
The Center for Satellite and Hybrid Communication Networks is a NASA-sponsored Commercial Space
Center also supported by the Department of Defense (DOD), industry, the State of Maryland, the University

of Maryland and the Institute for Systems Research. This document is a technical report in the CSHCN
series originating at the University of Maryland.

Web site http://www.isr.umd.edu/CSHCN/

TECHNICAL RESEARCH REPORT

A Primal Algorithm for Optimization Based Rate Control for
Unicast Sessions

by Koushik Kar, Saswati Sarkar, Leandros Tassiulas

CSHCN T.R. 2000-7
(ISR T.R. 2000-22)

INFOCOM 2001 1

A Primal Algorithm for Optimization Based Rate
Control for Unicast Sessions

Koushik Kar Saswati Sarkar Leandros Tassiulas
Department of Electrical & Computer Engg.

University of Maryland
College Park, MD 20742, USA

fkoushik,swati,leandrosg@isr.umd.edu

Abstract—In this paper, we consider the rate control prob-
lem with the objective of maximizing the total user utility. It
takes into account the possible differences in user require-
ments, and also provides a framework for achieving a wide
range of fairness objectives. We propose a simple algorithm
for achieving the optimal rates for this problem. The algo-
rithm can be implemented in a distributed way and does not
require the network to know the user utility functions. In
our algorithm, the network communicates to the user the
number of congested links on the user’s path, and the user
(end-host) adjusts its rate accordingly, taking into account
its utility function and the network congestion feedback. We
show through analysis and experimentation that our algo-
rithm converges to the optimum rates.

I. INTRODUCTION

Effective rate control ofelastic traffic sources [6] is re-
quired in order to control congestion in a communication
network. Elastic traffic sources are those which do not re-
quire a fixed rate of service and can adjust their transmis-
sion rates based on the congestion level of the network.
Examples of elastic traffic sources include internet traf-
fic sources using TCP, and sources using ABR service in
ATM networks. A rate control strategy should ensure that
the network is used efficiently, while guaranteeing that the
traffic offered to the network is such that the congestion at
the network resources remain within an acceptable level.
Besides these, it is also desirable that the rate control al-
gorithm would ensure that the available network resources
are shared by the competing streams of traffic in some fair
manner.

There can be many different measures of fairness, one
of the most well-known being max-min fairness [1]. Most
of the notions of fairness explored in the literature treat all
users equally. The differences in rate allocations are only
due to the different path bandwidths and processing capa-
bility limitations. However, users in general have widely
varying bandwidth requirements, and therefore it is desir-
able that any fair rate allocation scheme would take into
account this heterogeneity in user requirements.

Fairness definitions can be generalized in a nice way by
using utilities. Utility of an user is a function connecting
the bandwidth given to the user with the “value” associ-
ated with the bandwidth (note that throughout the paper,
the terms “user”, “session” and “source” are used synony-
mously). The utility could be some measure of say, the
perceived quality of audio/video, the user satisfaction, or
even the amount paid by the user for the bandwidth allot-
ted to it, and could be different for different users. Thus it
provides a framework to differentiate among users on the
basis of their requirements and/or revenues. One possible
fairness objective, as advocated recently by Kelly in [7], is
to allocate bandwidths such that they maximize the sum of
the user utilities (assumed to be concave functions), sub-
ject to the link capacity constraints. This is also the prob-
lem that we address in this paper. The rate control algo-
rithm that we propose achieves the optimal rates for this
total user utility maximization problem. The algorithm
is distributed and does not require the network to know
the user utility functions. Note that this algorithm can be
used for achieving a wide variety of fairness objectives by
choosing the user utility functions appropriately (for ex-
ample, if all the utility functions are logarithmic and same
for all users, the achieved rates are proportionally fair [7]).

In the algorithm proposed in this paper, the network
communicates to the userthe number of congested links
on the user’s path. On congestion, the user decreases its
rate based on this network feedback; otherwise it increases
its rate based on the derivative of its utility function. An at-
tractive feature of this algorithm, particularly from a prac-
tical perspective, is the simplicity of both the user and net-
work (link) algorithms. Moreover, note that the congestion
information that the network needs to provide the user (i.e.,
the number of congested links on its path) can be conveyed
in only blog2 �Lc + 1 bits, where�L is the maximum num-
ber of links on a user’s path. This implies that in most real
networks, including the internet, just one byte in the data
packet/ACK packet header should be sufficient to carry the
network congestion feedback (note that one byte would al-

INFOCOM 2001 2

low 255 links on a user’s path).
Several alternative approaches to this system utility

maximization problem have been proposed in recent lit-
erature [9],[8],[10],[11]. These approaches are surveyed
in Section VII, where we also compare them with our
approach. It is also worth noting here that whereas all
these existing approaches requirestrict concavity of util-
ity functions for guaranteed convergence, we require only
concavity. Thus linear utility functions are allowed in
our case, but not in the earlier ones. Moreover, our ap-
proach also guarantees convergence for a wide class of
non-differentiable functions, which are outside the frame-
work of the previous approaches.

The paper is organized as follows. In the next section we
define our problem formally. In Section III we present the
basic algorithm and describe a distributed implementation
of it. Section IV presents the convergence analysis for our
algorithm, while Section V describes some experimental
results. In Section VI, we discuss a few issues related to
our approach. We compare our approach with the existing
approaches in Section VII, and conclude in Section VIII.

II. PROBLEM STATEMENT

Consider a network consisting of a setL of unidirec-
tional links, where a linkl 2 L has capacitycl. The net-
work is shared by a setS of unicast sessions (users). Let
Ls � L denote the set of links used by sessions 2 S.
Also let Sl � S denote the set of sessions that use link
l 2 L. Each session has a minimum required transmission
rate bs � 0, and a maximum required transmission rate
Bs < 1. Moreover, each sessions is associated with a
utility function Us : <+ ! <, which is assumed to be
concave, continuous, bounded and increasing in the inter-
val Xs = [bs; Bs]. Thus sessions has a utilityUs(xs)
when it is transmitting at a ratexs, wherexs 2 Xs. Our
objective is to maximize the “social welfare”, i.e., sum of
the utilities over all the sessions, subject to the link capac-
ity constraints. The problem can be posed as:

P:
max

X
s2S

Us(xs) (1)

subject to X
s2Sl

xs � cl 8l 2 L (2)

xs 2 Xs 8s 2 S (3)

The constraints (2) indicate that the total rate of the ses-
sions using a link cannot exceed the capacity of the link.

Let x = (xs; s 2 S) denote the vector of the session
rates. Also letXS denote the entire region in thejSj-

dimensional space wherex is constrained to lie due to
(3), i.e., XS = f(x1; :::; xjSj) : xs 2 Xs 8s 2 Sg.
Thus the set of constraints in (3) can be equivalently writ-
ten asx 2 XS . Let XL denote the region in thejSj-
dimensional space defined by thejLj constraints in (2).
ThusXL = f(x1; :::; xjSj) :

P
s2Sl

xs � cl 8l 2 Lg.
Let X = XS \ XL. Thus the problemP can be equiva-
lently written as the maximization of the sum of the utility
functions, as stated in (1), subject tox 2 X. Note thatXS

is compact (i.e., closed and bounded) and convex, andXL

is convex. ThusX is compact and convex. We will assume
that the problemP is feasible, i.e.,X is nonempty. Thus
an optimal solution exists, although it may not be unique.

III. A D ISTRIBUTED ALGORITHM

Now we present a distributed algorithm that solves the
optimization problem formulated in Section II, and de-
scribe how it can be implemented in a real network. The
convergence analysis of the algorithm is presented in the
next section. The basic idea behind the algorithm is taken
from [5], where an iterativesubgradient1 based optimiza-
tion method has been proposed for a very general class of
convex optimization problems. However, the optimization
procedure in [5], if implemented in our case, would require
centralized coordination, and is therefore not practical for
large networks (we describe more details on this algorithm
in Section VI). The algorithm presented below is a mod-
ified version of the algorithm in [5] which is amenable to
distributed implementation and yet retains the convergence
properties of the original algorithm.

A. An iterative optimization algorithm

Before we describe the algorithm, consider two positive
sequencesf�ng andf�ng , with the following properties:

lim
n!1

�n = 0
1X
n=1

�n =1 (4)

lim
n!1

�n = 0
1X
n=1

�n =1 (5)

lim
n!1

�n
�n

= 0 (6)

For example,�n = (1=n) and�n = (1=
p
n) satisfy (4)-

(6).
Now consider an iterative procedure to solveP, where

x
(n)
s , the rate of sessions 2 S at thenth step, is updated

1A subgradient, defined in the context of convex/concave functions,
can be viewed as a generalized gradient, and may exist even if the gra-
dient does not. See the appendix for the formal definition.

INFOCOM 2001 3

as follows

x(n+1)s =

(
[x(n)s + �nU

0(x
(n)
s)]Xs

if ~e
(n)
s = 0

[x(n)s � �n~e
(n)
s]Xs

if ~e
(n)
s > 0

(7)

where[�]Xs denotes a projection2 on the setXs, and

~e(n)s =
X
l2Ls

e
(n)
l (8)

and

e
(n)
l = 1(

X
s2Sl

x(n)s > cl) (9)

=

(
0 if

P
s2Sl

x
(n)
s � cl

1 if
P

s2Sl
x
(n)
s > cl

(10)

The function1(�) in (9) is an indicator function. Thus

the variablee(n)l can be interpreted as the “link conges-

tion indicator” for link l. Note that~e(n)s is the number of
“congested links” on the path of the session, i.e., the links
on its path for which the capacity constraints are violated.
Therefore, as (8) states,~e(n)s is the sum of the link conges-
tion indicators on the path of sessions. Also note that the
session rate update procedure described in (7) inherently
assumes that the functionUs is differentiable inXs. This,
in general, is not necessary. IfU 0

s(xs) does not exist as
some pointxs 2 Xs, it can be replaced by a subgradient
of Us atxs.

The update procedure of (7) basically states that when
any of the links on the path of a session is congested, it
backs off by decreasing its rate, whereas when none of the
links on its path is congested, it increases its rate according
to the derivative of its utility function at that point. Here,
�n and�n denote the step-sizes for increment and decre-
ment, respectively. Note that when any of the links on the
path of sessions is congested, the reduction in the rate
of the session is proportional to the number of congested
links on the session’s path.

As we will show in the next section, the step-sizes�n
and �n need to satisfy (4)-(6) for the algorithm to have
guaranteed convergence. Note that (6) roughly implies that
the increment of the rate of a session (when there is no
congestion), needs to be (asymptotically) much smaller as
compared to the decrement (when there is congestion).

B. Distributed implementation

Now let us see how the iterative procedure described
above can be implemented in a distributed way, using the

2Since Xs = [bs; Bs], thus for any scalary, [y]Xs
=

min(Bs;max(bs; y)).

links and the session sources/receivers like processors in a
distributed computation system. Let linkl be responsible
for keeping track ofel. Also assume that the rate compu-
tation for a session (according to (7)) is carried out at the
source of the session.

The algorithm described in the last subsection is a syn-
chronous algorithm. In a large network, due to practi-
cal considerations, we would like to implement an asyn-
chronous version of this algorithm. In the asynchronous
version, the algorithm remains the same except that all
updates occur asynchronously, and are triggered when
rates/congestion indicators change, or after some fixed
time intervals, or a combination of both.

Note that a session needs to know only the total num-
ber of congested links on its path and not the exact set of
congested links. To see an example of a distributed asyn-
chronous implementation of our algorithm, consider an
ACK-based protocol where the ACK packets (going from
the receiver to the source of a session) use the same path
as the data packets but in the backward direction. Let each
ACK packet have a congestion notification fieldE. When
it goes through a linkl, the link adds the congestion indica-
tion bit to the entry in theE-field of the ACK packet. Thus
when the ACK packet reaches the source node, the fieldE
of the packets contains the number of congested links on
the session’s path, which is used in the computation of the
new rate at the source. Let each data packet contain a field
R indicating the current rate of packet transmission for the
session. The links on the path of the session read the field
R in order to know the current rate for that session. These
rate values are used to update the link congestion indicator.
The link and session algorithms are described in Figure 1.

Conditions (4)-(6) are required for the iterative process
to converge to the optimum. In reality, however, it may not
be feasible to decrease the step-sizes or the step-size ratios
beyond a particular point. For the case when step-sizes
�n and�n are kept fixed, a slightly weaker convergence
result holds, as we state in the next section. A similar re-
sult also holds when the step-sizes may not be constant but
converge to some positive values.

One drawback of the algorithm described in Figure 1
is that the actual rates need to be communicated from the
users to the links. In practice, the total rate of traffic on a
link can be estimated, and this estimated rate can be used to
update the link congestion indicator. In all the experiments
that we have carried out, our algorithm converged to the
optimum rates even with this modification (see Section V).

IV. CONVERGENCEANALYSIS

Now we investigate the convergence properties of the
algorithm outlined in the last section.

INFOCOM 2001 4

Link l ’s algorithm
1. Read theR field of all data packets going through the
link to know the current session rates.
2. Periodically updateel as

e
(n+1)
l =

(
0 if

P
s2Sl

x
(n)
s � cl

1 if
P

s2Sl
x
(n)
s > cl

(11)

3. Addel to theE field of all ACK packets going through
the link.

Sessions ’s algorithm
1. Read theE field of all ACK packets to know the current
number of congested links on the path, and accordingly
update~es.
2. Periodically compute the new rate as

x(n+1)s =

(
[x(n)s + �nU

0(x
(n)
s)]Xs

if ~e
(n)
s = 0

[x(n)s � �n~e
(n)
s]Xs

if ~e
(n)
s > 0

(12)

3. Send traffic at the current ratexs setting the fieldR to
xs.

Fig. 1. Link and session algorithms

A. Assumptions

We prove the convergence of our algorithm for the syn-
chronous case only. In addition to the assumptions already
mentioned in the last section, we will make a few addi-
tional assumptions for the convergence analysis.

Assumption 1: (Bounded slope)For everys 2 S, as �
U 0
s(xs) � As 8xs 2 Xs whereas > 0 andAs <1.
If Us is non-differentiable inXs (i.e.,U 0

s does not exist
at all points inXs), we will assume that Assumption 1
holds for all subgradients ofUs in Xs.

Assumption 2: (Interior point)Let int(XL) denote the
interior of the setXL. Thenint(XL) \XS 6= �.

It is easy to see that the interior point assumption holds
if cl > 0 8l 2 L, bs = 0 8s 2 S andBs > 0 8s 2 S.
Also note that feasibility of the problemP is also implied
by the above assumption.

B. Convergence with diminishing step-sizes

LetX� be the set of optimal solutions ofP. LetU(x) =P
s2S Us(xs) be the overall user utility, andU� be the cor-

responding optimal value. ThusU� = U(x�) for any
x� 2 X�. Now we proceed to state the convergence re-
sult for our algorithm, when the step-size sequencesf�ng
andf�ng satisfy (4)-(6).

Router D

2ms

5ms

3ms

4ms

1.5ms

(a) A single-link network

Router Router Router Router

(b) A multilink network

S0

S1

S2

S3

Sn

S0 S(n-1)

Fig. 2. Two example networks

Theorem 1:For the iterative procedure (7)-(10), and
with the step-sizes satisfying (4)-(6),

lim
n!1

�(x(n);X�) = 0

We prove the above theorem in the Appendix I.
Note that from the continuity ofU it follows that
limn!1 U(x(n)) = U�.

C. Convergence with constant step-sizes

If the step-sizes are constant, we can not guarantee con-
vergence to the optimum in the sense stated in Theorem 1.
However, it is possible to show a slightly weaker result,
as stated below. LetC�(X

�) be the set of all points at
a distance of� or less fromX�, i.e., C�(X

�) = fx :
�(x;X�) � �g.

Theorem 2:Consider the iterative procedure (7)-(10)
with �n = � and�n = � = �� for all n. Then given
any � > 0, there exists~�� > 0 and ~�� > 0, such that for
any�,� satisfying0 < � < ~�� and0 < (�=�) = � < ~��,

lim
n!1

�(x(n); C�(X
�)) = 0

The proof of the above theorem is along the same lines
as that for Theorem 1, and is stated in Appendix II.

V. EXPERIMENTAL RESULTS

Next we study the convergence properties of our algo-
rithm through simulation experiments carried out on some
simple networks. Our simulations are carried out in an
asynchronous time-varying environment. In all the experi-
mental results presented here, the session rates are not ex-
plicitly conveyed to the links, and the links set the link
congestion indicators based on the estimated rates.

Figure 2 shows the two networks that we consider, both
adopted from [12]. Figure 2 (a) shows 4 sources sending
traffic to a single destination. The sources send traffic to
a common router through individual access links (each of

INFOCOM 2001 5

0 1000 2000 3000 4000 5000 6000
0

2

4

6

8

10

12

14

16

time (ms)

T
ra

ns
m

is
si

on
 r

at
e

(p
ac

ke
ts

/m
s)

β = 0.002

S1

S0

α = 0.001

(a)

0 1000 2000 3000 4000 5000 6000
0

2

4

6

8

10

12

14

16

T
ra

ns
m

is
si

on
 r

at
e

(p
ac

ke
ts

/m
s)

time (ms)

S0

S1

α = 0.005
β = 0.002

(b)

0 1000 2000 3000 4000 5000 6000
0

2

4

6

8

10

12

14

16

time (ms)

T
ra

ns
m

is
si

on
 r

at
e

(p
ac

ke
ts

/m
s) α = 0.001

β = 0.01

S1

S0

(c)

Fig. 3. Effect of�, �

capacity 20 packets/ms) which then sends the traffic on
the shared link (of capacity 12 packets/ms). The numbers
shown across the links in the figure are the link propaga-
tion delays (we neglect any processing delays in our sim-
ulations). The multilink network consists of one long ses-
sion and several short sessions. In the multilink network,
the capacities and the propagation delays for the network
links are 12 packets/ms and 1.5 ms respectively, while the
same for the access links (not shown in figure) are 20 pack-
ets/ms and 2 ms respectively. The user utility functions
arews lnxs (thus the optimal allocation is weighted pro-
portionally fair), with the minimum and maximum rates
being 0.1 packets/ms and 20 packets/ms, respectively (for
the values of the weightsws, see later). In this section, we
assume that the scheduling policy is FIFO. All the simula-
tion results shown in this paper are for constant step-sizes
�, �.

First we investigate the effect of�, � on the convergence
properties of the algorithm. Consider the single-link net-
work with only the sources S1 and S2, withw1 = w2 =
12. S1 starts sending traffic at time t=0 while S2 starts at
t=3 secs. Figure 3 shows the plots of the transmission rates
for three different sets of values of�, �. Note that the plot-
ted curves show some small and regular fluctuations. This
can be explained as follows. When the total traffic is close
to the link capacity, the link congestion indicator fluctu-
ates rapidly between 0 and 1, as can be expected from

intuition. Since we are using constant step-sizes (instead
of step-sizes satisfying (4)-(6) required for exact conver-
gence), the fluctuations of the link congestion indicators
translate to fluctuations in the session rates. These fluctu-
ations (around the optimal values) for the case of constant
step-sizes can also be expected from Theorem 2. In the
figure, comparing (a) with (b) and (a) with (c), we observe
that as expected, larger values of�, � lead to faster con-
vergence (however, note that the time taken for a session
arriving at an unloaded link to reach the full link capacity
depends only on�, as we see for session S1). However,
there is a tradeoff involved here, since making�, � large
also makes the rate fluctuations (around the optimal val-
ues) larger. In practice, we would like to have large step-
sizes initially (to ensure fast convergence) and small step-
sizes later (to reduce fluctuations when the rates are close
to the optimal values). Note that we would also like to have
a small�

�
to ensure that the algorithm converges close to

the optimal solution (Theorem 2). However, in practice,
setting �

�
to a very small value could reduce the average

throughput, as one would intuitively expect. Moreover,
that might also amount to making� too small (thus slow-
ing down convergence time) or making� too large (thus
increasing fluctuations). In the rest of the simulations pre-
sented in this section,�

�
is set to 0.2.

Consider again the single-link network but with all the
4 sources, as shown in Figure 2 (a), the weightsws of the
sources being (6,12,6,12). S0 is active during 0s-60s, S1
during 10s-40s, S2 during 20s-50s, and S3 during 30s-60s.
Figure 4 shows the transmitted rates for the 4 sources dur-
ing the interval 0s-60s, along with the optimal (theoretical)
rates, shown by straight lines (in the figure,� = 0.001 and
� = 0.005). The thickening of the plotted curves are due
to small, regular but rapid fluctuations of the transmitted
rates, the reasons for which have already been discussed
in the previous paragraph. The plots show that the rates
reach the optimal values and fluctuate close to it. As al-
ready mentioned, in practice, these fluctuations around the
optimal values could be reduced by reducing the step-sizes
once the session detects that rates are fluctuating around
the same mean value. The link utilization observed in this
case was close to 98%.

Next consider the multilink network with 10 links. Ses-
sion S1 is active during 15s-45s, S5 during 0s-45s, S9 dur-
ing 30s-60s and S10 (the long session) during 0s-60s. All
the other sources are inactive. Figure 5 shows the trans-
mitted rates for the sources S1, S5, S9, S10 during the
interval 0s-60s, along with the optimal rates (� = 0.0005
and� = 0.0025). The weightsws for S1, S5, S9 are all
12, while that for S10 is 18. These plots too demonstrate
the fact that our algorithm achieves rates that are close to

INFOCOM 2001 6

0 2 4 6

x 10
4

0

5

10

15

R
at

e
(p

ac
ke

ts
/m

s)
time (ms)

S0

0 2 4 6

x 10
4

0

5

10

15

R
at

e
(p

ac
ke

ts
/m

s)

time (ms)

S1

0 2 4 6

x 10
4

0

5

10

15
R

at
e

(p
ac

ke
ts

/m
s)

time (ms)

S2

0 2 4 6

x 10
4

0

5

10

15

R
at

e
(p

ac
ke

ts
/m

s)

time (ms)

S3

Fig. 4. Convergence for the single-link network.(The straight lines are the optimal (theoretical) rates)

0 2 4 6

x 10
4

0

5

10

15

time (ms)

R
at

e
(p

ac
ke

ts
/m

s)

S9

0 2 4 6

x 10
4

0

5

10

15

time (ms)

R
at

e
(p

ac
ke

ts
/m

s)

S10

0 2 4 6

x 10
4

0

5

10

15

time (ms)

R
at

e
(p

ac
ke

ts
/m

s)

S1

0 2 4 6

x 10
4

0

5

10

15

time (ms)

R
at

e
(p

ac
ke

ts
/m

s)

S5

Fig. 5. Convergence for the multilink network.(The straight lines are the optimal (theoretical) rates)

the optimal rates in an asynchronous slowly time-varying
environment.

Note that in all the simulation results presented above,
we have assumed that the buffer is large enough to avoid
any overflow. In practice, however, we might want the
backlog to remain within some target backlog length, to
prevent buffer overflow or avoid excessive delays. In that
case, we could modify our algorithm such that the link
congestion indicator is set to 1 not only when the total rate
at the link exceeds the capacity, but also when the back-
log size exceeds the target backlog length. The experi-
ments that we have carried out indicate that our algorithm
with this modification achieves rates close to the optimal
ones, while keeping the maximum backlog close to the tar-
get backlog length, provided the target backlog length is
not too small. Figure 6 shows a representative example to
demonstrate this fact. The figure shows the rate and buffer
plots for the onelink network, where target buffer length is
set to 400 packets and� = � = 0:0025.

VI. D ISCUSSION

In this section, we will first describe the optimization
method proposed by Poljak in [5] (which motivated the
development of our algorithm) and point out its differ-
ences with our algorithm. Then we investigate the question
whether we could reduce the congestion feedback from the
network (to the session) in our scheme even further, say to
just one bit.

A. Poljak’s algorithm

In [5], the author proposes an iterative primal algorithm
for convex constrained minimization problems. As shown
in [5], the algorithm converges to the optimal set of solu-
tions under some fairly general assumptions. According to
the algorithm presented in [5], the update procedure in our
case would be

x(n+1) =

8<
:

[x(n) +
n
rU(x(n))

jjrU(x(n))jj
]XS

if x(n) 2 XL

[x(n) �
n
~e(n)

jj~e(n)jj
]XS

if x(n) =2 XL

INFOCOM 2001 7

0 2 4 6

x 10
4

0

5

10

15

R
at

e
(p

ac
ke

ts
/m

s)
time (ms)

S0

0 2 4 6

x 10
4

0

5

10

15

R
at

e
(p

ac
ke

ts
/m

s)

time (ms)

S1

0 2 4 6

x 10
4

0

5

10

15

R
at

e
(p

ac
ke

ts
/m

s)

time (ms)

S2

0 2 4 6

x 10
4

0

5

10

15

R
at

e
(p

ac
ke

ts
/m

s)

time (ms)

S3

0 1 2 3 4 5 6
0

200

400

600

bu
ffe

r
le

ng
th

 (
pa

ck
et

s)

Fig. 6. Convergence for the single-link network with a target buffer length.(Target buffer length is 400 packets.)

or equivalently, stated in terms of session updates (com-
pare with (7)),

x(n+1)s =

8<
:

[x(n)s +
n
U 0

s(x
(n))

jjrU(x(n))jj
]Xs

if x(n) 2 XL

[x(n)s �
n
~e
(n)
s

jj~e(n)jj
]Xs

if x(n) =2 XL

where the step-sizes
n satisfy the following conditions

lim
n!1

n = 0
1X
n=1

n =1 (13)

However, this update procedure can not be implemented
in a distributed and scalable way. Firstly, due to the pres-
ence of the termsjjrU(x(n))jj and jj~e(n)jj in the session
rate-update procedure, each session needs to have some
up-to-date information from every other user and from the
links. Secondly, note that the session also needs to know
if x(n) 2 XL or not in order to decide whether to increase
its rate or to back-off. Thus the user would need to know
if there is some link in the network that is congested, and
back-off if there is (even if the session is not using the
link). This is possible in a centralized system with a cen-
tral server keeping track of all link states and communicat-
ing them to the sessions. However such a solution does not
seem feasible for implementation in a large network. Our
algorithm, on the other hand, is amenable to a completely
decentralized implementation. We, however, require two

different step-sizes� and� instead of the single step-size

.

B. One-bit congestion feedback

Although using one byte of the data packet/ACK packet
header (which is sufficient for our algorithm) for network
congestion notification does not introduce a significant
overhead, it is still interesting to investigate if it could be
reduced even further, say to just a single bit. In that case
the algorithm could be implemented just with the proposed
Explicit Congestion Notification (ECN) bit. The obvious
modification to our algorithm in that case would be to do
an OR of all the congestion indicator bits of the links on a
session’s path (rather than the SUM). We show by a simple
example that with this modification, our algorithm may not
converge to the optimal solution. Consider a simple net-
work with two links and three sessions, as shown in Fig-
ure 7. Sessionss1 ands2 use one link each, while session
s3 uses both the links (the links have the same capacity).
The sessions have identical utility functions, minimum and
maximum rates (the minimum rate is zero while the max-
imum rate is much larger than the link capacities). Let
the step-sizes�n and�n be the same for all the sessions.
Then if the sessions start at time 0 and always update their
rates synchronously, then it is not too difficult to see that
all the sessions always get the same rates, irrespective of
what their common utility function is. Thus the longer

INFOCOM 2001 8

link 1 link 2

S S

S3

1 2

c1 = c2

= =x x x1 2 3

= =x (0) x (0) x (0)1 2 3 = 0

(n) (n) (n) for all nThen

Fig. 7. An example with one-bit congestion feedback

sessions3 eventually gets half of the capacity of each link
(the same as the shorter sessions), whereas it should have
received lesser. Thus although the modified algorithm con-
verges in this case, it converges to a value different from
the optimum. In general, even if the congestion indication
field is more than one bit but less thanblog2 �Lc+1 bits (the
minimum required in our case), it seems unlikely that some
simple modification of this algorithm would be able to pro-
vide deterministic convergence guarantees in such cases.
Whether there is some alternative approach that achieves
this remains an interesting open question.

In practice the number of bits allocated to the conges-
tion indication field would be fixed by the protocol. If this
field is less than the minimum required in our case, one
possibility is to go for heuristic approaches. Thus instead
of communicating the required congestion information di-
rectly, it is possible to convey it some implicit way using
fewer number of bits (by some probabilistic marking pol-
icy, for instance). There could be several such heuristic ap-
proaches, although their convergence properties, both the-
oretical and experimental, require further investigation.

VII. R ELATED WORK

Next we describe some existing algorithms for the same
problem that we are trying to solve, and compare these
with our algorithm on several aspects.

In [8], Low et al. propose an algorithm based on the
dual approach (note that our algorithm is a primal algo-
rithm) for the same problem. Here each link in a network
maintains a congestion price (“link price”), which it calcu-
lates based on the aggregate rate on that link. The network
conveys to the user the sum of the link prices on its path,
which then chooses a rate so as to maximize its profit based
on this “session price”. A problem with the practical im-
plementation of this algorithm is that the congestion prices
(which are basically the dual variables) are real numbers
and could vary over a wide range. This poses a difficulty
in communicating the price to the end-host using a small
number of bits. However this is not a problem in our ap-

proach, as we have already discussed. Also note that in
certain cases, computing a maximizer (as required by the
user in the algorithm in [8]) may be significantly more dif-
ficult than just computing a derivative (as required in our
algorithm).

In [12], the authors suggest a randomized marking based
implementation of the algorithm in [8], that uses only one
bit for the network congestion feedback. Here the sin-
gle congestion indication bit is marked probabilistically
(and independently) at each link on the user’s path. The
marking probability is such that the user can estimate the
session price by seeing the proportion of marked packets.
However, the authors do not provide any proof of con-
vergence, (note that even if the algorithm converges, the
convergence would be in some probabilistic sense). On
the other hand, our algorithm has guaranteed deterministic
convergence. Our algorithm needs to have a larger conges-
tion indication field as compared to the algorithm in [8],
but as we have argued before, just one byte in the packet
header do not seem to be a significant overhead. Moreover,
the randomized marking policy of [12] can be applied to
our algorithm too, and thus the number of congested links
can be implicitly conveyed through that single congestion
bit. Initial simulations indicate that our algorithm performs
well with this modification.

In [9], the authors propose both primal and dual algo-
rithms for this system utility maximization problem. Inter-
estingly, these algorithms allow a wide variety of conges-
tion price functions. However, the algorithms in [9] solve
only an approximate version of the original problem rather
than the actual problem. The authors do suggest a choice
of price functions for which the solution provided by their
algorithms can be made arbitrarily close to the actual solu-
tion. However, this choice of price functions could make
the congestion prices vary over a wide range, resulting in
practical difficulties, that we have already discussed above.

Another related, but different, approach is proposed
in [10]. In this work, the authors propose an additive
increase-multiplicative decrease scheme for reaching the
socially optimal solution. Here the user adjusts its rate
based on the proportion of marked packets or end-to-end
(measurable) losses. However, the algorithm is presented
for some specific utility functions, and it is not clear how
to address the case of more general utility functions. Also,
the convergence has been proved under certain simplify-
ing assumptions, some of which are not likely to hold in
practice.

In [11], the authors present a window-based flow con-
trol approach for the same problem. Here the users choose
some weights and the window-based flow control scheme,
on convergence, allocates rates that are proportionally fair

INFOCOM 2001 9

with respect to those weights. The user chooses the next
set of weights based on the earlier weights and the allo-
cated rates. The information on the state of congestion
in the network is conveyed to the user implicitly through
the packet round-trip times. A drawback of this algorithm
is that it is a two-level optimization algorithm, i.e., after
choosing a set of weights, the users have to wait till the
rates have converged or are close to it (which may not
always be easy to detect, since the convergence may be
asymptotic), before choosing a new set of weights. More-
over, the authors in [11] provide theoretical convergence
guarantees only for the simple case where all the sessions
share a single bottleneck link.

Also, as mentioned in Section I, unlike all these pre-
vious approaches, our algorithm guarantees convergence
even for linear and non-differentiable (concave) functions.

VIII. C ONCLUSIONS ANDFUTURE WORK

In this paper, we considered an optimization based ap-
proach to flow control. We assumed that each user is asso-
ciated with a (possibly different) utility function, and pre-
sented a simple distributed algorithm that achieves the so-
cially optimal rates. We proved the convergence of our
algorithm for the case of synchronous updates, and experi-
mentally demonstrated its convergence in an asynchronous
environment.

There are several interesting and challenging questions
that merit further investigation. Important theoretical
questions include that of investigating the convergence of
the algorithm for the asynchronous case, and for the case
where the session rates are estimated rather than being ex-
plicitly communicated from the users to the links. On the
practical side, convergence and other associated properties
of the algorithm also need to be studied extensively for
larger and more complex networks.

REFERENCES

[1] D. P. Bertsekas, R. G. Gallagher,Data Networks, Prentice Hall,
1992.

[2] D. P. Bertsekas,Nonlinear Programming, Athena Scientific,
1995.

[3] D. P. Bertsekas, J. N. Tsitsiklis,Parallel and Distributed Compu-
tation: Numerical Methods, Athena Scientific, 1989.

[4] R. T. Rockafellar,Convex Analysis, Princeton Univ. Press, 1970.
[5] B. T. Poljak, “A General Method of Solving Extremum Prob-

lems”,Soviet Math Doklady, vol. 8, no. 3, 1967, pp. 593-597.
[6] S. Shenker, “Fundamental Design Issues for the Future Internet”,

IEEE Journal on Selected Areas in Communications, vol. 13, no.
7, 1995, pp. 1176-1188.

[7] F. P. Kelly,“Charging and Rate Control for Elastic Traffic”,Eu-
ropean Transactions on Telecommunications, vol. 8, no. 1, 1997,
pp. 33-37.

[8] S. Low, D. E. Lapsley, “Optimization Flow Control, I: Basic
Algorithm and Convergence”,IEEE/ACM Transactions on Net-
working, vol. 7, no. 6, December 1999.

[9] F. Kelly, A. Maulloo, D. Tan,“Rate Control for Communication
Networks: Shadow Prices, Proportional Fairness and Stability ”,
Journal of Operations Research Society, vol. 49, no. 3, 1998, pp.
237-252.

[10] S. Kunniyur, R. Srikant,“End-to-End Congestion Control
Schemes: Utility Functions, Random Losses and ECN Marks”,
Proceedings of Infocom 2000, March 2000.

[11] R. La, V. Anantharam,“Charge-Sensitive TCP and Rate Control
in the Internet”,Proceedings of Infocom 2000, March 2000.

[12] S. Athuraliya, S. Low, D. Lapsley,“Random Early Marking”, Sub-
mitted for publication, www.ee.mu.oz.au/staff/slow/research/

APPENDIX I: PROOF OFTHEOREM 1

Since our analysis is based on subgradient methods, let
us formally define a subgradient [2](pp. 490) before pro-
ceeding further.

Definition 1: Consider a convex and continuous func-
tion h(x) defined on a convex setC � <k. Then a vector
w0 2 <k is called asubgradientof h at a pointx0 2 C if
it satisfies

h(x) � h(x0) � (w0; x� x0) 8x 2 C (14)
In general subgradient at a point may be non-unique.

The set of subgradients at a point is called thesubdiffer-
ential. If the gradient ofh(x) exists at a point, then the
subdifferential at that point consists of only one subgradi-
ent, which is the gradient at the point.

For eachl 2 L, definegl : <jSj+ ! < as gl(x) =P
s2Sl

xs � cl. Now defineg : <jSj+ ! < as g(x) =P
l2Lmax(0; gl(x)). Then the functiong is convex, and

g(x) > 0 iff x =2 XL. Thus the entire set of con-
straints in (2) can be replaced by a single constraint
g(x) � 0. Let v(n)s denote a subgradient ofUs at x(n)s .

Thus if Us is differentiable, thenv(n)s = U 0
s(x

(n)
s). Let

v(n) = (v
(n)
1 ; v

(n)
2 ; :::; v

(n)
jSj) be the vector of the subgradi-

ents. Thusv(n) is a subgradient ofU atx(n). Now consider
the vectors~e(n) = (~e

(n)
1 ; ~e

(n)
2 ; :::; ~e

(n)
jSj). Note that~e(n) is a

subgradient ofg atx(n).
Now let us restate our algorithm in terms of the notation

just introduced. Note that the iterative update procedure of
(7)-(10) can be stated as

x(n+1) =(
[x(n) + �nv

(n)]XS
if g(x(n)) � 0

[x(n) + (�n~v
(n) � �n~e

(n))]XS
if g(x(n)) > 0

(15)

where

~v(n) = (~v
(n)
1 ; ~v

(n)
2 ; :::; ~v

(n)
jSj) (16)

INFOCOM 2001 10

and

~v(n)s =

(
v
(n)
s if ~e

(n)
s = 0

0 if ~e
(n)
s > 0

(17)

Now we state a few simple facts that will be useful to us
in our analysis. Note that from the definition of a subgra-
dient, it follows that ifh(x) is a convex function, then for
any pointx1 2 fx : h(x) � h(x0)g, (w0; x1) � (w0; x0).
Also note that from Assumption 1, it follows that there ex-
ists somea > 0 andA < 1 such thata � jjv(n)jj � A
for all n. Moreover, it is easy to see that for anyn such
that g(x(n)) > 0 (i.e., x(n) =2 XL), jj~e(n)jj is bounded as
1 � jj~e(n)jj � jSjjLj.

Now let D� = fx : x 2 XL; U(x) � U� � �g. We
prove two lemmas before we proceed with the proof of
Theorem 1.

Lemma 1:Choose any� > 0. Then for every~x� 2
int(D�) \XS there exists ar� > 0 such that the relation

jjx(n+1) � ~x�jj2 � jjx(n) � ~x�jj2 � r��n

holds for all sufficiently largen for whichx(n) =2 D�.
Proof:
Sinceint(XL) \XS 6= � (Assumption 2), it follows that
there exists~x� 2 int(D�) \XS . Choose~r� > 0 such that
x 2 D� for all x satisfyingjjx � ~x�jj � ~r�. Now suppose
thatx(n) =2 D� for somen. Consider the two cases:
Case 1: x(n) 2 XL :
It follows that D� � fx : U(x) � U(x(n))g. Thus
(v(n); x) � (v(n); x(n)) for all x 2 D�. In particular,
choosex = ~x� � ~r�

v(n)

jjv(n)jj
2 D� (note jjv(n)jj � a > 0).

Thus

(v(n); x(n)) � (v(n); ~x� � ~r�
v(n)

jjv(n)jj)

= (v(n); ~x�)� ~r�jjv(n)jj (18)

Therefore

jjx(n+1) � ~x�jj2
= jj[x(n) + �nv

(n)]XS
� ~x�jj2

� jjx(n) + �nv
(n) � ~x�jj2 (19)

= jjx(n) � ~x�jj2 + �2njjv(n)jj2
+2�n(x

(n) � ~x�; v
(n))

� jjx(n) � ~x�jj2 + �2njjv(n)jj2
�2�n~r�jjv(n)jj (20)

� jjx(n) � ~x�jj2 +A2�2n � 2a~r��n (21)

Note that (19) follows from the fact that~x� 2 XS , and (20)
follows from (18).

Since�n ! 0, �n � (a~r�=A
2) whenn is sufficiently

large. For all suchn, from (21), we get

jjx(n+1) � ~x�jj2 � jjx(n) � ~x�jj2 � a~r��n (22)

Case 2: x(n) =2 XL :
In this case,g(x(n)) > 0. Thus it follows thatD� � XL �
fx : g(x) � g(x(n))g. Therefore(~e(n); x) � (~e(n); x(n))

for all x 2 D�. In particular choosex = ~x� + ~r�
~e(n)

jj~e(n)jj
2

D� (notejj~e(n)jj � 1 wheng(x(n)) > 0). Thus

(~e(n); x(n)) � (~e(n); ~x� + ~r�
~e(n)

jj~e(n)jj)

= (~e(n); ~x�) + ~r�jj~e(n)jj (23)

Also, from (17), it is easy to see that(~v(n); ~e(n)) = 0 and
jj~v(n)jj � jjv(n)jj � A. Therefore,

jjx(n+1) � ~x�jj2
= jj[x(n) + �n~v

(n) � �n~e
(n)]XS

� ~x�jj2
� jjx(n) + �n~v

(n) � �n~e
(n) � ~x�jj2

= jjx(n) � ~x�jj2 + �2njj~e(n)jj2
+�2njj~v(n)jj2 � 2�n(x

(n) � ~x�; ~e
(n))

+2�n(x
(n) � ~x�; ~v

(n))

� jjx(n) � ~x�jj2 + jSj2jLj2�2n
+A2�2n � 2�n(x

(n) � ~x�; ~e
(n))

+2�n(x
(n) � ~x�; ~v

(n)) (24)

Since(�n=�n) ! 0, for sufficiently largen,

jSj2jLj2�2n +A2�2n � 2jSj2jLj2�2n (25)

Also, from (23), it follows that

�2�n(x
(n) � ~x�; ~e

(n)) � �2�n~r�jj~e(n)jj
� �2�n~r� (26)

LetB = maxs2S(Bs�bs). Sincex(n); ~x� 2 XS , therefore
jjx(n) � ~x�jj � jSjB. Thus

2�n(x
(n) � ~x�; ~v

(n))

� 2�njjx(n) � ~x�jj jj~v(n)jj
� 2�njSjBA (27)

Since(�n=�n) ! 0, 2ABjSj�n � ~r��n for sufficiently
largen. For all suchn, from (26),(27), we get

�2�n(x
(n) � ~x�; ~e

(n)) + 2�n(x
(n) � ~x�; ~v

(n))

� �2~r��n + 2ABjSj�n
� �~r��n (28)

INFOCOM 2001 11

Now from (24),(25),(28), we get

jjx(n+1) � ~x�jj2 � jjx(n) � ~x�jj2 + 2jSj2jLj2�2n
�~r��n (29)

Since�n ! 0, �n � ~r�=(4jSj2jLj2) for sufficiently large
n. For all suchn, from obtain from (29),

jjx(n+1) � ~x�jj2 � jjx(n) � ~x�jj2 � ~r�
2
�n (30)

Since(�n=�n)! 0, �n � �n for sufficiently largen. For
all suchn, from obtain from (30),

jjx(n+1) � ~x�jj2 � jjx(n) � ~x�jj2 � ~r�
2
�n (31)

Considering cases 1 and 2 ((22) and 31)), and lettingr� =
min(a~r�; ~r�=2), the lemma follows. 2

Lemma 2:Given any� > 0, there exists an infinite se-
quencen1;� < n2;� < n3;� < ::: such thatx(ni;�) 2 D� for
all i = 1; 2; 3; :::.
Proof:
We prove by contradiction. Let us assume that there exists
aN 0

� < 1 such thatx(n) =2 D� for all n � N 0
�. Choose

N� � N 0
� be such that Lemma 1 holds for alln � N�.

Choose any~x� 2 int(D�)\XS . Therefore, from Lemma 1,
it follows that for alln � N�,

jjx(n+1) � ~x�jj2 � jjx(n) � ~x�jj2 � r��n (32)

for somer� > 0. Summing up the inequalities obtained
from (32) forn = N� toN� +m, we obtain

jjx(N�+m+1) � ~x�jj2 � jjx(N�) � ~x�jj2 � r�

N�+mX
n=N�

�n (33)

which implies thatjjx(N�+m+1) � ~x�jj ! �1 asm !
1, since

P
�n diverges. This is impossible, since

jjx(N�+m+1) � ~x�jj � 0. Hence our assumption was in-
correct, thus proving the lemma. 2

Proof of Theorem 1: Choose an arbitrary� > 0. Let
�0 = (�=4). Define ~D� = D�\XS = fx : x 2 X;U(x) �
U� � �g. It follows from Theorem 27.2 of [4] that there
exists an� = �(�0) > 0 such that

~D� � fx : �(x;X�) � �0g (34)

From Lemma 2, there exists an infinite sequencen1;� <
n2;� < n3;� < ::: such thatx(ni;�) 2 D� for all i =
1; 2; 3; :::. Thus there exists ani1 such that Lemma 1
holds for alln � ni1;�. Also, since�n ! 0, there ex-
ists ani2 such that�n � (�0=A) for all n � ni2;�. Let
i0 = max(i1; i2). We show that�(x(n);X�) � � for all

n � ni0;�. Pick anyn � ni0;�. There can be three cases:
Case 1: n = nj;� for somej � i0 :
In this case,x(n) 2 D�. Sincex(n) 2 XS , hence the fact
x(n) 2 D� also implies thatx(n) 2 ~D�. Thus from (34), it
trivially follows that

�(x(n);X�) � �0 (35)

< � (36)

Case 2: n = nj;� + 1 for somej � i0 :
Note thatx(nj;�) 2 ~D� (see Case 1). This impliesx(nj;�) 2
X = XS \XL. Thus

jjx(n) � x(nj;�)jj
= jjx(nj;�+1) � x(nj;�)jj
= jj[x(nj;�) + �nj;�v

(nj;�)]XS
� x(nj;�)jj

� jjx(nj;�) + �nj;�v
(nj;�) � x(nj;�)jj

= �nj;� jjv(nj;�)jj
� A�nj;�

� �0 (37)

From (37) and the fact that�(x(nj;�); X�) � �0 (Case 1),
we get

�(x(n); X�) � �(x(nj;�); X�) + jjx(n) � x(nj;�)jj
� �0 + �0 = 2�0 (38)

< � (39)

Case 3: nj;� + 1 < n < nj+1;� for somej � i0 :
Note thatx(n

0) =2 D� for all n0 satisfyingnj;� < n0 <
nj+1;�. From (38), it follows that there exists ax� 2 X�

such thatjjx(nj;�+1) � x�jj < 2�
0

. Pick a~x� 2 int(D�) \
XS � ~D� such thatjj~x� � x�jj � �

0

. From Lemma 1, it
follows that

jjx(n0+1) � ~x�jj < jjx(n0) � ~x�jj (40)

for all n0 satisfyingnj;� < n0 < nj+1;�. Summing up the
inequalities obtained forn0 = nj;�+ 1 to n� 1, we obtain

jjx(n) � ~x�jj < jjx(nj;�+1) � ~x�jj (41)

From (41), and using the factsjjx(nj;�+1)�x�jj < 2�
0

and
jj~x� � x�jj � �

0

, we obtain

jjx(n) � x�jj
� jjx(n) � ~x�jj+ jj~x� � x�jj
< jjx(nj;�+1) � ~x�jj+ jj~x� � x�jj
� jjx(nj;�+1) � x�jj+ jj~x� � x�jj+ jj~x� � x�jj
= jjx(nj;�+1) � x�jj+ 2jj~x� � x�jj
< 2�0 + 2�0 = 4�0

= � (42)

INFOCOM 2001 12

From (42) it follows that

�(x(n);X�) < � (43)

From cases 1, 2, 3, ((36), (39) and (43)), if follows that
jjx(n) � x�jj < � for all n � ni0;�. By virtue of the ar-
bitrariness of�, it follows that limn!1 �(x(n);X�) = 0.
2

APPENDIX II: PROOF OFTHEOREM 2

For simplicity of analysis, we will prove the result for
the unique optimum case only. The proof can be extended
to show the result for the non-unique optimum case too.
The proof, as stated below, is very similar to the proof of
Theorem 1.

Let the unique optimum of the problemP be x�. Let
�0 = (�=4). It follows from Theorem 27.2 of [4] that there
exists an� = �(�0) > 0 such that

fx : x 2 X;U(x) � U� � �g
� fx : jjx� x�jj � �0g (44)

Let D� = fx : x 2 XL; U(x) � U� � �g. Also let
~D� = D� \XS = fx : x 2 X;U(x) � U� � �g. For any
~x� 2 int(D�)\XS, there exists a~r� > 0 such thatx 2 D�

for all x satisfyingjjx� ~x�jj � ~r�. Choose~x� and~r� such
that~r� is the largest. Now define~�� and~�� as follows

~�� = min(1;
jSjjLj
A

;
~r�

2ABjSj) (45)

~�� = min(
~r�

4jSj2jLj2 ;
�

0

A~��
;
a~r�
A2~��

) (46)

Also let r� = min(a~r�; ~r�=2). Then proceeding in the
same way as in the proof of Lemma 1, we can show the
following lemma

Lemma 3:For any�,� satisfying0 < � < ~�� and0 <
(�=�) = � < ~��, the relation

jjx(n+1) � ~x�jj2 � jjx(n) � ~x�jj2 � r��

holds for all sufficiently largen for whichx(n) =2 D�.
Using Lemma 3, the following lemma can be proved in the
same way as Lemma 2.

Lemma 4:There exists an infinite sequencen1;� <
n2;� < n3;� < ::: such thatx(ni;�) 2 D� for all i =
1; 2; 3; :::.
Proof of Theorem 2: From Lemma 4, there exists an
infinite sequencen1;� < n2;� < n3;� < ::: such that
x(ni;�) 2 D� for all i = 1; 2; 3; :::. Thus there exists an
i
0

such that Lemma 3 holds for alln � ni0 ;�. We show that

jjx(n) � x�jj � � for all n � ni0;�. Pick anyn � ni0;�.

There can be three cases:
Case 1: n = nj;� for somej � i0 :
In this case,x(n) 2 D�. Sincex(n) 2 XS , hence the fact
x(n) 2 D� also implies thatx(n) 2 ~D�. Thus from (44), it
trivially follows that

jjx(n) � x�jj � �0 (47)

< � (48)

Case 2: n = nj;� + 1 for somej � i0 :
Note thatx(nj;�) 2 ~D� (see Case 1). This impliesx(nj;�) 2
X = XS \XL. Using this fact and (46), it follows that

jjx(n) � x(nj;�)jj
= jjx(nj;�+1) � x(nj;�)jj
= jj[x(nj;�) + �v(nj;�)]XS

� x(nj;�)jj
� jjx(nj;�) + �v(nj;�) � x(nj;�)jj
= �jjv(nj;�)jj
� A�

� �0 (49)

From (49) and the fact thatjjx(nj;�) � x�jj � �0 (Case 1),
we get

jjx(n) � x�jj � jjx(nj;�) � x�jj+ jjx(n) � x(nj;�)jj
� �0 + �0 = 2�0 (50)

< � (51)

Case 3: nj;� + 1 < n < nj+1;� for somej � i0 :
Note thatx(n

0) =2 D� for all n0 satisfyingnj;� < n0 <
nj+1;�. Therefore, from Lemma 3, it follows that there
exists a~x� 2 int(D�) \XS � ~D�, such that

jjx(n0+1) � ~x�jj < jjx(n0) � ~x�jj (52)

for all n0 satisfyingnj;� < n0 < nj+1;�. Summing up the
inequalities obtained forn0 = nj;�+ 1 to n� 1, we obtain

jjx(n) � ~x�jj < jjx(nj;�+1) � ~x�jj (53)

Since~x� 2 ~D�, hence from (44) it follows thatjj~x��x�jj �
�0. Using this fact, (53) and (50),

jjx(n) � x�jj
� jjx(n) � ~x�jj+ jj~x� � x�jj
< jjx(nj;�+1) � ~x�jj+ jj~x� � x�jj
� jjx(nj;�+1) � x�jj+ jj~x� � x�jj+ jj~x� � x�jj
= jjx(nj;�+1) � x�jj+ 2jj~x� � x�jj
< 2�0 + 2�0 = 4�0

= � (54)

From cases 1, 2, 3, ((48), (51) and (54)), if follows that
jjx(n)�x�jj < � for all n � ni0;�. The result of Theorem 2
follows. 2

