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Abstract—In this paper, we consider the rate control prob- Fairness definitions can be generalized in a nice way by
lem with the objective of maximizing the total user utility. It using utilities. Utility of an user is a function connecting
takes into account the possible differences in user require- the pandwidth given to the user with the “value” associ-

ments, and also provides a framework for achieving a wide 504 yith the bandwidth (note that throughout the paper,
range of fairness objectives. We propose a simple algorithm .« . . .
session” and “source” are used synony-

for achieving the optimal rates for this problem. The algo- the terms “user
rithm can be implemented in a distributed way and does not MOusly). The utility could be some measure of say, the

require the network to know the user utility functions. In  Perceived quality of audio/video, the user satisfaction, or
our algorithm, the network communicates to the user the even the amount paid by the user for the bandwidth allot-
number of congested links on the user’s path, and the user ted to it, and could be different for different users. Thus it
(end-host) adjusts its rate accordingly, taking into account provides a framework to differentiate among users on the
its utility function and the network congestion feedback. We - pagis of their requirements and/or revenues. One possible
ﬁ?r?r\::l ég:\’/‘é?gezrlilif'eso‘;?i?nﬁ)r(r']of:tzsemat'on that our algo- fairness objective, as advocated recently by Kelly in [7], is
' to allocate bandwidths such that they maximize the sum of
the user utilities (assumed to be concave functions), sub-
|. INTRODUCTION ject to the link capacity constraints. This is also the prob-

Effective rate control oklastictraffic sources [6] is re- lem that we address in this paper. The rate control algo-
quired in order to control congestion in a communicatioihm that we propose achieves the optimal rates for this
network. Elastic traffic sources are those which do not rf&fal user utility maximization problem. The algorithm
quire a fixed rate of service and can adjust their transmig-distributed and does not require the network to know
sion rates based on the congestion level of the netwoi€ user utility functions. Note that this algorithm can be
Examples of elastic traffic sources include internet tra#Sed for achieving a wide variety of fairness objectives by
fic sources using TCP, and sources using ABR serviceGhoosing the user utility functions appropriately (for ex-
ATM networks. A rate control strategy should ensure thatmple, if all the utility functions are logarithmic and same
the network is used efficiently, while guaranteeing that ti@r all users, the achieved rates are proportionally fair [7]).
traffic offered to the network is such that the congestion atin the algorithm proposed in this paper, the network
the network resources remain within an acceptable levebmmunicates to the uséte number of congested links
Besides these, it is also desirable that the rate control @hthe user’s path On congestion, the user decreases its
gorithm would ensure that the available network resourcese based on this network feedback; otherwise it increases
are shared by the competing streams of traffic in some fag rate based on the derivative of its utility function. An at-
manner. tractive feature of this algorithm, particularly from a prac-

There can be many different measures of fairness, diwl perspective, is the simplicity of both the user and net-
of the most well-known being max-min fairness [1]. Mostvork (link) algorithms. Moreover, note that the congestion
of the notions of fairness explored in the literature treat afiformation that the network needs to provide the user (i.e.,
users equally. The differences in rate allocations are orhe number of congested links on its path) can be conveyed
due to the different path bandwidths and processing cagaonly |log, L| + 1 bits, whereL is the maximum num-
bility limitations. However, users in general have widelper of links on a user’s path. This implies that in most real
varying bandwidth requirements, and therefore it is desiretworks, including the internet, just one byte in the data
able that any fair rate allocation scheme would take inpacket/ACK packet header should be sufficient to carry the
account this heterogeneity in user requirements. network congestion feedback (note that one byte would al-
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low 255 links on a user’s path). dimensional space whete is constrained to lie due to
Several alternative approaches to this system utilif§), i.e., Xs = {(z1,...,75) : s € Xs; Vs € S}.
maximization problem have been proposed in recent [fhus the set of constraints in (3) can be equivalently writ-
erature [9],[8],[10],[11]. These approaches are surveysh asz € Xg. Let X denote the region in thé&s|-
in Section VII, where we also compare them with owimensional space defined by the| constraints in (2).
approach. It is also worth noting here that whereas dhus X;, = {(z1,...,2|5]) : Yscg,¥s < a VI € L}.
these existing approaches requstect concavity of util- Let X = Xg N X;. Thus the problenf can be equiva-
ity functions for guaranteed convergence, we require ongntly written as the maximization of the sum of the utility
concavity. Thus linear utility functions are allowed irfunctions, as stated in (1), subjecttae X. Note thatXg
our case, but not in the earlier ones. Moreover, our ag-compact (i.e., closed and bounded) and convex,’and
proach also guarantees convergence for a wide clasdsafonvex. ThusX is compact and convex. We will assume
non-differentiable functions, which are outside the framéhat the problen® is feasible, i.e. X is nonempty. Thus

work of the previous approaches. an optimal solution exists, although it may not be unique.
The paper is organized as follows. In the next section we
define our problem formally. In Section Il we present the 1. ADISTRIBUTED ALGORITHM

basic algorithm and describe a distributed implementation - .
: : . Now we present a distributed algorithm that solves the
of it. Section IV presents the convergence analysis forour,. . " ) )
) . . . . optimization problem formulated in Section I, and de-
algorithm, while Section V describes some experimental . . . .
. . . cribe how it can be implemented in a real network. The
results. In Section VI, we discuss a few issues related’10 . . : .
. .—..convergence analysis of the algorithm is presented in the
our approach. We compare our approach with the existin . . . . .
. : . : neéxt section. The basic idea behind the algorithm is taken
approaches in Section VII, and conclude in Section VIII. : ) : -
from [5], where an iterativeubgradient based optimiza-
Il. PROBLEM STATEMENT tion method has been proposed for a very general class of
convex optimization problems. However, the optimization

. . . ; rocedure in [5], ifimplemented in our case, would require
tional links, where a link € L has capacity;. The net- P [5] P .

. . ) entralized coordination, and is therefore not practical for
work is shared by a sef of unicast sessions (users). Le : : : )
. ) arge networks (we describe more details on this algorithm
L, C L denote the set of links used by sessioE S. .

; . in Section VI). The algorithm presented below is a mod-
Also let S; C S denote the set of sessions that use lin . ) 9 . 'p oL

. - : .__Ifled version of the algorithm in [5] which is amenable to
[ € L. Each session has a minimum required transm|55|8n . . ) )

. ) o Istributed implementation and yet retains the convergence
rateb, > 0, and a maximum required transmission rate . - :
T . . properties of the original algorithm.

B; < oo. Moreover, each sessionis associated with a
utility functlon_Us : Ry o R, Whlch IS ass_um(_ad to t.)eA. An iterative optimization algorithm
concave, continuous, bounded and increasing in the inter-
val X, = [bs, Bs]. Thus sessiors has a utility U, (z5) Before we describe the algorithm, consider two positive
when it is transmitting at a rate;, wherez, € X,. Our sequence$a,} and{s,} , with the following properties:

objective is to maximize the “social welfare”, i.e., sum of

Consider a network consisting of a sktof unidirec-

the utilities over all the sessions, subject to the link capac- lim o — 0 i o — oo @)
ity constraints. The problem can be posed as: n—oo — o
p- lim G, =0 > Bn=00 ®)
max Z Us(zs) 1) e n=1
s€s lim 2 = (6)
subject to n=00 By
>z, < g VIEL (2) For examplep,, = (1/n) andg, = (1/y/n) satisfy (4)-
SES] (6)
zs € Xs VseS (3) Now consider an iterative procedure to soRewhere

(n) - -
The constraints (2) indicate that the total rate of the sd&. » (e rate of session € 5 at thenth step, is updated

sions using a link cannot exceed the capacity of the link. ' A subgradient, defined in the context of convex/concave functions,

Letz = (zs5,s € S) denote the _VeCtor_Of the SesSiORan be viewed as a generalized gradient, and may exist even if the gra-
rates. Also letXs denote the entire region in thé&|- dient does not. See the appendix for the formal definition.
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as follows links and the session sources/receivers like processors in a
distributed computation system. Let liikbe responsible

St _ { [z + a,U'(z$) 1y, if & =0 (7) for keeping track of;. Also assume that the rate compu-

: [ x&") — ﬂnégn) Ix. if égn) >0 tation for a session (according to (7)) is carried out at the
source of the session.

where[ - ] x, denotes a projectidron the setX ;, and The algorithm described in the last subsection is a syn-

(n) (n) chronous algorithm. In a large network, due to practi-

€s = Z € @) cal considerations, we would like to implement an asyn-

leLs chronous version of this algorithm. In the asynchronous

and version, the algorithm remains the same except that all
updates occur asynchronously, and are triggered when
65”) = 1(2 M > ¢) (9) rates/congestion indicators change, or after some fixed

$ES) time intervals, or a combination of both.
B 0 if Y $gn) < ¢ Note that a session nee_ds to know only the total num-
= L (n) (10) ber of congested links on its path and not the exact set of
if ZseSl s >

congested links. To see an example of a distributed asyn-

The function1(-) in (9) is an indicator function. ThusCchronous implementation of our algorithm, consider an
ACK-based protocol where the ACK packets (going from

the variableel(") can be interpreted as the “link conges- _ :
o . ) (n) : the receiver to the source of a session) use the same path
tion indicator” for link 1. Note thates™ is the number of 4,0 qata packets but in the backward direction. Let each
“congested links” on the path of the session, i.e., the lin K packet have a congestion notification figld When
on its path for which the capacity constraints are violateﬁigoes through a link, the link adds the congestion indica-
Therefore, as (8) state&” is the sum of the link conges-fion bit to the entry in théZ-field of the ACK packet. Thus
tion indicators on the path of sessienAlso note that the \ynen the ACK packet reaches the source node, the field
session rate update procedure described in (7) inherepffithe packets contains the number of congested links on
assumes that the functidh, is differentiable inX;. This, e session’s path, which is used in the computation of the
in general, is not necessary. Uf; («;) does not exist as pey rate at the source. Let each data packet contain a field
some pointz; € X;, it can be replaced by a subgradienk jngicating the current rate of packet transmission for the
of U, atu;. session. The links on the path of the session read the field
The update procedure of (7) basically states that Wh@hn order to know the current rate for that session. These
any of the links on the path of a session is congested,dte values are used to update the link congestion indicator.
backs off by decreasing its rate, whereas when none of #}¢ |ink and session algorithms are described in Figure 1.
links onits path is congested, it increases its rate according g ditions (4)-(6) are required for the iterative process
to the derivative of its utility function at that point. Herey, converge to the optimum. In reality, however, it may not
ay, andf, denote the step-sizes for increment and deciigs feasible to decrease the step-sizes or the step-size ratios
ment, respectively. Note that when any of the links on tryneyond a particular point. For the case when step-sizes
path of sessions is congested, the reduction in the ratg 59 3, are kept fixed, a slightly weaker convergence
of the session is proportional to the number of congestpggun holds, as we state in the next section. A similar re-

links on the session’s path. _ . sult also holds when the step-sizes may not be constant but
As we will show in the next section, the step-sizés converge to some positive values.

and (3, need to satisfy (4)-(6) for the algorithm to have one grawback of the algorithm described in Figure 1
guaranteed convergence. Note that (6) roughly implies th@tnat the actual rates need to be communicated from the
the increment of the rate of a session (when there is fi8ers to the links. In practice, the total rate of traffic on a
congestion), needs to be (asymptotically) much smaller|afk can be estimated, and this estimated rate can be used to
compared to the decrement (when there is congestion).,pgate the link congestion indicator. In all the experiments
that we have carried out, our algorithm converged to the

optimum rates even with this modification (see Section V).
Now let us see how the iterative procedure described

above can be implemented in a distributed way, using the V. CONVERGENCEANALYSIS

B. Distributed implementation

’Since X, = [bs,Bs], thus for any scalary, [ylx. = Now we investigate the convergence properties of the
min(Bs, max(bs, y)). algorithm outlined in the last section.
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Link [ 's algorithm

1. Read ther field of all data packets going through the
link to know the current session rates.

2. Periodically update; as

el(n+1) — 0 If ESES[ .’L'%:; S Cl (ll)
1 if ESES[ Ts =~ >

3. Adde, to theE field of all ACK packets going through
the link. \

SO

Sessions 's algorithm (b) A muttiink network
1. Read the¥ field of all ACK packets to know the current
number of congested links on the path, and accordingly
updatezg;.

2. Periodically compute the new rate as

Fig. 2. Two example networks

Theorem 1:For the iterative procedure (7)-(10), and
with the step-sizes satisfying (4)-(6),

2

nt1) :{ [20 + 0, U () ]y, i & =0

12 i (”),X* =0
[ — 8,8 1x. a5 o 12 A p(z )

We prove the above theorem in the Appendix I.

3. Send traffic at the current rate setting the fieldR to Note that from the continuity ofU it follows that
limy, o0 U(w(")) =U*.

Ts.
Fig. 1. Link and session algorithms C. Convergence with constant step-sizes

If the step-sizes are constant, we can not guarantee con-
A. Assumptions vergence to the optimum in the sense stated in Theorem 1.
) However, it is possible to show a slightly weaker result,
We prove the convergence of our algorithm for the sy ciated below. Lefs(X*) be the set of all points at
chronous case only. In addition to the assumptions alreagdyjisiance of or less fromX*. i.e. Cs(X*) = {z :
mentioned in the last section, we will make a few addi;, x+) < 4}. T

tional assumptions for the convergence analysis. Theorem 2:Consider the iterative procedure (7)-(10)
Assumption 1. (Bounded slopeyr everys € S, as < wijth 8, = 8 anda, = o = 5 for all n. Then given

Ug(zs) < As Vs € X; whereas > 0 and A, < co. anyd > 0, there existgd; > 0 andsj; > 0, such that for
If Uy is non-differentiable inX (i.e., U; does not exist anyq,3 satisfyingd < 8 < 85 and0 < (a/B) =n < 7s,

at all points inX;), we will assume that Assumption 1

holds for all subgradients df; in Xj. Tim_p(z™, C5(X*)) =0
Assumption 2: (Interior point).et int(X;) denote the  The proof of the above theorem is along the same lines
interior of the setX,. Thenint(X ) N Xg # ¢. as that for Theorem 1, and is stated in Appendix Il.

It is easy to see that the interior point assumption holds
ifeg >0 VieL b;=0 Vse SandB; >0 Vse S. '
Also note that feasibility of the problefis also implied ~ Next we study the convergence properties of our algo-

V. EXPERIMENTAL RESULTS

by the above assumption. rithm through simulation experiments carried out on some
simple networks. Our simulations are carried out in an
B. Convergence with diminishing step-sizes asynchronous time-varying environment. In all the experi-

mental results presented here, the session rates are not ex-
Let X* be the set of optimal solutions Bf LetU(z) = plicitly conveyed to the links, and the links set the link
>ses Us(zs) be the overall user utility, anti* be the cor- congestion indicators based on the estimated rates.
responding optimal value. Thus* = U(z*) for any  Figure 2 shows the two networks that we consider, both
z* € X*. Now we proceed to state the convergence rggopted from [12]. Figure 2 (a) shows 4 sources sending
sult for our algorithm, when the step-size sequerees} traffic to a single destination. The sources send traffic to

and{, } satisfy (4)-(6). a common router through individual access links (each of



INFOCOM 2001 5

intuition. Since we are using constant step-sizes (instead
of step-sizes satisfying (4)-(6) required for exact conver-
gence), the fluctuations of the link congestion indicators
translate to fluctuations in the session rates. These fluctu-
ations (around the optimal values) for the case of constant
step-sizes can also be expected from Theorem 2. In the
figure, comparing (a) with (b) and (a) with (c), we observe
that as expected, larger valuesaf lead to faster con-
vergence (however, note that the time taken for a session
arriving at an unloaded link to reach the full link capacity
depends only omy, as we see for session S1). However,
there is a tradeoff involved here, since makuags large
also makes the rate fluctuations (around the optimal val-
ues) larger. In practice, we would like to have large step-
sizes initially (to ensure fast convergence) and small step-
sizes later (to reduce fluctuations when the rates are close
to the optimal values). Note that we would also like to have
a small% to ensure that the algorithm converges close to
the optimal solution (Theorem 2). However, in practice,
setting% to a very small value could reduce the average
throughput, as one would intuitively expect. Moreover,
that might also amount to makingtoo small (thus slow-
ing down convergence time) or makirtjtoo large (thus
increasing fluctuations). In the rest of the simulations pre-
capacity 20 packets/ms) which then sends the traffic santed in this sectior% is setto 0.2.
the shared link (of capacity 12 packets/ms). The numbersConsider again the single-link network but with all the
shown across the links in the figure are the link propagé-sources, as shown in Figure 2 (a), the weightof the
tion delays (we neglect any processing delays in our siseurces being (6,12,6,12). SO is active during 0s-60s, S1
ulations). The multilink network consists of one long sesturing 10s-40s, S2 during 20s-50s, and S3 during 30s-60s.
sion and several short sessions. In the multilink networkigure 4 shows the transmitted rates for the 4 sources dur-
the capacities and the propagation delays for the netwdnly the interval 0s-60s, along with the optimal (theoretical)
links are 12 packets/ms and 1.5 ms respectively, while ttetes, shown by straight lines (in the figurez 0.001 and
same for the access links (not shown in figure) are 20 pagk= 0.005). The thickening of the plotted curves are due
ets/ms and 2 ms respectively. The user utility functions small, regular but rapid fluctuations of the transmitted
arews Inz, (thus the optimal allocation is weighted prorates, the reasons for which have already been discussed
portionally fair), with the minimum and maximum ratesn the previous paragraph. The plots show that the rates
being 0.1 packets/ms and 20 packets/ms, respectively ({feach the optimal values and fluctuate close to it. As al-
the values of the weights,, see later). In this section, weready mentioned, in practice, these fluctuations around the
assume that the scheduling policy is FIFO. All the simul@ptimal values could be reduced by reducing the step-sizes
tion results shown in this paper are for constant step-size@se the session detects that rates are fluctuating around
a, (. the same mean value. The link utilization observed in this
First we investigate the effect of 3 on the convergence case was close to 98%.
properties of the algorithm. Consider the single-link net- Next consider the multilink network with 10 links. Ses-
work with only the sources S1 and S2, with = wy = sion S1is active during 15s-45s, S5 during 0s-45s, S9 dur-
12. S1 starts sending traffic at time t=0 while S2 starts g 30s-60s and S10 (the long session) during 0s-60s. All
t=3 secs. Figure 3 shows the plots of the transmission raties other sources are inactive. Figure 5 shows the trans-
for three different sets of values af 3. Note that the plot- mitted rates for the sources S1, S5, S9, S10 during the
ted curves show some small and regular fluctuations. Thigerval 0s-60s, along with the optimal rates £ 0.0005
can be explained as follows. When the total traffic is clog@d 8 = 0.0025). The weights,; for S1, S5, S9 are all
to the link capacity, the link congestion indicator fluctui2, while that for S10 is 18. These plots too demonstrate
ates rapidly between 0 and 1, as can be expected frtm fact that our algorithm achieves rates that are close to

te (packets/ms)
%

mission rate (packets/ms;

Transi

n rate (packets/ms)

Transmissiol

sion rate (packets/ms)

missi

Fig. 3. Effect ofa, 8
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the optimal rates in an asynchronous slowly time-varying VI. DISCUSSION

environment. In this section, we will first describe the optimization

method proposed by Poljak in [5] (which motivated the

Note that in all the simulation results presented abo‘(?evelopment of our algorithm) and point out its differ-
we have assumed that the buffer is large enough to avgigces with our algorithm. Then we investigate the question
any overflow. In practice, however, we might want th@nether we could reduce the congestion feedback from the

backlog to remain within some target backlog length, fQetwork (to the session) in our scheme even further, say to
prevent buffer overflow or avoid excessive delays. In thgfst one bit.

case, we could modify our algorithm such that the link
congestion indicator is set to 1 not only when the total rat¢ Poljak’s algorithm

at the link exceeds the capacity, but also when the back-ln 51 th thor b n iterative primal algorithm
log size exceeds the target backlog length. The expe%ri— [5], the autho _Proposes an rierative primat aigo
. - . Tor convex constrained minimization problems. As shown
ments that we have carried out indicate that our algorlthlm 5] the algorithm conver o th timal set of sol
with this modification achieves rates close to the optim:ﬂ[ ], the algo .CO erges fo the op alseto ?0“

. . . tions under some fairly general assumptions. According to
ones, while keeping the maximum backlog close to thettr- loorithm oresented in 151, th date procedure in our
get backlog length, provided the target backlog length 2& algo presente [5], the update procedure in ou

. . case would be
not too small. Figure 6 shows a representative example 10

demonstrate this fact. The figure shows the rate and buffer [ om VU (z(™) ] if 2 € X
plots for the onelink network, where target buffer length ig("+1) — T IIY(g(w(">)II Xs o L
set to 400 packets anrd= 8 = 0.0025. [ (™) — Yo g 1xs if 2" ¢ X7,
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or equivalently, stated in terms of session updates (codifferent step-sizes: and instead of the single step-size
pare with (7)), v.

2

VU (z()
[ xgn) . Z(_Z)( ]X)S if 20V ¢ X7, Although 'usir?g one pyte of the data pgcket/ACK packet
header (which is sufficient for our algorithm) for network
congestion notification does not introduce a significant
overhead, it is still interesting to investigate if it could be
) > reduced even further, say to just a single bit. In that case
m =0 D =00 (13) " the algorithm could be implemented just with the proposed
=t Explicit Congestion Notification (ECN) bit. The obvious

However, this update procedure can not be implementedification to our algorithm in that case would be to do
in a distributed and scalable way. Firstly, due to the prega OR of all the congestion indicator bits of the links on a
ence of the term§ VU (z(™)|| and||¢(™)|| in the session session’s path (rather than the SUM). We show by a simple
rate-update procedure, each session needs to have sexaeple that with this modification, our algorithm may not
up-to-date information from every other user and from tlemnverge to the optimal solution. Consider a simple net-
links. Secondly, note that the session also needs to knewark with two links and three sessions, as shown in Fig-
if (") € X; or not in order to decide whether to increasere 7. Sessions; ands» use one link each, while session
its rate or to back-off. Thus the user would need to know uses both the links (the links have the same capacity).
if there is some link in the network that is congested, arithe sessions have identical utility functions, minimum and
back-off if there is (even if the session is not using thmaximum rates (the minimum rate is zero while the max-
link). This is possible in a centralized system with a ceimum rate is much larger than the link capacities). Let
tral server keeping track of all link states and communicdtie step-sizes,, andg,, be the same for all the sessions.
ing them to the sessions. However such a solution does fiben if the sessions start at time 0 and always update their
seem feasible for implementation in a large network. Otmtes synchronously, then it is not too difficult to see that
algorithm, on the other hand, is amenable to a completelly the sessions always get the same rates, irrespective of
decentralized implementation. We, however, require twehat their common utility function is. Thus the longer

n [ (™) . i .
nt1) _ { [ T il )II ly. ifz™ e Xy B. One-bit congestion feedback

where the step-sizes, satisfy the following conditions
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@ gs_zzj proach, as we have already discussed. Also note that in
certain cases, computing a maximizer (as required by the
link 1 link 2 user in the algorithm in [8]) may be significantly more dif-
f/Tﬁ ficult than just computing a derivative (as required in our
algorithm).
G=5 In [12], the authors suggest a randomized marking based
x,(0) = %,(0) =x,(0) =0 implementation of the algorithm in [8], that uses only one

bit for the network congestion feedback. Here the sin-

gle congestion indication bit is marked probabilistically

Fig. 7. An example with one-bit congestion feedback (and independently) at each link on the user’s path. The
marking probability is such that the user can estimate the

. . . _session price by seeing the proportion of marked packets.
sessiorsz eventually gets half of the capacity of each “nﬁowever, the authors do not provide any proof of con-

(the S ame as the shorter sessions), Wh_greas I should rQigé\@ence, (note that even if the algorithm converges, the

Then x(n) = x,(n) =x,(n) foraln

L o . _ tion indication field as compared to the algorithm in [8],
minimum required in our case), it seems unlikely that SOML+ 45 we have argued before, just one byte in the packet

s?mple modific_at_ion of this algorithm would be_ able to PT%eader do not seem to be a significant overhead. Moreover,
vide determlnls.tlc convergence.guarantees in such Ca$R8: randomized marking policy of [12] can be applied to
Whether there is some alternative approach that achle&f, algorithm too, and thus the number of congested links

this remains an interesting open question. can be implicitly conveyed through that single congestion

_In practice the number of bits allocated to the CONGE; |nitial simulations indicate that our algorithm performs
tion indication field would be fixed by the protocol. If this, o with this modification

field is less than the minimum required in our case, one

possibility i_s to_go for heuri_stic approac_hes_. Thus i_nste _‘fjhms for this system utility maximization problem. Inter-
of communicating the required congestion information é‘stingly, these algorithms allow a wide variety of conges-

rectly, it is possible to convey it some implicit way USINGion price functions. However, the algorithms in [9] solve

fewer Qumber of bits (by some probabilistic marklr!g ,pO|6nIy an approximate version of the original problem rather
icy, for instance). There could be several such heuristic

Ran the actual problem. The authors do suggest a choice
proaches, although their convergence properties, both t P ag

ical and ) I e further i > = Pprice functions for which the solution provided by their
oretical and experimental, require further investigation. algorithms can be made arbitrarily close to the actual solu-

tion. However, this choice of price functions could make
the congestion prices vary over a wide range, resulting in
Next we describe some existing algorithms for the sameactical difficulties, that we have already discussed above.
problem that we are trying to solve, and compare theseAnother related, but different, approach is proposed
with our algorithm on several aspects. in [10]. In this work, the authors propose an additive
In [8], Low et al. propose an algorithm based on thi@crease-multiplicative decrease scheme for reaching the
dual approach (note that our algorithm is a primal algsocially optimal solution. Here the user adjusts its rate
rithm) for the same problem. Here each link in a netwolased on the proportion of marked packets or end-to-end
maintains a congestion price (“link price”), which it calcu{measurable) losses. However, the algorithm is presented
lates based on the aggregate rate on that link. The netwtsrksome specific utility functions, and it is not clear how
conveys to the user the sum of the link prices on its pati,address the case of more general utility functions. Also,
which then chooses a rate so as to maximize its profit baglee convergence has been proved under certain simplify-
on this “session price”. A problem with the practical iming assumptions, some of which are not likely to hold in
plementation of this algorithm is that the congestion pricg@sactice.
(which are basically the dual variables) are real numberdn [11], the authors present a window-based flow con-
and could vary over a wide range. This poses a difficultyol approach for the same problem. Here the users choose
in communicating the price to the end-host using a smathme weights and the window-based flow control scheme,
number of bits. However this is not a problem in our an convergence, allocates rates that are proportionally fair

In [9], the authors propose both primal and dual algo-

VIl. RELATED WORK
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with respect to those weights. The user chooses the ngxt S. Low, D. E. Lapsley, “Optimization Flow Control, I: Basic
set of weights based on the earlier weights and the allo- Algorithm and Convergence'lEEE/ACM Transactions on Net-
cated rates. The information on the state of congestipn VOrking vol. 7, no. 6, December 1999. o

in th Ki d h imolicitly th 9] F. Kelly, A. Maulloo, D. Tan,“Rate Control for Communication
In the network is C(_)nv_eye to the user Imp 'C_lty t r0_u9 Networks: Shadow Prices, Proportional Fairness and Stability ",
the packet round-trip times. A drawback of this algorithm  Jjournal of Operations Research Socijetyl. 49, no. 3, 1998, pp.

is that it is a two-level optimization algorithm, i.e., after ~ 237-252.

choosing a set of weights, the users have to wait till tfE] S- Kunniyur, R. Srikant,"End-to-End Congestion Control

rates have converaed or are close to it (WhiCh mav not Schemes: Utility Functions, Random Losses and ECN Marks”,
g y Proceedings of Infocom 20pMarch 2000.

always b? easy to detECtv_ since the convergence mMay[ B¢ R. La, V. Anantharam,“Charge-Sensitive TCP and Rate Control
asymptotic), before choosing a new set of weights. More- in the Internet” Proceedings of Infocom 20pMarch 2000.

over, the authors in [11] provide theoretical convergen€] S.Athuraliya, S.Low, D. Lapsley,“Random Early Marking”, Sub-
guarantees only for the simple case where all the sessions mitted for publication, www.ee.mu.oz.au/staff/slow/research/

share a single bottleneck link.

Also, as mentioned in Section I, unlike all these pre-
vious approaches, our algorithm guarantees convergencgince our analysis is based on subgradient methods, let
even for linear and non-differentiable (concave) functiongs formally define a subgradient [2](pp. 490) before pro-

ceeding further.
VIIl. CONCLUSIONS ANDFUTURE WORK Definition 1: Consider a convex and continuous func-
, , o tion h(z) defined on a convex sét C R*. Then a vector

In this paper, we considered an optimization bas_ed %)6 € ®* is called asubgradienf / at a pointz, € C if
proach to flow control. We assumed that each user is as$- tisfies
ciated with a (possibly different) utility function, and pre-
sgnted a_simple distributed algorithm that achieves the so- h(z) — h(zo) > (wo,x — o) Ve € O (14)
C|aIIy. optimal rates. We proved the convergence of our, - general subgradient at a point may be non-unique.
algorithm for the case of synchronous updates, and experi- f subaradi N led subdiffer-
mentally demonstrated its convergence in an asynchronoue.) set of su dra lents at a pqlnt 1S caea er
environment. Bftial If the gradient ofh(x) exists at a point, then the

_ _ _ _subdifferential at that point consists of only one subgradi-
There are several interesting and challenging questiQs \vhich is the gradient at the point.
that merit further investigation. Important theoretical _

questions include that of investigating the convergence o
i - Now defineg : R — R as (z) =

the algorithm for the asynchronous case, and for the casecs; Ts ~ Cl- g oy = g\T) =

where the session rates are estimated rather than beingesez 1ax(0, gi(z)). Then the functiory is convex, and

plicitly communicated from the users to the links. On th&(z) > 0 iff = ¢ X;. Thus the entire set of con-

practical side, convergence and other associated proper#&ints in (2) Cir)‘ be replaced by a single co(r;?tralnt

of the algorithm also need to be studied extensively fofz) < 0. Letv; denote a subgradient &f, atzs .

APPENDIX |: PROOF OFTHEOREM 1

TFor eachl € L, defineg; : §R|+S‘ — R asg(zr) =

larger and more complex networks. Thus if U, is differentiable, then{™ = U7(z{™). Let
o™ = " M, ...,vfg‘)) be the vector of the subgradi-
REFERENCES ents. Thus(™ is a subgradient d atz(™. Now consider

[1] D.P.Bertsekas, R. G. Gallagh@ata Networks Prentice Hall, the vectorss(™) = (é%"), éé") é(n)). Note thate(™ is a

s €lg]

1992. .
subgradient of atz(™.

[2] D. P. Bertsekas,Nonlinear Programming Athena Scientific, 9 b atz . . .
1995, Now let us restate our algorithm in terms of the notation

[3] D.P.Bertsekas, J. N. Tsitsikli®arallel and Distributed Compu- just introduced. Note that the iterative update procedure of
tation: Numerical MethodsAthena Scientific, 1989. (7)-(10) can be stated as

[4] R.T. RockafellarConvex AnalysisPrinceton Univ. Press, 1970.

[5] B. T. Poljak, “A General Method of Solving Extremum Prob-_ (n+1)

lems”, Soviet Math Dokladyvol. 8, no. 3, 1967, pp. 593-597. (n) (n) . n
[6] S.Shenker, “Fundamental Design Issues for the Future Interneyf, [z + apo'™ ]x !f g(z'™) <0 (15)
IEEE Journal on Selected Areas in Communicatioms. 13, no. [ (™ 4 ( o) — ﬁné(”)) Ixg if g(x(”)) >0

7, 1995, pp. 1176-1188.
[7] F. P.Kelly,“Charging and Rate Control for Elastic Traffi&u- \yhere

ropean Transactions on Telecommunicatiornd. 8, no. 1, 1997, 5 () ~(n (n
pp. 33-37. o™ = (", 5", ... 55)) (16)
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and

it ™ =

(
p 17
it ™ >0 an

Now we state a few simple facts that will be useful to uSase 2 z(*
in our analysis. Note that from the definition of a subgran this caseg(z(" ))
dient, it follows that if(z) is a convex function, then for {z : g(z) < g(z

any pointz; € {:E h( ) < h(xo)} (w(),(IIl) < (wo,xo)
Also note that from Assumption 1, it follows that there ex
ists somez > 0 andA < oo such thats < |[o™|| < A
for all n. Moreover, it is easy to see that for anysuch
that g (=™ )) > 0 (i.e., (™ ¢ Xp), ||| is bounded as
1< [lé)] < |S]IL).

Now letD, = {z : © € X1,U(z) > U* — €¢}. We

prove two lemmas before we proceed with the proof %t

Theorem 1.
Lemma 1:Choose any > 0. Then for everyz. €
int(D.) N Xg there exists & > 0 such that the relation

"D — & 1> < ]2 — &> = ren
holds for all sufficiently large: for whichz(™) ¢ D..
Proof:

Sinceint(X7) N Xg # ¢ (Assumption 2), it follows that
there existsi, € int(D¢) N Xg. Chooser, > 0 such that
z € D, for all = satisfying||z — z.|| < 7.. Now suppose
thatz(") ¢ D, for somen. Consider the two cases:
Case 1 2™ € X :

It follows that D, C {z : U(z) > U(z™)}. Thus
(™, z) > (™, z™) for all z € D,.. In particular,

chooser = T — 7er EZ;II € D, (note|[v™]| > a > 0).

Thus
(n)
0™, z™M) < (™ 3z — v
" T
= (™, 3 — 7| [p™)]| (18)
Therefore
||w(n+1) o j€||2
= [ 2™ + apv™ 15y — 2|
< 2™ + o™ — 7|2 (19)
= Iz — &|]” + o2 [v™]?
+2ap, (2™ — Z, ™)
< (™ = Gl + oo
—2a, 7| [v™]| (20)
< 2™ — 2|12 + A%a2 — 207y (21)

Note that (19) follows from the fact that € X g, and (20)
follows from (18).

10

Sincea, — 0, a, < (aF./A?) whenn is sufficiently
large. For all such, from (21), we get

2@ — | ? < ||l

— I |2 —ar.op (22)
)¢ Xy,

0. Thus it follows thatD, C XL C
("))}, Therefore(é™, ) < (&), £("))
for all z € D,. In particular choose = &, + 75— €

D, (note||é¢™|| > 1 wheng(z(™) > 0). Thus

7
()
llet|

e(n)

&, ™y > (&™) T ”||)

yTe + Te

(8™, &) +7lle™|] (23)

Iso, from (17), it is easy to see thai(™, &™) = 0 and

[[5()]|| < [Jv™|| < A. Therefore,

||$ (n+1) _ ~

= ([«

<

- /8n~(n) ]XS - 576“2
+ o™ — 0n glr
— &[|* + BZII
+aip |[9][* — 26, (a
+200, (™) — Z,5M)
&™) — &|* + |SPILP8,
+A4%a2 — 268, (z™ — 7, ™)
+2ap, (2™ — Z, 5™)

_ie||2
P

") _ g, é™)

)

= o

(24)
Since(ay,/B,) — 0, for sufficiently largen,

|SIPILI? B, + A%af < 2|S]P|LI6; (25)

Also, from (23), it follows that

—28, («" 2

(26)

Let B = max,cg(Bs—bs). Sincez™, z, € Xg, therefore
12 — 7| < |S|B. Thus

200, (2™ — Z(, 5™)
< 202 — ]| |5

< 2a,|S|BA (27)

Since (o, /Bn) — 0, 2AB|S|ay, < 7, for sufficiently
largen. For all suchn, from (26),(27), we get

—2571(513( — Fe, 6 en )) + 20 (z (n) _ :Z-E’{)(”))
< =270, + 2AB|S|ay,
S _feﬁn (28)
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Now from (24),(25),(28), we get n > ny . Pick anyn > ny .. There can be three cases:
Case I n =n;, for somej >’ :
|z — 32 < |lz™ — & + 2|8 L) In this casez™ € D,. Sincez(™ € Xg, hence the fact
S (29) 2z e D, also implies that:(™ € D,. Thus from (34), it

trivially follows that
SinceB, — 0, B, < 7/ (4]S|?|L|?) for sufficiently large

n. For all suchn, from obtain from (29), pz™, X*) < & (35)
. < 6 (36)
(n+l) _ =12 < (n) =12 _ "€
2 Tl <l Zell 2 Pn (30) Case2 n =nj,+ 1forsomej > i :

Note thatz("i<) € D, (see Case 1). This implies™i<) e

. < - _
Since(ay, /Br) — 0, ay, < G, for sufficiently largen. For X = Xsn X, Thus

all suchn, from obtain from (30),

_ 2™ — (M)
Te

||$(n+1) —F | < ||$(n) —FP2 - 5 m (31) _ ||x(n]-,f+1) _ x(nj,f)||

. . . = ||[ x(njaf) _.I_ an‘ /U(nj,f) ]X — x(n],f)H
Considering cases 1 and 2 ((22) and 31)), and letting ge s
min(af, 7. /2), the lemma follows. 0 < (a5 4 a0 — )]

Lemma 2:Given anye > 0, there exists an infinite se- = ap, _|[o™)]|
quencen . < nae < nze < ... such that:("i) € D, for .
” ) ) ) S AO{n

alli=1,2,3,.... e
Proof: <9 (37)

We prove by contradiction. Let us assume that there exigigym (37) and the fact that(z("<), X*) < §' (Case 1),
aN! < oo such thatz™ ¢ D, for all n > N!. Choose ye get -

N, > N/ be such that Lemma 1 holds for all > N.

Choose any, € int(D,)NXs. Therefore, fromLemma1, p(z™,X*) < p(a), X*) +[|a™ — £"9)]]
it follows that for alln > N, < 48 =20 (38)
< 4 (39)

[[aHD — & * < [ — &P — rean (32)
_ _ N . Casel njc+1<n<njyforsomej > i :
for somer, > 0. Summing up the mequalltles obtaineq(gte thats (™) ¢ D, for all n’ satisfyingn;. < n' <
from (32) forn = N t0 N, + m, we obtain nji1,. From (38), it follows that there existsa € X*
Nt such that|z(i<t1) — 2*|| < 26", Pick az. € int(D,) N
[zWNetmtD) — g 12 < || — &2 — re Z an (33) Xs C D, such that]|z, — z*|| < §. From Lemma 1, it
n=N, follows that

which implies thatl|z(Netm+D) — z || — —o0 asm — "D — ]| < [la") — &) (40)

oo,NsinceIZ a, diverges. This is imposs.ible, sin.cefor all ' satisfyingn;. < n' < nj41.. Summing up the
[l MY — & || > 0. Hence our assumption was M nequalities obtained fot’ = n .+ 1ton — 1, we obtain
correct, thus proving the lemma. a ’

Proof of Theorem 1 Choose an arbitrary > 0. Let 2™ — & < ||zt — 7] (41)
8’ = (6/4). DefineD. = D.NXg ={z: 2z € X,U(x) >

U* — €}. It follows from Theorem 27.2 of [4] that there
exists are = ¢(d’) > 0 such that

From (41), and using the facig:("«+1) — z*|| < 26" and
||&. — z*|| < &', we obtain

D, C {z:p(z,X*) <} (34) I —a”]
f s < le™ — El| + [|F — o7
From Lemma 2, there exists an infinite sequengg < < ||a™et) — & + |7 — 2¥]|
n2e < N3 < ... such thatgj(nlE) € D, for all 7 = < ||x(n]-,f+1) _33*” + ||576 _$*|| + ||536 _$*||
1,2,3,.... Thus there exists afy such that Lemma 1 ol (mietl) o L s
holds for alln. > n;, .. Also, sincea, — 0, there ex- =lz || + 2]z — 27|
ists ani, such thato, < (6'/A) for all n > ng, .. Let <20' +26" =40

i' = max(iy,i2). We show thap(z™, X*) < ¢ for all = (42)
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From (42) it follows that There can be three cases:
Case I n =n;, for somej >’ :
p(z™, X*) < & (43) In this casez(™ € D.. Sincez(™ € Xg, hence the fact

(") € D, also implies that:(™) € D,. Thus from (44), it
From cases 1, 2, 3, ((36), (39) and (43)), if follows th%wally follows that

||z — z*|| < ¢ for all n > ny .. By virtue of the ar-

bitrariness of, it follows thatlim,, ., p(z™, X*) = 0. |2 — 2% < ¢ (47)
O < 6 (48)
APPENDIX Il: PROOF OFTHEOREM 2 Case 2 n = nj,+ 1forsomej > i :

Note thatz("<) € D, (see Case 1). This implies”i<) e

For simplicity of analysis, we will prove the result fory, _ XN X,. Using this fact and (46), it follows that

the unique optimum case only. The proof can be extended

to show the result for the non-unique optimum case too. (™) — z(Pie))|
The proof, as stated below, is very similar to the proof of = ||z 1) — g5
Theorem 1. _ _ = ||[ (%) + qv(ie) lxe — 2|
Let the unique optimum of the problef be z*. Let (n5.0) (i) (nse)
&' = (6/4). It follows from Theorem 27.2 of [4] that there < Jat"ae) + awitie) — gtta|
exists are = ¢(&") > 0 such that = affp™i)|
< Aa

{z:2e€X,U(x) >U" —¢}

<¢ (49)
Clz:||lz -z <} (44)

From (49) and the fact thajz("<) — z*|| < ¢’ (Case 1),
Let D, = {z : z € X,U(x) > U* —¢}. Also let we get

D.=D.NXg={z:2€ X,U(z ) > U* — €}. For any ||$(n)_$*|| < ||$(nj,e)_$*||+||x(n)_$(n]‘,e)||
Z. € int(D.) N Xg, there exists & > 0 such thatr € D, o, ,
for all z satisfying||z — Z¢|| < 7. Choosez, and7, such < 0+d =20 (50)
that7. is the largest. Now defing; andsj; as follows < 0 (51)
S|IL = Case 3 n; +1<n<nj+1€forsomej>z
ns = min(1 ISIE] 7 ) (45)
= ""A 24B[5| Note thata: ) ¢ D, for all n/ satisfyingn;,. < n’ <

~ , ~ njy1,.e. 1herefore, from LemNma 3, it follows that there
Bs = min(4|S|T2€|L|2’ XN ’Z’Iﬁ ) (46) exists ai, € int(D.) N Xs C D, such that
s A*7s ,
"D — ]| < [la") — &) (52)

or all n' satisfyingn; . < n’ < nj;1,. Summing up the
mequalltles obtained fat’ = n; .+ 1ton — 1, we obtain

Also let r. = min(ar,,7./2). Then proceeding in the
same way as in the proof of Lemma 1, we can show the
following lemma

Lemma 3:For anya,3 satisfyingd < 8 < 85 and0 < |2 —&|| < ||zt — 7| (53)

(a/B) = n < 5, the relation Sincei, € D., hence from (44) it follows thats. —z*|| <

12D — 2|12 < ||2™ — & |]? — rea ¢'. Using this fact, (53) and (50),

[EARE
holds for all sufficiently large: for which (" gé D.. n) _ =~ B .
Using Lemma 3, the following lemma can be proved in the < ||z =z [+ [|2e — 27|
same way as Lemma 2. <Mt — G|+ [ — 2|
Lemma 4:There exists an infinite sequeneg . < < ||t — || 4 ||Ze — 2F|| + || Ze — 2|
nge < nge < .. such thatz(®<) € D, for all i = — |2t — || 4+ 2|7 — ||

1,2,3,.... , T
Proof of Theorem 2 From Lemma 4, there exists an <20 +25 =49

infinite sequencer; . < nae < n3ze < ... such that = (54)
m(n“) € D foralli =1,2,3,.... Thus there exists an From cases 1, 2, 3, ((48), (51) and (54)), if follows that
i such that Lemma 3 holds for a1|> ng .. We show that ||3(") _ z*|| < §for all n > ny .. The result of Theorem 2

|z — z*|| < §foralln > ny. PICk anyn > ny .. follows. O



