ABSTRACT

Title of Dissertation: MULTIFRACTAL INTERNET TRAFFIC MODEL
AND ACTIVE QUEUE MANAGEMENT

Jia-Shiang Jou, Doctor of Philosophy, 2003

Dissertation directed by: Professor John S. Baras
Department of Electrical and Computer Engineering

We propose a multilevel (hierarchical) ON/OFF model to simultaneously cap-
ture the mono/multifractal behavior of Internet traffic. Parameter estimation
methods are developed and applied to estimate the model parameters from real
traces. Wavelet analysis and simulation results show that the synthetic traffic
(using this new model with estimated parameters) and real traffic share the same
statistical properties and queuing behaviors. Based on this model and its statis-
tical properties, as described by the Logscale diagram of traces, we propose an
efficient method to predict the queuing behavior of FIFO and RED queues. In
order to satisfy a given delay and jitter requirement for real time connections, and
to provide high goodput and low packet loss for non-real time connections, we also
propose a parallel virtual queue control structure to offer differential quality of

services. This new queue control structure is modeled and analyzed as a regular



nonlinear dynamic system. The conditions for system stability and optimization
are found (under certain simplifying assumptions) and discussed. The theoretical

stationary distribution of queue length is validated by simulation.



MULTIFRACTAL INTERNET TRAFFIC MODEL
AND ACTIVE QUEUE MANAGEMENT

by

Jia-Shiang Jou

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
2003

Advisory Committee:

Professor John S. Baras, Chairman
Professor Eyad H. Abed

Professor Carlos A. Berenstein
Professor Richard J. La

Professor Armand M. Makowski



(©Copyright by
Jia-Shiang Jou
2003



DEDICATION

To my parents and wife Jiaying

i



ACKNOWLEDGEMENTS

First and foremost, I would like to express my sincerest gratitude to my advi-
sor, John Baras, for his academic guidance, encouragement and support over the
past five years. I especially thank his advice on how to conduct good research.
The experience and knowledge I have gained from working with him have been
invaluable in my life.

I also wish to thank my committee members, Eyad Abed, Carlos Berenstein,
Richard La and Armand Makowski, for their precious comments on my disserta-
tion.

In addition, I appreciate the help from the staff of ISR and CSHCN. Special
thanks go to Althia Kirlew, Diane Hicks, Peggy Johnson, Jean Lafonta, Trevor
Vaughan, Vijay Bharadwaj. I am also grateful for the financial support of my re-
search and studies from the Defense Advanced Research Projects Agency (DARPA)
through SPAWAR under contract No. N66001-00-C-8063.

Also, 1 owe special thanks to my officemates and colleagues, Xiaobo Tan,
Hongjun Li, Sudhir Varma, Chang Zhang, Huigang Chen, Vahid Ramezani, Shah-
An Yang and Alvaro Cardenas, who provided me with companionship and aca-
demic supports. I am also grateful to the friends of the research group I was
involved with, Nelson Liu, Majid Raissi-Dehkordi, Xiaoming Zhou, Karthikeyan
Chandrashekar and Georgios Papageorgiou, for many illuminating discussions in

shaping my research ideas.

il



Finally, there is no way I can express how much I owe to my family for their
love and spiritual support throughout the many years of my education. My parents
have been always providing me with their endless love. My brother, Jia-Chen, has
often updated me with news of friends back home. He is not only my dearest
brother, but also the best friend. And most importantly, I am especially thankful
to my lovely wife, Jiaying Lin, for her constant love and encouragement. She
was always there when I needed a sounding board and loads of chicken soups and
sympathy.

I thank them all who were instrumental in my completing this study and dis-

sertation.

v



TABLE OF CONTENTS

List of Tables vii
List of Figures viii
1 Introduction 1
1.1 Motivation . . . . . . . .. 1

1.2 Contributions . . . . . . . ... 4
1.3 Organization . . . . . . . .. ... L 8

2 Preliminaries 10
2.1 Wavelet Analysis . . . . . . . . ... 10
2.2 Self-Similarity and Long-Range Dependence . . . . . . ... .. .. 17
2.3 Monofractal and Multifractal Processes . . . . . . . . .. ... ... 24

3 Multilevel ON/OFF Model 27
3.1  Motivation . . . .. . ... 27

3.2 Model Description . . . . . .. ... o 29
3.3 Parameter Estimation and Model Fitting . . . .. ... .. .. .. 30
3.3.1 Trace Format . . . .. . ... ... ... ... .. .. 30

3.3.2 Parameter Estimation . . .. ... ... .. ... ... ... 32

3.4 Second Order Statistics . . . . . .. .. ... ... ... .. ..., 39
3.5 Higher Order Statistics . . . . . . .. ... ... .. .. ... .... 43
3.6 Queuing Behavior . . . .. ..o oo 47
3.7 Summary ... 49

4 Performance Analysis of Queuing Behaviors 50
4.1 Overview . . . . . .. 50
4.2 Analytical Solution of Logscale Diagram . . . . . ... ... .. .. 51
4.3 Approximation of Steady State Queue Length Distribution . . . . . 63
4.4  Queuing Delay and Jitter Analysis . . . . . . .. ... ... .. .. 80
4.5 Simulation results . . . . .. ..o 94
4.6 SUMMATY . . . . . . o 98



5 Parallel Queue Structure for Active Queue Management 100

5.1 Overview . . . . . . . 100
5.2 Vulnerability of Adaptive RED to Web-mice . . . . ... ... ... 103
5.3 A Parallel Virtual Queues Structure . . . . . . . . . ... ... ... 110
5.4 Simulation and Comparison . . . . . .. .. .. .. ... ... ... 113
5.5 Dynamic Thresholds for Adaptive RED . . . ... ... ... ... 123
5.6 Summary ... 132

6 Performance Analysis of Active Queue Management in a Parallel
Queue Structure 133
6.1 Drop-Tail Queue with Adaptive Service Rate . . . . . . ... .. .. 134
6.2 Adaptive RED Queue with Dynamic Thresholds . . . . . . . .. .. 138
6.3 Summary . . . ... 158
7 Conclusions 160
A Appendix 163
A0 163
A2 164
A03 165
Bibliography 167

vi



3.1

5.1
5.2
5.3
5.4

LIST OF TABLES

Model Parameters . . . . . . . . . .. ... 38
Delivery delay of small file: mean and standard deviation . . . . . . 108
Experiment Settings . . . . . . .. ... L o 113
Performance Metrics . . . . . . . . ... 114
Performance Metrics:Red+Tail with Dynamic threshold scheme . . 127

vil



1.1

2.1
2.2
2.3

3.1
3.2
3.3

3.4
3.5
3.6

3.7
3.8

4.1
4.2

4.3
4.4
4.5
4.6
4.7
4.8

4.9

4.10

LIST OF FIGURES

Methodology . . . . . . . . .. 6
Subspaces of multiresolution analysis . . . . . .. ... .. ... .. 11
Scaling function ¢(t) and mother wavelet ¢ (t) of Haar wavelets . . 16
Logscale diagram of a real Internet traffic trace . . . . .. .. . .. 23
Traffic model for one TCP session . . . . . . ... ... ... ... 29
Topology of DirecPC network and the bottleneck gateway . . . . . 39
Logscale diagram of real Internet trace and estimated slope in region

(4,10) . . o 41
Logscale diagram of real Internet trace and synthetic trace . . . . . 42
Partition Function T'(q) of Real Trace, Synthetic Traffic and fGn . 45
Multifractal Spectra of Real Trace, Synthetic Traffic and fGn . . . 46
First-come-first-serve queue in satellite gateway . . . . . .. .. .. 47
Queue Length Tail distribution of Real Trace and Synthetic Traffic

with Utilization p = 0.6, 0.7, 0.8 and 0.9 . . . . . . . .. ... ... 48
Logscale diagram of Real Trace and Synthetic Traffic . . . . . . .. 55
Probability density function of Pareto and sum of weighted Expo-

nential distributions with N=1,2,...30. . . . ... ... ... ... 58
Logscale diagram of Real Trace and Synthetic Traffic . . . . . . .. 61
Logscale diagram of Real Trace and Synthetic Traffic . . . . . . .. 62
The CCDF of workload A; j =1,2,...,7 and the fitted Normal and

Lognormal distribution. . . . . . .. .. ... 0L 66
The CCDF of workload A; 7 = 8,9, ..., 14 and the fitted Normal and

Lognormal distribution. . . . . . .. ... ... . L. 67

The upper bound of overflow probability with utilization p = 0.1,0.2, ..., 0.9.
69
The queue length distribution with utilization p = 0.6, upper bound(dash),

real trace(solid) and synthetic traffic(cross). . . .. ... ... ... 71
The queue length distribution with utilization p = 0.7, upper bound(dash),
real trace(solid) and synthetic traffic(cross). . . .. ... ... ... 72
The queue length distribution with utilization p = 0.8, upper bound(dash),
real trace(solid) and synthetic traffic(cross). . . . .. ... ... .. 73

viil



4.11 The queue length distribution with utilization p = 0.9, upper bound(dash),

real trace(solid) and synthetic traffic(cross). . . .. ... ... ... 74
4.12 The Pr[A; < B+2/CA]v.s. octave j, buffer size B = 10K, 20K, ..., 400K

(bytes) with utilization p=0.3 . . . . ... ... ... L. 76
4.13 The Pr[A; < B+2/CA] v.s. octave j, buffer size B = 10K, 20K, ..., 400K

(bytes) with utilization p=0.5 . . . . . .. ... ... L. 7
4.14 The Pr[A; < B+2/CA]v.s. octave j, buffer size B = 10K, 20K, ..., 400K

(bytes) with utilization p=0.7 . . . . . ... ... L. 78
4.15 The Pr[A; < B4+2/CA] v.s. octave j, buffer size B = 10K, 20K, ..., 400K

(bytes) with utilization p=0.9 . . . . ... ... ... L. 79
4.16 The target process and the background traffic . . . . .. .. .. .. 80
4.17 Queue length distribution seen by CBR packet p =0.191 . . . . . . 82
4.18 Queue length distribution seen by CBR packet p =0.293 . . . . .. 83
4.19 Queue length distribution seen by CBR packet p =0.383 . . . . .. 84
4.20 Queue length distribution seen by CBR packet p =0.468 . . . . . . 85
4.21 Queue length distribution seen by CBR packet p =0.573 . . . . .. 86
4.22 Queue length distribution seen by CBR packet p = 0.661 . . . . . . 87
4.23 Queue length distribution seen by CBR packet p =0.771 . . . . . . 88
4.24 Mean CBR packet delay . . . . . . ... .. ... ... ... .... 89
4.25 The arrival and departure time of CBR traffic . . . . .. .. .. .. 91
4.26 The standard deviation of delay jitter std(J) v.s. n with a FIFO

QUEUE .« v ot e e e e e e e 96
4.27 The standard deviation of delay jitter std(J) v.s. n with a RED

QUEUE .« o o ot e e e e e e e 97
5.1 The dropping probability function of original RED. . . . . . . . .. 101
5.2 Queue length of the Adaptive RED: 10 FTP starting at t=0 and

800 WEBs and 1 CBR coming in at t=100s. . . . . . . ... ... 105
5.3 Congestion window size of TCP Reno: One packet loss in the Slow

Start phase (left) and One packet loss in the Congestion Avoidance

phace (right). . . . . ... Lo 107
5.4 Mean delivery delay of small file v.s. dropping probability P; with

file sizes 30,60, ...,210Kbytes, bandwidth 3Mbps and round-trip

time 128ms. . . . .o oo 109
5.5 The parallel virtual queue structure for active queue management. . 112
5.6 Queue lengths of RED+Tail virtual queues: 10 FTPs starting at

t=0 go to virtual queue 2, and 800 WEBs + 1 CBR starting at

t=100 go to virtual queue 1. . . . . . . . ... 117
5.7 Packet losses (packets/sec.) of Adaptive RED and RED+Tail. . . . 118
5.8 Packet delays (sec.) of Adaptive RED and RED+Tail. . . ... .. 119
5.9 Throughputs (KBytes/sec.) of Adaptive RED and RED+Tail. . . . 120
5.10 Accumulated throughputs of Adaptive RED and RED+Tail. . . . . 121

X



5.11
5.12

5.13

5.14

5.15

5.16
6.1

6.2

6.3

6.4

6.5

6.6

6.7
6.8
6.9
6.10

6.11
6.12

Small file delivery delay: mean and standard deviation. . . . . . . . 122
Average queue length with fixed and dynamic thresholds: 20 FTP
starting at t=0, and another 20 FTP starting at t=100s and leaving
at t=300s, C=6Mbps, dp=64ms. . . . . . . . . ... ... ... ... 125
Dropping probability with fixed and dynamic thresholds: 20 FTP
starting at t=0, and another F'TP 20 starting at t=100s and leaving
at t=300s, C=6Mbps, dy=64ms (Inst. P: instantaneous dropping
probability; Avg. P: EWMA average of Inst. P).. . . . ... .. .. 126
Dynamic threshold scheme: Virtual queue lengths of RED+Tail and
dropping probability of the Adaptive RED queue, 10 FTPs starting
at t=0 and 800 WEBs + 1 CBR starting at t=100. . . . . .. . .. 129

Dynamic threshold scheme: Packet losses (packets/sec.) of RED+Tail.
130

Dynamic threshold scheme: Packet delays (sec.) of RED+Tail. . . . 131
Dynamic bandwidth allocation at the drop-tail queue:

Cy(t)=max( Cupnin, min( LU 1)) oo 135
Drop-tail queue length with a time varying bandwidth Cy(¢). . . . . 136

Mean delays (sec.) of CBR and WEB packets at the drop-tail queue
and mean delay of FTP packets at the Adaptive RED queue (with
fixed thresholds) with mazth;= 10, 20,...,80 (KBytes). . .. .. .. 137
Queue length and TCP throughput (of a single connection) with
Co=6Mbps, dy=64ms, W=6.02x10* bits. Compare with simulation

in Fig.5.12. . . . . .o 141
Mapping functions and equilibrium points when N=20, 40 with
S=RTT. . . . . 142
Mapping function and equilibrium point when N=40 with S=0.5RTT,
IRTT and 2RTT. . . . . . . . . o 147
Queue length with N=40, S=RTT and 2RTT. . . . . ... ... .. 148
Steady state queue length distributions for N=20, S=RTT. . . . . . 153
Steady state queue length distributions for N=40, S=RTT. . . . . . 154
Mapping function and equilibrium point when N=20, 40 and 8 with
S=0.5RTT, 1IRTT and 2RTT. . . . . ... ... ... ... ... .. 155
Queue length dynamics N =20 - 40— 8. . . . . . ... ... ... 156
Queue length with N =20 —40—8.. . . .. ... .. ... .... 157



Chapter 1

Introduction

With the rapid development of communication and networking technologies in
the last three decades, the Internet has become the largest artificial system in the
world. It is one of the most important and quickest media for delivering information
nowadays. One may receive and send various kinds of information such as data,
voice and video, in the form of email, web page, Internet phone/conference and
online radio/TV. The life style of human beings has been greatly changed by
this diversity of information delivered and associated information processing and
utilization. However, the current usage of the Internet is far beyond its original
design envelope and causes many operational and performance problems. In this
dissertation, we focus on traffic modeling and active queue management policies

to improve the performance of the Internet.

1.1 Motivation

Recent studies [1] [2] [3] [4] [5] [6] [7] [8] on Internet traffic have shown that the ag-

gregate traffic driven by TCP based protocols such as HT'TP is not only monofrac-



tal (self-similar) but also multifractal. Wavelet analysis demonstrates that the In-
ternet traffic is monofractal at large time scales (5-10 minutes and larger), which
is mainly due to the heavy-tailed distribution of file sizes transferred over the In-
ternet [9] [10] [11] [12]. However, traffic behavior at small time scales is much
more complicated and has been shown to be multifractal [2] [13] [14] [15]. This
multifractal behavior is primarily due to protocol dynamics such as TCP flow
control, network congestion, packet loss and packet retransmission. Taqqu and
Willinger [16] explained the monofractal behavior at large time scales by aggre-
gating a large number of independent ON/OFF flows. The ON and/or OFF du-
ration in their model has a heavy-tailed distribution, which corresponds to the
total transmission time of a single file and the user think time respectively. They
proved that the aggregate traffic converges to the well-known fractional Brownian
motion [17] [18] asymptotically when the number of flows goes to infinity. They
also found a simple relationship between the shape parameter of the heavy-tailed
distribution and the Hurst parameter of self-similarity. However, the single level
ON/OFF model [19] [20] [21] [11] [22] [23] [24] is unable to explain the multifractal
behavior found at small time scales with its constant rate assumption in the ON
duration. On the other hand, Riedi proposed the Multifractal Wavelet Model to
capture the second order statistical behavior at all time scales [25] [26]. Like other
cascade models [27] [28] [14], these cascade models are unable to explain the ob-
served traffic behavior by simple operational network mechanisms. Furthermore,
these cascade models need typically many parameters to fit the statistical behavior
of real Internet traffic. Therefore, it is important to provide a more precise model
that can capture traffic behavior at all time scales and better explain the relation-

ship between observed traffic statistical properties and natural and simple network



operational mechanisms. One of the goals of this dissertation is to provide such a
model for the Internet traffic.

In addition, we are interested in network control and performance enhancement.
Most analyses of queuing behaviors [29] [30] [4] [31] has been concerned with infinite
or large buffer size. The effect of short range dependence (SRD) on the traffic is
absorbed by such a large buffer size. As a result, the analysis result of queuing
behavior is dominated by long range dependence (LRD) phenomena [32] [33] [30]
[17] [34] [35] [36]. However, the actual buffer size in a real router/switch is finite
and small. In this situation, the queue can not retain the “memory” for a long time.
On the other hand, short range dependence in the traffic also plays an important
role in queuing behavior. Wavelet analysis provides a convenient way to extract
important statistical properties from the traffic. For example, the Logscale diagram
of the wavelet analysis provides the second order statistical properties of the traffic
at all time scales (SRD and LRD). This background motivated us to propose a new
approach to describe traffic and predict the corresponding connection performance
such as the delay and delay jitter.

The buffer management policy at the bottleneck routers determines the connec-
tion quality directly. The drawbacks of the drop-tail policy, such as long queuing
delay and low link utilization, for Internet traffic were well-known [37] [38] [39] [40].
In order to improve network performance, many buffer management policies such as
RED (Random Early Detection) [41] [42] [43] [44], BLUE [40], FQ/WFQ (Weighted
Fair Queue) [45], CHOKe [46] have been proposed and evaluated. Among them,
RED attracted the most attention in the field. According to the TCP protocol, the
TCP connection decreases its flow rate dynamically if packets are lost. The basic

idea of RED is to maintain the queue length within a given region by randomly



dropping packets among the various connections before the buffer is overflowed.
The dropping probability is an increasing function of queue length. A connection
with a higher rate has a higher risk to lose packets and reduce its flow rate. Since
the queue length is controlled and kept within a desired region, link bandwidth is
fully utilized and the packets experience smaller mean delay and delay variation.
However, a great portion of Internet traffic belongs to web traffic (HTTP) and
voice/video streams (UDP). Most of web pages contain several small files and create
a short but bursty bandwidth requirement. As a consequence, the TCP protocol
of web connections is primarily operated in the slow start phase. Dropping packets
during this phase cannot effectively control the congestion level at the router, but
greatly increases the mean and variance of file delivery delay. Since the connection
quality of real time applications, such as web and voice/video traffic is sensitive
to the mean and variance of delay, these considerations motivated us to propose a
parallel virtual queue control structure to serve real time and non-real time traffic

separately, and adaptively.

1.2 Contributions

The contributions of this dissertation are in three areas. First, we developed a
new multilevel hierarchical model of Internet traffic traces, using simple oper-
ational patterns of packets and sessions. As such the principal model and its
derivative models can be used in a variety of situations (open-loop (i.e., without
flow control), closed-loop (i.e., with flow control)), with different flow and conges-
tion control schemes (i.e., not just TCP), and in modeling traffic at different layers
(network or application layer). Second, we developed queue behavior estimates

and predictions of performance for FIFO queues fed by such traffic traces. We also



developed estimates of delay and delay jitter. With these prediction results, one
can allocate network resources dynamically to guarantee differential quality of ser-
vice requirements. For example, in order to provide differential quality of service
in the DirecPC system, the bottleneck router (Satellite Gateway) in the network
operation center has high and low priority queues for different connections. Our
prediction method can help the network manager determine how much bandwidth
should be allocated to each queue so that their quality of service requirements can
be satisfied respectively. Third, we developed a new parallel queue control scheme
that treats bursty and non-bursty (real-time) traffic differently for higher perfor-
mance of bottleneck nodes. We also investigated analytically the stability of the
system.

The first and second areas and contributions are more connected and interre-
lated than the other. The second and third areas address queue control problems
from different perspectives. The connection between the first and third areas is
that the qualitative characterization of traffic in the first provided the inspiration
for the scheme in the third.

The multifractal behavior of Internet traffic at small time scale is mainly con-
tributed by the TCP flow control mechanism. The corresponding connection pa-
rameters such as round-trip time, TCP session lifetime and active time of burst
play an important role of traffic behavior. Based on these network parameters
estimated from real traces, we propose a key traffic model with a multilevel hier-
archical ON/OFF structure for Internet Traffic. The key idea is to simultaneously
emulate the packet arrival pattern (operational pattern and characterization) in
a typical Internet session at small time scales and the user behavior (operational

characterization) at large time scales. We first estimate model parameters such as



round-trip time and active time of each connection from real Internet traces. The
synthetic traffic trace is generated by the proposed model with the estimated pa-
rameters. The statistical behavior of both synthetic and real traffic are compared
by employing wavelet analysis techniques. We demonstrate that this new model
precisely captures the statistical behavior of real Internet traffic at all time scales.
In addition, many network simulations demonstrated that both real and synthetic
traffic traces also display a similar queuing behavior when the First In First Out
(FIFO) queue control policy is applied. The steady state distributions of queue
length in these FIFO queues by synthetic and real traces match as well within a

wide range of utilization conditions.

Parameter . Analytical
Estimation MultiLevel Solution Logscale
Real Trace ON/OFF ]
Model Diagram
. . Workload
Jitter Analysis Aj
Upper Bound LogNormal
of Distribution
Overflow ) )
Prob. E[AJ] Var[AJ]

Figure 1.1: Methodology

Since the Logscale diagram of wavelet analysis of traffic traces extracts the
second order statistics of traffic traces at all time scales, we provide a numerical

approach to obtain the Logscale diagram from the model parameters, instead of



analyzing a long duration trace. Furthermore, we develop a fast algorithm to
predict the steady state queue length distribution of such a FIFO queue using
parameters computed from the trace Logscale diagram. An upper bound of buffer
overflow probability is also derived when the buffer size is finite and given. Figure
1.1 depicts how the trace analysis, traffic models, connection parameters, queue
length distribution are interrelated and used. These results are motivated from
and apply to network gateways between heterogeneous network domains.

To address the problems of buffer management policy, we first demonstrate
that the performance of RED is severely degraded by bursty web traffic. The
dropping probability of RED is very sensitive to instantaneous bursts and causes
the web connections to see a high instantaneous packet loss rate. This high packet
loss rate forces the web TCP connections to enter the congestion avoidance phase
prematurely, thus leading to a small TCP window at the sender and low goodput.
These effects result in a long delivery delay for small file transmission. In order to
prevent the bursty short-life connections (mostly operated in the slow start phase)
from disturbing the RED, we propose a parallel queue control structure and apply
the RED and drop-tail buffer management policies respectively to the two queues.
The proposed policy is validated and evaluated by simulation experiments. This
structure preserves the advantages of both RED and drop-tail policies such as high
link utilization, low loss rate, small packet delay and low delay jitter, in our new
structure/schehe.

Since the real time and non-real time traffic are served at different queues, we
have more freedom to control the connection rate. For the non-real time traffic,
connection goodput and low packet loss rate are more important than packet delay.

Instead of changing the dropping probability to control the flow rate, we propose a



dynamic threshold algorithm to control the flow rate by queuing delay so that the
packet loss rate can be limited and kept within a given region. The main advantage
of our approach is that it keeps the average packet loss rate within a range of very
small values so that the average TCP window size at the senders has a large value
in its congestion avoidance phase. Hence, any congestion at the router can not
cause another bottleneck at the TCP sender end.

Finally, we model and analyze this queue control system as a regular nonlinear
dynamical system. The conditions for system stability are found and stability
results are proved. We also develop a numerical approach to obtain the queue
length distribution for the dynamic thresholds case. We also provide a linear
approximation approach with a small perturbation assumption. Both theoretical

results are validated by simulations.

1.3 Organization

The arrangement of this dissertation is as follows. In Chapter 2, we briefly intro-
duce the wavelet analysis method for Internet traffic and show the mono/ multi-
fractal behaviors of real traces. In Chapter 3, we describe the proposed Internet
traffic model involving network parameters. We also develop parameter estima-
tion methods to obtain these model parameters from real traces. In Chapter 4, a
synthetic traffic trace is generated with the proposed model and estimated model
parameters. We compare the statistical properties of these synthetic traces with
the corresponding ones from real traces by wavelet analysis (Logscale diagram and
multifractal spectrum). Simulation experiments are used to demonstrate the simi-
larity of queuing behaviors in FIFO queues fed by synthetic and real traffic traces.

In Chapter 5, we demonstrate the vulnerability of Adaptive RED to bursty web



traffic and propose a parallel virtual queue control structure for buffer management
in a router. The system model and performance is given in Chapter 6. Chapter 7

concludes this dissertation and describes directions for future work.



Chapter 2

Preliminaries

In this chapter we provide a brief introduction to wavelet analysis of traffic traces,

self-similarity and multifractal processes.

2.1 Wavelet Analysis

Wavelet analysis is a multiresolution analysis (MRA) method and tool, which has
been widely used in signal processing and data analysis [47] [48]. Tt has remarkable
advantages in analyzing stochastic processes with long range dependence [49] [50]
[51] [52] [53] [54] [55]. For instance, wavelet analysis can eliminate the effect of
deterministic trends hidden in random processes if the wavelet function is chosen

properly. We now introduce the multiresolution analysis in L*(R).

Definition 2.1.1 Multiresolution Analysis [56] [57] A multiresolution analy-

sis consists of a sequence of closed subspaces V;, j € Z, of L*(R) satisfying

ViC Vi, VieZ (2.1)

FEVie f2()€Vi VIEL (2.2)
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feVo—f(-—k)eVy, VkeZ (2.3)

NV = {0} (2.4)

JEZ

UV =L’®); (2.5)
JEZ
There exists a function ¢ € Vj, such that

{o6(- — k) : k € Z} is an orthonormal basis for Vj. (2.6)

The function ¢ in (2.6) is called the scaling function of the given MRA.

Figure 2.1: Subspaces of multiresolution analysis

Remark 2.1.2 Riesz basis Eq.(2.6) implies that {¢(- — k) : k € Z} is a Riesz
basis for Vy. That is, for every f € Vg there exist a unique sequence {cy}rez such

that

Ft) =" ons(t — k) (2.7)

keZ

with convergence of the series understood in L?(R) sense.

11



Remark 2.1.3 Let ¢, = 279/2¢(277t — k). According to (2.2) and (2.6), {¢;s :
k € Z} is an orthonormal basis for V;.

Now, we introduce the construction of orthonormal wavelets from MRA. Let
Wy be the orthogonal complement of V) in V_q; that is, V_; = Vo & Wy. According

to Definition 2.1.1, we have

Via=V,aW, VjeL (2.8)
Since V; — {0} as j — o0,
Via=VieW; =W, VieZ (2.9)
n=j

Since V; — L*(Z) as j — —o0,

H@p:éﬂm. (2.10)

To find an orthonormal wavelet with a given scaling function ¢, all we have to
do is to find a function ¢ € Wy such that {¢(- — k) : k € Z} is an orthonormal
basis for Wy. Daubechies [57] had shown the existence of orthonormal wavelets

with compact support (i.e. finite duration waveforms) in the following theorem:

Theorem 2.1.4 [56] [57] For any integer n = 0,1,2, ... there ezists an orthonor-
mal wavelet 1 with compact support such that 1 has bounded derivatives up to
order n. Moreover, 1 can be obtained from an MRA whose scaling function ¢ also
has compact support and the same smoothness as 1.

Many wavelet families such as Haar, Daubechies, Meyer, Morlet, Mexican-hat,
Battle-Lemarie, Shannon, etc. [56] [58] [59] [57] have been eveloped for different
purposes. We apply these useful results to analyze the statistical properties of

Internet traffic traces.
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We next give a simple example to explain the procedure. Assume our target
function X (¢) is defined in the interval [0,1). Let the scaling function be ¢(t) :=
1{0 < t < 1}, which forms a basis for the subspace V. Since the subspace V;
are all nested, i.e. V; C V;_;, and formed by orthonormal bases ¢, x(¢) in Remark
2.1.3, the basis at level j = 0 should be expressed in terms of the basis at the finer

next level j = —1. According to (2.2) we have

o(t) = o(2t) + o2t — 1)

= 272 (1) + 272614 (t). (2.11)
Let
Qi = / X(t)(ﬁ],k(t)dt (212)

be the coefficient of ¢; (t) for all j,k € Z. We have the projection of X(¢) at the

subspace Vj:

X;(t) = Proj;(X(t) = Y ajudu(t). (2.13)

V(1) = X;a(t) — X,(0). (2.14)

Note that Y;(t) € W; by definition.

Our goal here is to find a basis for the subspace W;. It is obvious that

wo = [ Xt
- /1X(t)dt (2.15)
a_10 = /Oo X(t)gb_l?()(t)dt

13



21/2/1/2X(t)gb(2t)dt
0
21/2/1/2X(t)dt (2.16)
0
CL,Ll = /Oo X(t)(ﬁ,l,l(t)dt

1
= 22 [ X(t)p(2t — 1)dt
1/2

1
= 22 ” X(t)dt (2.17)

and

a_10+ta_11

Qoo = \/5 (218)
According to (2.11), (2.14) and (2.18), we have
Yalt) = X5(0) - Xolt)
= [a—1,00-10(t) + a—110-1,1(t)] — ao,09(t)
= T po0(0) — 6oaa (1) (2.19)
We can rewrite Yy(t) = dootp(t) for 0 <t < 1, where
doo = Lﬂ“‘“ (2.20)
and
_ O-10(t) = P11 ()
= ¢(2t) — (2t — 1) (2.21)

can form an orthonormal basis for Wy. (-) is called the mother wavelet of the
MRA.

Given the scaling function ¢ and the corresponding mother wavelet 1, the
discrete wavelet transform of the continuous time process X (¢) is formally defined

as follows:

14



Definition 2.1.5 Discrete Wavelet Transform [50/ Given the scaling function
¢ and the mother wavelet v, the approximation coefficients a;j and detail coeffi-

cients d; of the discrete wavelet transform of process X (t) are defined as follows

%k::(/ZX@MM@Mt (2.22)

@k::(/ZX@mmumu (2.23)
where

pin(t) = 2792p(27t — k) (2.24)

Yir(t) = 2792p(279L — k). (2.25)

The functions ¢; , and 9; ; form an orthonormal basis for V; and W, respectively.
The X (t) has the following representation

X() =) tcopdoor(t) + > > distbjilt). (2.26)

k j=—o0 k

Y

This simple example we just introduced is called ‘Haar wavelets’.

Definition 2.1.6 Haar Wavelet [56] If

1, if0<t <1,
o(t) =
0, otherwise,
and
1, fo<t<i,
vty =94 —1, ifi<t<l,

0, otherwise,
then v is an orthonormal wavelet for L*(R). This is called the Haar wavelet and

Vit j, k € Z} is an orthonormal system in L?(R) and is shown in Figure 2.2.
J7
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o (1) w(®)

1 1/2

. o(2t) ) w(2t)
t T 1/2 t
1/2 u
d10(t) g o(t)
sqrt(2) sqrt(2)
t T 1/2 t
1/2

Figure 2.2: Scaling function ¢(¢) and mother wavelet 1(¢) of Haar wavelets

Remark 2.1.7 Since ¢;;(t) and ¢;,(t) of Haar wavelets are orthonormal, the

coefficients a;jy and d;j have the following relation:

a;_ a;_
a =Y 1,2k _'\_/5] 1,2k+1 (2.27)
dj,k; _ Aj—12k — Aj—1,2k+1 (2.28)

V2

Theoretically, the projection can be performed from j = —oo to oco. However, in
practice we have a finite index from j = 0 to J and we only consider the subspaces
VycVyopC...C V.

For a discrete time process X;, i = 0,1, 2, ..., the discrete wavelet transform
can be implemented by the fast pyramidal algorithm [60] [61]. To understand
the behavior of the traffic X;, we are more interested in the detail process of the
discrete wavelet transform d; ;. In the next section, we briefly introduce the long-

range dependence property of Internet traffic and its self-similar behavior.
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2.2 Self-Similarity and Long-Range Dependence

It is well known that Internet traffic is self-similar and has a long-range dependent
property [9] [62] [10]. Many studies [63] [64] have also shown that this long-range
dependence property indeed plays an important role in network performance.

Let T be either R, R+ or {t:¢ > 0}.

Definition 2.2.1 Self-Simiarity [65] The real-valued process X (t) is self-similar
with index H > 0 if for all a > 0, the finite-dimensional distributions of { X (at),t €
T} are identical to the finite-dimensional distributions of {a? X (t),t € T}, i.e., if

forany k > 1, t1,ta, ...ty €T and any a > 0,
X (aty), X(ats), -, X(at)] & [ X(8), a" X (8), o X (8)]. (2.29)
Where X 4 Y denotes that r.v. X andY have identical distributions.

Definition 2.2.2 Long-Range Dependence [66] A stationary finite-variance
process X; displays long-range dependence with parameter o if its autocovariance

function R(k) = E[(X; — EX;)(Xix — EXiyx)] satisfies
R(k) ~ Cok* ! as k — oo, (2.30)

where 0 < a < 1 and C, is a positive constant.
This also implies that the corresponding spectral density S(w) := F{R(k)}

satisfies
S(w) ~ Cflw|™® asw — 0, (2.31)

where Cy = 5T and I'" denotes the Gamma function.

Cr
1—a)sin(ra/2)
Leland et al. [62] have indicated that the Internet traffic is long-range depen-

dent and has a self-similar behavior with Hurst parameter 0.5 < H < 1. The
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Internet traffic observed at different time resolutions has similar statistical prop-
erties and this phenomenon cannot be modeled well by traditional traffic models
such as Poisson and Markovian processes. A well-known mathematical process for

modeling a self-similar process is the so-called fractional Brownian motion process.

Definition 2.2.3 fractional Brownian motion [29] The fractional Brownian
motion {By(t),t € R} is a Gaussian process with zero mean and autocovariance

function:

1
Cov(By(t1), By(ty)) = 5{\151\2}1 + [t — |ty — P YWWarBy(1).  (2.32)

Remark 2.2.4 A fractional Brownian motion with VarBy(1) = 1 is called stan-
dard fractional Brownian motion.

According to definitions 2.2.1 and 2.2.2, it is obvious that the fractional Brow-
nian motion is self-similar and has a stationary increment. The increment process
of fractional Brownian motion is called fractional Gaussian noise. In Chapter 3,
we introduce the properties of fractional Gaussian noise process and compare it
with our traffic model.

There are many estimation methods proposed to estimate the Hurst parameter
of a self-similar process such as R/S analysis, variance time-plots, periodogram
analysis, Whittle estimator [62], [67]. However, a self-similar process is strongly
autocorrelated and displays a long-range dependence. This long-range dependent
property results in a severe estimation bias and a difficulty in estimator conver-
gence. Wavelet analysis is able to avoid this problem by choosing the scaling
function (and the corresponding wavelet function) properly [68].

According to the wavelet construction [56], the mother wavelet v(t) is a band-

pass function between w; and ws in the frequency domain, where w; and w, are
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the lower and upper cut off frequency of ¢(¢). Therefore, the detail coefficient d;
can be treated as the output process of the corresponding bandpass filter. The
square of the detail process d?,k roughly measures the amount of energy around

the time ¢ = 27kA and the frequency 2 7wy, where A is the unit time interval and

. witw2
Wo ‘= —5 -

Proposition 2.2.5 [66] If a stationary finite-variance process X; has long range
dependence with parameter «, then the corresponding detail coefficients d;j have

the following property:

E[d; ]

Q

/ S(@)|F 2 (2T P
27w <|w|<2 Twa
= / S(w)27| ¥ (2w)|*dw
27wy <|w|<2 T we
_ / |29 W (2 w) PP
27w <|w|<2 Twa
= 2jaC’f/ |w| ™| ¥ (w)|*dw
w1 <|w|<w2
= 2°C;C(a, ). (2.33)
Note that CyC(a, ) is independent of the variable j.
This property suggests that the parameter a can be estimated by the slope
of the loggE[di,] v.s. j plot. This plot is named the Logscale diagram. One
advantage of wavelet analysis is that even when the original process X; has long

range dependence, its wavelet transform d;j still has short range dependence if

the number of vanishing moments N of the mother wavelet (t) is chosen large

enough (N > «/2).

Definition 2.2.6 [69] The number of vanishing moments N of the mother wavelet
W(t) is defined as:

/tkz/z(t) =0, k=0,1,2,...,N —1. (2.34)
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Proposition 2.2.7 [57] [66] If the number of vanishing moments N > «/2, then
d; i 18 stationary and no longer exhibits long range dependence but only short range

dependence. i.e., d;, is quasidecorrelated [70] to each other.
Eld; xdji ] ~ |27k — 27"k« (2.35)

as |2k — 2'K'| — oo, where j # j' and k # k'. This implies the higher N is, the
smaller the correlation.
In order to estimate the parameter a of long range dependence, one may apply

linear regression to estimate the slope of the Logscale diagram.

Definition 2.2.8 Weighted Linear Regression [71]
Given a sequence of independent variables (x;,y;), j=1,2,..., the hypothesis of linear

~

regression is Ey; = bx; + a. The unbiased estimator (b,a) of (b,a) is

S yi(Sz; — S.) /0]

-
SSpe — 52
- 22 Yj(Sex — Sawy) /07
SSpw — S2
(2.36)
where
S = Zl/a?
Sz = Zl‘j/(sz»
Spe = Zx?/cr?
(2.37)

2 . . .
and o3 is an arbitrary weight.

If y; are mutually independent then the covariance matrix is
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s A
S520—52 554052
Cov(b,a) =
SS20—52  5540—52

and the correlation coefficient is r = \/’S—i—” Note that the minimum variance

unbiased estimator (MVUE) is achieved if we set o7 =Var(y;).
Note that the Logscale diagram is a log-log plot and the logarithm is not a

linear operation
Blogy(d}) # logy(Ed;) = jou +logy(CrC(a, ), (2.38)

where ch2 = % S, d?k We are not able to apply this linear regression directly.
Veitch and Abry [68] [51] [55] developed an asymptotically unbiased and efficient
joint estimator for the parameter o and C(a, ). They also provide a closed-form
expression for the covariance matrix of the estimator and show its accuracy. In

their work, y; is rewritten as

y; = loga( ?)—gj,

where

g9; = ¥(n;/2)/In2 —logy(n;/2)

The regression problem becomes Ey; = ja + logy CrC(c, 7). The estimator of
slope « is obtained by performing the above weighted linear regression problem
with z; = 7 and the weight 0]2- = Var(y;).

Figure 2.3 is the Logscale diagram of a real traffic trace from the bottleneck
router of DirecPC system. The total length of this trace is about one hour with
minimum time resolution one millisecond. The slope at large time scales is a

constant which demonstrates that the real traffic is self-similar (monofractal) at
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large time scales. However, the slope at small time scales has severe different slope.
It indicates that the traffic is a multifractal process.

The Logscale diagram not only demonstrates the long range dependence of
traffic but also extracts the second statistics at every time scales. We will employ
this property of wavelet analysis to provide an efficient algorithm for predicting

queuing behaviors.
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Figure 2.3: Logscale diagram of a real Internet traffic trace
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2.3 Monofractal and Multifractal Processes
The basic idea of multifractal analysis is from the large deviation principle (LDP).

Theorem 2.3.1 Large Deviation Principle [25] [72] Let Z™ be an arbitrary
sequence of random variables on a sequence of probability spaces with probability

P,, and let a,, — oco. Assume that the following limit exists

—~log B, [exp(qZ )] — clq) (2.:39)

n

and c(q) is finite, concave and differentiable. Then

1 log Pn[_—lZ(”) € Al — *(a) := inf(qae — ¢(q)),

Qp, an q

as A — {a}

where E,, is the expectation w.r.t. P,.

Consider a normalized cumulative traffic Y (¢), 0 < ¢ < 1, with Y/(0) = 0 and
Y(1) = 1. Let Xy, :=Y((k, +1)27") = Y(k,27"), k, = 0,1,...,2" — 1, denote
the normalized traffic increment in the interval [k,27", (k, + 1)27"). The LDP is

(n)

employed by defining Z," := log X}, and a,, := nlog?2.

c(q) = lim nlOgQIOgEn[eXp(qZ(”))]
~ “Llog {iznzl(exp(Z(”))q}
n 2lon kn
kn=0
1 1 2" —1
_ q
= 7108;2{2_” kZ:Oan}’ (2.40)

as n — oo. If the ¢(q) exists and is differentiable for all ¢ € R. According to the

LDP, we have

1 | #{k,=0,1,..,2" —1:a—ec<ap, <a+e}
o
nlog2 2n
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1
~ —log, Ploy € [ —e,a +¢]] — ()
n

asn — oo, € — 0,

where

(673

n

-1
= —logy, X, (2.41)
n

In other words, the probability of Xj, = 27" is approximately equal to 2"¢ (@),
Note that ¢*(a) is a non-positive real function and the multifractal spectrum f(«)

is defined as:
fla) =1+ (), (2.42)

and 2™(®) is interpreted as the “frequency” of a certain value of the Holder (or
called singularity) exponent a. The idea is easy to understand by the following

interpretation [50]. Define the Partition Function

2"—1

1
T(q) := lim —log, E Z Xi
n—oo —nN k0
= —1+¢(g). (2.43)
We have

2n 1
S f > YA Y e
kn=0 ;o R

~ an(a)(gfqna) — 9—nlga—f(a)) (2.44)

Take the logarithm on both sides, T'(q) < ga — f(a) and f(«a) < gao—T'(q). Since

this holds for all @ and ¢, we have

T(q) < inf(ga — f(a)) (2.45)

fla) < inf(ga — T(q)). (2.46)
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Thus the multifractal spectrum f(«) can be obtained by the Legendre transform
of T'(q). This method is called “increment-based multifractal analysis”.

In order to have the numerical advantage of the wavelet analysis [27] [73],
one may define the “wavelet-based multifractal analysis” by analyzing the detail

process d;j instead of the increment X, in (2.41). Define
~ 1 n/2
ay(t) == — log, (2" |d_y, k] )- (2.47)

It is shown [74] that under some mild conditions, this approach captures the same
behavior of the multifractal spectrum. Figure 3.6 shows the wavelet-based multi-
fractal spectrum of a real traffic trace. We will apply this powerful tool to evaluate

our model.
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Chapter 3

Multilevel ON/OFF Model

3.1 Motivation

According to wavelet analysis of real Internet traffic trace, the Logscale diagram in
Fig. 2.1 is shown to be monofractal (self-similar) at large time scales. However, the
traffic behavior at small time scales is more complicated and regarded as multifrac-
tal. The well known ON/OFF model proposed to model the connection duration
and user think time is unable to explain this multifractal behavior at small time
scales. Since the traffic behavior at small time scales plays an important role in
affecting connection performance such as packet loss and throughput, we are mo-
tivated to offer a physical model that can precisely capture the traffic behavior at
all time scales and explain the relationship between network parameters and con-
nection performance. However, one has to first understand the network dynamics
at small time scales.

There are many protocols designed and deployed on the Internet for various
purposes. Nevertheless, the traffic driven by TCP (Transmission Control Proto-

col) has already dominated the entire network for decades. TCP has a well known
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control mechanism for reliable communication and congestion avoidance [75]. In
order to avoid congestion at a bottleneck router, the burst size (size of pack-
ets) is limited by the current size of the congestion control window. TCP de-
termines the window size according to its current state and packet loss events.
The window size update algorithm depends on TCP versions such as Reno and
Tahoe. For example, the window size of TCP/Reno has a small initial value
(IMSS maximum segment size) and increases its size by one MSS after receiving
an acknowledgement from the receiver. This phase is called “slow start”. TCP
leaves the slow start phase and enters the congestion avoidance phase if TCP
encounters a packet loss or its windows size is greater than a parameter called
ssthresh. The default value of ssthresh is 64K Bytes and its value is updated by
min(current_congestion_window _size, receiver window_size)/2. TCP interprets
a packet loss event as an indication of network congestion. In the congestion
avoidance phase, TCP slowly increases its window size by one packet with every
round-trip time and decreases its window size to a half when detecting a new
packet loss.

We consider a typical web traffic transported over the Internet. Since most
objects in a typical web page are small graphic and text files, the corresponding
TCP connection usually spends most of its life in the slow start phase and the
packet arrival pattern is much like an ON/OFF process. TCP sends a batch of
packets during the ON period. The OFF time is roughly equal to the network
round-trip time (RTT). Note that the original ON/OFF process [16] models the
TCP session life time and user think time. In order to model the traffic at small
time scales, we propose a multilevel ON/OFF model to mimic the operational

behavior of a typical Internet connection.
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Figure 3.1: Traffic model for one TCP session

3.2 Model Description

We propose a two level ON/OFF model for a single TCP connection as shown in
Figure 3.1. The upper level is an ON/OFF process that models the TCP session
life time (77;) and user think time (7}g). In order to capture the behavior of the
TCP mechanism, there is another ON/OFF process inside the ON period T}; of
the upper level ON/OFF process. It imitates the burst arrival pattern by the
active time (duration of a burst T3;) and inactive time (75) within the same TCP
session. The packet rate B (bytes/A) in Ty is assumed to be a constant. T}y
and Ty, have Pareto Type I distributions with parameters (Ki;, aq1) and (Ko,
as) respectively.! The user think time T}y and inactive time Ty are chosen to be

Exponential random variables with mean 1/Ajg and 1/Ay respectively. All these

IThe Pareto Type I distribution function is as follows:

(K/t)* ,ift>K
PriT >t =
1 Jift <K
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random variables are statistically independent to each other.

Ty = rw. Exp (1/A\p0)

Ty1 = r.w. Pareto (Ky1,a11)

Tyy = 1. Exp (1/Ay)

Ty = r.w. Pareto (Ka,as)

B := Data rate within the active period (bytes/A)
N = Number of connections

The synthetic traffic will be generated by aggregating N independent multilevel
ON/OFF processes with burst rate B, which will be formulated in (3.1). It is
desired to generate synthetic Internet traffic traces that match the real Internet
traffic traces as measured by the degree of matching in the Logscale diagram and

in the multifractal spectrum.

3.3 Parameter Estimation and Model Fitting

3.3.1 Trace Format

Before discussing parameter estimation and model fitting, we briefly describe the
format of a real Internet trace observed in a bottleneck router. The raw trace
is recorded by tepdump, which is a network monitoring tool developed by the
Department of Energy Lawrence Livermore Lab. To estimate the parameters of

the proposed traffic model, we need the following information:

e Timestamp: the arrival time of a packet
e Packet size: the length of a packet

e Source address: source host IP address
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Destination address: destination host IP address

Source port: source TCP port number

Destination port: destination TCP port number

TCP flag: indicate the SYN, SYN-ACK, and FIN packet

One can extract every TCP connection by the source-destination pair (Source
[P-address.port, Destination IP-address.port). The aggregate traffic X is collected
by the time stamp and the corresponding packet size that belongs to the i time
interval. The time interval between the SYN and FIN packets of a certain TCP
session is defined as the session life time. Similarly, the time interval between
SYN and SYN-ACK packets gives a measure of the round-trip time. From those

observations, we are able to estimate the following statistics:

e Mean traffic rate (FX;)

Autocorrelation function R(k)

Logscale diagram L;

Mean round-trip time (ET%)
e Mean session time (ET7y;)

Given a real Internet trace, our goal is to estimate the corresponding model pa-
rameters, generate a synthetic traffic trace from the model and demonstrate that
the synthetic traffic has similar statistical properties and queuing behaviors with

the real traffic trace.
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3.3.2 Parameter Estimation

According to the definition of the multilevel model, the aggregate traffic can be

written in terms of the sum of 7.7.d indicator functions.

Definition 3.3.1 Assume the multilevel ON/OFF process is already in the steady

state before time 0. Let Ug(t) and Vi(t) denote the indicator functions defined as:

Uy(t) :== 1{k" connection is in ON state at t}

Vi(t) := 1{k" connection is in Active state at t}.

The aggregate cumulative byte count of the multilevel ON/OFF process is

Y(t)=B /Ot > Uk(w) Vi (u)du. (3.1)

k=1

The single ON/OFF process can be treated as a special case of the multilevel
ON/OFF process by setting B = 1 and Vj(t) = 1 for all ¢. Hence, the aggregate
cumulative byte count of a single level ON/OFF process in the interval [0, Tt) is
defined as:

Taqqu, Willinger and Sherman proved the following theorem:

Theorem 3.3.2 [16] For large N and T, the aggregate cumulative process {Y (T't),t >

0} behaves statistically like

ETy,

TN—-—""—
ETy + ETig

t +THVNoym By (t), (3.3)
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where the Hurst parameter H = (3 — ay1)/2 and By (t) is the standard fractional
Brownian motion.

In this theorem, the relationship between the Hurst parameter H (index of
self-similarity) and shape parameter aq; (index of Pareto distribution) had been
proved. This theorem explained that the self-similarity of Internet traffic is mainly
due to the heavy-tailed distribution of file sizes which are typically transmitted
over the Internet.

Since the lower level ON/OFF process only exists in the ON period of the upper

level process, one can easily have the following relationship between Y () and )A/(t):

Proposition 3.3.3 If max(ETy, ETyy) << ETiq, then

As time t — oo, the aggregate cumulative traffic of the multilevel ON/OFF
process Y (t) is statistically like the fractional Brownian motion.

In order to match the second order statistical properties of the real traffic,
we have to estimate the model parameters from the real trace. Instead of dealing

with the cumulative process Y (t), we define the increment process X; of the traffic.

Definition 3.3.4 The increment process of Y (t) is defined as
X, =Y((i+1)A)-Y(A), i=0,1,2,3,... (3.5)
where A is the minimum time resolution of interest. The increment process X; is

interpreted as the total bytes that arrive in the interval [iA, (i + 1)A).
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Remark 3.3.5 If By(t) is a fractional Brownian motion (FBM ), the increment
G; = By ((i+ 1)A) — By (iA) is a stationary sequence called fractional Gaussian
noise (fGn).

Proposition 3.3.6 [65] The fractional Gaussian noise G; has the autocovariance

function

2
Ra(k) = Z2(lk+ 127 =20k + [k — 1), k € Z

oo H(2H — D)k* 72 as k — oo (3.6)

Q

where o5 = Var[G,].

From (A.1) and (3.5), it is obvious that the autocovariance function of X; has
the same form as (3.6) as k — 0o. Recall that the introduction of wavelet analysis
and equation (2.30) suggest that the Logscale diagram of the process X; has a
slope a = 2H —1 = 2 —ay; at the large time scales. Veitch and Abry [68] provided
an asymptotically unbiased and efficient estimator for the slope a in the Logscale
diagram within a certain region. We will apply this method to estimate the model
parameter aq; through the estimation of slope « at large time scale region.

Similarly, we consider the traffic X; at small time scale. Under the assumption
that T1; >> T5 and Ty, the traffic behavior at small time scale is dominated by
the lower lever ON/OFF process V (t). When we observe the upper level ON/OFF
process Ug(t) with a small time scale, Ui (t) behaves like a constant. We may

rewrite lim; o Y (¢) as:

t N
Iltg%Y(t) = 11_1%13/0 ;Uk(u)Vk(u)du
N t
~ B;Uk(o) lim 0 Vi(u)du. (3.7)
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It is another single (lower) level ON/OFF process from the point view of small
time scale. Based on the structure of the multilevel ON/OFF model, there is
another linear region in the Logscale diagram in the small time scale region. It
is contributed by the lower level ON/OFF processes. One might use the same
technique to estimate the model parameter as; in the small time scale region.

The parameter Ki; of T is estimated by matching the first moment of the
session life time.

. 1
Ron=""""pm, (3.8)
ai1

Unlike estimating K7; by matching the mean of session life time T}, there
is no control packet in the real trace indicating the start and end of each active
period Ty;. As mentioned before, we assume that the upper ON/OFF process
always keeps its state when we observe the process with a small time scale. The

parameter Ky is estimated by the normalized autocorrelation function R, () of X;.

Definition 3.3.7 Let R(t) be the autocorrelation function of the multilevel ON/OFF
process. Whent — 0, we assume that the function U(t) is a constant function and

have the following approximation:
R(t) ~ N(AB)?E[U*(0)E[V(0)V(t)], ast — 0.

We also define m11(t) :== Pr[V(t) = 1|V(0) = 1] and the normalized autocorrelation

function R, (t):

1
= m(t), ast — 0. (3.9)
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Theorem 3.3.8 [16] [76] Assume that the ON/OFF process V(t) is stationary,

the renewal equation for i (t) is

m(t) = Gio(t) + /O t Fro(t — w)dHo(u), (3.10)

where G1.(t):= Pr(residual life of the first ON interval > t | at time 0 is ON],
Fi(t) :== Pr[Ty > t] and Hyo(u) is the renewal function corresponding to the
inter-renewal distribution Fy x Fy. (Hig = > pe (F1 x Fo)**, where x denotes the

convolution and Fi(t), i =1 and 0, is the CDF of ON and OFF time respectively.)

Since we are interested in the behavior of R, (¢) around ¢ = 0, we have the

approximation
R, (t) = G1.(t), ast — 0.

Given that the Ty, has Pareto(Ks;, ag) distribution, we have

_ 1 = Ko a1
Gt = 77, /t (=) du

a21—1
_ K t—a21+1

21

The parameter Ks; can be estimated by the following estimator:
[?21 = A(azlﬁn(A))l/(aQFDa as A — 0,
where
R,(A) = ZXiXHl/Z X2,

The empirical results show that ﬁn(t) and G1.(t) have a good match when ¢ is

small.
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To estimate the parameter 1/Ay, or equivalently the mean inactive period, we
need to measure the network round-trip time from the trace. It can be extracted
from the real trace by the duration between the SYN packet and the SYN-ACK
packet at the beginning of each TCP session. In our model, the round-trip time is

equal to the lower level OFF time T53. We have the mean of Th:
1//\20 = ETQ().

The parameter B is the constant data rate in the active period T5,. With the

assumption of independent connections, we have the following proposition:

Proposition 3.3.9 Let R, := % and Ry := %, we have
EX? = N(AB)’R\Ry. (3.12)
and
_ BX?
- AEX;

Thus the estimator B is defined as

2
B = 721 Xi )
A X

Equation (3.11) implies that there is one degree of freedom to choose N and
Ry(or ETyy equivalently). In order to satisfy the assumption in the theorem 3.2,
one needs to select a large integer for N so that the mean OFF time 1/\;y can
be determined by R; in (3.11). Since T is an Exponential random variable and
ETyy >> ET714, the starting time of each TCP session can also be approximated

by a Poisson process as N — oo.
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Figure 3.2 shows the network topology and bottleneck router (Satellite Gate-
way) of the DirecPC system, of Hughes Network systems. We measure the model
parameters from the downlink traffic (from Internet to user) and generate a syn-
thetic traffic trace by our model and the corresponding model parameters. At
least ten very long traces (more than a hour) with a high time resolution (one mil-
lisecond) are analyzed and compared by our model. For example, one real trace
recorded on 17:00-18:00 Oct. 13 1999 is analyzed and compared by the corre-
sponding synthetic traffic trace. According to the previous parameter estimation
methods, we have the following results. The mean round-trip time and the mean
TCP session time are 0.130sec and 4.896sec respectively. The aggregate trace
has a mean rate 513.98bytes/msec and variance 9.8990 x 10°bytes® /msec. The
normalized autocorrelation function ﬁn(lmsec) is 0.3519. The shape parameters
a1p and ag; are estimated by the slopes of the Logscale diagram in the regions of
small and large time scales as shown in Figure 2.3 and 3.3. Table 3.1 provides the
corresponding parameters of this model.

With our model and the estimated model parameters, we generate the synthetic
trace by the constant bit rate assumption within the lower level ON duration Ty
of our model (within the period of Ty, packets are generated every one millisecond
with packet size B bytes ), as shown in Figure 3.1. The aggregate synthetic trace

are generated by aggregating N independent such connections.

Table 3.1: Model Parameters
Para. Kll a1q 1/)\10 B

Value || 1.27sec | 1.35 | 167.55sec | 1926bytes/ms

Para. K21 921 1/)\20 N

Value || 0.54ms | 1.77 | 128.75ms 1000
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Figure 3.2: Topology of DirecPC network and the bottleneck gateway

3.4 Second Order Statistics

We employ the discrete wavelet transform to analyze the real and synthetic traffic.
The second order analysis of the traffic is obtained by studying the detail process
of wavelet transforms d;;. As mentioned previously, the X;, © = 0,1,2,.. is the
time series of total bytes transmitted during the interval [iA, (i +1)A). In order
to avoid the estimation error from the deterministic trend, the mother wavelet of
the discrete wavelet decomposition is chosen to be the Daubechies wavelet with
the number of vanishing moments N = 3. The Logscale diagram in Figure 3.4
is the energy of the detail process loggE[dik] v.s. the octave j of the real traffic
and synthetic traffic. It is easily seen that the second order statistics of these two
traffic traces have almost the same values on every scale. This match also implies
their similar autocorrelation structures in time.

There is a breaking point around the scale j = 11 (2''A = 2.048sec) related
to the minimum value of 777 (=K7; in the model). When the observing time scale
is smaller than 2 sec. in this trace, the traffic behavior is dominated by the lower

level ON/OFF process or equivalently by the TCP congestion control mechanism.
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The figure 3.4 shows that TCP dynamics can be modeled well in the second order
behavior by a multilevel ON/OFF process. On the right-hand side of the breaking
point, the behaviors of the real and synthetic traces are both monofractal with
the same Hurst parameter (H =~ 0.823). Note that the slope « and the Hurst

parameter [66] have the relation a = 2H — 1.
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3.5 Higher Order Statistics

We employ wavelet-based multifractal analysis to analyze real and synthetic traf-
fic traces. Unlike the Logscale diagram which only considers the second order
statistics, this multifractal analysis method considers all moments of the stochas-
tic process in the wavelet domain. The higher order statistics are extracted by the
structure function S(g, j) and the partition function 7'(¢) defined in [25] [77],

o(L—3)

S(g,5) = Y 11272
k=1

where L := logs(Data Length). T'(q) is approximated by the slope of log2S(q, j)

when j is small. The multifractal spectrum f(«) is the Legendre Transform of

T(q):
f(a) := nf(ga — T(q)).

The multifractal spectrum f(«) provides a measure of “frequency” of the singu-
larity exponent «(t) at time ¢. It indicates the probability of a certain value of the

singularity exponent:
Pria(t) = a] ~ 27L0=()

For a monofractal process, like the fractional Gaussian noise (fGn, the increment
of fractional Brownian motion), its singularity exponent «(t) is a constant H for
every t. This might be considered as a degenerate case of multifractality. The
corresponding partition function 7'(q) = ¢H — 1 of fGn is a linear function of
g. Since the a(t) is equal to H for every t in fGn, its multifractal spectrum
should be a single point at (H,1). We will employ the fGn as a pilot process

and compare the multifractal spectrum with the real and synthetic traffic. For
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a multifractal process, the partition function is a concave function of ¢ and the
singularity exponent «(t) has a wide range of values. In other words, there is a
non-negligible probability that «(t) is equal to other values. Figure 3.5 shows the
partition functions of the real trace, of the synthetic trace and of the fGn. The
concave curves of the partition function show that the real traffic and synthetic
traffic are multifractal processes and the partition function of fGn is a linear
function due to its monofractal behavior. It is much clearer to see the difference in
their multifractal spectra in Figure 3.6. The spectrum of fGn shows the probability
Prla(t) = H] =~ 1. For the real and synthetic traffic, their spectra show a rich
variety of singularity exponents with a non-negligible probability. Moreover, the
spectrum of our model is not only multifractal but also has the same shape as that

of the real traffic.
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3.6 Queuing Behavior

After comparing the statistical properties of the real and synthetic traffic, we are
also interested in their queuing behaviors. Figure 3.2 shows network topology and
bottleneck router (Satellite Gateway) of the real DirecPC system. The arrival
traffic of bottleneck router is aggregated downlink traffic (from Internet to user),
which is modeled by our traffic model. In order to predict the queuing behavior of
the bottleneck router, we consider a simple first-come-first-serve queuing system
(FIFO) with a fixed service rate and an infinite buffer size as shown in Figure
3.7. Given the mean rate of arrival traffic, the queue length distributions under
different utilization are obtained by properly adjusting the service rate. Figure
3.8 shows the steady state queue length tail distributions Pr[@ > z]| with various
values of utilization p = 0.6,0.7,0.8 and 0.9. When the traffic load is heavy (large
utilization), the real and synthetic traffic have almost the same distributions. With
the light traffic load, the synthetic traffic also provides a good prediction for the
queue length distribution when the queue length is less than 50K bytes. In the
region of large queue lengths, the tail queue length distribution is overestimated.

However, this event happens with a small probability due to the light traffic load.

FIFO queue in gateway with fixed bandwidth

To end users Aggregated downlink traffic

Figure 3.7: First-come-first-serve queue in satellite gateway
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3.7 Summary

In this chapter, we propose a multilevel ON/OFF model to capture the multifractal
behavior of Internet traffic. The idea of this model is to mimic the arrival pattern
of packets within a TCP section. The network parameters such as round-trip time
are involved in the model. In the next chapter, we address that this model can
be a useful tool to understand the impact of network parameters on connection
performance. We develop a simple algorithm to estimate the parameter from a
real traffic trace and generate a synthetic traffic. The second order and higher
order statistics comparisons were performed by Logscale diagram and multifrac-
tal spectrum. Finally, we compare their queuing behaviors such as steady state

distribution by simulations.
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Chapter 4

Performance Analysis of Queuing

Behaviors

4.1 Overview

In Chapter 3, we propose a multilevel ON/OFF model for Internet traffic. In
this chapter, we focus on theoretic results of traffic statistical properties and its
corresponding queuing behavior such as steady state queue length distribution,
mean packet delay and jitter.

Since the Logscale diagram comprises important statistical properties of the
traffic, we are looking for an explicit expression of Logscale diagram as a func-
tion of model parameters. Section 4.2 contains an approximation of the Logscale
diagram by considering the partial integral with power spectrum density and the
autocorrelation function of the traffic model. This explicit expression of Logscale
diagram will help us understand the relationship between network parameters and
performance of TCP connections.

Given the Logscale diagram and mean rate of traffic, we develop a recursive

20



method in Section 4.3. In this method we apply the properties of wavelet analysis
to compute the variances of aggregate traffic workload. This simple transforma-
tion allows us to obtain the workload variance at every time scale from Logscale
diagram. Furthermore, assuming that the traffic workload has a Lognormal distri-
bution, one can easily predict the steady state queue length distribution by using
the same technique provided in [78].

For most of real time applications such as voice and video conference, packet
delay and jitter are important factors for connection performance. In Section
4.4, we discuss the delay and jitter of a CBR (Constant Bit Rate) connection in
the bottleneck queue with background traffic. The CBR connection has a fixed
packet interarrival time and fixed packet size. It is employed here as a probing
process. According to our prediction of steady state queue length distribution,
the mean CBR packet delay of a FIFO queue is obtained straightforward. We also
develop a method to provide a tight upper bound of jitter according to the Logscale
diagram of the background traffic. Both predictions of mean delay and jitter are
validated by ns2 simulations. This fast algorithm could provide useful information

for network management such as routing decision and resource allocation.

4.2 Analytical Solution of Logscale Diagram

We already demonstrated that the multilevel ON/OFF model has a good match
in their statistical properties and queuing behaviors in Chapter 3. A question
that arises naturally is whether one can find the relationship between network
parameters and connection performance. The first step of our approach is to find
an explicit expression of the Logscale diagram as a function of network parameters.

Recall the model definition in Chapter 3, the aggregate cumulative byte count
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of the multilevel ON/OFF process is given in Definition 3.3.1 as
Y(t)=B / > Uk(w)Vi(u)du. (4.1)
0 k=1
The real traffic is modeled by the increment process X; of Y (¢), which is defined

in 3.2.4:

Xi = Y((i+1)A) = Y(()A)

(i+1)A N
= B/ > Uk(w)Vi(u)du, i=0,1,2,3,... (4.2)
A k=1

Since X; is the sum of N i.i.d process Z, ,
(i+1)A
N
where £ = 1,2,..., N. It is obvious that X; and Z; have the same autocovariance

structure:
CO’U(XZ', XZJrn) = NCOU(Zi, Z/L+n) (44)

Our goal here is to calculate the Logscale diagram of X;, which can be treated as the
signal energy in a certain frequency range. In order to obtain the power spectrum
density of the process X;, we have to calculate the corresponding autocovariance
Cov(X;, Xitn)-

We consider the lower level ON/OFF process V(). Let the random variables
Ty, and Ty be the duration of ON and OFF with mean p; and g respectively.
The ON/OFF process starts at ¢ = —oo and reaches the steady state before t = 0.

According to the Definition 3.3.7 and Theorem 3.3.8, the autocovariance func-
tion of V(¢) in the steady state is

rlt) = EVOV () - (EVO) = B - L) 45
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and
T (t) = Golt) + /0 Fuo(t — u)dHo(u). (4.6)

In order to obtain the power spectrum density function, we first consider its Laplace

transform 77(s).

Proposition 4.2.1 [16] [76] The Laplace transform of w1 (t) is :

711(s) = Gre(s) + huo(s)(1 = fu(s)) /s (4.7)
where
fils) = 2{f(1) (4.8)
Guts) = 21 Fl;ﬂ“idu}
_ i.f{m_ /0 tFlc(u)cju}
_ i.z{m: /0 - /0 £1(2)dzldu}
_ é_%ﬁ;s) (4.9)
and
Frols) = —L=AE) (4.10)

(1= fi(s)fo(s))
Note that the f;(t), i = 0,1 is the pdf of the ON and OFF duration respectively.

The Laplace transform of r(t) is

o me (1—1?1(8))(1:]?()(9) _ 4.11
o(s) (1 + f10)3s (p1 + po)s%(1 — fi(s) fo(s)) .

Case 1: Exponential distribution at ON duratoin

If the ON/OFF periods Ty /Ty have the Exponential distributions with mean
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1/A\ = py and 1/X\g = po respectively, we have the density function and the

Laplace transform of the ON and OFF duration as follows:

filt) = Xiexp(—Ait) (4.12)
- by
fi(s) = ST (4.13)

where i = 1 and 0. The corresponding 7(s), r(¢) and the power spectrum density

S(w) of this Exponential ON/OFF process are

~ _ 1 fo 1
r(s) = TEYDES (4.14)
1 -t
> —Jjwt . 2
S(w) = /_OO r(t)e 7“tdt = (T T 1/0) (@ 1 22)° (4.16)

where A = A\ + ). With the Proposition 2.2.5, we have the approximation of

E [d?k] by assuming that W(w) is an ideal bandpass function:

/291 ‘ ‘
Bl ~ 2 s (417)
2712 T/ T/ A
~ tan—— — arctan———). 4.18
N1/ T 10) (arc angi—y — arctan—; ) (4.18)

Take the logarithm on both sides, the Logscale diagram of single ON/OFF process
is

97+2 /) )
(1/A1+1/X) (arctaan—/l — arctan%)} (4.19)

L; = log: Eld} ] ~ logs{ 5

Recall that there are N independent connection with Burst rate B and the upper
level has a ON/OFF ratio R;. The Logscale diagram of the aggregate traffic at

small time scale region is approximated by

L; ~ L;+log:(N(BRy)?). (4.20)
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Since both ON and OFF duration have Exponential distributions, the auto-
covariance function r(t) at (4.15) also has an exponential form which indicates a
short-range dependence property. The Logscale diagram of this short range de-
pendent ON/OFF process is shown in Figure 4.1 with the same mean ON time
and OFF time estimated in Chapter 3. Note that the zero slope of the Logscale
diagram at large time scales demonstrates the absence of long range dependence
and obviously the Exponential distribution assumption of ON/OFF duration is not
valid for modeling a real traffic. The heavy-tailed type distribution such as Pareto
distribution is suggested as a candidate for modeling the long-range dependence
traffic [16] [1] [66]. However, there is no closed-form for the autocovariance function
of such ON/OFF process with Pareto distribution. We provide an approximation
for the Logscale diagram of the ON/OFF model.

Case 2: Pareto distribution at ON duration
The density function of Pareto(K,a) distribution fp(t) = aK% %" can be approx-
imated (truncated tail) [79] by the weighted sum of N density functions of Expo-
nential distribution with mean v" /v, n = 0,1, ..., N —1. Define r.v. YN::ZnN;()l X,

where r.v. X, has an Exponential density function:

v v
fx, = —exp(——1). 4.21
.= mexpl- (421
Then the pdf of Yy is:
e y
Fralt) = G 3 0" exp(=) (4.22)
n=0

where parameter 6 is the weighting factor. Note that [~ fy, (t) = 1 for probability
density function, we have the normalization factor G(N) = %.

Recall that the o moments of Pareto distribution is diverging when o is
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greater or equal to the shaping parameter a. i.e.

E[PY] = / Ooto‘fp(t)dt

K

= aK® / tomtteqt (4.23)
K

diverges if a > a. Hence, we consider the a'* moments of r.v. Yy:

a 1 - (e,ya)N a
BIY] = GN) -~ BIXg]. (4.24)
Y
Let N — oo, we have
lim Eve = 7 prxe 4.25
Jim EIY{) = - BIX] (4:25)

Since X, has Exponential distribution, we have E[X{§] < oo for all a < co. How-
ever, if 0y* > 1, the limit in (4.25) diverges. We are free to choose the scaling
factor to be v = 2, then the weighting factor # = 27*. The mean of the mixed
density function is E[Yy] = G(N) S0} g"L-. In order to match the mean of the

Pareto distribution aK/(a — 1), we have

1—(0y)Na—1
1—60y aK

v =G(N) (4.26)

The Pareto distribution approximation by sum of weighted Exponential distribu-

tions are shown in Figure 4.2.
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The Laplace transform of ny (s) is:

N-1

7 v/y"
=G(N 0" ———. 4.27
Pl =0 o (a.27)
Substitute ]?O(s) = Hg\ and fl( ) = ny(s) into equation (4.11), the Laplace

transform of the autocovariance function is in (4.28).

—~ H1to
ry(s) = ————— —
#) (k1 + p1o)s
N—1 pp v/4" N—ln/\u"

St st (4 08)
(u1+uo)82[1—G(N)ZN 19” vt (L — L]

Ao—v/y™ \s+v /" s+Xo

The power spectrum density of 7,(f) can be calculated by the following relation:
Sy(w) = T(8)[s=—jew + T (8)|s=je- (4.29)

Assuming that the mother wavelet v is an idea bandpass function, the Logscale
diagram Zj of a single connection at small time scales can be approximated as

follows:

E]‘ = lOggE ]k]

~ logg{/ w)27 || W (27w) ||Pdw} }. (4.30)
Again, the Logscale diagram of the aggregate traffic is:
L; ~ Lj+1log(N(BRy)?). (4.31)

The dash and dot lines at Figure 4.1 compare the theoretical approximations
of Logscale diagram with Exponential (Case 1) and Pareto distribution (Case 2)

respectively. It shows that the equation 4.31 provides a good approximation for

29



the Logscale diagram at small time scales. With this formula, we are able to un-
derstand the relationship between network parameters and the traffic statistical
properties. Figure 4.3 and 4.4 also show the Logscale diagrams of numerical ap-
proximation and synthetic traffic with different network parameters. Figure 4.3
shows the effect of increasing the burst size K5, by two times and four times. In
Figure 4.4 both ON(7T%;) and OFF (Ty) time periods are increased in order to keep
the same mean rate. In those two figures both synthetic and theoretical results
predict the statistical properties of real traffic with different network parameters.

The second step of our approach is to find the queuing behaviors according to
the Logscale diagram of aggregate traffic. Given the Logscale diagram (numerically
estimated from the trace or theoretically computed from the model), we develop
an efficient algorithm in the next section to predict the queue length distribution
and the corresponding connection performance such as delay and jitter. With this
technique, one can employ the network parameters to predict the queuing behavior
of a bottleneck router. It builds up a relationship between the network parameter
and the connection performance, which is very helpful in protocol design. Fur-
thermore, based on the prediction of the queuing behavior, one may adjust control
parameters in a router such as the maximum threshold and the dropping probabil-
ity of the RED (Random Early Detection) scheme. We will discuss these problems

in the following chapters.
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4.3 Approximation of Steady State Queue Length

Distribution

As shown in the Chapter 2, the wavelet method has many advantages in param-
eter estimation and traffic analysis. Given the Logscale diagram (numerically or
theoretically) of the arrival traffic, we develop an efficient method to obtain an

upper bound of the overflow probability by using the properties of wavelet.

Proposition 4.3.1 Let a;, and d;j be the approzimation coefficient and the detail
coefficient of the Haar wavelet, we have the following relations according to Remark

2.1.7

a Gk T
32k — =
V2

Gk — dipik (4.33)

Aj2k+1 = \/5

With the uncorrelated assumption between a;i1y and djiq1y for each j, we have

(4.32)

, d.
Varla;] = Varla; ] —;Var[ ]+1]. (4.34)

Note that the plot log, Var[d;] v.s j is the Logscale diagram. On the other hand,
let the workload A; to be the total arrival bytes in the interval [0,2/A). From the

definition of Haar wavelet, we have

A; = a2 (4.35)

Thus, by using the Logscale diagram and the variance of workload at the finest
scale Var[Ay] as the initial values, the variance of workload Var[A;] can be com-

puted recursively for all j.
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Proposition 4.3.2 Given the Logscale diagram L; = logVar[d;] and the vari-

ance of Ay, the variance of A;, j =1,2,... is

Var[A;] = QjVaT[aj]

Varla;] = 2Var[aj_] — Var[d;].

Since the workload A; is contributed by many independent connections which
are active in the the interval [0,2/A), The Central Limit Theory suggests that the
candidate distribution of workload should be Normal distribution with parameters
(EA;, Var[A;]). Figure 4.6 shows that the Normal distribution works well at large
time scales in fitting the empirical distribution. However, the packet arrival pattern
is very bursty and spare at small time scales. There are few connections have
packets arriving in a small interval. The assumption of large number aggregation
of independent connections is invalid. On the other hand, the Normal distribution
always has a positive probability for negative values. This property is not suitable
for modeling a positive random variable such as traffic workload. We are looking
for a distribution of positive random variable which can best fit the empirical
distribution of real traffic at all time scale. We applyied the Kolmogorov-Smirnov
Goodness-of-Fit test [80] [81] [82] to most well-known distributions of positive
random variables and found the Lognormal distribution is a good choice.

Assuming that the workload A; has the Lognormal distribution for all j with
mean M; and variance Vj, the probability density function of the Lognormal dis-

tribution is:

1 (Inx — pu;)?
TojN 2T 207

Since the r** moment of the Lognormal distribution has a closed-form:

fa;(x) = l, x >0 (4.36)

rlo?

EA} = exp(ru; + 5 L). (4.37)
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The parameters p; and o; can be easily obtained:

M? +V;
ol = 1n(JTZJ) (4.38)
J g

Figure 4.5 and Figure 4.6 are the complement CDF of the real workload with
scale 7 = 1,2,..,14 and the corresponding Normal and Lognormal distribution
fitted by the estimated mean and variance. It is obvious that the prediction of

Normal distribution is severely underestimated at small time scales.
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Figure 4.5: The CCDF of workload A; j = 1,2,...,7 and the fitted Normal and

Lognormal distribution.
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Figure 4.6: The CCDF of workload A; j = 8,9, ...,14 and the fitted Normal and

Lognormal distribution.
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Consider a simple FIFO queue with a finite buffer size B (bytes) and capacity C
(bytes/A). Assuming that the distribution of workload A; is known for all j, Riedi
[78] proposes a simple upper bound for the overflow probability P[Q > B]|, where
r.v. @Q is the queue length in the steady state. Let the event E; := {A; < B+C2/A}
be assumed to be independent of each other. According to the lemma proved by

Riedi:

Lemma 4.3.3 [78] Assume that the event E; = {S; < b;}, where S; = Ry +
.+ Rj—y for 1 < j <n and where Ry,...,R, are independent, otherwise arbitrary

random variables. Then, for 1 < j < n, we have
PlE;|E;_y, ..., Ey] > P[E;]. (4.40)
With Lemma 4.3.3, we have the upper bound of the overflow probability:

Proposition 4.3.4 Let E; := {A; < B+ C2/A}. An upper bound of the overflow
probability of a FIFO queue is
pl@>B] = 1-PlQ<B]~1- PN, E)

K
= 1- PlE) ][ PIEI|Ej-, ... By
j=1

1-J[PE]=1-]]PlA4; < B+C2A] (4.41)

IN

J=0

where K is the mazimum octave and 25 A is the mazimum time scale.
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Figure 4.7: The upper bound of overflow probability with utilization p =
0.1,0.2,...,0.9.
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Figure 4.7 shows this upper bound with different bandwidth utilization p =
0.1,0.2,...,0.9. Figure 4.8 to 4.11 are the comparisons of this upper bound with
the queue length distribution of the real network traffic and the synthetic traffic.
These results suggest that the upper bound of overflow probability may provide a
good approximation of the queue length distribution. In the next section, we will
use this approximation to predict the mean queuing delay and choose the RED

parameter properly to satisfy the given mean delay requirement.
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Figure 4.8: The queue length distribution with utilization p = 0.6, upper

bound(dash), real trace(solid) and synthetic traffic(cross).
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Figure 4.9: The queue length distribution with utilization p = 0.7, upper

bound(dash), real trace(solid) and synthetic traffic(cross).
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Figure 4.10: The queue length distribution with utilization p = 0.8, upper

bound(dash), real trace(solid) and synthetic traffic(cross).
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Figure 4.11: The queue length distribution with utilization p = 0.9, upper

bound(dash), real trace(solid) and synthetic traffic(cross).
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When we calculate the upper bound of the overflow probability, we find that
only one workload A; at certain time scale j dominates the overflow probability.
Figure 4.12 shows that in the light traffic condition (p = 0.3), the traffic perturba-
tion at small time scales mainly causes the overflow events. Figure 4.13, 4.14 and
4.15 show that when the traffic load is increasing, the overflow probability of the
queue will be mainly dominated by traffic behavior at larger time scales. On the
other hand, with a fixed utilization, the dominating time scale is related to the
buffer size. The smaller buffer size has a smaller dominating time scale. It implies
that the short range dependence in the traffic dominates the queuing behavior
when the buffer size is small. Note that most of dominating time scales are less
than 1 sec. The statistical properties of the traffic at small time scale is directly
related to the protocol behavior. It suggests that, for the small buffer queue, the
protocol behavior plays a more important role than the file size distribution does
at the upper level. It also suggests that the monofractal or single level ON/OFF
model is not quite suitable for predicting the behavior of a small buffer queue.

The selection of maximum octave K also determines the upper bound. Riedi
78] suggested that the maximum time scale 25 A should be large enough to con-
tain an empty event. Figure 4.12 to 4.15 show that the upper bound will converge
as K goes to infinite. In practice, the maximum octave K can be chosen large

enough so that the probability P[E;] converges to 1.

75



1.001 T

0.999 h

0.998 - b

]

PrA < B + C2A)
o
[(e)
[{e)
~
T
1

0.996 - B
0.995 B
0.994 - B
0993 | | | | | | | |
0 2 4 6 8 10 12 14 16 18
fine scale j coarse

Figure 4.12: The Pr[A; < B + 2/CA] wv.s. octave j, buffer size B =
10K,20K, ...,400K (bytes) with utilization p=0.3
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Figure 4.13: The Pr[A; < B + 2/CA] w.s. octave j, buffer size B =

10K, 20K, ...,400K (bytes) with utilization p=0.5
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Figure 4.14: The Pr[A; < B + 27CA] v.s. octave j, buffer size B =
10K, 20K, ...,400K (bytes) with utilization p=0.7
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Figure 4.15: The Pr[A; < B + 27CA] v.s. octave j, buffer size B =

10K, 20K, ...,400K (bytes) with utilization p=0.9
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4.4 Queuing Delay and Jitter Analysis

With the prediction of steady state queue length distribution, it is straightforward
to predict the average queuing delay by calculating the ratio of mean queue length
and service rate. We consider a constant-bit rate traffic as our probing process.
As shown in Figure 4.16, the CBR process sends out a small packet every 2"Asec
persistently and shares the bandwidth with the background traffic. Assume that
the packet size of the CBR process is set to be small enough such that mean
rate of CBR traffic is negligible. According to the approximation of steady state
queue length distribution at , the average queuing delay D of CBR packet can be
predicted by the following proposition.

Background Traffic

CBR \ 777777777777777777777777777777 )
A S S S S

27nA lier i

Figure 4.16: The target process and the background traffic

Proposition 4.4.1 Assume a FIFO queue is in the steady state with (time aver-
age) distribution Pr[@Q > b]. The average queuing delay of CBR packets is:

D= é %;Pr[@ > ), (4.42)
where Y, o Pr[Q > b] is equal to the mean (time average) queue length of the
FIFO queue with infinite buffer size.

Sketch of Proof. Since the CBR packets arrive at the queue every 2" Asec, the

average queue length seen by the CBR packets is equal to the time average of
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queue length. The average packet delay at a FIFO queue:

D = S+W (4.43)
= %Z Pr(Q > 1], (4.44)
b>0

where W and S mean waiting time and mean service time respectively. Note that
the CBR packet size is assumed to be small and negligible, we assume S = 0.
O

Figure 4.17 to 4.23 demonstrate the queue length distribution which is seen
by CBR packets. These figures also show that the analysis approximation indeed
provide an accurate prediction for delay distribution of CBR packets. Figure 4.24

shows the prediction of mean packet delay with different utilization.
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Figure 4.17: Queue length distribution seen by CBR packet p = 0.191
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Figure 4.18: Queue length distribution seen by CBR packet p = 0.293
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Figure 4.19: Queue length distribution seen by CBR packet p = 0.383
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Figure 4.20: Queue length distribution seen by CBR packet p = 0.468

85



Pr[Q > X]

—— Simulation
— - Prediction

10’5 I I

0 50 100 150
Queue Length x (KBytes)

Figure 4.21: Queue length distribution seen by CBR packet p = 0.573
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Figure 4.22: Queue length distribution seen by CBR packet p = 0.661
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Figure 4.23: Queue length distribution seen by CBR packet p = 0.771
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For real time applications such as video/voice conference/stream and voice over
IP, the delay jitter plays an more important role in the connection quality. The
jitter is mainly caused by the perturbation of background traffic in the bottleneck
queue. Fulton and Li [83] provided analytical approximations for the first-order
and second-order statistics of the delay jitter. However, like other the jitter analysis
methods [84] [85] [86], their works are based on the Markovian model of background
traffic, which is not suitable for the long range dependent process such as Internet
traffic. The Markovian approach also requires a lot of computational efforts and
memory space for conditional probabilities and matrices . We develop an efficient
method to predict the variance of jitter based on the the Logscale diagram of the
traffic.

We consider the CBR traffic in the previous scenario of Figure 4.16. The CBR
process is employed here to estimate the delay jitter of the bottleneck queue. The
Logscale diagram of the background traffic is given as L;. The delay jitter is

defined as follows:

Definition 4.4.2 Let the random sequence I; be the interdeparture time of the tar-
get process, the jitter is defined as the difference of two consecutive interdeparture

times:

We also define A, ; as the total arrival bytes of the background traffic in the

i time slots. The duration of each time slot is T := 2" A sec.

Proposition 4.4.3 Let the current time be t=iT and b=2""'A(C'—m). Assuming
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Figure 4.25: The arrival and departure time of CBR traffic
that the current queue length is q(t) > b. The conditional variance of jitter is

VarlJlg(t) > b = %Var[(An,iH — A, (4.46)

Proof Without loss of generality, let the CBR packets arrive at time 0, T, and 27T,
which have queuing delay dy, d; and ds, respectively. As shown in Figure 4.25, the
total arrival bytes of the background traffic in the it time slots (¢t € [iT, (i +1)T'))
is A, ;. Since the current length ¢(0) > b is quite large, it is reasonable to say that
the output link is always busy during the 0* and 1** time slots. Moreover, the

buffer size is infinite so that there is no packet loss event. The Lindley equation:
q(t) = maxo<s<t[A(t) — A(s) — C(t — s)],Vt > 0 (4.47)
can be simplified as
q((i+1)T) =q(iT) + A,; — CT. (4.48)
Hence, the packet delay d; = q(iT")/C and the interdeparture time is

i = TH+diy1—d,
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q((i + DT) — q(iT)

=T
- C
A
_ nid 4.49
- (1.49)
The jitter variance under this condition is
Var[J|q(t) > b = Var(liy— 1)
_ Va?"[(An,iJrl — An,l)] . (450)

CQ

According to the definition of Haar wavelet, one may easily obtain the value of

Var[(A,1 — Anp)] from the Logscale diagram L;

El(Ajart1 — Ajow)’]

Liyi _ _
oLi+1 — E[d?H,k] = i1 : (4.51)
for every j and k.
Hence, the conditional jitter variance of the CBR process is
ontl+Lnt1
Var[J|q(t) > b] = — (4.52)

On the other hand, if the current queue length is small (¢(t) < b), we assume
that there is at least one idle server event happening in the next two time slots.
The simple relationship of equation (4.48) and (4.49) does not hold. Since there
is at least one idle event (queue empty event) in this period, the sequence of
interdeparture times I; and the sequence of packet delays d; can be treated as

uncorrelated random sequences respectively. We have the following upper bound:

Var[J|q(t) < b = Varlli, — L] = 2Var[l]

= 2Varld;1 — d;] = 4Var|d;
4 ,
< — max Var[(A; — C2ZA)7"].

C? 0<j<n

(4.53)
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Proposition 4.4.4 Let A be the Lognormal random variable with parameter (u, o)

and d > 0 be any real number, we have

ehto?/2 Ind — y — o2 _
E[(A-d)*] = —5—erfe( \/ga ) — dF(d) (4.54)
) 2207 Ind — p — 202
Bl(A=a)' V) = —5—erfe(———)
_ dequaQ/Qech(lnd ?/g - 02)
+ PF(d), (4.55)

where F(d) := Pr[A > d].
The probability of Prq(t) > b] is based on the prediction of the steady state
queue length distribution. We apply the previous results of queue length distribu-

tion in section 4.3 to estimate the probability Pr[Q < b].

Proposition 4.4.5 Let the r.v. Q be the queue length in steady state. From (4.52)
(4.53) and (4.4), there is an upper bound of the jitter variance of the CBR traffic

at the bottleneck router:

Var(J) < Var(J|Q > b)Pr[Q > b

+Var(J|Q < b))Pr|Q < b|. (4.56)

Given the Logscale diagram of the traffic, we are able to predict the jitter vari-
ance immediately via (4.56). We validate this efficient approach by ns2 simulation

in the next section.
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4.5 Simulation results

The network topology in this experiment is the simple dumbbell network with a
single bottleneck link. One side of the bottleneck link consists of 800 web clients.
The clients send request to web serve, wait response, receive data and close the
session. The interval between the end of session and next web request is called
user think time. In this simulation the user think time of clients has an Exponen-
tial distribution with mean 50sec, which is related to the human behavior in the
Internet [9].

The other side has 800 web servers. The server is running HTTP 1.1 protocol
and has a Pareto file size distribution with parameters (K=2.3Kbytes, a=1.3).
The propagation delay of each server link is uniformly distributed in the interval
(16ms, 240ms) and the mean round-trip time is about 128ms. The aggregated
traffic requested by web client and generated by web servers has a mean rate
about 1.2Mbps. It is treated as the background traffic in the previous analysis.
The unique CBR source at the server side has a permanent connection cross the
bottleneck link. The CBR packets are sent periodically every T sec. and received
at the client end. Since the link propagation delay of CBR connection is known,
the queuing delay and jitter of CBR packet is estimated straightforwardly. We
consider both FIFO and RED as the buffer management policy at the bottleneck
link respectively.

Case 1: Jitter at a FIFO Queue
Figure 4.26 compares the predicted standard deviation of jitter with the simula-
tion results. The target CBR process has fixed interarrival time 7' = 2"ms and
n = 3,4,..,8. As a probing connection, the CBR has a small packet size so that

the average mean rate of CBR traffic is negligible. Since the mean rate of the
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background traffic is about 1.2Mbps, the link utilization is about 0.4,0.6 and 0.8
with the corresponding bandwidth C' = 3.0,2.0 and 1.5Mbps respectively.

Case 2: Jitter at a RED Queue
We replace the FIFO queue by an adaptive RED queue at the bottleneck router.
The adaptive RED queue [87] [88] will keep the average queue length located in a
desired region by randomly dropping the TCP packets. Since the queue length is
in the desired region, the link has a 100% utilization and no idle event happened.
Hence, the jitter variance is bounded by equation (4.52). Figure 4.27 shows that the
prediction method also provides tight bound for the jitter variance with different
queuing policy such as RED is employed.

Since the interarrival time of most time-sensitive applications is located in the
range of (8ms, 256ms). Both simulation results show that our prediction method

indeed provides a tight upper bound of jitter within this range.
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Figure 4.26: The standard deviation of delay jitter std(J) v.s. n with a FIFO

queue
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Figure 4.27: The standard deviation of delay jitter std(J) v.s. n with a RED queue
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4.6 Summary

In this chapter we first analyze the multilevel ON/OFF model and provide a the-
oretical approximation of Logscale diagram. According to the property of wavelet
analysis, the second order statistics of traffic can be immediately extracted from
the corresponding Logscale diagram. Given the mean and variance of traffic work-
load at every time scale, we are looking for a mathematical distribution which
can best fit the empirical distribution of real workload. After we employed the
Kolmogorov-Smirnov goodness-of-fit test, the Lognormal distribution is chosen
as the best candidate. The steady state queue length distribution is approximated
according to the workload distribution at every time scale.

The queuing delay and jitter are also investigated on the basis of the approxi-
mation of queue length distribution. The mean delay is directly predicted by the
mean queue length and the link bandwidth. An upper bound of jitter variance
is developed according to the property of wavelet analysis and a simple condition
probability. All theoretical results such as queue length distribution, mean delay
and jitter variance are validated by simulation.

The proposed traffic model and the analysis in statistical property and queu-
ing behavior provide a simple but efficient platform to understand the network
engineering. It explains how the network parameters such as the active time,
round-trip time, session life time and user think time affect the traffic statistic
at different time scales. Furthermore, it also helps us understand the impacts
of network parameters on connection performance such as packet loss, delay and
jitter.

In the next chapter we focus on the active queue management (AQM) policy

at the bottleneck router. A parallel structure and a new idea of flow control are
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proposed for providing a better quality of service.
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Chapter 5

Parallel Queue Structure for

Active Queue Management

5.1 Overview

For small queuing delay, the buffer size in a router is not large. However, a router
with small buffer size often has a high packet dropping rate since the Internet
traffic is bursty. When packets are lost, the TCP protocol dramatically reduces
the flow rate during the congestion avoidance phase [89]. Therefore, after a buffer
overflow event in a drop-tail queue, all connections sense packet loss and slow down
the transfer rate simultaneously. In order to prevent this global synchronization
phenomenon and increase link utilization, many active queue management schemes
such as RED (Random Early Detection) [41] have been proposed and received
increasing attention.

The basic idea of RED is to randomly drop packets to prevent buffer over-
flow and the global synchronization problem. The dropping probability is a non-

decreasing function of the queue length. A TCP connection with a higher flow
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Figure 5.1: The dropping probability function of original RED.

rate has a better chance to get packets dropped and reduce its rate more rapidly.
By dropping packets actively, RED keeps the queue length within a desired region.
However, some simulation and analysis results [90] [39] [91] [92] have demonstrated
that the performance of RED is very sensitive to parameter settings. Based on
the original idea of RED, there have been some modifications such as Stabilized
RED (SRED) [93], Flow RED (FRED) [94], Weighted RED [95], Random Early
Marking (REM) [38], BLUE [40] and Adaptive RED [88] [87]. The Adaptive RED
scheme dynamically updates the maximum dropping probability according to the
exponentially weighted moving average (EWMA) of the queue length, and makes
itself more robust with respect to the congestion level.

The Adaptive RED policy provides good rate control for TCP connections
operating in the congestion avoidance phase [75] [87]. However, a great portion of
Internet traffic is web and UDP traffic. Since most web connections involve transfer

of several small files, these connections have a short life and are mostly operated
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in the TCP slow start phase with a small congestion window. Dropping web
packets in this phase is not an effective way to control the traffic rate and alleviate
the congestion at the bottleneck router. Furthermore, from the viewpoint of a
web user, one or several packet losses in the slow start phase would lead to extra
delay for retransmission or even TCP timeout. It would also force TCP to enter
the congestion avoidance phase prematurely with a small congestion window and
result in a low throughput. The delay and low throughput would severely degrade
the performance of delivering short messages such as web pages, and web browsers
experience long waiting times even with a high speed network. On the other hand,
the Adaptive RED fails to maintain the queue length within the desired region
due to the bursty nature of web traffic.

To address these problems, we propose a parallel virtual queue structure for
active queue management in this paper. In this structure, real time (web, UDP)
and non-real time (FTP) traffic are separated into two different virtual queues
which share the same physical buffer memory. The drop-tail policy is applied at
the first virtual queue to serve real time applications. In order to have a small
mean delay, the service rate of this drop-tail queue is dynamically determined
by its virtual queue length. The remaining non-real time traffic is directed to
an Adaptive RED virtual queue. Simulation shows that this parallel virtual queue
structure not only has the advantages of Adaptive RED such as high link utilization
and small delay, but also greatly reduces the total packet loss rate at the router.
Despite that the bandwidth is shared with the bursty drop-tail virtual queue, the
Adaptive RED queue has a small length variation.

The original Adaptive RED dynamically changes the maximum dropping prob-

ability P,,.. to keep the queue length within the thresholds. However, for some
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non-real time applications, high goodput (low packet dropping rate) is more impor-
tant than short packet delay. Hence we explore a modified Adaptive RED policy
for the non-real time applications at the second virtual queue, where the queue
length thresholds are dynamically adjusted to maintain the dropping probability
of Adaptive RED algorithm in a desired range.

The remainder of the dissertation is organized as follows. In Section 5.2, we
demonstrate the vulnerability of the Adaptive RED in the presence of web and
UDP traffic. The parallel virtual queue structure is described in Section 5.3. Com-
parison of this approach with the original Adaptive RED scheme is given through
simulation in Section 5.4. In Section 5.5, we present the modified Adaptive RED
policy with dynamic queue length thresholds. Performance and stability analysis
is provided for this parallel structure with the drop-tail and the modified Adaptive

RED queue in Chapter 6. Finally, we conclude our work in Chapter 7.

5.2 Vulnerability of Adaptive RED to Web-mice

In this section we consider a scenario containing short-life TCP (WEB), UDP
(CBR) and long-life TCP (FTP) traffic. The purpose is to demonstrate that the
performance of the Adaptive RED scheme is severely degraded by the short-life
web traffic. The network in our ns2 experiment is the same scenario of delay
and jitter analysis in Chapter 4 except the FTP traffic. It has a simple dumb-
bell topology with the bottleneck link bandwidth C'=3.0Mbps. One side of the
bottleneck consists of 800 web clients. Each client sends a web request and has a
think time of Exponential distribution with mean 50s after the end of each session.
The other side contains 800 web servers, running HTTP 1.1 protocol and having a

Pareto [16] file size distribution with parameters (K,=2.3Kbytes, a=1.3) (mean
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10K bytes). The round-trip propagation delay of HTTP connections is uniformly
distributed in (16, 240)ms. Note that the mean rate of the aggregate web traffic
is around 1.2Mbps. There is one CBR traffic source which periodically gener-
ates a 1Kbytes UDP packet every 50ms. Besides these short web connections
and UDP traffic, there are 10 persistent FTP connections sharing the bottleneck
link with round-trip propagation delay of 64ms. Figure 5.2 shows that the Adap-
tive RED works well with those FTP connections before the web traffic comes in.
However, after the CBR source and web servers begin to share the bandwidth at
time t=100s, the queue length of Adaptive RED deviates dramatically from the
desired region. Since the Adaptive RED scheme relies on average queue length
to determine the dropping probability and control the TCP flow rate, the extra
queue length perturbation contributed by the bursty web traffic makes the Adap-
tive RED increase/decrease its dropping probability rapidly. This over-reaction
causes a great queue length variation and poor performance in packet delay and
loss.

Since most web pages contain one or several very small files, these TCP con-
nections are mostly operated in their slow start phase during the session life. Ac-
cording to the TCP protocol, the congestion control window is just beginning to
increase its size from the initial value and the flow rate is low. Dropping packets in
the slow start phase cannot efficiently alleviate the congestion level at the bottle-
neck router. In other words, any random dropping/marking policy such as RED
is unable to effectively control the congestion level without considering short-life
TCP (and UDP) traffic. Furthermore, losing one or two packets in the slow start
phase not only causes a very low throughput and extra delay, but also leads to a

high probability of connection timeout. This is further illustrated below.
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Figure 5.2: Queue length of the Adaptive RED: 10 FTP starting at t=0 and 800
WEBs and 1 CBR coming in at t=100s.
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From the viewpoint of a web browser, a short-life TCP session may only
need several round-trip times (RTT) to finish the whole transmission. When the
sender senses a packet loss, the slow start threshold ssthresh will be reduced to
min(cwnd, rcvwindow) /2 [89] and the new congestion window size cwnd is also
decreased depending on different TCP versions (For TCP Reno, the new cwnd =
ssthresh and TCP enters the fast recovery phase. For TCP Tahoe, cund = MSS
(maximum segment size) and TCP begins a new slow start phase). Since original
cwnd is just beginning to increase its size from its initial value M SS in the first
slow start phase, one packet loss during the initial several round-trip times leads
TCP to enter the congestion avoidance phase with a very small ssthresh and cwnd.
In the congestion avoidance phase, TCP slowly increases cwnd (the increment is
about one M SS per round-trip time) from the current ssthresh. Therefore, losing
one packet in the slow start phase (as shown in Figure 5.3) takes TCP a long time
to complete a short message. In addition, since the web traffic is short but bursty,
these web connections usually experience a higher packet loss rate (see the web
packet loss rates of the Adaptive RED and the drop-tail policies in Table 5.3).

The default initial value of ssthresh is 64K B and the packet size is 1K B in
this paper. Assuming a typical packet dropping probability P;=0.04 when using
the Adaptive RED, the probability of losing one or more packets in the slow start
phase is equal to 1 — (1 — P;)% = 0.9267 (assuming that packets are dropped inde-
pendently). Therefore, most TCP connections have at least one packet dropped in
their first slow start phase. For example, assuming that the 15" packet is dropped
by the Adaptive RED, ssthresh decreases from 64K B to 4K B and the new con-
gestion window cwnd is decreased from 8 KB to 1K B (Tahoe). The situation gets

worse if one packet is dropped earlier (in the first 3 round-trip times). The con-
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Figure 5.3: Congestion window size of TCP Reno: One packet loss in the Slow

Start phase (left) and One packet loss in the Congestion Avoidance phace (right).

gestion window at this moment is so small that the sender may not have enough
data packets to trigger the receiver to generate three duplicate acknowledgements.
If packets cannot be recovered by this fast recovery scheme, TCP has to depend
on the protocol timer for error recovery. The default value of the protocol timer
is usually large and the delivery delay could be increased dramatically by timeout
events. Moreover, the probability of losing two or more packets of the same con-
gestion window in the slow start phase also cannot be ignored. These events lead
to a high probability of TCP timeout and connection reset.

For illustration we conduct simulation of transferring a small web file in a stand
alone and one hop environment. There is no other traffic sharing the bandwidth
and packets are dropped intentionally. Figure 5.4 shows the mean delivery delay
v.s. the dropping probability for file sizes 30K B-210K B, and Table 5.1 lists the

mean and standard deviation of the delay. For example, TCP takes about 4.81s
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to complete transmission of a 90K B file if P; = 0.04; in comparison, in the loss
free case, the file can be delivered in 1.18s. Since most web pages have sizes in
the above range, a web browser will experience a long response time when the

dropping probability of the Adaptive RED is high.

Table 5.1: Delivery delay of small file: mean and standard deviation

Py 0.00 0.02 0.04 0.08

30KB | 0.88(.0006) | 1.60(1.88) | 2.74(4.27) | 5.88(7.79)

90K B || 1.18(.0008) | 2.79(2.39) | 4.81(3.91) | 9.24(6.30)

150K B || 1.34 (0.0008) | 3.51(1.90) | 6.51(4.60) | 13.38(8.87)
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5.3 A Parallel Virtual Queues Structure

To solve the problem discussed in Section II, we propose a parallel virtual queue
structure in the router. The first virtual queue deals with the short-life real-
time traffic (web, UDP). Since dropping these packets cannot effectively alleviate
the congestion level, but severely increases delivery delay, it would be good to
keep them in the queue unless the total buffer (shared with the other queue) has
overflowed. Hence, the queuing policy of the first virtual queue is chosen to be
drop-tail to minimize the packet loss rate. In order to have a short delivery delay for
web browsers and UDP connections, the service rate C(t) is changed dynamically
according to its virtual queue length ¢, (?).

The second virtual queue serves long-life TCP connections such as FTP with
large file sizes, where the Adaptive RED is used. Although the available band-
width of this queue is determined by Cy(t)=C-C|(t), the Adaptive RED scheme is
expected (and will be verified by simulation in Section 5.4 to keep its virtual queue
length ¢o(t) in a desired region for the following reason. When there is a heavy
workload at the drop-tail queue, Cy(t) decreases quickly. FTP receivers experience
slower packet arrival rates and send acknowledgement packets (ACK) back more
slowly. Without increasing the dropping probability at the Adaptive RED queue,
the slower ACK arrival rates from the receivers make FTP senders reduce flow
rates automatically without shrinking their congestion window sizes. On the other
hand, when the congestion level is alleviated, the Adaptive RED queue receives
more bandwidth. Since the congestion window sizes

are still large in the FTP servers, the throughputs of FTP is quickly recovered
by faster arrival rates of ACK packets from the receivers.

With this parallel virtual queue structure (which will be called RED+Tail pol-
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icy in this paper), we can keep the benefits of Adaptive RED such as high (100%)
link utilization. Furthermore, the packet loss rate of the short-life TCP and UDP
connections is greatly reduced by the drop-tail policy and a shared buffer. The
packet loss rate of long-life TCP traffic is also reduced due to the suppressed
bandwidth, larger thresholds (longer RT'T") and more stable average virtual queue
length for the Adaptive RED queue.

We now discuss how to implement the RED+Tail policy. The first problem is
how to split the long-life traffic from other short-life web traffic at the router. To
this end, the router has to know the age or elapsed time of each TCP connection.
Unfortunately, this information is hidden in the TCP header which is not available
to the IP router. However, one may roughly estimate the elapsed time by using

the following approach:

e When a packet arrives with a new source-destination pair which has not been
seen by the router in the past 7' sec, we treat it as a new TCP connection

and identify this connection as a short-life connection;
e Send the new connection packets to the drop-tail queue;
e Set a counter for the number of packets of this connection;

e [f the cumulative packets number is greater than a threshold N, we assume
that the file size is large enough and this TCP connection has already left
its slow start phase. We redirect the subsequent packets of this connection

to the Adaptive RED queue;

e Remove the counter if there is no packet arrival in the last T sec.

Preliminary simulation results show that this approach successfully prevents small

web traffic from entering the RED queue. The probability of false alarm is less
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than 0.02 in our scenario. Since the web traffic has small file sizes and short session
times, there is no harm if the short-life connection packets are misdirected to the

RED queue after time 7'

Adaptive RED:

Prax :\

maxth,  minth,

Router

Figure 5.5: The parallel virtual queue structure for active queue management.

Figure 5.5 shows the RED+Tail parallel queue structure in the router. Recall
that C}(t) and Cy(t) denote the service rates of the drop-tail queue and the Adap-
tive RED queue at time ¢ respectively. In order to allocate bandwidth dynamically
to both queues and assign a desired region of queue length for the Adaptive RED
queue, we define the maximum threshold maxth; and minimum threshold minth;

for i = 1,2. The service rates C(t) and Cy(t) are given by the following algorithm:
o if g3 =0, then Cy(¢) :==0.
o if 0 < ¢; < minthy, then C(t):=Cpmin.
e if minth, < ¢, then C; (t):zmin(C#lthl, Clmaz )-

o Ch(t) :=C — Cy(t),

where C' is the link bandwidth. The variable ¢; denotes the queue length of the
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drop-tail queue. The constant C1,,.. preserves the minimum available bandwidth

C' — Chpnas for the RED queue to prevent FTP connections from timeout.

5.4 Simulation and Comparison

In this section, we compare the RED+Tail scheme with the Adaptive RED on typ-
ical TCP performance metrics. For the Adaptive RED, we use the parameter set-
tings suggested by Floyd et al [87] (o and (3 of the AIMD algorithm). Both schemes
were implemented in the ns2 simulator. The network topology and scenario are as
described in Section II. Table 5.2 lists the parameters for the RED+Tail policy and
the Adaptive RED policy. Note that the virtual queues of the RED+Tail scheme
share the total physical buffer size, i.e., the packets in the drop-tail virtual queue
will not be dropped unless the physical memory is full. The Adaptive RED is
set in a “gentle” mode meaning that the dropping probability between (mazths,

2maxths) is linear in (P4, 1).

Table 5.2: Experiment Settings

Virtual Qu. ¢ || Buffer Size | minth; | maxth; | « 16}

1=1 160KB 2KB 30KB - -

=2 shared 20KB SOKB | 0.01 0.9

Adapt. RED 160KB 20KB | 80KB | 0.01 0.9

The performance for a connection is evaluated by the packet loss rate, delay and
throughput. However, we are more concerned about packet loss rate and delay

for web (short-TCP) and CBR (UDP) connections, and more concerned about
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Table 5.3: Performance Metrics

Policy Loss % | Delay Sec. | Rate KB/s
RED+Tail:FTP 2.747 0.184 209.465
RED+Tai:WEB 1.278 0.114 144.455
RED+Tail:CBR 0.300 0.109 19.867
AdaptRED:FTP 4.149 0.143 217.531
AdaptRED:WEB || 4.514 0.143 137.124
AdaptRED:CBR 3.950 0.141 19.140
DropTail:FTP 1.916 0.349 215.243
DropTail: WEB 4.234 0.340 138.983
DropTail:CBR 1.550 0.342 19.601

throughput for FTP (long-TCP). We replaced the Adaptive RED with RED+Tail
scheme at the router and repeated the experiment of Section II. For comparison,
an experiment with the drop-tail policy was also conducted. The random seed
of the simulator was fixed so that the processes of web requests and file sizes
had the same sample paths in all experiments. Table 5.3 lists the performance
metrics under RED+Tail, the Adaptive RED and the traditional drop-tail scheme
respectively.

Figure 5.6 shows the queue lengths of the RED+Tail scheme, which demon-
strates that the virtual queue length ¢, is quite stable and stays in the desired
region even after the web and CBR traffic begins to share the bandwidth at time
t=100s. The actual dropping probability for the FTP traffic is reduced from 4.15%
to 2.75% by a longer queuing delay (184ms, see Table IIT). This scheme prevents

the over-reaction behavior of RED in the original Adaptive RED case and keeps
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the mean queue length g, in a desired region (Compare to Figure 5.2).

Figure 5.7 shows the packet loss rates of FTP, web and CBR connections under
the Adaptive RED and RED+Tail schemes. We see that RED-+Tail provides great
improvement in packet loss for web and CBR connections. The web packet loss
rate is reduced from 4.51% to 1.28% and CBR packet loss rate is reduced from
3.95% to 0.30%.

Figure 5.8 compares the packet delays. The mean queuing delay of web and
CBR packets in the RED+Tail scheme is shortened at the cost of the FTP pack-
ets delay. The web and CBR packet delay depends on how much bandwidth is
allocated to the drop-tail queue. One can satisfy a mean delay requirement for
the web and CBR connections by properly adjusting the parameter maxth;. For
example, the maxth, of the RED+Tail scheme is set to be 30K bytes so that the
estimate of mean delay at the drop-tail queue is about 80ms. However, the service
rate C] reaches its maximum C',,,, when ¢ > maxth,. The actual mean delay
should be larger than expected. For our simulation the mean delay of web and
CBR traffic is around 110ms (refer to analysis in Section 6.1).

Figures 5.9 and 5.10 show the throughputs of FTP, web and CBR traffic. Both
schemes achieve 100% utilization of the link bandwidth. Due to the bandwidth
allocation scheme in the RED+Tail scheme, FTP has a slightly smaller throughput.
However, the saved bandwidth allows web burst to pass through the bottleneck
link faster.

Figure 5.11 compares the small web file delivery time under different schemes.
Since the RED+Tail policy has a small packet loss rate, its delivery time is almost
equal to the loss free case in Table 5.1. On the other hand, the Adaptive RED has a

loss rate 4.5%, its delivery time is three times longer. Note that the drop-tail queue
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has a similar loss rate (4.2%) as Adaptive RED for web packets. However, the file
delivery time of the drop-tail scheme is about 2.5 times longer than Adaptive
RED’s. This is mainly due to the long queuing delay (0.340sec) of the drop-tail

policy.
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5.5 Dynamic Thresholds for Adaptive RED

The original Adaptive RED dynamically adjust the maximum dropping probability
Ppas (or equivalently, the slope of dropping function) to control the flow rates of
TCP connections and keep the average queue length in a desired region. However,
for those applications with large file sizes, the goodput is more important than the
packet delay. The packet loss rate is a key factor in determining the connection
goodput. Since the minimum and maximum thresholds of the original Adaptive
RED scheme are fixed, the dropping probability of Adaptive RED could be very
high when a congestion happens. This high dropping probability causes frequent
re-transmissions, small average congestion window size and low goodput. In other
words, the congestion in bottleneck router causes another bottleneck at the TCP
sender end. Considering that the Adaptive RED queue is designed for serving time
insensitive connections, we propose to control the TCP flow rate by adjusting its
queuing delay instead of dropping packets.

To maintain a low packet loss rate (and a large average congestion window size
at the TCP sender), the following modified Adaptive RED scheme for the Adaptive
RED queue is proposed, where minth, and maxth, are dynamically adjusted while

D=maxthy — minth, is maintained constant:
e Pick 0 <y <1 (y=0.05 in this paper).
o If Py > Py, then minthy := minthy(1+ 7), maxthy := minthy + D.
o If Py < Ppr, then minthy := minthy(1 — v), mawxthy := minthy + D,

where P; is the average dropping probability obtained by the EWMA algorithm
and (Pp, Py) is the desired region of dropping probability. Note that if we set

Py < Pz, the floating thresholds do not change the current slope of dropping
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probability function dramatically, since the distance between the thresholds is
fixed.

The rationale behind the above scheme is that, by increasing the thresholds
(when P; > Py), the queuing delay is increased and the flow rates are reduced.
Since the average TCP throughput [96] [97] is proportional to ﬁ, we achieve
the same throughput without raising the packet loss rate. Figures 5.12 and 5.13
compare the Adaptive RED schemes with fixed and dynamic thresholds respec-
tively. There are 20 persistent FTP servers sharing a 6Mbps bottleneck link.
Another 20 FTP servers arrive at time 100s and leave at time 300s. It can be
seen that the fixed threshold scheme has a small queue length variation and a
large dropping probability (0.05). In contrast, the dynamic threshold scheme has
a much lower average dropping probability (0.014 with P,=0.01, Py=0.02), but
a higher packet delay. Note that both schemes achieve 100% link utilization so
that each F'TP connection has the same throughput. However, with a much lower
packet loss rate, the dynamic threshold scheme achieves a higher goodput. This
dynamic threshold scheme allows us to consider the trade-off between packet loss
and queuing delay in an Adaptive RED queue.

Dynamically varying the thresholds may also have implications in achieving
throughput fairness among multiple Adaptive RED queues. Since the flow rates of
TCP connections are determined by the corresponding dropping probabilities and
queuing delays at different queues, connections with shorter link propagation delays
and higher throughputs can be suppressed by raising the queue length thresholds

at the router.
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Table 5.4: Performance Metrics:Red+Tail with Dynamic threshold scheme

Policy Loss % | Delay Sec. | Rate KB/s
Dyn. Thres.:FTP 0.899 0.318 209.455
Dyn. Thres.:WEB | 2.306 0.093 144.505
Dyn. Thres.:CBR 0.519 0.091 19.827

The ns2 simulation in Section 5.4 is conducted again with the modified Adap-
tive RED serving the second virtual queue. Parameters (except minthy and
maxthy, which are dynamically adjusted) used are as listed in Table 5.2. The
desired region of dropping probability for the Adaptive RED queue is set to be
(Pr,Py)=(0.005,0.010). Figure 5.14 shows the lengths of both virtual queues and
the dropping probability at the Adaptive RED queue. The dropping probability
stays in the desired region most of the time as expected. Note that the flow rate
of FTP connections are reduced without increasing the queue length ¢o(t) and the
dropping probability dramatically when the bursty web traffic arrives at ¢=100.
This is because that the available bandwidth for FTP connections is reduced and
FTP senders see a longer round-trip time (longer packet delay at ¢o, see Figure
5.16).

Figures 5.15 and 5.16 show the packet losses and delays for FTP, web and
CBR connections respectively. Table 5.4 collects the corresponding performance
metrics. Comparing to Figure 5.7, 5.8 and Table 5.3, the packet loss rate of FTP
connection is reduced from 2.747% to 0.988% at the cost of packet delay (increased
from 0.184s to 0.318s). Since the average queue length at the Adaptive RED queue
is about 80K Bytes instead of 60K Bytes in the fixed threshold scheme, web and
UDP packets see a smaller shared buffer at the drop-tail queue and experience a

higher loss rate from 1.278% to 2.306% and from 0.300% to 0.519%, respectively.
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This situation can be improved by increasing the total buffer size despite that this
approach is general useless or even harmful in a single RED queue or a single drop-
tail queue. On the other hand, the average delays of web and UDP packets are
slightly shorter for a smaller shared buffer space at the drop-tail queue. Finally,
Tables 5.3 and 5.4 also show that the throughputs for the fixed threshold scheme

and the dynamic threshold scheme are almost the same.
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5.6 Summary

In this chapter, we first demonstrated the vulnerability of Adaptive RED scheme
to bursty traffic and then proposed a parallel virtual queue structure to eliminate
unnecessary packet loss. A simple detection algorithm is employed to separate
the short-life and long-life TCP connections into different virtual queues. The
packet loss rate and mean delay can be greatly reduced by dynamic bandwidth
allocation and active queue management with a parallel queue structure. This
scheme combines the advantages of drop-tail and Adaptive RED policies. The
simulation results in the study show that this scheme achieves a shorter mean
delay for real time applications and keeps a high throughput for the best effort
connections as well as greatly reduces the packet loss rate in both queues.

This parallel queue structure also provides more degree of freedom to con-
trol the router by considering different bandwidth allocation policies and dynamic
thresholds for Adaptive RED. Here, the bandwidth allocation policy is a simple
function of the current virtual queue length. However, it is well-known that web
traffic is strongly correlated and has a long range dependency property. Based on
observations of the "recent past” traffic, the future bandwidth demand of the web
traffic was shown to be predictable. In future work, we will consider the optimal

bandwidth allocation policy based on the prediction of congestion level.
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Chapter 6

Performance Analysis of Active
Queue Management in a Parallel

Queue Structure
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Joint analysis of the parallel queue is involved. Instead the queues are analyzed
separately in Section 6.1 and 6.2, respectively. For the drop-tail queue, the empha-
sis is put on packet delay; for the Adaptive RED queue (with dynamic thresholds),

the stability of queue length is the primary concern.

6.1 Drop-Tail Queue with Adaptive Service Rate

First, we investigate the queuing delay of CBR and web traffic at the drop-tail
queue. Note that the service rate Cj(t) of this queue is a function of minthy,
mazxth; and the current length of drop-tail queue ¢(¢) (Figure 6.1). For ease
of presentation, we let minth; = 0 and Ci,,.. = C. When a packet enters the

drop-tail queue at time ¢, it sees an instant queue length ¢;(¢) and a service rate

C4(t) = min( a(t)C

). (6.1)

maxthy’

General analysis of mean packet delay is difficult. However, the dynamic band-
width C(t) is updated periodically in both practice and simulation. If we assume
that the update period is S = %ﬁ” and the packets belonging to the same slot
have uniformly distributed arriving times, there exists a simple lower bound for the
mean packet delay. The impulse at ¢ = 4.5 in Figure 6.2 denotes the new packets
that arrive uniformly in the time period [(: — 1),4S). The absolute value of the

slope indicates the bandwidth C4(iS), which is dependent on ¢ (iS). If ¢ (iS) is

@ (i8)C
maxthi

less than maxthy, C1(iS) =

. It is evident that each packet in this slot has
a constant delay maxth,/C. If ¢(iS) > maxthy, C1(iS) = C and the average
packet delay in this slot is larger than maxth,/C. Although the bound %ﬁ“ is
derived based on special assumptions, it appears to provide a good approximation

to the lower bound of mean packet delay for general cases (refer to Figure 6.3).
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Figure 6.1: Dynamic bandwidth allocation at the drop-tail queue:

C1 (t)=max( Cpmim, min( LUL 1 ).

mazxthi’

The experiment in Section 5.4 is re-conducted with parameters listed in Table
5.2 except maxth, being varied from 10K B to 80K B. Figure 6.3 shows the mean
packet delay of CBR and web traffic at the drop-tail queue and that of FTP
traffic at the Adaptive RED queue as maxth, is varied. Note that the packet
delay at the Adaptive RED queue with fixed thresholds is almost a constant even
when maxth, is decreasing. That is because the Adaptive RED queue has fixed
thresholds (minthsy, maxths) and the average queue length of RED queue is around

Go=(minthy+maxthy)/2. Let O denote the average bandwidth for the first queue.

Then the mean delay at the Adaptive RED queue is around Of%l.
For some real time applications such as video conference and voice, small delay
jitter is very important for the connection quality. Figure 6.3 also shows that the

drop-tail queue has a very small delay variance. Note that the delay variance at

135



a(t)

Aurrival in previous slot

Slope=-C4(iS)

.-

Figure 6.2: Drop-tail queue length with a time varying bandwidth C(t).

the Adaptive RED queue is slightly increased when a smaller value of maxth; at
the drop-tail queue is applied. According to these results, the mean packet delay
requirements at both queues can be satisfied by properly designing the values of

(minthy, maxthy) and (minthy, mazths).
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Figure 6.3: Mean delays (sec.) of CBR and WEB packets at the drop-tail queue
and mean delay of FTP packets at the Adaptive RED queue (with fixed thresholds)
with maxth;= 10, 20,...,.80 (KBytes).
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6.2 Adaptive RED Queue with Dynamic Thresh-

olds

In Chapter 5 we proposed the modified Adaptive RED scheme with dynamic
thresholds in the parallel queue structure for controlling the flow rate of non-
real time applications. The maximum threshold maxth, and minimum threshold
manthy are changed dynamically to keep the packet dropping probability P; within
a desired small region (Pp, Py) at the cost of packet delay variation. In this sec-
tion we analyze issues related to the stability of this virtual queue. For ease of
analysis, it is assumed that the dropping probability P; of the Adaptive RED at
the bottleneck router is fixed so that the average flow rate of each TCP connection
can be approximated by a simple function of its round-trip time. Note that this
assumption is not very restrictive considering the interval (P, Py) is small.
Consider N persistent TCP flows. To simplify analysis, it is assumed that the
service rate Cy of the Adaptive RED queue is constant, Cy = C' — C;, where C;
is the average bandwidth for the drop-tail queue. Define 7}' as the average flow
rate of the k" TCP connection during time slot n. Let d), be the link round-
trip propagation delay of connection k. At the beginning of time slot n the &k
connection sees a round-trip time R}, which is equal to the sum of link propagation
delay and the average queuing delay in the forward direction ¢"/Cs and in the

backward direction ¢; /Cs:

. q
R =d, — 4+ = 6.2
k S c, + Cy’ (6.2)

where ¢" and ¢}’ are the forward queue length and the backward queue length (of

this Adaptive RED queue) at the beginning of time slot n, respectively. We assume

that congestion only happens in the forward direction and the queuing delay ¢;'/C
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in the backward direction is a constant. Hence we can write R} = dj + ¢"/Cs with
d, = dj, + q7 / Cs.

Based on the assumption of fixed dropping probability at the router, each TCP
connection experiences a fixed packet loss rate P; and the corresponding average
congestion window size is assumed to be a constant W. Hence, the average flow

rate T} of the k" TCP connection at slot n is

W
Tj = o + BY (6.3)
k

where E7' is a white Gaussian process with zero mean and variance ¢ modeling
the flow rate perturbation of the & connection at slot n.
Given the arrival rate of each TCP connection, the dynamics of queue length
q" follows the Lindley equation:
N
¢ = min{B,maz(0,q" + () _ Ty — C2)S]}. (6.4)
k=1
where B is the buffer size and S is the duration of one time slot. We list the

parameter definitions as follows:

o T : average flow rate of TCP connection k at time slot n

°
t
=3

: perturbation of flow rate (modeled by a white Gaussian process .4 (0, ?)
o . average congestion window size
e (5 : link bandwidth

e d; : link round-trip propagation delay dj + backward queuing delay g,/Cs

q": forward link queue length at the beginning of time slot n

e S : duration of one time slot
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e B : buffer size

e N : number of TCP connections

Since the queue length of Adaptive RED is mostly operated in a region far
from the boundary, we first ignore the maz and min operations in (6.4) and have

a simplified nonlinear dynamic system:

o= fldM)+E€ (6.5)
where
A WG,
f(@") =q +S{(; m)—cz}, (6.6)
and
N
=83 By (6.7)
k=1

To avoid the trivial case ¢ = 0, we assume that the sum of possible peak rates

of all connections is greater than the link bandwidth at the bottleneck router:

N
k=1

==

> O (6.8)
k
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Figure 6.4: Queue length and TCP throughput (of a single connection) with

Cy=6Mbps, d,=64ms, W=6.02x10* bits. Compare with simulation in Fig.5.12.
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Figure 6.5: Mapping functions and equilibrium
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Figure 6.4 shows the queue length dynamics (and the throughput of a persistent
TCP connection) based on the model (6.5), where the flow rate deviations o =
77021, 128490 (bits/s) for N=20, 40 are measured from the simulation in Chapter
5, respectively. For both N = 20 and N = 40, Figure 6.4 shows consistent steady
state behavior with simulation results in Figure 5.12. The mapping f(-) is plotted
in Figure 6.5 for N = 20 and N = 40.

We first analyze the stability of the equilibrium of the model (6.5) when there
is no flow disturbance., i.e., E = 0. An equilibrium ¢, of ¢"** = f(q™) should

satisfy

Zqu e = (). (6.9)

Now, we show the mapping function f is strictly convex and ¢. is the unique

solution. According to (6.6), we have the first and second derivatives of f:

fg) = 1+SWCQZk1(q+dC)2<1 V0<g<oo (6.10)

"

Note that f, f and f" are continuous and differentiable for all 0 < ¢ < oo.

Lemma 6.2.1 f s strictly convex for all ¢ > 0.
Proof Since d > 0, according to (6.11) we have " > 0 for all 0 < q < oo, which

indicates that f is a strictly convex function.

Equation (6.10) indicates that the slope of f is less than 1 for all 0 < ¢ < oo.

Lemma 6.2.2 ¢, is umque in the region (0, 00).
Proof Since Zk > Gy by assumption, (6.9) has a solution q. in [0,00). g

is located at the intersection of the graph of f with the 45° line (see Figure 6.5).

143



Furthermore, f' < 1 implies there is no other intersection in (g.,0) and shows g

is unique in the region (0,00).

It is well known that ¢, is locally asymptotically stable if |f'(¢.)| < 1. In the

following we give conditions for ¢. to be globally asymptotically stable.

Proposition 6.2.3 If the rate update interval S satisfies

2C5
< =N v
W (i1 d”)

the equilibrium q. is globally asymptotically stable. Furthermore, |¢"—q.| < p"|q° —

S (6.12)

qe| for some p € (0,1) dependent on q¢°.

Proof First we observe that the function f is convex since

) => (QSLCQ?, >0, Vg€ [0,00). (6.13)

Yo
By > f(0)=(> - C2)S, (6.14)
k=1
one can verify that f maps [0, By] to [0, By] due to convexity of f and
. we
(@=1-8Y ——2 <1, Yge0,00). 6.15
f'(a) kZ: PER AL ¢ € [0, 00) (6.15)

When restricted to [0, Bo], f'(q) < p1 with p; € (0,1). If (6.12) is satisfied, f'(q) >
—1,Vq € [0,00], and f'(q) > —pa, Yq € [0, By|, with py € (0,1).
Hence [f'(q)| < p 2 max(p, p2) < 1 Vg € [0, By], which implies that f is a

contraction mapping on [0, By]. By the Contraction Mapping Principle [98],

1" — q.| < p"|¢° — g, if ¢° €0, By). (6.16)
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Since By can be arbitrarily large (as long as By < 00), ¢, is globally asymptotically

stable. Note that the contraction constant p depends on By and thus on ¢°. [
From Proposition 6.2.3, when rate update is frequent enough, the equilibrium

will be asymptotically stable (the equilibrium itself does not depend on S). An-

other sufficient condition for asymptotic stability is the following:

Proposition 6.2.4 If f'(q.) > 0, then q. is a globally asymptotically stable.
Proof As shown in the proof of Lemma 6.2.1, f is strictly convez. If f'(q.) >0,

graphical analysis revels that

n+1

1" = qe| <1¢" — qel,

where the equality holds if and only if ¢" = q.. The claim thus follows. []

For the homogeneous case dj, = d, we have g. = NW —dC5,. And the condition
f'(ge) > 0isequivalent to S < % = ¢./Co+d. In other words, q. is asymptotically
stable if the rate update interval S is no larger than the round-trip time (RTT).
Figure 6.10 shows the mapping f and the equilibrium g, for different S. Figure
6.7 shows the queue length dynamics (noise is included) for S=RTT and 2RTT,
respectively. We can see that in the case S=RT'T, the queue length stays around
ge with small variation, while in the case S=2RTT, the queue length dynamics is

much more chaotic.

For the heterogeneous case, a sufficient condition S < (% - (Z%_;))Q)_l for

stability can be derived as follows:

Cy _ N(N-1) )71

Proposition 6.2.5 For any dj, > 0, the system is stable if S < (37 — (ot D)

Proof According to Proposition 6.2.4, we want to find the condition of S so that
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f’(qe) > 0 is satisfied. Let Dy = dpCy and G := W Cy, from (6.9) we have:

1 Cy
= _=. 6.17
Z +D, G (6.17)

N
1 e

from (6.10), we want to show f (q.) > 0 by showing that

N
Z;<L (6.18)
(qe_'_Dk)z - SG° .

Substitute (6.17) in (6.18), we have

C2 1 1 1
—= - < —. 6.19
G2 ;qe—FDiqe—l—Dj_SG ( )

Since qo > 0 and Dy, > 0, a sufficient condition of the above inequality is:

2 N(N-1) 1

DR S p— 6.20
&'t Dy)? = 5 (6:20)
Cy; N(N-1),,
e s< (2o 2Ty 6.21
_(W (qe+Dm)2) (6.21)
where D,, := min D;,. Hence S < (% — (Z%_;;Q)’l is a sufficient condition for

stability. J

Similar to the homogeneous case, if the rate update interval S is short enough,

we can guarantee the stability in the heterogeneous case.
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Next we consider the Lindley equation with finite random perturbation £" =

S Z]kV=1 El?:
¢ £ g(q",€") = min{ B, max[0, f(¢") + £"]} (6.22)

Note that since { E}'} is white and stationary, so is {€"}. It turns out that stability
of the equilibrium of the deterministic system ¢"*' = f(¢") is closely related to
stochastic stability of the system (6.22).

Define a compact set X:=[0, B] and the transformation ¢g: X x W — X of (6.22)

is called regular stochastic dynamic system in [99], if the following assumptions

hold.
(a) The random vectors £9, £, ..., have value in W and have the same distribution.

(b) g is defined on the subset X xW of RixR*. The set X C R is closed and
W C R* is Borel measurable. For every fixed y€W the function g(z,y) is

continuous in x and for every fixed x€X it is measurable in y.

(c) The initial random vector z° has initial value in Xand the vectors z°, £%, &% ...,

are independent.

Definition 6.2.6 [99] (Foias operator) Let a function g:X x W satisfies condi-
tion (b) and a probabilistic measure (supported on W) be given. Then the operator

P: My — My given by

Pu(4) = /X { /W 14(g (e y)v(dy) bl de) (6.23)

will be called the Foias operator corresponding to the dynamic system. Mgy,

denotes the subspace of finite measures. [
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Theorem 6.2.7 [99] Krylov-Bogolubov Theorem Let P be the Faias operator
to a regular stochastic dynamical system. Assume that there is a puy € My having

the following property. For every e > 0 there is a bounded set B € B(X) such that
pn(B) = P'ug(B) >1—¢ forn=0,1,2,... (6.24)
Then P has an invariant distribution. U

Proposition 6.2.8 The stochastic system (6.22) admits an invariant probability
measure p* for the queue length q". Furthermore, if the condition (6.12) on Propo-
sition 6.2.3 is satisfied, this system is weakly asymptotically stable, i.e., the queue
length distribution p™ for q" converges to p* weakly.

Sketch of Proof. Since f is continuous and {"} is identically and independently
distributed, the system (6.22) is a regular stochastic dynamic system.

Since [0, B] is compact, the system admits an invariant probability measure p*
by the Krylov-Bogolubov Theorem. When condition (6.12) is satisfied, g is a

contraction mapping with respect to its first argument, i.e.,

l9(z,8) — g(y,6)| < plz —yl, Va,y €0, B], V¢, (6.25)

where p € (0,1). Hence the system is weakly asymptotically stable by Theorem
12.6.1 of [99]. O

The invariant probability measure p* has probability masses at ¢ = 0 and
g = B, and has probability density on (0, B). An approximation to u* can be
obtained by numerically advancing the probability distribution p™ for the queue
length ¢". We have discretized the queue length and consequently obtained a
Markov chain for the dynamics of the queue length distribution.

Let the packet size have a fixed length L (bits), z™":=ceil(q" /L) be the number

of packets in the queue at time n and 7" = [Pr(z" = 0), ..., Pr(z" = B)] denote

150



the corresponding probability vector. We have

"t =", (6.26)

=77, (6.27)
where 7% = lim,,_,, 7" is the steady state distribution and
T(i,7) == Priz""! = j|2" =i (6.28)

is the corresponding transition matrix of the Markov chain. The conditional prob-

ability Pr[z"t! = j|z" = i] is obtained as
Pr[j < (min{B,max[0, f(iL) +&]})/L < (j + 1)]. (6.29)

On the other hand, when the buffer size B is far greater than the equilibrium
queue length and the perturbation magnitude is small, the transformation g(g, &)

can be linearized around the equilibrium point ¢.. Let Q" 2 q" — q.. Then

Q2 f(g)Qr +¢m (6.30)

Since {£"} is white Gaussian process with zero mean and variance NSo?, {Q"}

will be a Gaussian process with zero mean and normalized variance

No?

VarlQ' /S = TR

(6.31)

From (6.31) the normalized queue length variation will be minimal if f'(g.) = 0,
which corresponds to S = RT'T for the homogeneous case.

Figure 6.8 and 6.9 show the queue length distributions obtained through empir-
ical estimation from ns2 simulation, numerical computation based on (6.26), and

linear approximation based on (6.31), repectively. Three distributions agree well,
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which verifies that our nonlinear model (6.22) captures the queue length dynamics
under the Adaptive RED scheme with dynamic thresholds.
Figure 6.10 6.11 and 6.12 illustrate the Mapping functions, equilibrium points,

queue length dynamics from N = 20, 40 to 8.
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6.3 Summary

In Chapter 5 and 6 we have first demonstrated the vulnerability of Adaptive RED
scheme to bursty web traffic, and then proposed a parallel virtual queue structure
for active queue management at the router. A simple detection algorithm is em-
ployed to separate the short-life and long-life TCP connections into different virtual
queues. The packet loss rate and mean delay for short-life traffic can be greatly
reduced by dynamic bandwidth allocation with this parallel queue structure. This
scheme combines the advantages of drop-tail and Adaptive RED policies. The
simulation results in the study show that this scheme achieves a shorter mean
delay for real time applications and keeps a high throughput for the best effort
connections as well as greatly reduces the packet loss rate in both queues.

This parallel virtual queue structure also offers more degrees of freedom for
AQM due to its flexibility in accommodating variants of the Adaptive RED scheme
and different dynamic bandwidth allocation algorithms. We have explored a mod-
ified Adaptive RED scheme with sliding queue length thresholds. This scheme
is able to maintain the dropping probability within a small interval and improve
the goodput of non-real time connections. The queue length variation under this
policy has been analyzed and conditions for its stability have been given. The
dynamic threshold Adaptive RED might also be useful for achieving throughput
fairness among multiple RED queues.

As to the dynamic bandwidth allocation policy for the drop-tail queue, we only
used the current virtual queue length information. However, it is well-known that
web traffic is strongly correlated and has a long range dependency property. Based
on observations of the “recent past” traffic, the future bandwidth demand of the

web traffic is predictable. In future work optimal bandwidth allocation based on
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prediction of the congestion level will be explored.
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Chapter 7

Conclusions

In this dissertation, we first reviewed the theory of wavelet analysis for network
traffic. We also discussed the monofractal and multifractal behaviors of Internet
traffic at large and small time scales. In order to capture these mono/multi-fractal
properties at all time scales, we proposed a multilevel ON/OFF model for the
Internet traffic and developed an algorithm to estimate the model parameters from
a real trace. The idea of this model is to imitate the TCP packet arrival pattern at
the lower level and the connection arrival pattern at the upper level. A synthetic
traffic was generated by the proposed model with the parameters estimated from
a real trace. The wavelet analysis showed that this new model can successfully
capture the statistical properties in second order (Logscale diagram) and higher
orders (multifractal spectrum). The simulation results also showed that these two
traffic share the same queuing behavior.

Since the Logscale diagram carries important statistical properties of the traf-
fic at all time scales, we developed an approximation of Logscale diagram of the
Internet traffic. The goal is to compute the Logscale diagram directly from the

network parameters of the model instead of analyzing a long trace. Given the
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Logscale diagram of the input traffic, one can immediately transfer the Logscale
diagram to the traffic workload distribution at all time scales and predict the cor-
responding queuing behavior and network performance. Furthermore, our analysis
results show that the queuing behavior with a small buffer size is dominated by the
traffic behaviors at small time scales. It indicates that the traditional monofractal
(self-similar) traffic model is not suitable for predicting the performance in real
networks.

For some real time applications such as Constant Bit Rate (CBR) connections
are sensitive to the mean and variance of packet delay. By applying our predicted
results of queue length distribution and the properties of wavelet analysis, we
developed a fast algorithm to estimate the mean and variance of packet delay
in real time. This tool could help the network resource providers decide how
much bandwidth should be allocated to guarantee the quality of service for certain
applications.

In the second part of this thesis, we are focusing on the policy of buffer manage-
ment. Many Active Queue management schemes such as RED were proposed to
improve the TCP throughput and link utilization. The basic assumption of these
policies is assuming that the TCP is operated in the Congestion Avoidance phase.
However, the current Internet traffic is dominated by web traffic and most web
connections are operated in the slow start phase. We indicated that these AQM
policies implemented in a shared queue is not suitable for the current Internet traf-
fic. The simulation results demonstrated that the web traffic severely degrades the
performance of those AQM schemes. Thus, we proposed a parallel queue structure
for a better solution of buffer management. Since TCP connection is untamed in

the slow start phase, we invented a detection algorithm to prevent the untamed
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TCP from entering into the AQM queue. In addition, the parallel structure also
gives us more freedom to control the AQM scheme. A typical AQM scheme such
as RED relies on dropping packets actively to control the TCP flow rate. This
method wastes bandwidth resources and caused unnecessary re-transmissions. For
non-real time application such as transmitting a large data file by FTP, packet
delay is not an important issue. Under this structure, we have the freedom to
control the flow rate of non-real time application by increasing the queuing delay

instead of dropping the packet.
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Appendix A

Appendix

A.0.1

Proposition:3.3.3

tim 2 _pviB.
e Y (t)

Proof: Since there are N independent user connections, we let N = 1 without loss

of generality.

Y(?)

—~

1

mBﬁm@mwm

t=o0 f(f Uk (u)du

BMHZZJﬁJWWWWW“+ﬁfWWWWW“
tmeo NN U(uw)du+ [ Ur(u)du

=1 Jt;_
B i 5 Vi(wdu+ [} Vi(u)du
1m
=00 Zzn:l(tz - ti71> +t— tm
5 o Vi
t'—o0 t

ETy
ETy + ETy

BE[V] (A1)
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where t;_1 and t; are the beginning and end points of the ON state, t,, is the

mazximal end point which is less than t, and V'(t) is a shifted version of V (t).

A.0.2

Proposition 3.3.6:

Without loss of generality, let A =1 and 02 = EG? = 1. From (2.32),

Re(k) = EGoEG
= E(By(1) — By(0)(Buy(K +1) — By(k))
= Cov(By(1)By(k+1)) — Cov(By(1)By(k))

1
= SR+ 1P = 20k 4 |k — 1) (A.2)
and

lim Rg(/f)

k—o0

1
= Jim (1P = 2R PH [ — 1P

1 1 1
—  lim SK2H2R2(11 - Z2H 9 |1 — Z2H
Jim BT AL+ 1= )]

Note that

2H - 2H
lim (1+x) 2+ (1—-2)
z—0 x2
2H (1 2H—1_2H 1 — 2H—-1

o 2H( ) (1-2)

z—0 2x

L 2H(2H = 1)(1+ )12 4 2H (2H — 1)(1 - 2)1
= 1m

z—0 2

= 2H(2H —1)
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A.0.3

Show equations (4.54) and (4.55) with a Lognormal distribution f4(x):

2

fa(z) == ! exp[—w], x >0 (A.3)

oV 2T 202

and

erfe(z) = — /OO e dt (A.4)

E[(A—d)] = Lm@—dﬁwﬂx

where

/d zf(x)dr = a\/ﬂ exp(——— )dx

= a\/ﬂ /ﬂ exp(— )eXp( )\/_UGXP(\/_UZJ)

_exp(p+ 02/2) 2 o
= 7 o (=Y = V20y + ) dy

o2
exp(p +0°/2) /°° o\
= exp(—(y — —=)°)d

7 iy p(=ly = Z5))dy
_ exp(p+0°/2) % — gt
\/7_T Ind—p 0'26
ehto?/2 Ind — p — o?

= 5 erfe( s

oVv2

) (A.6)

A=Y = [ - dtiwi
— /doo 22 f(x)dr — 2d /doo vf(x)dr +d*F(x). (A7)
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where

/doo 2 f(x)dx

2u+20 o] th
e " dat
\/’7_'(' lnd;,u,;2o'2
2ut207 Ind — pu — 207
‘ erfe( e ) (A.8)
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