
ABSTRACT

Title of dissertation: COLUMN GENERATION IN INFEASIBLE
PREDICTOR-CORRECTOR METHODS
FOR SOLVING LINEAR PROGRAMS

Stacey O. Nicholls, Doctor of Philosophy, 2009

Dissertation directed by: Professor Dianne P. O’Leary
Department of Computer Science
Institute for Advanced Computer Studies

Primal-dual interior-point methods (IPMs) are distinguished for their excep-

tional theoretical properties and computational behavior in solving linear program-

ming (LP) problems. Consider solving the primal-dual LP pair using an IPM such as

a primal-dual Affine-Scaling method, Mehrotra’s Predictor-Corrector method (the

most commonly used IPM to date), or Potra’s Predictor-Corrector method. The

bulk of the computation in the process stems from the formation of the normal

equation matrix, AD2AT , where A ∈ <m×n and D2 = S−1X is a diagonal matrix.

In cases when n � m, we propose to reduce this cost by incorporating a column

generation scheme into existing infeasible IPMs for solving LPs. In particular, we

solve an LP problem based on an iterative approach where we select a “small” subset

of the constraints at each iteration with the aim of achieving both feasibility and

optimality. Rather than n constraints, we work with k = |Q| ∈ [m,n] constraints at

each iteration, where Q is an index set consisting of the k most nearly active con-

straints at the current iterate. The cost of the formation of the matrix, AQD
2
QA

T
Q,

reduces from Θ(m2n) to Θ(m2k) operations, where k is relatively small compared

to n. Although numerical results show an occasional increase in the number of iter-

ations, the total operation count and time to solve the LP using our algorithms is,

in most cases, small compared to other “reduced” LP algorithms.

COLUMN GENERATION IN INFEASIBLE

PREDICTOR-CORRECTOR METHODS FOR SOLVING

LINEAR PROGRAMS

by

Stacey O. Nicholls

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2009

Advisory Committee:
Professor Dianne P. O’Leary, Chair/Advisor
Professor André L. Tits
Professor Eric V. Slud
Professor Konstantina Trivisa
Professor Michael Laskowski

DEDICATION

This dissertation is dedicated to my sons:

Tyler Adedapo Akanji Jagun

and

Sean Adekunle Ayinde Jagun

ii

ACKNOWLEDGMENTS

My journey to completing this dissertation came with many obstacles and

challenges. However, there were a great number of people who supported my efforts

to help make this thesis possible. I am truly blessed to have had the opportunity to

learn from, work with, and be mentored by those who made my graduate experience

one that I will always cherish.

First and foremost, I would like to thank my advisor, Dr. Dianne P. O’Leary.

Words cannot express how grateful I am to have worked with such an extraordinarily

brilliant woman. She gave me very challenging, yet interesting projects to work on

over these past few years, and her advice was invaluable. She was always available for

me when I needed help and/or advice on issues related to and beyond my research.

She has given me enthusiasm for the area of Numerical Optimization, an eye for

detail in working mathematical proofs and describing computational results, and

an appreciation for all of the time and energy she devotes to her students. She is

an exceptional professor and mentor, and I aspire to be just as influential to my

students and their careers as she has been to me.

I would also like to thank Dr. André L. Tits. This thesis would not have been

possible without his remarkable theoretical ideas and expertise. He has always given

me helpful suggestions and advice for my research. He was a valuable asset to me

in this process, and I thank him for all he has offered.

iii

Thank you to Dr. André L. Tits, Dr. Eric V. Slud, Dr. Konstantina Trivisa,

and Dr. Michael Laskowski for agreeing to serve on my thesis committee. I greatly

appreciate the time and energy you dedicated to reviewing the thesis and providing

suggestions for revisions.

During my years at UMCP, I was fortunate to receive funding from a number

of sources. UMCP offered not only an opportunity for me to gain valuable informa-

tion from professors, but also an opportunity to teach undergraduate mathematics

courses. I taught lecture and recitation classes as a teaching assistant for four years.

I must thank Dr. William Schildknecht for giving me the opportunity to teach

a variety of mathematics courses at UMCP. These opportunities opened doors for

teaching jobs at other universities, and I am grateful for this teaching support. I

would also like to thank Dr. Johnetta Davis for her assistance throughout my grad-

uate years. She was pivotal in helping me obtain a GAANN fellowship for which I

am truly thankful. Dr. Davis also served as one of the PIs for the Promise Program,

a program in which I gained valuable insight about the process to the doctorate.

I would like to thank Dr. Michael Boyle for the opportunity to work under the

VIGRE grant. This support provided me with an opportunity to work with Dr.

Jeffrey Cooper and Dr. Tobias von Petersdorff in designing MATLAB projects for

undergraduate students in computational mathematics using concepts in numeri-

cal analysis, differential equations, and optimization. I was also funded under the

Department of Energy grant DEFG0204ER25655: “Interior Point Algorithms for

Optimization Problems”, and I would like to thank Dr. Dianne P. O’Leary and Dr.

André L. Tits for this support. Lastly, I would like to thank Dr. Daniel Syman-

iv

cyk and the rest of the hiring committee from the Mathematics Department at

Anne Arundel Community College for believing in my ability to work as a full-time

mathematics professor while finishing my graduate studies.

The staff at UMCP has been extremely helpful throughout my graduate years.

I would like to especially thank Ms. Alverda McCoy for all of her help, support,

and advice with the AMSC program.

Many of my most memorable graduate school moments are due to a group of

friends that: (1) helped make my transition from undergraduate to graduate school

a smooth one, (2) offered exceptional advice to help me reach certain milestones in

my program, and (3) provided a friendship that will last a lifetime. I particularly

would like to give a big thanks to my friend and former roommate, Ms. Joycelyn

Wilson, for her immeasurable support throughout the years. I would also like to

thank my graduate mentor Dr. Tasha Inniss, for her guidance in my early graduate

school years and Dr. Monica Jackson, for her help as a fellow teaching assistant. I

greatly appreciate the help and support of all of my friends. Thank you!

My decision to pursue graduate study was largely due to the exceptional faculty

in the Mathematics Department at Spelman College. I would like to thank Dr.

Sylvia Bozeman for encouraging me to apply to graduate school. I would also like

to thank Dr. Nagambal Shah and Dr. Yewande Olubummo for their constant

support during my years of study as a math major at Spelman.

I could not have completed my graduate program without the invaluable sup-

port of my family. To my fianceé, Adebola ”Taheel” Jagun, thank you for your

continual encouragement over the years. Our sons, Tyler and Sean Jagun, are a

v

blessing from God, and I am so thankful to have them. They made my dissertation

progress even more of a challenge (many sleepless nights) and yet they were my

motivation for finishing the degree. I am also truly grateful for the endless love

and support of my parents, Herbert and Jacqueline Nicholls. Thank you for always

believing in me! To my sister, Cynthia Nicholls, you are a special person in my life

and I want to thank you for just being you. Thank you to all of my family members

for their encouraging words and support.

It is truly impossible to remember all, and I apologize to those I’ve inadver-

tently left out.

Lastly, I faced obstacles and challenges at just about every stage of my gradu-

ate program. God made a way for me to overcome these obstacles with the support

of the individuals mentioned here. Thank you God for ALL you have provided me!

vi

TABLE OF CONTENTS

List of Tables ix

List of Figures x

1 Introduction 1

2 Background 5
2.1 Optimality Conditions for the Primal-Dual LP 6
2.2 The Column Generation Heuristic . 10

2.2.1 Overview . 10
2.2.2 Initial Point . 12
2.2.3 Selection of Q . 13
2.2.4 Update Strategy . 15

2.3 Summary . 20

3 A Reduced Primal-Dual Affine-Scaling (redPDAS) Algorithm 21
3.1 Affine-Scaling Methods . 21

3.1.1 Overview . 21
3.1.2 The Primal and Dual Affine-Scaling Methods 22
3.1.3 The Primal-Dual Affine-Scaling Method 27
3.1.4 Algorithms . 29

3.2 A Primal-Dual Affine-Scaling (PDAS) Algorithm 31
3.3 The redPDAS Algorithm . 32
3.4 Convergence Analysis of redPDAS . 35
3.5 Summary . 53

4 A Reduced Mehrotra Predictor-Corrector (redMPC) Algorithm 54
4.1 MPC Method . 54

4.1.1 Overview . 54
4.1.2 Centering-Corrector Direction 56

4.2 A MPC Algorithm . 58
4.3 The redMPC Algorithm . 61
4.4 Convergence Analysis of redMPC . 64
4.5 Summary . 101

5 Numerical Experiments 102
5.1 Overview . 102

5.1.1 Test Problems . 103
5.2 redPDAS Experiments . 106
5.3 redMPC Experiments . 117
5.4 Discussion . 128
5.5 Summary . 130

vii

6 Conclusions and Further Study 131

A Topics in Numerical Optimization 134
A.1 Steepest-Descent Method . 134
A.2 Orthogonal Projection Matrix . 135

B The redPC Algorithm 137
B.1 Background . 137
B.2 Potra’s Predictor-Corrector Algorithm 139
B.3 The redPC Algorithm . 142

Bibliography 146

viii

LIST OF TABLES

3.1 A summary of the differences between the redPDAS algorithm and
a modified version of the algorithm adapted from Tits et. al. [24]
that proves to be locally and quadratically convergent. 48

4.1 A summary of the differences between the redMPC algorithm and
a modified version of the algorithm adapted from Winternitz et. al.
[28] that proves to be locally and quadratically convergent. 95

5.1 Random Problems (TAW1 - TAW5) from Tits et. al. [24]. Prob-
lems with constraint matrix A* generate each column of A with
randn(m,1) and then normalize to make each column have norm
one. 104

5.2 RandomTest Problems (RAND1 - RAND5) with specified m and n
and known optimal solution . 105

5.3 Netlib Problems from [2] with specified m and n and known optimal
solution . 106

ix

LIST OF FIGURES

5.1 Performance of the redPDAS algorithm against the PDAS on test
problem TAW4 with m = 50, n = 20000, and |Q| ∈ [3m, ubnd] where
ubnd is . 107

5.2 Comparison of the redPDAS algorithm versus PDAS algorithm us-
ing 25 randomly generated test problems from TAW1 (constraints
tangent to the unit sphere) with m = 50, n = 20000, and ubnd = k̂
where 150 ≤ k̂ ≤ 20000. 109

5.3 Comparison of the redPDAS algorithm versus PDAS algorithm us-
ing 25 randomly generated test problems from TAW2 (random [nor-
mal] constraints) with m = 50, n = 20000, and ubnd = k̂ where
150 ≤ k̂ ≤ 20000. 110

5.4 Comparison of the redPDAS algorithm versus PDAS algorithm us-
ing 25 randomly generated test problems from TAW3 (Random as
in WT-18July2003) with m = 50, n = 20000, and ubnd = k̂ where
150 ≤ k̂ ≤ 20000. 110

5.5 Comparison of the redPDAS algorithm versus PDAS algorithm us-
ing 25 randomly generated test problems from TAW4 (RandomLP)
with m = 50, n = 20000, and ubnd = k̂ where 150 ≤ k̂ ≤ 20000. 111

5.6 Comparison of the redPDAS algorithm versus PDAS algorithm us-
ing 25 randomly generated test problems from TAW5 (SIPND) with
m = 50, n = 20000, and ubnd = k̂ where 150 ≤ k̂ ≤ 20000. 111

5.7 Comparison of the redPDAS algorithm versus PDAS algorithm us-
ing 25 randomly generated test problems from RAND1 with m = 5,
n = 100, and ubnd = k̂ where 15 ≤ k̂ ≤ 100. 112

5.8 Comparison of the redPDAS algorithm versus PDAS algorithm us-
ing 25 randomly generated test problems from RAND2 with m = 12,
n = 500, and ubnd = k̂ where 36 ≤ k̂ ≤ 500. 113

5.9 Comparison of the redPDAS algorithm versus PDAS algorithm us-
ing 25 randomly generated test problems from RAND3 with m = 24,
n = 780, and ubnd = k̂ where 72 ≤ k̂ ≤ 780. 113

5.10 Comparison of the redPDAS algorithm versus PDAS algorithm us-
ing 25 randomly generated test problems from RAND4 with m = 58,
n = 1004, and ubnd = k̂ where 174 ≤ k̂ ≤ 1004. 114

x

5.11 Comparison of the redPDAS algorithm versus PDAS algorithm us-
ing 25 randomly generated test problems from RAND5 with m = 75,
n = 2016, and ubnd = k̂ where 225 ≤ k̂ ≤ 2016. 114

5.12 Comparison of the redPDAS algorithm versus PDAS algorithm us-
ing the Netlib test problem SCSD1 with m = 77, n = 760, and
ubnd = k̂ where 231 ≤ k̂ ≤ 760. 115

5.13 Comparison of the redPDAS algorithm versus PDAS algorithm us-
ing the Netlib test problem SCSD6 with m = 147, n = 1350, and
ubnd = k̂ where 441 ≤ k̂ ≤ 1350. 116

5.14 Comparison of the redPDAS algorithm versus PDAS algorithm us-
ing the Netlib test problem SCSD8 with m = 397, n = 2750, and
ubnd = k̂ where 1191 ≤ k̂ ≤ 2750. 116

5.15 Performance of the redMPC algorithm against the MPC using test
problem TAW4 with m = 50, n = 20000, |Q| ∈ [3m, ubnd] where ubnd

is fixed to n. The average time (in seconds) to solve 50 randomly
generated problems from TAW4 is shown over varying values of C
ranging from 10−16 to 10−1. 118

5.16 Comparison of the redMPC algorithm versus the MPC and ipas35
algorithms using 25 randomly generated test problems from TAW1
(constraints tangent to the unit sphere) with m = 50, n = 20000, and
ubnd = k̂ where 150 ≤ k̂ ≤ 20000. 119

5.17 Comparison of the redMPC algorithm versus the MPC and ipas35
algorithms using 25 randomly generated test problems from TAW2
(random [normal] constraints) with m = 50, n = 20000, and ubnd = k̂
where 150 ≤ k̂ ≤ 20000. 120

5.18 Comparison of the redMPC algorithm versus the MPC and ipas35
algorithms using 25 randomly generated test problems from TAW3
(Random as in WT-18July2003) with m = 50, n = 20000, and ubnd =
k̂ where 150 ≤ k̂ ≤ 20000. 120

5.19 Comparison of the redMPC algorithm versus the MPC and ipas35
algorithms using 25 randomly generated test problems from TAW4
(RandomLP) with m = 50, n = 20000, and ubnd = k̂ where 150 ≤
k̂ ≤ 20000. 121

5.20 Comparison of the redMPC algorithm versus the MPC and ipas35
algorithms using 25 randomly generated test problems from TAW5
(SIPND) with m = 50, n = 20000, and ubnd = k̂ where 150 ≤ k̂ ≤
20000. 121

xi

5.21 Comparison of the redMPC algorithm versus the MPC and ipas35
algorithms using 25 randomly generated test problems from RAND1
with m = 5, n = 100, and ubnd = k̂ where 15 ≤ k̂ ≤ 100. 123

5.22 Comparison of the redMPC algorithm versus the MPC and ipas35
algorithms using 25 randomly generated test problems from RAND2
with m = 12, n = 500, and ubnd = k̂ where 36 ≤ k̂ ≤ 500. 123

5.23 Comparison of the redMPC algorithm versus the MPC and ipas35
algorithms using 25 randomly generated test problems from RAND3
with m = 24, n = 780, and ubnd = k̂ where 72 ≤ k̂ ≤ 780. 124

5.24 Comparison of the redMPC algorithm versus the MPC and ipas35
algorithms using 25 randomly generated test problems from RAND4
with m = 58, n = 1004, and ubnd = k̂ where 174 ≤ k̂ ≤ 1004. 124

5.25 Comparison of the redMPC algorithm versus the MPC and ipas35
algorithms using 25 randomly generated test problems from RAND5
with m = 75, n = 2016, and ubnd = k̂ where 225 ≤ k̂ ≤ 2016. 125

5.26 Comparison of the redMPC algorithm versus the MPC and ipas35
algorithms using the Netlib test problem SCSD1 with m = 77, n =
760, and ubnd = k̂ where 231 ≤ k̂ ≤ 760. 126

5.27 Comparison of the redMPC algorithm versus the MPC and ipas35
algorithms using the Netlib test problem SCSD6 with m = 147, n =
1350, and ubnd = k̂ where 441 ≤ k̂ ≤ 1350. 127

5.28 Comparison of the redMPC algorithm versus the MPC and ipas35
algorithms using the Netlib test problem SCSD8 with m = 397, n =
2750, and ubnd = k̂ where 1197 ≤ k̂ ≤ 2750. 127

A.1 A n-dimensional vector x is projected onto the null space of A [de-
noted N(A)] by the orthogonal projection matrix P = I−AT(AAT)−1A.136

xii

Chapter 1

Introduction

For nearly 40 years, the simplex method was deemed the most efficient algo-

rithm for solving linear programming (LP) problems, a class of problems involving

the minimization or maximization of a linear function subject to linear constraints.

Although the simplex algorithm can be shown to exhibit an exponential number of

iterations in the worst case, on practical problems the number of iterations is usually

linear in the size of the problem. Furthermore, the operation count per iteration is

also rather low; an m×m linear system is solved at each iteration, where m is the

number of constraints in the primal LP. 1

The work of Narendra Karmarkar [15], however, spawned a new class of meth-

ods, interior-point methods (IPMs), capable of outperforming the simplex method

on large-scale LPs and (in general) producing polynomial complexity results. Back-

ground information on simplex and interior-point methods can be found in [5], [20]

and [29]. Unlike the simplex method, IPMs solve a (2n + m) × (2n + m) linear

system at each iteration where most of the computation stems from solving an

m × m system with normal equation matrix AD2AT (A is an m × n constraint

matrix and D is a positive diagonal matrix). If n � m, the operation count per

iteration can be quite large. Nonetheless, their low iteration count and speed make

1The primal LP is composed of a system of m equality constraints with n variables. The dual
LP is the “companion” to the primal LP in which the roles of constraints and variables are reversed.
Therefore, the dual LP is composed of a system of n constraints with m variables.

1

IPMs the method of choice on large-scale LPs. Today, much attention is focused

on primal-dual IPMs [29]; they stand out for their exceptional theoretical proper-

ties and computational behavior. Most primal-dual IPM codes today are based on

Mehrotra’s Predictor-Corrector Method (MPC) [17]. MPC combines the essence of

the primal-dual framework with ingenious heuristics.

In this thesis, we devise several “reduced” variants of existing infeasible interior-

point algorithms 2 for solving primal-dual LP pairs. Specifically, we examine the

incorporation of a column generation scheme into algorithms which, through a se-

quence of iterations, aim to achieve both feasibility and optimality. In our context,

a column generation approach refers to considering only a subset of columns of A,

or equivalently, a subset of the dual constraints, at each iteration. This reduces the

operation count per iteration and, if the subsets are chosen well, we generally ob-

serve no increase in the total number of iterations. Our algorithms can outperform

other column generation algorithms in total operation count and CPU time.

A vast number of papers have been written on the convergence of infeasible

interior-point algorithms. Kojima et al. [16], Potra [22], and Achache et al. [1]

devise infeasible algorithms which improve feasibility and find optimal solutions for

the primal-dual pair. The algorithms also demonstrate both global convergence and

polynomial complexity.

Column generation algorithms within interior-point methods have been an-

alyzed as well. Algorithms for “building up” the number of constraints at each

2An “infeasible algorithm” refers to an algorithm that accepts an initial solution that does not
satisfy all of the constraints of an LP.

2

iteration have been developed by Dantzig et al. [6], Ye [31], Hertog et. al. [11], and

Goffin et. al. [9]. Starting with a small subset of dual (working) constraints, an iter-

ative search for the optimal solution is conducted until there is a constraint blocking

the progression to this solution. Depending on the algorithm, the violated constraint

or constraint generated by the algorithm is added to the set, and the process repeats

until the optimal solution has been found. Ye [32] considers adding more than one

constraint to the working set at each iteration. In all of these algorithms, constraints

are never removed from the working set in the current iteration. Ye [30], on the other

hand, developed a “build-down” scheme in which a constraint is discarded from the

full constraint set if it is detected to be nonbinding in the optimal set. Convergence

properties for the aforementioned algorithms are provided along with polynomial

complexity analyses for some. Both the “build-up” and “build-down” approaches

were combined and analyzed in Hertog et al. [12] where the algorithm was shown

to terminate in polynomial time. More recently, a constraint reduction approach

was developed in a primal-dual framework 3 by Tits-Absil-Woessner [24]. The au-

thors consider replacing the normal equation matrix for the primal-dual LP with a

“reduced” matrix AQD
2
QA

T
Q by solving a subset of m ≤ |Q| ≤ n dual constraints

at each iteration where Q is a fixed index set associated with the most “promising”

dual constraints at the current iteration. Global convergence and local quadratic

convergence are proved for their “reduced” affine-scaling algorithm.

The two algorithms we develop in this thesis are redPDAS and redMPC. The

3Here we are working with the primal and dual LPs simultaneously as opposed to working with
them individually. The primal-dual framework involves solving the optimality conditions to satisfy
both the primal and dual LPs.

3

redPDAS algorithm is an extension of the Tits-Absil-Woessner algorithm [24] to

handle dual infeasible iterates, and the redMPC algorithm is a “reduced” version of

Mehotra’s Predictor-Corrector Method. We allow both primal and dual infeasibility

as opposed to Tits-Absil-Woessner who allow only primal infeasibility in the PDAS

case.

The remainder of the thesis focuses on the two algorithms, their convergence,

and their performance. The column generation scheme used within our algorithms is

presented in Chapter 2. In the beginning of Chapter 3, a general discussion of affine-

scaling methods is given. The remainder of the chapter includes a description of the

Reduced Primal-Dual Affine-Scaling redPDAS algorithm along with some conver-

gence results. We also show that with certain modifications, the algorithm is glob-

ally and locally convergent. A general discussion of Mehrotra’s Predictor-Corrector

method is given at the beginning of Chapter 4. The Reduced Mehrotra’s Predictor-

Corrector redMPC algorithm is presented afterward, along with some convergence

results. With modifications, the redMPC algorithm is also shown to be globally

and locally convergent. Numerical experiments are presented for the redPDAS and

redMPC algorithms in Chapter 5 as well as a discussion of their results. Chapter

6 provides the conclusion to the dissertation and directions for future work.

4

Chapter 2

Background

Interior-point methods (IPMs) for a linear program (LP) generate points which

lie in the interior of the region defined by the constraints of the problem. A special

class of IPMs, primal-dual methods, exhibit exceptional theoretical properties and

computational performance. This dissertation examines the effects of incorporat-

ing a column generation scheme into primal-dual IPM algorithms. To understand

the algorithm framework in the following chapters, we present some background

information in this chapter.

The chapter is divided into two sections: (1) the optimality conditions for

a primal-dual LP and (2) column generation. In section 2.1, we begin with the

standard notation used to express the primal and dual LPs and their optimality

conditions. Next, we show how a primal-dual IPM algorithm finds a solution to

these optimality conditions. In section 2.2, column generation is discussed in the

context of our algorithm framework. We introduce the notation associated with

our algorithms and explain how the index set Q associated with the reduced (dual)

constraint set is formulated. Finally, we explain how to preserve a strictly interior

point (or solution) within our algorithms.

5

2.1 Optimality Conditions for the Primal-Dual LP

Consider the primal LP in standard form,

min
x

{cTx : Ax = b, x ≥ 0}, (2.1)

where A ∈ <m×n, b ∈ <m, and c ∈ <n are the known coefficient matrix and vectors,

respectively, and x ∈ <n is a vector of unknown variables. All vectors in this thesis

are column vectors. It is assumed that A has full row rank, b, c 6= 0, and n � m.

Solving the primal LP is equivalent to solving the dual LP,

max
y

{bTy : ATy ≤ c}.

An alternative expression of the dual problem results by incorporating a nonnegative

slack vector, s, into the dual constraints:

max
y,s

{bTy : ATy + s = c, s ≥ 0}. (2.2)

This last expression is often preferred due to its ease of implementation into IPMs.

Together, problems (2.1) and (2.2) are referred to as the primal-dual pair.

The Karush-Kuhn-Tucker (KKT) [3] or optimality conditions for the primal-

dual pair, (2.1) and (2.2), can be viewed as a mapping F from <2n+m to <2n+m such

that

F (x, y, s) =




Ax− b

ATy + s− c

XSe




= 0, (2.3)

(x, s) ≥ 0,

6

where X, S ∈ <n×n are diagonal matrices constructed from the vectors x and s,

respectively, and e ∈ <n is the vector of all ones [29]. Any vector x that satisfies

the conditions Ax − b = 0 and x ≥ 0 is a feasible point for the primal LP. A dual

feasible point is any (y, s) satisfying the conditions ATy + s − c = 0 and s ≥ 0.

Thus the KKT conditions say that any point that is both primal feasible and dual

feasible and satisfies XSe = 0 is optimal for both problems. According to duality

theory (the theory that explains the relationship between the primal and dual LPs,

discussed, for example, in [20], [4]), if x and (y, s) are feasible for their respective

problems, then

bT y ≤ cTx.

That is, the dual objective function value is a lower bound for the primal objective

function value. The difference between the primal and dual objective functions,

∣∣cTx− bTy
∣∣, is known as the duality gap. At optimality, x∗ solves (2.1), (y∗, s∗)

solves (2.2), and the duality gap is zero (i.e. bTy∗ = cTx∗). Furthermore, the

condition X∗S∗e = 0 implies that at least one of the pair x∗j or s∗j must be zero for

all j = 1, 2, . . . , n. Since the nonzero components of x and s occur in complementary

positions, the condition XSe = 0 in (2.3) is referred to as the complementary

slackness condition.

In this dissertation, we focus on a class of primal-dual interior-point methods

which find solutions to (2.1) and (2.2) by applying variants of Newton’s method

to (2.3). Let z = (x, y, s) represent the current approximation to the solution and

assume that it satisfies the nonnegativity conditions x > 0 and s > 0. If z is not

7

optimal, Newton’s method forms a linear model tangent to F at z and finds a search

direction, ∆z = (∆x,∆y,∆s) ∈ <2n+m, by solving:

J(A, x, s) ∆z = −F (x, y, s),

where J is the Jacobian of F . This gives the linear system



A 0 0

0 AT I

S 0 X







∆x

∆y

∆s




= −




rp

rd

XSe



, (2.4)

where rp = Ax−b and rd = ATy+s−c are the primal and dual residuals, respectively.

By eliminating ∆s from the linear system, we obtain the following equivalent system

(also known as the “augmented system”):


A 0

S −XAT







∆x

∆y


 = −




rp

−Xrd +XSe


 ,

with ∆s = −rd − AT∆y. By further eliminating ∆x, we have the set of equations

that form a major component of primal-dual IPM algorithms:

AD2AT ∆y = −rp − AD2rd + Ax,

∆s = −rd − AT∆y, (2.5)

∆x = −x−D2∆s,

where D2 = S−1X. The equations AD2AT ∆y = −rp − AD2rd + Ax can be equiva-

lently written as AD2AT∆y = b−AD2rd since rp = Ax−b. This system of equations

is known as the “normal equations” because they are the normal equations for a

linear least squares problem with coefficient matrix DAT . Since it is assumed that A

8

has full row rank and D is a positive diagonal matrix, the coefficient matrix AD2AT

is symmetric and positive definite. As a result, the coefficient matrix can be factored

using the Cholesky factorization as AD2AT = LLT where L is lower triangular [20],

and this makes computing solutions of the normal equations easy. Once the search

direction ∆z is computed, the updated solution z+ is given by

z+ = z + α∆z,

where α ∈ (0, 1] is a parameter designed to prevent z+ from violating the condition

(x+, s+) > 0. The Newton iteration continues until the duality gap falls below a

small defined tolerance. This is the basis for primal-dual IPMs, but there are many

variants, two of which we discuss in Chapters 3 and 4.

Another way to interpret finding a solution of (2.4) is that we calculate ∆z to

satisfy the primal constraints,

A(x+ ∆x) = b,

A∆x = b− Ax, (2.6)

the dual constraints,

AT (y + ∆y) + (s+ ∆s) = c,

AT∆y + ∆s = c− ATy − s, (2.7)

and the complementary slackness condition,

(xj + ∆xj) (sj + ∆sj) = 0, ∀j

xjsj + xj∆sj + sj∆xj + ∆xj∆sj = 0, ∀j

X∆s+ S∆x = −XSe− ∆X∆Se. (2.8)

9

Equations (2.6) and (2.7) are precisely the first two blocks of equations in the linear

system (2.4). The equations in (2.8) differ from the last block of equations in (2.4)

by a nonlinear term, ∆X∆Se. To obtain an approximate solution for ∆z, we ignore

the nonlinear term. This action is permitted since ∆X and ∆S are small in the

limit and their product is even smaller. The result is applying Newton’s Method to

(2.3) and solving the linear system (2.4).

2.2 The Column Generation Heuristic

2.2.1 Overview

The bulk of the computation in solving for the search direction, ∆z, stems

from the m×m matrix, AD2AT . For dense matrices, it takes Θ(m2n) operations to

form the matrix and another Θ(m3

3
) to factor it. On large-scale LPs where n� m,

the incorporation of a column generation scheme into the primal-dual framework

can reduce this computational effort.

Originally devised by Gilmore et al. [8] in the early 1960’s, column generation

is a technique used to solve an LP by generating the columns of A as needed. This

is a beneficial tool because most of the columns of A have no effect on the optimal

solution. From duality theory, assuming nondegeneracy, there are exactly m zero

components of s corresponding to exactlym positive components of x at the optimal

solution (see [4], [5], or [20], for example). If x∗ solves the primal LP and (y∗, s∗)

solves the dual LP, we define Q∗ to be the set of indices associated with those m

positive components of x∗ (or m zero components of s∗). Since the remaining n−m

10

components of x∗ are zero, the “reduced” primal LP formed by just the columns

associated with the index set Q∗ has the same solution as the standard primal LP.

Furthermore, since the columns of A are simply the rows of AT , we can incorporate

a column generation scheme into our primal-dual framework by working with just a

subset of the dual constraints at each iteration. We try to choose this subset Q so

that Q∗ ⊂ Q. Our strategy is as follows: given any point (x, s) > 0, and any integer

k with m ≤ k ≤ n, we define the set Q ⊂ N = {1, 2, . . . n} to be the indices, j, of

the dual constraints, aT
j y ≤ cj, associated with the k largest xj/sj ratios. We define

AQ ∈ <m×k to be the submatrix of A comprised of the columns aj with j ∈ Q. The

vectors (sQ, xQ) ∈ <k are comprised of the components sj and xj, respectively, with

j ∈ Q. If k is relatively small compared to n, it takes only Θ(m2k) operations to

form the matrix AQS
−1
Q XQA

T
Q. If we can use this matrix in place of AS−1XAT , our

algorithm will significantly reduce the amount of work per iteration and possibly

take only a fraction of the time to solve a particular LP problem.

We let

∆z̃ = (∆x̃,∆y,∆s̃) ∈ <2n+m

be the approximate Newton direction at zi computed by using AQS
−1
Q XQA

T
Q in

place of AS−1XAT in (2.5). The components of the direction associated with the

neglected constraints are set to zero. The directions

∆zQ = (∆xQ,∆y,∆sQ) and ∆z̃Q = (∆x̃Q,∆ỹ,∆s̃Q)

have dimension 2k +m. These vectors are obtained by deleting the components of

∆xj, ∆sj, ∆x̃j, and ∆s̃j with j /∈ Q.

11

Our goal is to prove that applying a column generation heuristic to primal-

dual IPM algorithms for solving LPs will provide excellent theoretical properties

and computational results.

In the following three subsections, we discuss the main ingredients in the

reduced algorithms: the initial point, the choice of Q and the update strategy.

2.2.2 Initial Point

There are a number of techniques for generating initial points (see [11], [14],

or [17], for example). Our column generation approach requires (x, s) > 0 at each

iteration. To achieve this, we use the strategy of Mehrotra [17] and describe his

technique here.

Assume the columns of A are linearly independent and b, c 6= 0 and set

x̂ = AT (AAT)−1b, ŷ = (AAT)−1Ac, and ŝ = c −ATy.

The point (x̂, ŷ, ŝ) satisfies the primal and dual equality constraints. However, in or-

der to satisfy the condition (x, s) > 0, Mehrotra defines δx = max (−1.5min {x̂j} , 0)

and δs = max (−1.5min {ŝj} , 0) and then defines

δ̂x = δx + .5

[
(x̂+ δxe)

T (ŝ+ δse)∑n
j=1 ŝj + δs

]
, and

δ̂s = δs + .5

[
(x̂+ δxe)

T (ŝ+ δse)∑n
j=1 x̂j + δx

]
,

where e is the vector of ones. Then, if x0 = x̂ + δ̂xe, y
0 = ŷ, and s0 = ŝ + δ̂se, we

have an initial point

z0 = (x0, y0, s0) (2.9)

12

such that (x0, s0) > 0. The equality constraints are not necessarily satisfied, so z0

might be infeasible.

2.2.3 Selection of Q

The choice of Q is based on the k ∈ [m,n] largest xj/sj ratios at each iteration.

Assuming nondegeneracy, there will be exactlym components of s converging to zero

as the optimal solution is approached. Since the corresponding m components of x

are not converging to zero, there will be exactly m xj/sj ratios tending to infinity

as we tend to the optimal solution. Meanwhile, the remaining n − m components

of x converge to zero while the corresponding n − m components of s do not. As

a result, the remaining n − m xj/sj ratios tend to zero as the optimal solution is

approached. Since Q is the index set associated with the k ∈ [m,n] largest xj/sj

ratios at each iteration, when we are close enough to the solution, we are guaranteed

to find an optimal solution to the “reduced” dual LP based solely on the rows of

AT associated with Q. This implies that we can solve the normal equations with

coefficient matrix AQD
2
QA

T
Q. We describe our selection of Q below.

Let C satisfy 0 < C ≤ 1. We specify a lower bound on the number of indices

in Q, given by lbnd = 3m. We also specify an upper bound ubnd on the number of

indices in Q. The upper bound is a predetermined integer between 3m and n. Let

N = {1, 2, . . . , n}. The algorithm for determining Q is described below:

———————————————-

Select the most promising dual constraints:

13

1. Sort the values xj/sj so that

xj1/sj1 ≥ xj2/sj2 ≥ . . . ≥ xjn/sjn .

2. Let Q consist of the indices associated with the ratios greater than C ·(xj1/sj1):

Q = {jη : xjη/sjη > C · (xj1/sj1) , η = 1, 2, . . . , n};

k = |Q|;

3. Modify Q if necessary so that lbnd ≤ k ≤ ubnd:

if k ≥ ubnd

Q = {jη : η = 1, 2, . . . , ubnd};

elseif k ≤ lbnd

Q = {jη : η = 1, 2, . . . lbnd};

end(if)

k = |Q|;

———————————————-

In steps 1 and 2 of our algorithm, the ratios xj/sj are ordered from largest to smallest

and selected if they exceed the product of C and the value of the largest ratio at the

current iterate. The indices associated with the selected ratios make up the set Q.

The quantity C is an experimental constant chosen based on algorithm performance

(see Sections 5.2 and 5.3 for details). Step 3 guarantees that Q contains at least 3m

indices at each iteration. This is a critical component of the convergence analysis in

the following chapters. Computationally, by ensuring Q is of an “appropriate” size

14

relative to m and n, we can reduce the risk of instabilities in the performance of the

algorithm. Since n � m, a value of k close to m is likely to cause the algorithm

to cycle through an extremely large number of constraint choices before reaching

the optimal solution. A value of k close to n in early iterations is acceptable since

steps 2 and 3 of our subroutine will significantly reduce k as the optimal solution

is approached. This poses the question, “For which range of ratios k/n, where

k ∈ (m,n), are the “reduced” algorithms most efficient for solving LPs?” This and

other topics will be discussed in Chapter 5.

2.2.4 Update Strategy

Throughout the next two chapters, we use the superscript + to represent an

update to a quantity within an algorithm. Here we examine the update strategy

used within our “reduced” algorithms for the primal and dual variables as well as

the dual residuals.

In a general primal-dual IPM algorithm, the primal and dual variables are

updated by the equations:

x+ = x+ αp∆x,

y+ = y + αd∆y, (2.10)

s+ = s+ αd∆s

where αp and αd are the step lengths between 0 and 1 along the primal and dual

15

search directions, respectively. The dual residuals are updated as follows:

r+
d = ATy+ + s+ − c

= AT
(
y + αd∆y

)
+
(
s+ αd∆s

)
− c

=
(
ATy + s− c

)
+ αd

(
AT∆y + ∆s

)

= rd + αd
(
AT∆y − rd − AT∆y

)

= (1 − αd)rd.

We used the relations rd = ATy+ s− c and ∆s = −rd−AT∆y in the fourth line. In

the “reduced” algorithms, we set ∆sj = 0, ∀j /∈ Q. By setting r+
d = ATy+ + s+ − c,

we have

(rd)
+
j =






(1 − αd)(rd)j if j ∈ Q

(rd)j + αdaT
j ∆y if j /∈ Q

,

where aj is the jth column of A. Since (x0, s0) > 0, it can be shown that the

components of the initial dual residual r0
d are strictly positive and have the same

value. Therefore,

0 < (1 − αd)(rd)
0
j < (rd)

0
j , ∀j ∈ Q,

since αd ∈ (0, 1). If an index j remains in Q for every iteration, then we have

0 < (1 − αd)(rd)
i
j < (rd)

i
j, for j ∈ Q, ∀i. (2.11)

In this case, the components of the dual residual in Q at every iteration remain

strictly positive and decrease to zero as the solution is approached. If at any iter-

ation, the jth component of residual is not associated with Q, it will be updated

16

as (rd)
+
j = (rd)j + αdaT

j ∆y. Here the jth component of the dual residual does not

monotonically decrease to zero. This could potentially cause the “reduced” algo-

rithms to fail to satisfy dual feasibility. We resolve this issue by incorporating a

new update strategy into our algorithms. In the case where |Q| = n, we follow the

update strategy for a general primal-dual IPM algorithm. Otherwise, the update

strategy is described below:

We define x+ = x + αp∆x and (y+ = y + αd∆y, s+ = s + αd∆s) to be the

updates on the primal and dual variables, respectively. Since one of our goals is to

satisfy dual feasibility (ATy+ − c ≤ 0), we define υ = AT y+ − c and examine its

maximum component, denoted υ`, to determine if we are making progress to this

goal. In addition, we define a set Q̂ to represent the index set of dual constraints

that are added to Q when it is determined we are not making progress towards

satisfying dual feasibility. The set Q̂ is initially empty with Q̂ ∩ Q = ∅. After each

iteration, we have the following possible outcomes:

Case 1: Suppose ` ∈ Q.

The quantity υ` + s+
` is exactly the value of the `th component of the updated dual

residual, (rd)
+
` . Since this component of the residual is given by (rd)

+
` = (1−αd)(rd)`,

it remains strictly positive and is smaller in value than (rd)`. Therefore, we can make

progress toward satisfying dual feasibility by setting each component of the dual

residual to this value [i.e. r+
d = (υ` +s+

`)e where e ∈ <n is the vector of all ones]. To

ensure every component of the slack vector remains strictly positive (as a result of

this change), we define a new update on the slack vector as s++ = r+
d −υ. Although

the primal vector x does not affect the progress toward achieving dual feasibility,

17

it was observed through numerical testing that s++ converged to its optimal value

much faster than x+. Since the stopping criterion to our algorithms is based on

the duality gap falling below a small tolerance, our algorithms failed to converge in

reasonable time. Thus, we define a new update on the primal variables

x++
j =





x+
j j ∈ Q

min (s++, x+) j /∈ Q

to resolve this issue. Thus, the point (x++, y+, s++) is the new approximate solution

to the LP and Q̂ is set to ∅ (nullset).

Case 2: Suppose ` /∈ Q.

Since the “reduced’ algorithms only consider the columns of A associated with Q,

the term aT
` ∆y is never calculated in this case. Since it is unclear what the value

of aT
` ∆y is from iteration to iteration, there is no guarantee that we will progress

toward satisfying dual feasibility. As a result, we return to the previous solution

[i.e. set (x++, y++, s++) = (x, y, s)] and recalculate the solution with Q̂ = Q̂ ∪ {`}.

The algorithm for the update strategy used in “reduced” algorithms when

|Q| < n is summarized below.

———————————————-

Update (x+, s+) and rd:

υ = ATy+ − c;

Determine υ` = maxj{υj};

if ` ∈ Q

r+
d =

(
υ` + s+

`

)
e;

18

s++ = r+
d − υ;

x++
j =






x+
j j ∈ Q

min(s++, x+) j /∈ Q

;

Q̂ = ∅;

else

Set x++ = x; y++ = y; s++ = s;

r+
d = rd;

Q̂ = Q̂ ∪ {`};

end(if)

———————————————-

The Update (x+, s+) and rd subroutine is designed to update the components of

the dual residual and solution even when dual feasibility is satisfied. An alternative

approach to updating these terms would be to consider invoking the update scheme

only after determining that we have not satisfied dual feasibility (i.e. maxj{aT
j y

+ −

cj} > 0). Once a dual-feasible solution (y+, s+) has been determined, the solution

can be updated using the general update strategy in (2.10) until the optimal solution

has been found.

It should be noted that once the index ` is added to Q (in the case ` /∈ Q),

the algorithm recomputes the search direction from scratch using normal matrix

AQ+D2
Q+AT

Q+ where Q+ = Q ∪ {`}. A faster way to compute this search direction

would be to compute a rank-1 update. This can be accomplished since the normal

19

matrix based on Q+ is a known invertible square matrix plus a perturbation matrix:

AQ+D2
Q+AT

Q+ = AQD
2
QA

T
Q +

x`

s`
a`a

T
`

The Sherman-Morrison formula can be applied here to provide a numerically in-

expensive way to compute the inverse of AQ+D2
Q+AT

Q+ based on the rank-1 matrix

x`

s`
a`a

T
` .

2.3 Summary

In this chapter, we stated the optimality conditions for a primal-dual LP,

explained how to solve for these conditions and presented our column generation

heuristic for our “reduced” algorithms. In the next two chapters, we will focus on

two “reduced” algorithms, redPDAS and redMPC , and state the properties that

guarantee their convergence.

20

Chapter 3

A Reduced Primal-Dual Affine-Scaling (redPDAS) Algorithm

3.1 Affine-Scaling Methods

3.1.1 Overview

Primal-dual affine-scaling methods transform a linear program to an equivalent

problem via an affine scaling transformation. The transformation repositions the

current point to one well inside the boundary of the feasible region determined by

the constraints xjsj > 0 to prevent the progression to the optimal solution from

becoming arbitrarily slow. Once the current point is transformed to one close to the

“center” of the feasible region, significant progress can be made towards the optimal

solution by moving along the search direction (see [19], [20], and [26]).

The primal, dual, and primal-dual affine-scaling methods are explained in

this section. In all three cases, the problem is scaled so that the current point (or

approximation to the solution) becomes the point e (the vector of all ones) since it is

equidistant from the bounds of the region defined by the nonnegativity constraints.

A projected steepest descent 1 (ascent) direction is computed to simultaneously

decrease (increase) the objective function value and satisfy feasibility. The updated

approximation is formed by taking a step from e in the search direction. This point

1See Appendix A.

21

is then transformed back into its original coordinates.

In this chapter, we examine primal-dual affine-scaling algorithms. First we

discuss primal and dual variants. Then a general primal-dual affine scaling (PDAS)

algorithm is given in section 3.2 and a “reduced” version called redPDAS is pre-

sented in section 3.3. Preliminary results for the convergence of the redPDAS

algorithm are provided in section 3.4. Global and local convergence results follow

with specific modifications to the algorithm. Finally, the chapter is summarized in

section 3.5.

3.1.2 The Primal and Dual Affine-Scaling Methods

Consider the linear scaling transformation ΦD : <n → <n, where ΦD(x) =

D−1x with positive diagonal scaling matrix D. Here the primal variables x are

transformed to ξ = D−1x. Thus x can be expressed as Dξ. The transformation

leads to a new primal problem:

Minx c
Tx Minξ (Dc)T ξ

s.t. s.t.
Ax = b 7→ ADξ = b
x ≥ 0 ξ ≥ 0

Assuming primal feasibility, (Ax = b, x ≥ 0), we compute a search direction

∆ξ in the transformed space, a projected steepest descent direction that maintains

feasibility of the primal equality constraints. The steepest descent direction is given

by the negative gradient of the objective function, −Dc. Suppose ξ+ = ξ + ∆ξ,

where the superscript + denotes the next iteration. To maintain feasibility, we

22

must satisfy

AD(ξ + ∆ξ) = b,

or equivalently

AD∆ξ = 0.

That is, ∆ξ must lie in the null space of AD. We define

PAD = I −DAT (AD2AT)−1AD (3.1)

to be an orthogonal projection matrix 2 for AD. Then we want ∆ξ to be the pro-

jection of the steepest descent direction onto the null space of AD. The expression

for ∆ξ is given by

∆ξ = −PADDc. (3.2)

Transforming ξ+ back into the original coordinate system, we have

x+ = Dξ+

= D(ξ + ∆ξ)

= x+D∆ξ.

The difference between the new iterate and the current iterate defines the search

direction in the original coordinate system. We will denote this direction ∆x. We

2See Appendix A.

23

can write ∆x = Φ−1
D (∆ξ) as

∆x = D∆ξ

= −DPADDc

= [−D2 +D2AT (AD2AT)−1AD2] c. (3.3)

The second and third statements follow from (3.2) and (3.1), respectively. To make

ξ = e we set D ≡ X. This gives the direction ∆x generated by the primal affine-

scaling algorithm.

There is a similiar affine-scaling algorithm for the dual problem. Suppose we

have a dual feasible point (y, s) : ATy + s = c, s ≥ 0. Consider the linear scaling

transformation that maps the dual variables s to ρ = Ds where D is positive and

diagonal. The variables y are not transformed since they are unrestricted in value.

Then s can be written as D−1ρ. Assuming A has full row rank, we can write the

transformed problem exclusively in terms of the new variables ρ by solving the dual

equality constraints, ATy + s = c for y and substituting this expression into the

problem. The expression for y is obtained by first premultiplying the dual equality

constraints by A:

ATy + s = c,

AATy + As = Ac,

y =
(
AAT

)−1
(Ac− As) .

The last step follows since A has full row rank. Substituting the expression for y

24

into the objective function of the dual problem gives

bTy = bT
[(
AAT

)−1
(Ac− As)

]

= bT
[(
AAT

)−1
A
(
c−D−1ρ

)]

= bT
(
AAT

)−1
Ac− bT

(
AAT

)−1
AD−1ρ.

The second line uses the relation s = D−1ρ. Since we are interested in maximizing

the objective function, bTy, of the dual problem over y, this is the same as minimizing

bT
(
AAT

)−1
AD−1ρ with respect to ρ. The term bT

(
AAT

)−1
Ac is constant, so it

can be ignored. The dual equality constraints can be expressed as

c = ATy + s

= AT
(
AAT

)−1
(Ac− As) + s

= AT
(
AAT

)−1 (
Ac− AD−1ρ

)
+D−1ρ.

Collecting terms, we have

(
−AT

(
AAT

)−1
A + I

)
D−1ρ =

(
I −AT

(
AAT

)−1
A
)
c,

or

PAD
−1ρ = PAc,

where

PA = I − AT
(
AAT

)−1
A (3.4)

is the orthogonal projection matrix for A. The transformed dual problem becomes:

25

Maxy b
Ty Minρ (D−1AT (AAT)−1b)Tρ

s.t. s.t.
ATy + s = c 7→ (PAD

−1)ρ = PAc
s ≥ 0 ρ ≥ 0

The steepest descent direction in the transformed space is given by

−D−1AT (AAT)−1b. (3.5)

However, to maintain feasibility we must satisfy

PAD
−1(ρ+ ∆ρ) = PAc,

or equivalently

PAD
−1∆ρ = 0.

By premultiplying the steepest descent direction in (3.5) by the orthogonal projec-

tion matrix I − PAD = DAT (AD2AT)−1AD, where PAD is defined in (3.1) , we

have

∆ρ = −(I − PAD)D−1AT (AAT)−1b

= −DAT (AD2AT)−1ADD−1AT (AAT)−1b

= −DAT (AD2AT)−1b.

It follows that

PAD
−1∆ρ = (I −AT (AAT)−1A)D−1

(
−DAT (AD2AT)−1b

)

= −AT (AD2AT)−1b+ AT (AAT)−1AAT (AD2AT)−1b

= −AT (AD2AT)−1b+ AT (AD2AT)−1b

= 0.

26

If the next iterate is ρ+ = ρ + ∆ρ, we have

s+ = D−1ρ+

= s+D−1∆ρ

and

∆s = −AT (AD2AT)−1b. (3.6)

We determine ∆y to maintain dual feasibility. That is, we must satisfy

ATy+ + s+ = c,

AT (y + ∆y) + (s+ ∆s) = c,

AT ∆y + ∆s = 0. (3.7)

This last equation follows from the fact that ATy + s = c. Premultiplying (3.7) by

A and solving for ∆y, we find

∆y = −(AAT)−1A∆s

= (AD2AT)−1b. (3.8)

When D ≡ S−1, (∆y,∆s) is the direction generated by the dual affine-scaling

algorithm.

3.1.3 The Primal-Dual Affine-Scaling Method

In a primal-dual setting, the scaling matrix is D ≡ (S−1X)
1/2

. The point XSe

is repositioned with respect to both nonnegativity constraints, x > 0 and s > 0.

27

Assuming primal and dual feasibility, ∆x from (3.3) and (∆y,∆s) from (3.6) and

(3.8) with D ≡ (S−1X)
1/2

are given by

∆x = [−S−1X + S−1XAT (AS−1XAT)−1AS−1X] c

= [−S−1X + S−1XAT (AS−1XAT)−1AS−1X] (ATy + s)

= −S−1XAT y − S−1Xs + S−1XAT (AS−1XAT)−1AS−1XATy

+S−1XAT (AS−1XAT)−1AS−1Xs

= −S−1XAT y − x+ S−1XATy + S−1XAT (AS−1XAT)−1Ax

= −x+ S−1XAT (AS−1XAT)−1Ax

= −x+ S−1XAT (AS−1XAT)−1b,

and

∆y = (AS−1XAT)−1b,

∆s = −AT (AS−1XAT)−1b.

Simplifying the expressions for the directions, we have

∆y = (AS−1XAT)−1b,

∆s = −AT∆y,

∆x = −x− S−1X∆s.

The primal-dual affine-scaling direction is exactly the standard Newton step for

solving the optimality conditions for the primal or dual problem:

28




A 0 0

0 AT I

S 0 X







∆x

∆y

∆s




= −




0

0

XSe



. (3.9)

3.1.4 Algorithms

The algorithms in this chapter are written completely in terms of the original

variables. We let ∆xa and (∆ya,∆sa) be the components of the affine-scaling direc-

tion associated with the primal and dual problems, respectively. We start with an

initial point (x, y, s) satisfying x > 0 and s > 0. Primal and dual feasiblity are not

required in our algorithms. Let rp = Ax − b and rd = ATy + s − c be the primal

and dual residuals, respectively. The search direction we seek is the solution to the

system:




A 0 0

0 AT I

S 0 X







∆xa

∆ya

∆sa




= −




rp

rd

XSe



. (3.10)

The expressions for the components of this direction are given by

∆ya = (AS−1XAT)−1(b−AS−1Xrd),

∆sa = −rd −AT ∆ya,

∆xa = −x− S−1X∆sa.

To avoid moving too far along the path of the search direction, step lengths

are incorporated in the algorithms. Step lengths α̂p and α̂d are chosen as the largest

29

value (computed by a ratio test) to satisfy x + α̂p∆xa ≥ 0 and s + α̂d∆sa ≥ 0.

To ensure that the step length does not exceed 1, we set α̂p = min {α̂p, 1} and

α̂d = min
{
α̂d, 1

}
. To ensure x+ > 0 and s+ > 0, the step lengths are then multiplied

by a fixed positive number τ where 0 < τ < 1. Therefore, x and s are updated by

computing x+ = x + αp∆xa > 0 and s+ = s + αd∆sa > 0 where
(
αp, αd

)
=

τ
(
min{α̂p, 1} ,min

{
α̂d, 1

})
. The dual variables y are unrestricted in value and

updated by y+ = y + αd∆ya.

Since the expressions for the affine-scaling direction depend on the dual resid-

uals, the dual residuals must be updated within the algorithms as well. The update

for the dual residuals can be written as

r+
d = ATy+ + s+ − c

= AT (y + αd∆ya) + (s+ αd∆sa) − c

= (ATy + s− c) + αd(AT∆ya + ∆sa)

= (1 − αd)rd.

Observe that the expressions for the affine-scaling direction do not depend on the

primal residuals. As a result, the primal residuals are not incorporated into the

algorithms.

The algorithms terminate once x and y are feasible for their respective prob-

lems and the duality gap |cTx− bTy| falls below a small tolerance, λ.

30

3.2 A Primal-Dual Affine-Scaling (PDAS) Algorithm

In this section, we summarize a general PDAS algorithm (see Monteiro et al.

[19])

———————————————-

A General PDAS Algorithm

Input: (x, y, s) with x > 0 and s > 0, 0 < τ < 1, convergence tolerance λ.

Initialize: rd = ATy + s− c.

Main Algorithm:

while |cTx− bTy|/max |cTx, 1| > λ

Compute the affine-scaling direction:

∆ya =
(
AS−1XAT

)−1 [
b− AS−1Xrd

]
,

∆sa = −rd − AT∆ya,

∆xa = −x− S−1X∆sa.

Compute the affine step:

α̂p =






1 if ∆xa
j ≥ 0, ∀j

min∆xa
j
<0

[
−xj/∆x

a
j

]
otherwise

,

α̂d =






1 if ∆sa
j ≥ 0, ∀j

min∆sa
j
<0

[
−sj/∆s

a
j

]
otherwise

,

αp = τ min (α̂p, 1) ; αd = τ min
(
α̂d, 1

)
.

31

Update the solution:

x+ = x+ αp∆xa,

y+ = y + αd∆ya,

s+ = s+ αd∆sa.

Update the residuals:

r+
d =

(
1 − αd

)
rd.

end(while)

———————————————-

3.3 The redPDAS Algorithm

The general PDAS algorithm in section 3.2 considers the entire LP data set

(A, b, c) at every iteration. In this section, we present a reduced PDAS algorithm,

redPDAS. The vectors ∆x̃a ∈ <n×1 and (∆ỹa,∆s̃a) ∈ <(m+n)×1 define the affine-

scaling direction in the redPDAS algorithm. We refer to ∆z̃a = (∆x̃a,∆ỹa,∆s̃a)

as the approximate affine-scaling direction. The vectors ∆x̃a
Q ∈ <k×1 and ∆s̃a

Q ∈

<k×1 are composed of the components ∆x̃a
j and ∆s̃a

j , respectively, with j ∈ Q.

Let Q̂ represent the index set of dual constraints that are added to Q when it is

determined the algorithm is not making progress towards satisfying dual feasibility.

To differentiate the scalar quantities αp and αd from the general PDAS algorithm,

we use the subscript Q to emphasize their computation within this algorithm.

———————————————-

32

The redPDAS Algorithm

Input: (x, y, s) with x > 0 and s > 0, ubnd ≥ 3m, 0 < τ < 1, convergence tolerance

λ.

Initialize: rd = ATy + s− c, lbnd = 3m, Q = {1, 2, . . . , n}, Q̂ = ∅ (null set).

Main Algorithm:

while |cTx− bTy|/max |cTx, 1| > λ

Select the most promising dual constraints 3

Q = Q ∪ Q̂,

k = |Q|.

Compute the affine-scaling direction:

∆ỹa =
(
AQS

−1
Q XQA

T
Q

)−1 [
b− AQS

−1
Q XQ(rd)Q

]
, (3.11)

∆s̃a
Q = −(rd)Q − AT

Q∆ỹa, (3.12)

∆x̃a
Q = −xQ − S−1

Q XQ∆s̃a
Q.

Compute the affine step:

α̂p
Q =






1 if (∆x̃a
Q)j ≥ 0, ∀j

min(∆x̃a
Q

)j<0

[
−(xQ)j/(∆x̃

a
Q)j

]
otherwise

,(3.13)

α̂d
Q =





1 if (∆s̃a
Q)j ≥ 0, ∀j

min(∆s̃a
Q)j<0

[
−(sQ)j/(∆s̃

a
Q)j

]
otherwise

,(3.14)

αp
Q = τ min

(
α̂p

Q, 1
)
, αd

Q = τ min
(
α̂d

Q, 1
)
. (3.15)

3The set Q is determined by the algorithm in Section 2.2.3: Selection of Q

33

Create full length vectors, ∆x̃a and ∆s̃a:

∆x̃a
j =





(∆x̃a
Q)jη if η ∈ Q

0 otherwise

, (3.16)

∆s̃a
j =






(∆s̃a
Q)jη if η ∈ Q

0 otherwise

. (3.17)

Update the solution and dual residuals:

x+ = x+ αp
Q∆x̃a, (3.18)

y+ = y + αd
Q∆ỹa,

s+ = s+ αd
Q∆s̃a.

if k < n

Update (x+, s+) and rd. 4

else

r+
d =

(
1 − αd

Q

)
rd.

end(if)

Prepare for the next iteration:

x = x++, s = s++, y = y+, rd = r+
d .

end(while)

———————————————-

4The updated solution and dual residuals are determined by the algorithm in Section 2.2.4:
Update Strategy

34

3.4 Convergence Analysis of redPDAS

In this section, we provide preliminary results for the convergence of the

redPDAS algorithm. Specifically, we show that our algorithm is well-defined and

that the direction we compute is an approximation to the standard Newton direc-

tion used in PDAS. With these results and certain modifications to the algorithm,

we show how global and local quadratic convergence can be proved. A complete

analysis of global and local quadratic convergence follow from Tits et al. [24] which

is strongly modeled from the analysis in [23] inspired by [21] and [25].

We define N = {1, 2, . . . , n} and Q̄ = {j ∈ N : j /∈ Q}. We have normalized

the problem so that ‖aj‖2 = 1 where aj denotes the jth column of A. The following

assumptions will be needed for the analysis:

Assumptions:

(A1) Every m× k submatrix of A has full row rank and b 6= 0.

(A2) Nondegeneracy conditions hold: If (x∗, y∗, s∗) solves the primal-dual pair then

there exist exactly m indices in β = {j ∈ N : x∗j > 0, s∗j = 0} and n − m

indices in β̄ = {j ∈ N : x∗j = 0, s∗j > 0}.

The first two lemmas show that the components of the dual residual as well as

vectors x and s remain strictly positive.

Lemma 3.1 : Suppose the initial point z0 is defined as in Section 2.2.2, with

(x0, s0) > 0. Then if z0 is not the optimal solution, r0
d > 0 and 0 < r+

d < rd.

35

Proof: The initial dual residual vector is given by

r0
d = ATy0 + s0 − c,

where y0 = ŷ =
(
AAT

)−1
Ac and s0 = ŝ + δ̂se = c − ATy0 + δ̂se. Simplifying this

expression gives

r0
d = δ̂se,

where e is the vector of all ones. The expression for δ̂s is given by

δ̂s = δs + .5

[
(x̂+ δxe)

T (ŝ+ δse)∑n
j=1 x̂j + δx

]
,

where δx = max (−1.5min {x̂j} , 0) and δs = max (−1.5min {ŝj} , 0) with x̂ =

AT
(
AAT

)−1
b. By Assumption (A1), x̂ 6= 0 and ŝ 6= 0. To show r0

d > 0, we

must prove δ̂s > 0. This can be done by showing (1) x̂ + δxe ≥ 0, (2) ŝ + δse ≥ 0,

and (3)
∑n

j=1 x̂j + δxe > 0.

(1) If min {x̂j} < 0, then δx = max (−1.5min {x̂j} , 0) = −1.5min {x̂j} > 0.

Therefore,

x̂j + δx = x̂j − 1.5min {x̂j}

≥ min {x̂j} − 1.5min {x̂j}

= −.5min {x̂j}

> 0.

If min{x̂j} ≥ 0, then δx = max (−1.5min {x̂j} , 0) = 0. Therefore,

x̂j + δx = x̂j

≥ min{x̂j}

≥ 0.

36

This proves x̂+ δxe ≥ 0.

(2) A similar proof shows ŝ+ δse ≥ 0.

(3) Since x̂ 6= 0, there exists at least one component of x̂ such that x̂j 6= 0.

Therefore,
∑n

j=1 x̂j + δxe > 0.

The previous three results imply that

(x̂+ δxe)
T (ŝ+ δse)∑n

j=1 x̂j + δx
≥ 0.

If min{ŝj} < 0, then δs > 0 and

(rd)
0
j = δ̂s = δs + .5

[
(x̂+ δxe)

T (ŝ+ δse)∑n
j=1 x̂j + δx

]
> 0, ∀j.

If min{ŝj} ≥ 0, then δs = 0 and

(rd)
0
j = δ̂s = .5

[
(x̂+ δxe)

T ŝ∑n
j=1 x̂j + δx

]
> 0, ∀j,

since (x̂, ŝ) 6= 0. This proves

r0
d = δ̂se > 0.

For the second part of this proof, let υ = ATy+ − c. It should be noted that

the dual residuals are only updated in the case where the index ` associated with

υ` = maxj(υj) is in Q. The updated dual residuals are given by

r+
d =

(
υ` + s+

`

)
e

=
[
(1 − αd

Q)(rd)`

]
e.

We know (rd)
0
j = δ̂s > 0 for all j. Since the step length αd

Q ∈ (0, 1), we have

0 < (1 − αd
Q)(rd)j < (rd)j, ∀j.

37

[]

Lemma 3.2 : Suppose (x, s) > 0 and rd > 0. Then (i) (x+, s+) > 0; (ii) (x++, s++) >

0.

Proof: Suppose x, s > 0. Then for (i) we have,

x+ = x+ αp
Q∆x̃a.

Since ∆x̃a
Q̄

= 0, x+
j = xj > 0 for all j ∈ Q̄. We now examine x+

j with j ∈ Q. By

definition,

αp
Q = τ






1 if (∆x̃a
Q)j ≥ 0, ∀j

min

(
minj

{
−(xQ)j

(∆x̃a
Q

)j
: (∆x̃a

Q)j < 0

}
, 1

)
otherwise

,

where 0 < τ < 1. If (∆x̃a
Q)j ≥ 0 for all j, then

(x+
Q)j = (xQ)j + τ (∆x̃a

Q)j > 0, ∀j.

Otherwise, let

tk =
−(xQ)k

(∆x̃a
Q)k

= min
j

{
−(xQ)j

(∆x̃a
Q)j

: (∆x̃a
Q)j < 0

}
,

where k is the index of the minimum ratio. Suppose (x+
Q)j = (xQ)j +αp

Q(∆x̃a
Q)j ≤ 0

for some j. If αp
Q = τtk, then

(x+
Q)j = (xQ)j + τtk(∆x̃

a
Q)j ≤ 0.

Solving for tk, we have

τtk(∆x̃
a
Q)j ≤ −(xQ)j,

tk ≥ −(xQ)j

τ · (∆x̃a
Q)j

>
−(xQ)j

(∆x̃a
Q)j

.

38

This is a contradiction since tk is the minimum ratio so in this case x+
Q > 0.

If αp
Q = τ , then ∆x̃a

Q ≥ 0 by (3.13) and xQ > 0 by assumption. Therefore,

x+
Q = xQ + αp

Q∆x̃a
Q > 0.

A similar analysis holds for s+. This proves (i).

For (ii), let υ` = maxj (υj) where υ = AT y+ − c. If ` ∈ Q, the updated slack

vector s++ is given by

s++ = r+
d − υ,

where r+
d = υ` + s+

` . Continuing we have

s++ = r+
d − υ

=
(
υ` + s+

`

)
e− υ.

So, for all j,

sj ≥ υj + s+
l − υj

> 0.

Since

x++
j =






x+
j j ∈ Q

min(s++, x+) j /∈ Q

,

it follows that x++ > 0. If ` ∈ Q̄, we return to the previous iterate and recompute

the solution. In this case (x++, s++) = (x, s) > 0. []

The next two lemmas show the reduced form of the normal equation matrix

and augmented Jacobian of F are nonsingular.

39

Lemma 3.3 : Suppose (A2) holds and XQ, SQ > 0. Then AQS
−1
Q XQA

T
Q is positive

definite.

Proof: Suppose v is any non-zero vector in <m. Then

vTAQS
−1
Q XQA

T
Qv = ‖DQA

T
Qv‖2,

where DQ = S−1
Q XQ. Our assumption implies DQ is positive definite. Since AQ has

full row rank and v 6= 0, AT
Qv 6= 0. Therefore ‖DQA

T
Qv‖2 > 0 and AQS

−1
Q XQA

T
Q is

positive definite. []

In Chapter 2, we defined the vector

F (x, y, s) = −




rp

rd

XSe



,

where rp = Ax− b and rd = AT y+ s− c. The Jacobian of F , denoted J(A, x, s), is

given by 


A 0 0

0 AT I

S 0 X



.

By eliminating ∆s in the linear system,

J(A, x, s) ∆z = −F (x, y, s),

we have 

A 0

S −XAT







∆x

∆y


 = −




rp

X (s− rd)


 .

40

The matrix 

A 0

S −XAT




is referred to as the augmented Jacobian of F , denoted Ja(A, x, s). The next lemma

shows Ja(AQ, xQ, sQ) is nonsingular.

Lemma 3.4 : Suppose (A2) holds and xQ, sQ > 0. Then the augmented Jacobian

of F (xQ, y, sQ), 


0 AQ

−XQA
T
Q SQ


 ,

is nonsingular.

Proof:

Assume the system given by




0 AQ

−XQA
T
Q SQ






λ1

λ2


 =




0

0




has a nonzero solution. This gives the equations

AQλ2 = 0, (3.19)

XT
QA

T
Qλ1 − SQλ2 = 0, (3.20)

for some vectors λ1 and λ2. Solving equation (3.20) for λ2 and substituting this

expression into (3.19) gives

AQS
−1
Q XQA

T
Qλ2 = 0.

41

By Lemma (3.3), AQS
−1
Q XQA

T
Q is positive definite and therefore nonsingular. There-

fore, λ2 = 0. Equation (3.20) reduces to

AT
Qλ1 = 0,

since xQ > 0. This implies λ1 = 0 since AQ has full row rank. This contradicts our

assumption that [λ1, λ2]
T

is nonzero and the result follows. []

We now show the norm of the difference between the standard direction com-

puted in PDAS and redPDAS is bounded. The dual residual vector associated

with the redPDAS algorithm is denoted by r̃d. All other notation is standard.

Theorem 3.1 Suppose assumptions (A1) - (A3) hold. Given δ > 0, let

Υδ = {z : ‖z − z∗‖ < δ, x > 0, s > 0} .

Given z ∈ Υδ, let ∆za be the Newton direction at z. Then there exists κ > 0 such

that

∥∥∆z̃a
Q − ∆za

Q

∥∥ ≤ κ ‖z − z∗‖ ‖∆za‖ ,

for all z ∈ Υδ.

Proof:

We use a strategy similar to the one in Tits et al. [24]. Let z ∈ Υa. The direction

∆z̃a is given by




0 AQ

−XQA
T
Q SQ







∆ỹa

∆x̃a
Q


 =




b− AQxQ

XQ

[
(r̃d)Q − sQ

]


 . (3.21)

42

The PDAS Newton direction is given by



0 A

−XAT S







∆ya

∆xa


 =




b− Ax

X [rd − s]


 .

Partitioning the previous expression in terms of Q and Q̄ gives



0 AQ AQ̄

−XQA
T
Q SQ 0

−XQ̄A
T
Q̄

0 SQ̄







∆ya

∆xa
Q

∆xa
Q̄




=




b− AQxQ − AQ̄xQ̄

XQ [(rd)Q − sQ]

XQ̄

[
(rd)Q̄ − sQ̄

]



.

Premultiplying the third row by −AQ̄S
−1
Q̄

and adding to the first row, we can elim-

inate ∆xa
Q̄

to obtain the following system of equations,

AQ̄S

−1
Q̄
XQ̄A

T
Q̄

AQ

−XQA
T
Q SQ







∆ya

∆xa
Q


 =




b− AQxQ

XQ

[
(r̃d)Q − sQ

]


 −




AQ̄S
−1
Q̄
XQ̄(rd)Q̄

XQ

[
(r̃d)Q − (rd)Q

]


 . (3.22)

The first term in the right-hand side of (3.22) is exactly the right-hand side of (3.21).

The last k components of the second vector are zero since rd = r̃d. Combining (3.21)

and (3.22), we have


0 AQ

−XQA
T
Q SQ







∆ỹa

∆x̃a
Q


 =



AQ̄S

−1
Q̄
XQ̄A

T
Q̄

AQ

−XQA
T
Q SQ







∆ya

∆xa
Q


 + ψ,

where

ψ =



AQ̄S

−1
Q̄
XQ̄(rd)Q̄

0


 .

43

Since


AQ̄S

−1
Q̄
XQ̄A

T
Q̄

AQ

−XQA
T
Q SQ


 =



AQ̄S

−1
Q̄
XQ̄A

T
Q̄

0

0 0


+




0 AQ

−XQA
T
Q SQ


 ,

and since Ja(AQ, xQ, sQ) is nonsingular by Lemma 3.4, we can express the difference

between the two directions by


∆ỹa

∆x̃a
Q


−




∆ya

∆xa
Q


 =

Ja(AQ, xQ, sQ)−1






AQ̄S

−1
Q̄
XQ̄A

T
Q̄

0

0 0







∆ya

∆xa
Q


+ ψ


 . (3.23)

The norm of the left-hand side of (3.23) is bounded by the sum of the norms of the

individual terms on the right-hand side. Since Ja(AQ, xQ, sQ) is nonsingular for all

Q and there are only a finite number of choices of Q,

∥∥Ja(AQ, xQ, sQ)−1
∥∥ ≤ κ0,

44

for some κ0 > 0. The norm

∥∥∥∥∥∥∥∥



AQ̄S

−1
Q̄
XQ̄A

T
Q̄

0

0 0




∥∥∥∥∥∥∥∥
=

∥∥∥AQ̄S
−1
Q̄
XQ̄A

T
Q̄

∥∥∥

= max
‖v‖=1

∥∥∥AQ̄S
−1
Q̄
XQ̄A

T
Q̄v
∥∥∥ , where v ∈ <n−k

= max
‖v‖=1

∥∥∥∥∥∥

∑

j∈Q̄

xj

sj
aja

T
j v

∥∥∥∥∥∥

≤ max
‖v‖=1

∑

j∈Q̄

∣∣∣∣
xj

sj

∣∣∣∣
∣∣aT

j v
∣∣ ‖aj‖ ,

by the Triangle Inequality

≤
∑

j∈Q̄

∣∣∣∣
xj

sj

∣∣∣∣ , by Assumption (A4)

=
∥∥∥S−1

Q̄
XQ̄

∥∥∥
1

≤ (n− k)
∥∥∥S−1

Q̄

∥∥∥
∥∥XQ̄

∥∥ ,

since ‖h‖1 ≤ n ‖h‖2 , ∀h ∈ <n

= (n− k)
∥∥∥S−1

Q̄

∥∥∥
∥∥∥XQ̄ −X∗

Q̄

∥∥∥ , since X∗
Q̄ = 0

≤ (n− k)
∥∥∥S−1

Q̄

∥∥∥ ‖z − z∗‖ .

The relation in the third to last step can be found, for example, in [10] or [27]. Let

∥∥∥S−1
Q̄

∥∥∥ = max
j∈Q̄

(1/sj) = κ1. (3.24)

Then,

45

∥∥∥∥∥∥∥∥
Ja(AQ, xQ, sQ)−1



AQ̄S

−1
Q̄
XQ̄A

T
Q̄

0

0 0







∆ya

∆xa
Q




∥∥∥∥∥∥∥∥

≤
∥∥Ja(AQ, xQ, sQ)−1

∥∥

∥∥∥∥∥∥∥∥



AQ̄S

−1
Q̄
XQ̄A

T
Q̄

0

0 0




∥∥∥∥∥∥∥∥

∥∥∥∥∥∥∥∥




∆ya

∆xa
Q




∥∥∥∥∥∥∥∥
≤ κ0 · (n− k)κ1 ‖z − z∗‖ · ‖∆za‖

= κ2 ‖z − z∗‖ ‖∆za‖ , (3.25)

where κ2 = κ0 · κ1 · (n − k). This gives a bound for the norm of the first term in

(3.23). Examining the norm of the second term in (3.23), we find

‖ψ‖ =

∥∥∥∥∥∥∥∥



AQ̄S

−1
Q̄
XQ̄(rd)Q̄

0




∥∥∥∥∥∥∥∥

=
∥∥∥AQ̄S

−1
Q̄
XQ̄(rd)Q̄

∥∥∥

=
∥∥∥AQ̄S

−1
Q̄
XQ̄

(
−AT

Q̄∆ya − ∆sa
Q̄

)∥∥∥

≤
∥∥∥AQ̄S

−1
Q̄
XQ̄A

T
Q̄

∥∥∥ ‖∆ya‖ +
∥∥AQ̄

∥∥
∥∥∥S−1

Q̄

∥∥∥
∥∥XQ̄

∥∥
∥∥∥∆sa

Q̄

∥∥∥

≤ (n− k)κ1 ‖z − z∗‖ ‖∆za‖ + (n− k)κ1 ‖z − z∗‖ ‖∆za‖ ,

since
∥∥∥AQ̄S

−1
Q̄
XQ̄A

T
Q̄

∥∥∥ ≤ (n− k)κ1 ‖z − z∗‖,
∥∥∥S−1

Q̄

∥∥∥ = κ1, and
∥∥XQ̄

∥∥ =
∥∥∥XQ̄ −X∗

Q̄

∥∥∥ ≤

‖z − z∗‖. The third line follows since rd = −AT∆ya−∆sa in the PDAS algorithm.

46

The norm of AQ̄ is bounded by

∥∥AQ̄

∥∥ = max
v 6=0

∥∥AQ̄v
∥∥

‖v‖ , where v ∈ <n−k

= max
v 6=0

∥∥∥
∑

j∈Q̄ ajvj

∥∥∥
‖v‖

≤ max
v 6=0

∑
j∈Q̄ ‖aj‖ |vj|

‖v‖

= max
v 6=0

‖v‖1

‖v‖

≤ max
v 6=0

(n− k) ‖v‖
‖v‖

= n− k.

Therefore,

∥∥Ja(AQ, xQ, sQ)−1ψ
∥∥ ≤

∥∥Ja(AQ, xQ, sQ)−1
∥∥ ‖ψ‖

≤ κ0 · 2(n− k)κ1 ‖z − z∗‖ ‖∆za‖

= 2κ2 ‖z − z∗‖ ‖∆za‖ . (3.26)

Combining (3.23), (3.25), and (3.26), we have

∥∥∆z̃a
Q − ∆za

Q

∥∥ ≤ 3κ2 ‖z − z∗‖ ‖∆za‖ .

Setting κ = 3κ2 gives the desired result. []

Global and local quadratic convergence proofs can be shown provided specific

modifications are made to the redPDAS algorithm. These modifications follow

from Tits et. al. [24] where a complete convergence analysis can be found. Before

we explain these changes, we summarize the differences between the redPDAS al-

gorithm and its modified version in Table 3.1:

47

redPDAS Modified redPDAS

algorithm algorithm

Accepts a dual-infeasible Requires a dual-feasible

Feasibility: initial point; strives to point at each iteration

achieve dual-feasibility

Terms AQD
2
QA

T
Q, ∆x̃a

Q, ∆s̃a
Q, AQD

2
QA

T
Q, ∆x̃a

Q

with Q: xQ, sQ, (rd)Q

Dual affine αd
Q = τ min

(
α̂d

Q, 1
)

αd
Q = min

(
max

{
τ α̂d

Q, α̂
d
Q − ‖∆ya‖

}
, 1
)

step: where 0 < τ < 1 where 0 < τ < 1

Uses a general updating Uses a general updating

strategy to compute strategy to compute

Update x+, y+, and s+; y+ and s+; provides

scheme: provides a unique updating a unique updating

scheme to compute r+
d and scheme to compute x+

further update x+ and s+

Table 3.1: A summary of the differences between the redPDAS algorithm and a

modified version of the algorithm adapted from Tits et. al. [24] that proves to be

locally and quadratically convergent.

48

The following preliminary information comes from Tits et. al. [24]:

Let

F =
{
y : ATy ≤ c

}
(3.27)

be the feasible solution set for the dual LP problem and

I(y) =
{
j ∈ N : aT

j y = cj
}

(3.28)

denote the index set of active constraints at y. It is assumed

(A4) The dual optimal solution set F ∗ =
{
y∗ ∈ F : bTy∗ ≥ bTy ∀y ∈ F

}
is nonempty

and bounded,

(A5) For all y ∈ F , {aj : j ∈ I(y)} is a linearly independent set of vectors, and

(A6) The dual optimal solution set from assumption (A5) is such that F ∗ = {y∗}

(i.e. y∗ is unique).

Assumptions (A4) and (A5) are required to show global convergence. Assumption

(A6), which supersedes (A4), is used to show local quadratic convergence. We now

address the modifications required for the convergence analysis.

Two significant changes to the redPDAS algorithm allow a complete con-

vergence analysis. The first modification is maintaining dual-feasibility at each

iteration. This implies si = c − ATyi > 0 and ri
d = 0 for all i. Consequently, the

algorithm for updating (x+, s+) and rd has no effect on this dual-feasible algorithm

and can be discarded. Furthermore, equations (3.12) and (3.14) must be computed

49

with the full data to satisfy the above requirement on the slack variables. As a

result, equation (3.17) must be eliminated from the algorithm. The second critical

change is the update scheme for the primal variables. The ∆x̃a
Q component of the

normal equations remains the same; however the full length vector ∆x̃a in (3.16) is

determined before the “Compute the affine step” section, and the primal affine step

(3.13) and the updated primal solution (3.18) can be replaced with

x̃ = x+ ∆x̃a,

[x̃−]j = min {x̃j, 0} ,

and

x+
j = min

{
max

(
min

{
‖∆ya‖2 + ‖x̃−‖2 , x

}
, (x̃−)j

)
, xmax

}
∀j ∈ N, (3.29)

respectively, with x > 0 and xj ≤ xmax ∀j ∈ N . The key to the global convergence

analysis is the availability of a dual-feasible point at every iteration along with the

condition, ‖∆ya‖2
+ ‖x̃−‖2

, on the primal updates. A local quadratic convergence

analysis follows provided the above conditions hold and the bound α̂d
Q − ‖∆ya‖

is imposed on the dual affine step in equation (3.15). The modified redPDAS

algorithm is presented below:

———————————————-

The Dual-Feasible redPDAS Algorithm

Input: (x, y, s) with x > 0, xmax > 0 such that xj ≤ xmax ∀j ∈ N and s = c − ATy,

x > 0, ubnd ≥ 3m, 0 < τ < 1, convergence tolerance λ.

Initialize: lbnd = 3m, Q = {1, 2, . . . , n}, Q̂ = ∅.

50

Main Algorithm:

while |cTx− bTy|/max |cTx, 1| > λ

Select most promising dual constraints 5

Q = Q ∪ Q̂.

Compute the affine-scaling direction:

∆ỹa =
(
AQS

−1
Q XQA

T
Q

)−1
b,

∆s̃a = −AT∆ỹa,

∆x̃a
Q = −xQ − S−1

Q XQ∆s̃a
Q.

Create the full vector ∆x̃a:

∆x̃a
j =





(∆x̃a
Q)jη if η ∈ Q

0 otherwise

.

Set x̃ = x+ ∆x̃a and for j ∈ N , define

[x̃−]j = min {x̃j, 0} .

Compute the affine step:

α̂d
Q =






1 if ∆s̃a
j ≥ 0, ∀j

min∆s̃a
j
<0

[
−sj/∆s̃

a
j

]
otherwise

,

αd
Q = min

(
max

{
τ α̂d

Q, α̂
d
Q − ‖∆ya‖

}
, 1
)
.

Update the solution:

x+
j = min

{
max

(
min

{
‖∆ya‖2 + ‖x̃−‖2 , x

}
, (x̃−)j

)
, xmax

}
∀j ∈ N,

5The set Q is determined by the algorithm in Section 2.2.3: Selection of Q

51

y+ = y + αd
Q∆ỹa,

s+ = s+ αd
Q∆s̃a.

end(while)

———————————————-

Under Assumptions (A1), (A4), and (A5) and the aforementioned modifica-

tions to the redPDAS algorithm, we can produce a proof of global convergence

that follows from Tits et al. [24]. We give a brief outline here.

Lemmas (3.2) and (3.3) can be extended to the modified redPDAS algorithm

to show the algorithm is well-defined. As a result, the ∆ya-component of the normal

equations can justifiably be expressed as

∆ỹa =
(
AQS

−1
Q XQA

T
Q

)−1
b.

Since it is assumed b 6= 0, the sequence of dual objective function values
{
bTy
}

is

nondecreasing. Let K be an infinite index set. If we assume {y} converges to y∗ and

{∆ya} converges to 0 on K, then it can be shown that y∗ is stationary (i.e. Ax∗ =

b,X∗s∗ = 0) and {x̃} converges to x∗ where x∗ is the unique Lagrange multiplier

associated with y∗. Proving {y} converges to F ∗ (global convergence) requires two

main steps. The first step is to prove {y} converges to the set of stationary points

y∗ of the dual LP problem. This is achieved by a contradiction argument: if {y}

converges to a nonstationary point on K, then {∆ya} must converge to 0 on K. The

proof is largely dependent on the bound, ‖∆ya‖2 + ‖x̃−‖2, in the primal updates.

The second step is to prove that the mulitplier 6 vectors associated with all limit

6The set of x ∈ <n such that Ax = b and X(c − AT y) = 0.

52

points of {y} are the same. Using the proofs from steps 1 and 2 along with the fact

that
{
bTy
}

is nondecreasing, it can be shown {y} converges to F ∗.

With the additional assumption (A6), (local) q-quadratic convergence of the

pair (x, y) 7 can be shown. Assumption (A6) implies that strict complementary

holds, i.e.

x∗j > 0, s∗j = cj − aT
j y

∗ = 0 ∀j ∈ I(y∗).

Furthermore,

span ({aj : j ∈ I(y∗)}) = <m.

We can extend the above results to Lemma 3.4 to show J(AQ, x
∗
Q, s

∗
Q) is nonsingular.

This, in addition to Lemmas 1, 14 and Proposition 15, all in Tits et al. [24], along

with Lemma (3.1) with rd = 0 and the bound on the dual affine step, α̂d
Q − ‖∆ya‖,

provides the necessary tools to complete the q-quadratic convergence analysis.

3.5 Summary

In this chapter, we introduced the redPDAS algorithm and explained how

specific modifications to the algorithm provide global and local q-quadratic con-

vergence results. With further research, we hope to prove similar results for the

redPDAS algorithm. Numerical results from redPDAS are given in Chapter 5.

Before presenting the results we present the redMPC algorithm.

7The sequence
{
(xi, yi)

}
converges q-quadratically to (x∗, y∗) if it converges to (x∗, y∗) and

there exists a constant κ such that
∥∥(xi+1, yi+1) − (x∗, y∗)

∥∥ ≤ κ
∥∥(xi, yi)

∥∥2
.

53

Chapter 4

A Reduced Mehrotra Predictor-Corrector (redMPC) Algorithm

4.1 MPC Method

4.1.1 Overview

Mehrotra’s Predictor-Corrector algorithm generates a sequence of approximate

solutions, z(µ) = (x(µ), y(µ), s(µ)), to the perturbed KKT conditions:

Ax(µ) − b = 0, (4.1)

ATy(µ) + s(µ) − c = 0, (4.2)

X(µ)S(µ)e = σµe, (4.3)

(x(µ), s(µ)) > 0, (4.4)

where 0 ≤ σ ≤ 1 and µ = xTs/n > 0. The conditions here differ from the KKT

condtions in (2.3) in that the solution z(µ) is uniquely defined for each µ > 0 and

the pairwise products xj(µ)sj(µ) = σµ for each j. We define

C = {z(µ) | µ > 0}

as the central path. The central path defines a trajectory of feasible solutions that

steer clear of the boundary of the primal-dual feasible region. As µ decreases to

zero, C converges to a primal-dual solution of the linear program (or of the KKT

conditions in (2.3)).

54

Mehrotra’s method differs from other interior-point methods in that two lin-

ear systems are solved at each iteration, one for the affine-scaling or predictor

direction, ∆za, and one for the centering-corrector direction. The predictor di-

rection is obtained by solving (3.10). The centering-corrector direction, ∆zcc =

(∆xcc,∆ycc,∆scc), is calculated based on the amount of progress the predictor di-

rection has made in reducing µ and the error (or nonlinear term) in (2.8). This

direction is found by solving a slightly different system:



A 0 0

0 AT I

S 0 X







∆xcc

∆ycc

∆scc




=




0

0

σµe− ∆Xa∆Sae



, (4.5)

where we assume for convenience that (x, y, s) is primal and dual feasible. By

premultiplying the second block of equations by −X and adding this to the third

block of equations, we can eliminate ∆scc from the linear system. The result is the

following equivalent system:


A 0

S −XAT







∆xcc

∆ycc


 =




0

σµe−∆Xa∆Sae


 ,

with ∆scc = −AT∆ycc. By further eliminating ∆xcc by premultiplying the second

block of equations by −AS−1 and adding this to the first block of equations, we

have

∆ycc = −(AS−1XAT)−1AS−1 (σµe− ∆Xa∆Sae) ,

∆scc = −AT∆ycc,

∆xcc = S−1 (σµe− ∆Xa∆Sae) − S−1X∆scc.

55

The advantage of computing the centering-corrector direction is that we are able

to improve our linear, first-order model of F in (2.3) to a quadratic, second-order

model. In addition, Mehrotra’s method uses the same coefficient matrix to solve for

the two directions, and thus the extra cost of forming this second direction is that of

performing a single back-substitution. This additional cost is small. The sum of the

predictor and centering-corrector directions is the search direction used to derive an

improved solution to the perturbed KKT conditions.

For the remainder of the chapter, we focus on variants of Mehrotra’s Predictor-

Corrector (MPC) algorithm. A general MPC algorithm is given in section 4.2 and

a “reduced” version called redMPC is presented in section 4.3. Preliminary results

for the convergence of the redMPC algorithm are provided in section 4.4. Global

and local convergence results follow with certain modifications to the algorithm.

Finally, the chapter is summarized in section 4.5.

4.1.2 Centering-Corrector Direction

The components of the centering-corrector direction are based on a centering

parameter, σ, and a corrector direction derived from the nonlinear term ∆Xa∆Sae.

We explain the significance of these terms here.

The affine-scaling direction aims to satisfy the KKT conditions by moving

toward the boundary of the feasible region defined by the nonnegative pairwise

products, xjsj > 0. If this direction makes significant progress in reducing the

duality measure, µ, while satisfying the conditions (x, s) > 0, we will be in good

56

proximity of the central path and closer to satisfying the KKT conditions (since

µ → 0). Therefore, our solution will require little centering (or movement towards

the central path). If the affine-scaling direction makes little progress in reducing µ,

then we will need a significant amount of centering so that the algorithm can make

better progress in reducing µ on the next iteration. To measure the efficiency of

the affine-scaling direction, we compare the hypothetical value of µ based on this

direction to the previous value of µ. We define

µa =
(x+ αp

a∆x
a)

T (
s+ αd

a∆s
a
)

n

to be the hypothetical value of µ based on the affine-scaling direction and the cen-

tering parameter

σ =

[
µa

µ

]3

=

[
(x+ αp

a∆x
a)

T (
s+ αd

a∆s
a
)

nµ

]3

to be the cube of the ratio of µa and µ. 1 If µa � µ, the affine-scaling direction

makes good progress in reducing µ and little centering is needed. Therefore, σ is

insignificant and is set close to 0. If µa is only a little smaller than µ, σ is set close to

1 so that the algorithm can be in a better position to reduce µ on the next iteration.

The centering-corrector direction also uses the affine-scaling direction to com-

pensate for the error in the linear system, (2.4). We can interpret finding a solu-

tion z+ = z + ∆z to the KKT conditions as calculating ∆z to satisfy the primal

constraints, the dual constraints, and the complementary slackness condition [see

Chapter 2, equations (2.6) - (2.8)] given by

(xj + ∆xj) (sj + ∆sj) = 0, ∀j,
1Although it is not a requirement to cube the ratio, Mehrotra [17] found this heuristic for

determining σ most efficient through exhaustive computational testing.

57

or equivalently

xjsj + xj∆sj + sj∆xj + ∆xj∆sj = 0, ∀j,

X∆s+ S∆x = −XSe− ∆X∆Se. (4.6)

In computing the affine-scaling direction, the last term in (4.6) is ignored. That is,

X∆sa + S∆xa = −XSe.

Since applying a full step along the affine-scaling direction to (4.6) gives

X∆sa + S∆xa +XSe+ ∆Xa∆Sae = ∆Xa∆Sae,

we can define a corrector direction, ∆zcor = (∆xcor,∆ycor,∆scor), to compensate for

this error term:



A 0 0

0 AT I

S 0 X







∆xcor

∆ycor

∆scor




= −




0

0

∆Xa∆Sae



.

The centering parameter and corrector direction must be computed after the

affine-scaling direction due to the fact that they are both dependent on it. In addi-

tion, the centering and corrector components can be combined into one step since

they are obtained by solving linear systems with the same coefficient matrix. The

result is the linear system in (4.5) for calculating the centering-correction direction.

4.2 A MPC Algorithm

In this section, we present a general MPC algorithm similar to the algorithm

in [29].

58

———————————————-

A General MPC Algorithm

Input: (x, y, s) with x > 0 and s > 0, 0 < τ < 1, convergence tolerance λ.

Initialize: µ = xT s/n, rd = ATy + s− c.

Main Algorithm:

while |cTx− bTy|/max |cTx, 1| > λ

Compute the affine-scaling direction:

∆ya =
(
AS−1XAT

)−1 [
b− AS−1Xrd

]
,

∆sa = −rd − AT∆ya,

∆xa = −x− S−1X∆sa.

Compute the affine step:

α̂p
a =






1 if ∆xa
j ≥ 0, ∀j

min∆xa
j <0

[
−xj/∆x

a
j

]
otherwise

,

α̂d
a =





1 if ∆sa
j ≥ 0, ∀j

min∆sa
j <0

[
−sj/∆s

a
j

]
otherwise

,

αp
a = min (α̂p

a, 1) , αd
a = min

(
α̂d

a, 1
)
.

Compute the centering parameter:

σ =

[
(x+ αp

a∆x
a)T (s+ αd

a∆s
a
)

nµ

]3

.

59

Compute the centering-corrector direction:

ξ = σµS−1e− S−1∆Xa∆Sae,

∆ycc = −(AS−1XAT)−1Aξ,

∆scc = −AT∆ycc,

∆xcc = ξ − S−1X∆scc.

Compute the predictor-corrector direction:

∆x = ∆xa + ∆xcc,

∆y = ∆ya + ∆ycc,

∆s = ∆sa + ∆scc.

Compute the predictor-corrector step:

α̂p =






1 if ∆xj > 0, ∀j

min∆xj<0 [xj/∆xj] otherwise

,

α̂d =





1 if ∆sj > 0, ∀j

min∆sj>0 [sj/∆sj] otherwise

,

αp = τ min (α̂p, 1) , αd = τ min
(
α̂d, 1

)
.

Update the variables:

x+ = x+ αp∆x,

y+ = y + αd∆y,

s+ = s+ αd∆s.

60

Update quantities:

r+
d =

(
1 − αd

)
rd,

µ+ = (x+)T (s+)/n.

end(while) ———————————————-

4.3 The redMPC Algorithm

In this section, we present a reduced Mehrotra Predictor-Corrector algorithm,

redMPC . The vectors ∆x̃a ∈ <n×1 and (∆ỹa,∆s̃a) ∈ <(m+n)×1 define the affine-

scaling direction. Similarily, the vectors ∆x̃cc ∈ <n×1 and (∆ỹcc,∆s̃cc) ∈ <(m+n)×1

define the centering-corrector direction. We refer to ∆z̃ = (∆x̃,∆ỹ,∆s̃) = (∆x̃a +

∆x̃cc,∆ỹa + ∆ỹcc,∆s̃a + ∆s̃cc) as the approximate MPC direction. In accordance

with the notation, the vectors ∆x̃Q ∈ <k×1 and ∆s̃Q ∈ <k×1 are composed of the

components ∆x̃j and ∆s̃j, respectively with j ∈ Q. Let k = |Q| and Q̂ represent

the index set of dual constraints that are added to Q when it is determined the

algorithm is not making progress towards satisfying dual feasibility. To differentiate

the scalar quantities αp
a, α

d
a, α

p, αd, and µ from the general MPC algorithm, we use

the subscript Q to emphasize their computation within this algorithm.

———————————————-

The redMPC Algorithm

Input: (x, y, s) with x > 0 and s > 0, ubnd ≥ 3m, 0 < τ < 1, convergence tolerance

λ.

61

Initialize: µQ = xTs/n, rd = AT y + s− c, lbnd = 3m, Q̂ = ∅.

Main Algorithm:

while |cTx− bTy|/max |cTx, 1| > λ

Select the most promising dual constraints 2

Q = Q ∪ Q̂,

k = |Q|.

Compute the affine-scaling direction:

∆ỹa =
(
AQS

−1
Q XQA

T
Q

)−1 [
b− AQS

−1
Q XQ(rd)Q

]
, (4.7)

∆s̃a
Q = −(rd)Q − AT

Q∆ỹa, (4.8)

∆x̃a
Q = −xQ − S−1

Q XQ∆s̃a
Q.

Compute the affine step:

α̂p
Q,a =





1 if
(
∆x̃a

Q

)
j
≥ 0, ∀j

min(∆x̃a
Q)

j
<0

[
−(xQ)j/

(
∆x̃a

Q

)
j

]
otherwise

,

α̂d
Q,a =





1 if
(
∆s̃a

Q

)
j
≥ 0, ∀j

min(∆s̃a
Q)

j
<0

[
−(sQ)j/

(
∆s̃a

Q

)
j

]
otherwise

.(4.9)

αp
Q,a = min

(
α̂p

Q,a, 1
)
, αd

Q,a = min
(
α̂d

Q,a, 1
)
. (4.10)

Compute the centering parameter:

σQ =

[(
xQ + αp

Q,a∆x̃
a
Q

)T (
sQ + αd

Q,a∆s̃
a
Q

)

nµQ

]3

. (4.11)

2The set Q is determined by the algorithm in Section 2.2.3: Selection of Q

62

Compute the centering-corrector direction:

ξQ = σQµQS
−1
Q eQ − S−1

Q ∆X̃a
Q∆S̃a

QeQ,

∆ỹcc = −(AQS
−1
Q XQA

T
Q)−1AQξQ,

∆s̃cc
Q = −AT

Q∆ỹcc, (4.12)

∆x̃cc
Q = ξQ − S−1

Q XQ∆s̃cc
Q .

Compute the predictor-corrector direction:

∆x̃Q = ∆x̃a
Q + ∆x̃cc

Q , (4.13)

∆ỹ = ∆ỹa + ∆ỹcc, (4.14)

∆s̃Q = ∆s̃a
Q + ∆s̃cc

Q . (4.15)

Compute the predictor-corrector step:

α̂p
Q =






1 if (∆x̃Q)j > 0, ∀j

min(∆x̃Q)j<0 [−(xQ)j/(∆x̃Q)j] otherwise

,

α̂d
Q =






1 if (∆s̃Q)j > 0, ∀j

min(∆s̃Q)j<0 [−(sQ)j/(∆s̃Q)j] otherwise

,(4.16)

αp
Q = τ min

(
α̂p

Q, 1
)
, αd

Q = τ min
(
α̂d

Q, 1
)
. (4.17)

Create full length vectors, ∆x̃ and ∆s̃:

∆x̃j =






(∆x̃Q)jη
if η ∈ Q

0 otherwise

, (4.18)

∆s̃j =






(∆s̃Q)jη
if η ∈ Q

0 otherwise

. (4.19)

63

Update the solution, the duality measure, and the dual residuals:

x+ = x+ αp
Q∆x̃, (4.20)

y+ = y + αd
Q∆ỹ, (4.21)

s+ = s+ αd
Q∆s̃. (4.22)

if k < n

Update (x+, s+) and rd. 3

else

r+
d =

(
1 − αd

Q

)
rd.

end(if)

µ+
Q = (x++)T (s++)/n.

Prepare for the next iteration

x = x++, s = s++, y = y+, rd = r+
d , µQ = µ+

Q.

end(while) ———————————————-

4.4 Convergence Analysis of redMPC

In this section, we provide some preliminary results for the convergence of the

redMPC algorithm. We will show that our algorithm is well-defined and that the

direction we compute is an approximation to the standard Newton direction used

3The updated solution and dual residuals are determined by the algorithm in Section 2.2.4:
Update Strategy

64

in MPC . Using these results and certain modifications to the algorithm, we show

how global and local quadratic convergence can be proved. A complete analysis of

global and local quadratic convergence follows from Winternitz et al. [28].

In the MPC algorithm, two directions (affine-scaling and centering-corrector)

are calculated and added together to produce the MPC direction. The following

result, from Theorem 3.1 in Chapter 3, is used within the proof to show superlinear

convergence of the affine-scaling algorithm in Tits et. al. [24]:

∥∥∆z̃a
Q − ∆za

Q

∥∥ ≤ κ ‖z − z∗‖ ‖∆za‖ . (4.23)

In our analysis, we will use (4.23) to derive a bound on the centering-corrector

component of the MPC direction. The bound we seek is

∥∥∆z̃cc
Q − ∆zcc

Q

∥∥ ≤ κ̂ · Φ(z), (4.24)

where ∆z̃cc is the centering-corrector component of the approximate direction, ∆zcc

is the centering-corrector component of the Newton direction, κ̂ > 0 and Φ(z) is a

term that tends to zero as we approach the optimal solution. Combining (4.23) and

(4.24), we have the norm of the difference between the standard direction computed

in MPC and that computed in redMPC ,

‖∆z̃Q − ∆zQ‖ =
∥∥(∆z̃a

Q + ∆z̃cc
Q

)
−
(
∆za

Q + ∆zcc
Q

)∥∥

≤
∥∥∆z̃a

Q − ∆za
Q

∥∥+
∥∥∆z̃cc

Q −∆zcc
Q

∥∥

≤ κ ‖z − z∗‖ ‖∆za‖ + κ̂ · Φ(z).

Let (xi, yi, si) be the solution at iteration i of MPC and redMPC . Assump-

tions (A1)-(A6) from Chapter 3 will be needed throughout the analysis along with

65

the following assumptions:

(A7) ‖xQ‖ ≤ C1 and ‖sQ‖ ≤ C2 where 0 < C1, C2 <∞.

(A8) |σQµ| ≤ κµ ‖∆za‖ where κ > 0.

The redMPC algorithm is well-defined since the iterates for the solution and

the dual residual remain strictly positive and the matricesAQS
−1
Q XQA

T
Q and Ja(AQ, xQ, sQ)

are positive definite. The proofs follow from Lemmas (3.1) - (3.4) in Chapter 3.

The Lemmas presented next are required to show (4.24). The first two lemmas give

bounds for terms involving the centering parameter, σ.

Lemma 4.1 : Suppose assumption (A7) and (4.23) and suppose µ = µQ. Then,

|(σ − σQ)µ| ≤ 25µ + V3 ‖z − z∗‖ ‖∆za‖ + ζ · Θ
(
‖∆za‖2) ,

where

ζ = max {‖z − z∗‖ , µ} and

V3 =
1

n
[25 (V1 + coV2 ‖z − z∗‖) + 10 (V1 + 2V2)]

with

V1 = (C1 + C2) (co + κ) + 3 + κ1 ‖∆za‖ and

V2 = (C1 + C2)κ

for some co, κ, κ1 > 0.

Proof:

66

The quantity

(σ − σQ) µ =
[
(µa/µ)

3 −
(
µa

Q/µQ

)3]
µ

=
(
1/µ2

) [
(µa)3 −

(
µa

Q

)3]

=
(
1/µ2

) (
µa − µa

Q

) [
(µa)2 + µa · µa

Q +
(
µa

Q

)2]
, (4.25)

since µ = µQ. We begin by bounding the term µa − µa
Q. We can express this term

by:

µa − µa
Q =

[
(x+ αp

a∆x
a)T (s+ αd

a∆s
a
)
−
(
x+ αp

Q,a∆x̃
a
)T (

s+ αd
Q,a∆s̃

a
)]
/n

=
[
αd

ax
T∆sa + αp

as
T∆xa + αp

aα
d
a (∆xa)T ∆sa

− αd
Q,ax

T∆s̃a − αp
Q,as

T ∆x̃a − αp
Q,aα

d
Q,a (∆x̃a)

T
∆s̃a

]
/n.

By partitioning the right-hand side of the last expression into Q and Q̄, we can

eliminate the terms involving ∆x̃a
Q̄

and ∆s̃a
Q̄

since ∆x̃a
Q̄

= ∆s̃a
Q̄

= 0. This gives

µa − µa
Q =

[
αd

ax
T
Q∆sa

Q + αp
as

T
Q∆xa

Q + αp
aα

d
a

(
∆xa

Q

)T
∆sa

Q

+αd
ax

T
Q̄∆sa

Q̄ + αp
as

T
Q̄∆xa

Q̄ + αp
aα

d
a

(
∆xa

Q̄

)T

∆sa
Q̄

− αd
Q,ax

T
Q∆s̃a

Q − αp
Q,as

T
Q∆x̃a

Q − αp
Q,aα

d
Q,a

(
∆x̃a

Q

)T
∆s̃a

Q

]
/n.

67

By adding in, subtracting out, and grouping certain terms, we have

µa − µa
Q =

[
αd

ax
T
Q∆sa

Q − αd
ax

T
Q∆s̃a

Q + αd
ax

T
Q∆s̃a

Q − αd
Q,ax

T
Q∆s̃a

Q

+αp
as

T
Q∆xa

Q−αp
as

T
Q∆x̃a

Q + αp
as

T
Q∆x̃a

Q − αp
Q,as

T
Q∆x̃a

Q

+αp
aα

d
a

(
∆xa

Q

)T
∆sa

Q−αp
Q,aα

d
Q,a

(
∆xa

Q

)T
∆sa

Q

+αp

Q,aα
d
Q,a

(
∆xa

Q

)T
∆sa

Q − αp
Q,aα

d
Q,a

(
∆x̃a

Q

)T
∆s̃a

Q

+αd
ax

T
Q̄∆sa

Q̄ + αp
as

T
Q̄∆xa

Q̄ + αp
aα

d
a

(
∆xa

Q̄

)T

∆sa
Q̄

]
/n,

=
[
αd

ax
T
Q

(
∆sa

Q − ∆s̃a
Q

)
+
(
αd

a − αd
Q,a

)
xT

Q∆s̃a
Q

+αp
as

T
Q

(
∆xa

Q − ∆x̃a
Q

)
+
(
αp

a − αp
Q,a

)
sT

Q∆x̃a
Q

+
(
αp

aα
d
a − αp

Q,aα
d
Q,a

) (
∆xa

Q

)T
∆sa

Q

+αp
Q,aα

d
Q,a

[(
∆xa

Q

)T
∆sa

Q −
(
∆x̃a

Q

)T
∆s̃a

Q

]

+αd
ax

T
Q̄∆sa

Q̄ + αp
as

T
Q̄∆xa

Q̄ + αp
aα

d
a

(
∆xa

Q̄

)T

∆sa
Q̄

]
/n.

Therefore,

∣∣µa − µa
Q

∣∣ ≤ 1

n

[∣∣αd
a

∣∣ ‖xQ‖
∥∥∆sa

Q − ∆s̃a
Q

∥∥+
∣∣αd

a − αd
Q,a

∣∣‖xQ‖
∥∥∆s̃a

Q

∥∥

+ |αp
a| ‖sQ‖

∥∥∆xa
Q − ∆x̃a

Q

∥∥+
∣∣αp

a − αp
Q,a

∣∣ ‖sQ‖
∥∥∆x̃a

Q

∥∥

+
∣∣αp

aα
d
a − αp

Q,aα
d
Q,a

∣∣ ∥∥∆xa
Q

∥∥∥∥∆sa
Q

∥∥

+
∣∣∣αp

Q,aα
d
Q,a

[(
∆xa

Q

)T
∆sa

Q −
(
∆x̃a

Q

)T
∆s̃a

Q

]∣∣∣

+
∣∣αd

a

∣∣ ∥∥xQ̄

∥∥
∥∥∥∆sa

Q̄

∥∥∥+ |αp
a|
∣∣∣sT

Q̄∆xa
Q̄

∣∣∣+
∣∣αp

aα
d
a

∣∣
∣∣∣∣
(
∆xa

Q̄

)T

∆sa
Q̄

∣∣∣∣
]
.

We can bound
∣∣µa − µa

Q

∣∣ by applying the result in (4.23) and proving
∣∣αp

a − αp
Q,a

∣∣

and
∣∣αd

a − αd
Q,a

∣∣ are small close to the optimal solution. We will use the following

68

results (see [13]): Assume v, w ∈ <n. Then,

∣∣∣max
k

(v
w

)

k

∣∣∣ ≤ ‖v‖1

‖w‖∞
, (4.26)

‖v‖1 ≤ √
n ‖v‖ , (4.27)

1

‖w‖∞
≤ √

n
1

‖w‖ . (4.28)

Let

κ̃ = max

{∥∥∆za
Q

∥∥
∥∥∆xa

Q

∥∥ ,
∥∥∆za

Q

∥∥
∥∥∆sa

Q

∥∥

}
. (4.29)

We examine the components of the current solution for which

{(
∆x̃a

Q

)
j
,
(
∆s̃a

Q

)
r

}
< 0,

{
αp

Q,a, α
d
Q,a

}
≤ 1, and

(xQ)j + αp
a

(
∆xa

Q

)
j

= 0, (sQ)r + αd
a

(
∆sa

Q

)
r
= 0,

(xQ)j + αp
Q,a

(
∆x̃a

Q

)
j

= 0, (sQ)r + αd
Q,a

(
∆s̃a

Q

)
r

= 0.

Here, αp
a = −(xQ)j/

(
∆xa

Q

)
j
, αp

Q,a = −(xQ)j/
(
∆x̃a

Q

)
j
, αd

a = −(sQ)r/
(
∆sa

Q

)
r
, and

αd
Q,a = −(sQ)r/

(
∆s̃a

Q

)
r
. The expression

∣∣αp
a − αp

Q,a

∣∣ =

∣∣∣∣∣
−(xQ)j(
∆xa

Q

)
j

+
(xQ)j(
∆x̃a

Q

)
j

∣∣∣∣∣

=

∣∣∣∣∣∣

(xQ)j

[(
∆x̃a

Q

)
j
−
(
∆xa

Q

)
j

]

(
∆xa

Q

)
j
·
(
∆x̃a

Q

)
j

∣∣∣∣∣∣

≤
∣∣∣∣∣

(xQ)j(
∆x̃a

Q

)
j

∣∣∣∣∣ ·
∣∣∣∣∣

(
∆x̃a

Q

)
j
−
(
∆xa

Q

)
j(

∆xa
Q

)
j

∣∣∣∣∣ , ∀j

≤
∣∣αp

Q,a

∣∣ ·
∣∣∣∣∣

(
∆x̃a

Q −∆xa
Q

)
l(

∆xa
Q

)
l

∣∣∣∣∣ ,

69

where l is the index of the maximum ratio. Continuing, we have

∣∣αp
a − αp

Q,a

∣∣ ≤
∣∣αp

Q,a

∣∣ ·
∥∥∆x̃a

Q − ∆xa
Q

∥∥
1∥∥∆xa

Q

∥∥
∞

, by (4.26)

≤
√
k ·

√
k

(∥∥∆x̃a
Q − ∆xa

Q

∥∥
∥∥∆xa

Q

∥∥

)
, by (4.27), (4.28)

and
∣∣αp

Q,a

∣∣ ≤ 1

≤ k ·
κ ‖z − z∗‖

∥∥∆za
Q

∥∥
∥∥∆xa

Q

∥∥ , by (4.23)

≤ kκ ‖z − z∗‖ · κ̃, by (4.29)

= co ‖z − z∗‖ . (4.30)

where co = k · κ · κ̃. Similarily,

∣∣αd
a − αd

Q,a

∣∣ =

∣∣∣∣∣
−(sQ)r(
∆sa

Q

)
r

+
(sQ)r(
∆s̃a

Q

)
r

∣∣∣∣∣

=

∣∣∣∣∣∣

(sQ)r

[(
∆s̃a

Q

)
r
−
(
∆sa

Q

)
r

]

(
∆sa

Q

)
r
·
(
∆s̃a

Q

)
r

∣∣∣∣∣∣

≤
∣∣∣∣∣

(sQ)r(
∆s̃a

Q

)
r

∣∣∣∣∣ ·
∣∣∣∣∣

(
∆s̃a

Q

)
r
−
(
∆sa

Q

)
r(

∆sa
Q

)
r

∣∣∣∣∣ , ∀r

≤
∣∣αd

Q,a

∣∣ ·
∣∣∣∣∣

(
∆s̃a

Q −∆sa
Q

)
p(

∆sa
Q

)
p

∣∣∣∣∣ ,

where p is the index of the maximum ratio. Therefore,

∣∣αd
a − αd

Q,a

∣∣ ≤
∣∣αd

Q,a

∣∣ ·
∥∥∆s̃a

Q − ∆sa
Q

∥∥
1∥∥∆sa

Q

∥∥
∞

, by (4.26)

≤
√
k ·

√
k

(∥∥∆s̃a
Q − ∆sa

Q

∥∥
∥∥∆sa

Q

∥∥

)
, by (4.27), (4.28)

≤ k ·
κ ‖z − z∗‖

∥∥∆za
Q

∥∥
∥∥∆sa

Q

∥∥ , by (4.23)

≤ k · κ ‖z − z∗‖ · κ̃, by (4.29)

= co ‖z − z∗‖ . (4.31)

70

Recall, the absolute value of the difference between µa and µa
Q is bounded by

∣∣µa − µa
Q

∣∣ ≤ 1

n

[∣∣αd
a

∣∣ ‖xQ‖
∥∥∆sa

Q − ∆s̃a
Q

∥∥+
∣∣αd

a − αd
Q,a

∣∣‖xQ‖
∥∥∆s̃a

Q

∥∥

+ |αp
a| ‖sQ‖

∥∥∆xa
Q − ∆x̃a

Q

∥∥+
∣∣αp

a − αp
Q,a

∣∣ ‖sQ‖
∥∥∆x̃a

Q

∥∥

+
∣∣αp

aα
d
a − αp

Q,aα
d
Q,a

∣∣ ∥∥∆xa
Q

∥∥∥∥∆sa
Q

∥∥

+
∣∣∣αp

Q,aα
d
Q,a

[(
∆xa

Q

)T
∆sa

Q −
(
∆x̃a

Q

)T
∆s̃a

Q

]∣∣∣

+
∣∣αd

a

∣∣ ∥∥xQ̄

∥∥
∥∥∥∆sa

Q̄

∥∥∥+ |αp
a|
∣∣∣sT

Q̄∆xa
Q̄

∣∣∣+
∣∣αp

aα
d
a

∣∣
∣∣∣∣
(
∆xa

Q̄

)T

∆sa
Q̄

∣∣∣∣
]
.

Using the results from (4.23), (4.30), and (4.31), we can bound the 9 terms on the

right-hand side of the above inequality:

1.
∣∣αd

a

∣∣ ‖xQ‖
∥∥∆sa

Q − ∆s̃a
Q

∥∥ ≤ C1 · κ ‖z − z∗‖ ‖∆za‖ by assumption (A7), (4.23)

and the fact that
∣∣αd

a

∣∣ ≤ 1.

2. To bound the second term,
∣∣αd

a − αd
Q,a

∣∣ ‖xQ‖
∥∥∆s̃a

Q

∥∥, we must first bound the

quantity
∥∥∆s̃a

Q

∥∥.

∥∥∆s̃a
Q

∥∥ =
∥∥∆s̃a

Q−∆sa
Q + ∆sa

Q

∥∥

≤
∥∥∆s̃a

Q −∆sa
Q

∥∥+
∥∥∆sa

Q

∥∥

≤ κ ‖z − z∗‖ ‖∆za‖ + ‖∆za‖

= (1 + κ ‖z − z∗‖) ‖∆za‖ . (4.32)

The third line follows from (4.23). Therefore,

∣∣αd
a − αd

Q,a

∣∣ ‖xQ‖
∥∥∆s̃a

Q

∥∥ ≤ co ‖z − z∗‖C1 (1 + κ ‖z − z∗‖) ‖∆za‖

= coC1 (1 + κ ‖z − z∗‖) ‖z − z∗‖ ‖∆za‖ .

This result follows from assumption (A7), (4.31), and (4.32).

71

3. |αp
a| ‖sQ‖

∥∥∆xa
Q −∆x̃a

Q

∥∥ ≤ C2 ·κ ‖z − z∗‖ ‖∆za‖ (similar to the bound on term

1).

4.
∣∣αp

a − αp
Q,a

∣∣ ‖sQ‖
∥∥∆x̃a

Q

∥∥ ≤ coC2 (1 + κ ‖z − z∗‖) ‖z − z∗‖ ‖∆za‖ (similar to the

bound on term 2).

5.
∣∣αp

aα
d
a − αp

Q,aα
d
Q,a

∣∣ ∥∥∆xa
Q

∥∥∥∥∆sa
Q

∥∥

=
∣∣αp

aα
d
a−αp

aα
d
Q,a + αp

aα
d
Q,a − αp

Q,aα
d
Q,a

∣∣ ∥∥∆xa
Q

∥∥∥∥∆sa
Q

∥∥

=
∣∣αp

a

(
αd

a − αd
Q,a

)
+ αd

Q,a

(
αp

a − αp
Q,a

)∣∣ ∥∥∆xa
Q

∥∥∥∥∆sa
Q

∥∥

≤
(
|αp

a|
∣∣αd

a − αd
Q,a

∣∣ +
∣∣αd

Q,a

∣∣ ∣∣αp
a − αp

Q,a

∣∣) ∥∥∆xa
Q

∥∥∥∥∆sa
Q

∥∥

≤ (co ‖z − z∗‖ + co ‖z − z∗‖) ‖∆za‖ ‖∆za‖

= 2co ‖z − z∗‖ ‖∆za‖2 . (4.33)

The fourth line follows from (4.30), (4.31) and the fact that |αp
a| ≤ 1 and

∣∣αd
Q,a

∣∣ ≤ 1.

6.
∣∣∣αp

Q,aα
d
Q,a

[(
∆xa

Q

)T
∆sa

Q −
(
∆x̃a

Q

)T
∆s̃a

Q

]∣∣∣

=
∣∣∣αp

Q,aα
d
Q,a

(
∆xa

Q

)T
∆sa

Q−αp
aα

d
Q,a

(
∆xa

Q

)T
∆s̃a

Q

+αp
aα

d
Q,a

(
∆xa

Q

)T
∆s̃a

Q − αp
Q,aα

d
Q,a

(
∆x̃a

Q

)T
∆s̃a

Q

∣∣∣

=
∣∣∣αd

Q,a

(
∆xa

Q

)T (
αp

Q,a∆s
a
Q − αp

a∆s̃
a
Q

)

+αd
Q,a

(
∆s̃a

Q

)T (
αp

a∆x
a
Q − αp

Q,a∆x̃
a
Q

)∣∣∣

≤
∣∣αd

Q,a

∣∣ ∥∥∆xa
Q

∥∥∥∥αp
Q,a∆s

a
Q − αp

a∆s̃
a
Q

∥∥

+
∣∣αd

Q,a

∣∣ ∥∥∆s̃a
Q

∥∥∥∥αp
a∆x

a
Q − αp

Q,a∆x̃
a
Q

∥∥ .

72

It suffices to bound
∥∥αp

Q,a∆s
a
Q − αp

a∆s̃
a
Q

∥∥ and
∥∥αp

a∆x
a
Q − αp

Q,a∆x̃
a
Q

∥∥. The

bound for
∥∥αp

Q,a∆s
a
Q − αp

a∆s̃
a
Q

∥∥ is given by:

∥∥αp
Q,a∆s

a
Q − αp

a∆s̃
a
Q

∥∥

=
∥∥αp

Q,a∆s
a
Q−αp

a∆sa
Q + αp

a∆sa
Q − αp

a∆s̃
a
Q

∥∥

≤
∥∥(αp

Q,a − αp
a

)
∆sa

Q

∥∥+
∥∥αp

a

(
∆sa

Q − ∆s̃a
Q

)∥∥

≤
∣∣αp

Q,a − αp
a

∣∣ ∥∥∆sa
Q

∥∥+ |αp
a|
∥∥∆sa

Q − ∆s̃a
Q

∥∥

≤ co ‖z − z∗‖ ‖∆za‖ + κ ‖z − z∗‖ ‖∆za‖

= (co + κ) ‖z − z∗‖ ‖∆za‖ . (4.34)

The fourth line follows from (4.30), (4.23) and the fact that |αp
a| ≤ 1. A similar

analysis shows that

∥∥αp
a∆x

a
Q − αp

Q,a∆x̃
a
Q

∥∥ ≤ (co + κ) ‖z − z∗‖ ‖∆za‖ . (4.35)

Therefore,

∣∣∣αp
Q,aα

d
Q,a

[(
∆xa

Q

)T
∆sa

Q −
(
∆x̃a

Q

)T
∆s̃a

Q

]∣∣∣

≤
∣∣αd

Q,a

∣∣ ∥∥∆xa
Q

∥∥∥∥αp
Q,a∆s

a
Q − αp

a∆s̃
a
Q

∥∥

+
∣∣αd

Q,a

∣∣ ∥∥∆s̃a
Q

∥∥∥∥αp
a∆x

a
Q − αp

Q,a∆x̃
a
Q

∥∥

≤ ‖∆za‖ · (co + κ) ‖z − z∗‖ ‖∆za‖

+(1 + κ ‖z − z∗‖) ‖∆za‖ · (co + κ) ‖z − z∗‖ ‖∆za‖

= (2 + κ ‖z − z∗‖) (co + κ) ‖z − z∗‖ ‖∆za‖2
.

73

7.
∣∣αd

a

∣∣ ∥∥xQ̄

∥∥
∥∥∥∆sa

Q̄

∥∥∥

=
∣∣αd

a

∣∣
∥∥∥xQ̄ − x∗Q̄

∥∥∥
∥∥∥∆sa

Q̄

∥∥∥

≤ ‖z − z∗‖ ‖∆za‖ , (4.36)

since
∣∣αd

a

∣∣ ≤ 1.

8. Since ∆xa
Q̄

= −xQ̄ − S−1
Q̄
XQ̄∆sa

Q̄
, we have

|αp
a|
∣∣∣sT

Q̄∆xa
Q̄

∣∣∣ = |αp
a|
∣∣∣sT

Q̄

(
−xQ̄ − S−1

Q̄
XQ̄∆sa

Q̄

)∣∣∣

≤
∣∣∣−xT

Q̄sQ̄ − xT
Q̄∆sa

Q̄

∣∣∣

≤
∣∣∣xT

Q̄sQ̄

∣∣∣ +
∣∣∣xT

Q̄∆sa
Q̄

∣∣∣

≤ nµ +
∥∥xQ̄

∥∥
∥∥∥∆sa

Q̄

∥∥∥

≤ nµ + ‖z − z∗‖ ‖∆za‖ , (4.37)

with |αp
a| ≤ 1.

9.
∣∣αp

aα
d
a

∣∣
∣∣∣∣
(
∆xa

Q̄

)T

∆sa
Q̄

∣∣∣∣

=
∣∣αp

aα
d
a

∣∣
∣∣∣∣
(
−xQ̄ − S−1

Q̄
XQ̄∆sa

Q̄

)T

∆sa
Q̄

∣∣∣∣

=
∣∣αp

aα
d
a

∣∣
∣∣∣∣−xT

Q̄∆sa
Q̄ −

(
∆sa

Q̄

)T

XQ̄S
−1
Q̄

∆sa
Q̄

∣∣∣∣

≤
∣∣∣xT

Q̄∆sa
Q̄

∣∣∣ +
∣∣∣∣
(
∆sa

Q̄

)T

XQ̄S
−1
Q̄

∆sa
Q̄

∣∣∣∣

≤
∥∥xQ̄

∥∥
∥∥∥∆sa

Q̄

∥∥∥+
∥∥∥∆sa

Q̄

∥∥∥
∥∥XQ̄

∥∥
∥∥∥S−1

Q̄

∥∥∥
∥∥∥∆sa

Q̄

∥∥∥

≤ ‖z − z∗‖ ‖∆za‖ + ‖∆za‖ ‖z − z∗‖ κ1 ‖∆za‖

= (1 + κ1 ‖∆za‖) ‖z − z∗‖ ‖∆za‖ , (4.38)

where
∥∥∥S−1

Q̄

∥∥∥ ≤ κ1 follows from (3.24).

74

Combining the bounds in 1-9, we have

∣∣µa − µa
Q

∣∣ ≤ 1

n

[∣∣αd
a

∣∣ ‖xQ‖
∥∥∆sa

Q − ∆s̃a
Q

∥∥+
∣∣αd

a − αd
Q,a

∣∣ ‖xQ‖
∥∥∆s̃a

Q

∥∥

+ |αp
a| ‖sQ‖

∥∥∆xa
Q − ∆x̃a

Q

∥∥+
∣∣αp

a − αp
Q,a

∣∣ ‖sQ‖
∥∥∆x̃a

Q

∥∥

+
∣∣αp

aα
d
a − αp

Q,aα
d
Q,a

∣∣ ∥∥∆xa
Q

∥∥∥∥∆sa
Q

∥∥

+
∣∣∣αp

Q,aα
d
Q,a

[(
∆xa

Q

)T
∆sa

Q −
(
∆x̃a

Q

)T
∆s̃a

Q

]∣∣∣

+
∣∣αd

a

∣∣ ∥∥xQ̄

∥∥
∥∥∥∆sa

Q̄

∥∥∥+ |αp
a|
∣∣∣sT

Q̄∆xa
Q̄

∣∣∣ +
∣∣αp

aα
d
a

∣∣
∣∣∣∣
(
∆xa

Q̄

)T

∆sa
Q̄

∣∣∣∣
]

≤ 1

n
[C1κ ‖z − z∗‖ ‖∆za‖ + coC1 (1 + κ ‖z − z∗‖) ‖z − z∗‖ ‖∆za‖

C2κ ‖z − z∗‖ ‖∆za‖+ coC2 (1 + κ ‖z − z∗‖) ‖z − z∗‖ ‖∆za‖

+2co ‖z − z∗‖ ‖∆za‖2 + (2 + κ ‖z − z∗‖) (co + κ) ‖z − z∗‖ ‖∆za‖2

+ ‖z − z∗‖ ‖∆za‖ + nµ+ ‖z − z∗‖ ‖∆za‖

+(1 + κ1 ‖∆za‖) ‖z − z∗‖ ‖∆za‖] .

We can simplify the last expression by factoring out the quantity ‖z − z∗‖ ‖∆za‖

75

from some terms and grouping other terms. This gives

∣∣µa − µa
Q

∣∣ ≤ µ+
1

n
[C1κ+ coC1 (1 + κ ‖z − z∗‖) + C2κ+ coC2 (1 + κ ‖z − z∗‖)

+2 + (1 + κ1 ‖∆za‖)] ‖z − z∗‖ ‖∆za‖

+
1

n
[2co + (2 + κ ‖z − z∗‖) (co + κ)] ‖z − z∗‖ ‖∆za‖2

= µ+
1

n
[(C1 + C2)κ+ (C1 + C2) co (1 + κ ‖z − z∗‖)

+3 + κ1 ‖∆za‖]‖z − z∗‖ ‖∆za‖

+
1

n
[2co + (2 + κ ‖z − z∗‖) (co + κ)] ‖z − z∗‖ ‖∆za‖2

= µ+
1

n
[(C1 + C2) (co + κ) + 3 + κ1 ‖∆za‖

+(C1 + C2) coκ ‖z − z∗‖] ‖z − z∗‖ ‖∆za‖

+ ‖z − z∗‖ · Θ
(
‖∆za‖2) .

Let

V1 = (C1 + C2) (co + κ) + 3 + κ1 ‖∆za‖ and (4.39)

V2 = (C1 + C2)κ. (4.40)

Then

∣∣µa − µa
Q

∣∣ ≤ µ +

(
V1 + coV2 ‖z − z∗‖

n

)
‖z − z∗‖ ‖∆za‖

+ ‖z − z∗‖ · Θ
(
‖∆za‖2)

. (4.41)

The absolute value of the remaining pieces in (4.25) can be bounded by

∣∣∣
(
1/µ2

) [
(µa)2 + µa · µa

Q +
(
µa

Q

)2]∣∣∣ ≤
∣∣∣∣
µa + µa

Q

µ

∣∣∣∣
2

. (4.42)

In the analysis that follows, we concentrate on bounding the square root of

the expression on the right of (4.42). We have

76

∣∣(µa + µa
Q

)
/µ
∣∣

= (1/nµ)
[
(x+ αp

a∆x
a)

T (
s+ αd

a∆s
a
)

+
(
x+ αp

Q,a∆x̃
a
)T (

s+ αd
Q,a∆s̃

a
)]

= (1/nµ)
[
2 xTs+ αd

ax
T∆sa + αp

as
T ∆xa + αp

aα
d
a (∆xa)T ∆sa

+ αd
Q,ax

T∆s̃a + αp
Q,as

T∆x̃a + αp
Q,aα

d
Q,a (∆x̃a)T ∆s̃a

]
.

By partitioning the right-hand side of the last expression into Q and Q̄, we can

eliminate the terms involving ∆x̃a
Q̄

and ∆s̃a
Q̄

since ∆x̃a
Q̄

= ∆s̃a
Q̄

= 0. This gives

∣∣(µa + µa
Q

)
/µ
∣∣ = 2 + (1/nµ)

[
αd

ax
T
Q∆sa

Q + αp
as

T
Q∆xa

Q + αp
aα

d
a

(
∆xa

Q

)T
∆sa

Q

+αd
ax

T
Q̄∆sa

Q̄ + αp
as

T
Q̄∆xa

Q̄ + αp
aα

d
a

(
∆xa

Q̄

)T

∆sa
Q̄

+ αd
Q,ax

T
Q∆s̃a

Q + αp
Q,as

T
Q∆x̃a

Q + αp
Q,aα

d
Q,a

(
∆x̃a

Q

)T
∆s̃a

Q

]
.

The first term on the right-hand side of the last expression follows since µ =

(
xTs
)
/n. By adding in, subtracting out, and grouping certain terms, we have

77

∣∣(µa + µa
Q

)
/µ
∣∣

= 2 + (1/nµ)
[
αd

ax
T
Q∆sa

Q−αd
Q,ax

T
Q∆s̃a

Q + αd
Q,ax

T
Q∆s̃a

Q + αd
Q,ax

T
Q∆s̃a

Q

+αp
as

T
Q∆xa

Q−αp
Q,as

T
Q∆x̃a

Q + αp
Q,as

T
Q∆x̃a

Q + αp
Q,as

T
Q∆x̃a

Q

+αp
aα

d
a

(
∆xa

Q

)T
∆sa

Q−αp
Q,aα

d
Q,a

(
∆xa

Q

)T
∆sa

Q

+αp

Q,aα
d
Q,a

(
∆xa

Q

)T
∆sa

Q + αp
Q,aα

d
Q,a

(
∆x̃a

Q

)T
∆s̃a

Q

+αd
ax

T
Q̄∆sa

Q̄ + αp
as

T
Q̄∆xa

Q̄ + αp
aα

d
a

(
∆xa

Q̄

)T

∆sa
Q̄

]

= 2 + (1/nµ)
[
xT

Q

(
αd

a∆s
a
Q − αd

Q,a∆s̃
a
Q

)
+ sT

Q

(
αp

a∆x
a
Q − αp

Q,a∆x̃
a
Q

)

+2
(
αp

Q,as
T
Q∆x̃a

Q + αd
Q,ax

T
Q∆s̃a

Q

)
+
(
αp

aα
d
a − αp

Q,aα
d
Q,a

) (
∆xa

Q

)T
∆sa

Q

+αp
Q,aα

d
Q,a

[(
∆xa

Q

)T
∆sa

Q +
(
∆x̃a

Q

)T
∆s̃a

Q

]

+αd
ax

T
Q̄∆sa

Q̄ + αp
as

T
Q̄∆xa

Q̄ + αp
aα

d
a

(
∆xa

Q̄

)T

∆sa
Q̄

]
.

Therefore,

∣∣(µa + µa
Q

)
/µ
∣∣

≤ 2 +

∣∣∣∣
1

nµ

∣∣∣∣
[
‖xQ‖

∥∥αd
a∆s

a
Q − αd

Q,a∆s̃
a
Q

∥∥+ ‖sQ‖
∥∥αp

a∆x
a
Q − αp

Q,a∆x̃
a
Q

∥∥

+2
∣∣αp

Q,as
T
Q∆x̃a

Q + αd
Q,ax

T
Q∆s̃a

Q

∣∣+
∣∣αp

aα
d
a − αp

Q,aα
d
Q,a

∣∣ ∥∥∆xa
Q

∥∥∥∥∆sa
Q

∥∥

+
∣∣αp

Q,aα
d
Q,a

∣∣
∣∣∣
(
∆xa

Q

)T
∆sa

Q +
(
∆x̃a

Q

)T
∆s̃a

Q

∣∣∣

+
∣∣αd

a

∣∣ ∥∥xQ̄

∥∥
∥∥∥∆sa

Q̄

∥∥∥+ |αp
a|
∣∣∣sT

Q̄∆xa
Q̄

∣∣∣+
∣∣αp

aα
d
a

∣∣
∣∣∣∣
(
∆xa

Q̄

)T

∆sa
Q̄

∣∣∣∣
]
.

We can bound the 8 terms on the right-hand side of the above inequality by using

some of the previous results:

I. ‖xQ‖
∥∥αd

a∆s
a
Q − αd

Q,a∆s̃
a
Q

∥∥ ≤ C1 (co + κ) ‖z − z∗‖ ‖∆za‖, by assumption (A7)

and (4.34) with αp
a and αp

Q,a replaced by αd
a and αd

Q,a, respectively.

78

II. ‖sQ‖
∥∥αp

a∆x
a
Q − αp

Q,a∆x̃
a
Q

∥∥ ≤ C2 (co + κ) ‖z − z∗‖ ‖∆za‖, by assumption (A7)

and (4.35).

III. 2
∣∣αp

Q,as
T
Q∆x̃a

Q + αd
Q,ax

T
Q∆s̃a

Q

∣∣

= 2
∣∣αp

Q,as
T
Q∆x̃a

Q−αp
Q,as

T
Q∆xa

Q + αp
Q,as

T
Q∆xa

Q

+αd
Q,ax

T
Q∆s̃a

Q−αd
Q,ax

T
Q∆sa

Q + αd
Q,ax

T
Q∆sa

Q

∣∣

= 2
∣∣αp

Q,as
T
Q

(
∆x̃a

Q − ∆xa
Q

)
+ αd

Q,ax
T
Q

(
∆s̃a

Q − ∆sa
Q

)

+αp
Q,as

T
Q∆xa

Q + αd
Q,ax

T
Q∆sa

Q

∣∣

≤ 2
[∣∣αp

Q,a

∣∣ ‖sQ‖
∥∥∆x̃a

Q −∆xa
Q

∥∥+
∣∣αd

Q,a

∣∣ ‖xQ‖
∥∥∆s̃a

Q − ∆sa
Q

∥∥

+
∣∣αp

Q,as
T
Q∆xa

Q + αd
Q,ax

T
Q∆sa

Q

∣∣]

≤ 2 [C2κ ‖z − z∗‖ ‖∆za‖ + C1κ ‖z − z∗‖ ‖∆za‖

+
∣∣max

{
αp

Q,a, α
d
Q,a

}∣∣ ∣∣sT
Q∆xa

Q + xT
Q∆sa

Q

∣∣]

≤ 2 [(C1 + C2)κ ‖z − z∗‖ ‖∆za‖ + nµ] .

The fourth line follows from (4.23). The fifth line follows since
∣∣max

{
αp

Q,a, α
d
Q,a

}∣∣ ≤

1 and
∣∣sT

Q∆xa
Q + xT

Q∆sa
Q

∣∣ =
∣∣−xT

QsQ

∣∣ ≤ nµ by (2.4).

IV.
∣∣αp

aα
d
a − αp

Q,aα
d
Q,a

∣∣ ∥∥∆xa
Q

∥∥∥∥∆sa
Q

∥∥ ≤ 2co ‖z − z∗‖ ‖∆za‖2, by (4.33).

V.
∣∣αp

Q,aα
d
Q,a

∣∣
∣∣∣
(
∆xa

Q

)T
∆sa

Q +
(
∆x̃a

Q

)T
∆s̃a

Q

∣∣∣

≤
∣∣αp

Q,a

∣∣ ∣∣αd
Q,a

∣∣
(∣∣∣
(
∆xa

Q

)T
∆sa

Q

∣∣∣ +
∣∣∣
(
∆x̃a

Q

)T
∆s̃a

Q

∣∣∣
)

≤
∥∥∆xa

Q

∥∥∥∥∆sa
Q

∥∥+
∥∥∆x̃a

Q

∥∥∥∥∆s̃a
Q

∥∥

≤ ‖∆za‖2 + (1 + κ ‖z − z∗‖)2 ‖∆za‖2

=
[
1 + (1 + κ ‖z − z∗‖)2] ‖∆za‖2

.

79

The second line follows since
∣∣αp

Q,a

∣∣ ≤ 1 and
∣∣αd

Q,a

∣∣ ≤ 1. The third line follows

from (4.32) since the bound on
∥∥∆x̃a

Q

∥∥ is the same as the bound on
∥∥∆s̃a

Q

∥∥.

The bounds for the remaining terms (VI. - VIII.) follow from (4.36) - (4.38). Com-

bining the bounds in I-VIII., we have

∣∣(µa + µa
Q

)
/µ
∣∣

≤ 2 +

∣∣∣∣
1

nµ

∣∣∣∣
[
‖xQ‖

∥∥αd
a∆s

a
Q − αd

Q,a∆s̃
a
Q

∥∥+ ‖sQ‖
∥∥αp

a∆x
a
Q − αp

Q,a∆x̃
a
Q

∥∥

+2
∣∣αp

Q,as
T
Q∆x̃a

Q + αd
Q,ax

T
Q∆s̃a

Q

∣∣+
∣∣αp

aα
d
a − αp

Q,aα
d
Q,a

∣∣ ∥∥∆xa
Q

∥∥∥∥∆sa
Q

∥∥

+
∣∣αp

Q,aα
d
Q,a

∣∣
∣∣∣
(
∆xa

Q

)T
∆sa

Q +
(
∆x̃a

Q

)T
∆s̃a

Q

∣∣∣

+
∣∣αd

a

∣∣ ∥∥xQ̄

∥∥
∥∥∥∆sa

Q̄

∥∥∥+ |αp
a|
∣∣∣sT

Q̄∆xa
Q̄

∣∣∣+
∣∣αp

aα
d
a

∣∣
∣∣∣∣
(
∆xa

Q̄

)T

∆sa
Q̄

∣∣∣∣
]

≤ 2 +

∣∣∣∣
1

nµ

∣∣∣∣ [C1 (co + κ) ‖z − z∗‖ ‖∆za‖ + C2 (co + κ) ‖z − z∗‖ ‖∆za‖

+2 [(C1 + C2)κ ‖z − z∗‖ ‖∆za‖ + nµ] + 2co ‖z − z∗‖ ‖∆za‖2

+
[
1 + (1 + κ ‖z − z∗‖)2

]
‖∆za‖2 + ‖z − z∗‖ ‖∆za‖

+nµ+ ‖z − z∗‖ ‖∆za‖ + (1 + κ1 ‖∆za‖) ‖z − z∗‖ ‖∆za‖] .

By factoring out ‖z − z∗‖ ‖∆za‖ from select terms, grouping other terms, and ap-

plying (4.39) and (4.40), we have

∣∣(µa + µa
Q

)
/µ
∣∣

≤ 2 +

∣∣∣∣
1

nµ

∣∣∣∣ ([2 + (C1 + C2) (co + κ) + (1 + κ1 ‖∆za‖)

+2 (C1 + C2) κ] ‖z − z∗‖ ‖∆za‖ + 3nµ

+
(
2co ‖z − z∗‖ +

[
1 + (1 + κ ‖z − z∗‖)2]) ‖∆za‖2)

= 2 +

∣∣∣∣
1

nµ

∣∣∣∣ (V1 + 2V2) ‖z − z∗‖ ‖∆za‖ + 3 + Θ
(
‖∆za‖2)

= 5 +

∣∣∣∣
1

nµ

∣∣∣∣ (V1 + 2V2) ‖z − z∗‖ ‖∆za‖ + Θ
(
‖∆za‖2) .

80

Squaring the last result gives

∣∣(µa + µa
Q

)
/µ
∣∣2

≤ 25 +

∣∣∣∣
10

nµ

∣∣∣∣ (V1 + 2V2) ‖z − z∗‖ ‖∆za‖ + Θ
(
‖∆za‖2) . (4.43)

Combining the bounds in (4.41) and (4.43), we have the final result:

|(σ − σQ)µ| =
∣∣µa − µa

Q

∣∣
∣∣∣∣∣
(µa)2 + µa · µa

Q +
(
µa

Q

)2

µ2

∣∣∣∣∣

≤
∣∣µa − µa

Q

∣∣
∣∣∣∣
µa + µa

Q

µ

∣∣∣∣
2

≤
[
µ +

(
V1 + coV2 ‖z − z∗‖

n

)
‖z − z∗‖ ‖∆za‖

+ ‖z − z∗‖ · Θ
(
‖∆za‖2)]

·
[
25 +

∣∣∣∣
10

nµ

∣∣∣∣ (V1 + 2V2) ‖z − z∗‖ ‖∆za‖ + Θ
(
‖∆za‖2)

]

= 25µ +
25

n
(V1 + coV2 ‖z − z∗‖) ‖z − z∗‖ ‖∆za‖

+
10

n
(V1 + 2V2) ‖z − z∗‖ ‖∆za‖

+ ‖z − z∗‖ · Θ
(
‖∆za‖2

)
+ µ · Θ

(
‖∆za‖2

)

≤ 25µ + V3 ‖z − z∗‖ ‖∆za‖

+max {‖z − z∗‖ , µ} · Θ
(
‖∆za‖2)

≤ 25µ + V3 ‖z − z∗‖ ‖∆za‖ + ζ · Θ
(
‖∆za‖2) , (4.44)

where

ζ = max {‖z − z∗‖ , µ} and

V3 =
1

n
[25 (V1 + coV2 ‖z − z∗‖) + 10 (V1 + 2V2)] .

[]

81

Lemma 4.2 : Suppose assumption (A8) and the assumptions of Lemma 4.1 hold.

Then,

|σµ| ≤ 25µ + (V3 + κ) ζ ‖∆za‖ + ζ · Θ
(
‖∆za‖2) .

Proof:

|σµ| = |σµ− σQµ+ σQµ|

≤ |(σ − σQ)µ| + |σQµ|

≤ 25µ + V3 ‖z − z∗‖ ‖∆za‖ + ζ · Θ
(
‖∆za‖2)

+κµ ‖∆za‖

≤ 25µ + (V3 + κ) max {‖z − z∗‖ , µ} ‖∆za‖

+ζ · Θ
(
‖∆za‖2)

= 25µ + (V3 + κ) ζ ‖∆za‖ + ζ · Θ
(
‖∆za‖2) .

[]

The next two lemmas give bounds on the error components, ∆Xa
Q̄
∆Sa

Q̄
eQ̄ and

(
∆Xa

Q∆Sa
Q − ∆X̃a

Q∆S̃a
Q

)
eQ.

Lemma 4.3 : Suppose (3.24) holds (i.e.
∥∥∥S−1

Q̄

∥∥∥ ≤ κ1 where κ1 > 0). Then

∥∥∥∆Xa
Q̄∆Sa

Q̄eQ̄

∥∥∥ ≤ (1 + κ1 ‖∆za‖) ‖z − z∗‖ ‖∆za‖ .

Proof:

The ∆Xa
Q̄

component of the standard affine-scaling direction is given by ∆Xa
Q̄

=

82

−XQ̄ − S−1
Q̄
XQ̄∆Sa

Q̄
. Therefore, we have

∥∥∥∆Xa
Q̄∆Sa

Q̄eQ̄

∥∥∥ =
∥∥∥
(
−XQ̄ − S−1

Q̄
XQ̄∆Sa

Q̄

)
∆Sa

Q̄eQ̄

∥∥∥

≤
∥∥XQ̄

∥∥
∥∥∥∆sa

Q̄

∥∥∥+
∥∥∥S−1

Q̄

∥∥∥
∥∥XQ̄

∥∥
∥∥∥∆Sa

Q̄

∥∥∥
∥∥∥∆sa

Q̄

∥∥∥

≤ ‖z − z∗‖ ‖∆za‖ + κ1 ‖z − z∗‖ ‖∆za‖2

= (1 + κ1 ‖∆za‖) ‖z − z∗‖ ‖∆za‖ .

The third line follows since
∥∥XQ̄

∥∥ =
∥∥∥XQ̄ −X∗

Q̄

∥∥∥ ≤ ‖z − z∗‖ and
∥∥∥S−1

Q̄

∥∥∥ ≤ κ1.

[]

Lemma 4.4 : Suppose (4.23) and (4.32) holds. Then

∥∥∥
(
∆Xa

Q∆Sa
Q − ∆X̃a

Q∆S̃a
Q

)
eQ

∥∥∥ ≤ (2 + κ ‖z − z∗‖)κ ‖z − z∗‖ ‖∆za‖2 .

Proof:

The analysis to bound
∥∥∆x̃a

Q

∥∥ is similar to the analysis on the bound of
∥∥∆s̃a

Q

∥∥

which is shown in (4.32). Therefore,

∥∥∥
(
∆Xa

Q∆Sa
Q − ∆X̃a

Q∆S̃a
Q

)
eQ

∥∥∥

=
∥∥∥
(
∆Xa

Q∆Sa
Q−∆X̃a

Q∆Sa
Q + ∆X̃a

Q∆Sa
Q −∆X̃a

Q∆S̃a
Q

)
eQ

∥∥∥

=
∥∥∥
(
∆Xa

Q − ∆X̃a
Q

)
∆sa

Q + ∆X̃a
Q

(
∆sa

Q − ∆s̃a
Q

)∥∥∥

≤
∥∥∥∆Xa

Q − ∆X̃a
Q

∥∥∥
∥∥∆sa

Q

∥∥+
∥∥∥∆X̃a

Q

∥∥∥
∥∥∆sa

Q − ∆s̃a
Q

∥∥

≤ κ ‖z − z∗‖ ‖∆za‖ ‖∆za‖ + (1 + κ ‖z − z∗‖) ‖∆za‖κ ‖z − z∗‖ ‖∆za‖

= (2 + κ ‖z − z∗‖)κ ‖z − z∗‖ ‖∆za‖2
,

where the fourth line follows from (4.23) and (4.32). []

83

Before we state the theorem to show (4.24), we present a lemma to show

the standand centering-corrector direction is bounded by the standard affine-scaling

direction.

Lemma 4.5 : Suppose (3.24), Assumptions (A7) - (A8) and the assumptions of

Lemma (4.2) hold. Let

∥∥(AQS
−1
Q XQA

T
Q)−1

∥∥ ≤ C3 where 0 < C3 <∞. Then,

∥∥∆zcc
Q

∥∥ ≤ τ3 ‖∆za‖ ,

where

τ3 = τ2 +
∥∥AT

Q

∥∥ τ2 +
(
τ1 + κ1C1

∥∥AT
Q

∥∥ τ2
)
,

τ2 = C2 ‖AQ‖ τ1,

τ1 = κ1 (k [25 + (V3 + κ) ζ + ζ · Θ(‖∆za‖)] + ‖∆za‖) .

Proof:

Let ξQ = σµS−1
Q eQ − S−1

Q ∆Xa
Q∆Sa

QeQ. Then,

‖ξQ‖ =
∥∥σµS−1

Q eQ − S−1
Q ∆Xa

Q∆Sa
QeQ

∥∥

≤ |σµ|
∥∥S−1

Q

∥∥ ‖eQ‖ +
∥∥S−1

Q

∥∥∥∥∆Xa
Q∆Sa

QeQ

∥∥

≤
[
25µ + (V3 + κ) ζ ‖∆za‖ + ζ · Θ

(
‖∆za‖2)] · κ1 · k

+κ1 · ‖∆za‖2

≤ κ1 (k [25 + (V3 + κ) ζ + ζ · Θ(‖∆za‖)] + ‖∆za‖) · max {‖∆za‖ , µ}

= τ1 · max {‖∆za‖ , µ} ,

84

where the third line follows from (3.24) and Lemma (4.2) and

τ1 = κ1 (k [25 + (V3 + κ) ζ + ζ · Θ(‖∆za‖)] + ‖∆za‖) .

Using the previous result, we have

‖∆ycc‖ =
∥∥−(AQS

−1
Q XQA

T
Q)−1AQξQ

∥∥

≤
∥∥(AQS

−1
Q XQA

T
Q)−1

∥∥ ‖AQ‖ ‖ξQ‖

≤ C3 ‖AQ‖ τ1 · max {‖∆za‖ , µ}

= τ2 · max {‖∆za‖ , µ} ,

where τ2 = C2 ‖AQ‖ τ1. The bounds on
∥∥∆scc

Q

∥∥ and
∥∥∆zcc

Q

∥∥ are given by:

∥∥∆scc
Q

∥∥ =
∥∥−AT

Q∆ycc
∥∥

≤
∥∥AT

Q

∥∥ ‖∆ycc‖

≤
∥∥AT

Q

∥∥ τ2 · max {‖∆za‖ , µ} ,
∥∥∆xcc

Q

∥∥ =
∥∥ξQ − S−1

Q XQ∆scc
Q

∥∥

≤ ‖ξQ‖ +
∥∥S−1

Q

∥∥ ‖XQ‖
∥∥∆scc

Q

∥∥

≤ τ1 · max {‖∆za‖ , µ} + κ1C1

∥∥AT
Q

∥∥ τ2 · max {‖∆za‖ , µ}

=
(
τ1 + κ1C1

∥∥AT
Q

∥∥ τ2
)
· max {‖∆za‖ , µ} ,

where the second to the last line follows from (3.24). Using the above bounds for

85

the components of the centering-corrector direction, we have

∥∥∆zcc
Q

∥∥ ≤ ‖∆ycc‖ +
∥∥∆scc

Q

∥∥+
∥∥∆xcc

Q

∥∥

≤ τ2 · max {‖∆za‖ , µ} +
∥∥AT

Q

∥∥ τ2 · max {‖∆za‖ , µ}

+
(
τ1 + κ1C1

∥∥AT
Q

∥∥ τ2
)
· max {‖∆za‖ , µ}

=
[
τ2 +

∥∥AT
Q

∥∥ τ2 +
(
τ1 + κ1C1

∥∥AT
Q

∥∥ τ2
)]

· max {‖∆za‖ , µ}

= τ3 · max {‖∆za‖ , µ} ,

where τ3 = τ2 +
∥∥AT

Q

∥∥ τ2 +
(
τ1 + κ1C1

∥∥AT
Q

∥∥ τ2
)
. []

We now present the analysis to show (4.24).

Theorem 4.1 Suppose Assumptions (A1) - (A8), (3.24), (4.23),
∥∥(AQS

−1
Q XQA

T
Q)−1

∥∥ ≤

C3 where 0 < C3 <∞, and µ = µQ hold. Let

Υ = {z : ‖z − z∗‖ < δ, x > 0, s > 0}

where δ > 0. Suppose Ja(AQ, xQ, sQ) is nonsingular for all Q. Let ∆za be the

Newton direction at z. Then, there exists κ̂ > 0 such that

∥∥∆z̃cc
Q − ∆zcc

Q

∥∥ ≤ κ̂ ·Φ(z)

for all z ∈ Υ with Φ(z) → 0 as the optimal solution is approached.

Proof. Let z = (x, y, s) where x > 0 and s > 0. Then, ∆ỹcc and ∆x̃cc
Q are given by




0 AQ

−XQA
T
Q SQ







∆ỹcc

∆x̃cc
Q


 =




0

ω̃Q


 , (4.45)

86

where ω̃Q = σQµeQ − ∆X̃a
Q∆S̃a

QeQ. The components of the centering-corrector

direction, ∆ycc and ∆xcc satisfy



0 A

−XAT S







∆ycc

∆xcc


 =




0

ω


 ,

where ω = σµe − ∆Xa∆Sae. Partitioning the previous expression in terms of Q

and Q̄ gives



0 AQ AQ̄

−XQA
T
Q SQ 0

−XQ̄A
T
Q̄

0 SQ̄







∆ycc

∆xcc
Q

∆xcc
Q̄




=




0

ωQ

ωQ̄



.

Premultiplying the third row by −AQ̄S
−1
Q̄

and adding to the first row, we can elim-

inate ∆xcc
Q̄

to obtain the following system of equations,



AQ̄S

−1
Q̄
XQ̄A

T
Q̄

AQ

−XQA
T
Q SQ







∆ycc

∆xcc
Q


 =




−AQ̄S
−1
Q̄
ωQ̄

ωQ


 .

Adding ω̃Q to both sides of the last expression, we have



AQ̄S

−1
Q̄
XQ̄A

T
Q̄

AQ

−XQA
T
Q SQ







∆ycc

∆xcc
Q


 +



AQ̄S

−1
Q̄
ωQ̄

ω̃Q − ωQ




=




0

ω̃Q


 . (4.46)

The right-hand side of (4.46) is precisely the right-hand side of (4.45). Let

Ja(AQ, xQ, sQ) =




0 AQ

−XQA
T
Q SQ


 .

87

Equating the left-hand sides of (4.45) and (4.46) gives



AQ̄S

−1
Q̄
XQ̄A

T
Q̄

AQ

−XQA
T
Q SQ







∆ycc

∆xcc
Q


 +



AQ̄S

−1
Q̄
ωQ̄

ω̃Q − ωQ




= Ja(AQ, xQ, sQ)




∆ỹcc

∆x̃cc
Q


 .

Notice that



AQ̄S

−1
Q̄
XQ̄A

T
Q̄

AQ

−XQA
T
Q SQ







∆ycc

∆xcc
Q


 =

Ja(AQ, xQ, sQ)




∆ycc

∆xcc
Q


 +



AQ̄S

−1
Q̄
XQ̄A

T
Q̄

0

0 0







∆ycc

∆xcc
Q


 .

Now solving for ∆z̃cc
Q − ∆zcc

Q , we have




∆ỹcc

∆x̃cc
Q


−




∆ycc

∆xcc
Q


 = Ja(AQ, xQ, sQ)−1



AQ̄S

−1
Q̄
XQ̄A

T
Q̄

0

0 0







∆ycc

∆xcc
Q




+ Ja(AQ, xQ, sQ)−1



AQ̄S

−1
Q̄
ωQ̄

ω̃Q − ωQ


 .

Taking norms of both sides, we have

88

∥∥∥∥∥∥∥∥




∆ỹcc

∆x̃cc
Q


 −




∆ycc

∆xcc
Q




∥∥∥∥∥∥∥∥

≤
∥∥Ja(AQ, xQ, sQ)−1

∥∥

∥∥∥∥∥∥∥∥



AQ̄S

−1
Q̄
XQ̄A

T
Q̄

0

0 0




∥∥∥∥∥∥∥∥

∥∥∥∥∥∥∥∥




∆ycc

∆xcc
Q




∥∥∥∥∥∥∥∥
(4.47)

+
∥∥Ja(AQ, xQ, sQ)−1

∥∥

∥∥∥∥∥∥∥∥



AQ̄S

−1
Q̄
ωQ̄

ω̃Q − ωQ




∥∥∥∥∥∥∥∥
. (4.48)

The bound on (4.47) is given by

‖Ja(AQ, xQ, sQ)−1‖

∥∥∥∥∥∥∥∥



AQ̄S

−1
Q̄
XQ̄A

T
Q̄

0

0 0




∥∥∥∥∥∥∥∥

∥∥∥∥∥∥∥∥




∆ycc

∆xcc
Q




∥∥∥∥∥∥∥∥

≤ κ2 ‖z − z∗‖
∥∥∆zcc

Q

∥∥

≤ κ2 ‖z − z∗‖ τ3 max {‖∆za‖ , µ} . (4.49)

The first inequality follows from (3.25) and the last inequality follows from Lemma

4.5. We will now show a bound for

∥∥∥∥∥∥∥∥



AQ̄S

−1
Q̄
ωQ̄

ω̃Q − ωQ




∥∥∥∥∥∥∥∥
.

Let M = AQ̄S
−1
Q̄

; then
∥∥∥∥∥∥∥∥



AQ̄S

−1
Q̄
ωQ̄

ω̃Q − ωQ




∥∥∥∥∥∥∥∥

2

=

∥∥∥∥∥∥∥∥




M
(
σµeQ̄ − ∆Xa

Q̄
∆Sa

Q̄
eQ̄

)

[
(σQ − σ)µeQ −

(
∆X̃a

Q∆S̃a
Q − ∆Xa

Q∆Sa
Q

)]
eQ




∥∥∥∥∥∥∥∥

2

.

89

Expanding the right-hand side of this norm, we have∥∥∥∥∥∥∥∥



AQ̄S

−1
Q̄
ωQ̄

ω̃Q − ωQ




∥∥∥∥∥∥∥∥

2

≤
∥∥∥M∆Xa

Q̄∆Sa
Q̄eQ̄

∥∥∥
2

+ (σµ)2
∥∥MeQ̄

∥∥2
+
∥∥∥
(
∆Xa

Q∆Sa
Q − ∆X̃a

Q∆S̃a
Q

)
eQ

∥∥∥
2

+ [(σ − σQ)µ]
2 ‖eQ‖2

+ 2 |σµ|
∥∥∥∆Xa

Q̄∆Sa
Q̄eQ̄

∥∥∥
∥∥MeQ̄

∥∥

+2 |(σ − σQ)µ| ‖eQ‖
∥∥∥
(
∆Xa

Q∆Sa
Q − ∆X̃a

Q∆S̃a
Q

)
eQ

∥∥∥

≤ ‖M‖2
∥∥∥∆Xa

Q̄∆Sa
Q̄eQ̄

∥∥∥
2

+ (n − k) ‖M‖2 (σµ)2

+
∥∥∥
(
∆Xa

Q∆Sa
Q − ∆X̃a

Q∆S̃a
Q

)
eQ

∥∥∥
2

+ k [(σ − σQ) µ]2

+2
√
n− k ‖M‖ |σµ|

∥∥∥∆Xa
Q̄∆Sa

Q̄eQ̄

∥∥∥

+2
√
k |(σ − σQ)µ|

∥∥∥
(
∆Xa

Q∆Sa
Q − ∆X̃a

Q∆S̃a
Q

)
eQ

∥∥∥ .

The six terms on the right-hand side of the last inequality can be bounded by

previous results within this section. Let ζ = max {‖z − z∗‖ , µ}. The bounds are as

follows:

i. ‖M‖2
∥∥∥∆Xa

Q̄
∆Sa

Q̄
eQ̄

∥∥∥
2

≤ ‖M‖2 (1 + κ1 ‖∆z‖)2 ‖z − z∗‖2 ‖∆za‖2

≤ ζ2 · Θ
(
‖∆za‖2)

.

The second line follows from Lemma 4.3.

90

ii. (n− k) ‖M‖2 (σµ)2

≤ (n− k) ‖M‖2 [
25µ + (V3 + κ) ζ ‖∆za‖ + ζ · Θ

(
‖∆za‖2)]2

= (n− k) ‖M‖2 [625µ2 + (V3 + κ)2 ζ2 ‖∆za‖2 + 50µ (V3 + κ) ζ ‖∆za‖

+50µζ · Θ
(
‖∆za‖2)]

≤ (n− k) ‖M‖2 [625ζ2 + ζ2 · Θ(‖∆za‖) + ζ2 · Θ
(
‖∆za‖2)]

≤ ζ2
[
625 (n− k) ‖M‖2 + Θ(‖∆za‖)

]
.

The bound on σµ follows from Lemma 4.2.

iii.
∥∥∥
(
∆Xa

Q∆Sa
Q − ∆X̃a

Q∆S̃a
Q

)
eQ

∥∥∥
2

≤ (2 + κ ‖z − z∗‖)2 κ2
∥∥z − z2

∥∥2 ‖∆za‖4

≤ ζ2 · Θ
(
‖∆za‖4) .

The second line follows from Lemma 4.4.

iv. k [(σ − σQ)µ]2

≤ k
[
25µ + V3 ‖z − z∗‖ ‖∆za‖ + ζ · Θ

(
‖∆za‖2)]2

≤ k
[
625µ2 + V 2

3 ζ
2 ‖∆za‖2 + ζ2 · Θ

(
‖∆za‖4)

+50µV3ζ ‖∆za‖ + 50µζ · Θ
(
‖∆za‖2)+ 2V3ζ · Θ

(
‖∆za‖3)]

≤ k
[
625ζ2 + ζ2 · Θ(‖∆za‖) − ζ2 · Θ

(
‖∆za‖2

)]

≤ ζ2 [625k + Θ(‖∆za‖)] .

The second line follows from Lemma 4.1.

91

v. 2
√
n− k ‖M‖ |σµ|

∥∥∥∆Xa
Q̄
∆Sa

Q̄
eQ̄

∥∥∥

≤ 2
√
n− k ‖M‖

[
25µ + (V3 + κ) ζ ‖∆za‖+ ζ · Θ

(
‖∆za‖2)] ·

[(1 + κ1 ‖∆za‖) ‖z − z∗‖ ‖∆za‖]

≤ ζ2 ·Θ(‖∆za‖) .

The second line follows from Lemmas 4.2 and 4.3.

vi. 2
√
k |(σ − σQ)µ|

∥∥∥
(
∆Xa

Q∆Sa
Q −∆X̃a

Q∆S̃a
Q

)
eQ

∥∥∥

≤ 2
√
k
[
25µ + V3 ‖z − z∗‖ ‖∆za‖ + ζ · Θ

(
‖∆za‖2)] ·

[
(2 + κ ‖z − z∗‖)κ ‖z − z∗‖ ‖∆za‖2]

≤ ζ2 · Θ
(
‖∆za‖2)

+ ζ2 · Θ
(
‖∆za‖3)

+ ζ2 · Θ
(
‖∆za‖4)

≤ ζ2 · Θ
(
‖∆za‖2)

.

The second line follows from Lemmas 4.1 and 4.4.

Combining i.-vi., we have

92

∥∥∥∥∥∥∥∥



AQ̄S

−1
Q̄
ωQ̄

ω̃Q − ωQ




∥∥∥∥∥∥∥∥

2

≤ ‖M‖2
∥∥∥∆Xa

Q̄∆Sa
Q̄eQ̄

∥∥∥
2

+ (n− k) ‖M‖2 (σµ)2

+
∥∥∥
(
∆Xa

Q∆Sa
Q −∆X̃a

Q∆S̃a
Q

)
eQ

∥∥∥
2

+ k [(σ − σQ)µ]2

+2
√
n − k ‖M‖ |σµ|

∥∥∥∆Xa
Q̄∆Sa

Q̄eQ̄

∥∥∥

+2
√
k |(σ − σQ) µ|

∥∥∥
(
∆Xa

Q∆Sa
Q − ∆X̃a

Q∆S̃a
Q

)
eQ

∥∥∥

≤ ζ2 ·
(
‖∆za‖2)+ ζ2

[
625(n − k) ‖M‖2 + Θ(‖∆za‖)

]

+ζ2 · Θ
(
‖∆za‖4)+ ζ2 [625k + Θ(‖∆za‖)] + ζ2 · Θ(‖∆za‖)

+ζ2 · Θ
(
‖∆za‖2) .

Factoring out ζ2 and combining like terms gives∥∥∥∥∥∥∥∥



AQ̄S

−1
Q̄
ωQ̄

ω̃Q − ωQ




∥∥∥∥∥∥∥∥

2

≤ ζ2
[
625

(
(n− k) ‖M‖2 + k

)
+ Θ(‖∆za‖) + Θ

(
‖∆za‖2

)

+Θ
(
‖∆za‖4)]

≤ ζ2
[
625

(
(n− k) ‖M‖2 + k

)
+ Θ(‖∆za‖)

]
.

Taking the square root of both sides, we have

∥∥∥∥∥∥∥∥



AQ̄S

−1
Q̄
ωQ̄

ω̃Q − ωQ




∥∥∥∥∥∥∥∥
≤ ζ

√
κ3 + Θ(‖∆za‖), (4.50)

where

κ3 = 625 (n− k) ‖M‖2 .

93

Combining (4.47), (4.48), (4.49), and (4.50), we have

∥∥∆z̃cc
Q −∆zcc

Q

∥∥ ≤
∥∥Ja(AQ, xQ, sQ)−1

∥∥

∥∥∥∥∥∥∥∥



AQ̄S

−1
Q̄
XQ̄A

T
Q̄

0

0 0




∥∥∥∥∥∥∥∥

∥∥∥∥∥∥∥∥




∆ycc

∆xcc
Q




∥∥∥∥∥∥∥∥

+
∥∥Ja(AQ, xQ, sQ)−1

∥∥

∥∥∥∥∥∥∥∥



AQ̄S

−1
Q̄
ωQ̄

ωQ − ω̃Q




∥∥∥∥∥∥∥∥

≤ κ2 ‖z − z∗‖ τ3 · max {‖∆za‖ , µ} + ζκ0

√
κ3 + Θ(‖∆za‖)

≤ ζ · Θ(max {‖∆za‖ , µ}) + ζκ0

√
κ3 + Θ(‖∆za‖)

≤ κ̂ · ζ

where κ̂ = κ0 max
{

Θ(max {‖∆za‖ , µ}) ,
√
κ3 + Θ(‖∆za‖)

}
=
√
κ3 + Θ(‖∆za‖) >

0 since Θ (max {‖∆za‖ , µ}) → 0 and κ3 > 0. Furthermore, let Φ(z) = ζ. Then,

Φ(z) = max {‖z − z∗‖ , µ} → 0 as the optimal solution is approached. []

Global and local quadratic convergence follow from Winternitz et al. [28]

with five specific changes to the redMPC algorithm. The differences between the

redMPC algorithm and its modified version are summarized in Table 4.1. The

first modification is maintaining dual-feasibility at each iteration. This implies si =

c − ATyi > 0 and ri
d = 0 for all i. Consequently, the algorithm for updating

(x+, s+) and rd has no effect on this dual-feasible algorithm and can be discarded.

Furthermore, equations (4.8), (4.12), (4.9), and (4.16) must be computed with the

full data to satisfy the above requirement on the slack variables. As a result, equation

(4.19) must be eliminated from the algorithm. The second difference is the formula

94

redMPC Modified redMPC

algorithm algorithm

Feasibility: Accepts dual-infeasible initial point; Requires dual-feasible

strives to achieve dual-feasibility point at each iteration

Terms AQD
2
QA

T
Q, ∆x̃a

Q, ∆s̃a
Q, AQD

2
QA

T
Q, ∆x̃a

Q, xQ

with Q: ∆x̃cc
Q , ∆s̃cc

Q , xQ, sQ, (rd)Q

Centering σQ =
(
µa

Q/µQ

)3
where σQ = (1 − αQ,a)

ρ

parameter: µa
Q =

(xQ+α
p
Q,a∆x̃a

Q)
T
(sQ+αd

Q,a∆s̃a
Q)

n
where ρ ≥ 2

∆x̃Q = ∆x̃a
Q + ∆x̃cc

Q ∆x̃Q = ∆x̃a
Q + γ∆x̃cc

Q

MPC ∆ỹ = ∆ỹa + ∆ỹcc ∆ỹ = ∆ỹa + γ∆ỹcc

direction: ∆s̃Q = ∆s̃a
Q + ∆s̃cc

Q ∆s̃ = ∆s̃a + γ∆s̃cc

where 0 < γ < 1

Predictor- αp
Q = τ min

(
α̂p

Q, 1
)

αp
Q = max

{
τ α̂p

a, α̂
p
Q − ‖∆ya‖

}

Corrector αd
Q = τ min

(
α̂d

Q, 1
)

αd
Q = max

{
τ α̂d

Q, α̂
d
Q − ‖∆ya‖

}

step: where 0 < τ < 1 where 0 < τ < 1

Update General update strategy for x+, General update strategy

scheme: y+, and s+; unique update for y+ and s+; unique

scheme for r+
d with further update scheme for x+

updates for x+ and s+

Table 4.1: A summary of the differences between the redMPC algorithm and a

modified version of the algorithm adapted from Winternitz et. al. [28] that proves

to be locally and quadratically convergent.

95

for the centering parameter, σQ. Replacing (4.11) with

σQ = (1 − αQ,a)
ρ
,

where αQ,a = min
{
αp

Q,a, α
d
Q,a

}
and ρ ≥ 2, simplifies the analysis. When ρ = 3,

(x, y, s) are primal and dual feasible, and αQ,a = αp
Q,a = αd

Q,a, the formulas agree.

The third change involves replacing (4.13) - (4.15) with

(∆xQ,∆y,∆s) =
(
∆xa

Q,∆y
a,∆sa

)
+ γ

(
∆xcc

Q ,∆y
cc,∆scc

)
,

where γ ∈ (0, 1] is a mixing parameter. This parameter is essential to the analysis; it

is defined to ensure certain properties hold for convergence. In particular, γ ensures

(1) ∆y is an ascent direction for bTy (i.e. bT∆y > 0 implies bTy+ > bTy),

(2) if ∆ya is “small” then ∆y and γσQµQ are also “small”, and

(3) α̂d
Q ≥ ζαd

Q,a where ζ ∈ (0, 1).

See Winternitz et al. [28] for details. The fourth modification involves incorporating

lower bounds into the predictor-corrector step. The equations in (4.17) can be

replaced with

αp
Q = max

{
τ α̂p

a, α̂
p
Q − ‖∆ya‖

}
(4.51)

and

αd
Q = max

{
τ α̂d

Q, α̂
d
Q − ‖∆ya‖

}
(4.52)

respectively, where the primal (α̂p
Q − ‖∆ya‖) and dual (α̂p

Q − ‖∆ya‖) lower bounds

allow local quadratic convergence. The fifth change to the redMPC algorithm is in

96

the update scheme for the primal variables. The ∆x̃a
Q and ∆x̃cc

Q components of the

normal equations remain the same while the update in (4.20) - (4.22) is replaced by

(
x̂Q, y

+, s+
)

=
(
xQ + αp

Q∆x̃, y + αd
Q∆ỹ, s+ αd

Q∆s̃
)
,

where αp
Q and αd

Q are given in (4.51) and (4.52), respectively. Let x > 0, xj ≤ xmax

for all j ∈ N , and k = |Q|. The primal update, x+, is defined as follows:

For all j ∈ Q,

x+
j = min

{
max

(
min

{
‖∆ya‖ν +

∥∥x̃a
−

∥∥ν
, x
}
, x̂j

)
, xmax

}
, (4.53)

where

x̃a
j =





xj + ∆x̃a
j j ∈ Q

0 j ∈ Q̄

,

(
x̃a
−

)
j

= min
{
x̃a

j , 0
}
.

Using (4.53), we can express µ+
Q as

µ+
Q =

(
x+

Q

)T
s+

Q

k
.

Thus, for all j ∈ Q̄, we have

x̂j =
µ+

Q

s+
j

,

x+
j = min{x̂j, xmax} .

The dual-feasible redMPC algorithm is presented below:

———————————————-

The Dual-Feasible redMPC Algorithm

Input: (x, y, s) with x > 0, xmax > 0 such that xj ≤ xmax ∀j ∈ N and s = c−ATy >

97

0, x > 0, ρ ≥ 2, ν ≥ 2, ubnd ≥ 3m, 0 < τ < 1, convergence tolerance λ.

Initialize: lbnd = 3m, Q = {1, 2, . . . , n}, Q̂ = ∅.

Main Algorithm:

while |cTx− bTy|/max |cTx, 1| > λ

Select the most promising dual constraints 4

Q = Q ∪ Q̂,

k = |Q|,

µQ =
xT

QsQ

k
.

Compute the affine-scaling direction:

∆ỹa =
(
AQS

−1
Q XQA

T
Q

)−1
b,

∆s̃a = −AT∆ỹa,

∆x̃a
Q = −xQ − S−1

Q XQ∆s̃a
Q.

Compute the affine step:

α̂p
Q,a =






1 if
(
∆x̃a

Q

)
j
≥ 0, ∀j

min(∆x̃a
Q)

j
<0

[
−(xQ)j/

(
∆x̃a

Q

)
j

]
otherwise

,

α̂d
Q,a =






1 if ∆s̃a
j ≥ 0, ∀j

min∆s̃a
j
<0

[
−(sQ)j/∆s̃

a
j

]
otherwise

,

αQ,a = min
{
α̂p

Q,a, α̂
d
Q,a

}
.

Compute the centering parameter:

σQ = (1 − αQ,a)
ρ .

4The set Q is determined by the algorithm in Section 2.2.2: Selection of Q

98

Compute the centering-corrector direction:

ξQ = −S−1
Q ∆X̃a

Q∆S̃a
QeQ − σQµQS

−1
Q eQ,

∆ỹcc = −(AQS
−1
Q XQA

T
Q)−1AQξQ,

∆s̃cc = −AT∆ỹcc,

∆x̃cc
Q = ξQ − S−1

Q XQ∆s̃cc
Q .

Compute the predictor-corrector direction:

∆x̃Q = ∆x̃a
Q + γ∆x̃cc

Q ,

∆ỹ = ∆ỹa + γ∆ỹcc,

∆s̃ = ∆s̃a + γ∆s̃cc,

where γ ∈ (0, 1] ensures (1) − (3) hold.

Compute the predictor-corrector step:

α̂p
Q =






1 if (∆x̃Q)j > 0, ∀j

min(∆x̃Q)j<0 [−(xQ)j/(∆x̃Q)j] otherwise

,

α̂d
Q =






1 if ∆s̃j > 0, ∀j

min∆s̃j<0 [−(sQ)j/∆s̃j] otherwise

,

αp
Q = max

{
τ α̂p

a, α̂
p
Q − ‖∆ya‖

}
,

αp
Q = max

{
τ α̂p

Q, α̂
p
Q − ‖∆ya‖

}
.

99

Update the variables:

x̂Q = xQ + αp
Q∆x̃,

y+ = y + αd
Q∆ỹ,

s+ = s+ αd
Q∆s̃.

For all j ∈ Q,

x+
j = min

{
max

(
min

{
‖∆ya‖ν +

∥∥x̃a
−

∥∥ν
, x
}
, x̂j

)
, xmax

}
,

where

x̃a
j =






xj + ∆x̃a
j j ∈ Q

0 j ∈ Q̄

,

(
x̃a
−

)
j

= min
{
x̃a

j , 0
}
.

Set

µ+
Q =

(
x+

Q

)T
s+

Q

k
.

For all j ∈ Q̄,

x̂j =
µ+

Q

s+
j

,

x+
j = min{x̂j, xmax} .

———————————————-

The key to the global convergence analysis is the availability of a dual-feasible point

at every iteration, the definition of the mixing parameter γ, and the lower bound

condition on the primal updates. A local quadratic convergence analysis follows

provided the above conditions hold and the bounds α̂p
Q − ‖∆ya‖ and α̂d

Q − ‖∆ya‖

100

are imposed on the predictor-corrector step in equation (4.17). We provided a brief

outline of the convergence proof for the modified redPDAS algorithm in Chapter 3.

The proof for the modified redMPC algorithm follows a similar format. We refer

the reader to Winternitz et al. [28] for specific details.

4.5 Summary

In this chapter, we introduced the redMPC algorithm and stated how specific

changes to the algorithm provide global and local q-quadratic convergence results.

With further research, we hope to prove similar results for the redMPC algorithm.

In the next chapter, we test the performance of the redPDAS and redMPC algo-

rithms against their counterparts without constraint reduction.

101

Chapter 5

Numerical Experiments

5.1 Overview

Algorithms redPDAS and redMPC were implemented in MATLAB (v.6.5,

R13) and run on an Intel(R) Pentium(R) M Processor CPU 1.60GHz Laptop ma-

chine with 512 MB of RAM. Each algorithm was tested against the general version

of the algorithm (see Sections 3.2 and 4.2) with reduced normal equations,

∆ya =
(
AQS

−1
Q XQA

T
Q

)−1 [
b−AS−1Xrd

]
,

∆sa = −rd − AT∆ya,

∆xa = −x+ S−1X∆sa.

For simplicity, the general version of the algorithms with this slight modification will

be referred to as PDAS and MPC . Algorithm redMPC was also tested against a

modified version of the reduced MPC algorithm (ipas35) in Tits et. al. [24]. In our

numerical experiments, we simply refer to this algorithm by ipas35. The redMPC

and ipas35 algorithms require the same initial point condition, (x, s) > 0, which

can easily be accommodated using the algorithm of Section 2.2.2. Unfortunately,

the redPDAS algorithm could not be tested with the same starting point as the

reduced PDAS (rPDAS) from [24] since redPDAS requires s > 0 at each iteration

and rPDAS requires s = c − ATy but not s > 0 at each iteration. Although the

102

combination s = c − ATy > 0 is required for optimality, an initial point which

satisfies both conditions simultaneously is difficult to achieve. Therefore, the redP-

DAS algorithm was tested just with the PDAS algorithm by using the initial point

algorithm of Section 2.2.2.

The parameters for redPDAS and redMPC were chosen as τ = .99 and

ubnd = k̂ where k̂ was selected from 25 linearly spaced vector values (rounded to

the nearest integer) ranging from 3m to n. The value of k̂ is fixed, however k varies

from iteration to iteration such that 3m ≤ k ≤ k̂ ≤ n. The stopping criterion was

adapted from [17] and is based on the error in the duality gap,

∣∣cTx− bTy
∣∣ /max

(
cTx, 1

)
< λ,

where λ = 10−8.

5.1.1 Test Problems

The first set of test problems (TAW1 - TAW5) were selected from the test prob-

lems used in the code developed by Tits et. al. [24]. The LP data sets (A, b, c) were

generated using the MATLAB commands rand, randn, and ones. The commands

rand(m,n) and randn(m,n) generate an m×n matrix with uniformly and normally

distributed random numbers, respectively. The entries in rand(m,n) are chosen

from a uniform distribution on the interval (0.0,1.0). The entries in randn(m,n) are

chosen from a normal distribution with mean zero and variance 1 (i.e N(0, 1)). The

command ones(m,n) creates an m × n matrix of all ones. Table 5.1 displays the

test problem name, a description of the problem, and the MATLAB commands used

103

to define the data (A, b, c). The initial point (x0, y0, s0) was generated as discussed

in the previous section, unless otherwise stated in the table. For more information

about these test problems, see [24].

Problems Description Data

TAW1 Constraints tangent A*, b = randn(m,1), c = ones(n,1),

to unit sphere y0 = ŷ/norm(ŷ) where ŷ = randn(m,1).

TAW2 Random (normal) A*, b = randn(m,1), c = AT ŷ + ŝ,

constraints where ŷ = rand(m,1), ŝ = rand(n,1).

TAW3 Random as in A = 2 rand(m,n) - ones(m,n),

WT-18Jul2003 b = 2 rand(m,1) - ones(m,1),

(previous version of TAW) c = AT ŷ + ŝ,

where ŷ = b, ŝ = rand(n,1).

TAW4 RandomLP A = randn(m,n), b = randn(m,1),

c = AT ŷ + rand(n,1),

where ŷ = randn(m,1).

TAW5 SIPND A*, b = randn(m,1), c = ones(n,1),

y0 = zeros(m,1).

Table 5.1: Random Problems (TAW1 - TAW5) from Tits et. al. [24]. Problems

with constraint matrix A* generate each column of A with randn(m,1) and then

normalize to make each column have norm one.

In the second set of test problems (RAND1 - RAND5), the matrix A and the

104

vectors b and c were randomly generated, for some specified m and n, so that both

the primal and dual problems produced nondegenerate solutions at each iteration

and terminated with an optimal solution in a finite number of iterations. The entries

in A were randomly generated from a normal distribution with mean 0 and variance

1. Each data value in A was then multiplied by 2 and rounded to the next integer.

The entries in the vector b were randomly generated from a uniform distribution on

the interval (0,1). Each entry in b was then multiplied by 100 and rounded to the

next integer. The vector c is the vector of all ones with its first entry multiplied

by -1. Table 5.2 shows the test problem name, the dimension of each problem, and

its optimal solution. The optimal solution was determined by MATLAB’s linear

programming solver, LINPROG.

Problems Dimensions Optimal Solution

RAND1 m = 5, n = 100 18.28000000

RAND2 m = 12, n = 500 29.15542400

RAND3 m = 24, n = 780 34.05845050

RAND4 m = 58, n = 1004 58.61768707

RAND5 m = 75, n = 2016 61.42186535

Table 5.2: RandomTest Problems (RAND1 - RAND5) with specified m and n and

known optimal solution

The third set of test problems comes from the Netlib test problems for LPs [2].

A search for problems that satisfied the criterion of n � m led to approximately

105

12 problems. However, ensuring AQ had full rank at each iteration reduced the set

of 12 problems to 3. These three problems come from the SCSD series. Table 5.3

shows the name of the test problem, the dimension of each problem, and its optimal

solution.

Problems Dimensions Optimal Solution

SCSD1 m = 77, n = 760 8.66666666

SCSD6 m = 147, n = 1350 50.50000000

SCSD8 m = 397, n = 2750 904.99999999

Table 5.3: Netlib Problems from [2] with specified m and n and known optimal

solution

5.2 redPDAS Experiments

The selection of the most promising dual constraints in the working set Q at

each iteration is based on a subroutine that selects the ratios xj/sj greater than

C ·max (xj/sj) where C is an experimental constant. Figure 5.1 shows the average

time (in seconds) to solve 50 randomly generated problems over varying values of

C . This experiment was conducted using the test problem TAW4 with m = 50,

n = 20000, and |Q| ∈ [3m, ubnd] where ubnd is fixed to n.

Figure 5.1 shows that the average time to solve 50 randomly generated prob-

lems for PDAS is more than 2 times that of redPDAS for C values between 10−16

106

10
−15

10
−10

10
−5

10
0

0

10

20

30

40

50

60

70

C

A
v
e
ra

g
e
 T

im
e
 t
o
 S

o
lv

e
 5

0
 P

ro
b
le

m
s
 (

s
e
c
o
n
d
s
)

Reduced Affine on RandomLP, m = 50, n = 20000

redPDAS
PDAS

Figure 5.1: Performance of the redPDAS algorithm against the PDAS on test

problem TAW4 with m = 50, n = 20000, and |Q| ∈ [3m, ubnd] where ubnd is

fixed to n. The average time (in seconds) to solve 50 randomly generated problems

from TAW4 is shown over varying values of C ranging from 10−16 to 10−1.

107

and 10−6. When C > 10−5, the time for the redPDAS algorithm to solve an LP

nearly triples relative to the PDAS algorithm. This is most likely caused by an

insufficient number of dual constraints in the working set at later iterations. The

subroutine for determining Q guarantees the set contains at least m indices at each

iteration and that its size is between lbnd = min (ubnd, 3m) and ubnd = k̂ where k̂ is

an element from 25 linearly spaced vector values (rounded to the nearest integer)

ranging from 3m to n. However, as the algorithm approaches the optimal solution,

m xj/sj ratios tend to infinity since sj → 0 for all j in the optimal set. If C is large

enough, the selection of ratios xj/sj greater than C · max (xj/sj) (i.e. j ∈ Q) may

be too small at early iterations. If too few (or zero) ratios are chosen, the redPDAS

algorithm defines Q to contain the indices j from n−lbnd+1 to n of the largest ratios

where lbnd = min (3m, ubnd). Since ubnd = n, m = 50, and n = 20000, the number of

dual constraints in the working set may be as small as 149 (out of 20000) in early

iterations. This can cause the algorithm to take a large number of iterations before

reaching the optimal solution. According to Figure 5.1, the redPDAS algorithm

performs best against the PDAS algorithm when C is set 10−8.

In the experiments that follow, the redPDAS and PDAS algorithms solve 25

randomly generated problems from each test set (TAW, RAND, and SCSD) over

various values of 3m < k̂ ≤ n with C fixed to 10−8. A comparison of the total CPU

time, the CPU time to form and solve the normal matrix, and the mean number of

iterations is shown. Each one is plotted against various k̂/n ratios. In many cases,

the graphs are missing data values for small k̂/n values. These missing values are

caused by one of two scenarios: (i) the algorithm fails to terminate in a “reasonable”

108

amount of time (maximum time alloted to solve an LP is set to 106 seconds) or (ii)

MATLAB generates NaN (not a number) values for the solution as a result of the

normal matrix becoming numerically singular.

We begin by examining the experiments based on the first set of test problems

(TAW1 - TAW5).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

C
P

U
 t

im
e

k
^
/n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

C
P

U
 t

im
e
:

n
o
rm

a
l
m

a
t

k
^
/n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

N
u
m

b
e
r

o
f

it
e
ra

ti
o
n
s

k
^
/n

redPDAS
PDAS

Figure 5.2: Comparison of the redPDAS algorithm versus PDAS algorithm using

25 randomly generated test problems from TAW1 (constraints tangent to the unit

sphere) with m = 50, n = 20000, and ubnd = k̂ where 150 ≤ k̂ ≤ 20000.

109

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

C
P

U
 t

im
e

k
^
/n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

C
P

U
 t

im
e

:
n

o
rm

a
l
m

a
t

k
^
/n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
50

100

150

200

N
u

m
b

e
r

o
f

it
e

ra
ti
o

n
s

k
^
/n

redPDAS
PDAS

Figure 5.3: Comparison of the redPDAS algorithm versus PDAS algorithm using

25 randomly generated test problems from TAW2 (random [normal] constraints)

with m = 50, n = 20000, and ubnd = k̂ where 150 ≤ k̂ ≤ 20000.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

C
P

U
 t

im
e

k
^
/n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

C
P

U
 t

im
e
:

n
o
rm

a
l
m

a
t

k
^
/n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

N
u
m

b
e
r

o
f
it
e
ra

ti
o

n
s

k
^
/n

redPDAS
PDAS

Figure 5.4: Comparison of the redPDAS algorithm versus PDAS algorithm using

25 randomly generated test problems from TAW3 (Random as in WT-18July2003)

with m = 50, n = 20000, and ubnd = k̂ where 150 ≤ k̂ ≤ 20000.

110

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

C
P

U
 t

im
e

k
^
/n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

C
P

U
 t

im
e

:
n

o
rm

a
l
m

a
t

k
^
/n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
50

100

150

200

250

300

N
u

m
b

e
r

o
f

it
e

ra
ti
o

n
s

k
^
/n

redPDAS
PDAS

Figure 5.5: Comparison of the redPDAS algorithm versus PDAS algorithm using

25 randomly generated test problems from TAW4 (RandomLP) with m = 50, n =

20000, and ubnd = k̂ where 150 ≤ k̂ ≤ 20000.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

C
P

U
 t

im
e

k
^
/n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

C
P

U
 t

im
e
:

n
o
rm

a
l
m

a
t

k
^
/n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

N
u
m

b
e
r

o
f

it
e
ra

ti
o
n
s

k
^
/n

redPDAS
PDAS

Figure 5.6: Comparison of the redPDAS algorithm versus PDAS algorithm using

25 randomly generated test problems from TAW5 (SIPND) withm = 50, n = 20000,

and ubnd = k̂ where 150 ≤ k̂ ≤ 20000.

111

For the first test set (TAW), the PDAS algorithm displayed (in general) an

increase in CPU time and a constant number of iterations to solve an LP over

increasing values of the ratio k̂/n. On the other hand, the redPDAS algorithm re-

mained (in general) constant in CPU time while the number of iterations fluctuated

and often times exceeded the general algorithm. The time difference between the

algorithms became increasing large as k̂/n increased, with the redPDAS algorithm

outperforming PDAS for every test problem with k̂/n > .2.

We now examine the experiments based on the second set of test problems

(RAND1 - RAND5).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

C
P

U
 t

im
e

k
^
/n

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6
x 10

−3

C
P

U
 t

im
e
:

n
o
rm

a
l
m

a
t

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

20

30

40

N
u
m

b
e
r

o
f
it
e
ra

ti
o
n
s

k
^
/n

redPDAS
PDAS

k
^
/n

Figure 5.7: Comparison of the redPDAS algorithm versus PDAS algorithm using

25 randomly generated test problems from RAND1 with m = 5, n = 100, and

ubnd = k̂ where 15 ≤ k̂ ≤ 100.

112

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

C
P

U
 t

im
e

k
^
/n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

C
P

U
 t

im
e

:
n

o
rm

a
l
m

a
t

k
^
/n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

N
u

m
b

e
r

o
f

it
e

ra
ti
o

n
s

k
^
/n

redPDAS
PDAS__mod

Figure 5.8: Comparison of the redPDAS algorithm versus PDAS algorithm using

25 randomly generated test problems from RAND2 with m = 12, n = 500, and

ubnd = k̂ where 36 ≤ k̂ ≤ 500.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

C
P

U
 t

im
e

k
^
/n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

C
P

U
 t

im
e
:

n
o
rm

a
l
m

a
t

k
^
/n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

N
u
m

b
e

r
o
f
it
e
ra

ti
o
n
s

k
^
/n

redPDAS
PDAS

Figure 5.9: Comparison of the redPDAS algorithm versus PDAS algorithm using

25 randomly generated test problems from RAND3 with m = 24, n = 780, and

ubnd = k̂ where 72 ≤ k̂ ≤ 780.

113

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

C
P

U
 t

im
e

k
^
/n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

C
P

U
 t

im
e

:
n

o
rm

a
l
m

a
t

k
^
/n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

N
u

m
b

e
r

o
f

it
e

ra
ti
o

n
s

k
^
/n

redPDAS
PDAS

Figure 5.10: Comparison of the redPDAS algorithm versus PDAS algorithm using

25 randomly generated test problems from RAND4 with m = 58, n = 1004, and

ubnd = k̂ where 174 ≤ k̂ ≤ 1004.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

C
P

U
 t

im
e

k
^
/n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

C
P

U
 t

im
e
:

n
o
rm

a
l
m

a
t

k
^
/n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

N
u
m

b
e

r
o
f
it
e
ra

ti
o
n
s

k
^
/n

redPDAS
PDAS

Figure 5.11: Comparison of the redPDAS algorithm versus PDAS algorithm using

25 randomly generated test problems from RAND5 with m = 75, n = 2016, and

ubnd = k̂ where 225 ≤ k̂ ≤ 2016.

114

The performance of the algorithms on the second test set was quite different.

The graphs show missing data values for k̂/n < .15. For the remaining k̂/n values,

the PDAS algorithm was generally constant in CPU time and number of iterations.

The redPDAS displayed a very erratic behavior on almost all of the test sets in this

category. Experiments using data sets RAND4 and RAND5 show more favorably

for the redPDAS algorithm than those using data sets RAND1 - RAND3, possibly

due to m� n in the first case.

Finally, we examine the experiments based on the Netlib test problems (SCSD1,

SCSD6, and SCSD8).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

C
P

U
 t

im
e

k
^
/n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

C
P

U
 t

im
e
:

n
o
rm

a
l
m

a
t

k
^
/n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

15

20

N
u
m

b
e
r

o
f
it
e
ra

ti
o
n
s

k
^
/n

redPDAS
PDAS

Figure 5.12: Comparison of the redPDAS algorithm versus PDAS algorithm using

the Netlib test problem SCSD1 with m = 77, n = 760, and ubnd = k̂ where 231 ≤

k̂ ≤ 760.

115

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.25

C
P

U
 t

im
e

k
^
/n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.04

0.06

0.08

0.1

C
P

U
 t

im
e

:
n

o
rm

a
l
m

a
t

k
^
/n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

N
u

m
b

e
r

o
f

it
e

ra
ti
o

n
s

k
^
/n

redPDAS
PDAS

Figure 5.13: Comparison of the redPDAS algorithm versus PDAS algorithm using

the Netlib test problem SCSD6 with m = 147, n = 1350, and ubnd = k̂ where

441 ≤ k̂ ≤ 1350.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.5

2

2.5

C
P

U
 t

im
e

k
^
/n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.05

0.1

0.15

0.2

C
P

U
 t

im
e
:

n
o
rm

a
l
m

a
t

k
^
/n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

20

30

40

N
u
m

b
e

r
o
f
it
e
ra

ti
o
n
s

k
^
/n

redPDAS
PDAS

Figure 5.14: Comparison of the redPDAS algorithm versus PDAS algorithm using

the Netlib test problem SCSD8 with m = 397, n = 2750, and ubnd = k̂ where

1191 ≤ k̂ ≤ 2750.

116

For the third test set (Netlib problems), a large portion of the data is missing

for the early k̂/n values. The PDAS algorithm remains consistent in its performance

on CPU time and number of iterations on the SCSD problems. In addition, it

outperforms the redPDAS algorithm for some k̂/n values between 0.3 and 0.7.

However, the redPDAS and PDAS algorithms performance is almost identical in

CPU time and number of iterations as k̂/n → 1.

In the next section, we examine experiments based on Mehrotra’s Predictor-

Corrector Method.

5.3 redMPC Experiments

The redMPC experiments test the performance of the redMPC algorithm

against the reduced MPC algorithm in Tits et. al [24] (ipas35) and a general MPC

algorithm with reduced normal equations (MPC). Figure (5.15) shows the average

time (in seconds) to solve 50 randomly generated problems over varying values of C

using the test problem TAW4 with m = 50, n = 20000, and |Q| ∈ [3m, ubnd] where

ubnd is fixed to n.

117

10
−15

10
−10

10
−5

10
0

2

3

4

5

6

7

8

C

A
v
e
ra

g
e
 T

im
e
 t
o

 S
o
lv

e
 5

0
 P

ro
b
le

m
s
 (

s
e
c
o
n
d
s
)

Reduced MPC on RandomLP, m = 50, n = 20000

redMPC
MPC

Figure 5.15: Performance of the redMPC algorithm against the MPC using test

problem TAW4 with m = 50, n = 20000, |Q| ∈ [3m, ubnd] where ubnd is fixed to n.

The average time (in seconds) to solve 50 randomly generated problems from TAW4

is shown over varying values of C ranging from 10−16 to 10−1.

118

The redMPC outperformed the MPC algorithm for all values of C between

10−16 and 10−1. In the experiments that follow, the redMPC , MPC , and ipas35

algorithms solve 25 randomly generated problems from each test set (TAW, RAND,

and SCSD) over various values of 3m < k̂ ≤ n with C fixed to 10−4. A comparison

of the total CPU time, the CPU time to form and solve the normal matrix, and the

mean number of iterations is shown. Each one is plotted against various k̂/n ratios.

We begin by examining the experiments based on the first set of test problems

(TAW1 - TAW5).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

C
P

U
 t

im
e

k
^
/n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

C
P

U
 t

im
e
:

n
o
rm

a
l
m

a
t

k
^
/n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

15

20

25

N
u
m

b
e
r

o
f

it
e
ra

ti
o

n
s

k
^
/n

redMPC
ipas35
MPC

Figure 5.16: Comparison of the redMPC algorithm versus the MPC and ipas35

algorithms using 25 randomly generated test problems from TAW1 (constraints

tangent to the unit sphere) with m = 50, n = 20000, and ubnd = k̂ where 150 ≤ k̂ ≤

20000.

119

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
2

4

6

8

10

C
P

U
 t

im
e

k
^
/n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

C
P

U
 t

im
e

:
n

o
rm

a
l
m

a
t

k
^
/n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

20

25

30

35

N
u

m
b

e
r

o
f

it
e

ra
ti
o

n
s

k
^
/n

redMPC
ipas35
MPC

Figure 5.17: Comparison of the redMPC algorithm versus the MPC and ipas35

algorithms using 25 randomly generated test problems from TAW2 (random [normal]

constraints) with m = 50, n = 20000, and ubnd = k̂ where 150 ≤ k̂ ≤ 20000.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
2

4

6

8

10

C
P

U
 t

im
e

k
^
/n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

C
P

U
 t

im
e
:

n
o
rm

a
l
m

a
t

k
^
/n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

20

25

30

35

N
u
m

b
e
r

o
f
it
e
ra

ti
o

n
s

k
^
/n

redMPC
ipas35
MPC

Figure 5.18: Comparison of the redMPC algorithm versus the MPC and ipas35

algorithms using 25 randomly generated test problems from TAW3 (Random as in

WT-18July2003) with m = 50, n = 20000, and ubnd = k̂ where 150 ≤ k̂ ≤ 20000.

120

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

2

4

6

8

10

C
P

U
 t

im
e

k
^
/n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

C
P

U
 t

im
e

:
n

o
rm

a
l
m

a
t

k
^
/n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

20

25

30

35

N
u

m
b

e
r

o
f

it
e

ra
ti
o

n
s

k
^
/n

redMPC
ipas35
MPC

Figure 5.19: Comparison of the redMPC algorithm versus the MPC and ipas35

algorithms using 25 randomly generated test problems from TAW4 (RandomLP)

with m = 50, n = 20000, and ubnd = k̂ where 150 ≤ k̂ ≤ 20000.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

2

4

6

8

C
P

U
 t

im
e

k
^
/n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

C
P

U
 t

im
e
:

n
o
rm

a
l
m

a
t

k
^
/n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

15

20

25

N
u
m

b
e
r

o
f
it
e
ra

ti
o

n
s

k
^
/n

redMPC
ipas35
MPC

Figure 5.20: Comparison of the redMPC algorithm versus the MPC and ipas35

algorithms using 25 randomly generated test problems from TAW5 (SIPND) with

m = 50, n = 20000, and ubnd = k̂ where 150 ≤ k̂ ≤ 20000.

121

For problem sets TAW2-TAW4, the MPC and ipas35 algorithms displayed (in

general) an increase in CPU time and a constant number of iterations to solve an LP

over increasing values of the ratio k̂/n. The redMPC algorithm, however, remained

(in general) constant in CPU time while the number of iterations fluctuated and

exceeded the competition. In problem sets TAW1 and TAW5, the MPC and ipas35

algorithms show an increase in CPU time as k̂/n increases from .1 to .8, then a small

decrease in time for k̂/n values between .8 to 1. The number of iterations to solve an

LP fluctuates for all of the algorithms. In all of the problem sets (TAW1 - TAW5),

the time difference between the MPC and ipas35 algorithms and the redMPC

algorithm became increasing large as k̂/n increased, with the redMPC algorithm

outperforming the other algorithms in every test set for all k̂/n > .2.

We now examine the MPC experiments based on the second set of test prob-

lems (RAND1 - RAND5).

122

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

C
P

U
 t

im
e

k
^
/n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6
x 10

−3

C
P

U
 t

im
e

:
n

o
rm

a
l
m

a
t

k
^
/n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10

15

20

N
u

m
b

e
r

o
f

it
e

ra
ti
o

n
s

k
^
/n

redMPC
ipas35
MPC

Figure 5.21: Comparison of the redMPC algorithm versus the MPC and ipas35

algorithms using 25 randomly generated test problems from RAND1 with m = 5,

n = 100, and ubnd = k̂ where 15 ≤ k̂ ≤ 100.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.02

0.04

0.06

0.08

0.1

C
P

U
 t

im
e

k
^
/n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

C
P

U
 t

im
e
:

n
o
rm

a
l
m

a
t

k
^
/n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

15

20

25

N
u
m

b
e

r
o
f
it
e
ra

ti
o
n
s

k
^
/n

redMPC
ipas35
MPC

Figure 5.22: Comparison of the redMPC algorithm versus the MPC and ipas35

algorithms using 25 randomly generated test problems from RAND2 with m = 12,

n = 500, and ubnd = k̂ where 36 ≤ k̂ ≤ 500.

123

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

C
P

U
 t

im
e

k
^
/n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

C
P

U
 t

im
e

:
n

o
rm

a
l
m

a
t

k
^
/n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

15

20

25

30

35

N
u

m
b

e
r

o
f

it
e

ra
ti
o

n
s

k
^
/n

redMPC
ipas35
MPC

Figure 5.23: Comparison of the redMPC algorithm versus the MPC and ipas35

algorithms using 25 randomly generated test problems from RAND3 with m = 24,

n = 780, and ubnd = k̂ where 72 ≤ k̂ ≤ 780.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

C
P

U
 t

im
e

k
^
/n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

C
P

U
 t

im
e
:

n
o
rm

a
l
m

a
t

k
^
/n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

15

20

25

30

35

N
u
m

b
e

r
o
f
it
e
ra

ti
o

n
s

k
^
/n

redMPC
ipas35
MPC

Figure 5.24: Comparison of the redMPC algorithm versus the MPC and ipas35

algorithms using 25 randomly generated test problems from RAND4 with m = 58,

n = 1004, and ubnd = k̂ where 174 ≤ k̂ ≤ 1004.

124

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.5

1

1.5

C
P

U
 t

im
e

k
^
/n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.2

0.4

0.6

0.8

1

C
P

U
 t

im
e

:
n

o
rm

a
l
m

a
t

k
^
/n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

15

20

25

30

35
N

u
m

b
e

r
o

f
it
e

ra
ti
o

n
s

k
^
/n

redMPC
ipas35
MPC

Figure 5.25: Comparison of the redMPC algorithm versus the MPC and ipas35

algorithms using 25 randomly generated test problems from RAND5 with m = 75,

n = 2016, and ubnd = k̂ where 225 ≤ k̂ ≤ 2016.

The performance of the algorithms on the second test set was quite different

from the performance on the TAW test set. It can be observed that the graphs show

missing data values for k̂/n < .15. For the remaining k̂/n values, the performance

of the algorithms varied. Unlike the redPDAS algorithm, the redMPC algorithm

generally solved an LP in less time than the MPC and ipas35 algorithms. In

fact, as the problem size increased, the total CPU time between the MPC and

ipas35 algorithms and the redMPC algorithm increased. With the exception of

the RAND1 problem set, the same trend occurred when determining the CPU time

to form and solve the normal matrix. In all of the problem sets, the algorithms

generally solved an LP in the same number of iterations for k̂/n close to 1. For all

other k̂/n values, the number of iterations to solve an LP varied for each algorithm.

125

Lastly, we examine the experiments based on the Netlib test problems (SCSD1,

SCSD6, and SCSD8).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

C
P

U
 t

im
e

k
^
/n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

C
P

U
 t

im
e

:
n

o
rm

a
l
m

a
t

k
^
/n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10

15

20

N
u

m
b
e
r

o
f

it
e

ra
ti
o

n
s

k
^
/n

redMPC
ipas35
MPC

Figure 5.26: Comparison of the redMPC algorithm versus the MPC and ipas35

algorithms using the Netlib test problem SCSD1 withm = 77, n = 760, and ubnd = k̂

where 231 ≤ k̂ ≤ 760.

126

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.4

0.6

0.8

C
P

U
 t

im
e

k
^
/n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.2

0.4

C
P

U
 t

im
e

:
 n

o
rm

a
l
m

a
t

k
^
/n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

15

20

25

N
u

m
b

e
r

o
f

it
e

ra
ti
o

n
s

k
^
/n

redMPC
ipas35
MPC

Figure 5.27: Comparison of the redMPC algorithm versus the MPC and ipas35

algorithms using the Netlib test problem SCSD6 with m = 147, n = 1350, and

ubnd = k̂ where 441 ≤ k̂ ≤ 1350.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

2

3

4

C
P

U
 t

im
e

k
^
/n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.5

1

1.5

2

2.5

C
P

U
 t

im
e
:

n
o
rm

a
l
m

a
t

k
^
/n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10

15

20

N
u
m

b
e
r

o
f
it
e
ra

ti
o
n

s

k
^
/n

redMPC
ipas35
MPC

Figure 5.28: Comparison of the redMPC algorithm versus the MPC and ipas35

algorithms using the Netlib test problem SCSD8 with m = 397, n = 2750, and

ubnd = k̂ where 1197 ≤ k̂ ≤ 2750.

127

For the third test set (Netlib problems), a large portion of the data is missing

for the early k̂/n values. The redMPC and MPC outperform ipas35 in CPU time.

As k̂/n increases, the time to solve an LP with ipas35 increases whereas the time to

solve an LP with the other algorithms is small and fixed. The number of iterations

to solve test problem SCSD8 for the redMPC algorithm is somewhat larger than

for the other algorithms. For test problems SCSD1 and SCSD6, the number of

iterations to solve is almost identical as k̂/n→ 1.

5.4 Discussion

The experiments in the previous sections demonstrate that the redPDAS and

redMPC , in general, outperform their general counterparts in terms of CPU time.

The redMPC and MPC algorithms also perform well against ipas35. Further-

more, with the exception of a few cases (i.e. the small values of k̂/n where the

algorithm(s) did not display information), the algorithms in this chapter outper-

formed MATLAB’s LP solver, LINPROG, in total CPU time. In this section, we

will give reason or speculation as to a few of the outcomes.

Figures (5.1) and (5.15) show the average time (in seconds) to solve 50 ran-

domly generated problems over varying values of C . These experiments were con-

ducted using the test problem TAW4 withm = 50, n = 20000, and ubnd fixed to n. It

was shown that the “reduced” algorithms performed exceptionally well against their

general counterparts. We also performed these experiments on other test problems

with m � n. Although there was some fluctuation in the value of C , it remained

128

within 1/100 of the value we found in each case. Therefore, we felt confident the

“reduced” algorithms would perform well on other test problems with m � n based

on our specific choice of C determined by one of the problem sets used in this thesis,

TAW4.

The redPDAS and redMPC algorithms (in general) displayed small CPU

times and a large number of iterations over the various k̂/n values. The small CPU

times can be attributed to the initial point calculation, the formation of “reduced”

matrices and vectors, and temporary matrices/vectors defined for AQ, DQ, and the

dual residual, (rd)Q. On the other hand, the large number of iterations are the result

of the update strategy used for the dual residual and solution. Since a small number

of constraints (� n) are chosen at each iteration, the algorithms have the potential

of cycling through a large number of solutions before reaching the optimal solution.

MATLAB’s LP Interior-Point Solver, LIPSOL, is capable of solving a wide

range of problems including large-scale LPs, see [33], [34]. On our test problems (i.e.

problems with m � n), the “reduced” algorithms outperformed LIPSOL in CPU

time. In experimentation, we discovered by first converting a sparse matrix A to a

full matrix and then using a QR-factorization of A to solve for the initial point, the

time to formulate the initial point is significantly reduced. Prior to this conversion,

approximately 80% of the CPU time was devoted to calculating the initial point, thus

causing the time to solve the “reduced” algorithms to exceed the time for LIPSOL to

solve the same LP. All of the algorithms (including LIPSOL), calculate the normal

matrix using MATLAB’s Cholesky-Infinity factorization (cholinc function). This is

necessary to preserve full rank and calculate efficient search directions.

129

5.5 Summary

In this chapter, we have demonstrated that algorithms redPDAS and redMPC

are more effective than their general counterparts in solving LPs with m� n. This

is clearly shown by the results displayed using the TAW problem sets (with m = 50

and n = 20000). In the second and third test sets, the difference between the m

and n values was not as large. As a result, the general algorithms performed just

as well and in some cases even better than the “reduced” algorithms. The ipas35

algorithm was least effective in solving LPs compared to the redMPC and MPC

algorithms.

130

Chapter 6

Conclusions and Further Study

We have presented the redPDAS algorithm and the redMPC algorithm, new

column generation algorithms for solving linear programming problems (LPs). Ex-

periments conducted on these algorithms demonstrate that they are, in general,

more effective for solving LPs with m� n than their general counterparts (PDAS

and MPC). Although there is no known convergence proof at this time for the

redPDAS and redMPC algorithms, we believe our column generation strategy

will prove to be beneficial in solving other optimization problems as well.

In this dissertation, we demonstrated that by reducing the m × m matrix

AD2AT , an essential component for solving for the search direction on large-scale

LPs, we can reduce the amount of computations per iteration and significantly re-

duce the time to solve a LP problem. This was illustrated by the results of the

experiments conducted using the random problem sets from TAW. The time differ-

ence between the “reduced” and general algorithms became increasing large as k/n

increased, with the “reduced” algorithms outperforming their general counterparts

on every test problem from this set with k/n > .2. Although the total number of

iterations to solve the “reduced” LP often exceeded that of the general problem, the

computational cost per iteration of the “reduced” problem was significantly lower

due to its size. The “reduced” algorithms were not as effective in reducing solution

131

time for the other problem sets. In these problem sets, the difference between m

and n was not significantly large. As a result, the general algorithms performed just

as well and in some cases even better than the “reduced” algorithms.

Based on the results of the experiments conducted using the random problem

sets with m � n, we believe our column generation scheme can be applied to other

algorithms with similar success. One algorithm we have begun to investigate is

Potra’s algorithm [22]. Potra’s algorithm is of particular interest because he allows

for a primal-dual infeasible starting point and proves his algorithm has polynomial

complexity under certain conditions. Potra uses a three-step method to improve

feasibility, optimality, and centrality of the iterates. He combines the two steps

of Mizuno-Todd-Ye [18] with a third to achieve feasibility and optimality at the

same rate. We developed a “reduced” version of Potra’s algorithm called redPC,

presented in Appendix B. The redPC algorithm also uses this three-step method,

however feasibility and optimality may not necessarily be achieved at the same rate.

Despite this, we aim to show global convergence and investigate the complexity of

our algorithm.

In addition to further investigating the redPC algorithm, there are computa-

tional issues that can be researched in all of the “reduced” algorithms. One topic

of research is the method in which the set Q is chosen. We chose Q based on the

k ∈ [m,n] largest xj/sj ratios at each iteration. Tits et al. [24], however, selects

a fixed index set Q associated with the most “promising” dual constraints based

on the smallest slack values, sj , at each iteration. Dantzig and Ye [6] start with

m constraints and consider building up the constraint set based on the index set

132

associated with all sj < 2−ε at each iteration. There are a number of ways to select

the index set Q and determining if one technique saves time and computational ef-

fort over others is worth investigating. Another topic of investigation is the update

strategy used within our “reduced” algorithms. Our update strategy is based on

the amount of progress we are making towards satisfying dual feasibility. However,

Potra’s algorithm uses an update strategy based on improving feasibility, optimal-

ity, and centrality of the iterates at the same rate. Experimentation on the redPC

algorithm may show a reduction in the total number of iterations using this update

concept. One other focus for research is determining a “good” initial point. The

initial point we used in the redPDAS and redMPC algorithms is the same initial

point used in Mehrotra’s algorithm [17]. However, there are many papers in the

field of interior point methods that concentrate on starting-point strategies (see [7]

or [14]) Our algorithms perform quite well overall against standard algorithms and

we may be able to improve our results by using a better starting point.

Finally, the use of interior-point methods in column generation settings has

been extended to applications in semi-definite programming problems, network de-

sign problems, and second order cone programming problems, to name a few. We

believe our strategy will be very beneficial for solving other LPs and eventually for

solving more general problems.

133

Appendix A

Topics in Numerical Optimization

A.1 Steepest-Descent Method

Consider the n-dimensional problem

min
x∈Rn

{f(x) : x ∈ S} (A.1)

where S is the set of feasible points defined by a set of constraints (or <n). If (A.1)

is optimal at the current solution x, then x solves the problem. Otherwise, assume

x is feasible and let x+ = x + α∆x be the updated solution to (A.1) with search

direction ∆x and step length α > 0. Using only the first two terms of the Taylor’s

series, we can approximate f(x+) by

f(x+) = f(x+ α∆x),

≈ f(x) + α∆xT∇f(x)

where ∇f(x) is the gradient of f at x. Therefore, for small α, f(x + α∆x) < f(x)

provided ∆xT∇f(x) < 0. The direction ∆x that provides the greatest descent per

unit step is given by ∆x = −∇f(x), hence the name steepest-descent. A step length

α > 0 is then computed to determine x+ so that x+ ∈ S.

In the case of a linear program

min
x∈<n

{
cTx : Ax = b, x ≥ 0

}
, (A.2)

134

where A is an m×n matrix of full row rank, the steepest descent method computes

∆x = −c as the search direction if the current solution is not optimal. Assuming

the current solution x is feasible, the updated solution x+ is determined to maintain

feasibility (i.e. x+ ∈ S = {Ax = b, x ≥ 0}). Therefore we require

Ax+ = Ax+ αA∆x = b (A.3)

and

x+ = x+ α∆x > 0. (A.4)

The equations in (A.3) imply that we need A∆x = 0 since x ∈ S and α > 0.

That is, ∆x must lie in the null space of A. By premultiplying ∆x = −c by the

n× n matrix

PA = I − AT
(
AAT

)−1
A

we have a projected steepest descent direction (i.e. ∆x = −PAc) which simultane-

ously decreases the objective function value and satisfies A∆x = 0. The matrix

PA has the effect of projecting any nonzero vector in <n onto the null space of A.

Further discussion of this topic is given in the next section.

The inequalities in (A.4) are satisfied by computing an appropriate step length

α > 0 along the search direction ∆x = −PAc.

A.2 Orthogonal Projection Matrix

The n× n matrix

PA = I − AT
(
AAT

)−1
A,

135

which was presented in the previous section, is also termed an orthogonal projection

matrix. Its name comes from the fact that premultiplying any n-dimensional vector

x by PA produces an orthogonal projection of x onto the null space of A. See Figure

A.1.

Figure A.1: A n-dimensional vector x is projected onto the null space of A [denoted

N(A)] by the orthogonal projection matrix P = I − AT (AAT)−1A.

The orthogonal projection matrix is symmetric (i.e. P T
A = PA) and idempotent

(i.e. P 2
A = PA). In addition, it can be formed from any m × n matrix of full row

rank. For example, the matrix

PAD = I −DAT
(
AD2AT

)−1
AD,

is an orthogonal projection matrix into the null space of AD where D is a diagonal

matrix.

136

Appendix B

The redPC Algorithm

Potra’s three-step method involves solving three linear systems to improve

feasibility, optimality, and centrality of the iterates. Our method follows Potra’s

method by solving three “reduced” linear systems in an attempt to reach the optimal

solution for the primal-dual pair. In solving the first linear system, we aim to

improve optimality while keeping feasibility the same. In the second linear system,

we strive to improve feasibility while keeping optimality the same. Finally, in the

third linear system, we aim to “centralize” the iterates for improved movement

within the next iteration. Our “reduced” version is similar to the redPDAS and

redMPC algorithms in that we consider only those columns (components) of a

matrix (vector) associated with Q.

B.1 Background

Let rp = Ax− b and rd = ATy+s−c be the primal and dual residuals, respec-

tively. The search direction computed to improve optimality or decrease µ is given by




A 0 0

0 AT I

S 0 X







∆xa

∆ya

∆sa




= −




0

0

XSe



. (B.1)

137

The expressions for the components of ∆za = (∆xa,∆ya,∆sa) are given by

∆ya = (AS−1XAT)−1Ax,

∆sa = −AT∆ya,

∆xa = −x− S−1X∆sa.

This is precisely the affine-scaling direction in (3.9) with rp = rd = 0. On the other

hand, the search direction computed to improve feasibility or decrease the residuals

is given by 


A 0 0

0 AT I

S 0 X







∆x
a

∆y
a

∆s
a




= −




rp

rd

0



. (B.2)

This is the affine-scaling direction in (3.9) with XSe = 0. Solving for ∆z
a

=

(
∆x

a
,∆y

a
,∆s

a)
, we have

∆y
a

= −(AS−1XAT)−1(rp + AS−1Xrd),

∆s
a

= −rd − AT∆y
a
,

∆x
a

= −S−1X∆s
a
.

The sum of ∆za and ∆z
a

is the affine-scaling direction.

Let z = (x, y, s). Step lengths θ̂ and ρ̂ are chosen so that the point z̃ =

z + θ̂∆za + ρ̂∆z
a ∈ Nβ where

Nβ =
{

(x̃, s̃) : x̃ > 0, s̃ > 0,
∥∥∥X̃s̃− µ̃e

∥∥∥ ≤ βµ̃
}

138

with

0 < α < β ≤ 2α ≤
√

2

1 +
√

2
< 1.

The third search direction, ∆zcc = (∆xcc,∆ycc,∆scc) is computed to improve the

centrality of the iterates. This linear system is given by




A 0 0

0 AT I

S̃ 0 X̃







∆xcc

∆ycc

∆scc




=




0

0

µ̃e− X̃s̃



. (B.3)

The expressions for the centering-corrector direction, ∆zcc = (∆xcc,∆ycc,∆scc), are

given by

∆ycc = (AS̃−1X̃AT)−1A
(
x̃− µ̃S̃−1e

)
,

∆scc = −AT∆ycc,

∆xcc = −x̃+ S̃−1
(
µ̃e− X̃∆scc

)
.

The updated solution, z+, is obtained by setting

z+ =
(
x+, y+, s+

)
= z̃ + ∆zcc,

where z+ satisfies (x+, s+) ∈ Nα = {(x+, s+) , ‖X+s+ − µ+e‖ ≤ αµ}.

B.2 Potra’s Predictor-Corrector Algorithm

It is assumed that A is an m × n matrix with full row rank. Therefore, we

denote its Moore-Penrose pseudoinverse by A† = AT (AAT)−1. The initial solution

(or starting point) has the form

x0 = ζe, s0 = σe, y0 = 0,

139

where

ζ ≥
∥∥A†b

∥∥
∞
, σ ≥ ‖c‖∞ .

We define step lengths ρ̂ ∈ (0, 1] and θ̂ such that

(µ+, r+
p , r

+
d) = (1 − ρ̂)(µ, rp, rd)

and

θ̂ = χ(ρ̂).

The details surrounding the compution of the step lengths in the affine-scaling di-

rection can be found in Potra [22]. Potra’s predictor-corrector algorithm is stated

below:

———————————————-

Input: (x, y, s) with x = ζe ≥ ‖A†b‖∞ e, s = σe ≥ ‖c‖∞ e, and y = 0.

Initialize: ε ≥ 0; rp = Ax− b; rd = ATy + s− c.

Main Algorithm:

while xTs > ε, ‖rp‖ > ε, or ‖rd‖ > ε

Compute affine-scaling directions:

I. Compute ∆za = (∆xa,∆sa,∆ya):

∆ya =
(
AS−1XAT

)−1
Ax,

∆sa = −AT∆ya,

∆xa = −x− S−1X∆sa.

140

II. Compute ∆z
a

=
(
∆x

a
,∆s

a
,∆y

a)
:

∆y
a

= −(AS−1XAT)−1(rp + AS−1Xrd),

∆s
a

= −rd − AT∆y
a
,

∆x
a

= −S−1X∆s
a
.

Compute affine steps:

Set

δ =
(∆xa)T ∆s

a
+ (∆sa)T ∆x

a

nµ
,

η =

(
∆x

a)T
∆s

a

nµ
,

and compute

ρ̂ = min
({
ρ ∈ (0, 1) : ρ · R(ρ) ≤

(
β2µ2 − ‖f‖2

)}
∪ {1}

)
,

θ̂ =

(
1 + δρ̂

1 − ηρ̂

)
ρ̂.

Compute ẑ ∈ Nβ:

Compute ẑ = z+ θ̂∆za + ρ̂∆z
a
. If ρ̂ = 1, then ẑ ∈ F ∗ (Optimal solution

set). Terminate.

Compute centering-corrector direction:

∆ycc = (AS̃−1X̃AT)−1A
(
x̃− µ̃S̃−1e

)
,

∆scc = −AT∆ycc,

∆xcc = −x̃+ S̃−1
(
µ̃e− X̃∆scc

)
.

Update solution

Compute z+ = z̃ + ∆zcc.

141

end(while)

———————————————-

B.3 The redPC Algorithm

The redPC algorithm is simply a “reduced” version of Potra’s algorithm. This

algorithm is similar to the redPDAS and redMPC algorithms in that we consider

only those columns (components) of a matrix (vector) associated with Q. We let

r̂p = AQxQ − b be the primal residual based on Q and define ρ̂∗ to be a parameter

such that

0 ≤ ρ̂∗ < ρ̂ ≤ 1.

The redPC is presented below:

———————————————-

Input: (x, y, s) with x = ζe ≥ ‖A†b‖∞ e, s = σe ≥ ‖c‖∞ e, and y = 0; m < ubnd ≤ n.

Initialize: ε = 10−8; lbnd = min{ubnd, 3m}; rp = Ax− b; rd = ATy + s− c.

Main Algorithm:

while xTs > ε, ‖rp‖ > ε, or ‖rd‖ > ε

Select the most promising dual constraints.

Compute affine-scaling directions:

142

I. Compute ∆za
Q =

(
∆xa

Q,∆s
a
Q,∆y

a
)

∆ya =
(
AQS

−1
Q XQA

T
Q

)−1
AQxQ,

∆sa
Q = −AT

Q∆ya,

∆xa
Q = −xQ − S−1

Q XQ∆sa
Q.

II. Compute ∆z
a

Q =
(
∆x

a

Q,∆s
a

Q,∆y
a)

∆y
a

= −
(
AQS

−1
Q XQA

T
Q

)−1 [
r̂p + AQS

−1
Q XQ(rd)Q

]
,

∆s
a

Q = −(rd)Q −AT
Q∆y

a
,

∆x
a

Q = −S−1
Q XQ∆s

a

Q.

Compute affine steps:

Set

δ =

(
∆xa

Q

)T
∆s

a

Q +
(
∆sa

Q

)T
∆x

a

Q

nµ
,

η =

(
∆x

a

Q

)T
∆s

a

Q

nµ
,

ξ =

(
∆x

a

Q

)T
∆s

a

Q

nµ
,

γ =
(1 − ρ̂∗)xT

Q̄
∆s

a

Q̄

nµ
,

τ =
xT

QsQ

nµ
,

and compute

ρ̂ = min
({
ρ ∈ (0, 1) : ρ · S̄(ρ) ≤ η4

(
β2µ2 − ‖f‖2

)}
∪ {1}

)
,

ρ̂∗ = βρ̂,

θ̂ =

(
1 + γ + [ξ − (1 − τ)β] ρ̂

η − δρ̂

)
ρ̂.

143

Compute ẑ:

Set ∆xa
Q̄

= 0, ∆x
a

Q̄ = − ρ̂∗

ρ̂
xQ̄, ∆sa

Q̄
= −AT

Q̄
∆ya, ∆s

a

Q̄ = (rd)Q̄ − AT
Q̄
∆y

a

and compute ẑ = z + θ̂∆za + ρ̂∆z
a
. If ρ̂ = 1, then ẑ ∈ F ∗ (Optimal

solution set). Terminate.

Compute centering-corrector direction:

∆ycc = (AQS̃
−1
Q X̃QA

T
Q)−1AQ

(
x̃Q − µ̃S̃−1

Q eQ

)
,

∆scc
Q = −AT

Q∆ycc,

∆xcc
Q = −x̃Q + S̃−1

Q

(
µ̃eQ − X̃Q∆scc

Q

)
.

Update solution

Set ∆xcc
Q̄

= 0, ∆scc
Q̄

= 0 and compute z+ = ẑ + ∆zcc.

end(while)

———————————————-

In Potra’s algorithm, the affine-scaling directions are computed in two separate

steps to improve feasibility and optimality. Using the separate components of the

affine-scaling direction, Potra derives and incorporates the affine steps, ρ̂ and θ̂, into

an intermediate solution (ẑ = z+ θ̂∆za + ρ̂∆z
a
) to determine optimality. Although

the details surrounding the affine steps have been eliminated in this thesis, they can

be easily followed in Potra [22]. If the solution is not optimal, the centering-corrector

direction is computed to produce a new solution.

There are signficant differences between Potra’s algorithm and the redPC al-

gorithm. The main difference is the “reduced” size of the matrices and vectors

based on the set Q. Reducing the size of the data, however, drastically increased

144

the amount of mathematical computation and detail in deriving the affine steps for

the intermediate solution. Although the redPC algorithm can be shown to exhibit

global convergence, we have been unsuccessful in proving polynomial complexity.

Since the components of the directions in Q̄ can be defined in different ways based

on the choice of ρ̂∗, variants of the redPC algorithm will be considered in future

research.

145

BIBLIOGRAPHY

[1] M. Achache, H. Roumili, and A. Keraghel. A numerical study of an infeasible
primal-dual path-following algorithm for linear programming. Applied Mathe-
matics and Computation, 186:1472–1479, 2007.

[2] Various Authors. Netlib lp test problems. http://www-fp.mcs.anl.gov/OTC/
Guide/TestProblems/LPtest/, 1985. Retrieved July 2004.

[3] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty. Nonlinear Programming:
Theory and Algorithms 2nd Ed. John Wiley and Sons, Hobeken, NJ, 1993.

[4] Dimitris Bertsimas and John N. Tsitsiklis. Introduction to Linear Optimization.
Athena Scientific, Belmont, MA, 1997.

[5] George B. Dantzig. Linear Programming and Extensions. Princeton University
Press, Princeton, NJ, 1963.

[6] George B. Dantzig and Yinyu Ye. A build-up interior-point method for linear
programming: Affine scaling form. Working Paper, Department of Management
Science, University of Iowa, 1991.

[7] Michael Gertz, Jorge Nocedal, and Annick Sartenaer. A starting-point strategy
for nonlinear interior methods. Applied Math Letters, 17:945–952, 2004.

[8] P.C. Gilmore and R.E. Gomory. A linear programming approach to the cutting
stock problem. Operations Research, 9:849–859, 1961.

[9] J.-Louis Goffin, Z.-Quan Luo, and Y. Ye. On the Complexity of a Column
Generation Algorithm for Convex or Quasiconvex Feasibility Problems. Large
Scale Optimization: State of the Art, W. W. Hager, D. W. Hearn and P.M.
Pardalos, Editors, Kluwer Academic Publishers B.V, 1994.

[10] G. H. Golub and C. F. Van Loan. Matrix Computations. John Hopkins Uni-
versity Press, Baltimore, MD, 1989.

[11] D.den Hertog, Cornelis Roos, and Támas Terlaky. A build-up variant of the
logarithmic barrier method for lp. Operations Research Letters, 12:181–186,
1992.

[12] D.den Hertog, Cornelis Roos, and Tamas Terlaky. Adding and deleting con-
straints in the logarithmic barrier method for lp. Advances in Optimization and
Approximation, pages 166–185, 1994.

[13] Wikipedia Foundation Inc. Matrix norm. http://en.wikipedia.org/wiki/

Matrix_norm, 2002. Retrieved May 2007.

146

[14] Elizabeth John and E. Alper Yildirim. Implementation of warm-start strate-
gies in interior-point methods for linear programming in fixed dimension.
http://www.optimization-online.org/DB_FILE/2006/05/1389.pdf, 2006.
Retrieved April 2008.

[15] Narendra Karmarkar. A new polynomial-time algorithm for linear program-
ming. Combinatorica, 4:373–395, 1984.

[16] Masakazu Kojima, Nimrod Megiddo, and Shinji Mizuno. Polynomiality of
infeasible-interior-point algorithms for linear programming. Mathematical Pro-
gramming, 67:109–119, 1994.

[17] Sanjay Mehrotra. On the implementation of a primal-dual interior point
method. SIAM Journal on Optimization, 2:575–601, 1992.

[18] S. Mizuno, Michael J. Todd, and Yinyu Ye. On adaptive-step primal-dual
interior-point algorithms for linear programming. Mathematical Operations Re-
search, 18:964–981, 1993.

[19] Renato D.C. Monteiro, Ilan Adler, and Mauricio G.C. Resende. A polynomial-
time primal-dual affine scaling algorithm for linear and convex quadratic pro-
gramming and its power series extension. SIAM Journal on Optimization,
2(1):7–20, 1990.

[20] Stephen G. Nash and Ariela Sofer. Linear and Nonlinear Programming.
McGraw-Hill, New York, NY, 1996.

[21] E.R. Panier, André L. Tits, and J.N. Herskovits. A qp-free globally convergent,
globally superlinearly convergent algorithm for inequality constrained optimiza-
tion. SIAM Journal on Control and Optimization, 26(4):788–811, 1988.

[22] Florian A. Potra. An infeasible-interior-point predictor-corrector algorithm for
linear programming. SIAM Journal on Optimization, 6:19–32, 1996.

[23] André L. Tits. An interior point method for linear programming, with an active
set flavor. technical report TR-99-47, Institute for Systems Research, University
of Maryland, College Park, MD, 1999.

[24] André L. Tits, P.-A. Absil, and William P. Woessner. Constraint reduction for
linear programs with many inequality constraints. SIAM Journal on Optimiza-
tion, 17:119–146, 2006.

[25] André L. Tits and J. L. Zhou. A simple, quadratically convergent algorithm
for linear and convex quadratic programming. In W.W. Hager, D.W. Hearn,
and P.M. Pardalos, editors, Large Scale Optimization: State of the Art, pages
411 – 427. Kluwer Academic Publishers, 1994.

[26] Robert J. Vanderbei. Linear Programming: Foundations and Extensions.
Kluwer Academic Publishers, Boston, MA, 1996.

147

[27] David S. Watkins. Fundamentals of Matrix Computations. Wiley, New York,
NY, 2002.

[28] Luke B. Winternitz, Stacey O. Nicholls, André L. Tits, and Dianne P.
O’Leary. A constraint-reduced variant of the Mehrotra predictor-corrector algo-
rithm. http://www.optimization-online.org/ARCHIVE_DIGEST/2007-07.
html, 2007. Retrieved October 2007.

[29] Steven J. Wright. Primal-Dual Interior-Point Methods. SIAM, Philadelphia,
PA, 1997.

[30] Yinyu Ye. A build-down scheme for linear programming. Mathematical Pro-
gramming, 46:61–72, 1990.

[31] Yinyu Ye. A potential reduction algorithm allowing column generation. SIAM
Journal on Optimization, 2(1):7–20, 1992.

[32] Yinyu Ye. Complexity analysis of the analytic center cutting plane method
that uses mulitple cuts. Mathematical Programming, 78:85–104, 1997.

[33] Yin Zhang. Solving large-scale linear programs by interior-point methods under
the MATLAB environment. technical report TR96-01, Department of Math-
ematics and Statistics, University of Maryland Baltimore County, Baltimore,
MD, 1996.

[34] Yin Zhang. User’s guide to LIPSOL linear-programming interior point solvers
v0.4. Optimization Methods and Software, 11 & 12:385–396, 1999.

148

