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Abstract

A systematic approach to statistical simulation for large scale analog circuits is presented.
The statistical model takes into account mismatch between devices due to variations in the
process and noise, as well as interdie variations. The number of statistical parameters is O(n),
where n is the number of devices. Additionally, because large-scale analog circuits are very
computationally intensive to simulate, a two level approach is used, combining a behavioral
model relating block performances to circuit performances and regression models relating a
set of primary statistical variables to block performances. The efficiency of this approach to

statistical simulation is demonstrated with the example of an A/D converter.






1. Introduction

A accurate approach to statistical simulation of analog and digital integrated circuits
is important for investigating the manufacturability of a design. Applications of statistical
simulation include predicting yield, worst case analysis, design centering, and minimizing
production testing time[l, 2, 3, 4]. Previous approaches to statistical simulation have mainly
been developed for digital circuits. The main thrust of this work has been to identify a set
of independent and primary statistical variables that explain most of the observed variation
in a chip. In one approach, 4 parameters ( device width(w), device length(L), oxide capaci-
tance(Cox), flat-band voltage(Vfb) ) were determined to be the critical factors responsible for
the statistical variations of device characteristics and circuit performance [3, 6, 7]. In another
approach, seven most important process parameters were found including W, L, Vb, oxide
thickness(Tox), substrate doping(Nsub), lateral diffusion(Ld) and junction depth(Xj)[8]. Be-
cause digital circuits are assumed, both approaches make the assumption that intradie vari-
ations are much smaller than interdie variations and therefore can be neglected without loss
of accuracy. In other words, no mismatch effects are considered, only wafer to wafer and die
to die process variations are considered to be important. This is not true for analog circuits.

Recently, statistical simulation for analog circuits and the issue of mismatch have been
investigated in [9]. The methodology used in [9] is to model variation in the response of
bipolar circuits using some critical process parameters and some mismatch pairs which were
picked by the designers based on past experience. The methodology in this paper can get out
of hand if the number of transistors becomes large in a circuit and too many mismatch pairs
have to be considered. Suppose there are n transistors in a circuit, a total of C& = n(n—1)/2
mismatch pairs need to be considered. In other words, the number of parameters that need
to be considered by a variable screening experiment in order to find critical mismatch pairs
is O(n?). In this paper, we propose a mismatch model model where O(n) process and device
mismatch parameters are considered for variable screening. This approach is much more

efficient than previous methods because the screening experiment is linear in complexity in



the number of variables considered. Hence, our approach requires O(n) circuit simulations
in a screening experiment , as opposed to O(n?), to identify the critical mismatch pairs.

Besides the selection of critical mismatch pairs, another major problem with previous
approaches to statistical simulation for large-scale analog circuits is the computational cost of
simulation, especially because statistical simulation requires not one but multiple simulations
and for large-scale analog circuits, even one simulation is computationally intensive. Under
those circumstances, we propose a methodology of dividing a large circuit into several sub-
circuits using a behavioral model to build the relation between the output responses of the
circuit and the performances of each sub-circuit. However because the performances of each
sub-circuit are correlated, a set of independent parameters needs to be found in order to
perform accurate statistical simulation. To do this, a set of independent primary process and
devices parameters and mismatch parameters are assumed to explain most of the variation
in the sub-circuits. A critical subset is found of these parameters for each sub-circuit using
a screening experiment, after which a regression model is built relating the critical and
independent variables to sub-circuit performances. In addition to process variations, the
effect of noise on sub-circuit performances is included. Then for statistical simulation, instead
of performing multiple circuit simulations of the sub-circuits, the regression model coupled
with the behavioral model are used to perform multiple simulations. This approach is very
efficient computationally.

In this paper, we begin by discussing our parametric model for interdie and intradie
process variation for analog components. Based on this model, then we present our screening
experiment. In the next section, we will compare three different experimental designs for
screening : one variable at a time sensitivity analysis, resolution Il fractional factorial design
and resolution IV fractional factorial Design. In Section 3, we also present our approach for
building regression models for sub-circuit performances. Finally in Section 4, we apply our
methodology to a cyclic A/D converter which is simulated using a behavioral model[10], and

we conclude in Section 5.

2. Two Level Parametric Variation Model
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Figure 1: Two level parametric model

We begin this section by presenting some notation for the purpose of brevity of illustration.

We define :

lth

Y; : The circuit response of [ specification (Voffset, gain ...)

Py :The value of +** process or device parameter for k™ device
u; : The mean value for :** process or device parameter
0,0 : The standard deviation for i** process or device parameter due to interdie variation

o1 :The standard deviation for 74" process or device parameter due to intradie variation

Since the interdie variation from wafer to wafer or die to die and intradie variation within

a certain die are due to many independent process steps, we can reasonably assume both
variations are independent and normally distributed. For a certain process run , the interdie
variation can be modeled by N(u;,0,0) . Under this process run, we also assume normally
distributed intradie variations which introduce the mismatch among devices in the same die.
Therefore, we propose a two level parametric model to characterize the process and device
parameters for each device similar to the approach in [11] as shown in Figure 1.

For a certain process run, the two level parametric model of the ¢** process or device

parameter of the k™ device in an arbitrary die is described by
Py = u; + &oio + nikon

where 2 = 1,...,n are indices of the n process or device parameters, k = 1,..., m are indices
of the m devices in a circuit, £;0;0 represents interdie variation for 7t parameter for all devices

in an arbitrary die, 90, represents intradie variation for :'* parameter of k** device in an
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Figure 2: CMOS differential input stage

arbitrary die, £ is a random number (€ N(0,1)), fixed in an arbitrary chip, and 7;; 1s a
random number (€ N(0,1))

The 1dea behind this model is that the interdie standard deviation,o;y, models variations
between each die, where the value of a parameter in a certain die is modeled by global value
u; + €050, where £jo;9 is the deviation of the i** parameter from its global nominal and its
mean value on a given chip. On this chip, the intradie standard deviation,o;;, is an additional
deviation for each device by the amount of n;,0;;. Therefore, the total deviation from nominal
of the 7" parameter for each device is the sum of these two deviations. In this model, if a
chip contains n devices, n variables model intradie variations, and hence O(n) parameters
are needed to model mismatch. In order to further clarify this idea and show how to use this
model to investigate the mismatch problem, we use an simple example shown in Figure 2.

To further simplify this illustration, we assume that channel length is the only critical
process parameter which affects the input offset voltage of the source coupled pair in Figure 2.
Let Y =Y be the input offset voltage of the circuit, P, = P be the value of channel length
in k* device, M;; = P; — P, be the mismatch in channel length between the i** and j*" device,
and let o9 = o9 and o = o47.

In this simple design,u; is the global mean value of the channel length of of M;, M, and uy



is the global mean value of the channel length of M3, M,. By using the two level parametric
model, we can represent the value of channel length in each device in the circuit within a

certain die by
Py =wu; + €og + oy where k=1,...,4and 2= 1,2
and the input offset voltage by
Y = (&, Mz, Mas, M4, Moz, M3y, M34)
Y could be represented by multiple linear regression using these parameters.
Y = aof + ay Mg + agMis + asMys + asMys + asMas + agMsy

By replacing M;; = P, — P; = (n; — )01, we get

4
Y = aoé + Z binior + k where b; and k are constants and functions of the a;’s
i=1

We know n;0; is the intradie deviation for i** device; therefore y can represented by

Y = f(§> M01,7M201,7M301, 77401)

In other words,
Y = f( global variation, intradie variations for each device.)

This idea can be extended to the general case where obviously only O(n) parameters are
needed to undergo a screening experiment to find the critical independent process variables
explaining most of the observed variation of a performance.

Noise can be thought of as an additive effect in the output response of a circuit. Thermal
noise and flicker noise are the two most important noise sources within a device. The flicker

noise and thermal noise in each device can be approximated by applying a voltage source to

the gate of a transistor with mean squared values of kéva 7 and 8I§§Af respectively[12, 13].
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Flicker noise is often the dominant noise mechanism at low frequencies. By investigating

1
CO.’I'

gm and K, We can see that each individual noise source is affected by %, %, 7:1—,

frequency and E{—, Cowy Vio, T' at higher frequency.

Most of time, output deviation due to noise is negligible when compared with deviation
due to the process. Based on this idea, we first test the significance of output deviation due
to noise at nominal process parameters. The output deviation, denoted by Y,,, due to noise
at nominal process parameters is obtained by applying a constant voltage source, which is

different for each device, at the gate of each device, where the constant voltage source is

calculated by adding the values of —6&%—‘,%}7 and §I_§_T__A_i for each device.
- ox gm

If Y, is negligible when comparing with the mean square deviation due to the process
variations, we can neglect the deviation due to noise without loss of accuracy. Otherwise,
we have to check whether the variation of noise deviation itself due to process variations
1s significant or not. If not, noise can be treated as an independent source of variation,
in addition to the primary process parameters. Otherwise there will be some correlation
between noise and process parameter variations. A test for the significance of noise variation
1s similar to the screening experiment for process parameters discussed earlier, where noise
is a function of independent process parameters. If both tests of deviation due to noise and

variation in notse are significant, we can apply the same two level parametric model here to

=
’ COI

At higher {requency, noise can similarly be modeled by a regression equation

describe the noise response at low frequency by a regression equation :

1

Yo = f ( global and intradie variations of ?, =

| —

yotse = f ( global and intradie variations of %, Coz, Vio, T)

Therefore, the overall output response of a circuit is described by variations due to noise

and the process, both of which depend on a single set of independent primary variables,



obtained by screening a much larger set of independent variables coming from our two level

parametric model. We now turn to the screening experiment itself.
3. The Screening experiment and Regression model

In order to build a regression model, a small subset of interdie and intradie parameters
have to be found. The most common approach is one variable at a time sensitivity analysts,
in which each variable is perturbated from nominal, one at a time, while others are kept at
nominal values for each simulation. For n variable, a total of n 4+ 1 simulations are needed.
In addition, the amount a performance changes due to the change in each variable is found
and denoted by AY;, ¢« = 1,...,n. The total change in performance is then assumed to be

the sum of the changes due to each variable

K13
AY =) |AY]]
=1
where | | denotes absolute value. The contribution for each variable can be determined by

the percentage change in performance due to each variable to the total change in performance

due to all variables acting together, expressed by

|AYi]
= —— X

5
"TAY

100 2=1,...,n

By comparing and ordering §; for each variable, we will find some significant variables which
can be selected as primary parameters to be used in regression modeling. Obviously, in
using this model when determining the sensitivity (é;) to one variable , the impact of others,
varying within tolerance, is not considered.

A more accurate approach would be to simulate the circuit at all vertices of a hyper-
cube(factorial analysis) [14], where vertices at the hypercube are defined by positive and
negative extremes of each parameter. Since the sensitivity of each parameter can be affected
by the settings of other parameters, the impact of other parameters varying within tolerance

is taken into account by computing an average of sensitivity over tolerance box, defined by

8



positive and negative extremes of all parameters. Let vg, k = 1,...,2" be the vertices of the
hypercube, located at various combinations of the positive and negative extremes of param-
eters. Let J¥ be the set of vertices with the ;' parameter at its positive extreme, and its
complement J~ be the set with the j** parameter at its negative extreme. Then the impact
of changing each variable can be found by computing the difference between the average
performance on opposite faces of the hypercube, J* and J~. The total change in Y, AY is

(Zkeﬁ Yi(ve) — LkeJ- Yi(vi))
2n—1

AY =

However if there are n parameters, 2" circuit simulations are required for this approach, which
1s not usually feasible and will not be adopted in this paper.

A more efficient approach, which takes into account the variations of a sensitivity within
tolerance is fractional factorial experimental design. For a fractional factorial experimental
design, simulations are made at carefully selected vertices of the hypercube, making sure
that equal numbers are in the sets J* and J~ for each of the n parameters. The fractional
factorial design which requires fewest simulations is a resolution III design. The number of
simulations required is 2, where 2 < n. Sensitivities of performance to each variable are

obtained by

ket Yi(vr) = Xyes- Yi(vr))

,_
AY = ol-1

Since the main effects are confounded with two-factor interaction effects in a resolution III

fractional factorial design, a resolution IV fractional factorial design is proposed to avoid the
confounding between main effects and two-factor interaction effects, but number of simulation
needed is twice as many as the resolution III, 21, Once the sensitivities are computed using
either resolution III or resolution IV experimental designs, the variables can be ranked, as
was done with sensitivity analysis. Clearly, sensitivity analysis and resolution III fractional
factorial experimental designs require fewer simulations than the resolution IV fractional
factorial design. On the other, the resolution IV fractional experimental design is more

accurate than the resolution III fractional factorial design. However, it is difficult to compare

9
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the fractional factorial design with one variable at a time sensitivity analysis without empirical
data.

As an illustration, we use the example [15] shown in Figure 3. Let L; = {00 be the
interdie variation for :** parameter such as length reduction,...etc, S; = 9,101 + Ni20 w1

be the intradie variation for ¢** device, and the variables [; and s; be normalized vari-
ables corresponding to L, and S;, obtained by dividing L; and S; by 30,0 and 30,,,1 + 30%1
respectively.

In this example, the interdie variables that we have included in our model are W, L,
Tozy New, Ly, X;, and Vi,(zero-bias threshold voltage). Except for T,., these parameters
have been assumed for n-channel add p-channel devices. We could have supplemented our
model with a small deviation in each of these parameters for each device to model mismatch.
However in our example, as in many circuits, most mismatch can be traced to deviation in

drain currents [16]. Hence we can further reduce the intradie parameters into a smaller set

composed of WL—, Toz, Uy and Vi,. Furthermore, by investigating our example in Figure 3, we
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Figure 4: Screening result of input offset voltage

have found intradie variations of the —VLK ratio and V;, to be dominant effects over T, and u,
in generating mismatch between devices. Therefore, we only consider the ¥ ratio and Vi,

as sources of intradie variations and include these two variations as an individual parameter
related to each device. Based on this idea, all the screening experiments were completed.
We have applied three screening methods to four parameters(gain, output resistance,
transconductance and input offset voltage) of this circuit and the comparison of the three
screening methods for input offset voltage is shown in Figure 4.From this figure, we can find
that there is no significant difference in all three methods. All three methods give almost the
same critical parameters but only differ in the ranking.
As we can see in Figure 4, The ranking of critical parameters for the input offset voltage
is
Sensitivity analysis 1% group 814 810 89 S12 gnd group Sz 81 S4 S3

Resolution I11 1% group $14 S10 So S12 gnd group Sy Sz S4 S3

Resolution IV 18t group si4 S10 Se Si2 gnd group sz s $4 S3

After the critical process, device and mismatch parameters are found by screening exper-

iment, we then begin fitting regression model for each response as a function of the critical
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independent process parameters by assuming a generalized linear model of the form :

P r
Y= ﬂo+2ﬂili+zai8i

i=1 =1

In order to generate an accurate regression model and to test lack of fit, we follow two
principles :

(1) N points are generated according to a Latin hypercube design by selecting the value
randomly from each of N intervals formed by dividing up the range of each critical variable.
The N points are obtained by randomly pairing the values of each critical variable.

(2) Noncritical variables are varied randomly to be used in the estimation of pure error
in the regression model.

The criteria to test the adequacy of this model are

‘ MS;eg ..
Frotet = gjo—= 2 Fr—1n—k1-o Significant test

estdue

Frop = MM%{}?EE < Frkp—ri-a Lack of fit test

RZ — Ssregression > 0 ()

o
Sscorrectedtotal -

Percentage explained by model

From the screening experimental design, the parameters in 1** group are more significant
than those in 2™¢ group which are more significant than the rest. The parameters in the 1%
group are chosen to be the primary independent variables in the multiple linear regression
model initially. If the three criteria of regression model can not be met, the variables in 274
group are added using a stepwise regression technique which add the most important variables
from 2" group to the multiple linear regression model one at a time. If the three criteria are
met after adding a variable from 2" group, the generalized linear model is adequate and we

can stop here. [Failure to meet three criteria in the linear model will force us to use a more

complicated model :

P r Eok Kok Kok
Yi=Bo+ ) Bili+ > aisi+ 3.3 Blili + 3. cujsisi + 2> viglisi + ...+ e
1=1 i=1

=1 j=1 =1 j=1 =1 j=1
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Testing the adequacy of this complex model is more complicated. We propose to use se-
quential regression analysis by testing the significance of each f3;;, a;; and 7;;. This significant
test is done by testing F' statistics of the extra sum of square for each step in sequential re-
gression analysis. The three criteria above are still valid for each step in sequential regression
analysis and can be used as stopping criterions in this analysis.

The regression models for four relevant responses are

Yiffoet = —0.0009118 + 0.00706333 s10 — 0.00615897 515 — 0.00604082 514
+0.005067247 s + 0.00374926 55 — 0.00149385 s,

Yywin = +13073.94 — 1791.72 Toy + 810.86 [ — 335.17 Nos
+300.57 s10 + 223.31 Vi — 58.88 s14

Yo =  49.298618 + 0.637372 T, — 0.5258596 s7 + 0.5192886 sy
103073354 [ — 0.3005598 vyo + 0.1817653 514 + 0.0469412 N,

Yym = +0.059298160 — 0.004253116 £,, — 0.00180258 L + 0.00165234 V;,

—0.00135140 sy1 — 0.001551701 s14

The ANOVA table for Input offset is :

Source SS df MS Fiost F..; | Significant
Model 0.000603835 6 | 0.000100639 | 163.085 | 3.87 YES
Error 0.00000431986 | 7| 6.1709¢~7
Lack of Fit | 0.00000117986 | 3 3.93¢7 0.501 | 6.26 NO
Pure Error | 0.000003140 4 7.87e77
R? 0.9929 0.9 YES
The ANOVA table for Gain is :
Source SS df MS Fios F..; | Significant
Model 14966357.18 | 6 | 2494392.86 | 230.865 | 3.87 YES
Error 75632.01 7| 10804.57
Lack of Fit 26240.00 3 8746.67 0.885 | 6.26 NO
Pure ¥rror 49392.41 4 9878.48
R? 0.9950 0.9 YES

The ANOVA table for Output resistance is :

13



Source SS df MS Fioo F,.; | Significant
Model 115.70264 | 7 | 16.5289484 | 832.236 | 4.21 YES
Error 0.1191653 | 6 | 0.01986088
Lack of Fit | 0.0369120 | 2 | 0.0184560 0.897 | 6.94 NO
Pure Error | 0.0822534 | 4 | 0.0205634
R? 0.9990 0.9 YES
The ANOVA table for Transconductance 1is :
Source SS df MS Fioo F,.; | Significant
Model 0.000117216 6| 16.5289484 | 126.575 | 3.87 YES
Error 0.0000010804 | 7 | 0.000000154
Lack of Fit | 0.000000290 | 3 | 0.000000096 | 0.780 | 6.26 NO
Pure Error | 0.000000790 4 1 0.000000263
R? 0.9909 0.9 YES

Note that from all the above discussion, we have shown that there are little difference in
the screening experimental design when variables are to be used only in a linear regression
model. If a complicated model is needed, we need to have some information on the two-
factor interaction effects of some variables. In our investigation, we found the two-factor
interaction effects of a smaller set formed by variables in the 1 and 2" groups, using a
screening experiment, are more significant than any other interaction effects. Based on this
observation and above discussion, we propose a efficient and complete algorithm to fit a
regression model.

The algorithm :

Step 1. Apply a resolution III fractional factorial design to do a screening experiment.
The number of simulations needed is 2, where 2° > n, n is the number of parameters.

Step 2. Discard insignificant parameters and obtain a reduced set of m parameters,
formed by the 1% and 2™ group in our results, where m < n.

Step 3. Apply regression analysis to build a multiple linear model using the parameters
in a reduced set. Three criteria are used as stopping criteria here. If the three criteria are
met, stop.

Step 4. If the three criteria are not met in step 3, apply a resolution I'V screening experi-
ment to the parameters of the reduced set, formed in step 2, and extract the significant higher

order effects of these parameter(usually the interaction effects are enough). The number of
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Cyclic A/D converter
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Figure 5: Block Decomposition

simulation needed is 2**!, where 2% > m
Build a regression equation using sequential regression analysis. Even in the worst case,
the total number of simulations needed in the whole run is 2! + 29! + N which is less than
n N

the 2/*! needed in resolution IV fractional factorial design, if m < % — 5,which is usually

true.
4. High level decomposition

A large analog circuit is not usually simulatable using standard circuit simulation tools.
Instead the design is partitioned functionally, components are simulated using standard tools,
and a behavioral model is built for system simulation relating component performances to
system performances. The behavioral model forms a bridge between the performances of
each sub-block and the system. Because statistical simulation requires multiple simulations
and multiple simulations are computationally intensive even for the sub-blocks, we can apply
the algorithm we developed in Sections 3 and 4 to obtain performance models for each sub-
block with high accuracy. The performance models for the sub-blocks form a front end to
the behavioral model and the output responses of whole circuit can be computed for nominal
and statistically varving process and device parameters. Since interdie variations, mismatch
and noise effects have been considered in building the performance model for each sub-block,
the overall circuit responses are a function of all of these effects.

This approach hag been applied to a cyclic A/D converter[10]. We begin by partitioning
the cyclic A/D converter into several sub-blocks. The partitions are shown in Figure 5.

Basically, all the sub-blocks in our example are formed by an op amp and some switching
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capacitors as shown in Figure 6. Then a behavioral model is built to relate the outputs of
the A/D converter to performances from each sub-block. We have used the behavioral model
developed in [10]. For complex blocks, like the op amps, sub-block output responses are used
as inputs of the behavioral model. In this cyclic A/D converter, for the op amp we need input
offset voltage, transconductance, output resistance and gain. This step involves building a
parametric statistical model for each of the sub-block performances, as outlined in Section
3. For simple blocks, the relation between critical parameters and block performance can be
obtained by circuit simulation or analytically.

The behavioral model coupled with the front end relating primary process parameters to
block performances can be used by a Monte Carlo algorithm to efficiently compute statistics of
the performances of the circuit. The independent parameters used in the regression equations
should be varied according to their distributions. This approach has been applied to the cyclic
A/D converter to obtain a statistical distribution diagram of the code transitions. The A /D
converter has 256 codes. To demonstrate the accuracy of our approach, Figure 7 shows
the statistical distribution of 5 code transitions computed using our method. Our results are
compared with a statistical distribution obtained by combining detailed circuit simulation for
the components and the behavioral model. It can be seen that our results are very accurate.
Furthermore our approach required 28.90 seconds on a IPX SUN workstation to generate 10

points, while coupling a circuit simulation to a behavioral model required 817.50 seconds to

generate 10 points.

Finally it should be noted that our approach to statistical simulation is not limited to

16
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Figure 7: Statistical distribution of code transitions

applications involving Monte Carlo analysis. Deterministic algorithms used for worst case

analysis and design centering can also use our approach to statistical simulation.

5. Conclusion

A systematic and efficient approach to statistically simulate large-scale analog integrated
circuits has been presented and applied to the example of a cyclic A/D converter. The ap-
proach involves dividing the circuit into sub-blocks where a behavioral model relates sub-block
performances to circuit performances. Secondly, performance models relating an independent
set of primary process parameters to sub-block performances are built using regression tech-
niques. Statistical simulation is then done by coupling the behavioral simulation with the
regression models, and the accuracy of the the approach depends both on the accuracy of
the behavioral simulation and the regression models.

In addition to our two-stage approach to statistical simulation, a novelty is our handling
of mismatch in analog circuits. For a circuit containing n devices, we require O(n) parameters

to model mismatch among devices. This is especially important because these parameters are
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inputed to a variable screening algorithm that requires at least one simulation per variable.

In developing our regression models, which are used in statistical simulation, we have
compared three approaches to screening: one variable at a time sensitivity, resolution III
fractional factorial design and resolution IV fractional factorial design. We have found that
the best approach to screen variables is to use resolution III initially to obtain a reduced set
which can be used as primary variables in a linear regression model. If our three stopping
criteria can not be met by a linear model, a resolution IV fractional factorial design is applied
to the reduced set to find important higher-order interaction components as primary variables

in a higher order regression model.
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