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Air pollution and climate change are some of the important consequences of modern

industrialization. In a large developed country like the United States of America, these

changes have a greater impact due to the country’s high energy demands. �is project

focuses on air pollution caused by emissions released by combustion of fuels in automo-

bile engines. �e mobile emissions inventory for the National Emissions Inventory (NEI)

is based on the estimates from MOtor Vehicle Emissions Simulator (MOVES), which is

a so�ware program used to model automobile emissions. Analysis of in-situ roadside

monitor observations shows that emissions from automobile sources, especially CO and

NOx emissions are correlated with ambient temperature and humidity. In this research, I

compared theMOVESmodel output dependence on ambient temperature and speci�c hu-

midity to observations from an Air�ality Monitoring Site which is located in Maryland

on Interstate-95 (I-95) and adjusted the model output to nearly match the observations.

�e adjusted model was used to obtain emissions estimates of another month (here, Nov

2014) and these estimated ratios nearly matched with the observations.
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Chapter 1: Introduction

Keeping the levels of pollutants below the standards that a�ect human health and

cause danger to ecosystems has always been a major concern to the governments which

make laws to protect the people and environment. Harmful pollutants that cause air pol-

lution are mainly emi�ed from powerplants, automobile vehicles and natural causes like

wild�res and volcanoes. Automobiles are one of the important sources for CO, NOx, par-

ticulate emissions and volatile organic carbons (VOCs) that are released into air. Due to

the increase in use of automobiles in modern day, fuel consumption is increased by var-

ious motor vehicles like motorcycles, cars, buses, and trucks. �e emissions from these

automobiles depend on various processes inside the engine including air-fuel ratios, as

well as sulfur content in the fuel, tire-wear, type of fuel and ambient temperature.

To accurately measure the observations of emissions from automobile sources, the US

Environmental Protection Agency (EPA) has been maintaining near-road and far-road air

quality sites next to freeways and other local roads. �is kind of monitoring is important

because each year additional number of vehicles are being added on-road in millions [3].

But themonitoring sites can only providemeasurements for present and an archive of past

conditions. Being able to predict for future years is also important. So, EPA has designed

a so�ware program for modeling the mobile emissions and has been improving it over the

years. As of now MOVES 2014a [9] is the latest version. All the mobile emissions that are

prepared in the National Emissions Inventory (NEI) are from MOVES 2014a output. �e
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NEI is prepared once every three years by EPA by including the data collected from State,

Local and Tribal agencies which consists of criteria and hazardous pollutant emissions

estimates and their precursors from various sources. So, it is important for MOVES to

have a more realistic approach towards estimations.

�e main focus in this study is the investigation of temperature and humidity depen-

dence for CO and NOx in MOVES output. It is important to get temperature dependence

of emissions in the MOVES output correct. �e reason why NOx emissions are important

because long term exposure to NOx emissions can cause respiratory problems which can

lead to decrease in the lung functions and NOx also acts as a precursor for the formation

of O3, one of the criteria pollutants that has a national standard of 70 ppb [12] and has

adverse human health e�ects especially in summer. O3 being a highly unstable compound

tends to react immediately a�er its formation, but O3 concentration increases when the

formation rate is higher than reacting rate. �is phenomena is favorable in warmer tem-

peratures, like temperatures above 70 ◦F andwe observe O3 exceedances especially during

a�ernoons in the months of May-September. CO is a toxic pollutant and used as a tracer

gas for mobile emissions. Exposure to high amounts of CO can cause decrease of the

oxygen levels in blood stream which may lead to problems in brain like dizziness, uncon-

sciousness, confusion and problems in heart like chest pain and sometimes even can lead

to death. Research on observational data collected from a road side monitor on I-95 shows

that NOx decreases with the increase of ambient temperature and speci�c humidity in the

atmosphere while CO is relatively constant for these changes. �e next section gives a

brief review of air quality in the USA and previous work on CO and NOx measured and

modeled emissions from automobiles.
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1.1 US and Mid-Atlantic air quality

Air quality in the USA has been a serious concern from 1940s in the state of Penn-

sylvania, where burning coal caused severe smoke pollution [18]. A new law called the

Clean Air Act [2] was implemented in 1970 by the Environmental Protection Agency

(EPA) which sets the National Ambient Air �ality Standards (NAAQS) for pollutants

that have adverse e�ects on human health. �ese pollutants are called criteria pollutants

and they are CO, NO2, SO2, PM2.5,O3, CO and lead (Pb). Bernard et al., (2001) [16] did a

detailed study on the role of climate change on air pollution caused by the criteria pollu-

tants and their health impacts in the US. Since the implementation of Clean Air Act, the

pollution levels in the US were decreased by 31% as of 1997, although the population was

increased by 31%, vehicle miles traveled increased 127% and gross domestic production

increased 114%. Some of the criteria pollutants like lead emissions decreased by almost

98%. �e signi�cant decrease in lead was possible because of se�ing early reduction stan-

dards in fuel starting from 1973 and completely abandoning the sale of leaded fuel from

1996 by law under the Clean Air Act [8]. More recent results show CO has decreased by

85%, 8-hour average O3 has decreased by 31% and annual NO2 has decreased by 62% from

1990 to 2016 [13] in the US.

Pennsylvania, D.C, Maryland, Delaware, Virginia and West Virginia and parts of New

York, New Jersey and North Carolina are together called the Mid-Atlantic region. �e

Mid-Atlantic region of the USA is one of the important regions in the US where air pol-

lution is a major concern due to its urbanization, and its location downwind of the states

that produce huge amount of emissions because of the presence of large power plants.

�e increased air pollution in this can also be accounted due to increase in population

and various climate conditions [30]. Many research studies have been done to investigate
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various pollutants in this region. O�en there is an exceedance of O3 in summer due to

local and remotely transported VOCs and NO2. Studies like Lewis et al., (2007) [24], Hains

et al., (2007) [20] and He et al., (2014) [22] studied the mid-Atlantic region using aircra�

measurements. �ey discussed pollution caused by long range transport of pollutants

from various upwind sources. Lewis et al., (2007) [24] did a cluster analysis by placing

observations in 6 clusters and found that ’only marine and upper tropospheric clusters

as clean’ and rest of the remote locations in Mid-Atlantic as polluted. Hains et al., (2007)

[20] also did a clustering analysis for O3 sources and found one cluster pro�le from the

Canadian forest �res and the other �ve were directly related to NOx emissions from point

sources. �ey also found that NOx emissions from both mobile and point sources a�ect

O3. An overall study of Mid-Atlantic air pollution due to climate change in the region

was done by Ryan et al., (1999) [32] and Rogers et al., (2000) [31]. Ryan et al., (1999) [32]

used multiple regression analysis for ground level O3 and made accurate forecasts of 1-hr

peak O3 in the Mid-Atlantic region. Others like Bell et al., (2004) [15]studied the sensitiv-

ity of tropospheric O3 on changing biogenic emissions and Kim et al., (2005) [23] studied

particulate ma�er (PM) sources in the mid-Atlantic region. Bell et al., (2004) [15] by per-

forming CMAQ simulations found that a 100% increase of the biogenic VOC emissions

had a greater increase in the ozone levels than a 100% increase of mobile NOx and VOCs.

�ey also found that increase in the temperatures due to climate change also increase the

biogenic VOCs and thereby raise ozone levels.

�e following paragraphs give more insight into the methods used for analyzing var-

ious pollutants from the past studies. Castellanos et al., (2011) [17] using the Commu-

nity Multiscale Air �ality (CMAQ) modeling with version 4.5.1 have estimated the O3,

NOx and CO emissions in the Eastern United States during the pollution episodes and

calculated the vertical mixing that are represented by K-�eory and calculated the eddy
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di�usion coe�cient using the planetary boundary layer theory. �e results showed CO

was underestimated by 20-50% when the model captured correct boundary layer depth

and no evidence was found that CO was overestimated by SMOKE/MOBILE6. �ey also

suggested that NOx was overestimated at urbanmonitoring sites andMOBILE6 NOx emis-

sions were also overestimated from cars.

Parrish et al., (2011) [29] discuss how there has been change in the air quality of North

American mega-cities over the past several years. With the increasing smog, due to the

photochemical production of O3 in Los Angeles Basin, California became the �rst state in

1966 in the US to set standards from the motor vehicles by requiring automobiles to use

catalytic converters and promoting zero emission vehicle �eets. �is lead to signi�cant

decrease in the ambient concentrations of CO, SO2, O3, PM2.5, lead and NOx, though O3

has been regularly above the NAAQS limitations during the summer.

�ere have been a lot of observational studies through �eld campaignswhich helped to

estimate the boundary layer depth, and sources of emissions and precursors. �e satellite

observations for the decade (2000-2010) have led to a more rigorous study of the ground

based observations. In the northeast corridor of the US which extends from DC to Boston

and includes big cities with large populations, emissions of O3, aerosol precursors and

greenhouse gases particularly in the New York City were lower when compared to that

of LA megacity which were compared here based on the similar size of population. �is

is because of the transportation of emissions generated in the cities by prevailing winds

from the southwest, and presence of a daytime deep convective boundary layer, emissions

vertical mixing is allowed. Houston on the other hand, being an industrial city, had a huge

concentration of O3 during the summers and in the late 90s and early 00s had recorded

the highest 1-hr average for O3 concentrations which was recorded to be greater than

200ppbv and Houston put e�orts to not record a maximum of 170ppbv a�er 2004. �e
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steps taken in Mexico City for reduction in emissions were similar to that of LA, such

as installation of catalytic converters in automobiles, decrease in sulfur content in diesel,

instrumentation and maintenance (I&M) programs strengthening and lead removal from

gasoline. �e �eld studies conducted in Mexico City showed that the production of O3

may have shi�ed from NOx sensitive emissions to a VOC limited emissions. �e inter-

continental transport of O3 and precursors is another major issue as O3 precursors from

East Asian countries travel from across the Paci�c ocean resulting in an increase of the

background O3 concentrations in California [29].

Anderson et al., (2014) [14] discussed the measured CO and NOy emissions and the

modeled emissions. �ey focused on comparing the modeled results from CMAQ using

the NEI to observations such as satellite measurements and the data that was collected

through the DISCOVER-AQ air campaign in the Baltimore-Washingtion Region (BWR).

Parrish et al., (2014) have compared the O3 data sets obtained from 7 sites in Europe, 3

sites in North America and 2 sites in Asia that lie in the mid-latitudes. �e three models

used in this study for calculating the long-term O3 concentrations were Community At-

mosphere Model with Chemistry (CAM-chem), Geophysical Fluid Dynamics Laboratory

CoupleModel (GFDL-CM3) and Goddard Institute for Space Studies Model (GISS-E2-R).

Each of these models di�er in the resolution they run, the vertical layers they choose and

the atmospheric chemistry involved with di�erent chemical reactions. �e results showed

there was an overestimation of CO emissions in the NEI by 15 +/- 11% and mobile NOx

emissions were overestimated in the NEI by 51-70%.

He et al., (2011) [22] studied an air quality episode in the Baltimore region during an

heat wave that recorded high temperatures and poor air quality. An air quality episode

is an unexpected combination of emissions and meteorology which leads to increase in
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emission levels. �e results of this research showed there was an elevated reservoir of

pollutants that contain emissions such as O3, CO and NOx from motor vehicles exhaust

and aerosols and SO2 from powerplants. �ey used aircra� observations and ground ob-

servations and compared them with the modeled output of O3 from CMAQ, in which the

modeled O3 was overestimated for the in-situ ground observations and the model pre-

dicted very high ozone near the surface in an elevated reservoir.

He at al., (2013) [21] studied air quality and emission trends in the Baltimore/Washington

region from 1997 to 2011 using various sources of data such as ground-based observa-

tions, satellite measurements, air-cra� measurements and clustering analysis. �e re-

sults showed CO and O3 emissions in the region showed a decreasing trends near to 35

ppbv/year and 1.3 ppbv/year respectively, in the lower troposphere. �ey also found that

for Eastern Maryland, major sources for NOx emissions are from the power plants of up-

wind states Ohio and Pennsylvania.

1.2 Emission control in automobiles

1.2.1 Catalytic converters:

Emissions of elemental and oxides of carbon and nitrogen oxides and hydrocarbons

are released due to the incomplete burning of fuel in the internal combustion engines of

cars and other automobiles. �ese gases, when emi�ed directly into the atmosphere play

a key role in the formation of other harmful pollutants that act as precursors in the forma-

tion of O3. To minimize these emissions, devices called catalytic converters are used in the

internal combustion engines of automobiles [5]. Catalytic converters are located between

the engine and the vehicle exhaust system. �ey are in the form of honeycomb structured

ceramic beads on which noble elements like platinum, rhodium, palladium are coated as
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catalysts. �e amount of these catalysts present is around 4-9 grams. Catalytic converters

oxidize carbon monoxide and hydrocarbons to CO2 and H2O (steam) and reduce nitrogen

oxides into nitrogen and oxygen. All the reactions are spontaneous in nature and proceed

in the forward direction [4]. But, they are quite slow without the presence of any cata-

lyst. �us, a reduction catalyst composed of platinum and rhodium is used for reducing

nitrogen oxides into molecular nitrogen and oxides and an oxidative catalyst composed

of platinum and palladium decreases emissions of carbon monoxide by converting it into

CO2 and unburned hydrocarbons to CO2 and H2O.

Catalytic converters work best at high temperatures which makes them ine�ective

during the �rst few minutes a�er the engine starts running (cold start). Catalytic con-

verters are also less e�cient in diesel engines as the engines run at lower temperatures

compared to gasoline engines.

1.2.2 Air-fuel ratio:

�e ideal air fuel mixture contains air to fuel ratio of 14.7:1. �at is, 14.7 parts of air

by weight required to completely burn 1 part of fuel by weight. If the ratio is less than

the ideal conditions, then it is termed as a rich mixture and if it is greater than 14.7:1,

then it is called a lean mixture. A rich mixture provides inadequate oxygen for the fuel

to be burnt completely which results in emission of unburnt gases through the tail pipe

exhaust, while a lean mixture provides more oxygen than required resulting in slow burn-

ing leading to the power loss. For achieving maximum power and speed, the air fuel ratio

should be rich in the engine and also during the cold start conditions. A leaner mixture

provides maximum fuel economy, but burns slowly resulting in power loss irregularity.
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A carburetor in an automobile engine is the place where fuel which is turned into

vapor and air is mixed in proper proportion and is passed to the engine for the complete

combustion of the fuel [1]. A major disadvantage of carburetors is that an engine with

four cylinders and one carburetor has di�culty in receiving the same air fuel mixture

ratios to each cylinder due to their distance from the carburetor. In modern day vehicles,

di�erent types of fuel injectors replaced carburetor. Fuel injection is a system where a

pump supplies fuel under pressure to each cylinder separately. Fuel injectors are either

direct or indirect based on the type of vehicles. In indirect fuel injection, the fuel is turned

into mist and mixed with air through an inlet manifold and this fuel/air mixture enters

into the combustion chamber and many diesel engines use indirect fuel injection. Direct

injection is where fuel is directly injected into the cylinders. Gasoline engines commonly

use direct fuel injection.

1.2.3 Oxygen-sensor:

To maintain ideal air-fuel ratio conditions, engines use a device called an oxygen-

sensor that is located near the exhaust pipe. �e primary function of the device is to

check whether the air-fuel mixture is burning lean or rich and to adjust the amount of air

entering into the internal combustion engine [10]. Oxygen sensors are needed because

amount of oxygen entering into depends on various factors such as the altitude, engine

temperature, coolant temperature, air �ow and engine load, etc. Most sensors work on

the mechanism where a chemical reaction occurs that generates a voltage. �e oxygen

sensor element is a zirconium ceramic bulb that is coated with platinum on the outside

and has two strips of platinum inside which serve as electrodes. �e inside of the bulb

is vented internally to the outside temperature while outside of the bulb is exposed to

the hot exhaust gases. �e di�erence in the outside and inside oxygen levels generates
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a voltage that �ows through the ceramic bulb. �e high voltage detected by the com-

puter is a measure of rich mixture and it leans the fuel-air mixture while the low voltage

is an indication of lean mixture and the computer makes the air-fuel mixture rich [11].

�e engines computer responds to the voltage and takes cues from the oxygen sensor to

determine rich or lean mixture and adjusts the mixture accordingly.

1.3 Past research on measurements and modeling data of mobile emis-

sions

�eparagraphs below discuss CO andNOx emissionsmeasurements from vehicles and

changes in concentrations of these pollutants from di�erent model year vehicles. Parrish

et al., (2002) [28] discuss the change in the CO over NOx ratios for a period of over one

decade (1987-99) from the vehicular emissions and they found a decrease of 7-9% for this

time period. McDonald et al., (2012) [25] studied long-term trends in NOx emissions from

motor vehicles at national, state and air basin scales. Some of the research �ndings were

1) At national scale between 1990 and 2007, there was an increase of 20% and 90% for

gasoline and diesel fuel consumption respectively. While, diesel sales largely declined be-

tween 2007 and 2009 in the US, gasoline fuel sales slightly decreased. 2) NOx emissions

factors for diesel to gasoline vehicles were 3 in 1990 and it was found to be 8 in 2009. �is

is mainly due to increase in the e�ectiveness of catalytic converters in gasoline engines

and improvement of technology in such type of vehicles and due to the increase in the

number of diesel vehicles which emit more amount of NOx compared to gasoline engines.

3) In Los Angeles area, motor vehicles account for nearly 80% of NOx emissions making

them the dominant sources.

Zavala et al., (2009) [34] studied mobile emissions contributions to Mexico City's emis-
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sions inventory using on-road and cross-road emission measurements and ambient data.

�emeasurements were made by se�ing up an Aerodyne mobile laboratory duringMarch

2006; a fast time response instrumentation was also used to measure the emissions dur-

ing transiting from place to place apart from stationary on-road measurements. Instru-

ments used in this research include Tunable Infrared Laser Di�erential Absorption Spec-

troscopy (TILDAS) to measure pollutants like CO, NO2, H2CO and C2H4, Aerosol Mass

Spectrometer (AMS) to measure nitrate, sulfate, ammonium, organics and chlorides and

Non-Dispersive Infrared instruments (NDIR) unit (LICOR) to measure CO2. �e key �nd-

ings of the research were 1) when compared to emissions in Mexico City, U.S cities like

Denver and Phoenix had fuel-based CO and VOC mobile emissions that were lower, and

this was due to the fact that Mexico City had a �eet consisting of older vehicles with no

emission control technology. 2) �e CO/NOx ratio was decreased by 1.9 ppm/ppm/year

from 2004 during early morning which was due to reduction in CO emissions because of

the introduction of cleaner vehicles around 2000 and also due to the decrease of older ve-

hicles in the �eet. 3) �ough the vehicle �eet increased from 2000 to 2006 in Mexico City,

the ambient levels of NOx and CO emissions during the early mornings did not increase

remarkably. �e research suggested this was due to increase gasoline vehicles with good

emission technology and removal of older vehicles.

Parrish et al., (2006) [27] have investigated the mobile inventories for emissions of

NOx, VOCs and CO in the US. �ey found inconsistencies in MOBILE6 (prior version of

MOVES) modeling so�ware programwhich was developed by EPA to calculate the mobile

or on-road anthropogenic vehicular emissions. �ey found that MOBILE6 overestimated

CO emissions of on-road vehicles by nearly a factor of 2 by comparing emissions esti-

mates to tunnel and remote sensing measurements.
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Fujita et al., (2012) [19] compared mobile emissions models such as MOVES2010, MO-

BILE6.2 and EMFAC2007 with on-road tra�c tunnel and remote sensing measurements.

�e on-road measurements were made in a Van Nuys tunnel, CA for 8 days with two 3-hr

sampling periods each day from 9am-12pm and 12:15-15:15. Some of the important �nd-

ings of the research were 1) Non-methane hydrocarbons (NMHC) measured are 3.5 times

higher during high temperatures (85 ◦F-105 ◦F) than at low temperatures (65 ◦F-75 ◦F).

All the 3 models predicted lower factors of NMHC at higher temperatures than measured

since all models have showed insensitivity in estimating running evaporative emissions

at higher temperatures, especially MOVES. 2) Selecting appropriate operating modes for

project scale analysis in MOVES proved to be important, since there were uncertainties of

modeled NOx emissions when compared with measurements. when compared with mea-

surements. 3) �ere were also variations observations among the models in estimating

the contributions of gasoline and diesel fuel vehicles and also in predicting the emission

factors. MOVES predicted lower contribution of NOx emissions by diesel trucks compared

to EMFAC, while contribution of total carbon emissions by diesel trucks by MOVES was

greater than twice that of EMFAC.

In earlier studies Mulawa et al., (1997) [26] reported on the e�ect of temperature and

E-10 fuel on the primary exhaust particulate ma�er emissions from light-duty vehicles.

E-10 fuel is mixture of 10% ethanol and 90% regular unleaded gasoline [6]. Ethanol in

E-10 fuel partly absorbs CO2, o� se�ing green house emissions. �ey also expanded their

study to CO and NOx emissions temperature dependence. �e study was conducted in

Fairbanks, Alaska during the winter of 1994-95. For this study, they used 9 vehicles of

di�erent ages and technologies and one vehicle which was in compliance with the EPA’s

standard limits for CO emissions in 1996. �ese tests were also carried out at Research

Triangle Park, North Carolina under similar conditions. All the tests were carried at 75 ◦F,
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20 ◦F, 0 ◦F and -20 ◦F temperatures according to federal test procedure with both regular

gasoline and gasoline with 10% ethanol in it. �e research concluded that PM emissions

increased with the decrease in temperatures except for the standard vehicle where emis-

sion rate at 75 ◦F was same as that of 20 ◦F. �is lead to the conclusion that vehicles

which met CO emissions federal standards produce less PM. PM emissions for E-10 fuel

were considerably lower compared to the regular gasoline fuel. CO and HC emissions

increased with decrease in the temperature, so PM followed similar trends. NOx emis-

sions increased when the fuel is switched to E-10 and did not show any trend with the

temperature changes.

Weilenmann et al. (2004) [33] investigated the temperature dependence of cold start

emissions in both diesel and gasoline cars for di�erent car age groups in Europe. �ey

measured emissions at -23 ◦C, 7 ◦C and 23 ◦C for 3 categories of cars in the research.

�ey were Euro-0, Euro-2 and Euro-3. Euro-0 and Euro-3 were gasoline cars that mostly

belong to the years 1985 and 2000 respectively. Euro-2 cars were diesel and the model

years were from 1997-2001. �e results showed CO emissions decreased about 180 g/start

at -20 ◦C from Euro-0 to Euro-3 car models while that only decreased 72 g/start at 23
◦C. CO emissions largely decreased at room temperature while they only decreased by

a factor of 3 at -20 ◦C from Euro-0 to Euro-3 cars which means even with the modern

emission technology, emissions were not reduced at very low cold start temperatures. On

the other hand, NOx emissions were relatively less in both generations of cars and did not

show any relationship to the ambient temperatures. �e research also showed that CO

cold start emissions for Euro-2 diesel cars were about 10 times lower compared to gasoline

cars and observed a factor of four reduction between -20 ◦C and 23 ◦C, while cold start

NOx emissions in Euro-2 cars were lower and increased at low ambient temperatures.
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Chapter 2: MOVES so�ware

2.1 Description

MOVES is short form for MOtor Vehicle Emission Simulator and its latest version is

MOVES 2014a. It is used to model and estimate the emissions from automobiles and other

motor vehicles both on-road and o�-network. It has a Java based graphical based inter-

face (GUI) platform and runs on MySQL database scripts. It has two modes, inventory

and emission rates mode. Inventory mode outputs the overall emissions in grams while

emissions rates mode outputs the emission factors, which when multiplied by the activity

give the total emissions. �e maximum time period a single MOVES run can be made

for is one year. MOVES has three scales for running a simulation, they are the national

scale, the county scale and the project scale. National scale contains the default inputs

prepared from the data collected by EPA and can be adjusted if there are any updated

data available. County scale is used as a more accurate method for modeling since all

the inputs are manually entered and is modeled for each individual county or multiple

counties together which have similar conditions. Project scale is used for a combination

of various roads or for an intersection of roads and it is used for modeling more accu-

rately for a speci�c time at a particular point. �ere are 5 di�erent categories of roads

in MOVES and to model ramps separately it uses 4 more categories. �e di�erent road

types in MOVES are o�-network, rural restricted and rural unrestricted with and without

ramps and urban restricted and urban unrestricted with and without ramps. Restricted
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roads can be de�ned as roads that have limited access to vehicles likes bicycles and other

vehicles that are driven by animals, and that have separation dividing both sides of roads

and there is no intersection of streets. MOVES can be used to modeled various vehicles

like motorcycles, cars, buses and trucks along with their sub-categories that are based on

the weight of the vehicle. �ese automobiles can be further divided based on the vari-

ous types of fuels such as gasoline, diesel, electricity and compressed natural gas (CNG),

since, based on the composition of fuel, emission quantities change due to factors like air-

fuel ratio, combustion temperature and presence of catalytic converters. While running

MOVES various pollutants can be selected whose emissions are to be simulated, while

some pollutants have some prerequisites to be selected for them to be modeled. Pollu-

tants can be further classi�ed in output based on the process by which they are emi�ed.

�e division is necessary because cold-start produces a large quantity of emissions and

once the vehicle is started and running the emissions are reduced and vary according to

their speed and other fuel and engine properties.

2.2 County data manager

In this research, I only ran on county scale mode, so I explain county data manager

(CDM) here in detail. County data manger is a separate interface where inputs for a

county are given. �e inputs include meteorology data, fuel formulation, average speed

distribution, age distribution of vehicles, road type distribution, population of various

sources, number of starts for each source, vehicle miles traveled (VMT), inspection &

maintenance programs (I/M) and hotelling hours. Each input should be provided in the

form of an Excel forma�ed worksheet, which should contain the modeling time period

such as year, month and the day. If there is incomplete information, theMOVES contains a

feature to show errors. Since temperature and humidity dependence is what this research
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mainly focuses on, the input table for meteorology is brie�y described as it has the inputs

for temperature and humidity. �emeteorology table consists of temperature and relative

humidity values averaged for each hour of each day over a month in the modeling year.

Temperatures and relative humidity cannot be inpu�ed separately for each hour of the

day. �us, for the modeling all the changes to obtain temperature ranges are made in the

meteorology table.

2.3 MOVES technical reports

�e EPA-MOVES website describes quantitatively how the temperature and humidity

dependence is accounted for by default in the MOVES. Below is a brief description:

2.3.1 Temperature adjustments for gasoline start emissions:

(a) Adjustments for CO emissions are made for temperatures only below 75◦F

(b) �e additional emissions in grams/mile due to changes in the ambient temperature

are added to the calculated base emissions. �ese additive grams/mile adjustment

equations are given by

Additive grams = A∗ (T −75)+B∗ (T −75)2 (2.1)

Additive grams = B∗ eA∗(T−75)+C (2.2)

�e �rst equation is applied to model years earlier than 2001, while the other equa-

tion is applied to more recent vehicle models.

(c) All these adjustments were developed by ��ing vehicle emissions data obtained by

using various test procedures such asMobile Source Observation Database (MSOD),

O�ce of Research andDevelopment (ORD),Mobile SourceAir Toxic Program (MSAT)

and O�ce of Transportation and Air �ality (OTAQ) Cold Temperature Program.
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(d) NOx temperature adjustments are made by below equation.

NOx temperature additive ad justment = A∗ (T −75) (2.3)

where: A = -0.009, the above equation is applied only for temperatures below 75◦F

and no additive adjustment is made for temperatures greater than 75◦F.

(e) �is factor is added to the estimated base NOx to get ambient temperature adjusted

emissions.

2.3.2 Temperature adjustments for gasoline running emissions:

Both CO and NOx for running emissions do not depend on temperature and this is

re�ected by the adjustment factors being equal to 1 in the code. �e observations data

used for this conclusion consisted of analysis of emissions on 496 vehicles which was

performed in 2004 and 2005. No statistical signi�cance (relationship) was found between

emissions and temperature.

2.3.3 Temperature adjustments for diesel fueled automobile vehicles:

(a) Very small dependencies were found for CO and NOx start emissions on tempera-

ture, so the temperature adjustments for CO and NOx are set to be zero for cold-

starts.

(b) Since there is no signi�cant e�ect of ambient temperature on cold start emissions, no

analysis was made for running emissions. So, the temperature additive adjustment

for diesel running emissions is zero in MOVES.
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2.3.4 Temperature e�ects in Compressed Natural Gas (CNG) emissions:

All the start emissions temperature adjustments for CO and NOx were adjusted simi-

larly to running emissions and cold start emissions of diesel engines.

2.3.5 Humidity adjustments in MOVES:

(a) NOx emissions are adjusted for all processes and all modes in MOVES.

(b) �e base emissions are multiplied by a factor that depends on speci�c humidity,

which bounded in between 21 and 124 grains of water per pound of dry air. And

the adjustment factor K, is given by

K = 1.0− ((bounded speci f ic humidity−75.0)∗Humiditycorrection coe f f icient)

(2.4)

where bounded speci�c humidity is given as (greatest(21.0, least(speci�c humidity,

124.0))) and humidity correction coe�cients are 0.0038 and 0.0026 for gasoline and

diesel respectively that were obtained from extrapolation of the measured data by

EPA.

2.4 Methods used in MOVES

2.4.1 Temperature dependence:

To �nd out solely the default temperature dependence in MOVES, the base meteo-

rology �le that goes as one of the inputs in to the county data manager was changed.

Meteorology input contains average temperature and relative humidity values for each

hour of the month and for all the 12 months of 2014. In this research, the month of Oc-

tober, 2014 was chosen because the observations analyzed were also for the month of
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October which makes comparisons more appropriate.

To vary temperature and keep speci�c humidity constant, relative humiditywas changed

accordingly. To see the variation at di�erent temperatures at di�erent hours, input me-

teorology �les for the MOVES were created where the default temperature was added up

to 10◦C at an interval of 2◦C and also subtracted up to 10◦C at an interval of 2◦C, thus

forming a total of 11 temperature scenarios. In each of these 11MOVES runs, only the me-

teorology input �le was changed while rest of the inputs remained unchanged. �e output

emissions of CO, NO, NO2 and CO2 were obtained in grams/day and were converted into

moles/day. �e number moles of NOx were calculated by adding up the number of moles

of NO and NO2.

2.4.2 Speci�c humidity dependence:

To determine the default speci�c humidity dependence, MOVES runs were made in

a similar way how temperature dependence runs were performed. Speci�c humidity de-

pendence runs were made by keeping the default temperature for each hour of the day

constant and changing the relative humidity each hour to maintain a speci�c humidity for

16 di�erent runs. �e constant speci�c humidity values were 5, 15, 20, 25, 35, 40, 45, 50,

55, 60, 65, 75, 85, 95, 110 and 125 grains of vapor per pound of air (MOVES default units

for speci�c humidity) for 16 di�erent scenarios respectively. While plo�ing the default

units were converted to g/kg to match with the units of observational data.

By inpu�ing the meteorological variables in county manager as described above, I ob-

tainedMOVES output consisted the emissions in grams for di�erent pollutants, fuel types,

road types, processes and day types (weekday and weekend). Since, the observational
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study is based upon measurements from a roadside monitor next to a highway only run-

ning emissions for the weekday and since highways are restricted, only rural and urban

restricted roads form the MOVES output were used. �e segregated output data were

summed up for each pollutant and for each hour of the day (ambient temperature or spe-

ci�c humidity is di�erent at each hour) and for both the restricted road types and for all

vehicle and fuel types. For temperature dependence, since there are 11 di�erent runs, the

output emissions �le contained a total of 264 emission values of CO, NOx and CO2 at

di�erent ambient temperatures. �ese 264 points are sorted in ascending order and were

divided 25 points each into 10 bins and the last bin ge�ing the rest 14 points. For each

bin, 25th percentile, median and 75th values were calculated and a linear least squares re-

gression is applied to the median values. Output is analyzed in a similar way for speci�c

humidity dependence. �e results are explained in Chapter 3.
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Chapter 3: MOVES output results and discussion

3.1 MOVES temperature dependence

Figures 3.1 and 3.2 below, show CO/NOx, CO2/NOx and CO2/CO emission mole ratios

versus ambient temperature in degrees celsius. Figure 3.1 shows the default output of

MOVES i.e., without any adjustments nor corrections made in the so�ware codes. Heat

index which is also called apparent temperature, is a measure of how it actually feels when

relative humidity is factored with temperature. Figure 3.2 shows the plots where the heat

index value was changed to 1.0. Both the �gures show emission ratios with four lines vs

temperature in each plot, the top line in blue represents 75 percentile, the center line in

red represents median of the data, the bo�om line in blue show 25 percentile data and the

black do�ed line is the least square linear regression line for themedian data. �e emission

ratio of CO2/CO in Figure 3.1 starts decreasing at nearly 20 ◦C (68 ◦F) which means CO

and CO2 increase with increase in the temperature above 20 ◦C (68 ◦F) but CO emissions

increase much faster than CO2 emissions increase and in Figure 3.2 the slope is nearly zero

i.e., CO is constant and independent of temperature, only heat index through AC a�ects

CO. CO2/NOx nearly remain constant in both the �gures, so I concluded change in the heat

index has minimal impact on the NOx emissions in MOVES. Heat index e�ects in MOVES

are adjusted to air conditioner (AC) on/o� in vehicles by amultiplicative adjustment, given

by the Equation 3.1 and heat index is calculated by the Equation 3.2. Switching on AC in

vehicles causes increase in the amount of fuel consumption which increases the emissions
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of vehicles. MOVES default heat index value is equal to temperature if the temperature is

below 78 ◦F and Equation 3.1 is applied only to temperatures above 78 ◦F.

ACFactor= min(max(ACActivityTermA+heatIndex∗ (ACActivityTermB

+ACActivityTermC ∗heatIndex),0),1.0)∗ACPenetrationFraction

∗ f unctioningACFraction (3.1)

heatIndex[7]= least(−42.379+2.04901523∗ temperature+10.14333127

∗ relHumidity+−0.22475541∗ temperature∗ relHumidity

+−0.00683783∗ temperature∗ temperature

+−0.05481717∗ relHumidity∗ relHumidity

+0.00122874∗ temperature∗ temperature∗ relHumidity

+0.00085282∗ temperature∗ relHumidity∗ relHumidity

+−0.00000199∗ temperature∗ temperature∗ relHumidity∗ relHumidity,120)

(3.2)
where temperature and relHumidity are the ambient temperature and relative humidity of

the default inputs in the county data manager.

In Equation 3.1 the term heatIndex was changed to 1.0 in the MOVES runs to see

only the e�ect of heat index on emissions, and the results are shown in Figures 3.2 and

3.4. By changing heat index value to 1.0, the AC multiplicative adjustment factor was

made constant in the MOVES runs to see the e�ects of temperature or speci�c humidity

exclusively.
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Figure 3.1: MOVES output - emission ratios vs ambient temperature pro�le (◦C), Oct 2014. (a)
∆CO/∆NOx, (b) ∆CO2/∆NOx, (c) ∆CO2/∆CO
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Figure 3.2: MOVES output - emission ratios vs ambient temperature pro�le (◦C), Oct 2014. (a)
∆CO/∆NOx, (b) ∆CO2/∆NOx, (c) ∆CO2/∆CO

3.2 MOVES speci�c humidity dependence

Figures 3.3 and 3.4 show plots of MOVES output emission ratios against speci�c hu-

midity. Both �gures are similarly plo�ed as the �gures plo�ed for temperature depen-

dence i.e., the former �gure was plo�ed with MOVES default while the later �gure was
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plo�ed by making heat index value 1.0 in MOVES. Both the �gures have similar plots

for CO/NOx, CO2/NOx and CO2/CO against ambient temperature. �erefore, I conclude

that emission ratio estimates are una�ected by changes in speci�c humidity which has

an e�ect on heat index. For the data we considered the highest temperature was 65.35 ◦F

so heat index does not have any e�ect on output. And the plot of CO2/NOx ratio clearly

shows that the ratio is increasing with increasing speci�c humidity values which means

NOx decreases with increase in the speci�c humidity since CO2 is una�ected by speci�c

humidity. �e CO2/CO ratio remains constant over speci�c humidity changes, so it can

be concluded that CO emission estimates are constant and are una�ected by speci�c hu-

midity changes.
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Figure 3.3: MOVES output (default)- emission ratios vs speci�c humidity (g/kg), Oct 2014. (a)
∆CO/∆NOx, (b) ∆CO2/∆NOx, (c) ∆CO2/∆CO
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Figure 3.4: MOVES output (heat index = 1.0) - emission ratios vs speci�c humidity (g/kg), Oct 2014.
(a) ∆CO/∆NOx, (b) ∆CO2/∆NOx, (c) ∆CO2/∆CO
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Chapter 4: MOVES output comparison to observations and adjustments

in MOVES

4.1 I-95 observations measuring site

In this chapter I discuss about methods used in analysis of road side observations and

their comparison to the MOVES output results. Figure 4.1 shows the location of on-road

site AQS monitor site on Interstate-95, in Howard County, Maryland. �is site monitors

NOx, CO2, CO, black carbon, PM2.5, VOCs, meteorology and wind speed and is maintained

by the MDE. �e measured data was analyzed by Dolly Hall. Figures 4.1, 4.2 and 4.3 were

prepared by Dolly Hall.

Figure 4.1: Location of AQS site on I-95 in the Howard County.
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4.2 Observational emissions vs ambient temperature

Figure 4.2 shows below the hourly emission ratios, as estimated from an orthogonal

least square regression of every 60 normalized 1-minute observations of CO, NOx, and

CO2. Normalization was done to each 1-minute observation by dividing the mean of 60

1-minute observations in that hour. For each plot, outliers were �ltered out (outliers were

identi�ed as 1-minute observations farther than twice the standard deviation from the

mean) and also regression lines that were not statistically signi�cant (p<0.05 is statis-

tically signi�cant). Finally, only the hours where r2 of the observations that went into

each regression was greater than 0.50 were used. �e number of points in the plots a and

c are 70, whereas the number of points in the plot b are 130. �e greater number of

points in plot b shows that the measuring instruments were more accurately calibrated

for collecting NOx emissions.

In Figure 4.2 plot a represents CO over NOx emission ratio, plot b represents CO2 over

NOx emission ratio and plot c represents CO2 over CO emission ratio. All the plots were

plo�ed emission ratios in mol mol-1 versus temperature in ◦C. �e red line in these plots

represents the ordinary least square regression line with temperature as the independent

variable. We see here that the CO/NOx and CO2/NOx emission ratios are temperature

sensitive (NOx is decreasing with increases in temperature) which represents the fuel rich

conditions of the engines. CO2/CO is not temperature sensitive, with a slope of near 0

mol/(mol ◦C).
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Figure 4.2: Observational data - Emission ratios (mol mol-1) vs Ambient Temperature ◦C, Oct-Nov
2016. (a). ∆CO/∆NOx, (b). ∆CO2/∆NOx, (c).∆CO2/∆CO

4.3 Observational emissions vs speci�c humidity

�e hourly emission ratios were calculated exactly the same as in the temperature de-

pendence. �e plots below in Figure 4.3 show the emission ratios as a function of speci�c

humidity in g/kg.

�e red line in these plots represents the ordinary least squares regression line with

temperature as the independent variable. We see here that the CO/NOx and CO2/NOx

emission ratios are temperature sensitive (NOx is decreasing with increases in speci�c

humidity). CO2/CO is not humidity sensitive, with a slope of only -1 mol/(mol g/kg).
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All of this tells us that the NOx is very temperature and humidity sensitive, as it is in

MOVES. However, in MOVES the CO is also temperature sensitive above 18◦C (64.4 ◦F),

which is not what we observe at the I-95 site.

Figure 4.3: Observational data - Emission ratios (mol mol-1) vs speci�c humidity (g/kg), Oct-Nov
2016. (a). ∆CO/∆NOx, (b). ∆CO2/∆NOx, (c).∆CO2/∆CO

4.4 Comparisons of measured and modeled data

Although the near road measurements are for 2016, we are comparing the measure-

ments to the modeled MOVES output of 2014 since the MOVES inputs are available only

for 2014 because the input inventory is prepared every 3 years and no measurements are

available for 2014, as the site started measuring air quality during summer 2016. I think
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though the years are di�erent, comparing the same month (October in both cases) would

be a good approach with all the resources that are available as of now. In this work, the

main focus is to compare the observations and emissions estimates based on temperature

and humidity variation. It is important to note that the meteorology is di�erent in 2014

and 2016 for the compared estimates and observations respectively. However, by keeping

speci�c humidity constant in MOVES while comparing e�ect of temperature dependence

and by keeping the temperatures constant while comparing e�ect of speci�c humidity, a

reasonable study can be performed because I am looking at individual factors of meteo-

rology separately. Comparative analysis is not done for speci�c days of a month nor I am

looking at diurnal pro�le variations.

4.4.1 Temperature dependence

On comparing the observations in Figure 4.2 and the MOVES base run output in Fig-

ure 3.1, it is clear that emission ratios do not match quantitatively. �e emission ratio

of CO2/NOx measured on-road is more than twice quantitatively for the same range of

temperature change and the measurements slope is nearly 13 times greater than MOVES

output.

�e CO2/CO measured emission ratio quantitatively is twice greater than MOVES

output ratio. It is observed that CO is nearly constant with any change in temperature

while MOVES output ratio starts decreasing around 20◦C since CO starts increasing with

the temperature. So, the MOVES defaults should be changed to correctly capture the CO

emissions and should be kept constant for all the changes in temperature.
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4.4.2 Speci�c humidity

Figures 4.3 and 3.3 show emission ratios vs speci�c humidity for the observations and

MOVES output respectively. Speci�c humidity dependence matches to the observations

more than temperature dependence in MOVES does. For CO2/NOx emission ratio of the

observations slope is nearly 3.5 times greater than the MOVES output ratio for the same

range of speci�c humidity change. �antitatively, this emission ratio is twice as large

that observed in measurements.

�e CO2/CO emission ratio is nearly constant in both measured and modeled results,

but the quantitatively measured ratio is twice larger than MOVES output. �us, by cor-

recting and changing quantitatively CO2, NOx andCO emissions dependencies on temper-

ature and speci�c humidity in MOVES, more accurate mobile inventory can be prepared.

4.5 Plo�ing observations and MOVES output

Below Figures 4.4 and 4.5 show the comparisons of emissions for observational data

on I-95 and MOVES output vs temperature and speci�c humidity respectively.
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Figure 4.4: Observational data (Oct-Nov 2016) and MOVES output (Oct-2014) comparison - Emis-
sion ratios (mol mol-1) vs ambient temperature ◦C. (a) ∆CO/∆NOx, (b) ∆CO2/∆NOx, (c) ∆CO2/∆CO
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Figure 4.5: Observational data (Oct-Nov 2016) and MOVES output (Oct-2014) comparison - Emis-
sion ratios (mol mol-1) vs speci�c humidity (g/kg). (a) ∆CO/∆NOx, (b) ∆CO2/∆NOx, (c) ∆CO2/∆CO

4.6 Disagreement between MOVES and observations

�e reason why MOVES does not account for the temperature dependence as seen in

observations analysis by Dolly Hall might be because ambient temperature dependence

on running emissions is not included in MOVES. �e observations data MOVES used for

estimating running emissions consisted only a sample of 496 vehicles and this study was

conducted between 2004 and 2005. Since the sample size is very low, they found no sta-

tistical signi�cance between ambient temperature and emissions. Another hypothesis for

quantitative di�erences in the emission ratios maybe because of the di�erent �eet size

distributions (the number of vehicles on-road) in 2014 and 2016 and not accounting for
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temperature dependence at the same time. �e results clearly show that MOVES overes-

timates both NOx and CO emissions. �ere might be other reasons for these over estima-

tions of emissions by MOVES such as catalytic converters working be�er than expected

to reduce emissions or an o�set because more vehicles are equipped with an advanced

control systems at present compared to the time when observations were taken (2004-05)

to develop the so�ware. It is beyond the scope of this thesis to investigate the real reason

behind the o�set between MOVES and observations.

4.7 MOVES adjustments and comparisons to observations

By comparing observations and modeled MOVES output, it is evident that MOVES

is not representing the ambient temperature dependence on emissions estimates well. In

the default (without any changes in the so�ware) MOVES code which calculates the base

output modeled emissions of CO and NOx, I improved these shortcomings by multiplying

a linear temperature dependence adjustment factor which was found for both CO and

NOx emissions estimates. Since, CO and NOx emissions estimates are in the denomina-

tors of the emission ratios, these linear temperature factors are divided in the MOVES

calculator to get correct estimates of emissions ratios. MOVES calculators are �les which

contain code wri�en in MySQL programming language, in which based on various input

databases, outputs such as emissions estimates are calculated. For CO emissions calcula-

tor, a multiplicative factor of 1/(1.01*10-3 * temperature + 1.727) and for NOx emissions

calculator, a multiplicative factor of 1/(2.54*10-2 * temperature + 0.132) [Appendix A] was

multiplied to base emissions in the code and the results are shown in Figure 4.6, where

temperature is in Fahrenheit. �e base emissions were shown in the previous chapter and

are obtained without making any temperature adjustments in the MOVES. CO2 emissions

were unchanged and were estimated by the MOVES default code. �e adjusted MOVES
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is run for October, 2014 and were matched to observations of Oct-mid Nov, 2016 and the

results are shown in Figure 4.6, the slopes of all 3 MOVES model ratios are nearly equal

to those of observations. �us, emissions are adjusted based on temperature dependence.

�e factors were obtained using trial and errormethod. First, a linear factor in the form

of ’(m*temperature+c)’ was assumed to be multiplied to MOVES output for CO and NOx

to match the modeled emission ratios with observations. �en two temperatures within

the range of the plot were chosen such that they are nearest integers to the minimum

and maximum values of temperature range; here I used temperatures 5 ◦C (41 ◦F) and 25
◦C (77 ◦F). �en emission modeled emission ratio was multiplied by the assumed linear

temperature dependence factor at both temperatures and set equal to observed emission

ratios. �en the both equations were solved to get the values of m and c. �e temperature

linear factor was divided in the emissions calculator to see if the emissions estimates were

near exact to observations. If the obtained values of m and c do not give the ratios of

emissions estimates that exactly match observations, a trial and error method was used

by changing these values until both estimates and observations were nearly matched.

�e values were chosen such that the deviation started to increase further on decreasing

the values. A trial and error method was used because emissions estimates do not vary

linearly.
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Figure 4.6: MOVES output for Oct, 2014 adjusted to observational data (Oct-Nov 2016) - Emission
ratios (mol mol-1) vs Ambient temperature ◦C. (a) ∆CO/∆NOx, (b) ∆CO2/∆NOx, (c) ∆CO2/∆CO

4.8 Adjusted MOVES model applied to November, 2014

�e adjustments made to MOVES in the previous section are applied to November,

2014 to �nd out how the model would work for other months. Since there were no obser-

vational analysis for some other month, and as observation analysis performed by Dolly

Hall consists of a half month of November I thought it is reasonable to compare adjusted

MOVES output to the same observations. �e results for November, 2014 MOVES output

vs observations emissions ratios against temperature are shown in Figure 4.7. From the

Figure 4.7, it is clear that slopes of emissions ratios for are nearly equal and the factor by
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which emission ratios di�er for CO2/NOx is less than 0.2 and for CO2/CO is less than 0.05

which is reasonably a good �t for the amount of observations data available. �e o�set

in the CO2/CO estimated emissions ratios from the observed emission ratios might be

due to insu�cient observations for November, 2014 and another hypothesis for this e�ect

might be because since CO emissions are higher at low temperatures [26] the estimated

emissions ratios (CO2/CO) decreased and are lower than observations.

Figure 4.7: Observational data (Oct-Nov 2016) andMOVES adjusted output (Nov-2014) comparison
- Emission ratios (mol mol-1) vs Ambient temperature ◦C. (a) ∆CO/∆NOx, (b) ∆CO2/∆NOx, (c)
∆CO2/∆CO
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4.9 Observed vs MOVES vehicle distribution

4 miles from the AQS monitoring site, there is a tra�c counter located on I-95. Figure

4.8 shows the fraction of gasoline and diesel vehicles observed and a median number of

both types of vehicles at each hour of the day for the month of October 2016. MOVES does

not produce vehicle counts as output, instead, it outputs the distance of the vehicle trav-

eled for each hour. Figure 4.9 shows the MOVES vehicle miles traveled both for gasoline

and diesel vehicles at each hour of the day for the month of October 2014. Both Figures

show similar trends in variations of gasoline to diesel. From midnight to early mornings,

the fraction of diesel to gasoline vehicle miles in MOVES is greater when compared to the

number of diesel to gasoline vehicles, so more NOx emissions estimates fromMOVES can

be higher than actual emissions observed on-road during this time period.

�e reasonwhy vehiclemiles fromMOVES are being compared to actual vehicle tra�c

count is because MOVES calculates emissions estimates using the vehicle miles traveled

and not by using the number of on-road vehicles. Although MOVES has vehicle popula-

tion, it is used to calculate only idle exhaust emissions such as start and evaporative. �is

approximation does not produce the same emissions result, because the number of trips

using vehicle miles travelled does not exactly match the number of vehicles. In the cur-

rent available data, though MOVES has vehicle population as one of the inputs, it is only

used to calculate o�-network emissions and no on-road emissions estimates are calculated

using vehicle population.
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Figure 4.8: Observational tra�c data (Oct 2016). (a) fraction of gasoline vehicles, (b) fraction of
diesel vehicles, (c) Bar graph for gasoline and diesel vehicles
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Figure 4.9: MOVES vehicle miles estimations (Oct 2014). (a) fraction of gasoline miles, (b) fraction
of diesel miles, (c) Bar graph for gasoline and diesel miles
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Chapter 5: Conclusions and future work

5.1 Conclusions

From MOVES output and observations comparisons it is clearly evident that MOVES

does not account of the ambient temperature and humidity dependence as is in the ac-

tual world. �us, MOVES is adjusted based on observations and adjustment factors were

multiplied to the MOVES default emission calculators in the code accordingly. To check

the credibility of adjustment factors, another month was modeled and compared to the

observations, in this study, for November, 2014. �ough only half month observations

are not available for this month, the MOVES output nearly matched to the observations.

MOVES estimations of CO emissions are nearly twice that of the observed CO which can

be observed in 4.4. Also, the hourly fraction of gasoline to diesel for the month of October,

2014 in MOVES input (vehicle miles fraction) and for October, 2016 from on-road tra�c

(vehicle count) counter seems to be similar except for the early mornings.

5.2 Future work

MOVES is adjusted only for temperature dependence in this work, adjusting the emis-

sions based on speci�c humidity also would produce more realistic mobile emissions es-

timates. For more rigorous approach, future work should include comparing the MOVES

model output and observations for the same month of the same year to produce a more
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useful modeling output that could be used for predicting future case studies. Another

approach for this kind of research is by using project scale in MOVES to model the emis-

sions estimates of near road measurements with proper MOVES inputs since the project

scale approach is used for a smaller region like I-95 monitoring site. Future work should

also include MOVES modeling comparisons with observations collected at various near

road monitoring sites to include di�erent �eet compositions and to include wide range of

meteorology.
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Appendix A: Appendix

A.1 Adjustments in the MOVES default code

Below Figures A.1 and A.2 show where in the MOVES code the adjustment factors

were multiplied for CO and NOx emissions estimates respectively. In the below snippets

of the codes A.1, it is wri�en that when the pollutant ID is 2 (pollutantID for CO inMOVES

is 2), the base emissions should be multiplied by the factor [1/(1.01*10-3* temperature +

1.727)] and similarly in A.2, whenever the pollutant IDs are 3,32 and 33 (pollutantID in

MOVES for NOx is 2, NO is 32 and NO2 is 33) the base emissions should be multiplied by

the factor [1/(2.54*10-2* temperature + 0.132)].
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Figure A.1: Adjustments made to calculate CO emissions estimates in MOVES
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Figure A.2: Adjustments made to calculate NOx emissions estimates in MOVES
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