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1 INTRODUCTION 11 IntroductionArti�cial intelligence research falls roughly into two categories: formal and implementational. This division is not completely�rm: there are implementational studies based on (formal or informal) theories (e.g., CYC [70, 71, 45], SOAR [68, 123],OSCAR [117, 115]), and there are theories framed with an eye toward implementability (e.g., predicate circumscription [82]).Nevertheless, formal/theoretical work tends to focus on very narrow problems (and even on very special cases of very narrowproblems) while trying to get them \right" in a very strict sense, while implementational work tends to aim at fairly broadand/or e�cient modes of behavior but often at the expense of any kind of overall conceptually unifying framework thatinforms understanding. It is sometimes urged that this gap is intrinsic to the topic: intelligence is not a unitary thing forwhich there will be a unifying theory, but rather a \society" of subintelligences whose overall behavior cannot be reduced touseful characterizing and predictive principles (e.g., Minsky [95]).Here we describe a formal architecture|known as active logic|that is more closely tied to implementational constraintsthan is usual for formalisms, and which has been used to solve a number of commonsense problems in a uni�ed manner.In particular, we address the issue of formal, integrated, and longitudinal reasoning: inferentially-modeled behavior thatincorporates a fairly wide variety of types of commonsense reasoning within the context of a single extended episode ofactivity requiring keeping track of ongoing progress, and altering plans and beliefs accordingly. Instead of aiming at optimalsolutions to isolated, well-speci�ed and temporally narrow problems, we focus on satis�cing solutions to under-speci�ed andtemporally-extended problems, much closer to real-world needs. We believe that such a focus is required for AI to arriveat truly intelligent mechanisms with the ability to behave e�ectively over considerably longer time periods and range ofcircumstances than is common in AI today. While this will surely lead to less elegant formalisms, it also surely is requisiteif AI is to get fully out of the blocks-world and into the real world.1.1 MotivationActive logics (originally known as \step logics") were introduced in order to achieve a number of related goals; over time wediscovered yet further advantages, changing the name to \active logic". Chief among the original goals were more realisticrepresentation and reasoning about time, inconsistency, and the reasoning process itself. These goals remain central in workwe report here; in addition we examine issues involving language, multi-agent cooperation, and others.We start by presenting a fairly abstract de�nition of an active logic. Such a logic is closely linked to an inference engine;the notion of theorem is woven together with the notion of the current (evolving) time production of the theorem.An active logic consists of a formal language (typically �rst-order) and inference rules, such that the application of a ruledepends not only on what formulas have (or have not) been proven so far (this is also true of static logics; see below) but alsoon what formulas are in the \current" belief set. Not every previously proven formula need be current; in general the currentbeliefs are only a subset of all formulas proven so far: each is believed when �rst proven but some may subsequently have beenrejected.We will examine this de�nition in considerable detail later. Related work will be discussed at length in a separate section;here we simply call attention to work of Russell and Subramanian [127], who discuss how one might incorporate computationallimits into machine rationality concepts, and to Wellman [139], who notes that any formalization of a rational agent mustnecessarily idealize away the computational process itself. Active logic, however, is an attempt to bring together these twocon
icting goals.1.1.1 A formal distinctionMost formal logics or theories are what we call \static;" they consist of prescriptions de�ning the set of theorems (orentailments), but do not provide for that set to evolve over time. To be slightly more precise, a static logic is one whosetheorem-set is �xed, independent of any actual manner of producing those theorems, or even of whether or not any theoremsare in fact \produced." In particular the theorem-set of a static logic cannot in any meaningful way be said to change; ithas one and only one set of theorems. Even when a static logic does provide proof-theoretic inference rules for producingtheorems in a step-like process (a proof tree), nothing in the syntax or theorem set re
ects a changing state as that processoccurs. Indeed, concerns for the process of producing theorems is generally regarded as a task for an \inference engine"rather than for a logic per se. There is a division of labor, in the traditional view, between theoremhood or entailment(labors of logic) and theorem-production or model-building (labors of an engine). An engine is an implementational matter



1 INTRODUCTION 2with implementational concerns: Some are slow, some fast; some use resolution, and some do not, etc. Indeed, many highlydistinct engines may implement the same (static) logic.As we shall argue below, in commonsense reasoning, this division of labor is inappropriate|many commonsense \theo-rems" depend crucially on their manner (e.g., time) of production (in order to be theorems). As a case in point, the assertion\I've been working on this chore for 15 minutes now, and still have not �nished it (maybe I should give up)" can reasonably beconcluded only in the context of an immediately preceding period of relevant e�ort. Or: \From the two previous observationsthe proposition P follows." Or: \Here I am looking up Matt's phone number and Matt is coming in the door (so I canput away the phone book)." In general, explanations or commentaries on one's activities often require temporal embeddingof and within the reasoning process. Moreover, such explanations or commentaries are not mere icing on the cake|muchdepends on our ability to explicitly express facts about what we are currently doing. This paper aims to (i) present the thesisthat such reasoning requires more than traditional meta- and temporal-reasoning, (ii) draw conclusions about underlyingmechanisms relevant to the enterprise of formalizing such activity, (iii) illustrate an array of technical formal logics that wehave developed toward such an enterprise, and (iv) bring together a number of distinct application areas within the contextof a single unifying framework.As Ginsberg points out [40], Doyle's seminal paper on truth maintenance [14] presented reasoning as a process of revisionas well as inference, and yet the revision feature was largely ignored in later formal work, while nonmonotonicity becamealmost exclusively attached to the idea of theory-comparison. More recently G�ardenfors and others (e.g. [34]) initiated anew formal look at belief revision, which however treats this as distinct from the inference process. Namely, that treatmentassumes that a reasoner has the logical closure of its beliefs in hand, and which it may revise in light of new observation. Butwe argue that inference itself provides new information; indeed, the inference that Q, from P and P implies Q, can be regardedas the observation that Q, not from perceptual organs but rather from inferential organs. In G�ardenfors' terminology, thismight be a case of theory expansion, where the theory however is partial, its theorems being gradually built up over time,much as perceptual observations come in over time. See [113, 112] for a more detailed discussion.If we follow this idea, that inference itself is a form of belief revision (or expansion or contraction), then a number of newbehaviors become possible. This paper is an account of these behaviors as we have studied them to date. One interestingfeature, also clearly a part of human reasoning, is that what is plausible at one moment may no longer be so given moretime to reason. Pollock [116] calls this behavior diachronically defeasible, i.e.\a proposition can be justi�ed at one stage ofreasoning and unjusti�ed at a later stage, without any additional perceptual input." Active logic allows for diachronicallydefeasible reasoning, as in the Brother Problem (see Section 3) and also the projection problem (see Section 8). Indeed, sincean active logic always spreads its conclusions out in time (the time taken to prove them) then diachronic defeasibility is justone aspect of the larger fact of diachronic belief-change. This is the antithesis of logical omniscience: in real life, as in activelogics, reasoning takes time, reasons and results come and go, often due to nothing more than the passage of time and mentale�ort.1The result of allowing diachronic defeasibility, and more generally of uniting inference and observation in one formalframework, is to bring together again two themes of Doyle: NMR and belief-revision become restored to the role of workingtogether rather as separate modules. Indeed, we have brought them even closer together than Doyle, since we do not viewthem as passing messages back and forth, so much as going on together hand-in-hand.This paper is both a plea for highly integrated and general purpose (computational) intelligence, and an extended illus-tration of what such an intelligence might look like, or at least what one such e�ort-in-progress currently looks like. It is ourhope that such integrated and general purpose architectures will lend themselves to both theoretical and empirical studies,providing a much missed link that many, including ourselves, worry is holding our science back.We envision a highly integrated reasoning-acting system, based on a formal logic with a clear semantics, but also equalto the task of actually getting around in the world. It will of course have many procedural aspects, as it needs to do things,in addition to manipulating symbols. It also will not simply perform a stipulated task and grind to a halt; it will have alifetime of its own, and need to recall and reason about its own past, modify its goals as unforeseen circumstances dictate,and correct errors. We think that active logics may provide a suitable framework for such a system.In order to give a sharper motivation and focus to this long-term research project, we present a scenario about animaginary idealized commonsense reasoning agent, Agenta, designed to illustrate the kind of behavior we think essential tothe AI dream of truly intelligent systems, and to which we think active logics are well suited. To date active logics have1A better phrase than \omniscience" for our purposes, might be \prescience": over-idealized omniscient agents have prior knowledge of all thefuture conclusions that a real agent might draw. We have in previous work also referred to such reasoning as \�nal-tray" reasoning, in which thereis an actual limiting state of reasoning that contains all the beliefs implicit in given axioms. The agents we study have no such end-state: they arealways in a state of reasoning, with time ahead for more.



1 INTRODUCTION 3been successfully applied to most of the technical issues in this scenario, but not yet fully integrated into a single system ofaxioms, rules of inference, and procedures. Such integration is in itself a major undertaking, but we think that many of theessential knowledge representation issues have been solved.We wish to motivate formal work toward such integrated systems and to make a plea for \lifetime" studies rather thanisolated problem-solving or planning investigations. We think that lifetime-studies (i) are essential to the long-range successof AI, (ii) present new issues not addressed in one-shot studies, and (iii) also provide more robust solutions to some one-shot problems due to the broader availability of information over the course of repeated e�orts. In particular, we proposecase-based learning , in the form of trial-and-error and advice-taking,2 as a suitable and essential aspect of CSR.Speci�c capabilities illustrated in the scenario which follows, and at least partially solved in isolation by existing active-logic formalisms, are:3� keep temporal indexicals up to date during reasoning (35)� re-establish communication using a focal algorithm (19{20)� reason in real time about others' evolving knowledge and reasoning (15{19)� perform deadline-coupled real-time planning (18{19,33{36)� reason e�ectively in the presence of contradictions (7{8,13{14)� �nd sensible explanations for past events (27{33)� change of terminology (23{25)� enlargement of language (31{32)� learning (7{8,12{13)1.1.2 One day in the life of AgentaIn [94] Millgram argues for a design of an agent that recovers gracefully when faced with unexpected situations|old goalsmust be abandoned in favor of new ones which allow the agent to reformulate a plan of action appropriate for the newlyarisen situation. We claim that active logic serves well to model such a robust, highly adaptive agent. Active logic not onlypermits inconsistencies (which are bound to arise when things don't go quite as planned), but allows the course of reasoningto change as new information becomes available (whether through direct observation or through inference). We demonstratethis 
ow of reasoning in the following scenario.The scenario (adapted from [113, 112]) is an example of what we consider an episode of commonsense reasoning. It isextended in time and involves a single overall theme but allows many changes and on-the-
y aspects as plans and actionsunfold. A single conclusion in not su�cient to \solve" the problem. What is required is an initial plan that is updated astime goes on. In order not to be too overambitious, we keep irrelevant distractions to a minimum, while nevertheless stayingclose to real world complexities that directly involve reasoning. It is distinguished from a \burst" of reasoning describedin Section 1.1.3 below, which appears to be the standard model of formal commonsense reasoning. Unlike what we areproposing, these bursts are performed in a highly idealized setting without bene�t (or detriment) of real-world interactionsthat may require rethinking of those idealizations.1 Agenta and her friend Sue have the task of painting a barn today. They make2 the following plan: Agenta will buy the paint and brushes and Sue will buy the3 ladder. Sue will go to Main Street Hardware, which has a bargain on ladders, even4 though it is farther away than the Ellis Street paint store which also carries5 ladders. They expect to meet at the barn at noon and begin painting. They set6 off in opposite directions. Agenta heads off to the paint store to make her7 purchase. At a bridge she intends to cross, she notices a sign saying the bridge2Long advocated by McCarthy [80] but paid little heed; see also the review by Giunchiglia [41]3Numbers in parentheses refer to the line numbers of the scenario in Section 1.1.2 in which that capability is illustrated; we chose only some ofthe most obvious cases for each.



1 INTRODUCTION 48 is under repair and uncrossable. This forces her to back up a considerable9 distance and take an alternate and much less direct route. As she goes, she10 realizes they will need two ladders and a plank, and that she should get a second11 ladder and a plank at the paint store.12 Agenta then sees another sign saying that all Main Street stores are closed for13 the day due to a water main outage, and she assumes Sue will now try to go to the14 more expensive paint store to get a ladder. She also assumes Sue does not know15 about the bridge being out, since else she surely would have warned her. Agenta16 reasons that it will take Sue at least three extra hours to get to the bridge,17 notice the sign, back up to the alternate route to get to the paint store, buy the18 ladder, and bring it to the barn. This will make it too late to paint the barn19 today. She decides to purchase the paint and then wait for Sue at the barn20 anyway, as the only obvious place to meet up with her and replan for tomorrow; but21 to forgo getting a second ladder and a plank until they can meet to work out a new22 plan, perhaps purchasing both ladders and plank tomorrow at Main Street Hardware.23 Agenta arrives at the paint store but the street sign reads ``Ellis Avenue''24 rather than ``Ellis Street''---she decides it must be the right place since the25 paint store is right there and ``Avenue'' and ``Street'' are easy to switch, and26 in any case she can get paint and brushes there.27 Agenta arrives back at the barn at 12:20, and finds a message from Sue, marked28 11:45, saying that she has placed the ladder in the barn, and will return by 12:3029 to start painting. She is puzzled by the apparent contradiction, then reasons30 that she must have found the Main Street hardware store open after all. Then she31 sees that the ladder has a tag on it reading ``Main Steet Hardware II, Harwood32 Lane location.'' She does not know how Sue found out about the second location of33 the store, but evidently she did. Since Harwood Lane is very close, she decides34 to make a quick trip there for a second ladder and plank. Then she reasons that35 she should wait instead, since it is by now 12:25 and Sue will be here at any36 moment.1.1.3 Agenta, Active logics, and Non-monotonic ReasoningLet us clarify one underlying assumption at the outset: we are interested in logics whose theorems or entailments areconsidered to be beliefs of an idealized commonsense reasoner (whom we will continue to call Agenta). We will call thismatching of theorems and beliefs the \directness" hypothesis; it serves to eliminate from consideration meta-theories whosetheorems encode assertions about Agenta's beliefs (see [62]) but are not themselves candidates for those beliefs. Thus we arecritiquing the direct use of static logics for commonsense reasoning.While Agenta may di�er in important ways from a real-world reasoner, nevertheless she (or the logic) is expected to haveas theorems the \desired" formulas that encode a \solution" to whatever commonsense problem is being analyzed, and is notto have the negations of those formulas. All this we think is well within the standard tradition in formal AI research.Now clearly a real reasoner must have, in addition perhaps to some sort of logic, an engine to actually produce theoremsover time. Thus the actual belief-set of a real reasoner changes over time (it grows, and also may shrink if former beliefs arerejected). The traditional idealization for a reasoner like Agenta leaves out these details: all that is found is the \�nal" beliefset after all the reasoning has been carried out.Curiously, research in nonmonotonic reasoning (NMR) is often presented as aimed at characterizing just such changesin belief-sets, yet it does no such thing.4 Nearly all investigations in NMR utilize static logics. What is characterized is arelation between two static theories, T1 and T2, where we may suppose T1 to have been Agenta's theory initially and T2 a4Reiter[119] and McDermott and Doyle [88] give such a characterization, for example. More recently in [1, 34] attention has swung to belief-setchange, but still not to the process of such change, i.e. this is still a study of relationships between static theories. See Section 1.2.5 for morediscussion on this.



1 INTRODUCTION 5subsequent theory held by Agenta. Just how it is that Agenta gives up T1 and adopts T2 is left up in the air, except tosay that something changed her beliefs. We are asked to suppose that at least one new belief is handed Agenta, and thisapparently causes the rest of the change. Thus Agenta undergoes \bursts" of reasoning, each characterized by a beginningand an end. First Agenta has beliefs (corresponding to) T1, then something happens, and eventually Agenta ends up withT2. Now it certainly is worthwhile to have such a characterization of a beginning and an endpoint for a burst of commonsensereasoning. For one thing, it gives us a clearer sense of what sort of behavior we are looking for in an intelligent system: atthe very least it gives us some \boundary conditions" on Agenta's behavior. But once we have this, we then need to seehow such a burst can come about, i.e., what the underlying behavior is. This is what has usually been thought of as animplementation issue, and what we shall argue is anything but that.The �rst active logics studied were step-logics (see [22, 27]).5 While one goal was to make formal commonsense reasoningmore realistic (e.g., respecting temporal limitations) this was by no means the only goal; certain kinds of problems do notappear to admit of static representation, let alone static solution.In most active logics studied to date, there is a formal notion of \Now" that determines what is current, and that in turnis determined by a \clock" rule that between times t and t+1 changes the \current" theorem Now(t) into Now(t+1). Thusthe clock (rule) takes one unit of time to �re, and this fact itself is recorded syntactically as a change in the theorem (belief)set: the \old" belief Now(t) is erased and the \new" belief Now(t+1) replaces it. In e�ect, new information regularly comesinto the logic, in the form of clock-readings (among other possibilities).Thus in e�ect an active logic has time-sensitive inference rules and consequently time-sensitive inferences. This can beneatly illustrated in the following inference rule:Now (i)-----------Now (i+1)In an English gloss, this reads: If the time is now i, then now it is i+1.6 A more dramatic example is that of reasoningthat it is now time for some event to happen; e.g., when it is noon, eat lunch.Now(noon) implies do(eat).This will produce the conclusion do(eat) only when it has been inferred that Now(noon), which will not occur until it isnoon, i.e., until, say, Now(noon) has been proven, which takes, nicely enough, noon = (12 - 8) * 60 * 60 steps from when itwas Now(0).71.2 Related workIn comparing active logics to other work, we have had to decide which aspects of active logics are to be viewed as basic designfeatures and aims, and which are better seen as applications. This is so, because active logics are intended as a general-purpose framework for commonsense reasoning, and as such are potentially applicable to most AI problems. However, this isnot to say that the active logic framework on its own does the best job at any given application; this will depend on detailsof how the logic is tailored, what knowledge is provided, and so on. So, instead of comparing active logics to, say, planningsystems, we view planning as an application, described in another section (with brief mention there of other work on planningand published comparisons with active logics).5Since their introduction, step-logics have been extended and renamed as active logics to allow several new features, including limited short-termmemory (see Section 10), and the introduction of new expressions into the language over time (see Section 6).6There is implicit here an assumption of an elementary unit of time corresponding to this elementary inference, perhaps a bit like a just-noticeable-di�erence in time, or the 100 milliseconds often associated with simple cognitive processes. Nothing essential turns on this assumption;it is made solely for formal simplicity. Indeed, we assume that all inference rules in the active logics studied to date take the same time to �re,again for simplicity. Future work includes the relaxation of this requirement.7If we assume the robot wakes up at 8 am, and that seconds are its primitive time units. Here \do" has both a truth-value semantics (it istime-to-do) and an action semantics (event commands are being issued). We do not currently have a formal treatment of action semantics; weassume the appropriate events take place.



1 INTRODUCTION 6Here, we simply address what we regard as the basic features of active logics and how they di�er from other approachesto reasoning. Chief among these are: limited reasoning, temporal reasoning, meta-reasoning, real-time planning, reasoningengines, indexicality, and belief revision.1.2.1 Limited ReasoningDoyle [17] discusses the complementary roles that the economics theory of rationality and mathematical logic play in thedevelopment of rational automated agents. In particular Doyle explores some major limitations of agents that in
uence theirrationality. Active logic was developed to overcome such limitations of automated agents. The two main types of limitationsthat Doyle describes are the following:Information limitations: Doyle indicates that the information available to a reasoner may be incomplete, inconsistent,intermidate or di�cult to change. The reasoner's information may also be wrong. Active logic provides a formal frameworkto cope with such limitations. In active logic, at each time step, the reasoning agent has a �nite set of beliefs, and this setcan increase, either through observations or by inferences. As we describe in Sections 3 and 5, active logic can recover frominconsistencies, and the relevant beliefs of the agent may change over time. An agent may drop a belief, if it comes to theconclusion that it is wrong, and it may even change its language (see Section 6). The issue of context sensitivity that ismentioned by Doyle, is demonstrated in Section 8 where we discuss deadline planning in active logic. There we show the wayan agent can reason in the context of di�erent plans it develops simultaneously.Resource limitation: Doyle mentions the most obvious limitations on resources which are time and memory availability.Active logics was developed to take into consideration the time that passes during the reasoning. The time of the reasoningcan be used in the reasoning process itself.The purpose of the development of mechanisms for short term memory and long term memory for active logics (Section 10)was to handle the limited memory problem. Further work is needed on these issues.The literature contains a number of approaches to limited (non-omniscient) reasoning, apparently with similar motivationas our own. However, with very little exception, the idealization of a \�nal" state of reasoning is maintained, and thelimitation amounts to a reduced set of consequences rather than an ever-changing set of tentative conclusions.Konolige [61] suggests a deduction model that is deductively closed under a set of rules, though not necessarily conse-quentially closed, since the rules may not be logically complete. The assumption of deductive closure greatly simpli�es thetechnical problems by disregarding any particular control strategy. It is suggested that systems that are not deductivelyclosed can be modeled by employing a low cost bound on derivations, thereby deriving only those proof trees whose depth isbounded; this extension is not part of the model. The model ignores the time element present in the inferencing, assumingthat the agent can perform the necessary computations in a time interval which is relatively short with respect to its abilityto act.In contrast, we are concerned with limited rationality of a time-situated nature. There may or may not be a limit to theamount of time the agent can spend on reasoning, but at any given time the agent has obviously had only up to that timeto reason. It is what the agent has actually been able to conclude at any particular time, that we seek to model.Active logic gives an account of one's explicit set of beliefs. Most of the formalizations of reasoning in the literaturedeal only with one's implicit set of beliefs. Levesque [74], however, does distinguish these two, giving an intuitively plausiblesemantic account of both implicit and explicit beliefs. An agent's implicit beliefs include all valid formulas, his explicit beliefs,and the logical consequences of his explicit beliefs. His explicit beliefs, on the other hand, are closed under a much weakerset of conditions. An agent does not necessarily explicitly believe all valid formulas, nor does it necessarily explicitly believe�, simply because it explicitly believes � and �! �. Using the set of explicit beliefs, Levesque is able to describe an agentwho is not logically omniscient.Levesque's logic, however, does not allow meta-reasoning about one's own beliefs or reasoning about other agents' beliefs.These abilities are needed in many situations, including planning and goal-directed behavior, where one may have to reasonabout the knowledge that one has as well as the knowledge that others may possess. Fagin and Halpern ([28]) extendLevesque's notion of implicit and explicit beliefs to allow for multiple agents and beliefs of beliefs.In another related approach, Lakemeyer [69] presents a logic to model the beliefs of a limited reasoner. His modelcombines features from both possible-world semantics and relevance semantics. The main di�erence between active logic andLakemeyer's logic is that his logic is not intended to be used by the limited agent itself; instead the logic provides an external



1 INTRODUCTION 7view which speci�es the reasoning ability of a deductively limited agent. Active logic, on the other hand, is intended to beused by the limited agent itself.A very recent treatment of omniscience is given by Fagin, Halpern, and Vardi [30]. They use a possible worlds approachusing a nonstandard propositional logic and show that this characterizes the reasoning studied in the above works of Lakemeyerand of Levesque.Unlike active logic, in all these cases, the steps of reasoning are not made explicit, and the limitations are not necessarilyones of actual computational restrictions (time or space).Fagin and Halpern [28] propose a logic of awareness (again with explicit and implicit beliefs) which is based on the ideathat one cannot have beliefs about something of which one has no knowledge. Intuitively, given a primitive proposition p,if the agent explicitly believes p _ :p then the agent is aware of p. As in [74]'s logic, an agent's implicit beliefs include allvalid formulas and all the logical consequences of his implicit beliefs. The explicit beliefs, on the other hand, are generatedby awareness of primitive propositions. As in [74], the explicit beliefs do not necessarily include all valid formulas but, unlike[74], are closed under implication. Our own approach provides a rather di�erent notion of awareness, where the agent isaware of all closed sub-formulas of its beliefs; hence the awareness set changes over time. Goodwin [43] comes a little closerto meeting our desiderata but still maintains a largely �nal-tray-like perspective.In the same paper, Fagin and Halpern extend their logic of awareness to include awareness of arbitrary formulas (not justprimitive propositions). In addition to the operators for implicit and explicit belief (Li and Bi, respectively), an operator forawareness, Ai, is introduced. An agent explicitly believes a formula � if he implicitly believes � and he is aware of � (thatis, Bi�  ! Li� ^ Ai�). As in the previous logic, an agent does not explicitly believe all valid formulas; however, unlikethe previous logic, an agent's explicit beliefs are not necessarily closed under implication. Thus it is possible for an agent toexplicitly believe p and p! q without explicitly believing q. The intuitive explanation given for this is that the agent is notaware of q.8 It is interesting to note that Li acts like the classical belief operator, so that, for instance, if one assumes thatthe agents are aware of all formulas, the logic reduces to the classical logic of belief, weak S5 (see [9]).Finally, Fagin and Halpern [28] also present a logic of local reasoning which allows agents to hold inconsistent beliefs. Itis based on the fact that humans don't focus on all issues simultaneously. Thus one can view a reasoning agent as a societyof minds, each with its own set of beliefs. Unlike the previous logics that [28] propose, in this logic there is not necessarilyonly one set of states that an agent thinks possible, but rather many sets, each one corresponding to a di�erent set of beliefs.That is, each set represents the \worlds" the agents thinks are possible in a given frame of mind, when focusing on a certainset of issues. It is then possible for conclusions that are drawn in one world to be inconsistent with conclusions drawn inanother.Another way to view limited reasoning is in terms of what conclusions the reasoner has come to at any moment whenthe reasoning may be stopped, say by an interrupt. This is close in spirit to active logics, where however we do not envisioninterruption but rather simply ongoing reasoning for the lifetime of the reasoner. Nevertheless, it is instructive to makecomparison with the notion of anytime computation,9 introduced by Frisch and Haddawy in [51]; in [33] they present theidea of anytime deduction procedures that can return partial information even before a complete proof is found, by exploitingthe capacity of any multi-valued logic to express intermediate results. Before the ultimate value, or value interval, of thetarget sentence is computed, it is possible to have an intermediate result stating that some truth values have been eliminated.Active logic is a two valued logic. There is no intermediate step regardless of the truth of a speci�c formula. However, thebeliefs in a given time step are only partial. When the agent spends more time on its reasoning, its beliefs become moreaccurate. These partial sets of beliefs may be used for deciding how to act, as demonstrated in Section 8.Although these approaches all model limited reasoning, the process is still in terms of the standard mold of static reasoning.We do indeed have a restricted view of what counts as a theorem, but the logic is still �nal-tray-like. Although the �naltray is smaller than in the conventional omniscient approach (it is catching less, if you will), it is still only the �nal set ofconsequences that are evident. In Fagin and Halpern's logic of general awareness ([28]), for example, �; �! �; �! 
 and 
may all appear in the tray without �, given that the agent is unaware of �. Although the tray is catching less here, the over-simpli�cation of a \�nal" state of reasoning is nonetheless maintained. All the conclusions are still drawn instantaneously.The e�ort involved in actually performing the deductions is not taken into consideration.Given that time plays such an important role in this discussion, we next examine related work in temporal logic.8It seems a little odd to say that we can be aware of p! q (which the agent must, since he explicitly believes p! q) without being aware of q.The notion of awareness which is built into active logic does not allow this peculiarity.9See also our discussion below of anytime algorithms applied to planning.



1 INTRODUCTION 81.2.2 Temporal LogicFormal reasoning about time and action is not new. A great deal of research has been devoted to this �eld. Perhaps the twomost in
uential temporal formalisms are those of Allen ([2]) and McDermott ([87]).In [2], a logic which permits reasoning about time is developed. In it time intervals are the principal objects in thedomain. Three basic entities are associated with time: properties, events, and processes. HOLD(p; i), where p is a propertytype (e.g. red) and i is an interval of time, is used to denote the fact that property p holds for the interval i. A propertyis true for an interval i� it holds for every subinterval. The fact that an event e occurred over an interval i is denoted byOCCUR(e; i). Finally, OCCURRING(p; i) denotes the fact that process p occurred over interval i. A process is said tooccur over an interval i i� it occurs over some subinterval of i. Having set up a way to handle temporal information, [2] thenproceeds to handle actions, causation, intentions, and plans.McDermott [87] constructs his theory using fact types and event types. Unlike Allen, McDermott uses time points asprimitive. T (t; p) denotes the fact that fact type p holds at time t. OCC(t1; t2; e) denotes the fact that event type e occurredover the interval < t1; t2 >. [87] then uses these primitives to reason about temporal information and events.Many others have contributed formalisms for reasoning about time and action including [50, 52, 79, 89, 98, 76, 131], andmost recently [44]. In contrast to these theories, the focus of active logic is not primarily to be able to reason about time,but rather to be able to reason in time. That is, active logic provides a time-situated view of reasoning, where the fact thatthe reasoning process itself takes time is part of that very same reasoning.This means, in particular, that active logics reason about their own reasoning, e.g., about the time being taken by theirown reasoning. This is then meta-reasoning; however, it di�ers from other treatments of meta-reasoning, in that there is nota second level of representation for meta-beliefs about beliefs. We now turn to a review of related work on meta-reasoning,and to one of the key applications of active logics: deadline-situated planning.1.2.3 Meta-reasoning and Real-time PlanningSome of the motivations behind active logics, that take the time of reasoning into considerations, is to enable the agent toreason and act in real-time. For example, an agent may need to �nish to perform some actions till some deadlines. Anexcellent survey of related research in deliberative real-time AI is available in [35]. They categorize real-time systems intopurely reactive (those that hard-wire reactions completely), combined response systems (those that have distinct asynchronouscomponents that handle deliberation and reaction) and integrated systems (those that have a single architecture that is capableof a wide range of timely responses depending upon the time criticality requirements).Those in the last category put the time that is available in the best use. These approaches have been collectivelycharacterized by terms such as 
exible computation [57], deliberation scheduling [5], and anytime algorithms [12, 141]. Theyspend the resources available to the agent in deciding whether to act, how to act, and when to act. The main di�erencesbetween our approach and these is the following:(1) they do not account for the time-cost of the deliberation scheduling algorithms themselves, only for the cost ofdeliberation that they consider; while our mechanism is completely situated in time;(2) they require prior complex (meta) knowledge about their reasoning algorithms or procedures themselves, and theircharacteristics with respect to time; they also require a great deal of knowledge about the domain in the form of probabilitiesof events and expected utilities of actions that the agent must be aware of;(3) they usually attempt to solve an optimization problem in a speci�c domain, whereas our approach is to come up witha formalism that accounts for all the time spent by the agent on its reasoning.Thus, we note that these approaches are not alternatives to our, but rather that they are suited for a di�erent range ofmore informed problem solving.Meta-reasoning has become almost synonymous with nonmonotonic reasoning. This is largely due to the fact thatnonmonotonic formalisms always rely on some assessment of what a reasoner does not know (or cannot prove), this state ofignorance itself being a piece of meta-information about the reasoner. Sometimes this ignorance is explicit (as in McDermottand Doyle's approach) and sometimes implicit (as in Reiter's and McCarthy's approaches). However, in general, meta-reasoning is a broader notion, involving introspective beliefs in general, whether defeasible or not. For instance, positiveintrospection (if I know � then I also know that I know: Know(I; �) is in my knowledge base, or at least in the logical closure



1 INTRODUCTION 9of my knowledge base).Active logic explicitly represents such an introspection predicate, Know, which however, has a time parameter (and whichsuppresses the \I" as understood). This is, among other things, the means by which active logic endows its reasoner with ahistory. If the belief � occurs at step (time) t, then at later steps the belief Know(t; �) can be present, recording the fact that� had been a belief at step t. We say \can be present" because this is not required as part of the de�nition of active logic;we have found it (or its negative counterpart: infer :Know(I; �) when � is not a step-t belief) useful in many cases, but italso leads to an overabundance of unnecessary introspective conclusions.10 To o�set this, we are exploring limited-memoryversions of active logic (see Section 10); see also our discussion of the RABIT system in below.This issue brings up squarely the fact that an active logic is a logic engine as well as a formalism; it is both at once, sincethe formalism has an indexical (Now) whose meaning is tied to actual inferences being performed over time. We thus takea look at implemented reasoning systems.1.2.4 Implemented Reasoning SystemsAn active logic is both a formalism and an inference engine. This is not to say that we use the phrase \active" logic in twodi�erent ways, however. Rather, as an embedded or time-situated formalism, an active logic has a proof-generation algorithmspeci�ed within the formalism itself. Thus an active logic contains its own semantics, at least as far as time goes (or, at leastas far as the current|and changing|time goes).Thus it is appropriate to compare active logic both to (traditional) formalisms (which in general are not also inferenceengines, although sometimes inference engines can be or have been implemented that do produce the theorems of those logics)and also to implemented reasoning systems. In regard to the latter, we will look at the systems known as CYC [71], OSCAR[117, 115], SOAR [68], and RABIT [36, 37].CYC is a program under construction, that has been undertaken in an attempt to capture a vast amount of commonsenseinformation, on the order of millions of facts, and yet reason commonsensically with this as well. This includes contextualand defeasible data. As such it falls within the broad intentions of active logic as well; however, to the best of our knowledge,CYC is not time-situated, and for instance cannot reason to the conclusion that now, after an hour of working on a problem,it is time to draw a tentative conclusion (as would be needed, for example, in problem-solving with a deadline).OSCAR is an interest-driven nonmonotonic inference engine, and as is the case with active logics, it can also be viewed asa formalism. Again as with CYC, however, OSCAR is not time-situated. On the other hand, OSCAR allows for diachronicdefeasibility, as does active logic.SOAR is largely a learning algorithm, with strong human/cognitive modeling aspects. It has in common with active logicthe maintenance of a history, speci�cally used by SOAR for inductive learning. SOAR does not, however, reformulate pastbeliefs based on new information, as does active logic (see the Rosalie's Car problem in Section 6). See [48] for a more-detailedcomparison of SOAR and active logic.RABIT is an implemented reasoning system based loosely on the active logic formalism. Similar to the active logicenhancements to deal with issues of limited space (discussed in Section 10), RABIT's two main memory modules are STM(Short Term Memory), representing the current focus of attention, and LTM (Long Term Memory), representing the full setof beliefs. Recent enhancements to RABIT have included a re-design of LTM into a network of concept and belief nodes, toallow for a spreading activation (marker passing) approach to associative retrieval of beliefs from LTM to STM. With themarker passing mechanism, RABIT is able to deal e�ectively with large11, potentially incomplete and inconsistent knowledgebases.1.2.5 Other related workChapter 10 of [29] discusses their generalization of active logics, which allows for the possibility of fairly arbitrary relationshipsbetween \stages" of reasoning. The generality is such that very little can be said about speci�c inferences without makingfurther assumptions leading to a more concrete version (active logic or other), however. In particular, an indexical time-passage aspect is not required.10That is, the belief set remains �nite, which is good, but may grow exponentially, which is bad.11on the order of tens of thousands of nodes



1 INTRODUCTION 10Doyle's truth maintenance notion was the �rst serious e�ort at belief revision; curiously, however, belief revision waslargely ignored in the 
urry of work on nonmonotonicity, until the recent work by Alchourron, Gardenfors, and Makinson(often referred to as the AGM approach) [1, 34] and especially showing a strong connection between NMR and belief revision.The AGM treatment focuses on theory change rather than simply belief change. That is, a theory is viewed as having a�xed set of beliefs (axioms, theorems); this is of course the traditional notion of theory in mathematical logic. Beliefs changeby means of a change in axioms, notably via new incoming information that christens a new theory; some old axioms (andtheorems) may be lost in the reshu�e, whence the nonmonotonicity. But the process of adjudicating between new and old,and of reasoning in general, is not addressed, and there is no associated time-situated aspect.Active logics, by contrast, are constantly changing as part of their very design, and this change can be thought of as simpletheorem-proving or as altering old beliefs in the face of new information|it is the same uniformmechanism of deciding basedan all available information (which itself is in 
ux) what to believe now. There is no notion of replacing one theory withanother, so much as a single constantly evolving theory. One consequence is that incoming information need not be givenspecial status: a new belief can become rejected based on older ones; this is not allowed in the AGM treatment. More to thepoint, there is no information in an active logic that is beyond question. In active logics, belief revision is not an occasionalactivity done to reset things to normal so inference can proceed again; rather belief revision is inference. Meta-reasoning and"ordinary" reasoning are not distinguished in active logics; beliefs are both used and mentioned, and when mentioned theyare simply objects like any other. Thus active logics are a bit like set theory where everything is a set. The mechanism fortreating beliefs as objects is quotation, which forms from the belief � at step i, the new belief at i+1: Know(i; "�"), where"�" is treated like any other object.In [72] Lesp�erance and Levesque present a logical theory of knowledge and action that distinguishes indexical and objectiveknowledge. They formalize the notions of indexical knowledge, time, action, and ability, and provide a formal semantics forthe knowledge operator. Although the logic has a notion of \now", this notion does not evolve as the reasoning progresses,making the logic incapable of addressing a key feature of active logic, namely, reasoning about the process of reasoning.Another aspect of Lesp�erance and Levesque's logic left unaddressed is the problem of logical omniscience.In [122] Roos discusses reasoning with inconsistent knowledge, and presents a particular logic for this. His logic has incommon with active logic (and in contrast with paraconsistent logics) that the establishment of a contradiction is takenseriously, in that certain premises are then retracted. However, the temporal element in Roos' logic does not play a centralformal role as in active logic; in particular, there is no notion of an evolving Now. Also the basis for retraction in his logic isa reliability relation; whereas in active logic it is simply the contradiction itself, causing both contradictands to be no longerinherited. Which|if either|is later reinstated is not speci�ed in the active logic framework itself but rather left to theparticular application (a reliability notion is one we have used). So, the reasoner may never reach a reinstatement decisiononce the contradiction is noted, for example in the Nixon diamond. This we think is not inappropriate (depending on formaldetails and just how much world knowledge is represented).It is worth noting that the unifying theme of the recent text by Russell and Norvig [126], is the concept of an intelli-gent agent. They view the AI problem as that of describing and building intelligent agents that can process inputs fromthe environment and perform actions accordingly. They take the position that \...di�erent agent designs are appropriatedepending on the nature of the task and environment." In this paper we present an architecture suitable for an intelligentagent that must reach satisfactory solutions to problems (goals) encountered in an incompletely speci�ed, but temporallyextended environment.1.3 PreviewHaving discussed background, motivation and related work we now move on to the speci�cs of active logics. In particular,Section 2 describes the preliminary active logic concepts, including formal de�nitions, examples of active logics, and asemantics. The subsequent sections then describe particular types of problems we have been able to solve using this formalapproach. Section 3 describes the ease with which we can use active logics to do non-monotonic reasoning. In Section 4 wepresent an example of using active logics to reason about others' reasoning. Section 5 describes the ease with which activelogics can reason in the midst of contradictions. In Section 6 we present several scenarios involving the ability of an activelogic to deal with changes in the underlying language. Section 7 illustrates how active logics have been used for multi-agentcoordination without communication through the use of focal points. In Section 8 we discuss the use of active logics to planin situations involving deadlines. Section 9 demonstrates how an active logic can be used to solve the Yale Shooting Problem.Section 10 brie
y describes our techniques for handling limited resources of time, space, and computation. We conclude inSection 11 with future directions for our research in active logics.



2 PRELIMINARY CONCEPTS 112 Preliminary concepts 0 : ;...i : : : : � : : :i + 1 : : : : �! �; � ! 
 : : :i + 2 : : : : � : : :i + 3 : : : : 
 : : :... Figure 1: Active logic studiesAn active logic is characterized by a language, observations and inference rules. A step is de�ned as a fundamental unit ofinference time. Beliefs are parameterized by the time taken for their inference, and these time parameters can themselvesplay a role in the speci�cation of the inference rules and axioms. The most obvious way time parameters can enter is viathe expression Now(i), indicating the time is now i. Observations are inputs from the external world, and may arise at anystep i. In many of our examples, these observations take the form of domain axioms. When an observation appears, it isconsidered a belief in the same time-step. Each step of reasoning advances i by 1. At each new step i, the only informationavailable to the agent upon which to base his further reasoning is a snap-shot of his deduction process completed up to andincluding step i� 1.AL, our commonsense reasoning agent, stores his world knowledge in the form of a database of beliefs. These containdomain speci�c axioms. A number of inference rules constitute the inference engine. Among them may be rules such asModus Ponens and rules to incorporate new observations into the knowledge base as well as rules speci�c to, for example,deadline-coupled planning, such as checking the feasibility of a partial plan or re�ning a partial plan. Figure 1, adapted from[22] illustrates four steps in an active logic with Modus Ponens ( i:�;�!�i+1:� ) as one of its inference rules. Note that once � and�! � are among the beliefs, modus ponens is used to derive �. 
 cannot be derived until the next step when modus ponensis used on � and � ! 
.The following features of this framework relate and contrast it to conventional commonsense reasoning systems:12Thinking takes time: Reasoning actions occur concurrently with AL's other physical actions and with the ticking of aclock. AL can not only keep track of the approaching deadline as he enacts his plan, but can treat other facets ofplanning (including plan formulation and its simultaneous or subsequent execution and feasibility analysis) as deadline-coupled. Related to this feature of active logics is the fact that there is no longer a �nal theorem set (no "�nal tray"of conclusions). Rather, theorems (beliefs) are proven (believed) at certain times and sometimes no longer believedat later times. Provability is time-relative and best thought of in terms of AL's ongoing lifetime of changing views ofthe world. This leads to the issue of contradictions below. Instead of being prescient, knowing in advance all theirconclusions, our agents learn of them only by deriving them, and this does not happen all at once.Lack of Omniscience: AL is not omniscient, i.e., his conclusions are not the logical closure of his knowledge at any instant,but rather only those consequences that he has been actually able to draw.13Handling contradictions: Consider Fermat's Last Theorem (FLT). Suppose AL believes FLT is true (after reading so inthe New York Times). But (let us suppose) in fact FLT is false; then AL has contradictory beliefs, even though he isunaware of this. He has among his beliefs all the usual ones about elementary arithmetic, su�cient to disprove FLT,12This description is necessarily very brief; for details see the various papers by Elgot-Drapkin et al.13Konolige [62], Levesque [75] and Fagin and Halpern [28] proposed systems in which the agents are not omniscient. However, the inference timeis not explicitly captured in their systems; and despite being non-omniscient, these systems are still prescient: whatever knowledge is derived fromaxioms is treated as simply there all at once, before it can have been actually derived.



2 PRELIMINARY CONCEPTS 12even though he does not have the skills, inclination, or time to do so. Yet the (implicit) contradiction causes him nodi�culties at all!Since commonsense agents have a multitude of defeasible beliefs, they often encounter contradictions as more knowledgeis obtained and default assumptions have to be withdrawn. While a contradiction completely throws an omniscientagent o� track14, the active-logic reasoner is not so a�ected. The agent only has a �nite set of conclusions from hispast computation, hence contradictions may be detected and resolved in the course of further reasoning.Nonmonotonicity: Active logics are inherently nonmonotonic, in that further reasoning always leads to retraction of someprior beliefs. The most obvious one is Now(i), which is believed at step i but not at step i + 1. The nonmonotonicbehavior enables the frame-default reasoning of which the commonsense agent must be capable [84].There are two distinct types of formalisms in which we are interested: the meta-theory SLn about an agent, and theagent-theory SLn itself. Here n is simply an index serving to distinguish di�erent versions of active logics. It is the latter,SLn, that is to be step-like; the former, SLn, is simply our assurance that we have been honest in describing what we meanby a particular agent's reasoning. Thus the meta-theory is to be a scienti�c theory subject to the usual strictures such asconsistency and completeness. The agent theory, on the other hand, may be inconsistent and incomplete; indeed if the agentis an ordinary fallible reasoner it will be so. The two theories together form an active logic pair.A notion of completeness for the meta-theory was de�ned in [22, 27] and is repeated here:De�nition 2.1 A meta-theory SLn is analytically complete, if for every positive integer i, and every constant � naming anagent w� of the corresponding agent-theory, either SLn ` K(i; �) or SLn ` :K(i; �).15In [18] we showed that our SL0 formalism is in fact analytically complete. But what kind of completeness might be wantedfor an agent theory? In SL0, it is desirable that every tautology be (eventually) provable. This is the case, since everytautology has a proof in propositional logic and, for a su�ciently large value of i, all axioms (i.e., the \observations") in sucha proof will have appeared (by design of SL0) by step i. Thus SL0 is complete with respect to the intended domain, namely,tautologies. However, for other active logics the case is not so simple, for the intended domain, namely, the commonsenseworld, has no well-understood precise de�nition. Nevertheless, we can isolate special cases in which certain meta-theoremsare possible. In particular, if no non-logical axioms (beliefs) are given to an agent at step 0 (or any later time), then it isreasonable to expect the agent to remain consistent. This we are able to establish for all our agent logics in which the logicalaxioms do not contain the predicate symbol \Now". See Section 2.3.2.1 De�nitionsWe repeat now certain key de�nitions from our formal development in [22, 27]. Most of the de�nitions are analogous tostandard de�nitions from �rst-order logic; consequently certain results follow trivially from their �rst-order counterparts.Intuitively, we view an agent as an inference mechanism that may be given external inputs or observations. Inferred w�sare called beliefs; these may include certain observations.Let L be a �rst-order language, and let W be the set of w�s of L.De�nition 2.2 An observation-function is a function OBS :N ! P(W), where P(W) is the powerset of W, and where foreach i 2N , the set OBS(i) is �nite. If � 2 OBS(i), then � is called an i-observation.De�nition 2.3 A history is a �nite tuple of pairs of �nite subsets of W. H is the class of all histories.De�nition 2.4 An inference-function is a function INF : H ! P(W ), where for each h 2 H, INF (h) is �nite.Intuitively, a history is a conceivable temporal sequence of belief-set/observation-set pairs. The history is a �nite tuple; itrepresents the temporal sequence up to a certain point in time. H consists of all conceivable histories, not merely those that14We call this the swamping problem|namely that from a contradiction all w�s are concluded.15K then has two roles: in SLn as used here, and in SLn . The context will make the role clear.



2 PRELIMINARY CONCEPTS 13occur in some actual course of reasoning. The inference-function extends the temporal sequence of belief sets by one morestep beyond the history. Figure 2 illustrates one such observation-function and inference-function. We can see that INFdepends both on OBS and the histories, and that any given history depends both on OBS and INF . We have illustratedone such history: the history of the �rst �ve steps.16 De�nitions 2.5 and 2.6 formalize these concepts in terms of a step-logicSL.Let � OBS(i) = ( fbird(x)! flies(x)g if i = 1fbird(tweety)g if i = 3; otherwise� Thmi � W; 0 � i < n ; Thm0 = ;;� INF (<< Thm0; OBS(1) >; : : : ;< Thmn�1; OBS(n) >>) =Thmn�1 [ OBS(n) [ f�(t) j (9�)(�(t); �(x)! �(x) 2 (Thmn�1 [ OBS(n)))g:The history h of the �rst �ve steps then would be:h = << ; ;fbird(x)! flies(x)g>;< fbird(x) ! flies(x)g ; ; >;< fbird(x) ! flies(x)g ; fbird(tweety)g >;<fbird(x) ! flies(x); bird(tweety); f lies(tweety)g; ; >;<fbird(x) ! flies(x); bird(tweety); f lies(tweety)g; ; >>Figure 2: Example of a particular OBS and INFDe�nition 2.5 An SL-theory over a language L is a triple, < L; OBS; INF >, where L is a �rst-order language, OBS isan observation-function, and INF is an inference-function. We use the notation, SL(OBS; INF ), for such a theory (thelanguage L is implicit in the de�nitions of OBS and INF ). If we wish to consider a �xed INF but varied OBS, we writeSL(�; INF ).Let SL(OBS; INF ) be an SL-theory over L.De�nition 2.6 Let the set of 0-theorems, denoted Thm0, be empty. For i > 0, let the set of i-theorems, denoted Thmi, beINF (< < Thm0; OBS(1) >;< Thm1; OBS(2) >; : : : ; < Thmi�1; OBS(i) > >). We write SL(OBS; INF ) `i � to mean �is an i-theorem of SL(OBS; INF ).17De�nition 2.7 Given a theory SL(OBS; INF ), a corresponding SLn-theory, written SLn(OBS; INF ), is a �rst-ordertheory having binary predicate symbol K,18 numerals, and names for the w�s in L, such that SLn(OBS; INF ) ` K(i; �) i�SL(OBS; INF ) `i �.Thus in SLn(OBS; INF ), K(i; �) is intended to express that � is an i-theorem of SL(OBS; INF ).19See Section 2.3 for the formal details of a semantics for active logic.2.2 Example Active LogicsIn this section we describe two examples of active logics: SL0 and SL7.16This example serves to illustrate how these three concepts are inter-related. There are many possibilities for de�ning the functions OBS andINF ; hence, many di�erent histories are possible.17Note the non-standard use of the turnstile here.18We see that the predicate letter K has two roles: in SLn and in SL. The context will make the role clear.19In [20, 19] we used i� for K(i; �).



2 PRELIMINARY CONCEPTS 142.2.1 SL0SL0 has none of the three mechanisms of time, self-knowledge, and retraction. The language of the agent theory,SL0, is propositional, with propositional letters P0; P1; P2; : : :. The meta-theory SL0 is a �rst-order theory as described inDe�nition 2.7. SL0 corresponds to the reasoning of a very simple agent that can deduce only tautologies. The agent is\fed" beliefs (its \observations") consisting of special tautologies, from which it is to draw others. In [18] we formalized themeta-theory SL0 for describing the steps taken by such an agent.20To have the agent deduce all tautologies, it is necessary to provide su�ciently many axioms. The usual approaches involveschemata encoding an in�nite number of axioms (see [90]), yet we wish the agent to have only a �nite number of beliefs ateach step. To achieve this, we \feed in" �rst-order logical axioms little by little (according to increasing bounds on theirlengths (i.e. the number of connectives) and ranges of symbols used) through the observation-function. That is, an instance� of an axiom schema is an i-observation i� the length of � and the highest index j of any propositional letter Pj in � areboth less than i. For example, P0 ! (P0 ! P0) is a 3-theorem, but is not a 0-,1-, or 2-theorem. Although the highest indexof this w� is zero, it has a length of two, and is therefore not \fed in" until step 3.Of interest is the following theorem.Theorem 2.1 SL0 is analytically complete.The proof is a long series of lemmas involving induction on the length of formulas. See [18] for the complete proof.SL0 was studied to gain an understanding of the underlying idea of active logics, and to gain some practical experience.21Although SL0 was studied in some detail, SL0 is not an appropriate active logic for commonsense reasoning: not only isthe propositional language too weak, but an arbitrarily large number of tautologies are fed in at each step. A commonsensereasoner should have only a relatively small number of active beliefs with which to work at each step.222.2.2 SL7An SL7 logic has all three of the mechanisms of time, self-knowledge, and retraction. SL723, as stated earlier, is not intendedin general to be consistent. If supplied only with logically valid w�s that do not contain the predicate Now, then indeed SL7will remain consistent over time: there will be no step i at which the conclusion set is inconsistent, for its rules of inferenceare sound (see Theorem 2.4 on page 20). However, virtually all the interesting applications of SL7 involve providing theagent with some non-logical and potentially false axioms, thus opening the way to derivation of contradictions. This behavioris what we are interested in studying, in a way that avoids the swamping problem. The controlled growth of deductions inactive logic provides a convenient tool for this, as we will see.The language of SL7 is �rst-order, having unary predicate symbol, Now, binary predicate symbol, K, and ternarypredicate symbol, Contra, for time, knowledge, and contradiction, respectively. We write Now(i) to mean the time is now i,and K(i; �) to mean � is known 24 at step i. Contra(f�; �g; i)25 is intended to mean that � and � are in direct contradiction(one is the negation of the other) and both are i-theorems.The formulas that the agent has at step i (the i-theorems) are precisely all those that can be deduced from step i�1 usingthe applicable rules of inference. As previously stated, the agent is to have only a �nite number of theorems (conclusions,beliefs, or simply w�s) at any given step. We write: i : : : : ; �i+ 1 : : : : ; �to mean that � is an i-theorem, and � is an i + 1-theorem. There is no implicit assumption that � (or any other w� otherthan �) is present (or not present) at step i+1. The ellipsis simply indicates that there might be other w�s present. W�s are20Although there we did not yet use the notational distinction of SL0 and SL0 .21An implementation of SL0 has been written in PROLOG, and was run on an IBM PC-AT.22This failing of SL0 can be seen in our implementation, where at a very early step so many theorems have accumulated that their computationon an IBM PC-AT is severely hindered.23The notation SL7 represents any of a family of active logics whose OBS and INF involve the predicatesNow and K and contain a retractionmechanism. Choosing OBS and INF �xes the theory within the family.24We do not distinguish between knowledge, belief, and theoremhood.25Note this was written as Contra(i; �;�) in [22]. We change the notation for convenience.



2 PRELIMINARY CONCEPTS 15not assumed to be inherited or retained in passing from one step to the next, unless explicitly stated in an inference rule. InFigure 3 below, we illustrate one possible inference function, denoted INFB, involving a rule for special types of inheritance;see Rule 7.The inference rules given here correspond to an inference-function, INFB. For any given history, INFB returns the set of all immediateconsequences of Rules 1{7 applied to the last step in that history. Note that Rule 5 is the only default rule.Rule 1(CLOCK) i :i+ 1 :Now(i+ 1) Agent notes the timeRule 2(OBS) i :i+ 1 :� If � 2 OBS(i + 1)Rule 3(MP) i :�;�! �i+ 1 :� Modus ponensRule 4(XMP) i :P1a; : : : ; Pna; (8x)[(P1x ^ : : : ^ Pnx)! Qx]i+ 1 :Qa Extended modus ponensRule 5(INTRO) i :i+ 1 ::K(i;�) Negative introspectionaRule 6(CONTRA) i :�;:�i+ 1 :Contra(f�;:�g; i) Presence of (direct) contradictionRule 7(INH) i :�i+ 1 :� InheritancebFigure 3: Rules of inference corresponding to INFBawhere � is not a theorem at step i, but is a closed sub-formula at step i.bwhere nothing of the form Contra(f�;�g; i � 1) nor Contra(f�;�g; i � 1) is an i-theorem, nor where � is of the form Now(�). That is,contradictions and time-notes are not inherited. The intuitive reason a time-note is not inherited is that time changes at each step. The intuitivereason contradictory w�s � and � are not inherited is that not both can be true, and so the agent should, for that reason, be unwilling to simplyassume either to be the case without further justi�cation. This does not mean, however, that neither will appear at the next step, for either or bothmay appear for other reasons, as will be seen. Note also that the w� Contra(f�;:�g; i) will be inherited, since it is not itself either a time-noteor a contradiction, and (intuitively) it expresses a fact (that there was a contradiction at step i) that remains true.For time, we envision a clock which is ticking as the agent is reasoning. At each step in its reasoning, the agent looks atthis clock to obtain the time.26 The w� Now(i) is an i-theorem. Now(i) corresponds intuitively to the statement \The timeis now i."Self-knowledge involves the predicate K, and (in INFB) a new rule of inference, namely a rule of (negative) introspection;see Rule 5 in Figure 3. This rule is intended to have the following e�ect. :K(i; �) is to be deduced at step i+1 if � is not ani-theorem, but does appear as a closed sub-formula at step i.27 We regard the closed sub-formulas at step i as approximatingthe w�s that the agent is \aware of" at i.28 Thus the idea is that the agent can tell at i+1 that a given w� it is aware of atstep i is not one of those it has as a conclusion at i. See [28] for another treatment of awareness. We will use the K conceptto allow the agent to negatively introspect, i.e., to reason at step i+ 1 that it did not know � at step i. Thus, using INFB,if � and � ! � are i-theorems, then � and :K(i; �) will be i + 1-theorems (concluded via Rules 3 and 5, respectively).Currently we do not employ positive introspection (i.e., from � at i infer K(i; �) at i + 1), although it can be recapturedfrom axioms if needed.26Richard Weyhrauch analyzed this idea in a rather di�erent way in his talk at the Sardinia Workshop on Meta-Architectures and Re
ection,1986; see [140].27A sub-formula of a w� is any consecutive portion of the w� that itself is a w�. Note that there are only �nitely many such sub-formulas atany given step. Rule 5 formalizes the introspective time-delay discussed in [22, 27].28\You can't know you don't know something, if you never heard of it." Thus from beliefs Bird(x) ! F lies(x) and Bird(tweety) at step i,Bird(tweety) ! F lies(tweety) may follow at step i + 1. Then at step i + 1, F lies(tweety) would become something the agent is aware of. (InINFB this will certainly be the case, and in fact F lies(tweety) will even be a theorem.)



2 PRELIMINARY CONCEPTS 16Retractions are used to facilitate removal of certain con
icting data. Handling contradictions in a system of this sortcan be quite tricky. In this active logic we handle contradictions by simply not inheriting the formulas directly involved (seeRule 6 in Figure 3). Unlike SL0 which is monotonic (that is, if � is an i-theorem, then � is also an i + 1-theorem), SL7 isnon-monotonic. In SL7(�; INFB)29, a conclusion in a given step, i, is inherited to step i+ 1 if it is not contradicted at step iand it is not the predicate Now(j), for some j; see Rule 7 in Figure 3. Section 5 describes a more sophisticated method ofhandling contradictions.SL7(�; INFB) was formulated with applications such as the Brother problem (see Section 3) in mind. This led to the rulesof inference listed in Figure 3. Rule 3 states, for instance, that if � and �! � are i-theorems, then � will be an i+1-theorem.Rule 3 makes no claim about whether or not � and/or �! � are i + 1-theorems. The axioms (i.e., the \observations") arethose listed in Section 3.Central to the approach is the idea that, for at least some conclusions that our agent is to make, the time the conclusionis drawn is important. The issue of deciding which conclusions to time-stamp, however, is a complex one. Time-stamping allconclusions seems neither intuitively correct nor formally feasible (a complex inheritance scheme would be required). On theother hand, it is important the agent be able to distinguish, for example, the belief that it didn't know B, from the beliefthat it currently knows B. That is, the reasoning agent may conclude, say at time 5, that w� B is unknown. Later, it maycome to know B. This latter event, however, should not force the agent to forget the (still true) fact that at time 5 , B wasunknown. It thus seems important to time-stamp all introspections. Currently we are also time-stamping contradictions and\clock look-ups".Note the use of the predicate Contra in Rule 6. It is used to note a direct contradiction only; indirect contradictions, forexample, :�;:�, and � _ �, may co-exist within the agent's current set of beliefs (for example, they may all be i-theorems).It is only when a direct contradiction occurs that the agent is forced to do something about it. Suppose, for example, theagent later deduces, say at time i + 1, �. Step i + 1 would then contain a direct contradiction. This would then be noted(via Rule 6) at step i + 2 with the w� Contra(f�;:�g; i + 1). Then (by Rule 7) neither � nor :� would be inherited tostep i+ 3. See Section 5 for more on how we handle contradictions.Note that what is not inherited is context-dependent: if a slightly di�erent line of reasoning had led from the same w�sat step i to a di�erent contradiction at step i + 1, di�erent w�s would fail to be inherited. Thus it is the actual time-traceof past reasoning that is re
ected in the decision as to what w�s to distrust. Also note that if the extra w� that allowed theimplicit contradiction to become direct had not been present, the implicit contradiction might have remained inde�nitely.This behavior we regard as within the spirit of the reasoning we wish to study, since it follows real-time vagaries of what isactually done, rather than an externally proscribed notion of validity.2.3 SemanticsWhat is semantics for? Classically, there are two rather distinct purposes. On the one hand, semantics simply is an accountingfor meanings attached to certain syntactic strings; these meanings allow in principle a determination of which strings aretrue and which are false and which are neither. Once such a determination is provided (and it need not be computable) thenthe language has a meaning. This is the primary notion of semantics, not only in everyday usage but also in formal studies.First and foremost, we need to be able to say what it is for a formula to be true (or satis�ed) in a given structure, if we areto have any useful intuitions (let alone meta-theorems) concerning the language.Upon this primary semantics rests a key de�nition: given a set of formulas, a structure satisfying them all is a model ofthose formulas; in particular, a theory consists of a language and a set of so-called axioms, whose models are the models ofthat theory. We also from this derive the central notion of consequence: a formula F follows from a set S of formulas, if F istrue in all models of S. Thus meaning, truth and consequence are the essence of the �rst or primary notion of semantics.Also upon this primary semantics rests one of the most important theorems in logic: the completeness theorem of �rst-order logic. This meta-theorem provides a semi-decision procedure to determine those formulas that are valid (true in allstructures) or that are entailments (consequences of given axioms). This procedure is simply the recursive application of�rst-order inference rules, beginning with axioms.Upon the completeness theorem (and the soundness theorem) rests a secondary notion of semantics: a characterizationof inference (provability from axioms and rules) solely in terms of entailment from axioms. This is the basis for many29We use the notation SL7(OBS; INFB) to describe an SL7 theory de�ned by the observation function OBS and the inference function INF .When we have �xed the inference function, but have not �xed the observation function, we use the notation SL7(�; INFB).



2 PRELIMINARY CONCEPTS 17applications of the completeness theorem: instead of going to the trouble of �nding an actual chain of inferences constitutinga proof of a formula of interest, one might instead be able to show that all models satisfy the formula, which establishes theexistence of a proof. This however not only can be a useful way to circumvent proof-construction, it also serves [130] to giveinsights into the structure of the theorem-set. In the case of Agenta, a completeness theorem allows us another way to thinkabout and assess his beliefs.Such is very useful, for instance in NMR, where comparison between T1 and T2 is often made semantically, i.e., theirtheorem-sets are compared by looking at their models rather than at their inference rules. However, in such cases we oftendo not consider all conceivable structures in which the primary semantics may satisfy axioms; rather we tend to look onlyat preferred models that match our goals for what we think an ideal agent should believe. This in fact already occurs inmathematical logic, such as in set theory where only \standard" or \natural" models may be of interest, or in second-orderlogic (SOL) where \full" models are usually the preferred ones.It is further noteworthy that some so-called logics came into being without even a primary semantics (e.g., �rst-orderlogic, modal logic, and Reiter's default logic) and some others without inference rules (e.g., Moore's autoepistemic logic);later research aimed to �ll these gaps. Still other logics were de�ned with both inference rules and primary semantics atthe outset (e.g., circumscription) and only later was a secondary semantics (completeness) established (or refuted), showingtheoremhood (inference rules) and entailment (satisfaction) to match (or not to match). The only feature that seems presentin all logics is a precise language (or notion of formula); either proof-theory or primary semantics may be lacking, let alone acompleteness theorem. Indeed, for some logics, such as (preferred-model semantics) second-order logic (SOL), there can beno e�ective proof-theory that is complete.Thus without further ampli�cation, it is far from clear what is wanted in asking for a semantics for a logic. Nevertheless,a primary semantics is very easy to supply for active logics (or at least for those that have been studied to date). Namely,we use ordinary �rst-order Tarskian semantics for all predicates except Now. And for Now we use clock semantics: Now(t)is true if and only if t is the current time. Thus the notion of structure must be tailored to include a \clock"; the ones wehave investigated so far have \natural-number" clocks that correspond to the non-negative integers. However, alternatives(such as continuum or interval clocks) are under consideration as well.2.3.1 Logic and AIThe use of logic in AI is frequently that of supplying a characterization of the beliefs that an arti�cial agent holds (orwould come to hold given in�nite inferential resources), based on certain given starting beliefs or axioms. We have two bigcomplaints about this. One is that some rather important aspects of commonsense reasoning are not persistent: an inferredbelief may be given up later even without any new information being taken in. Our simplest example is time itself: Havingnoted (as a starting \axiom") that it is now noon, we do not reason on and on in the belief that it is still noon. To thecontrary, we reason that it is now a little later, and now even later. This is then not ordinary nonmonotonicity; some beliefsonce accepted are then rejected even without even any new data being received|unless one considers the knowledge thatone's inferences are taking place as time passes a kind of new data.Our second objection is closely related to the �rst: the notion of axiom is largely inappropriate to the commonsense world.Little if any information is sacrosanct; indeed, \given" P one might then come to believe not-P on the basis of reasoningalone (and other \axioms" at one's disposal). Indeed, from a background belief set B and a new datum P, one might comein time to reject P, or even to reject parts of B. Beliefs form a collection that is constantly undergoing change, and little ifany of it persists permanently.The main point with regard to semantics here is that reason is a process of inference, it is not a royal road to truth.Traditional semantics of the sort we have called primary simply de�nes what truth is, it does not �nd out what is true.Secondary semantics throws a net around truth, but in so doing it distances itself from reasoning which is a more tentativeand always defeasible thing, a groping toward truth rather than a doctrinaire seizing of it. Now to be sure, much research inNMR has aimed to \throw a net around" (plausible) truth; but it has done so within the strictures of axioms and persistence:what is given is permanent. This means, �rst, that a proper accounting for time-passage during reasoning cannot be provided,and second that the automated reasoner is hobbled by not being able to consider that its \axioms" may be suspect.Consider for instance being told \The foxes will try to eat the chickens, and the chickens will try to eat the grain; weshould not leave either the chickens and the grain together or the chickens and the wolves together." It is reasonable tosuppose that \wolves" was a mis-statement and should have been \foxes". Whether or not one agrees that there are su�cientgrounds given for that conclusion, traditional formalisms do not even allow for the considering that the initial assertion may



2 PRELIMINARY CONCEPTS 18number of number of semantics inference completenesslanguages extensionsFOL 1 1 yes yes yesSOL 1 1 yes yes noDL 1 unlimited yes yes noCIRC 1 1 yes yes noAEL 1 1 yes no -AL unlimited unlimited yes yes noFigure 4: Classi�cations of Various Logicscontain an error. Note that there is in fact no contradiction in that assertion; any contradiction that may exist would likelybe between that assertion and certain default assumptions about the intentions of the speaker in making that assertion.Traditional formalisms always respect bare \axioms" and defeat only default assumptions; thus the assumption that thespeaker means the second part of the sentence to be inferred from the �rst will be defeated, rather than the error-freeness ofthe utterance itself.Thus a model of reasoning is (or should be) a model of inference processes, not of logical (semantic) consequence.2.3.2 What sort of logic is an active logic?An active logic is an inference-based logic for which at least some inference rules are time-sensitive; in which proofs arerelative to models, to the clock in a model. So semantics (models) and inference are linked in the very de�nition of an activelogic. The logic \acts", it is de�ned to be (realized as) an engine running in time.This does not mean it is simply an implementation, though: it is an abstraction, it requires only very particular \concrete"elements, most notably a clock. But it is not so concrete as to be a coded \system", although we do have implementations aswell. It is de�ned abstractly, formally, and can be studied as a formal system, meta-theorems proven, etc. In a very simplecase (propositional) we even have a completeness theorem. In fact, in one nontrivial sense we do get full �rst-order (FOL)completeness in AL, where Now is interpreted by the model-clock and Bel by an agent self-model within the model. However,when the belief-set is inconsistent, there is no model; this does not clash with completeness (any more than it does in FOL)but it does lessen its interest.We are working on various alternate semantics that may shed more light on the inconsistent case [106, 42]. One intuitivelyappealing one is a limit-semantics where the agent has no new observations after a given step; it is of note that this kind ofconstraint is the basis for an active logic contradiction-recovery theorem (see Section 5).We can attempt a very general de�nition of logic, to include all familiar cases: we will need a collection L of languages, toallow for language change as Agenta learns new expressions; and a collection Th of theorem-sets, to allow not only for changesin Agenta's beliefs but also for cautious reasoning (sanctioned alternative beliefs). We do not require inference rules; normodels. Each theorem-set has a corresponding language; but this can be a many-one correspondence. Given the above, nowwe can classify various logics, using not only the collections L and Th, but also primary semantics (Sem), a notion of inference(inf), and a completeness theorem (Comp). Below we show the classi�cation for �rst-order logic (FOL), second-order logic(SOL), default logic (DL), circumscription (CIRC), autoepistemic logic (AEL) and active logic (AL):The table in Figure 4 shows, for instance, that a �rst-order logic has a �xed language and theorem-set, theorems canbe characterized either by semantics or by inference, and that these coincide due to the appropriate completeness result.In SOL, inferential and semantic notions of theorem do not coincide: there is no appropriate completeness theorem. Adefault logic has one language but, via the notion of extension, has in general many distinct possible theorem-sets, based on



2 PRELIMINARY CONCEPTS 19non-deterministic inference rules; the meaning of w�s is the same as for FOL, but this does not provide an alternate route tode�ning theorems. A circumscriptive logic is essentially a �rst-order (or second-order) logic with a special notion of preferredmodel providing only partial completeness. An autoepistemic logic also has a single language and theorems are semanticallyde�ned. An active logic has a potential in�nity of languages as time passes, since new expressions may enter the reasoningprocess, as well as new meanings for old expressions; the theorem-set also may grow and shrink over time, so that at distincttimes there are distinct theorem-sets; and theorem-hood is de�ned by inference, not models, even though the meaning of w�sis traditional just as with DL.2.3.3 ContradictionsIn a classical formal system|and even in temporal logics|a contradiction nulli�es any usefulness of the logic, since allformulas in the language are inferred. No information is present as to the time at which a given formula is inferred: thelogic does not model the ongoing process of reasoning but rather only the in�nite "ideal, omniscient" limit of reasoning, asif the robot using the logic would have the luxury of thinking forever before acting. However, in an active logic, the ongoingprocess of inference is captured via the formal introduction of a shifting indexical predicate expression Now(t) which has theintuitive meaning that the time is now (currently) t. As reasoning proceeds, Now(10) will become true and then false asthe next inference is drawn and Now(11) becomes true, and so on. Thus active logics keep track of time taken by inference,thereby allowing the robot to also reason about the nearing of a deadline as it plans a course of action.The very same Now(t) mechanism is what allows active logics to deal safely with contradictions. If a direct contradiction,P and :P , is inferred at time t, then even though all formulas may be inferable from this, it will in general take an in�niteamount of time: active logic rules of inference produce only �nitely- many inferences in each time step. Indeed, at time t+1,a special contradiction-rule produces the inference Contra(P;:P )2.3.4 A truth-oriented semanticsBelow are some formal details of a traditional truth-oriented semantics for active logics �rst de�ned in [22, 27].Let L0 be the language having the symbols of L and the (possibly additional) predicate symbols K and Now. Thus L0may be L itself.De�nition 2.8 A step-interpretation for L0 is a sequence M =< M0;M1; : : : ;Mi; : : : >, where1. Each Mi is an ordinary �rst-order interpretation of L0.2. Mi j= Now(i).De�nition 2.9 A step-model for SLn(OBS; INF ) is a step-interpretation M satisfying1. Mi j= K(j; �) i� SLn(OBS; INF ) `j �.2. Mi j= � whenever SLn(OBS; INF ) `i �.Condition 1 insures that a chronological record of the j-theorems exists in each Mi; and Condition 2 insures that thei-theorems are in fact true. M should not be thought of as the real external world, corresponding to an agent's beliefs.Rather, M is just a re
ection of those beliefs and may or may not correspond to external matters. In particular, a w� B canbe true in Mi and false in Mi+1 simply because the agent has changed its mind.De�nition 2.10 A w� � is i-true in a step-model M (written M j=i �) if Mi j= �.De�nition 2.11 SLn(OBS; INF ) is step-wise consistent if for each i 2 N , the set of i-theorems is consistent (classically,i.e., the set has a �rst-order model).De�nition 2.12 SLn(OBS; INF ) is eventually consistent if 9i such that 8j > i, the set of j-theorems is consistent.



3 NONMONOTONICITY 20De�nition 2.13 An observation-function OBS is �nite if 9i such that 8j > i; OBS(j) = ;.De�nition 2.14 SLn(�; INF ) is self-stabilizing if for every �nite OBS, SLn(OBS; INF ) is eventually consistent.Remark 1:1. Even if SLn(OBS; INF ) is step-wise consistent, it can have con
icting w�s at di�erent steps, e.g.,SLn(OBS; INF ) `10 Now(10) and SLn(OBS; INF ) `11 :Now(10).2. Any step-wise consistent theory is eventually consistent.3. Intuitively a self-stabilizing theory SLn(�; INF ) corresponds to a �xed agent that can regain and retain consistencyafter being given arbitrarily (but �nitely) many contradictory initial beliefs.Theorem 2.2 If SLn(OBS; INF ) has a step-model, then it is step-wise consistent.30Theorem 2.3 (Soundness) Every step-logic SLn(OBS; INF ) is sound with respect to step-models. That is, every i-theorem � of SLn(OBS; INF ) is i-true in every step-model M of SLn(OBS; INF ), i.e.,if SLn(OBS; INF ) `i � then M j=i �.De�nition 2.15 A w� is said to be P-free if it does not contain the predicate letter P.De�nition 2.16 An observation-function OBS is said to be P-free if 8i8�(� 2 OBS(i) ! � is P-free ).De�nition 2.17 An observation-function OBS is said to be valid if 8i8�(� 2 OBS(i) ! � is logically valid).Theorem 2.4 SL7(OBS; INFB) is step-wise consistent if OBS is both valid and Now-free.3 NonmonotonicityActive logics provide at least two major means for modeling nonmonotonic reasoning. The main advantage of Active logicis its ability One is, simply, to always allow the default inference initially (e.g., that birds 
y) and then if it is found tocontradict other information, retract the conclusion. Since active logics have the luxury of formally represented time-passage,this does not present the usual problem of contradictions, since a contradiction now may exist only brie
y and then becomepart of hte reasoner's history accessible to recall via an past-introspection predicate.31Another means for carrying out nonmonotonic reasoning in active logics, which is a bit closer in spirit to standardtreatments, is to represent the reasoner's current beliefs (via the Now predicate) and sanction a default only if its negationis not among those beliefs. (Since in active logics this is always a �nite set of beliefs, there is little computational expensehere.) Thus we might have: P ^ �Know(�Q; t) ^Now(t)Qwhere the default principle is: infer Q given P, if possible.Although these two approaches may seem very di�erent, the di�erence is rather small in the active-logic framework. Thisis so because, even if a default does not contradict current knowledge, it may contradict knowledge that comes to be believedlater (e.g., due to observations). Thus a contradiction may occur and require a retraction at a later time.30This result is useful in showing certain active logics are consistent; however, by the same token, since many interesting active logics areinconsistent (and in fact derive much of their interest from their inconsistency), step-models are not su�ciently general as de�ned.31Many systems that exhibit nonmonotonic behavior have been described and studied in the literature, e.g., [10, 82, 88, 119, 120]. However,they are static systems, and don't model the on-going reasoning of the agent. Thus, they don't provide a mechanism to recover when a defaultconclusion turned out to be wrong.



3 NONMONOTONICITY 21The projection problem (deciding what to infer about future states and predicates true in the present) can be treatedsimilarly. If it is not known that a predicate will change its truth, we infer it will remain true, and later change our mind ifneed be. This mechanism, in rough outline, is used in our applications of active logics to deadline-based planning,(see section8) and for instance in our treatment of YSP citenirkhe/kraus:imagination. However, there we utilize a more complex KRmechanism in order to complex contextual information relevant to planning and acting.We have used active logics for the famous case of birds (see jj-diss), among others. Here we present a brief illustrationusing the brother problem.We now turn to a particular problem for which active logics seem well-suited: default reasoning. We use Moore's Brotherproblem (see [97]) to provide examples of an SL7 at work. In Moore's Brother problem one reasons, \Since I don't know Ihave a brother, I must not." This problem can be broken down into two: the �rst requires that the reasoner be able to decidehe doesn't know he has a brother; the second that, on that basis, he, in fact, does not have a brother (from modus ponensand the assumption that \If I had a brother, I'd know it.") The �rst of these seems to lend itself readily to active logic, inthat the negative re
ection problem (determining when something is not known) reduces to a simple look-up.32In the following three sub-sections we present synopses of computer-generated results for three di�erent scenarios wherethe reasoning agent must determine whether or not a brother exists. We use SL7(�; INFB) (de�ned in Figure 3 on page 15) forthis example. Each scenario has its own unique set of axioms (observation function). Let B be a 0-argument predicate letterrepresenting the proposition that a brother exists. Let P be a 0-argument predicate letter (other than B) that represents aproposition that implies that a brother exists.33 In each case, at some step i the agent has the axiom P ! B, and also thefollowing autoepistemic axiom which represents the belief that not knowing B \now" implies :B.Axiom 1 (8x)[(Now(x) ^:K(x� 1; B))! :B]34The following three distinct behaviors are illustrated:� If B is among the w�s of which the agent is aware at step i, but not one that is believed at step i, then the agent willcome to know this fact (:K(i; B), that it was not believed at step i) at step i + 1. As a consequence of this, otherinformation may be deduced. In this case, the agent concludes :B from the autoepistemic axiom (Axiom 1). Clearlythe Now predicate plays a critical role. Section 3.1 below illustrates this case.� The agent must refrain from such negative introspection when in fact B is already known; see Section 3.2.� A con
ict may occur if something is coming to be known while negative introspection is simultaneously leading toits negation. The third illustration (see Section 3.3 below) shows this being resolved in an intuitive manner (thoughnot one that will generalize as much as we would like; see Section 5 for a far more sophisticated method of handlingcontradictions).3.1 Simple negative introspection succeedsIn this example (see Figure 5) the agent is not able to deduce the proposition B, that he has a brother, and hence is ableto deduce :B, that he does not have a brother. Here, and in example scenarios in the remainder of the paper, for ease ofreading we underline in each step those w�s which are new (i.e., which appear through other than inheritance). For thepurposes of illustration, let i be arbitrary and let our axioms be:OBSB1 (j) = � fP ! B; (8x)[(Now(x) ^ :K(x� 1; B))! :B]g if j = i; otherwiseSince B is not an i-observation (and thus in this case is not an i-theorem), the agent uses Rule 5, the negative introspectionrule, to conclude :K(i; B) at step i+ 1. At step i+ 2 the agent concludes :B from the given autoepistemic knowledge andthe use of the alternate version of modus ponens, Rule 4.32Remember, all active logics ensure only a �nite number of beliefs at any given step.33P might be something like \My parents have two sons," together with appropriate axioms.34No real arithmetic is involved here; simple syntactic devices can obviate any genuine subtraction. We can replace, for instance, K(i � 1; �)by J(i; �) with the intuitive meaning that � was known \just a moment ago", i.e., at i. Alternatively, we can use successor notation for naturalnumbers.



3 NONMONOTONICITY 22i : Now(i); P ! B; (8x)[(Now(x)^ :K(x� 1; B))! :B]i+ 1 : Now(i+ 1); P ! B; (8x)[(Now(x)^ :K(x� 1; B))! :B];:K(i;B);:K(i;:B);:K(i;P )i+ 2 : Now(i+ 2); P ! B; (8x)[(Now(x)^ :K(x� 1; B))! :B];:K(i;B);:K(i;:B);:K(i;P );:B;:K(i+ 1; B);:K(i+ 1;:B);:K(i+ 1; P )Figure 5: Negative introspection succeeds3.2 Simple negative introspection fails (appropriately)In this example, let our axioms be:OBSB2 (j) = � fP ! B; (8x)[(Now(x) ^ :K(x� 1; B))! :B]; Bg if j = i; otherwiseThus the agent has B at step i, and is blocked (appropriately for this example) from deducing at step i+1 the w�s :K(i; B)and :B. See Figure 6. i : Now(i); P ! B; (8x)[(Now(x)^ :K(x� 1; B))! :B]; Bi+ 1 : Now(i+ 1); P ! B; (8x)[(Now(x)^ :K(x� 1; B))! :B];B;:K(i;:B);:K(i;P )Figure 6: Negative introspection fails appropriatelyNote that a traditional �nal-tray-like approach (see page 11) could produce quite similar behavior to that seen in Figures 5and 6 if it is endowed with a suitable introspection device, although it would not have the real-time step-like character weare trying to achieve.3.3 Introspection contradicts other deductionIt is in this third example that a traditional �nal-tray-like approach would encounter di�culties, because of the introductionof a contradiction in step i + 2. The �nal tray for a tray-like model of a reasoning agent would simply be �lled with allw�s in the language|and no basis for a resolution would be possible within such a logic. In an active logic, however, thecontradiction poses no threat|the contradiction is noted, then steps (pun intended!) are taken to resolve the contradiction.In this case the contradiction resolves quite naturally: once the contradiction is noted, neither belief is inherited; one of thebeliefs is then re-deduced (due to its existing justi�cation in other beliefs), and the other is not (it was originally deducedbased on negatively introspecting, yet the set of beliefs has changed and this introspection no longer produces the samebelief).In this example, let our axioms be:OBSB3 (j) = � fP ! B; (8x)[(Now(x) ^:K(x� 1; B))! :B]; Pg if j = i; otherwise



4 REASONING ABOUT OTHERS' REASONING 23In Figure 7 we see then that the agent does not have B at step i, but is able to deduce B at step i+ 1 from P ! B and Pat step i. Since the agent is aware (in our sense) of B at step i, and yet does not have B as a conclusion at i, it will deduce:K(i; B) at step i + 1. Thus both B and :K(i; B) are concluded at step i + 1. At step i + 2 Axiom 1 (the autoepistemicaxiom), together with Now(i+1) and :K(i; B) and Rule 4, will produce :B. A con
ict results, which is noted at step i+3.This then inhibits inheritance of both B and :B at step i + 4. Although neither B nor :B is inherited to step i + 4, B isre-deduced at step i + 4 via modus ponens from step i + 3. Thus B \wins out" over :B due to its existing justi�cation inother w�s, while :B's justi�cation is \too old": :K(i+ 2; B), rather than :K(i; B), would be needed. We see then that thecon
ict resolves due to the special nature of the time-bound \now" feature of introspection. This case works out somewhatfortuitously. In general, resolving contradictions is di�cult; see section 5 for more on this.i : Now(i); P ! B; (8x)[(Now(x)^ :K(x� 1; B))! :B]; Pi + 1 : Now(i+ 1); P ! B; (8x)[(Now(x)^ :K(x� 1; B))! :B];P;B;:K(i;B);:K(i;:B)i + 2 : Now(i+ 2); P ! B; (8x)[(Now(x)^ :K(x� 1; B))! :B];P;B;:K(i;B);:K(i;:B);:B;:K(i+ 1;:B)i + 3 : Now(i+ 3); P ! B; (8x)[(Now(x)^ :K(x� 1; B))! :B];P;B;:K(i;B);:K(i;:B);:B;:K(i+ 1;:B); Contra(fB;:Bg; i + 2)i + 4 : Now(i+ 4); P ! B; (8x)[(Now(x)^ :K(x� 1; B))! :B];P;:K(i;B);:K(i;:B):K(i+ 1;:B);Contra(fB;:Bg; i + 2); B; Contra(fB;:Bg; i + 3)Figure 7: Introspection con
icts with other deduction and resolvesRemark 2: The following are true about the consistency of each of the SL7 theories given in the brother examples:1. SL7(OBSB1 ; INFB) is step-wise consistent.2. SL7(OBSB2 ; INFB) is step-wise consistent.3. SL7(OBSB3 ; INFB) is eventually consistent (but not step-wise consistent35).See [27] for the proof.4 Reasoning about others' reasoningIn this section we present a version of the classic Three Wisemen Problem which was �rst introduced to the AI literature byMcCarthy in [81]. This version best illustrates a type of reasoning that is often characteristic of commonsense reasoners: theability to reason about others' reasoning. We shall see that active logic provides an intuitive solution to this problem. Werepeat from [27] our solution to this problem. For additional details, see [25].A king wishes to know whether his three advisors are as wise as they claim to be. Three chairs are linedup in a column, all facing the same direction, one behind the other. The wisemen are instructed to sitdown. The wiseman in the back (wiseman #3) can see the backs of the other two men. The man in themiddle (wiseman #2) can only see the one wiseman in front of him (wiseman #1); and the wiseman infront (wiseman #1) can see neither wiseman #3 nor wiseman #2. The king informs the wisemen that hehas three cards, all of which are either black or white, at least one of which is white. He places one card,35This is why a traditional �nal-tray-like approach would encounter di�culties with this example.



4 REASONING ABOUT OTHERS' REASONING 24face up, behind each of the three wisemen. Each wiseman must determine the color of his own card andannounce what it is as soon as he knows. The �rst to correctly announce the color of his own card will beaptly rewarded. All know that this will happen. The room is silent; then, after several minutes, wiseman#1 says \My card is white!".We assume the following: the wisemen do not lie; the wisemen all have the same reasoning capabilities; and the wisemencan all think at the same speed. We can then postulate that the following reasoning took place.Each wiseman knows there is at least one white card. If the cards of wiseman #2 and wiseman #1 wereblack, then wiseman #3 would have been able to announce immediately that his card was white. They allrealize this (they are all truly wise). Since wiseman #3 kept silent, either wiseman #2's card is white, orwiseman #1's is. At this point wiseman #2 would be able to determine, if wiseman #1's were black, thathis card was white. They all realize this. Since wiseman #2 also remains silent, wiseman #1 knows hiscard must be white.It is clear that a versatile commonsense reasoning agent must be able to reason \If such and such were true at that time,then so and so would have realized it by this time." So, for instance, if wiseman #2 is able to determine that wiseman#3 would have already been able to �gure out that wiseman #3's card is white, and wiseman #2 has heard nothing, thenwiseman #2 knows that wiseman #3 does not know the color of his card. Active logic is particularly well-suited to thistype of deduction since it focuses on the actual individual deductive steps. Others have studied this problem (e.g. see [62,63, 4]) from the perspective of logically-closed reasoning, in which each agent already knows all the logical consequences ofhis beliefs, and thus are not able to address this temporal aspect of the problem: assessing what others have been able toconclude so far .In [29] Fagin, Halpern, Moses, and Vardi discuss the Three Wisemen problem and others like it from a very generalperspective and give an analysis in terms of modal logic and common or mutual knowledge. However, that treatment too(because of built-in features of possible-world modal semantics) involves the unrealistic assumption that each agent knowsat any time all logical consequences of his beliefs. (Elsewhere in the same work (chapter 10) the authors discuss alternativescloser in spirit to our approach.) In [106] we describe an alternative modal semantics that comes closer to real-time (evolving)belief, but still does not fully escape the possible-world di�culties of many beliefs \before their time" (modeled as beingbelieved before a reasoner could possibly come to believe them).4.1 FormulationThe active logic used to model the Three-wise-men problem is de�ned in Figures 8 and 9. The problem is modeled fromwiseman #1's point of view. The observation-function contains all the axioms that wiseman #1 needs to solve the problem,and the inference-function provides the allowable rules of inference.We use an SL5 theory. An SL5 theory gives the reasoner knowledge of its own beliefs as well as knowledge of thepassage of time.36 The language of SL5 is �rst-order, having binary predicate symbols Kj and U , and function symbol s.Kj(i; `�' ) expresses the fact that \� is known by agent j at step i". Note that this gives the agent the expressive power tointrospect on his own beliefs as well as the beliefs of others. U (i; `x' ) expresses the fact that an utterance of x is made atstep i.37 s(i) is the successor function (where sk(0) is used as an abbreviation for s(s(� � � (s| {z }k (0)) � � �)) ). Wi and Bi expressthe facts that i's card is white, and i's card is black, respectively.Recall that in an active logic, w�s are not assumed to be inherited or retained in passing from one step to the next, unlessexplicitly stated in an inference rule. Note that Rule 8 in Figure 9, does provide an unrestricted form of inheritance.38We note several points about the axioms which wiseman #1 requires. (Refer to Figure 8.) wiseman #1 knows thefollowing:36For more details on SLn theories, see [22].37For simplicity, in the remainder of the paper we drop the quotes around the second argument of predicates U and Kj .38Although many commonsense reasoning problems require former conclusions to be withdrawn (based on new evidence), as did the formulationof the Brother Problem, this particular formulation of the Three-wise-men Problem does not require any conclusions to be retracted. We can thususe an unrestricted form of inheritance.



4 REASONING ABOUT OTHERS' REASONING 25OBSW3 is de�ned as follows.
OBSW3 (i) =

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:
(8j)K2(j; (8i)(8x)(8y)[K3(i; x! y)!(K3(i; x)! K3(s(i); y))])(8j)K2(j;K3(s(0); (B1 ^B2)! W3))(8j)K2(j; (B1 ^ B2)! K3(s(0); B1 ^B2))(8j)K2(j;:(B1 ^B2)! (B1 ! W2))(8j)K2(j; (8i)[:U(s(i);W3)! :K3(i;W3)])(8i)(8x)[:K1(s(i); U(i; x))! :U(i; x)](8i)[:U(i;W3)! K2(s(i);:U(i;W3))](8i)(8x)(8y)[K2(i; x! y)! (K2(i; x)! K2(s(i); y))](8i)(8x)(8x0)(8y)(8y0)[(K2(i;:(x^ x0)! (y ^ y0)) ^K2(i;:(x ^ x0)))!K2(s(i); y ^ y0)](8j)(8k)(8z)(8z0)(8w)[(K2(j; (8i)(8x)(8y)[K3(i; x! y)!(K3(i; x)! K3(s(i); y))])^K2(j;K3(k; (z ^ z0)! w)))!K2(s(j);K3(k; z ^ z0)! K3(s(k); w))](8j)(8k)[(K2(j; (8i)[:U(s(i);W3)! :K3(i;W3)])^K2(j;:U(s(k);W3)))!K2(s(j);:K3(k;W3)](8i)(8x)(8y)[(K2(i; x! y) ^K2(i;:y))! K2(s(i);:x)](8i)(8x)(8x0)(8y)[(K2(i; (x ^ x0)! y) ^K2(i;:y))! K2(s(i);:(x^ x0))](8i)[B1 ! K2(i;B1)](:B1 ! W1)(8i)[:U(s(i);W2)! :K2(i;W2)]

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;
if i = 1

; otherwiseFigure 8: OBSW3 for the Three-wise-men Problem1. wiseman #2 knows (at every step) that wiseman #3 uses the rule of modus ponens.2. wiseman #2 uses the rules of modus ponens and modus tolens.3. wiseman #2 knows (at every step) that if both my card and his card are black, then wiseman #3 would know this factat step 1.4. wiseman #2 knows (at every step) that if it's not the case that both my card and his are black, then if mine is black,then his is white.395. wiseman #2 knows (at every step) that if there's no utterance ofW3 at a given step, then wiseman #3 did not knowW3at the previous step. (wiseman #2 knows (at every step) that there will be an utterance of W3 the step after wiseman#3 has proven that his card is white.)6. If I don't know about a given utterance, then it has not been made at the previous step.7. If there's no utterance of W3 at a given step, then wiseman #2 will know this at the next step.408. If my card is black, then wiseman #2 knows this (at every step).39In other words, if wiseman #2 knows that at least one of our cards is white, then my card being black would mean that his is white. Indeed,this axiom gives wiseman #2 quite a bit of information, perhaps too much. (He should be able to deduce some of this himself.) This is discussedin more detail in [22, 25].40Interestingly, it is not necessary for wiseman #1 to know there was no utterance; wiseman #1 only needs to know that wiseman #2 will knowthere was no utterance.



4 REASONING ABOUT OTHERS' REASONING 26The inference rules given here correspond to an inference-function, INFW3. For any given history, INFW3 returns the set of allimmediate consequences of Rules 1{8 applied to the last step in that history.Rule 1(OBS) i : : : :i + 1 : � if � 2 OBS(i + 1)Rule 2(MP) i : : : : ; �; (�! �)i+ 1 : : : : ; � Modus ponensRule 3(XMP) i : P1a; : : : ; Pna; (8x)[(P1x ^ : : : ^ Pnx)! Qx]i + 1 : Qa Extended modus ponensRule 4 i : : : : ;:�; (�! �)i+ 1 : : : : ;:� Modus tolensRule 5 i : :Qa; (8x)(Px! Qx)i + 1 : :Pa Extended modus tolensRule 6 i : : : :i + 1 : : : : ;:K1(si(0); U(si�1(0);Wj)) if U(si�1(0);Wj) 62 `i,j = 2; 3, i > 1Rule 7 i : (8j)K2(j;�)i + 1 : : : : ;K2(si(0); �) InstantiationRule 8 i : : : : ; �i + 1 : : : : ; � InheritanceFigure 9: INFW3 for the Three-wise-men Problem9. If there is no utterance of W2 at a given step, then wise man #2 doesn't know at the previous step that his card iswhite. (There would be an utterance of W2 the step after wiseman #2 knows his card is white.)Note the following concerning the inference rules:1. Rule 6 is a rule of introspection. wiseman #1 can introspect on what utterances have been made.412. The rule for extended modus ponens, Rule 3, allows an arbitrary number of variables.3. Rule 7 is a rule of instantiation. If wiseman #1 knows that wiseman #2 knows � at each step then, in particular,wiseman #1 will know at step i+ 1 that wiseman #2 knew � at step i.4. The rule of inheritance, Rule 8, is quite general: everything is inherited from one step to the next.424.2 SolutionThe solution to the problem is given in Figure 10. The step number is listed on the left. The reason (inference rule used)for each deduction is listed on the right. To allow for ease of reading, only the w�s in which we are interested are shown ateach step. In addition, none of the inherited w�s are shown. This means that a rule appears to be operating on a step otherthan the previous one; the w�s involved have, in fact, actually been inherited to the appropriate step.41We limit the number of w�s on which the agent can introspect in order to keep the set of beliefs at any given step �nite.42For other commonsense reasoning problems, a far more restrictive version of inheritance is necessary.



4 REASONING ABOUT OTHERS' REASONING 270: ;1: (a){(p) All w�s in OBSW3(1) (R1)2: (no new deductions of interest)3: (no new deductions of interest)4: (no new deductions of interest)5: (a) :K1(s4(0); U(s3(0);W3)) (R6)(b) K2(s4(0); (8i)(8x)(8y)[K3(i; x! y)! (K3(i; x)! K3(s(i); y))]) (R7,1a)(c) K2(s4(0);K3(s(0); (B1 ^B2)! W3)) (R7,1b)(d) K2(s4(0); (8i)[:U(s(i);W3)! :K3(i;W3)]) (R7,1e)6: (a) :U(s3(0);W3) (R3,5a,1f)(b) K2(s5(0);K3(s(0); B1 ^B2)! K3(s2(0);W3)) (R3,5b,5c,1j)7: (a) K2(s4(0);:U(s3(0);W3)) (R3,6a,1g)(b) K2(s6(0); (B1 ^B2)! K3(s(0); B1 ^B2)) (R7,1c)8: (a) K2(s5(0);:K3(s2(0);W3)) (R3,7a,5d,1k)(b) K2(s7(0);:(B1 ^B2)! (B1 ! W2)) (R7,1d)9: K2(s6(0);:K3(s(0);B1 ^B2)) (R3,8a,6b,1l)10: K2(s7(0);:(B1 ^B2)) (R3,9,7b,1m)11: K2(s8(0); B1 ! W2) (R3,10,8b,1i)12: (a) (K2(s8(0); B1)! K2(s9(0);W2)) (R3,11,1h)(b) :K1(s11(0); U(s10(0);W2)) (R6)13: :U(s10(0);W2) (R3,12b,1f)14: :K2(s9(0);W2) (R3,13,1p)15: :K2(s8(0); B1) (R4,14,12a)16: :B1 (R5,15,1n)17: W1 (R2,16,1o)Figure 10: Solution to the Three-wise-men ProblemIn step 1 all the initial axioms (OBSW3 (1)) have been inferred through the use of Rule 1.43 Nothing of interest is inferredin steps 2 through 4. In step 5, wiseman #1 is able to negatively introspect and determine that no utterance of W3 wasmade at step 3. Note the time delay: wiseman #1 is able to prove at step 5 that he did not know at step 4 of an utterancemade at step 3.44 The remaining w�s shown in step 5 were all inferred through the use of Rule 7, the rule of instantiation.wiseman #1 needs to know that wiseman #2 knows these particular facts at step 4.45 The reasoning continues from step tostep. Note that at step 11, wiseman #1 has been able to deduce that wiseman #2 knows that if wiseman #1's card is black,then his is white. From this step on, we essentially have the Two-wise-men problem. (See [23].) In step 17 wiseman #1 is�nally able to deduce that his card is white.We see that active logic is a useful vehicle for formulating and solving a problem of this kind in which the time thatsomething occurs is important. wiseman #1 does indeed determine \if wiseman #2 or wiseman #3 knew the color of hiscard, he would have announced it by now." wiseman #1 then reasons backwards from here to determine that his card mustnot be black, and hence must be white.Many formulations of the Three-wise-men problem have involved the use of a meta-language that describes the reasoningof all three wisemen, rather than an object language that serves directly the reasoning needs of one of the agents. The latteris more in the spirit of active logics, where the idea is to allow the reasoner itself enough power (with no outside \oracle"intervention) to solve the problem. Thus we model the agent directly, rather than using a meta-theory. For more details onthe use of active logic to model this problem, see [24].The kind of reasoning considered above is easily seen to be nonmonotonic, for it depends on the reasoner recognizing thatit does not have certain beliefs, e.g., that another wiseman has uttered something, or that an utterance has been heard. Hadfurther information been supplied, in the form of observations or utterances, then some conclusions would not have beenarrived at.43To save space we have not repeated them in the �gure. See Figure 8 for the individual axioms.44For a detailed description of this phenomenon, see [22].45Note that Rule 7 is producing w�s at each step, but for ease of exposition, we show only those of interest.



5 REASONING IN THE FACE OF CONTRADICTIONS 28We have so far discussed nonmonotonicity in general, and in terms of reasoning about others reasoning. Next we turn toa consideration of reasoning in the face of contradictions. This also turns out to be related to nonmonotonicity.5 Reasoning in the face of contradictionsContradiction and con
ict play a key mediating role in the commonsense reasoning we often wish to formalize. The intuitionhere is that commonsense reasoners at times come to hold con
icting beliefs (temporarily) which can serve to signal that thereasoner's past beliefs must be re-assessed and revised. In most formal AI treatments, contradictions are anathema since mostlogics become useless in their presence. However human reasoning is not usually thrown into such disarray by contradictions.Thus we have sought formal ways to be more accommodating of contradictions. Little more than lip-service has been paidto the treatment of contradictory information in commonsense reasoning. Probably this is due to the customary relianceon standard logics having the \ex contradictione quodlibet" feature: from a contradiction all is entailed. We refer to thisas the \swamping" problem. There are non-standard logics, the paraconsistent logics, that do allow contradiction withoutswamping; however, in commonsense reasoning one wants not only to avoid swamping but also to somehow undo or at leastcease believing the contradiction. Early active logic work had a way to ignore contradictions (or more precisely to note andthen disinherit direct, simultaneously occurring contradictions; some � and :� appearing together as theorems at some stepi). But more is needed. Not only must we adjudicate between contradictands, we must also prevent earlier mistaken beliefs(revealed by contradiction) from infecting future reasoning. Con
icting beliefs, mistaken beliefs, and their consequences mustbe controlled, so as not to infect other beliefs inde�nitely into the future.Recovering from contradiction was broached in [22], but only in an ad hoc way. There a conjecture was formulated, to thee�ect that, under (unspeci�ed) circumstances, an active logic should be able to regain consistency froman initially inconsistentset of beliefs. In this section we discuss some inroads we have made. In particular we describe the �rst non-trivial class ofactive logics which we have developed that, under suitable, yet reasonable, conditions \recover" from direct contradictions (ourdc-recovery theorem). In short this means that antecedent theorems which have led to direct contradictions, consequentialtheorems derived from direct contradictands, and the direct contradictands themselves are all rendered harmless while othertheorems persist.The technique described here amounts to importing much of a truth-maintenance, or belief revision, system46 into thelogic, which then { unlike a usual belief revision system { operates during and as part of the ordinary reasoning of thelogic. This means that world knowledge can be brought to bear on the truth-maintenance (belief update) process, and otherreasoning need not be halted while the belief updating is occurring.5.1 The lingering consequences and causes of contradictionsEarly active logics rely heavily on the rules OBS, MP, and INH (See rules 2, 3, and 7 of Figure 3 on page 15).47Suppose we apply these rules to the observation function OBS1:OBS1(j) = ( P;P ! Q if j = k:P if j = k + n; otherwisefor �xed k; n > 0. Notice what happens (see Figure 11): P and P ! Q will be (the only) k-theorems and so by MP, Q willbecome a k + 1-theorem. Then (at step k + n) :P is \observed", causing a direct contradiction and the disinheritance ofboth P and :P (see the stipulation on the rule INH). But Q persists, though its only \derivation" is questionable as it relieson P , which is itself now unreliable since it con
icts with later observation of :P .Here Q, a consequence of a theorem (belief) which is not \trustworthy" lingers beyond the step marking the disinheritanceof its justi�cation (P ). Moreover, in this case Q will be inherited, and hence appear as a theorem, at every step i > k + 1.Intuitively, at least in some cases, this behavior is undesirable; once P is \disbelieved", so too should be Q.An even more pathological, though related, di�culty arises if we instead consider OBS2:46a la Doyle and deKleer (see [15, 13])47This discussion will not consider the rules of extended MP and negative introspection which also appear in Figure 3. Those rules are important;however, they do not seem to help alleviate the pathological behavior we discuss here.



5 REASONING IN THE FACE OF CONTRADICTIONS 29k : P;P ! Qk + 1 : P;P ! Q;Q... ...k + n : P;P ! Q;Q;:Pk + n+ 1 : P ! Q;Q;Contra(fP;:Pg; k + n)Figure 11: A belief (Q) based on a questionable former belief (P ) persists.OBS2(j) = � Q;Q! R;Q! :R if j = k; otherwiseHere, each of the w�s Q, Q! R and Q! :R, will persist as theorems inde�nitely. The rule MP then will be used at eachstep to produce as theorems at the next step the (direct) contradiction R and :R (see Figure 12).48k : Q;Q! R;Q! :Rk + 1 : Q;Q! R;Q! :R;R;:Rk + 2 : Q;Q! R;Q! :R;Contra(fR;:Rg; k + 1); R;:Rk + 3 : Q;Q! R;Q! :R;Contra(fR;:Rg; k + 1); Contra(fR;:Rg; k + 2); R:RFigure 12: The contradiction fR, :Rg is reproven at each step.We might try to alleviate these problems by restricting the application of MP and INH. For instance: (i) if both � and itsdirect contradiction appear at some step i then INH should not apply to the contradictands, causing them to be disinheritedat step i + 1, and (ii) if � and � ! � are both i-theorems and so too is the direct contradictand of either, then MP shouldnot apply to produce � as an i+ 1 theorem. The idea here is to (i) prohibit direct contradictands from being inherited, and(ii) restrict the use of MP to antecedent w�s whose contradiction(s) is(are) not \current" theorems.Unfortunately these restrictions are insu�cient to prevent the continual re-emergence of contradictions in certain cases.As long as the root cause of a contradiction persists, and no other action is taken, the contradiction will periodically re-arise(see Figure 13, in which we again use OBS2 and augment MP and INH with these new stipulations).49A more comprehensive solution must take into account the way inference is chained over the course of steps in activelogics. Any given i-theorem � may have been proven in any number of ways, where each distinct proof is based on (other)theorems appearing at previous steps. We can view � as the root of a proof tree whose nodes are the theorems used in\deriving" � and whose branches represent distinct proofs of �. If we record the collection of w�s which appear on eachbranch of �'s proof tree, along with � (at each step at which � appears), then we can use this information, in some cases, to(i) remove unwarranted consequences of contradictions and (ii) prevent a contradiction from re-emerging.48At the same time both R and :R are also disinherited at each step beyond k+2 because of the stipulation placed on INH which prohibits theinheritance of any Contra-ed theorems.49These new stipulations are nevertheless bene�cial and will be used in the logic described shortly. (See INFderiv, Figure 14 on page 31.)



5 REASONING IN THE FACE OF CONTRADICTIONS 30k : Q;Q! R;Q! :Rk + 1 : Q;Q! R;Q! :RR;:Rk + 2 : Q;Q! R;Q! :R;Contra(fR;:Rg; k + 1)k + 3 : Q;Q! R;Q! :R;Contra(fR;:Rg; k + 1)k + 4 : Q;Q! R;Q! :R;Contra(fR;:Rg; k + 1)R;:Rk + 5 : Q;Q! R;Q! :R;Contra(fR;:Rg; k + 1); Contra(fR;:Rg; k + 3)Figure 13: The contradiction fR, :Rg will alternately arise and then be disinherited.5.1.1 dc-recovery: Some Preliminary De�nitionsLet SL(OBS; INF ) be an arbitrary active logic with inference rules all of the form:k : �1; : : : ; �nk + 1 : �De�nition 5.1 If `i+1 � resulted from the application of an inference rule whose i antecedents are �1; : : : ; �n then a deriva-tion of � at step i + 1 is a (possibly empty) set of theorems S containing exactly each of �1; : : : ; �n and each w� in everyderivation Sj (at step i) of �j , for 1 � j � n. (When a step number is understood we will simply say \derivation" instead of\derivation at step i". When we wish to call attention to the derivation S of � we write �[S].)Note that a theorem � may have more than one derivation at a step. For instance if MP is a rule of the logic and P , R,P ! Q, R ! Q are all k-theorems then Q may have two di�erent derivations at k + 1; one including P and P ! Q (andthe theorems appearing in each of their respective derivations), and the other including R and R ! Q (and the theoremsappearing in each of their respective derivations).De�nition 5.2 Let `i �, then � is distrusted at step i+ 1 i�:(i) `i :� or if � is of the form :� and `i � (that is � is part of a direct contradiction which appears at step i), or(ii) 9� such that both `i �[S1] and `i :�[S2] and � 2 S1 or � 2 S2, or(iii) each derivation of � at step i contains at least one w� which itself is distrusted at step i � 1.We will use the predicate symbol Distr to assert that � is distrusted at some step k as in Distr(�; k).Intuitively de�nition 5.2 says that an i-theorem is considered distrusted at step i + 1 if either (i) its negation is also ani-theorem, (ii) it led to a direct contradiction, or (iii) each of its derivations contains a distrusted theorem.De�nition 5.3 An active logic SL(OBS; INF ) dc-recovers if 9j such that 8k > j :9� `k+1 Distr(�; k).De�nition 5.3 says this: an active logic dc-recovers if there is a step j such that for any subsequent step k, if � is ak-theorem then � will not be distrusted at step k + 1.De�nition 5.4 An active logic SL(OBS; INF ) is eventually free of direct contradictions if 9j such that 8k > j and 8�,either 6`k � or 6`k :�.



5 REASONING IN THE FACE OF CONTRADICTIONS 31Lemma 5.5 If SL(OBS; INF ) dc-recovers then SL(OBS; INF ) is eventually free of direct contradictions.Proof: If SL(OBS; INF ) dc-recovers then 9j such that 8k > j no k-theorem is k + 1 distrusted by de�nition 5.3. Thus8k < j; � either 6`k :� 6`k � by de�nition 5.2(i). Hence SL(OBS; INF ) is eventually free of direct contradictions.Notice that the logics discussed thus far in this section do not dc-recover.5.1.2 An Active-logic with the dc-recovery PropertyIn this section we will develop an active logic which does dc-recover given certain restrictions on its OBS function. (It willturn out that both OBS1 and OBS2 given earlier satisfy these constraints.)We begin by introducing derivations formally into the logic. This is done using the inference function INFderiv given inFigure 14. Rule 1 i :i+ 1 :� , if � 2 OBS(i + 1)Rule 2 i :�[S]i+ 1 :�[S] InheritanceaRule 3 i :�[S1];�! �[S2]i+ 1 :�[f�;�! �g [ S1 [ S2] MPbRule 4 i :�[S1]; :�[S2 ]i+ 1 :Distr(�; i);Distr(:�; i) Contradiction DistrustedRule 5 i :� < S1; : : : ; Sm >;Distr(�1; i � 1); : : : ;Distr(�n; i � 1)i+ 1 :Distr(�; i) Distrust ConsequencescRule 6 i :�[S1];:�[S2]; �[S3]i+ 1 :Distr(�; i) , if � 2 S1 or S2. Distrust Antecedentsa Where 6`i Distr(�; i� 1), 6`i :�, and for each � 2 S 6`i Distr(�; i� 1). Also, if � is of the form :
 then this rule does not applyif `i 
.b The stipulations placed on the antecedent of rule 2 apply to each of �[S1], �! �[S2], and � here.c Where each Sk contains at least one of �1; : : : ; �n and � is not of the form Distr(
; j):Figure 14: INFderivIn Figure 14 the following abbreviations are used:(1) � abbreviates �[;]; i.e., we simply write � when �'s derivation is the empty set.50(2) `i � < S1; : : : ; Sn > if and only if `i �[S1]; : : : ; �[Sn] and there is no S such that 8k, 1 � k � n, S 6= Sk and `i �[S];that is S1; : : : ; Sn are exactly all of �'s derivations at step i.Notice that derivations distinguish instances of theorems so that if `i � and � has multiple derivations at i, say S1; : : : ; Sn,then each of �[S1],. . . ,�[Sn] will appear as i-theorems.50(Since the limitations we will place on OBS (see the statement of the dc-recovery theorem, Section 5.2) makes the derivation of any theoremof the form Distr(�; i) irrelevant, we annotate w�s of the form Distr(�; i) with [;].)



5 REASONING IN THE FACE OF CONTRADICTIONS 32The idea behind each of the rules of INFderiv is this:� Rule 1: (OBS) The derivation of an observation is empty indicating that no other beliefs have been used to derive it.� Rule 2: (INH) The derivation of an inherited belief is una�ected. Inheritance only applies to trustworthy beliefs:Namely, �[S] is inherited from step i to i+1 if it is not distrusted, its direct contradiction does not also appear at stepi, and no � 2 S is distrusted. (See stipulation (a) in the �gure.)� Rule 3: (MP) The derivation of a belief inferred via MP includes the w�s in the antecedent of MP (i.e., � and �! �)and all w�s contained in each antecedents' respective derivation. MP is applied only to trustworthy w�s as in rule 2above. (See stipulation (b) in the �gure.)� Rule 4: This rule marks a w� as distrusted at step i + 1 when both it and its direct contradiction appear at step i.(Note: The predicate symbol Contra is not used here but it will return in the next chapter.)� Rules 5 and 6: These rules track down the consequences of Distr-ed beliefs (rule 5) and the antecedents of contra-dictory (distrusted) beliefs (rule 6). Rule 5 marks as Distr-ed at step i + 1 any belief whose only derivations eachcontain a theorem distrusted at step i � 1. (Notice that if any of an i-theorem's derivations contain an distrustedw�, those instances of the w� will not appear at step i + 1 due to the stipulations placed on rules 2 and 3, regardlessof the applicability of rule 5.) Rule 6 marks as Distr-ed any (antecedent) w� which appears in the derivation of acontradictory w�. That is, beliefs leading to a contradiction are themselves marked as distrusted.A very simple example of INFderiv at work is based on the following observation function:OBS3(j) = ( P;P ! Q;R;R! Q if j = 1:P if j = 2; otherwiseThe resulting sequence of steps is shown in Figure 15. Derivations are in bold type.1 : P;P ! Q;R;R! Q2 : P;P ! Q;R;R! Q;:P;Q[fP;P! Qg];Q[fR;R! Qg]3 : P ! Q;R;R! Q;Q[fP;P! Qg];Q[fR;R! Qg]Distr(P;2); Distr(:P;2)4 : P ! Q;R;R! Q;Q[fR;R! Qg];Distr(P; 2);Distr(:P;2)Figure 15: INFderiv at work.Notice the two instances of Q at step 2 each with a distinct derivation, one of which contains P which itself contradicts:P , also appearing at step 2. At step 3 the contradictands P and :P are marked as distrusted and have not been inherited,though one derivation of Q at this step contains the distrusted contradictand P . This instance of Q, the one with P inits derivation, is disinherited at step 4 by stipulation (a) placed on INH which restricts inheritance to those instances oftheorems containing no distrusted w�s in their derivations. By step 4 then, only one \clean" derivation of Q remains (andwill continue to persist for all steps i > 4).



6 LANGUAGE CHANGES 335.2 The dc-recovery TheoremSL(OBS; INFderiv) is the �rst non-trivial active-logic that we have developed that has the dc-recovery property, given OBSsatis�es certain reasonable constraints.Theorem 5.6 (dc-Recovery Theorem for SL(OBS; INFderiv)) Let OBS be �nite and Distr-free51. Then SL(OBS; INFderiv)dc-recovers.The proof can be found in [92].5.3 DiscussionThough dc-recovery is a desirable property of active logics, so too is is the property that those w�s not \involved" indirect-contradictions remain una�ected by the dc-recovery process. We are currently working on a characterization of theset of theorems which survive the recovery process of SL(OBS; INFderiv), which we denote by THMOBS . We note twocharacterizations which do not apply to THMOBS : First, if O is the set of all theorems introduced by OBS, and M is aminimal subset of O whose complement, M , is consistent, then M � THMOBS . (Nor, should it be.) To see this let O befP;:Pg. Then M = fPg or f:Pg. But notice that regardless of the step at which each of P and :P is introduced viaOBS, they will simultaneously appear at some step i. Thus they will both be disinherited at i+1, never to re-appear. HenceTHMOBS = ;. On the other hand it is not always the case that THMOBS = ; as illustrated in Figure 15.The logic described in this section maintains and searches through derivations at every step in the deductive process. Itmight be argued that this is too computationally expensive a task. This is true of reasoning that is comprised of long chainsof inferences, as in mathematical reasoning where derivations may be very long. It is also true of reasoning that relies onmany simultaneous corroborations of the same hypothesis, as in some scienti�c reasoning where there are many derivations ofthe same theorem. But commonsense reasoning seems to be a di�erent sort of process, one that is often (though not always)characterized by lots of world knowledge and rather (i) short chains of reasoning and (ii) limited or lazy corroborations ofbeliefs.One way to look at this \short-chain" hypothesis is that commonsense reasoners frequently touch base with reality,by getting external inputs, e.g., direct observation, testing, questioning, etc. Thus the reasoning gets regular validationsor corrections, which can perhaps appropriately be treated a bit like new axioms. Of course, in commonsense reasoningaxioms do not have a rigidly fundamental character as in mathematics, since we need to be able to account for error evenin observations. Observations, then, may begin new chains of reasoning. Maintaining these short chains (derivations) has acomputationally negligible e�ect.The \lazy-corroboration" hypothesis asserts that we typically do not seek many independent corroborations or \proofs"(derivations) of our beliefs. This is not to say that we deliberately avoid corroborations, nor that we always feel contentwith just one or two. There are times when it becomes extremely important to secure as much evidence as possible beforeaccepting a belief; say a plan to escape in a life and death situation. But, in general, we tend to readily accept beliefs andseek corroborations only as needed; we take a \lazy" approach to belief corroboration. As I look out the window and seewhat I think is my truck in the parking lot I simply believe that it is my truck. I don't have to go outside and try the keyin the door, or check the vehicle's identi�cation number, or peek through the windshield to see the empty co�ee mug I leftin there this morning to help verify that it is, indeed, my truck.6 Language changes\Did you hear that John broke his leg?"\No, really? That's a shame!"\Yes, and his wife now has to doeverything for him."\Wife? John isn't married. WhichJohn are you talking about?"51See pages 20 and 20 for de�nitions of �nite and Distr-free, respectively



6 LANGUAGE CHANGES 34\I'm talking about John Jones."\Oh, I thought you meant John Smith."The above apparently mundane conversation hides some very tricky features facing any formal representational andinferential mechanism, whether for use in natural language processing, planning, or problem-solving. For here occurs animplicit case of language control. As it dawns on the two speakers above that they are using the name \John" di�erentlythey need to reason about usage and adopt a strategy to sort out the confusion, e.g., by using last names too.The ability of a reasoning agent to exercise control of its own reasoning process, and in particular over its language, hasbeen hinted at a number of times in the literature. Rieger seems to have been the �rst to enunciate this, in his notion ofreferenceability [121], followed by others [108], [85], etc.The underlying idea, as we conceive it here, is that the tie between linguistic entities (e.g., words) and their meanings (e.g.,objects in the world) is a tie that the agent had better know about and be able to alter when occasion demands. This has anumber of important commonsense uses, which have been listed elsewhere [109].The formal point, though, is that a new treatment is called for so that rational behavior via a logic can measure up tothe constraint that it be able to change usage, employ new words, change meanings of old words, and so on. The usual �xedlanguage with a �xed semantics that is the stock-in-trade of AI seems inappropriate to this task.Active logic seems to adapt well to the speci�c issue of language change. Referenceability, to stick with Rieger's ter-minology, demands that the agent { and therefore the agent's language { have expressions available to denote expressionsthemselves (e.g., via quotation) and also to denote the tie between an expression and what it stands for. The form that thisword-object tie takes seems to vary according to context,52 and that is what this paper will focus on, by examining severalspeci�c commonsense settings.Traditional descriptions of nonmonotonic reasoning envision nonmonotonicity as a relationship between theories: fromone theory certain theorems follow that do not follow when that theory is augmented with additional information (axioms).However, this relationship is expressed only in the meta-theory; the usual logics pay attention to behavior only within a giventheory. On the other hand, \theory change" is the central feature of the step-logic formalism. In brief, a step-logic modelsbelief reasoning by sanctioning inference one-step-at-a-time, where the time of reasoning is integral to the logic. Complicatedreasoning made of many successive inferences in sequence take as many steps as the sequence contains. Error, change ofmind, change of language, and change of language usage all are time-tempered in that they are appropriately characterizedonly with regard to a historical account of beliefs, language, and its usage. The one-step-at-a-time approach o�ers a naturalaccount of such histories.A key informal idea for us will be that of a presentation, which means roughly a situation or context in which attentionhas been called to a presumed entity, but not necessarily an entity we have a very clear determination of at �rst.53 This, weargue, is the case in virtually all situations initially, until we get our bearings. But before we actually make an identi�cationwe determine (perhaps unconsciously) that there is something for us to deal with. This is a small point as far as initialmatters go, but becomes important if later we decide to change our usages. Some examples will help. We have devised aformalism that \solves" these example problems and have implemented our solution to some of the problems in Prolog. Spaceallows only a brief sketch of certain underlying mechanisms.546.1 Rosalie's CarA car 
ashes by us, and we quickly identify it as Rosalie's car (which for simplicity we denote rc). We may be unawareof any recognition process, thinking simply that we see rc 
ash by. Then we notice that the license plate on the car is notwhat we would expect to see on rc, and we re-assess our belief that we are seeing rc. Something, we tell ourselves, made usthink this (the car we see driving away) is that (the car rc we already knew of from earlier times). Once we have producedappropriate internal tokens, we can then say that we mistook this for that. The something-or-other that brought about our52Recently, McCarthy and others have been investigating formal theories of context ([83], [46]). The implications this may have for our workare, at this point, unclear.53The vagueness in our notion of presentation does not, at this stage, hinder our formal treatment. However, we believe it will be necessary toclarify this notion. This is the focus of ongoing work. Among other things, it will involve a focus of attention, as hinted at by our informal \this"and \that" description below.54See [92] and [93] for more complete details.



6 LANGUAGE CHANGES 35mistake is what we call a presentation. It will not play a formal role for us, but simply a motivational one in leading us toour formal devices.How can we formalize the notion of taking this for that? We begin by looking into the relationship between the two {not a physical relationship, as in features that the two cars may share (though this may ultimately have a bearing on beliefrevision) but rather a cognitive relationship between the entities. This relationship is suggested in the case of the mistakencar by the English statement, \I mistook this car to be that (Rosalie's)." The this here can be viewed as a demonstrativewhich (together with an appropriate demonstration) is used to pick out the mistaken car, the one which passed by. The thatcan be viewed as another demonstrative which is used to pick out rc. The statement, \I mistook this car to be Rosalie's",indicates a cognitive tie between two objects, automobiles in this case, that are in a sense linked in a (former) belief by theterm rc.Essentially what has happened is this: Initially, we are aware of an interest in one car only: Rosalie's; then later, in two:Rosalie's and the car that 
ashed by (i.e., the car mistakenly identi�ed to be Rosalie's). In a sense, the term `rc' in theoriginal belief `rc just went by' refers to both of these cars.55 That is, we had rc in mind but connected a \mental image" ofit to the wrong car, the one that 
ashed by. As such, beliefs about the incident re
ect an unfortunate mental con
ation orcompression of these two cars that must be torn apart in the reasoning process.56We use the 4-ary predicate symbol FITB to state that an object of perception (presented at some time or step) is at�rst identi�ed to be some (other) object, thereby producing a (set of) belief(s), i.e., FITB(x; y; S; i) says that object ofperception, x, which was presented at step i, is at �rst identi�ed to be y producing the beliefs in the set S. Then we useRussell's �-operator �a la Russell to pick out the this that was mistaken for that , e.g., �xFITB(x; rc; fF lashedBy(rc)g; t){ \the unique object of presentation, presented at step t, which was at �rst identi�ed to be rc which produced the beliefF lashedBy(rc)." This reality term is used to denote what a reasoner currently takes to be some entity, possibly �lling infor a previously held, but incorrect description of the same entity. (As a shorthand convention we use tfitb(y; S; i), \thething (object of presentation) which was at �rst identi�ed to be . . . ", in place of �(x)FITB(x; y; S; i).) By incorporatingreality terms we are able to express certain errors of object misidenti�cation re
ected in one's former beliefs, for instance:tfitb(rc; fF lashedBy(rc)g; t) 6= rc { \the unique object of presentation which was at �rst identi�ed to be rc at step t,which produced the belief F lashedBy(rc), is not rc. (We abbreviate assertions of the form tfitb(t; S; i) 6= t, (which we calltutorials) by MISID(t; S; i).) Asserting the error sets in motion a belief revision process which is characterized, in part, bythe following: The earlier belief F lashedBy(rc) is disinherited,57 i.e., the step-logic ceases to have that belief, although itdoes retain (as a belief) the historical fact that it once had that belief, andF lashedBy(tfitb(rc; fF lashedBy(rc)g; t))is produced.Just how does one come to suspect and detect erroneous beliefs? We have already alluded to one answer, namely that wecome to suspect an error upon noting competing or incoherent beliefs. We may suspend the use of potentially problematicbeliefs, perhaps speculating and hypothesizing about alternative views of the world, in an e�ort to hash out the di�culty.How does one decide just which alternative to have faith in? In some cases one may use a hypothesize-and-test process toferret out the problem from the set of possible errors that might have been made. A complete principled account of how onespeculates and then con�rms or denies her suspicions is beyond the scope of this paper.58 Instead, a simplifying assumptionis to postulate a tutor or an advisor that can tell us about our errors.59 The tutor plays the role of a friend who says, \Hey,that's not Rosalie's car". How the agent comes to represent and use the friend's advice is the issue we are addressing.6.2 One and Two JohnsOur One John example is very similar to that of rc above, but will help us in moving toward the third example below. Herewe imagine that we are talking to Sally about a third person, whom we initially come to identify as our friend John, merelyin virtue of matching John to Sally's description of the person, or the context of the conversation, etc., but not in virtue ofhearing Sally use the name \John". Later we �nd out it is not John, but someone else.55We assume that beliefs are symbolically represented inside the head in some mental language. [32]56The term compression is borrowed from [78].57Disinheritance is a fundamental feature of step-logic. In particular, when two simultaneously held beliefs are in direct contradiction, neither isinherited to the next step, although either may later be re-proven by other means. Another way disinheritance allows the agent to cease believinga w�, that we introduce here, is based on a misidenti�cation.58It is likely that default reasoning is involved as is knowledge about the likelihood of errors (e.g., a car is likely to be misidenti�ed since thereare typically many similar looking cars).59See [80] for a discussion about programs and advice taking.



6 LANGUAGE CHANGES 36There is no appropriate entity before us in perception which has been misidenti�ed as in the case of the mistaken car;rather it is an abstract entity, a someone-or-other, still an object of presentation, the person that Sally had in mind. Thereis this someone that has been taken to be that , John. Our formalism treats abstract (objects of) presentation(s) of this sortmuch like the case of rc.Now let us extend this to the Two Johns case: We are in a situation in which we are presented with a notion of aperson, whom we (come to) think is our friend John. Then we are led to believe that he has a broken leg and his wife hasto do everything for him. Later we suspect that there is a confusion, that not everything we are hearing makes sense. (John,our friend, is not married.) Is Sally wrong? Or have we got the wrong person in mind? Now here is the twist: Sally startsemploying the name \John" to refer to this person.60 Perhaps she is talking about a di�erent John. To even consider thisoption we need to be able to \relax" our usage so that \John" is not �rmly tied to just one referent. And later when Sallysays that she is talking about John Jones, not our friend, John Smith, we need a way to refer to the two entities withoutusing the term John. We may continue to mention the name, but judiciously, as it is ambiguous.We can try to employ the same formal strategy that the agent used above. Namely, we may initially come to suspect thattfitb(john;BrokenLeg(john)) 6= johnwhich has the English reading: \the unique object of presentation which was at �rst identi�ed to be John, producing thebelief BrokenLeg(john), is not John." But then once we hear Sally use the the name \John" to refer to the person with thebroken leg, whom we now believe is not our friend John, more must be done { the name \John" must be disambiguated.This is where we must exhibit control over our language and language usage. First the ambiguity must be recognized.That is, we must come to see that this and that share the same name. Once that is done, new terms should be created, eachto unambiguously denote one of the two Johns.Proper naming and the use of names is made explicit with the the predicate symbol Names. We write Names(x; y; i)to state that x names object y which �rst came to be known (by the reasoner) at time or step i; this could be weakened totime � i, or time � i, etc., if the exact time is not known. Including the third argument is somewhat non-standard, thoughnot without a commonsense basis. We usually have at least a vague idea of when we come to know about someone. We canthink of Names(x; y; i) as collapsing IsNamed(x; y) ^FirstLearnedAbout(I; y; i), where I is intended to be the �rst personpronoun.To make ambiguity precise the binary predicate symbolAmb is used to state that a name does not refer uniquely beyonda certain step. Axiom AM expresses this:AM : (8x)(9yzij)f(Names(x; y; i) ^Names(x; z; j) ^ y 6= z ^ i � j)!Amb(x; j)gIt says that if two di�erent objects share a name, then the name is ambiguous for the reasoner once he became awareof both objects.Once an ambiguity arises, our reasoner will need to disambiguate any belief using the ambiguous term. We use RTA(x; y; i)to state that object x is referred to as y prior to step i. In particular if Names(x; y; j) then RTA(x; y; k) for k > j, trta(y; i)is used an abbreviation for: �xRTA(x; y; i)\the unique thing referred to as y prior to step i", itself a non-ambiguous reality term.Figure 16 gives a brief sketch of the evolution of reasoning we have in mind. In the �gure we use M , BL, j, and `j toabbreviate Married, BrokenLeg, john, and `john respectively. Also j1 is used to abbreviate the expression trta(`j; 2), i.e.,j1 = �xRTA(x; `j; 2)namely \ the unique thing referred to as `john' prior to step 2", and j2 is used to abbreviate the expressiontfitb(trta(`j; 2); fM (j); B(j)g; 2), i.e.,j2 = �xFITB(x; �yRTA(y; `j; 2); fM (j); B(j)g; 2)60The sequence of events here is di�erent than that re
ected in the dialogue at the beginning of this abstract. Speci�cally, Sally uses the name\John" here only after we come to think that she is talking about our friend John. In the full paper we also discuss another version, in which Sallyuses the name \John" at the outset.



6 LANGUAGE CHANGES 37namely \the unique thing which was �rst identi�ed to be the the unique thing referred to as `john' prior to step 2, whichproduced the beliefsMarried(john) and BrokenLeg(john) at step 2." The predicate symbolContra indicates a contradictionbetween its arguments, a signal to the reasoner that something is amiss thereby initiating a belief revision process.611 : :M(j);Names(`j; j;�1); AM2 : : : : ; BL(j);M(j)(Sally :\:::hislegisbrokenandhiswife:::00)3 : AM;Names(`j; j;�1); Contra(:M(j);M(j))(Agent :\Impossible!Heisn0tmarried:00)4 : : : : ;MISID(j; fM(j); B(j)g; 2)(Sally :\Y oumisidentifiedwhoI 0mtalkingabout:00)5 : AM;M(tfitb(j; fM(j); BL(j)g; 2)); BL(tfitb(j; fM(j); BL(j)g; 2))(Agent :\Sothat0swhat0swrong:00)6 : : : ::M(j)(<Reinstate Marital Belief>)7 : : : : ;Names(`j; tfitb(j; fM(j); BL(j)g; 2); 2)(Sally :\I 0mtalkingaboutJohn:00)8 : : : : ; Amb(`j; 2)(Agent :\Oh; theyhavethesamename!00)9 : AM;:M(j1);M(j2); BL(j2);Names(`j; j1);Names(`j; j2);j2 6= j1;(Agent :\NowI 0vegotit:00)Figure 16: Sketch of the Two Johns story.We can view each step as a discrete moment in the reasoning process. Formulae associated with each step are intendedto be (some of) those relevant to the story as time passes. At each step, underlined w�s re
ect beliefs newly acquired at thatstep. Others, in step-logic terminology, are inherited from the previous step. Ellipses indicate that all beliefs shown in theprevious step are inherited to the current step.Beliefs at step 1 are those held before the agent's conversation with Sally and those at step 9 re
ect an unambiguousaccount of the two Johns, one now denoted by j1 and the other by j2, once the problem is sorted out. In between are stepswhose beliefs re
ect information acquired via the conversation with Sally (steps 2 and 7) and via her advice (step 4); stepswhose beliefs re
ect that problems have been noted (a contradiction is noted in step 3 and the ambiguity is noted in step 8);and steps re
ecting disinheritance (going from step 2 to 3, and from step 5 to 6).The indicated steps have the following intuitive gloss: (1) the agent believes that John is not married, and is named\John". Then (2) comes to believe his leg is broken and he is married. This produces a contradiction, noted in (3), soneither marital belief is retained. Advice is then taken that John has been misidenti�ed (4) which leads to the retraction(disinheritance) of the belief that John has a broken leg (6). The agent learns that the `other person' is named \John" (7),notes the ambiguity (8), and takes corrective action (9) by creating and incorporating the unambiguous terms j1 and j2, onefor each John.61E.g., suspending the use of potentially problematic beliefs, in particular the contradictands and their consequences. See [27] for details.



6 LANGUAGE CHANGES 386.3 Formal TreatmentThere are several notable features of the stepped approach to reasoning illustrated in the previous section which will needto be preserved in a formal device applied to the speci�c issue of reasoning about former beliefs. Most conspicuous is thatthe reasoning be situated in a temporal context. As time progresses, a reasoner's set of currently accepted beliefs evolves.Beliefs become former beliefs by being situated in an ever changing \now", of which the reasoner is aware.Secondly, inconsistency may arise and when it does its e�ect should not be disastrous; rather it should be controllableand remedial, setting in motion a fairly broad belief revision process, which includes belief retraction.Finally, the logic itself must be specially tailored to be 
exible or \active" enough to allow, even encourage, languagechange and usage change when necessary. As a theoretical tool the general step-logic framework developed in [27] and [22]is well suited to these desiderata.A step-logic models reasoning by describing and producing inferences (beliefs) one step at a time, where the time ofreasoning is integral to the logic. Complicated reasoning made of many successive inferences in sequence take as many stepsas that sequence contains. A particular step-logic is a member of a class of step-logic formalisms; each particular step-logicis characterized by its own inference and observation functions (illustrated below).One distinguishing feature of step-logics is that only a �nite number of beliefs (i.e., theorems) are held at any givendiscrete time, or step, of the reasoning process. Thus we can view each step as a discrete moment in a reasoning process.Let �, �, and 
 (with or without subscripts) be w�s of a �rst-order language L and let i 2 N. The following illustrateswhat a step in the modeled reasoning process of a step-logic looks like.i: �, �, 
, : : :represents the belief set of the agent being modeled at step i , i.e., if it is now step (or time) i then �, �, and 
 are currentlybelieved.A w� becomes an i-theorem (roughly, a belief a step i) in virtue of being proven (inferred) at step i. Proofs are based ona step-logic's inference function, which extends the historical sequence of beliefs one step at a time. An inference functioncan be viewed as a collection of inference rules which �re in parallel at each step in the reasoning process to produce the nextstep's theorems. For every i 2 N, the set of i-theorems are just those w�s which can be deduced from the previous step(s),each using only one application of an applicable rule of inference.Inference rules, in their most general form, adhere to the structure suggested by rule schema RS below.RS: i� j : �i�j1 ; : : : ; �i�jm... ...i : �i1 ; : : : ; �ini+ 1 : �1; : : : ; �pwhere i; j 2N and (i � j) � 0. The idea behind schema RS is this: at any step of the reasoning process the inference of �1through �p as (i+1)-theorems is mandated when all of �i�j1 through �i�jm are (i� j)-theorems, and all of �i�j+11 through�i�j+1r are (i� j + 1)-theorems, . . . , and all of �i1 through �in are i-theorems.Now we apply this to Two Johns. We will discuss several of the important step-logic inference rules which come into playin steps 1 through 9 of �gure 16. (Others are treated fully in [92]).62\Observations" can be thought of as non-logical axioms or facts which the agent acquires over time. Observations areproven in accordance with rule O:Rule O: i:62Among those not discussed here are rules for inheritance, modus ponens, contradiction handling and other belief disinheritance, and negativeintrospection.



7 FOCAL POINTS 39i+ 1 : � if � 2 Obs(i + 1)where the function Obs is tailored to correspond to the particular problem to be solved. For Two Johns Obs is de�ned byObs(i) =8>>><>>>: :M(j);Names(`j; j;�1); AM if i = 1M(j);B(j) if i = 2MISID(j;fM(j); B(j)g; 2) if i = 4Names(`j; tfitb(j;fM(j); B(j)g; 2); 2) if i = 7; otherwisewhich indicates beliefs which the agent held prior to \talking with Sally" (those in Obs(1)) and those acquired while \talkingwith Sally" (those in Obs(2), Obs(4), and Obs(7)). Thus the use of rule O adds new beliefs at steps 1, 2, 4 and 7 in in thesolution to Two Johns (as depicted in �gure 16).The \Misidenti�cationRenaming" rule (M) takes care of the renaming of a misidenti�ed object in the beliefs producedby the presentation. It says this: If �, containing the term t, was produced by a presentation at step k and a misidenti�cationof t comes to the reasoner's attention at a later step i, then at i+1 the reasoner will believe that � holds of the misidenti�edobject (of presentation), i.e., tfitb(t; S; k) where S is a set of w�s and � 2 S.Rule M: i : MISID(t; S; k)i+ 1 : �(t=tfitb(t; S; k)) where � 2 SIn �gure 16 rule M applies at step 4 to produce the beliefsM (tfitb(j; fM (j); BL(j)g; 2)) andBL(tfitb(j; fM (j); BL(j)g; 2))which appear at step 5.The \Ambiguity Renaming" rule (A) disambiguates name clashes:Rule A: i : Amb(`x;k); �(x)i+ 1 : �(x=trta(`x; k))This rule takes an antecedent w� �(x) which uses the ambiguous term x and eliminates the o�ending term replacing itwith trta(`x; k), which mentions but does not use x. In �gure 16 rule A applies at step 8 to produce the beliefs :M (j1),M (j2), BL(j2), Names(`j; j1), Names(`j; j2) and j2 6= j1 which appear at step 9. (Recall that both j1 and j2 abbreviateterms which contain the sub-term trta(`j; 2), which is created by rule A.)Our full system has seven additional inference rules, including a \Name-use" rule that can appropriately lead the reasonerinto contradiction if names are not disambiguated.7 Focal PointsCoordination is a central theme of Distributed Arti�cial Intelligence (DAI). Much of the work in this �eld can be seen as asearch for mechanisms that will allow agents with di�ering views of the world, and possibly with di�erent goals, to coordinatetheir actions for mutual bene�t.63Kraus, Rosenschein and Fenster [66, 31] consider how automated agents could use a coordination technique common tocommunication-free human interactions, namely focal points. Focal points are prominent solutions of an interaction to whichagents are drawn. To discover these prominent solutions, agents must be able to use contextual information, and exploit therelative likelihood that their partner will also be drawn to a particular solution. Standard representation techniques (e.g.,classical logic, game theory) are unsuitable for focal point search, either because they abstract away context or because theydo not capture the di�culty of �nding solutions.63See for example, [133, 21, 6, 135, 73, 67, 124, 59].



7 FOCAL POINTS 407.1 The Focal Point ConceptOriginally introduced by Schelling [129, 118], focal points refer to prominent solutions of an interaction, solutions to whichagents are drawn. His work on this subject explored a number of simple games where, despite surface equivalence amongmany solutions, human players were predictably drawn to a particular solution by using contextual information.Here is a \toy example" that illustrates the Focal Point concept clearly (more examples can be found in [66].) Considertwo people who have each been asked to divide 100 identical objects into two arbitrarily-sized piles. Their only concern indeciding how much goes into each pile is to match the other person's behavior. If the two agents match one another, theyeach win $40,000, otherwise they get nothing. Schelling found that most people, presented with this scenario, choose an evendivision of 50 objects per pile. They reason that, since at one level of analysis all choices are equivalent, they must focus onany uniqueness that distinguishes a particular option (such as symmetry), and rely on the other person's doing likewise.There are a number of intuitive properties that seem to qualify a given solution as a focal point. Among these propertiesare uniqueness, symmetry, and extremeness. However, even when we consider these special properties, more must be doneto identify focal points. There are bound to be competing potential focal points, since there is something unique about anysolution.That is, any solution will have something to recommend it|but the less obvious that something is, the less attractive thealternative becomes, precisely because it becomes less obvious that the other agent will duplicate our line of reasoning. Forexample, in the \toy example" above, the choice of 10{90 recommends itself, since it is the only choice where the number oftens in both piles is a perfect square (1 squared and 3 squared), and where at the same time the �rst pile is smaller than thesecond. This is a farfetched example, but the point should be clear: a focal point is produced not only because it satis�esone of the intuitive principles mentioned above, but because it seems computationally more accessible|it seems more likelythat the other agent will also recognize the point than that he will recognize competing points.Standard logic is not appropriate for providing the solution to focal points. One reason is that computational complexityseems central to identifying focal points. Not only must a solution to a given problem satisfy a property like uniqueness inorder to qualify as a focal point, it must also be easier to �nd than other solutions with similar properties. It is thereforenecessary to model the computational process itself in the reasoning procedure as we search for focal points. Classical �rstorder logic does not model the computational process. However, active logic, dealing explicitly with the passage of time asan agent reasons, is appropriate.7.2 The Active-Logic Focal Point AlgorithmFor simplicity, we assume that there are two agents. They are given a set of objects and both need to choose the same object,without communication.The intuition behind our active logic focal point algorithm is that the agent, at each step i, will look for candidates inthe domain that have certain properties (like uniqueness). If something in the domain has the property, it is a focal pointat step i. As time goes on, new beliefs are derived (e.g., through modus ponens), and the domain over which the search isbeing conducted also expands (through observations or consideration of new conjunctive properties). Then the search forcandidate focal points is repeated|and an old focal point may, given the new information, no longer be one. The search forfocal points is cut o� at some depth of computation, depending on time constraints, at which point the agent attempts toresolve competing focal points.Let us now consider the details of the above process. We �rst consider the way in which the agent models the (changing)domain, then the rules that qualify a candidate as a focal point. Finally, we consider the ways in which an agent resolvescompeting focal points.7.2.1 Domain of ConsiderationBefore the process starts, the agent is given two �nite sets enumerating the domain constants (one, Pred, is a set of predicates,and the second, Term, is a set of term constants) over which the focal point computation is going to be done initially. Bothlists can grow as the computation progresses.Example of Dividing 100 Objects into Two Piles: The vectors that sum to 100, with no element less than 0, canbe given as an initial �nite domain over which properties will be discovered.



7 FOCAL POINTS 41It should be noted that these �nite sets represent the explicit knowledge of the agent, not its implicit knowledge. Forexample, an agent may implicitly be aware of the in�nite set of positive integers, but for the moment only be considering the�nite set of integers from 1 to 500. As time goes on, numbers above 500 may come under the explicit scope of consideration.7.2.2 Addition of Term ConstantsThere are two mechanisms for adding new explicit terms. The �rst is observation, where new term constants are observedover time (e.g., a new bridge is observed). The second mechanism is the use of inductive rules, such as a successor rule thatgenerates new integers.Example 1: At step i, the domain includes Bridge(C125). At step i + 1 we have ObservefBridge(C237)g: At step i + 2we then have C237 in Term.Example 2: If Int(x) ! Int(x + 1) is a rule at step i, and Int(5) is known at step i, then at step i + 1 the agent willknow Int(5 + 1). Assuming that the agent has the requisite procedure attached to the symbol +, he will (in step i+ 2) addthe term 6 to Term.7.2.3 Addition of Predicate ConstantsConsider an agent searching for focal points. When he starts, he considers attributes that might be held by only a singleobject in his domain. For example, there might be only one object that is Red. However, if such a unique object does notexist, then he may consider conjunctions of attributes. For example, there might be only one House that is Red. We wantto capture this intuition in our algorithm.When the process starts, Pred is equal to the �nite set of predicates provided to the agent. At the second step, theagent considers binary conjunctions of predicates from the original list. At step three, he considers ternary conjunctions ofpredicates from the original list, and so on. The following lines describe the evolution of Pred through successive steps.step 1: Pred1 = fdomain constant predicates and their negationsg = fP1;:P1; P2;:P2 : : :gstep 2 : Pred2 = fbinary combinations of predicates of Pred1g =fP1 ^ P2; P1 ^ P3; P2 ^ P3; : : : ;:P1 ^ P2 ^ :P1 ^:P2; : : :g [ Pred1step 3 : Pred3 = fternary combinations of predicates of Pred1g =fP1 ^ P2 ^P3; P2 ^ P3 ^ P4; : : : ;:P1 ^ :P2:P3; : : :g [ Pred27.2.4 Explicit and Easily Computed KnowledgeWe want agents, in their search for focal points, to consider both explicit knowledge and \obvious" knowledge that is easilycomputed from their databases. For example, if \less than" is a predicate that the agent is considering, and both 5 and 6are terms of which he is aware, then we want the agent to use the knowledge that 5 is less than 6, even though this fact isnot explicitly represented in his database.We therefore use a special notation to signify that a fact is \known" at the previous level. We write 2� to mean that thefact is either explicitly listed in Facts at level i, or that it can be simply computed over the constant terms Term known atlevel i.The question of what can be simply computed is domain dependent, as well as agent dependent. There is an analogy herewith the idea of \operational" in the Explanation Based Learning literature [96]. Checking \less than" might be operationalin some machines; in other machines, deciding in a game of chess whether a given board position is reachable from the currentstate might be operational because of specialized hardware.



7 FOCAL POINTS 427.3 Focal Point RulesIn this section we present the actual rules by which an agent identi�es candidates for focal points. We make no claims forcompleteness here. These rules provide good coverage of the Focal Point examples in [129], but additional rules may beappropriate in other cases.Identi�cation of focal points is a two stage process. First the agent identi�es candidates by looking for meta-characteristicsof objects, such as uniqueness. Second, the agent resolves competing candidates to the best of his ability (using other rules)and decides on one or more focal points.7.3.1 UniquenessAn object may be a focal point if it is the only object with a given property. Formally, if in i� 1th step we have P 2 Pred i�1,and there exists an x 2 Termi�1 such thatP (x) 2� Factsi�18y 2 Term; y 6= x[P (y) 62� Factsi�1];then in step i we will have Unique(x; P; i):Note that Unique is a \meta-predicate" that does not itself appear in the Pred set. Note also that the term x is consideredunique with respect to the predicate P ; this will be important later when competing focal points must be resolved.Example: This rule would be applicable in the case where we know about only one Bridge, namely C125.Both x and y can be vectors, in which case they will be denoted by [x] and [y]. Another example of uniqueness (usingequality on elements of a vector) is the following: P ([x; y]) � x = y where the domain is de�ned to be vectors such thatSum([x; y]) � x+ y = 100: This causes us to choose the vector [50,50] over all others whose elements sum to 100.7.3.2 Uniqueness ComplementLack of information can also cause a solution to be prominent.An object may be a focal point if it is the only object without a given property. Formally, if in i � 1th step we haveP 2 Pred i�1, and there exists an x 2 Termi�1 such thatP (x) 62� Factsi�18y 2 Term; y 6= x[P (y) 2� Factsi�1];then in step i we will have Unique-Comp(x; P; i):Example: This rule would be applicable in the case where we know that everybody in the domain is a member of theDemocratic Party, except that we have no information one way or the other about John. Although we don't know whetheror not John is also a member, this lack of knowledge causes him to be prominent.7.3.3 CentralityAnother meta-predicate is the concept of Centrality, the intuitive property of a central point around which a domain (orsub-domain) is symmetric.An object may be a focal point if it is a central object within a given domain. Formally, if in i � 1th step we haveP 2 Pred i�1, and there exists an x 2 Termi�1 such thatP (x) 2� Factsi�18y 2 Term; y 6= x ^ P (y) 2� Factsi�1;



7 FOCAL POINTS 439z 2 Term; z 6= y ^ P (z) 2� Factsi�1;such that Di�(y; x) = Di�(x; z)where Di� is a di�erence function de�ned on terms of the domain (e.g., \�" in the domain of numbers), then in step i wewill have Central(x; P; i):Example: In the range between 0 and 10, the number 5 is Central (where P is the predicate Integer, and Di� is de�nedto be the minus function).We introduce centrality as an additional meta-predicate because we want to recognize focal point terms that are centralwith respect to a given property. For example, a house that is centrally located with respect to all other houses might be afocal point. House(x) is the chosen predicate P in the centrality meta-predicate, while Di� is de�ned to represent spatialdistance. Using the meta-predicate Unique would not allow us to recognize the centrality of this point. However, everyUnique term is Central according to the above de�nition (the degenerate case).We might de�ne a general purpose predicate central(x) 2� Pred as one that has other y and z terms in the domain thatstand in a certain relationship with it (e.g., distance). We might then have a unique central point. But there is no way,using the uniqueness meta-predicate, for us to ensure that the x, y, and z terms all share some other common attribute asa condition for x's centrality. For example, x might be the central house among a set of houses, but y and z being housescould not be captured in the de�nition of a general purpose predicate central(x).7.3.4 ExtremeAn object can sometimes be prominent because it is the highest object, or the tallest, or the smallest, among the elementsof the domain. We consider only those elements of the domain that satisfy some property of Pred, expanded to include theidentity predicate (always true).An object may be a focal point if it is an extreme object in a totally-ordered domain. Formally, if in i � 1th step we haveP;Q 2 Pred i�1, and there exists an x 2 Termi�1 such thatP (x) ^ 8y 2 Termi�1; y 6= x ^ P (y); (Q(x; y) 2� Factsi�1 ^Q(y; x) 62� Factsi�1);then in step i we will have Extreme(x; P;Q; i):Example: In the range between 1 and 10000, the number 1 is Extreme (with the predicate Q being \less than").Every object that is unique is also central and extreme, trivially.7.4 Computing Focal Points|The Resolution RulesThe rules above specify when an object is unique, or extreme, etc. They do not relate directly to the question of when theobject is actually a focal point. We thus need a rule to use in tying together these attributes with the notion of focal point.The most straightforward approach is to relate each of the meta-predicates above with the focal point attribute:i : Unique(x; P; i)i+ 1 : FocalPoint(x; i)i : Unique-Comp(x; P; i)i+ 1 : FocalPoint(x; i)i : Central(x; P; i)i+ 1 : FocalPoint(x; i)i : Extreme(x; P; i)i+ 1 : FocalPoint(x; i)



8 DEADLINE PLANNING 44These rules of course may not supply us with a unique focal point, since there could be a term that satis�es Unique,another that satis�es Unique-Comp, etc. There could even be two separate terms that are Unique with respect to di�erentpredicates. Moreover, two separate terms that are (for example) extreme might receive less attention than a single termthat is central, precisely because the two extremes are competing with one another. There is still utility for the agent indiscovering the set of focal points, since even if the choice is made among them probabilistically, there is an increased chancefor coordination among the agents.We will not attempt here to provide additional rules that guarantee a single focal point. Instead, we illustrate that onecould introduce additional rules so as to reduce the size of the focal point set.It is critical to resolve among focal points so that ones that are discovered more easily have higher priority. Active logicprovides us with a natural tool for dealing with this. Using active logic, there are several mechanisms for relating priority tocomplexity; we here present one.A focal point might be generated (given the above rules) at a given level, then not be a focal point at a subsequent level.An agent looks for focal points only up to a certain level k. At this level, there might be several competing focal points thatare still valid (e.g., arising from di�erent rules, or from di�erent predicates). As an initial winnowing mechanism, the focalpoints that were generated earliest are kept and the others discarded. The intuition is that, since the other agent may notgo as deep in the deduction as we have in looking for a focal point, we are more likely to match the other agent by takingthe earliest focal point. It is the solution (that we still believe in) most likely to have been reached by the other agent.64Example: In the range between 1 and 10000, the number 1 is Extreme (with the predicate P being \less than"), and10000 is Extreme (with the predicate P being \greater than"), after the �rst step.If the domain of considered integers grows at each step, 1 will still be extreme while 10000 will no longer be extreme.Thus, at the end of the process, 1 will be chosen since it has been \extreme" for the longest period. This disambiguatesbetween the two extreme ends of a �nite domain that is growing in only one direction.The algorithm only considers \term-property" pairs; if a term was a focal point because of some property at level i, thenwas no longer a focal point because of that property at level i+1, then again became a focal point because of a di�erentproperty at level i+2 (and remains a focal point until the end), then it is considered to have been generated at level i+2.65We may also choose to introduce rules that assign a priority to the meta-predicates (like Unique) so that, for example, aunique object gets priority as a focal point over an extreme object.7.4.1 Convergence ConditionsWhen interacting human agents search for focal points, there is generally no guarantee that their choices will be identical.When interacting automated agents search for focal points, they are following set algorithms. Depending on their ownknowledge, and their knowledge of each other and of the domain, they may be able to reach a guaranteed solution. In othercases there is no guaranteed agreement, but the focal point algorithm can be thought of as a heuristic to prune the searchfor a focal point.As with various forms of communication, the agents can bene�t from having some common background when they usea focal point algorithm. For example, agents that negotiate the allocation of a common resource should have some commonlanguage and some protocol for negotiations. If the protocol is more detailed, the negotiation is more e�cient and the chancesof reaching mutually bene�cial agreement are greater. Similarly, as the agents use more detailed focal point algorithms, andif they have more common background, their probability for convergence increases.8 Deadline planningTime is the most obvious critical resource in planning with deadline constraints. There is a given moment d (for deadline) inthe future by which a goal G must be achieved, and the agent's task is to �nd a suitable plan to achieve G and enact it before64Other approaches present themselves, such as considering the coverage of a focal point, e.g., if a term is a focal point for much of the deduction,though it is not at the �nal step, we would still consider it a likely solution. We could also then probabilistically weight the steps of the deduction,so that (for example) earlier steps receive more weight than later steps. These methods are left for future work.65The idea behind looking at term-property pairs to establish the �rst appearance of a focal point is that once a focal point has disappearedbecause of other terms with the same property, its prominence because of that original property is completely negated.



8 DEADLINE PLANNING 45time d. This means that both the planning and the enacting of the resulting plan must be take no more than (d � Now)time units, where Now is the initial time at which planning begins. Proper planning often involves \meta-planning", inorder to adjudicate between alternative plans, reject infeasible plans, and so on. But that takes time too! Action, whichtakes time, occurs in the very process of thinking or reasoning, including such meta-reasoning. In [110], it is argued that,traditionally, actions in AI are viewed as separate from the planning process which leads to those actions. Even when thetwo are intertwined, as in real-time, dynamic or reactive planning, the planning e�ort is treated as a di�erent kind of beast,not an action itself. Just as it is essential to understand certain features of actions in order to make an intelligent choice ofactions in a plan, it is necessary to re
ect upon features of planning to make intelligent decisions while planning.When the reasoning is not carried out within but rather only about a deadline situation the time for meta-planning doesnot enter the computation. However, in reality, meta-planning often itself must go on as the deadline approaches. To besure, in some commonly encountered situations the time taken for meta-planning may be very short. But what of highlynovel settings in which one cannot a priori assign expected utilities to various conceivable options or re�nements? Then theplanner is forced to decide on utilities and other factors in real time. In these cases it seems unlikely that such meta-planningwill always have a modest time cost. Clearly, the emphasis then is not on searching for a theoretically optimal plan, but onewhich is speculated to work within the deadline. The reasoner must have the 
exibility to interleave planning and execution,not only because there may not be enough time to wait until a complete plan is formulated, but because future planningactions may depend upon the outcomes of earlier executions.The importance of accounting for time of meta-planning as part of overall time of planning and acting then is real. Butin general it may be impossible to determine in advance how long meta-planning will take. An alternate perspective, whichwe explore, is to simply measure how long planning, meta-planning, and acting are in fact taking, and use this increasingtime measure to help decide how to continue in the planning/meta-planning/acting vis-�a-vis the approaching deadline.Thus our approach is not to provide a special technique for precomputing time for meta-reasoning (which we suspectis indeterminate, in general) but rather one in which the reasoning and meta-reasoning are performed together and thetime for each is fully accounted for as they occur. We don't pre-compute how long meta-planning will take; we do somerough estimation of time to perform actions, but chie
y, we track how long planning, meta-planning and acting are takingin real-time, as they occur. Simultaneously we compare the evolving time elapsed with the approaching deadline, and thiscomparison e�ects decisions about continued planning and acting.66In this section we give a brief overview of work on fully deadline-coupled planning [65, 64, 104] that uses active logics as itsunderlying framework. It is a mechanism that lets a time-situated reasoner keep track of an approaching deadline as she/hemakes (and enacts) her/his plan, thereby treating all facets of planning (including plan-formation and its simultaneousor subsequent execution) as deadline-coupled. The approach for planning is deliberately noncommittal with respect to anumber of traditional planning issues, such as total or partial order. Indeed, any planning algorithm can be implemented inthe active-logic framework. In our illustrations we use total order planning to keep the planning as simple as possible whiledealing with the temporal aspects.67To elaborate on the fully deadline-coupled planning problem, we present an illustrative domain, which we call the Nell& Dudley Scenario68: Nell is tied to the railroad tracks as a train approaches. Dudley must formulate a plan to save herand carry it out before the train reaches her. If we suppose Dudley has never rescued anyone before, then he cannot relyon having any very useful assessment in advance, as to what is worth trying. He must deliberate (plan) in order to decidethis, yet as he does so the train draws nearer to Nell. We want to prevent Dudley from spending so much time seeking atheoretically optimal plan to save Nell, that in the meantime the train has run Nell down. Moreover, we want Dudley todo this without much help in the form of expected utilities or other prior computation. Thus he must assess and adjust(meta-plan) his on-going deliberations vis-a-vis the passage of time. His total e�ort (plan, meta-plan and action) must staywithin the deadline. He must, in short, reason in time about his own reasoning in time. In particular, we will demonstrateour mechanisms for a planner, with the following simple scenario. Here Dudley knows that Nell is a distance of 30 `paces'from him when he �rst realizes (at step 0) that the train will reach her in 50 time units. He begins to form a plan, and re�nesthe plan in subsequent steps.66There is an extensive related literature, treating in turn the areas of temporal projection (e.g., [38, 39, 54, 60, 76, 77, 100, 107, 132, 3]), planinteraction (e.g., [134, 136, 128, 138]), and meta-planning (e.g., [125, 7, 8, 16, 114, 58]).67We have not sought to build an optimalplanner, not even a state-of-the-artplanner; there are manyways to make the plannermore sophisticated.Our aim has been �rst and foremost to couch planning in a fully time-situated framework; further work will be required to incorporate our �ndingsinto state-of-the-art techniques for a truly e�cient planner. However, in our view, evolving-time is a su�ciently critical issue for real-time deadlinecoupled planning, that it must be tackled directly (as our e�ort attempts) no matter what other desirable features may or may not be included(such as partial order planning).68This problem was �rst mentioned in the context of time-dependent reasoning by McDermott [86], and more recently discussed in [11].



8 DEADLINE PLANNING 46Formulas: A formula X(s : f;Args) consists of a predicate name X which may represent a 
uent or an action predicate,with a list of arguments. The �rst argument denotes the time interval s : f over which the predicate holds, where sand f are the interval's beginning and ending points, respectively. The other arguments of the predicate follow and aredenoted by Args for easy reference.A partial plan: A partial plan is a belief Ppl(i; p; T riplet List) denoting a partial plan at step i with the name p. TheTriplet List is an ordered list of action triplets. Each triplet, [CA; A;RA], consists of an action, A, preceded andfollowed, respectively, by a list of conditions, CA, and results, RA. A is a formula containing an action predicate andCA and RA are lists of formulas.69 An agent may have several partial plans to achieve the same goal. A special planwith the name null is a plan with no actions in it.The following is a partial plan for Dudley. d is Dudley, n is Nell, h denotes home and r the railroad track. We use theshorthand r�h to denote the distance between the railroad track (r) and home (h). In this partial plan Dudley intendsto release Nell and then pull her from the railroad track70 The symbol �7!, as it appears in X(s : t�7! R; : : :), denotesthat X is intended to hold beyond s : t, and up to R (by default). The term save is a label naming the plan Dudley isforming.Ppl(2; save;8<: 24 At(t3 : t4; d; r)Release(t3 : t4; d; n; r):T ied(t4�7! t1; n; r) 351 24 :T ied(t1; n; r)Pull(t1 : t2; d; n; r)Out of danger(t2�7! 50; n; r) 352 9=;);Context of partial plan: Each of the partial plans de�nes a context within which reasoning can be done about the expectedstate of the world if the plan were to be carried to completion.The agent maintains a belief CS(i; p; Context List) denoting the context set for each plan p at each step i. The listContext List consists of quoted formulas (we omit the quotes for readability), and includes all of the facts (observations),formulas corresponding to actions in the plan, and formulas that the agent deduces to be true in the state of the worldresulting from the successful execution of plan p. The context set changes with time as the plan undergoes modi�cationand as inferences are made in the context of the plan.Projection: 71 At each step i, the belief Proj(i; p; P roj List) denotes the projection that is formed in the context of eachpartial plan p in progress, based on the default of persistence.72Temporal reasoning rules: We developed three inference rules for temporal reasoning: (i) the temporal projection rule(TP), (ii) the restructured modus ponens rule (RMP), and (iii) the context set revision rule (CSR). The details of theserules are described in [103]. Here we just describe them brie
y.1. The temporal projection rule (TP) e�ectively smoothes beliefs over time intervals which present gaps in the agent'sknowledge. Our approach is best described by the term parallel projection. Here the entire known state of theworld at one moment is used to determine the (expected) state at the next moment.2. Instead of applyingmodus ponens (MP) in its familiar form: viz. from� and �! � deduce �, we use a restructuredMP rule (RMP) in accordance with our philosophy to let earlier defaults play out their e�ects completely to resultin an anticipated state of the world to which later defaults may be applied if necessary. (RMP depends on aclause form representation of data.) A formula which is a fact has no justi�cation attached to it. All axioms aretreated as facts. A formula � which was derived using one or more projections �1; �2 : : : is only as feasible asthe weakest projection, and is itself classi�ed as a default. Such a formula is annotated with the projections usedin its derivation and is written as �[�1; �2; :::]. The RMP rule is used in extending the context set. This allowsDudley to compute the extended e�ects of actions. It also allows him to deduce the future consequences of hisplanning as it interacts|possibly with the actions of other agents or with events observed in the world. It allowsfor reasoning with the current projection by letting earlier events play out their consequences in an anticipatedfuture before later events.733. The CSR rule ensures that the context set is always kept updated to match the most current projection, andthe state of the world in which the agent is situated. The problem is that the default reasoning, based on the69Whenever formulas appear in lists such as CA or RA and later in beliefs CS, Proj and Ppl, they are in fact treated as if they are \quoted."We omit the quotes to keep the long strings readable. Thus the beliefs of the agent that we will describe shortly are still �rst order formulas.70The full speci�cation and explanations of the formalization can be found in [103].71Our projection mechanism has commonalities with some of the chronological minimization approaches, notably [132, 77, 60]. See [102] fordetailed discussion.72The i denotes the step number, and Proj List is a list of quoted formulas.73We used these techniques for solving di�erent versions of the Yale Shooting Problem [102].



8 DEADLINE PLANNING 47projection, may incorporate contradictory formulas into the context of a plan. The CSR rule plays the importantrole of resolving contradictions.As explained before, formulas are annotated by the projections which are used to support them in future conjec-tures. In the event that the projections cease to hold as of \now," the formulas that are supported by them aredropped from the context set in the revision process. The revision is a kind of real-time truth maintenance.Plan Re�nement: We developed several simple re�nement rules to re�ne a partial plan in time. We demonstrate here oneof them for the re�nement of non-primitive action.The active-logic planner is hierarchical. Abstraction is embodied in the way the axioms encode the knowledge aboutactions. Skeleton plans at upper levels �rst synthesized by using higher level actions. These are then broken into moreprimitive actions by rules such as the action re�nement rule described in the rule below. Our design allows for theconcurrent processing of levels, and for concurrent re�nement of multiple partial plans.� Re�nement of non-primitive actioni : Ppl(i; p;(: : :" CAARA # : : :)); CS(i; p; f: : : ;Q1 ^ : : : ^Qk ! Ag)i+ 1 : Ppl(i+ 1; ; p;(: : :" CQ1Q1RQ1 # : : :" CQkQkRQk # : : :)) provided every condition CA 2 CSi;p [Proji;p.74Working estimate of time (WET): The WET (working estimate of time) of a plan is a rough estimate of the total timethat the plan will consume. It consists of two parts. The PET (planning estimate of time) is the (estimated) time to bespent in reasoning about the plan. This includes plan formulation, re�nement, temporal projection and context-basedreasoning. The EET (execution estimate of time) of the plan is the (estimated) time required to actually execute theactions that have been identi�ed in the plan. Thus, WET = EET + PET. We estimate the WET of a plan based onthe estimates of the WET's of the actions that are already part of the plan. We do not have a mechanism to estimatethe WET of the unknown portion of a partial plan except for the sliding Now which accounts for the time taken toidentify the remaining portion of the plan.We developed several rules for computing the EET and PET of an action based on the type of the action. Here we justpresent a simple rule to compute the WET.� Computing the WET i : Ppl(i; p; (" CA1A1(s1 : f1; : : :)RA1 # : : :" CAkAk(sk : fk; : : :)RAk #)); : : :i + 1 :WET(i; p;Pkj=1 EET (Aj ) + PET (Aj))where the EET and PET for each action Aj is computed based on the criteria describe in [102].Feasibility: As long as the sum of a (partial) plan's WET + Now is within the deadline, Dudley declares the plan Feasibleusing the following rule, and continues re�ning and/or putting the partial plan into execution.� Marking a plan \feasible" i : Ppl(p; i; f: : :g);Goal(p; g; d);WET(i� 1; p; !)i+ 1 : Feasible(i; p)if ! + i � d.If the WET computation indicates the plan is not feasible, the plan is frozen (no longer re�ned for the time being), butmay be used in the future.7575Our focus here is not to �nd an optimal heuristic for producing the best plans, but rather to develop the underlying framework for incorporatingpassage of time into an inference based approach to planning. Within such a framework, numerous experiments contrasting various heuristics cannow be undertaken; this is a direction for our future work.



8 DEADLINE PLANNING 48To give a 
avor of the deadline-coupled reasoning, we present more details of the simple scenario of Dudley and Nell case.Only a few of Dudley's beliefs are shown below. For additional axioms and inference rules please consult [103].Step 0:CS(0; null; f: : : ; At(0; d; h)obs; r � h = 30obs; T ied(0; n; r)obs; g),Proj(0; nullfg),Goal(save;Out of danger(50; n; r); 50),Unsolved(0; Out of danger(50; n; r)), : : :(Step 0 represents Dudley's state of mind before planning had begun, but after he learned that Nell is tied to the tracks. Thebelief Goal(save;Out of danger(50; n; r); 50) denotes that the plan save is being developed to meet Dudley's goal to take Nell out ofdanger by the deadline 50. The subscript obs on a formula indicates that that formula has come in as an observation and thus is notbased on a projection. )Step 1:CS(1; null; f: : : ; At(0; d; h)obs; r � h = 30obs; T ied(0; n; r)obs; t1 = t2 + 1g),Proj(1; null; fAt(1 :1; d; h),Tied(1 :1; n; r)g),CS(1; save; f: : : ; At(0; d; h)obs; T ied(0; n; r)obsg),Ppl(1; save;8<:" :Tied(t1; n; r)Pull(t1 : t2; d; n; r)Out of danger(t2�7! 50; n; r) #19=;);Proj(1; save; fg),WET(1; save; 0),Feasible(1; save), : : :(A new plan called save is begun and is initially declared to be feasible.)Step 2:CS(2; save; f: : : ; At(0; d; h)obs; T ied(0; n; r)obs; Pull(t1 : t2; d; n; r); r � h = 30obs; t2 � 50;t1 = t2 � 1; t3 = t4 � 3; t4 � t1; g),Ppl(2; save;8<: " At(t3 : t4; d; r)Release(t3 : t4; d; n; r):Tied(t4�7! t1; n; r) #1 " :Tied(t1; n; r)Pull(t1 : t2; d; n; r)Out of danger(t2�7! 50; n; r) #2 9=;);Proj(2; save; fAt(1 :1; d; h),Tied(1 :1; n; r)g),WET(2; save; 2),Feasible(2; save), : : :(Plan re�nements begin. Since Dudley doesn't believe that Nell will be not tied, the precondition of the action Pull is not true.Since Dudley believes that if he release Nell, she will become not tied, he adds the action release to his plan.Now for the �rst time WET and feasibility are actually computed. The plan in Step 1 includes only one action, namely Pull.The PET for Pull is the time required to bind its time variables. There are no other uninstantiated variables, and it is not part of asequence. Pull is primitive action which does not need further re�nement. Since it takes one time step, EET for Pull is 1. Thus WETfor Pull is 2, which is also the WET for the partial plan save. For brevity we suppressed the null plan. The pull action in the partialplan of step 1, is added to the CS of step 2, indicating that the pull action will occur in the context of the plan save.The projection is computed based on the CS of step 1. Dudley projects that it will stay at home forever and Nell will stayed tiedforever.)Step 3:



8 DEADLINE PLANNING 49CS(3; save; f: : : ; At(0; d; h)obs; r � h = 30obs; T ied(0; n; r)obs; Pull(t1 : t2; d; n; r);Out of dangerc(t2; n; r); Release(t3 : t4; d; n; r); t2 � 50; t1 = t2 � 1;t3 = t4 � 3; t4 � t1; t6 < t7 � t3g),Ppl(3; save;8>>>>><>>>>>: " At(t6; d; l)Run(t6 : t7; d; l : r)At(t7�7! t3; d; r) #1 " At(t3 : t3 + 1; d; r)Release1(t3 : t3 + 1; d; n; r):Tied(t3 + 1�7! t1; n; r) #2 : : :" At(t3 + 2 : t4; d; r)Release3(t3 + 2 : t4; d; n; r):Tied(t4�7! t1; n; r) #4 : : : 9>>>>>=>>>>>;)Proj(3; save; fAt(1 :1; d; h),Tied(1 :1; n; r)g),WET(3; save; 7);Feasible(3; save), : : :(Release is a complex action that is re�ned by replacing it with three primitive actions. The action Run is added to satisfy theprecondition that Dudley will be at the railroad tracks by the time of the release.Since the consequence of the pull action is that Nell will be out of danger, this is added to the CS of step 3 as a result of applyingRMP to the appropriate axiom. The WET for Pull is 2 as explained in step 2, that does not change. The PET for Release is 2 (oneto bind the time variables, and another to re�ne it into primitive actions) and its EET is 3. Thus the WET for Release sums to 5, andthe WET for the plan (as of the previous step) is 7, as re
ected in the WET belief.)Step 4:CS(4; save; f: : : ; At(0; d; h)obs; r � h = 30obs; T ied(0; n; r)obs; Pull(t1 : t2; d; n; r),Out of dangerc(t2; n; r); Release1(t3 : t3 + 1; d;n; r); : : : ; Run(t6 : t7; d; l : r);:Tiedc(t4; n; r);t2 � 50; t1 = t2 � 1; t3 = t4 � 3; t4 � t1; t6 < t7 � t3g),Ppl(4; save;8<: " At(t6; d;h)Run(t6 : t7; d; h : r)At(t7�7! t3; d; r) #1 " At(t3 : t3 + 1; d; r)Release1(t3 : t3 + 1; d; n; r):Tied(t3 + 1�7! t1; n; r) #2 : : : 9=;);Proj(4; save; fAt(1 :1; d; h),Tied(1 :1; n; r); Out of danger(t2 + 1 :1; n; r)g),WET(4; save; 9);Feasible(4; save), : : :(Planning continues as above. The plan in Step 3 consists of three new primitive actions obtained by re�ning Release into itsthree components: Release1, Release2, and Release3. Of these, Release1 has a PET of 1, which is the step required to bind the timevariables, since it is the �rst of the sequence of the three actions that constitute the Release. Once this is bound, the times of theother two are decided automatically. Thus PET for Release2 and Release3 are subsequently zero. The EET for each of them is 1.The Run action has a PET of 3 (one to bind the time variables, 1 to re�ne it, and 1 to bind the other variables). Thus the WET ofthe plan is now 9. Also, notice that in this step, the variable l in the Run action has been bound to h by looking it up in the projection.)As was demonstrated in the example, we developed other mechanisms for a planner that reason in time which we don't de-scribe here. Our approach has many concerns in common with existing research in planning and temporal reasoning. [87,49, 56, 55, 125]. However, these works do not account for the time taken for meta-planning. Indeed, this is stated in [125](page 402): \Here we will not worry about the cost of meta-reasoning itself; in practice, we have been able to reduce it to aninsigni�cant level".In our work, although we do not make any attempts to optimize plans, our fully deadline-coupled planner meets animportant criterion: in addition to performing metareasoning for determining the current time, estimating the expectedexecution time of partially completed plans, and discarding alternatives that are deadline-infeasible, our system also has abuilt-in way of accounting for all the time spent as a deadline approaches. This means not only accounting for the timeof various segments (procedures in the more usual approaches), but also the time for this very accounting for time! Activelogics do this without a vicious circle of \meta-meta-meta.. . " hierarchies.



9 TIME-SITUATED VARIATIONS OF THE YSP 509 Time-situated Variations of the YSPIn the previous section we described the application time-situated reasoning mechanism to dead-line planning. This mecha-nism was also applied in [102] to several real-time variations of the Yale Shooting Problem [53] appropriate to active logics.In the classical YSP problem, there is a certain ambiguity about the role of the reasoner. There the reasoning is itselftimeless, presumably it takes place after all the events in question. Our treatment is signi�cant in that Dudley the reasonercan reason in time about the events in progress and adjust his reasoning to suit new observations.The �rst scenario that we considered in [102] is a witness scenario where Dudley is a witness to the scene of the crime.In it we show how Dudley draws the intuitive conclusion that Fred must be dead on observing a shoot action, and discardthe unintuitive one where the gun mysteriously gets unloaded just before the shooting. Two developments of the witnessscenario were presented, which are of a detective nature where Dudley must o�er a reasonable explanation about actions inthe past, to �t his present observations. On seeing Fred alive at a later time, the same mechanism allows him to continueto perform belief revision to account for \why things went wrong"[99]. The last scenario is a killer scenario where Dudleyformulates a plan to kill Fred by a certain deadline and reasons that Fred is expected to be dead in the context of his planto carry out a shoot action.Here we sketch only the simple Witness scenario:Axioms(These are part of every context set)::Loaded(T ) _ :Shoot(T ) _ :Alive(T + 1);:Alive(T ) _Alive(0 : T )0: CS(0; null; fAlive(0)obs; Loaded(0)obsg),Proj(0; null; fg)Dudley observes that a gun is loaded, and that Fred is alive. Dudley is a passive eyewitness. Hence the reasoning context is thatof a null plan. There is no projection yet regarding either Alive or Loaded.1: CS(1; null; fAlive(0)obs; Loaded(0)obsg),Proj(1; null; fAlive(1 :1); Loaded(1 :1)g)Rules yielding new conclusions: TP. There are no new observations.2: CS(2; null; fAlive(0)obs; Loaded(0)obsg),Proj(2; null; fAlive(1 :1); Loaded(1 :1)g)Wait period. No new actions or conclusions.3: CS(3; null; fAlive(0)obs; Loaded(0)obsg),Proj(3; null; fAlive(1 :1); Loaded(1 :1)g)Wait period.4: CS(4; null; fAlive(0)obs; Loaded(0)obs; Shoot(4)obsg),Proj(4; null; fAlive(1 :1); Loaded(1 :1)g)Rules yielding new conclusions: OBS. A shooting is observed by Dudley.5: CS(5; null; fAlive(0)obs;:Alivec(5)[Loaded(4)]; Loaded(0)obs; Shoot(4)obsg),Proj(5; null; fAlive(1 :1); Loaded(1 :1)g)Rules yielding new conclusions: RMP. In the RMP application to the axiom :Loaded(T )_:Shoot(T )_:Alive(T +1) in clauseform, Shoot(4) is resolved with �rst since it is a fact. Next, Loaded(4) is used in favor of alive(5) in the resolution due to theprojection being at an earlier time. It is allowed to play its e�ects before the projection at the next time is considered. Theprojection Loaded(4) used in the inference is used to annotate the inference :Alivec(5)[Loaded(4)], and the result is noted as apossible point of in
ection in the value of the predicate Alive.6: CS(6; null; fAlive(0)obs;:Alivec(5)[Loaded(4)]; Loaded(0)obs; Shoot(4)obsg),Proj(6; null; fAlive(1 : 4);:Alive(6 :1); Loaded(1 :1)g)Rules yielding new conclusions: TP. Note that Alive is no longer projected to in�nity but only until time 4 according to the newcontext set information. Also :Alive is projected from time 6 onwards. The projection for Loaded remains unchanged....



10 RESOURCE LIMITATIONS 51The witness version of the YSP gives the intuitive answer: In the context of the null plan, Fred must have died at step5 as a result of the shooting, provided of course, that the default regarding the gun staying loaded up until step 4 is indeedtrue. :Alive(5)[Loaded(4)] is still defeasible, only as good as Loaded(4) really, and is treated as a default.10 Resource limitationsAn agent under severe time-pressure may spend a substantial amount of the available time in reasoning toward and about aplan of action. In a realistic setting, the same agent must also measure up to two other crucial resource limitations as well,namely space and computation bounds. We describe here these concerns and o�er some solutions we are currently workingon that address them.The active logic formalism described thus far, and as applied to the planning domain in Section 8, su�ers from thefollowing shortcomings.� The space problem: As time advances, more knowledge is gathered as a result of observations from the agent'senvironment and as a result of the deduction processes within. The knowledge base which is continuously expandingcould potentially become so formidable that it would be completely unrealistic to assume that the agent could possiblyapply all the inferences to this complete knowledge base. Usually, most of this information is not directly relevant tothe development of the agent's current thread of reasoning. Our treatment of active logic for deadline-coupled planningin the past has disregarded the space problem in preference to dealing adequately with time-related issues. The spaceissue deserves serious attention where the original number of beliefs of the agent is large, and where very many newbeliefs are added to the agent's knowledge base over time.� Unrealistic parallelism: A step is de�ned as the time required by the agent to perform one inference or one primitivephysical action in the world. Actions can be carried out in parallel if the sensors and e�ectors permit. For example,an agent can walk and eat simultaneously. Active logic planners treat `think' actions within the agent in the samespirit as physical actions and recognize that they sap precious time resources. The original step-logic inference systemassumes that during a given step i the agent can apply all available inference rules in parallel, to the beliefs at stepi� 1. There are two problems with this. One is the unrealistic amount of parallelism that potentially allows the agentto draw so many inferences in one time step that the meaning of what constitutes a step begins to blur. Secondly, it isunreasonable to expect that all inference rules would have the same time granularity. For example, it is unlikely thata simple application of Modus Ponens will take just as long to �re as an inference rule to re�ne a plan or check forplan feasibility, especially as plans become very large. While the representation is uniformly declarative, some ruleshave more procedural 
avor than others, and can be imagined to take more time steps. Just as there is a limit on thephysical capabilities of the agent as to how many physical actions can be done in parallel in the same time step, theremust be a limit to the parallel capacity of the inference engine as well.A claim towards fully deadline-coupled reasoning would be a tall one if the model depicts an agent with an in�niteattention span and in�nite think capacity. In this section we propose an extension of the original step-logic formalism to takeinto consideration space and computation constraints.We propose a solution to the space problem partially based on [26] as follows. The agent's current focus of attention islimited to a small �xed number of beliefs forming the STM (short term memory), while the complete belief set is archivedaway in a bigger associative store, namely, the LTM (long term memory). In addition, we use a QTM which is a technicaldevice to hold the conclusions that result in each step since further inferencing with these must be stalled until the next timestep. The size of the STM is a �xed number k76.In the most simplistic model, the STM could be represented as a queue, in which case the inference/retrieval algorithmreduces to a simple depth �rst or breadth �rst strategy depending upon whether new observations and deductions are addedto the head or tail of the queue respectively. It seems that choosing the STM elements without focus consideration may leadthe reasoning astray quite easily, and also lead to often incomplete threads of reasoning due to thrashing. We propose tomaintain a predicate called Focus(: : :) which keeps track of the current line of reasoning. This is dynamically changed bythe agent's inference mechanism and is responsible for steering the reasoning back to a particular thread even when a large76What is a realistic k for a commonsense reasoner? There is psychological basis that suggests that human short-term memory holds seven-plus-or-minus-two `chunks' of data at one time [91].



10 RESOURCE LIMITATIONS 52number of seemingly irrelevant inferences are drawn. Among the agent's inference rules is a set of focus changing (FC) rules,which when �red alter the focus. Those K beliefs from the associative LTM which are most77 relevant to the current focusare highlighted to form the STM.In short, the framework can be described as follows. The QTMi=i+1 is an intermediate store of formulae that are theoremsderived through the application of inference rules to the formulae in STMi (the STM at step i). They are candidates for theSTM at step i + 1, although only K among them will be selected. Thus the results of the inference rules, can be imaginedto fall into QTMi=i+1 and are available for selection to form the STM at the next step78. The focus and Now which arecrucial to time-situated reasoning are always accessible to the agent.FRAMEWORK: i : STMif:::g;Now(i);Focus(i; :::);LTMif:::gi + 1 : STMi+1f:::g;Now(i+ 1); Focus(i+ 1; :::);LTMi+1f:::gQTMi=i+1 holds � if � is an i-theorem. It includes relevant formulae which are retrieved from the LTM using the retrievalrule. Step i concludes by selecting K formulae from QTMi=i+1 which are relevant to Focusi to form STMi+1. LTMi+1 isLTMi appended with QTMi=i+1.The main problem in limiting the space of reasoning is to decide what should be in the focus. In our planning framework,we have developed a mechanism that is at work to limit the focus to a single feasible plan at a given time step. A list ofactions, conditions and results from the plan that need further processing (we call it the active list), form a list of keywordsin the focus. We describe the details of this mechanism in [101]. Heuristic rules are proposed to maximize the probability of�nding a solution within the deadline. This would correspond to a sort of best �rst strategy or a beam search of width K inthe general framework. Although these heuristic rules are independent of the instance of the problem in question, they arelikely to be di�erent depending upon the category of the problem being solved. A deadline-coupled actor-planner is likelyto maintain a much narrower focus than a long-range `armchair' planner. We refer to [105] for some of the speci�c heuristicstrategies employed for the tightly time-constrained planner.The following theorem demonstrates that under appropriate conditions, any inference derivable in an active logic withno memory limitation, can also be derived in a memory limited active logic. The size of STM (i.e., K) can be as smallas two beliefs. Let SL(OBS; INF ) denote an active logic with an inference function INF, an observation function OBS,and unlimited memory as described in [27].79 Let SLFETK (OBS; INF ) denote the corresponding active logic with a limitedshort-term memory of size K and an algorithm, called FET , describing the strategy for fetching elements into STM.Theorem 10.1 Let K � 2. If all the inference rules in INF are monotonic then it is possible to describe a (simple)algorithm FET such that any theorem of SL(OBS; INF ) will eventually appear as a theorem of SLFETK (OBS; INF ). I.e.if `i � in SL (� was proven at step i) then 9j such that `j � in SLFETK (OBS; INF ).Note: the requirement of monotonicity in particular entails that the \clock"-rule for Now is left out. Thus the resultapplies only to Now-free inferences. We also assume that new observations are consistent with previous facts and derivations.For a slightly di�erent solution to the space problem in active logic (which also is based on [26]), see [137].Next, we address the bounded computation resource problem. An intelligent agent can be expected to have a sizablereservoir of inference rules acquired during its lifetime. Firing of an inference rule corresponds to a `think' action. Withouta bound on its inferencing power, the agent could �re all the inference rules applicable (termed in conventional productionsystems as the con
ict set) simultaneously during a time step. We limit the inference capacity of the engine to I. Eachinference rule j is assigned a drain factor dj. This is a measure of the drain incurred by the inference engine while �ring aninstance of this rule. For instance, Modus Ponens and the more elaborate inference rule for plan re�nement, would be givendi�erent drain factors to re
ect this di�erence in granularity 80.Our limited-capacity inference engine �res only a subset of the applicable rules in each time step. Among the variousalternatives, it is possible to pick the inference rules either completely nondeterministically up to the engine capacity I,77There is then a ranking among the relevant formulae, and the k formulae at the top of the list are picked. In our implementation, we selectthe k formulae at random from the candidate formulae.78This has the feature that all thinking does not pass through the STM unless it is relevant to the focus.79In this section, familiarity with the notation in [27] is assumed.80How to calibrate the inference rules for the assignment of these drain factors is a separate and interesting issue, but we will not address itpresently. Also, how thinking actions compare with physical actions is a technical issue that could be resolved by trying to calibrate the system tocheck on the relative speed of its inference cycle with that of its sensors and motors. We skip this implementation sensitive issue for the present.



11 CONCLUSIONS AND FUTURE WORK 53or one could again apply some heuristics to improve the agent's chances. Several parameters, such as agent attitudes, theuncertainty of the environment, or the urgency to act could dictate this choice.Thus, in e�ect, during each step, K beliefs are highlighted from the knowledge base (LTM) to constitute the STM. Fromamong the rules applicable to these K beliefs, a subset of rules is chosen such that sum of the drain factors does not exceedthe engine's inference capacity I. The results of the inferencing are put in the QTM. Finally, the contents of the QTM arecopied to the LTM.11 Conclusions and Future WorkIn this paper we have tried to present a broad picture of the many di�erent issues and problems that can be tackled usingactive logic. These range from highly general issues to speci�c applications.Our overall aim is to provide a formal framework in which large portions of commonsense reasoning can be carried outin a realistic manner. We have described our e�orts in the areas of planning in deadline situations, multi-agent reasoning,reasoning with contradictions, and language change. All of these were carried out in the same underlying framework of activelogics. Future work includes combining these into a single system, so that a single agent would be able to perform all theseactivities within one integrated episode a la Agenta. A key step we will take is to standardize active logic, and make itpublicly available on-line.To be sure, active logics studied to date do not do all that one would like. Their biggest shortcoming is that they indulgein litter-bugging (as also do static logics): too many unwanted theorems are produced, creating a space problem. This isnot a serious problem for static logics per se (since the associated idealization relegates such concerns to an independentengine); nor need it be so for active logics: we can view them as well as idealizations, though a bit less removed from realismthan their static counterparts. For it is not mere resource-limitations that motivate active logics. Nevertheless, the de�nitionof active logics is general enough not to rule out space-saving (\tidy") versions (see Section 10); but it is hard to come upwith plausible candidates. Thus litter-bugging is not forced on us by active logics; it is our poor understanding of key issuessuch as relevance, focus of attention, and memory management that is the sticking point. Our expectation is that as moreis learned about these issues, it will be possible to incorporate them into the active logic framework.Other areas of ongoing and future work include: pragmatics of discourse [47, 111]; rule-change (allowing the agent toalter not only beliefs but also the inference rules governing belief formation and inheritance); and situated feedback (so thatreasoning can be more closely tied to actions, as in deciding it is now time to eat lunch, initiating action toward that goal,and noting the action is taking place).Our long-range goal of the design and implementation of a highly 
exible episodic reasoner, one that can carry on the sortof reasoning presented in the Agenta story of barn-painting, is years away. It involves many di�cult issues of both theoreticaland practical scope, yet we are convinced both that it is essential to keep such goals well in mind as a guide to researchdirections, and that active logics (or something similar) will be needed to achieve this end by principled means. Omniscientor prescient thinking (an oxymoron) can neither govern nor usefully model situated episodic reasoning.References[1] C. Alchourron, P. Gardenfors, and D. Makinson. On the logic of theory change. J. Symbolic Logic, 50:510{530, 1985.[2] J. Allen. Towards a general theory of action and time. Arti�cial Intelligence, 23:123{154, 1984.[3] A. Baker. A simple solution to the Yale Shooting Problem. In Proc. First Int'l Conf. on Principles of KnowledgeRepresentation and Reasoning, pages 11{20, 1989.[4] Afzal Ballim and Yorick Wilks. Arti�cial Believers: The Ascription of Belief. Lawrence Erlbaum Associates, 1991.[5] M. Boddy and T. Dean. Deliberation scheduling for problem solving in time-constrained environments. Arti�cialIntelligence, 1994. To appear.[6] A. H. Bond and L. Gasser. An analysis of problems and research in DAI. In A. H. Bond and L. Gasser, editors,Readings in DAI, pages 3{35. Morgan Kaufmann Pub., Inc., Ca., 1988.
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