) can always be selected to be an
I*-allocation for some non-empty subset I* of the form {1,...,L*} with 1 < L* < K, such
that the condition (53) necessarily holds. In that case, the allocation ¥(b;n) can be chosen to

be 77 (b;n), so that
*=n+¥(;n)<n+b, beAn(d) (61)

with

ny>...2>ng.. (62)

Furthermore, we have the bound 1 < L* < L(b;n).

Proof. Fix the state n in IVX and the number b > 1 of tasks to be scheduled on the K queues.
Since n; < ... < ng, by Lemma 11 (and the remark following it), we can assume ¥(b;n) to be

an J-allocation with I a subset of the form {1,...,L} forsome 1 < L < K. T n+ L <,
then by Claim 1 of Theorem 12, the allocation ¥/(b;n) is indeed an I-allocation and by Claim
2 of Theorem 12, it is at least as good as the optimal allocation ¥(b;n). Therefore, we can

take ®(b;n) = v/(b;n) so that I* = I and L* = L. We observe that (61) follows from (54),
and that 1 < I < L(b;n) obviously holds.

On the other hand, if Tz—qn + L > b, then v/(b;n) is not an J-allocation by Claim 1 of
Theorem 12. However, by Claim 3 of Theorem 12, with J = {1,... ,Ji(b;n)}, the identification
vI(b;n) = 4/(b;n) holds and 7/(b;n) is now a J-allocation. We conclude from (57) that
v7(b;n) is at least as good as the allocation ¥(b;n). Therefore, we can take ¥(b;n) = v/(b;n)
so that I* = J and L* = L(b;n). Here again (61) follows from (54), while L* = L(b;n) by
comstruction.

The inequalities (62) are now immediate by construction. |

From the discussion given above, we see that the determination of the optimal policy

proceeds in two steps. First the policy must determine the set I of queunes on which the tasks
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will be allocated. Once this optimal set of queues has been identified, the optimal I-allocation
is determined by (49). The procedure for selecting the optimal set of queues is easily obtained
by combining Theorems 10 and 12. Indeed, for every subset I of {1,..., K}, we define

T;(b;n)EEIEg{S" o 0=1,2..., neNX (63)

ne+v]

Now suppose that in state n, it is required to schedule b > 1 tasks on the K queues. We can
always relabel the queues so that ny < ... < ng, and therefore by Lemma 11 we need only
consider sets of the form {1,...,L} with 1 < L < K. By Theorem 13, we can further reduce

the search to sets of the form {1,...,L} with 1 < L < L(b;n). The optimal set of queues is the
subset {1,...,L*(b;n)} where

1111

L*(b;n) = argmin{1 < L < L(b;0) : Tgy,. 1y (bs0)}; (64)

ties are resolved by taking the smallest integer. Once the value of L*(b;n) has been computed,
Theorem 12 then states that the optimal policy will successively schedule tasks to the shortest
queue with index in {1,...,L*(b;n)}.

This discussion is summarized in the following corollary.
Corollary 14. Consider a state n, with n; < ny < ... < ng, and suppose that b > 1.
Then
1. 1 <5< T'in+2, then the optimal policy ¥ schedules all b tasks on queue 1;
2. fforsome L=1,...,K -1, T, in+ L <b<Trn+ L+1,then the optimal policy ¥

schedule all b tasks on no more than the L first queues.

Proof. These statements are direct consequences of Theorem 13, and the discussion that
follows it once we observe that for L = 1,..., K -1, i(b;n) =Lifandonlyif 'y qjn+ L <
b<Tlin+L+1. B

In analogy with Theorem 5 of [28], we have the following result.

Theorem 15. For each integer b > 1 there exists a non-negative integer n*(b, K') such that
if ng >n"(b,K),k=1,2,...,K, then the optimal policy schedules all b tasks on the queune of

shortest length, i.e. queue i(n).
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Proof. The proof of this theorem is a generalization of that found in the K = 2 case of [28]

and is omitted here.

6 Comparison Results and Discussion

In this section we present results from a set of simulation experiments which we performed in
order to determine response time properties of the optimal scheduler. Throughout, we make the
following assumptions: Arrivals to the system come from a Poisson point source with intensity
A. Task service times, or stages of service, are exponentially distributed with parameter y;
this assumption allows us, as mentioned in section 2, to avoid difficulties arising from residual
service times. Moreover, the number of tasks composing each job is determined randomly, and
this independently of other random events occurring in the system, past, present and future.
Let B be the r.v. denoting the generic number of tasks composing a job, with 8, = P[B = b},
b=1,2,...; the expected number of tasks is then given by B = 2oeq 0By, Clearly, for this

model, the utilization of the system is given by

All simulation and computational results displayed below are carried out in the generic case
where y = 1, i.e., task service times are exponentially distributed with unit mean. We also
assume throughout that B = b for some fixed integer b, in which case p = Ab/ K p1; we refer the
reader to [28] for comparison results concerning the case of random job size B when K = 2.
For an arbitrary number of processors, we have omitted discussing the more general case of
random job size for the corresponding simulations become computationally prohibitive, and it
is our belief that the insights derived in the case X' = 2 can be extrapolated to the more general

situation.

Our main interest in these simulation experiments consists in determining the performance
improvement that the optimal policy yields over simpler policies and to determine the fraction
of time the optimal policy uses multiple processors. The simple policies that we consider are

the AQ policy, which corresponds to the usual practice of distributing the load evenly among
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all the processors, and the SQ policy. When considering the AQ policy, we always assume
that b = JK for some integer J > 1, and J tasks are scheduled on each one of the K queues.
The information required by each of the policies differs in that the optimal policy requires
knowledge of all the queue lengths whereas the AQ policy uses no knowledge at all and the
SQ policy requires only knowing the queune(s) of minimal queue length. It is not too surprising
that our results show each of the last two policies to have regions over which they perform well.
What is somewhat surprising, however, is that the AQ policy can perform very poorly in high
utilizations and this argues against the intuition that parallel processing is beneficial. In fact,
as we will shortly see, a job is scheduled on only a small number of processors by the optimal

schedule in medium to heavy loads.

In what follows, the performance of any one of these three scheduling policies is expressed
through its expected response time in steady-state. A moment of reflection should convince
the reader that under all three policies, statistical equilibrium will be realized under the same
stability condition, namely p < 1, a condition always enforced thereafter. Determining the
expected response time of the optimal schedule policy appears to be mathematically intractable.
Even for the simple policies AQ and SQ, the expected response times can only be obtained by
simulation or approximation; such approximations have been developed for the AQ policy (with
b= K) in [35] and for the SQ policy in [36]. A special case of the AQ policy for K = b =2

does, however, have an exact solution for the expected response time [16, 35] which is given by

2p-Xx 1
T = ——— —. 66
) R (66)
All simulated values have 99% confidence intervals that are within 2% of the simulated
value and we simulated for utilizations in the range (.01,.95) in increments of .01. To avoid a
cluttered presentation, we do not show points or confidence intervals on the plots of this section,

but join simulated values with straight lines. The smoothness of the curves presented in this

section attests to the accuracy of the simulation points.

To determine the optimal policy, we need a method to calculate the expected value of the
maximum of a set of independent sums of i.i.d. services times. In particular, we need to evaluate
the quantities

fu(n) = E max {S. }, ne V¥, k=1.2,.. K, (67)

1<k
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where under the assumptions made, S;',‘ is an Erlang r.v. with mean n;, i = 1,..., K. We
observe that fi(n) represents the expected response when scheduling (the first) k queunes results
in state n. Although an integral expression for the quantity (67) can be derived [12], it is not
computationally accurate and thus cannot be used for determining the optimal policy. A more
accurate implementation is obtained by solving a set of recurrence relationships. To define

these recurrences, we let

zk(n)Eié(ni), ne N, k=1,2,... K, (68)
=1
where 6(z) = 1if z > 0 and 6(z) = 0if z = 0. The value of zx(n) is thus the number of nonzero
queue lengths amoﬁg the k first queues when the system is in state n. Foreach k =1,2,... K,
upon using the memoryless property of exponential distributions, we can write the following
recurrence
0, n=20,

fe(n) = { 1

e (1 + Yk 6(n) fu(m - e‘)) , otherwz'se.. (69)

To explain (69) we first note that if there are zx(n) servers busy then the ﬁist departure event
occurs as the minimal of zx(n) exponentials and thus has an expectation of 1/zx(n) time units
This explains the first term. Additionally, since each sever is equally likely to be the first to
finish, the probability of going from state n to state n— e* is given by 6(n,)/zx(n) leading to an
additional delay of fi(n — e‘), thus explaining the next term in the recurrence. The recurrences
(69) can be easily programmed although the memory requirements are quite large for large

values of K and n. In Table 1 we list the experiments that we ran.

Table 1.
| Experiment | K and B | Distribution of Task Service |
I K=2 bt=2 Exponential
1I K=4 b=38 Exponential
111 K=4 b=4 Erlang (5)
v K=24 b=K Exponential

Experiment I considers X = 2 and a fixed number of arriving tasks to be b = 2. Other

experiments for the case K = 2 that include cases where B is random can be found in [28].
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We did not perform any experiments here for B random and higher values of K because of
the high computational and memory requirements needed to perform experiments. It is also
our belief that results for these cases will not qualitatively differ from those obtained from the
two processor case. As mentioned above, the exact value for the expected response time of the
AQ policy is available in that case, and is given by (66). Therefore, we need only to simulate
the optimal policy and the SQ policy. For this case, it is interesting to notice that under the
optimal policy, both queues are scheduled only when the queue lengths satisfy ny = ny = n
for n = 0,1,2. In all other states only the shortest queue is scheduled. In figure 2 we plot the
expected response times as a function of p and in figure 3 we plot ratios of expected response
times for both the AQ and SQ policies to that of the optimal policy. It is interesting to observe
the regions where each one of these policies does well in comparison to the optimal policy. For
low utilizations scheduling both queues is close to optimal whereas scheduling only one queue is
close to optimal for high utilizations. The best way to explain these relationships is to plot the
expected number of queues scheduled by the optimal policy (as done in figure 4). This shows
how the optimal policy changes from a regime of using parallel processing for low loads to a
regime of using sequential processing for high loads. Since the policies AQ and SQ mimic the
operation of the optimal policy for low and high loads, respectively, it is not surprising that their
expected response times are close for these regions. Based on ratios of expected response time
only, it would be tempting to select the SQ policy over the AQ policy if one were restricted to
these two policies. This is especially true if one considers that for low utilizations, the ratios are
for low expected response times whereas for high utilizations, where the policy SQ does very
well, these ratios are for large values. Typically in most systems, it is more important to have
good performance for high utilizations since users of the system experience changes in absolute

not relative response times and these absolute changes are low for small response times.

Experiment II collaborates our conclusions from the first experiment. Here we set K = 4
and b = 8 and figures 5-7 are analogous to those obtained previously. Again these figures
suggest that, of the two non-optimal policies, the policy SQ performs relatively better than
the policy AQ since it is closer to the optimal policy at high utilizations. Figure T suggests
that the expected number of scheduled queunes for the optimal policy decreases almost linearly
until high utilizations where it rapidly decreases.

In Experiment IITI we compare the optimal policies obtained for exponential and Erlang
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distributions of task service times. It is clear that since Erlang random variables are simply
sums of exponential random variables, that the optimal policy for this case can be obtained by
scaling the optimal policy obtained for the exponential case. In figure 8 we plot the expected
response times obtained for task distributions that are given by the sum of 5 exponentials each
with mean 0.2, i.e., an Erlang r.v. with 5 stages and unit mean, for a system with K = 4 and
b = 4. As expected, the system with Erlang task times has a lower expected response time
than that for exponentials. Generally, we expect that response time increases with variance
and the number of processors scheduled by the optimal policy decreases with variance. This
latter effect can be seen in figure 9 which plots the expected number of processors scheduled by
the optimal policy for both task distributions. Figures 10 and 11 compare the response times
obtained for the SQ and AQ policies in the Erlang case. Again, if it is required to select a
single policy for use at all utilizations, the SQ policy would be preferable to the AQ policy.

Experiment IV, as shown in Figure 12, compares the optimal policy to that of a single
server system with a capacity equal to the number of servers. Specifically, when the distributed
system has K servers, we consider a single server system which delivers K units of service per
unit time, where jobs are executed completely on this single server. We assume that b = K,
and this implies that the service time duration in the coalesced server is the sum of b 1.i.d.
exponential r.v.’s, and is thus an Erlang r.v. with b stages. With the help of the Pollaczek-
Khinchin formula [20], the resulting response time can be written as

1 (b-1) 1
T =% <b -3 P) =7

where p = A/Kp . The figure plots the ratio of this value to the expected response time

(70)

for the optimal policy. Clearly the single coalesced server has better response time but it is
interesting to see that the relative response time between this and the optimal policy improves
with increasing K. This arises, we believe, from the fact that the optimal scheduler has more
degrees of freedom in making scheduling decisions when K is larger and thus it has a relatively

smaller response time with respect to the coalesced single server.

In figure 13 we plot values of n*(b, K) for K = 2 as a function of b. For queune lengths greater
than n*(b, K') the optimal policy only schedules the shortest queune. The value of n*(}, K) is
given by

n*(b,K)=min{m | m+b< Tyg(b;m)}, b=1,2,... (71)
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where for each non-negative integer m, we denote by m the balanced queume length vector
(m,...,m). The points in figure 13 are the calculated values of n*(b, K) and the curves are
the quadratic polynomials that best fit the points in a least squares sense. This polynomial is
given by n*(b,2) ~ —.5 — .414b + .789b2.

7 Conclusions and Future Research

In this paper we derived the individually optimal scheduling policy for executing jobs consisting
of a set of independent tasks on a set of homogeneous processors. We provided simulation results
to compare different scheduling policies when task service times were exponentially distributed
with unit mean. Under these assumptions, our results imply that (i) parallel processing is
beneficial for low system utilizations, and that (ii) for moderate to high utilizations, processing
all the tasks of a job on a single processor produces smaller expected response times. In
particular, the policy that executes all the tasks of a job sequentially on the processor with
minimal queue length has a better overall response time than the policy which spreads work
evenly over all the processors in the system. Including overheads due to executing jobs in
parallel in our model would only increase the benefits of sequential processing. Our model,
which is biased towards parallel processing, therefore strongly indicates that for the architectural
assumptions of distributed queues one should only run jobs in parallel in lighly loaded systems.

This result runs counter to the intuition that parallel processing is always beneficial.

These conclusions depend upon the distribution of task service times and we believe that the
exponential distribution is more variable than what is found in some applications. As a general
rule, we expect that parallel processing to become more beneficial as the distribution becomes
less variable. For example, if service times were deterministic then it would be beneficial to
schedule the tasks of a job on all processors. We believe our results, however, point out the
fallacy of assuming that parallel processing is always beneficial and believe that the trerd of the
optimal policy to go from parallel to sequential processing as the load of the system increases,

will be found in applications that have less variable distributions as well.

Deriving the socially optimal policy is an interesting, open research problem. Although we
do not expect the response time for this policy to be markedly better than that of the individu-
ally optimal policy derived here, it would be interesting to quantify this improvements. Finally,
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determining a way to account for residual service times in the derivation of the individually
optimal policy is also of interest. Here difficult mathematical problems arise from the fact that
residual times on the different processors may not be independent r.v.’s due to the nature of
the scheduling policy.
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8 Appendices

The results in the appendices that follow contain technical results that are not essential for

understanding the main conclusions of the paper.

8.1 Appendix A

The proof of Theorem 5 passes by the following intermediary result.

Proposition A.1l. For any state n in INV? with 0 < n; < ny, we have

ma“x{S}ll-}-l?SZ;—l} <tex ma.X'{Sl 5,212} (72)

ny?

so that
Emax{5} ;1,52 _;} < Emax{S},S%,}. (73)

Although Proposition A.1 and its consequences given in section 4 do hold for general task

distributions, we have elected to provide a proof of Proposition A.1 only in the case where task
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distributions are exponential, say with unit parameter, in which case

-1 —t
Fu(t) = [5"<t]_1-z—f—-, t>0,k=1,2,...,n=12,... (74)
1=0 ’

As previously mentioned, in this exponential case our results are exact since the distribution
of residual times seen by an arriving job are identical to the distribution of service times. The
general case can be established using techniques of stochastic majorization recently developed
by Chang [7]. Presenting a proof along these lines would require substantial preliminary work
which lies outside the scope of this paper. Our proof of the special case uses standard techniques
and keeps the paper self contained. We also note that the case where task service times have

an Erlang distribution readily follows from the validity of (73) in the exponential case.

Proof. With Theorem 1.3.1 of ([39], p. 9) in mind, we set
Ti(n) = E[max(S3,,5%,) - a]*, a>0, ne IV? (75)
so that (72) follows if we can show that
To(ni + 1,np = 1) < To(nq,n2), a >0 (76)

whenever 0 < n; < na.

We fix a > 0. With the help of (74), for each n in IN?, we easily see that

Tw) = [ (1= Fu(®Fm@)t

oo [ n1—1 t,‘ ny—l Y ni—1lns— lt,+J
— -t —t
S EDIETRED STl D D
é v=0 =0 1=0 =0
ny—~1 k ny—1 3 1 ny=-lng—1 1+ r
_ a a 2a)
_ - a® a G+y+1) 1
- L5 z:,!zz( )wz}
1=0 k=0 3=0 I=0 =0 3=0 ’
(77)
where in the last step, we have used the well-known identities
P 'k -
[: e dt =e ;;)H, a>0,i=0,1,.... (78)
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for Erlang distributions [20]. We note that the expression just obtained for T,(n) also holds
when components of n do vanish provided we adhere to the convention that summing over an
empty set of terms incurs the value zero. This convention is implicitly enforced throughout in

order to avoid discussing separately various limiting cases.

To proceed, we consider only the vectors n in IN? for which 0 < n; < n;. Writing the

components of n as ny =m and n, = m+p with m = 0,1,... and p=1,2,..., we define
Ay(m,p) = e (Ta(mym+p)-Ty(m+1,m+p—-1)), m=0,1,..., p=1,2,..., (79)
so that the desired inequalities (76) are now equivalent to
As(m,p) >0, m=0,1,..., p=1,2,.... (80)

Using the expression (77) derived earlier for T(n), we are led after some simplifications to the

expression

m+p—1 m+p—2 m+t
a —a m +1. i 2a)
Aa(m,p) = E T'- + e { E ( ) 2 (m+i+1) E ( }

1=0 r!

m—1 . m4ptr—1 y
L mAp+i=1 Y\, (mipti) (22)

r=0

foralm=20,1,...and p=1,2,....

Fix m = 0,1,.... By direct inspection of (81) (with p = 1) we see that A,(m,1) = 0 (as
expected from the probabilistic interpretation of the involved quantities). Therefore, (80) will
be established if we can show that p — A,(m,p) is non—-decreasing, that is

Aa(m)p+1)—Aﬂ(m;p) >0, p=1,2,.... (82)
To do this, we observe from (81) by straightforward calculations that

2™ Pe (Ag(m,p + 1) = Ag(m, p))

(2a)m? [ 1mlg om+p—1 )& (2a)k
(m + p)! { ) T'_} ( m ) Z k!

=0 k=0

= 1 m+p+i
E 21+1 1
+=0

2m+p) 1) m+§'_l Qaf 0. (83)

m+p+1 = J!
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The second term in the right handside of (83) is obviously positive, and so is the third term
since

. s
(m4p) _ _mEp=i oo o (54)
m+p+i m+p+i

Therefore, we can conclude to (82) if the first term in the right handside of (83) is non—negative,

a requirement equivalent to

m-—1 a;’
> o <2 (85)
1=0 &

This last condition is trivially true as can be seen from the Taylor series expansion of e since

a > 0, so that (82) indeed follows and (80) is thus established. n

8.2 Appendix B

We provide here the proof of Lemma 8. There is no loss of generality in assuming n; < np <

...<ng and my < my <... < mg, in which case (29) is equivalent to
n+e'<m+el. (86)

i From the definition (13)-(14) of majorization, we recall that the condition n < m is equivalent

to
k
Y(-m)>0, {=1,2,...,K-1 (87)
=1
with
K K
=3 m=C. (38)
1=1 1=1
We now define the integers @ and f by @« = max{k: 1<k < K, n; = ... = ni} and
f=max{k: 1<k <K, m =...=my}. Wenote that n, < no+1 whenever o < K, with

a similar comment for 4. If a and b denote the elements of IV¥ obtained by arranging the

components of n + e and m + e! in increasing order, respectively, we readily see that

a=(n1,niy,...,n1,%a + 1,Na41,---,NK) (89)
e
a-1

31



and

b= (mi,my,...,m1,mg+1,mg41,...,Mk). (90)
| S ———
B-1

i From the definition (13)-(14) of majorization, we see that in order to establish (86), we need

only show that
k
d(ai-b)>0, k=12,...,K -1 (91)
=1
Indeed the condition (14) is automatically satisfied here in the form K =YK b=C+1
as a result of (88). The validity of (91) is now established by considering all possible cases.

Using (87), we readily see by direct inspection that (91) holds true whenever 1 < k <
min{a, §} or max{a,f} < k < K, thus settling the case o = § as well. To complete the proof
we need only show (91) for min{c, f} < k < max{c,f}. This is indeed the case when o < §,

for we then have

k k
Sa-b)=1+Y (nn-m) 21, k=a,a+1,...,0~1 (92)

1=1 1=1

as a result of (87). On the other hand, if § < «, we first note that

k k

Sa=b)=~1+Y (n=m), k=88+1,...,a—1 (93)
s=1 1=1

and (91) follows if we show that % .(n, — m,) > 1 on the range 8 < k < a. With the

inequalities (87) in mind, we need only show that each one of the equalities

x A
Z(n,’—mg)=0, kzﬂaﬂ"}'l,"';a_l (94)
1=1

leads to a contradiction: The equality (94) for k = § is equivalent to f(n; — mi) = 0, whence

ny = my = ... = mg, and the inequality (91) for ¥ = £ + 1 easily yields ng41 — mgyy =

ny —mgy; = mg — mger > 0, a conclusion in contradiction with mg < mg4; (since here

B < K). On the other hand, if § < k < o, then the equality (94) for such k can be rewritten as

n; = 'g Z m, (95)



while (91) for k¥ + 1 again implies nx+1 — mg4y > 0 (or equivalently, myy; < n1), so that now
we have m; = my = ... =mg < mg41 < ... € Mg4r < ny. The strict inequality in this chain

of inequalities contradicts (95), and therefore (94) cannot hold. |

8.3 Appendix C

We provide here a result that subsumes Lemma 11. First we introduce the definition of the
strong stochastic ordering on the collection of IR-valued r.v.’s [37, 39]: Let X and Y be two
such r.v.’s. We say that the r.v. X is stochastically smaller than the r.v. Y, and we write
X <t Y, if (15) holds for every increasing mapping ¢ : IR — IR, provided the expectations in

(15) exist.

Lemma C.1. Consider an element n of INX with ng < n; €... < ng, and assume

that b > 1 tasks need to be scheduled. Given a non-empty subset I of {1,..., K}, for each

I-allocation b in A;(b), there exists another {1,2,...,|I|}-allocation b’ such that
k ’ < k B .
(B 0, 4} Soe max{So, 10, ) (96)

Proof. With |I| = L, we have the representation I = {k1,...,kr} where 1 < ky < ... <kp <
K. For any I-allocation b in A;(b), we define the element b’ of IV as b = by, I = 1,..., L,
and by, = ... = bl = 0. This vector b’ is clearly an {1,..., L}-allocation, and under the

assumption on n, we see that
nl+b;=nl+bk,5nk,+bkp {=1,...,L (97)

since | < ky for all 1 =1,..., L. The enforced statistical assumptions readily imply SL'%; <st

ki
‘nk,+bkl’

p. 256). n

I=1,...,L, and (96) follows by a standard coupling argument ([37], Example 8.29a,
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