

ABSTRACT

Title of Document: PARALLELIZATION OF NON-RIGID IMAGE

REGISTRATION

 Mathew Philip, Master of Science, 2008

Directed By: Professor Raj Shekhar,

Dept of Diagnostic Radiology (University of
Maryland, Baltimore) and Dept of Electrical and
Computer Engineering

Non-rigid image registration finds use in a wide range of medical applications

ranging from diagnostics to minimally invasive image-guided interventions.

Automatic non-rigid image registration algorithms are computationally intensive in

that they can take hours to register two images. Although hierarchical volume

subdivision-based algorithms are inherently faster than other non-rigid registration

algorithms, they can still take a long time to register two images. We show a parallel

implementation of one such previously reported and well tested algorithm on a cluster

of thirty two processors which reduces the registration time from hours to a few

minutes.

Mutual information (MI) is one of the most commonly used image similarity

measures used in medical image registration and also in the mentioned algorithm. In

addition to parallel implementation, we propose a new concept based on bit-slicing to

accelerate computation of MI on the cluster and, more generally, on any parallel

computing platform such as the Graphics processor units (GPUs). GPUs are

becoming increasingly common for general purpose computing in the area of medical

imaging as they can execute algorithms faster by leveraging the parallel processing

power they offer. However, the standard implementation of MI does not map well to

the GPU architecture, leading earlier investigators to compute only an inexact version

of MI on the GPU to achieve speedup. The bit-slicing technique we have proposed

enables us to demonstrate an exact implementation of MI on the GPU without

adversely affecting the speedup.

PARALLELIZATION OF NON-RIGID IMAGE REGISTRATION

By

Mathew Philip

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of
Master of Science

2008

Advisory Committee:
Professor Raj Shekhar, Chair
Professor Shuvra S. Bhattacharyya
Professor Peter Petrov

© Copyright by
Mathew Philip

2008

ii

Acknowledgements

First and foremost, I offer my utmost gratitude to my advisor, Dr. Raj Shekhar

without whose supervision, patient direction and technical expertise this thesis would

not have been possible., Our many insightful discussions and his constructive

feedback at various stages, have been instrumental in shaping this work on to

completion. I would also like to thank Dr. Shuvra Bhattacharyya and Dr. Peter Petrov

for serving on my thesis committee amidst their busy schedules.

I am also grateful to my colleagues at the Imaging Technologies Laboratory,

Baltimore who created a stimulating and cooperative working atmosphere. In

particular, I greatly appreciate Dr. William Plishker's invaluable suggestions and

assistance on various aspects of my research.

Finally, I am forever indebted to my wife, Pam for her support and encouragement at

all times. I also am grateful to my parents, Philip and Mercy who have always guided

me and directed my steps. On a different note, many people have been part of my

graduate education and I take this opportunity, to thank them all.

iii

 Table of Contents

Ackowledgements ...ii
Table of Contents ...iii
List of Tables..iv
List of Figures ...v
Chapter 1: Introduction and Motivation ...1

Introduction ...1
Contribution of this Thesis...2
Outline of Thesis ...3

Chapter 2: Background on Image Registration ...5
Image Registration...5
Rigid Registration..9
Non-Rigid Registration..11
Hierarchical Subvolume Division based Non-rigid Registration...........................13

Chapter 3: Parallelization of Hierarchical Volume Subdivision based Registration ..15
Introduction ...15
Hardware Setup ...15
Implementation..16
Results...20

Chapter 4: MI Calculation from Mutual Histogram based on Bit-Slicing26
Introduction ...26
Implementation..29
Results...35

Chapter 5: MI Calculation on GPU using Bit-Slicing...41
Introduction ...41
GPU Architetcure ..42
Implementation..45
Results...54

Chapter 6: Conclusions...56
Bibliography..58

iv

 List of Tables

Table 3.1 Execution time, speed up and accuracy for registering four CT image using
four subdivision levels of sub-volume division based non rigid registration………. 23

Table 3.2 Accuracy, execution time and speedup for different configurations of the
cluster for registering CT images of the abdomen for four subdivision levels of sub-
volume division based non rigid registration………………………………………...24

Table 3.3 Break up of execution time for different configurations of the cluster for
registering two 256x256x256 CT images of the abdomen using four subdivision
levels of sub-volume division based non rigid registration……………………….....25

Table 3.4 Computation time for processors that take the maximum time and
processors that take the minimum time given for different levels and different
configurations of the cluster. Communication time is also shown…………………..26

Table 3.5 Breakup of computation time in rigid registration on various configurations
of the cluster (All run on 8 nodes)…………………………………………………...26

Table 4.1 Execution time for rigid registration of three CT images shown for different
configurations of the cluster with and without bit-slicing algorithm………………...38

Table 4.2 Accuracy of rigid registration using bit-slicing algorithm as compared to
the single CPU version. ………………………………..…………………………….36

Table 4.3 Histogram computation time and the associated communication time for
different cluster configurations………………………………………………….......42

Table 5.1 Comparison of CPU and GPU execution times for rigid registration using
mutual information computed from mutual histogram having floating point
counters………………………………………………………………………………57

Table 5.2 indicates that registration using the bit-slicing algorithm for computing the
mutual information on the GPU recovers the same transformation parameters as the
rigid registration process on a single processor……………………………………...57

v

 List of Figures

Figure 2.1 Mutual Histogram at different angles of rotation when registering an MR
image with itself ..8

Figure 2.2 A flow diagram showing the process of rigid registration........................10

Figure 2.3 PV interpolation shown for 2D images..11

Figure 2.4 Computation of probability density from the mutual histogram...............12

Figure 2.5 Hierarchical subvolume division based non rigid registration..................16

Figure 3.1 Eight node cluster set-up...19

Figure 3.2 Rigid part parallelization of the hierarchical subvolume based algorithm.21

Figure 3.3 Average speedup for different configurations of the cluster.....................23

Figure 3.4 Overlay of CT image ..24

Figure 4.1 Mutual Histogram on each processor after processing using the bit-slicing
algorithm on a cluster with four processors..31

Figure 4.2 Execution time for different configurations of the cluster with and without
the bit-slicing algorithm for image set 1...38

Figure 4.3 Execution time for different configurations of the cluster with and without
the bit-slicing algorithm for image set 3...38

Figure 4.4 Histogram of the reference image ...39

Figure 4.5 Distribution of voxels on 8 processors...39

Figure 4.6 Distribution of voxels on 16 processors...39

Figure 4.7 Distribution of voxels on 32 processors...40

Figure 5.1 Tesla Architecture...45

Figure 5.2 CUDA Programming Model ...47

Figure 5.3 Mutual Histogram divided between four blocks49

Figure 5.4 Mutual Histogram assigned to a block being split53

 1

 Chapter 1: Introduction and Motivation

Image Registration is the process of geometrically aligning two images. One of the

images known as the reference image is kept unchanged, while the second image,

known as the floating image, is allowed to deform to match the reference image.

The floating image is then re-sampled on the grid of the reference image, which

allows us to overlay or subtract the two, depending on the specific application needs.

This is extremely useful in many areas in the medical field. For example, the field of

diagnostic medicine benefits from a new type of image created from complementary

information of images acquired using different technologies (modalities). Another

application area is the field of image-guided interventions, in which pre-operative

images often need to be registered with intra-operative images. Image registration can

be classified either as rigid or non-rigid. In rigid registration, the floating image is

only allowed to translate and rotate while in non-rigid registration we allow the

floating image to deform in a more complex manner.

Many applications need non-rigid registration as rigid registration is insufficient to

recover misalignments between two images. However non-rigid registration is

computationally very intensive and can take many hours to register two images. One

technique for non-rigid registration is the FFD (free form deformation) based

approach, which takes approximately 12 hours to align two CT images of the liver

having a size of 512 x 512 x 295 on a single 1-GHz Pentium III system [7]. Such a

long execution time prevents the use of such an algorithm in many practical

 2

applications. Parallel processing power offered by cluster computing has been used

previously to address this issue [7]. In the paper by Ino et al. [7], a cluster of 128

processors is used to parallelize FFD-based registration to reduce the computation

time to ten minutes. However, non-rigid registration based on hierarchical volume

subdivision is inherently faster than other non-rigid registration algorithms [16]. By

parallelizing this type of non-rigid registration algorithm, we are able to perform

accurate registration with far less hardware and also have the ability to scale up the

hardware to reduce processing time even further.

Contributions of this Thesis

We use cluster computing to parallelize a non-rigid registration algorithm based on

hierarchical volume subdivision which has previously been reported by Walime and

Shekhar[4]. We are able to reduce processing time from 2 hours for registering CT

images of size 256 x 256 x 256 to an acceptable 8 min on a cluster of 32 processors.

Mutual Information (MI) is a widely used similarity metric in image registration and

is also used in the above mentioned algorithm. Mutual information based registration

is an iterative process which tries to maximize the similarity metric (MI). To compute

mutual information the probability densities of the intensities of the two images need

to be estimated. There are two main techniques for estimating the probability

densities for computing mutual information The parzen window approach is

computationally more demanding than the mutual histogram approach. The mutual

histogram for estimating probabilities for image registration has been shown to be

accurate [1]. The mutual histogram approach is also used in the volume subdivision

based non-rigid registration algorithm.

 3

We also demonstrate a new technique based on bit-slicing for computing mutual

information from the mutual histogram on a parallel computing platform. In contrast

to the most common way of constructing the mutual histogram by assigning portions

of the reference image to different compute cores on a parallel platform, we divide

the reference image based on its histogram. In this approach the portion of the image

assigned to a compute core on the parallel platform depends on the area of the

histogram assigned to it. We exhibit how this technique further reduces processing

time on the cluster and also how this algorithm maps on to a graphics processor unit

(GPU). GPUs are becoming increasingly widespread for use in general purpose

computing as they are able to accelerate algorithms with the parallel computing

power they offer. While registration algorithms have been implemented on GPUs

with promising results, exact and efficient MI computation from mutual histogram

has not been possible. Previous investigators have not been able to perform a full MI

implementation without sacrificing speedup [11] as they were not able to utilize the

limited shared memory size of the GPU. By using the bit-slicing technique we show

how we are able to work around the shared memory size and also parallelize the

computations involved in computing MI without an additional communication

overhead.

Outline of Thesis

This thesis is structured in the following manner. Chapter 2 gives a brief background

on image registration and the different techniques commonly used in image

 4

registration. In the same chapter we introduce mutual information which is a widely

used similarity metric for image registration. We also go on to present the hierarchical

subvolume based non rigid registration algorithm which we have used in the work we

present in this thesis.

Chapter 3 covers the cluster implementation of the hierarchical subvolume based non

rigid registration algorithm. We also present results for this implementation.

Chapter 4 introduces the bit-slicing algorithm for computing mutual information on a

parallel platform. We present details of the implementation of this algorithm on a

cluster followed by the associated results.

Chapter 5 describes how the bit-slicing algorithm allows us to map computation of

mutual information on to a GPU. Results for this implementation are also presented in

this chapter.

Chapter 6 is a discussion of the work we present in this thesis. We also cite areas for

future work in this field.

 5

Chapter 2: Background on Image Registration

Image Registration

There are several different techniques for image registration [1]. Landmark-based

methods use corresponding landmarks in the two images to align them. Surface-based

techniques use delineation of corresponding surfaces in both images. Landmark-based

techniques are labor intensive if the landmarks are identified manually and also

dependent on how accurately the landmarks are identified. If done automatically, the

accuracy of registration will depend on how well corresponding landmarks are

identified. Surface-based methods will also depend on how well the surfaces are

extracted and this will be highly data dependent. The technique we use comes under

voxel-based registration methods, which optimize a function measuring the similarity

of geometrically corresponding voxels pairs. This technique is not influenced by

segmentation errors. Algorithms which have been proposed for voxel-based

registration methods have used metrics like absolute difference between image

intensities of regions of interest. However, this is not suitable for multimodality

applications as absolute difference assumes that there is a linear dependence between

image intensities of the two images which may not be true. Other algorithms in this

genre have proposed cross correlation of intensities in corresponding regions. This

also assumes some form of linear relationship between intensities of the two images.

Mutual Information-based approach was first suggested by Collignon et al. [15] and

Wells, et al. [2]. The advantage with this approach is that no assumptions are made

regarding the dependence of intensities of the two images. Mutual Information based

 6

registration has been shown to align images accurately and robustly [18]. Mutual

information is a statistical concept used to measure the dependence between two

random variables.

I(X,Y) = H(X) – H(X/Y) (1)

 = H(Y) – H(Y/X) (2)

 = H(X) + H(Y) – H(X,Y) (3)

Intuitively, entropy H(X) is regarded as a measure of uncertainty which is also a

measure of the amount of information of random variable X. H(X|Y) is a measure of

the amount of uncertainty remaining in X after Y is known. The right side of equation

1 can be read as "the amount of uncertainty in X, minus the amount of uncertainty in

X which remains after Y is known," which is equivalent to "the amount of uncertainty

in X which is removed by knowing Y." This corroborates the intuitive meaning of

mutual information as the amount of information (that is, reduction in uncertainty)

that knowing either variable provides about each other.

Image registration uses mutual information to measure the statistical dependence of

intensities of corresponding voxels in the floating and reference images. We consider

intensities from the reference and floating images as random variables. The

registration process searches through different candidate transforms to find the best

transform. At each candidate transform, the MI value is computed by looking at

intensities in corresponding locations to find joint probability density of intensities

and also the probability density of the intensity of each image. As discussed the

mutual information value indicates the reduction in uncertainty in the distribution of

 7

one random variable (intensity of reference image in this case) by knowledge of the

intensity distribution of the floating image. Thus the candidate transform which

reduces the uncertainty the most or, in other words, that maximizes mutual

information is the best transform as that transform indicates when the two random

variables are the most dependent. In order to compute probability densities required

for mutual information calculation, Wells et al. [2] used the Parzen window approach.

The probability density and joint probability density of intensities of the two images

is estimated for each candidate transformation using Parzen windows. However this

approach is computationally intensive. Another method that has been used widely is

the mutual histogram method of estimating probabilities. This approach has been

shown to give accurate registration results by Maes et al. [1].

The mutual histogram is computed by looking at corresponding voxels in the two

images to be registered. The intensities of the voxels in corresponding locations are

used to index a 2D array and increment the value at that location by 1. This is

repeated for all corresponding voxels in the two images. The intensity of one of the

images is used to index one axis of the mutual histogram while intensity of the

corresponding voxel is used to index the other axis of the mutual histogram. Fig 2.1

shows the mutual histogram for registering a magnetic resonance (MR) image with

itself. When the image is aligned with itself then corresponding voxels have the same

intensity and the mutual histogram is always incremented along a line. This is

illustrated in the first panel of Fig. 2.1. The joint histogram of two images disperses

with mis-registration.

 8

 0 Degrees 2 Degrees 5 Degrees 10 Degrees

Fig 2.1 Mutual Histogram at different angles of rotation when registering an MR
image with itself (Courtesy [3])

When the images are registered then there is clustering in the mutual histogram. Joint

entropy is a measure of the uncertainty or dispersion in the mutual histogram. Thus

when the images are registered there is more clustering and thus joint entropy is

minimal. During the registration process, the joint histogram is created from the

overlapping sections of the two images. If we use only the joint entropy as the metric

during registration then the mutual histogram could show maximal clustering when

only the background of the two images overlap. This will result in a very small value

for joint entropy which will give wrong results during registration. However, mutual

information incorporates entropy of the two images in the metric and when the

images have just the background in them, the individual entropies are low and hence

maximization of MI is a more accurate metric to use in registration.

However mutual information can actually increase with increasing misregistration.

This can occur when the relative areas of object and background even out and the

sum of the marginal entropies increases, faster than the joint entropy. We use a

 9

variant of mutual information, called normalized mutual information (NMI), for

registration which has been shown to be even more overlap invariant than MI [21].

NMI can be calculated using the following formula.

),(
)()(),(

BAH
BHAHBANMI 



Rigid Registration

Rigid registration allows only rotations and translations of the floating image during

the registration process. Fig 2.2 illustrates the process of rigid registration. The

registration process is iterative. Different candidate transforms are applied to

reference image. For each candidate transform the metric (mutual information) is

evaluated. The iterative process stops when mutual information function reaches

maximum. The optimizer block in Fig 2.2 ensures that the search space of the applied

transform is stepped through in an optimal fashion. From Fig 2.2 we see that the

transform is applied on the reference image. This is to avoid the problem of holes

when re-sampling the floating image on the reference image. Once the transform that

maximizes MI is computed, the floating image has to be resampled on to the

reference grid. Since we know the transformation that takes us from reference image

to floating image the intensity at the matching location in floating image space can be

determined for each grid location of the reference image. This can be used to

resample the floating image on to the reference image grid. If the transformed point in

the floating image does not lie on a grid position the algorithm uses trilinear

interpolation involving intensities of surrounding voxels. If the transformation had

been computed for the floating image, then when we re-sample onto the reference

 10

grid, there could be possible grid locations that we miss resulting in holes in the re-

sampled image.

Fig 2.2 A flow diagram showing the process of rigid registration.

Fig 2.2 also indicates an interpolation stage before mutual information is calculated.

This is because mutual information is calculated from the mutual histogram which is

computed by looking at corresponding voxel locations for each candidate transform

as has been described earlier. A transform applied on the reference image may result

in a corresponding location in the floating image which is not on a grid position,

warranting some form of interpolation. We use a special form of interpolation, called

PV interpolation, for computing the mutual histogram as it has been shown [1] to give

a smooth registration function which is necessary during optimization to ensure

 Transform Interpolation Optimizer

 Metric (MI)

Reference
Image

Floating
Image

Is MI
max?

No

Yes

Resample floating
image

 11

accurate registration. PV interpolation ensures sub-voxel accuracy. PV interpolation

is performed as follows: We update the mutual histogram in a weighted manner by

indexing the mutual histogram with joint intensities obtained by the reference image

voxel lying in between the grid location of the floating image and the voxels at the

nearest eight corners of the floating image.

Fig 2.3 PV interpolation on a 2D image (Courtesy [1])

Once the mutual histogram is computed for each candidate transform the MI value is

calculated from the joint entropy and the entropy of each image. The mutual

histogram is used to compute the entropy from the probability density of the

intensities of the two images. The joint probability density is calculated by

normalizing each value in the mutual histogram. This is illustrated in Fig 2.4.

Fig 2.4 also illustrates that the probability density of image A (reference image) is

calculated by summing the values in the mutual histogram along the rows followed

by normalization. Similarly the probability density of image B is computed by

summing the values in the mutual histogram by summing along the columns followed

 12

by normalization. Once the probability densities are computed the entropies are

calculated from equations 5, 6, 7. Finally MI can be computed from equation 4.

),()()(BAHBHAHMI  (4)

 BAH , = -  




255

0

255

0
)),(log(),(j

j
i

jipjip (5)

)(log)()(
255

0
ipipAH A

i
A



 (6)

 BH = -)(log)(
255

0

jpjp B
j

B


 (7)





255

0

),()(
i

B Total
jihjp





255

0

),()(
j

A Total
jihip

Total
jihjip),(),(

Fig 2.5 An illustration of how to compute probability density form the mutual
histogram

Non-rigid Registration

Non-rigid registration allows for the floating image to deform in a complex manner.

While rigid registration limited the deformation to rotations and translations, non-

rigid registration allows many more degrees of freedom. One popular way of

 13

modeling non-rigid registration is by the using free form deformation (FFD) [5]. In

this approach the image is allowed to deform by manipulating a mesh of control

points. The degree of non-rigid deformation that can be modeled is dependent on the

resolution of this mesh. This form of non-rigid registration is also an iterative process.

The mesh of control points are allowed to deform and the resulting deformed image is

compared with the reference image to evaluate the degree of similarity between the

two. To recover finer misalignments the mesh of control points need to be at a high

resolution. However, the computational demand of the algorithm increases as there

are more control points to optimize to compare the two images.

Another class of non-rigid registration algorithms models the misalignment between

the two images by multiple local rigid body registrations. These algorithms generally

subdivide the image into smaller subvolumes and perform independent rigid

registration on each subvolume. To recover finer misalignments the registered

subvolumes are divided further and registered. A smoothly varying transformation

field is generated from the independent subvolume registration results by

interpolation to create the deformed image. Image subdivision based algorithms for

non-rigid registration are inherently fasters than other non-rigid registration

algorithms [5]. In this thesis we worked on the non-rigid registration algorithm of this

class proposed by Walimbe and Shekhar[4]. We describe this algorithm in the next

section.

 14

 Hierarchical Volume Subdivision based Non Rigid Registration

The algorithm as proposed in [4] allows six degrees of freedom (three translations

and three rotations) for the rigid registration of each subvolume. Volume subdivision

based algorithms previously allowed only translations for the subvolume registrations

because interpolating the registration results which allowed for rotations was difficult.

This algorithm is able to interpolate rotations by using quaternion interpolation. Thus

this algorithm is able to model complex misalignments at larger subvolumes. The

previously adopted translation only approach had to register smaller subvolumes to

recover the same amount of misalignment and this also is prone to more error from

interpolation of many small subvolumes. The ability to recover complex

misalignments without having to divide the image into very small subvolumes poses

the advantage of less execution time.

This algorithm proceeds by first performing a rigid registration as illustrated by the

second cube in Fig 2.6. The rigid registration mechanism proceeds as described in the

section on rigid registration. Once the global misalignment has been recovered, local

misalignment is recovered by dividing the image into 8 sub-volumes and

independently performing local rigid registration on each subvolume. This is

illustrated by the 3rd and 4th cubes in Fig 2.6. To further recover misalignments, each

subvolume is divided into 8 smaller subvolumes. Thus at the second level of

registration there are 64 subvolumes to register. The process of dividing the

subvolume carries on till a predefined subvolume size.

 15

However, for small subvolumes there are only a few voxels for creating the mutual

histogram. This can lead to artifacts in the registration function which may result in

registration errors [22]. The mentioned algorithm addresses this problem by

compiling the mutual histogram as the sum of two mutual histograms MHsubvoluime

and MHrest. MHsubvoluime is compiled by the voxels of subvolume being registered

while MHrest is compiled from the rest of the voxels. MHrest does not vary as the

subvolume transformation is being optimized. It is therefore only a one time overhead

for each subvolume. As the subvolume transformation is being optimized MHsubvoluim

varies and hence the summed mutual histogram is proportionally influenced. This

reflects in the NMI and the problem of having a sparse mutual histogram is avoided.

Once all the subvolumes have been registered, a smooth deformation field is created

by interpolating the registration results of each subvolume. The deformation field is

used to resample the floating image on the reference image grid. The translations can

be linearly interpolated to generate the translation component of each voxel in the

deformation field. The three rotations are interpolated by quaternion based

interpolation.

Fig 2.5 Hierarchical subvolume division based non rigid registration (Courtesy [6])

 16

Chapter 3: Parallelization of Hierarchical Volume Subdivision
based Registration

Introduction

We parallelized the hierarchical volume subdivision based registration algorithm [4]

to run on a cluster of eight nodes each with four cores, effectively giving a total of 32

processors for processing. Though this algorithm is inherently faster than other non-

rigid registration techniques, a single processor implementation can take several

hours for processing. The parallel implementation we present reduces the processing

time significantly. The technique used for parallelizing this registration algorithm is

undertaken in two parts. First the rigid registration part is parallelized followed by

parallelization of the non-rigid volume sub-division part. We present results for

various configurations of the cluster and for four image sets.

Hardware Setup

We use an eight node cluster each with two dual-core Intel Xeon processors running

at 2.33 GHz. Each of the nodes has 4GB RAM that is shared by the four cores. The

nodes are connected together using a 1-Gbps Ethernet switch. APIs provided by MPI

are used for communication between the individual cores [12]. MPI is a language

independent communications protocol that is widely used to program parallel

computers. We used the MPICH2 implementation of MPI which is developed by

Argonne National Laboratory (Argonne, IL). The nodes run Linux. During run time

the MPI environment assigns a single process to each core. With the above mentioned

cluster setup, MPI can abstract the number of cores and nodes to effectively give

 17

thirty two processors at our disposal. Figure 3.1 shows the cluster setup used in this

research.

Fig 3.1 Eight node cluster connected together by a 1Gbps Ethernet switch. Each node
has two duo core Intel Xeon processors running at 2.33GHz with 4GB RAM.

Implementation

As presented earlier, the volume subdivision based registration algorithm [4]

proceeds by first performing a global rigid registration, followed by levels of rigid

registration of hierarchically divided subvolumes to recover local misalignments. The

volume sub-division part of the algorithm cannot proceed without first finishing the

global rigid registration. As a result we parallelize the rigid registration part followed

by the non-rigid registration part.

Internet

8x1Gbps
Switch

 18

The most intuitive way of parallelizing rigid registration is to have each processor in

the cluster process a part of the image. For load balancing the reference image is

divided equally among the processors so that each processor processes the same

number of voxels. The individual processors compute the mutual histogram with the

voxels assigned to it. Although a processor only needs the portion of reference image

during the rigid phase of the sub-volume division based non rigid registration

algorithm, the complete reference image and floating image were stored on each node

for following reasons. The complete reference image is store on each node because

we require access to the entire reference image for parallelizing the non rigid part of

the algorithm where as the floating image was stored on each node for this same

purpose as well as the fact it is required during the rigid part of the algorithm because

although we are processing only a part of the reference image on each processor, the

candidate transform being evaluated may cause the corresponding voxel to lie

anywhere in the floating image. Memory was not a limiting size for storing the

images on the cluster. However we store only one copy on each node because the

hardware schedules access to the data by four cores on each node. The mutual

histogram is a 2D array that indicates how many times a pair of intensities at

corresponding voxel locations (in the reference and floating images) occur. Since we

are processing a part of the image on each node, each node has to store a 2D array the

size of the original mutual histogram, which we call a partial mutual histogram. The

final mutual histogram is computed by summing all the partial mutual histograms.

This is illustrated in Fig 3.2.

 19

The algorithm for parallelizing the rigid part of the volume subdivision based non-

rigid registration can be summarized as follows:

1) At each iteration of the rigid registration process, a processor in the cluster

processes only a portion of the reference image for computing the MI value

2) The mutual histogram is computed on each processor. Each processor has a

partial mutual histogram at the end of the processing stage.

3) The partial mutual histogram on each processor is summed together to get the

mutual histogram. The total voxels processed by each node is summed to get

the total voxels in the mutual histogram. This stage involves network

communication between the nodes.

4) The MI value is computed and passed on to the optimization stage to check

whether we can stop the iteration

 20

.

.
...... h(i,j)….

.

.

Reference Image
Fl

oa
tin

g
Im

ag
e





255

0

),()(
i

B Total
jihjp

j

i




255

0

),()(
j

A Total
jihip

.

.
......h(i,j)….

.

.

Reference Image

Fl
oa

tin
g

Im
ag

e





255

0

),()(
i

B Total
jihjp

j

i




255

0

),()(
j

A Total
jihip

.

.
......h(i,j)….

.

.

Reference Image

Fl
oa

tin
g

Im
ag

e





255

0

),()(
i

B Total
jihjp

j

i





255

0

),()(
j

A Total
jihip

.

.
......h(i,j)….

.

.

Reference Image

Fl
oa

tin
g

Im
ag

e





255

0

),()(
i

B Total
jihjp

j

i





255

0

),()(
j

A Total
jihip

.

.
......h(i,j)….

.

.

Reference Image

Fl
oa

tin
g

Im
ag

e





255

0

),()(
i

B Total
jihjp

j

i





255

0

),()(
j

A Total
jihip

.

.
......h(i,j)….

.

.

Reference Image

Fl
oa

tin
g

Im
ag

e





255

0

),()(
i

B Total
jihjp

j

i





255

0

),()(
j

A Total
jihip

.

.
......h(i,j)….

.

.

Reference Image

Fl
oa

tin
g

Im
ag

e





255

0

),()(
i

B Total
jihjp

j

i





255

0

),()(
j

A Total
jihip

Sum Partial Mutual
Histograms from

each node

Partial MH

Partial MH

Partial MHPartial MH

Partial MH

Partial MH

Partial MH

Partial MH

Mutual Histogram

Text

.

.
......h(i,j)….

.

.

Reference Image

Fl
oa

tin
g

Im
ag

e





255

0

),()(
i

B Total
jihjp

j

i





255

0

),()(
j

A Total
jihip

.

.
......h(i,j)….

.

.

Reference Image

Fl
oa

tin
g

Im
ag

e





255

0

),()(
i

B Total
jihjp

j

i





255

0

),()(
j

A Total
jihip

Fig. 3.2 Parallelization of the rigid part of hierarchical subvolume based registration
algorithm. Each node computes a partial mutual histogram which are summed
together to get the mutual histogram.

The non-rigid part of the subvolume division based non rigid registration takes place

over different levels. At each level of sub-division we perform rigid registration on

the subvolumes. The sub-volume registrations are independent and thus they can be

assigned to different processors. Once all the subvolumes at a level have been

 21

processed by the processors in the cluster, we communicate across the registration

parameters to all the other processors so that registration parameters for all the

subvolumes are available on each processor. We then go on to the next sub-division

level. At the first sub-division level, there are eight sub-volumes to be registered. If

the number of processors in the cluster is more than eight we use only eight of the

processors while the other processors remain idle. At the next sub-division level we

have sixty four sub-volumes while we only have 32 two processors in the cluster

hence none of the processors are idle. To assign a sub-volume to a processor for

processing we first number each sub-volume sequentially. Then we assign to each

processor the subvolume whose number modulus the total number of processors in

the cluster is equal to the processor number which is assigned by MPI during run

time.

Results

All the Results shown are form 256x256x256 CT images. The voxel sizes in mm are:
Reference Image: 1.56, 1.56, 1.5
Image #1: 1.484375, 1.484375, 1.605468
Image #2: 1.484375, 1.484375, 1.716798
Image #3: 1.484375, 1.484375, 1.68750
Image #4: 1.484375, 1.484375, 1.68750

Table 3.1: Execution time, speed up and accuracy for registering four CT
256x256x256 images. of the abdomen using four subdivision levels of subvolume
division based non rigid registration

 #1 #2 #3 #4
Single CPU accuracy (mm)

32 CPU accuracy (mm)

Single CPU Time (seconds)

32 CPU Time (seconds)

0.71

0.71

7380

452

0.82

0.82

7234

452

0.85

0.85

7403

454

0.73

0.73

7374

451

32 CPU Speedup 16.3 16 16.3 16.4

 22

 #1 #2 #3 #4

Accuracy(mm)
Single CPU

(Run on 8 Nodes)
8 Processor

16 Processor
32 Processor

0.71

0.71
0.71
0.71

0.82

0.82
0.82
0.82

0.85

0.85
0.85
0.85

0.73

0.73
0.73
0.73

Execution Time(s)
Single CPU

(Run on 8 Nodes)
8 Processor

16 Processor
32 Processor

7380

1158
686
452

7234

1102
714
452

7403

1153
697
451

7374

1128
682
455

Speedup
8 Processor

16 Processor
32 Processor

6.37

10.75
16.3

6.56

10.13
16

6.42

10.62
16.4

6.54

10.81
16.2

Table 3.2: Accuracy, execution time and speedup for different configurations of the
cluster for registering two 256x256x256 CT images of the abdomen four subdivision
levels of subvolume division based non rigid registration

Average Performance Improvement

0
2
4
6
8

10
12
14
16
18

8 16 32

Processors

Sp
ee

du
p

 Fig 3.3: Average speedup for different configurations of the cluster

 23

Table 3.3: Break up of execution time for different configurations of the cluster for
registering two 256x256x256 CT images of the abdomen using four subdivision
levels of subvolume division based non rigid registration.

Fig 3.4: Overlay of 256X256 CT images of the liver before and after registration
using four subdivision levels of subvolume division based non rigid registration

 #1 #2
1 CPU Execution Time (s)

1 CPU Rigid
1st Level
2nd Level
3rd Level
4th Level

Total

104
231
374
1226
5445
7380

136
229
362

1175
5332
7234

8 CPU Execution Time (s)
Global Rigid Level

1st Level
2nd Level
3rd Level
4th Level

Total:

21
79
95

206
757
1158

26
72
91
200
713

1102
16 CPU Execution Time (s)

Global Rigid Level
1st Level
2nd Level
3rd Level
4th Level

Total:

15
80
73

121
397
686

19
71
69
122
433
714

32 CPU Execution Time (s)
Global Rigid Level

1st Level
2nd Level
3rd Level
4th Level

Total:

11
80
52
88

221
452

15
71
56
87
223
452

 24

.

Table 3.4 Computation time for processors that take the maximum time and
processors that take the minimum time given for different levels and different
configurations of the cluster. Communication time is also shown

Table 3.5 Breakup of computation time in rigid registration on various configurations
of the cluster (All run on 8 nodes)

Processing
Time(s)

max

Processing
Time(s)

Min

Communication
Time(s)

Non Rigid Registration 8 CPU
(8 Nodes)

Level 1:
Level 2:
Level 3:
Level 4:

71.399802
94.331788

204.667939
757.449903

51.463611
67.189734
132.011615
653.332129

0.002232
0.003423
0.014778
0.255158

Non Rigid Registration 16 CPU
(On 8 Nodes)

Level 1:
Level 2:
Level 3:
Level 4:

71.711030
72.194589

121.247008
395.980341

34.015598
47.387165
81.714842
296.191406

0.053994
0.061570
0.018530
0.259062

Non Rigid Registration 32 CPU
(On 8 Nodes)

Level 1:
Level 2:
Level 3:
Level 4:

71.407932
57.329186
87.428625

219.763279

33.996349
41.848857
60.840469
166.062945

0.076562
0.252386
0.023571
0.270316

Global

Rigid Registration

Histogram
Computation

Time(s)

Communication

Time(s)

Percentage
Comm. Time to

Tot. Time(s)

 1 Processor
(Different Cluster

configurations on 8 Nodes)
8 Processor

16 Processor

32 Processor

1.97

0.305947

0.211320

0.119552

N.A

0.029223

0.030716

0.035948

N.A

8.6

11

23

 25

Discussion

The accuracy figures shown in Table 3.1 and 3.2 are for CT images which have been

deformed with a known deformation field. The registration process recovers tries to

recover the deformation field.. [The accuracy figure is obtained by taking a mean

square difference with the known deformation field]. We observe that the cluster

version of the code generates the same result as the single CPU version.

From Table 3.1 we observe a speedup of the order of 16 when using 32 nodes. We are

able to reduce processing time from over 2 hours to 7.5 minutes. This is practical for

many applications. However, we note that more speedup can be achieved.

From Table 3.2 and Fig 3.2, we note that the speedup decreases with increasing

number of processors. There are two reasons for this. From Table 3.4 we see that

some processors take less time than others to register the subvolumes assigned to it.

Thus there is a load imbalance resulting from volumes being assigned statically. In

the future this can be resolved by adopting a dynamic strategy for assigning

subvolumes to processors that are idle. Another reason is that even when we assign

more processors to the registration algorithm, the first subdivision levels only uses

eight of the available processors. We see from Table 3.3 that for the different

configurations of the cluster, the execution time of the first subdivision level remains

the same because of this reason. Thus our total execution time has the first

subdivision level execution time as a fixed cost even if we increase the number of

processors. Table 3.3 shows that the speedup of the global rigid registration level

 26

does not improve much with increasing processors. This is because there is a large

amount of data being transferred over the network for computing the mutual

histogram. This is evident from Table 3.4 which shows that the communication time

becomes significant as we keep on increasing the number of processors used in rigid

registration. We address a way to handle this in the next chapter.

 27

Chapter 4: Mutual Information Calculation from Mutual

Histogram based on Bit Slicing

Introduction

As part of parallelization of the global rigid portion of the subvolume division based

registration algorithm we presented results for a parallel implementation of mutual

information in the previous chapter. In that implementation mutual information was

computed using the most commonly available technique which is to sub-divide the

data (image) between processors where each processor is assigned a portion of the

reference image. This technique has the limitation that each processor has to hold a

partial mutual histogram which is the size of the original histogram. To calculate the

mutual information value the full mutual histogram has to be calculated by summing

the individual partial mutual histograms followed by arithmetic operations for entropy

calculation. Summing individual partial histograms entail transfer of big chunks of

data between processors in the cluster. This is followed by a large number of

arithmetic operations (66048 multiplications and logarithms) for entropy calculation

which has to be carried out on the master processor or it can be parallelized but it will

involve an additional communication overhead. We propose a new technique which

allows us to maintain only a portion of the final mutual histogram on each processor

during mutual histogram computation instead of a full-size partial mutual histogram

which has to be reduced to get the final mutual histogram. This allows us to transfer

much less data between processors and also to do arithmetic operations for entropy

calculation before communicating data between processors for computing the mutual

 28

information value. In essence, we have been able to parallelize arithmetic

computations involved in the mutual information computation process as well as

transfer less data between processors.

Implementation

As described in the introduction, this concept allows us to maintain a part of the

mutual histogram on each processor instead of a partial mutual histogram which

needs to be summed with other partial mutual histograms to yield the mutual

histogram. This is accomplished by pre-processing the reference image. To each

processor we assign an intensity range of the reference image that it will process. The

pre-processing involves finding all the data (voxels) that each processor will process

based on the intensity range it will be processing. Figure 4.1 shows the mutual

histogram after processing has completed calculation on each processor. We reason

that the reference image is available before the floating image in image registration

applications and so we can pre-process it and that the pre-processing time does not

need to be considered part of the time required for registration. Another reason that

the pre-processing does not need to be part of the registration process is that the

reference image can be stored in the desired format during the acquisition process

itself.

The data associated with the intensity range (bins) assigned to a processor has to be

balanced. Since the intensity range assigned to a processor determines the amount of

data it will be processing, we have to vary the intensity range assigned to a processor

for load balancing. We describe below the technique we have used for load balancing.

 29

1) Calculate the histogram of the reference image

2) Find the total number of voxels that have to be processed

3) Find the average number of voxels to be processed by a processor Avg Voxels

= Total/Total Number of Processors

4) Starting at the first processor, assign to it intensities that it will process while

keeping track of the total number of voxels assigned to it. (Total[1]). When

Total[1] > Avg Voxels, start assigning voxels to the next processor but

distribute the remaining voxels to be processed among the remaining

processors.

5) (New) Avg Voxels = Remaining Voxels/Remaining Processors

6) Now assign intensities to the next processor and keep track of the total

number of voxels assigned to that processor. (Total[i]) when Total[i] >Avg

Voxels then go to step 5 until all the voxels have been assigned to all the

processors.

 30





255

0

),()(
j

A Total
jihip





255

0

),()(
i

B Total
jihjp

Total
jihjip),(),(

 BAH , =  




255

0

255

0
)),(log(),(j

j
i

jipjip (Equation for computing Joint Entropy)

)(log)()(
255

0
ipipAH A

i
A



 (Equation for computing Entropy of Image A)

 BH = -)(log)(
255

0

jpjp B
j

B


 (Equation for computing Entropy of Image B)

Fig: 4.1 Mutual Histogram on each processor after processing using the bit-slicing
algorithm on a cluster with four processors. Note how the mutual histogram is divided
based on intensities of the reference image. The probability densities are calculated as
shown in the figure. Formulas for computing entropy values from the probability
densities are also shown.

Part of the computation for mutual information calculation can be carried out on each

processor after the mutual histogram computation is completed. From Fig. 4.1 we see

that pA(i) (and hence part of H(A)) and pA,B(i,j) (and hence part of H(A,B)) could be

computed if we knew Total (the total number of voxels processed during this iteration

of the registration process). Each processor knows only Totali which is the total

 31

voxels processed on that processor. This necessitates the need for communication

between processors to sum up Totali to get Total. However, we derive below that we

do not need to communicate Totali between processors to carry out the computations

we need to perform. We also point out that we cannot do similar computations for

H(B) since we do not have pB(j). However we can reduce it as shown in equation (3).

MI =  AH +  BH -  BAH ,

A: Reference Image

B: Floating Image

 AH : Entropy of Image A

 BH : Entropy of Image B

 BAH , : Joint Entropy of Image A and B

 





255

0

255

0
)),(log(),(),(j

j
i

jipjipBAH

= -  


255

0

255

0

),(log),(
j

i Total
jih

Total
jih

Total
jihjip),(),(

=  







  




255

0

255

0
log),(log),(1 j

j
i

Totaljihjih
Total

=  







  




255

0

255

0
),(log),(1 j

j
i

jihjih
Total 








  




255

0

255

0
log),(1 j

j
i

Totaljih
Total

 32

=  







  




255

0

255

0
),(log),(1 j

j
i

jihjih
Total 








  




255

0

255

0
),(log j

j
i

jih
Total

Total

=  







  




255

0

255

0
),(log),(1 j

j
i

jihjih
Total

Totallog

 






  




255

0

255

0
),(j

j
i

jih = Total

=
   

  








































255

0

255

11

255

0

2

11

255

0

1

0

),(log),(....

....),(log),(),(log),(
1

j

j
nodeNii

j

j

node

nodei

j

j

node

i

jihjih

jihjihjihjih

Total
`

Totallog

  Totalmmm
Total N log...1

21  ` - (1)

N: The number of processors

Equation 1 shows that the joint entropy can be computed by evaluating

m1,m2..mN on each processor and then summing them up and applying total

to compute),(BAH .

)(AH can also be computed in a similar manner as),(BAH in equation 1.

)(log)()(
255

0
ipipAH A

i
A





= - 








 



























255

0

255

0

255

0

),(log),(
i

j

j

j

j Total
jih

Total
jih





255

0

),()(
j

A Total
jihip

 33

= -  








 




























255

0

255

0

255

0

log),(log),(1
i

j

j

j

j
Totaljihjih

Total

=- 






































  












255

0

255

0

255

0

255

0

255

0

log),(1),(log),(1 j

j
ii

j

j

j

j
Totaljih

Total
jihjih

Total

= - 






































  












255

0

255

0

255

0

255

0

255

0

),(log),(log),(1 j

j
ii

j

j

j

j
jih

Total
Totaljihjih

Total

= - 






































  












255

0

255

0

255

0

255

0

255

0

),(log),(log),(1 j

j
ii

j

j

j

j
jih

Total
Totaljihjih

Total

= - Totaljihjih
Total i

j

j

j

j
log),(log),(1 255

0

255

0

255

0































 










 






  




255

0

255

0
),(j

j
i

jih = Total

Total

jihjih

jihjihjihjih

Total NodeN

nodeNi

j

j

j

j

node

nodei

j

j

j

j

node

i

j

j

j

j

log

),(log),(....

....),(log),(),(log),(
1-

11

255

0

255

0

2

11

255

0

255

0

1

0

255

0

255

0
























































































































 

  





























  Totaleee
Total N log........211-  - (2)

Equation 2 shows that the entropy of the reference image can be computed by

evaluating e1,e2..eN on each processor and then summing them up and

applying total to compute)(AH .

 34

)(log)()(
255

0

jpjpBH B
j

B


 - (3)





255

0

),()(
i

B Total
jihjp

 







  

 

1

0 11

2

11
),(...),(),(1 Node

i

NodeN

NodeNi

Node

Nodei
jihjihjih

Total

 )(...)()(1
21 jljljl

Total N - (4)

Equation 4 indicates that the probability density of each intensity (j) can be

computed by evaluating l1(j), l2(j), .., lN(j), on each processor and then

summing them up and applying equation 4 to compute)(jpB .

We summarize the steps involved in computing MI using the bit slicing idea:

1) Pre-process the reference image and assign voxels to each processor in the

cluster based on the intensities that each processor will be processing. The

number of voxels processed by each processor need to be load balanced and

thus the number of intensities of the reference image that each processor

processes will need to be assigned dynamically as per the algorithm we

defined earlier

2) Start the registration process

3) For each iteration of the registration process, the mutual histogram is

computed and as shown in Fig. 4.2, we get a part of the mutual histogram on

each processor

 35

4) MI computation follows from equations 1, 2 and 3. Each processor computes

km which is necessary for computing H(A,B), ke which is necessary for

computing H(A) and 255
0)(jk jl which is necessary for computing 255

0)(


j
jB jp

5) Finally all processors communicate to one another to sum

i. Totali (the total voxels processed on each processor) to get Total

ii. km and use equation (1) to get H(A,B)

iii. ke and use equation (2) to get H(A)

iv. 255
0)(jk jl to get 255

0)(


j
jB jp using equation (4) and finally use equation

(3) to get H(B)

6) MI is computed as H(A)+H(B)-H(A,B)

 36

Results

Table 4.1 Execution time for rigid registration of three 256x256x256 CT images
shown for various configurations of the cluster with and without bit-slicing algorithm

Table 4.2 Accuracy of rigid registration using bit-slicing algorithm as compared to
the single CPU version. The transformation parameters recovered by the bit-slicing
algorithm is the same as that of the single CPU version.

 #1 #2 #3 #4
Single CPU

Translation (Tx,Ty,Tz)
Rotation(Rx,Ry,Rz)

17.82, 13.19,14.37
 -4.03, -0.98, -0.47

5.52 36.57, 16.42
0.58, -1.19, -5.28

-7.79, -19.38, -6.85
6.65, 7.19, 12.57

2.43, 0.0081,6.97
-2.72, 1.50, -3.91

8 CPU Bit Slicing
Translation (Tx,Ty,Tz)

Rotation(Rx,Ry,Rz)

17.82, 13.19,14.37
 -4.03, -0.98, -0.47

5.52 36.57, 16.42
0.58, -1.19, -5.28

-7.79, -19.38, -6.85
6.65, 7.19, 12.57

2.43, 0.0081,6.97
-2.72, 1.50, -3.91

16 CPU Bit-slicing
Translation (Tx,Ty,Tz)

Rotation(Rx,Ry,Rz)

17.82, 13.19,14.37
 -4.03, -0.98, -0.47

5.52 36.57, 16.42
0.58, -1.19, -5.28

-7.79, -19.38, -6.85
6.65, 7.19, 12.57

2.43, 0.0081,6.97
-2.72, 1.50, -3.91

32 CPU Bit-slicing
Translation (Tx,Ty,Tz)

Rotation(Rx,Ry,Rz)

17.82, 13.19,14.37
 -4.03, -0.98, -0.47

5.52 36.57, 16.42
0.58, -1.19, -5.28

-7.79, -19.38, -6.85
6.65, 7.19, 12.57

2.43, 0.0081,6.97
-2.72, 1.50, -3.91

 #1 #2 #3 #4
Execution Time (s)

Single CPU
8 CPU image subdivision

8 CPU bit-slicing
16 CPU image subdivision

16 CPU bit-slicing
32 CPU image subdivion

32 CPU bit-slicing

104
21
20
15
11
11
7

136
26
26
19
14
15
9

301
55
44
43
26
30
18

89
18
17
12
9
10
6

 37

Execution Time for Case 1

0

20

40

60

80

100

120

Single CPU
Time

8 CPU Time 8 CPU
BitSlicing

Time

16 CPU
Time

16 CPU
BitSlicing

TIme

32 CPU
Time

32 CPU
BitSlicing

Time

S
ec

on
ds

Fig 4.2 Execution time for rigid registration of the first set of 256x256x256 CT
images shown for various configurations of the cluster with and without bit-slicing
algorithm compared with the single CPU version

Execution Time for Case 3

301

55 44 43 26 30 18

0

50

100

150

200

250

300

350

Single CPU
Time

8 CPU Time 8 CPU
BitSlicing

Time

16 CPU
Time

16 CPU
BitSlicing

TIme

32 CPU
Time

32 CPU
BitSlicing

Time

S
ec

on
ds

Fig 4.3 Execution time for rigid registration of the third set of 256x256x256 CT
images shown for various configurations of the cluster with and without bit-slicing
algorithm compared with the single CPU version

 38

Fig 4.4 Histogram of the reference image from image set 3

Distribution of Voxels on 8 Processors

0

200000

400000

600000

800000

1000000

1200000

1400000

1 2 3 4 5 6 7 8

Processors

Vo
xe

ls

Fig 4.5 Distribution of voxels for 8 processors

Histogram of Reference Image

0
200000
400000
600000
800000

1000000
1200000
1400000
1600000

1 17 33 49 65 81 97 113 129 145 161 177 193 209 225 241
Intensity

 39

Distribution of Voxels on Different Processors

0

100000

200000

300000

400000

500000

600000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Processor Number

Nu
m

be
r o

f V
ox

el
s

Fig 4.6 Distribution of voxels on 16 processors by the load balancing algorithm

 Fig 4.7 Distribution of voxels on 32 processors by the load balancing algorithm

Distribution of Voxels on 32 Processors

0
50000

100000
150000
200000
250000
300000
350000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
Processor Number

 40

Table 4.3: Histogram computation time and the associated communication time for
different cluster configurations.

Discussion

Table 4.2 indicates that registration using the bit-slicing algorithm for computing the

mutual information recovers the same transformation parameters as the rigid

registration process on a single processor.

From the comparisons of execution time in Table 4.1 we see that the bit-slicing

algorithm runs more efficiently for 32 processors than for eight processors. The

execution time for bit-slicing algorithm for 8 processors does not improve

significantly from the execution time of the image subdivision based algorithm for

eight processors. This is because the bit-slicing algorithm mainly speeds up the

communication time required for transferring results across the network. When there

 Histogram
Computation

Time(s)

Communication
Time(s)

Percentage
Comm. Time

to Tot.
Time(s)

MI Computation by Image
Subdivion

8 CPU

16 CPU

32 CPU

0.305947

0.211320

0.119552

0.029223

0.030716

0.035948

8.6

11

23

MI Computation by Bit-
slicing
8 CPU

16 CPU

32 CPU

0.313878

0.160779

0.092174

0.000615

0.000630

0.000653

0.2

0.39

0.7

 41

are only eight processors the communication time is not a big factor of the processing

time as seen in Table 4.3. In the image subdivision based algorithm for computing

mutual information, the image is divided equally between processors and hence no

load balancing is done to ensure that equal amount of foreground voxels are being

assigned to each processor. Better load balancing could be done in the image

subdivision based approach by dividing the image based on the foreground pixels but

a preprocessing stage would be required and demarcation of regions to process on

each processor in the cluster would need to be communicated. However the bit-

slicing algorithm balances the load on the cluster by assigning only foreground voxels

of the reference image by the previously mentioned load balancing algorithm. As a

result there is an improvement in execution time of the bit-slicing algorithm on eight

processors due to contributions from speed up in communication and better load

balancing. If the load balancing algorithm is not able to balance the load perfectly

then the performance of the bit-slicing algorithm can be severely hampered.

We see from Table 4.3 that with increasing number of processors, the communication

time becomes a larger factor in the processing time. Consequently the bit-slicing

algorithm performs better because it reduces the communication time. We have run

the bit-slicing algorithm only for 32 processors but we see that with increasing

number of processors the bit-slicing algorithm is able to perform much better than the

image subdivision based algorithm for computing mutual information. However there

will be a stage at which increasing the number of processors will not improve the

overall speed up because the communication time will become more significant.

 42

Chapter 5: MI calculation on GPU using Bit-Slicing Idea

Introduction and Related Work

We present an implementation of mutual information calculation on an NVIDIA

GPU. GPUs have been increasing in computation power rapidly as they has evolved

into a highly parallel, multithreaded, multicore processor with high memory

bandwidth [9]. Compute intensive processing which involves data parallel processing

is well suited for implementation on the GPU. We use the compute unified device

architecture (CUDA) for programming the GPU. CUDA is a programming model that

allows the programmer to utilize the parallelism offered by the GPU while limiting

the learning curve as it is an extension of the C programming language. However

current implementations for MI calculation on the GPU have been limited by the

shared memory size of the GPU. In [8], we see a 64-bin implementation (six bit

intensity values of a histogram which is far too low for any practical image

registration purpose. In [10], an approximate method is proposed for MI calculation

which reduces these inefficiencies. However, they are limited to byte data types and

10000 bins (100x100) for the mutual histogram, in addition to calculating only an

approximate MI value. The byte data type does not allow them to use PV

interpolation as it required float data type for the mutual histogram. However an

accurate implementation of MI computation needs to have PV interpolation and in

cases 16384 bins (128x128) mutual histogram. The bit- slicing idea we proposed for

the cluster maps well to the GPU and this implementation is the first that is able to

calculate MI for 8 bit images (65,536 bins) using float data types for the mutual

histogram and allows us to use PV interpolation. As seen in the cluster

 43

implementation arithmetic computations for entropy can be parallelized without

additional overhead with this new idea.

GPU Architecture

This GPU is based on the TESLA architecture by NVIDIA which provides a platform

for both graphics and general purpose parallel computing applications. Figure 5.1

shows the Tesla Architecture which consists of a scalable array of streaming

multiprocessors. A multiprocessor consists of eight scalar processors two special

function units for transcendental operations, an instruction unit and shared memory.

Access to the shared memory is fast (four clock cycles) but access to device memory

is much slower (400 to 600 clock cycles). . In CUDA threads are scheduled in groups

of 32 known as warp. A block having 128 threads will have four groups of 32 or in

other words four warps in the block. Threads in a half warp (half the threads of the

warp) can access the global memory together if the address accessed by each thread

in the half warp is aligned. If the addresses accessed by the threads in the half warp

are not aligned then the resulting access to global memory will be sequential. NVIDA

GPUs with compute capability 1.0 do not provide atomic updates (when two or more

threads try to update the same memory location at the same time, only one thread will

update the location if atomic updates are not supported)or support double (i.e.,

double-precision floating point) data types.

 44

Fig. 5.1 Tesla Architecture (Courtesy [9])

CUDA abstracts the program to be run as a kernel. A kernel is composed of a Grid

and blocks. The number of blocks and threads are set by the programmer and this is

known as the execution configuration. Each block is composed of several threads.

This is shown in the Fig 5.2. Each block of the grid runs on a streaming

multiprocessor with the threads in a block running concurrently. Each thread is

mapped to a scalar processor core and it has its own instruction address and register

 45

state which allows each thread to run a different program, though not efficiently. As

mentioned earlier the multiprocessor schedules threads in groups of 32, called warps.

A warp executes a common instruction at a time so maximum efficiency is obtained

when the code in a warp does not diverge. This architecture is known as Single

instruction Multiple Thread (SIMT)

 Threads within a block can be synchronized. It is not possible to synchronize

between threads of different blocks. As a programmer, this limits some of the options

like waiting for results from other blocks. We handle this by copying results from

each block into device memory and then using another kernel call (programs are

written as kernels in CUDA) to sum the results in device memory. The GPU

scheduler waits for all the blocks to finish processing before another kernel is allowed

to execute. We achieve synchronization between blocks in this manner.

The steps necessary to implement a CUDA program involve the following:

1) Have the host computer allocate memory on the GPU

2) Copy data to be processed into the GPU device memory

3) Set the execution configuration and invoke the kernel

4) Once execution is over, copy the processed data back to the host

We have used an NVIDIA 8800 GTX GPU with 16 streaming multiprocessors and 8

scalar processor cores per multiprocessor, which is of compute capability 1.0 (the

compute capability indicates whether some feature such as atomic updates or double

 46

precision operations are supported) and uses CUDA 2.0 programming model. It has

16 KB shared memory per multiprocessor and 768 MB global memory.

Fig. 5.2 CUDA Programming Model (Courtesy [9])

Implementation Details

The implementation on the GPU is similar to that on the cluster with some key

differences noted in the next paragraph. Here a block plays the role of the processor

in the cluster. The reference image is pre-processed to assign intensities to blocks.

 47

After processing, each block will have a part of the final mutual histogram. This was

the case with each processor in the cluster. This is shown in Fig. 5.3. The MI value

can then be computed making use of the same equations we presented for the cluster

implementation.

Each block in the GPU can have many threads to do the computation assigned to it.

We maintain the mutual histogram in the shared memory as updates are faster to the

shared memory and it also allows us to do the arithmetic computations for entropy

calculation faster. The problem with previous implementations was that a partial

mutual histogram which is the size of the final mutual histogram had to be stored in

the shared memory. Since current GPUs have only 16Kb of shared memory, these

implementations were limited in the number of bins (10,000) of the mutual histogram

and also the data type for the storage of the frequency of each bin was limited to an

unsigned char. That meant they were unable to implement PV interpolation because

they have to make a trade of between the number of bins and the size of the data type

of each bin. As the bit-slicing algorithm allows us to store only part of the final

mutual histogram on each block, we can use float data type for each memory location

of the mutual histogram without having to sacrifice the number of bins we are using.

. We show results for 8 bit intensities for 256x256 mutual histogram. We are also

using PV interpolation. Due to the shared memory size we are limited to the number

of intensities (i.e., bins) of the mutual histogram we can store. We assign a maximum

of 10 intensities to each block which necessitates the need for 10Kb of shared

memory (1Kb per intensity of the reference image assigned to the block). As we are

 48

limited to 10 intensities for each block we have to have at least 26 blocks to cover

256 intensity levels. After processing we have a part of the mutual histogram on each

block. This is similar to having a part of the mutual histogram on each processor in

the cluster. This is shown in Fig 5.3. We then do arithmetic operations to find the MI

value. Each block does the same processing that each processor in the cluster did. In

the cluster, after processing, data has to be communicated between processors

through the network. In the GPU, we store the processed data in the global memory,

which is then processed by a single block to find the final MI value. We give a

summary of the whole process which gives a better picture of the processing

involved.





255

0

),()(
j

A Total
jihip





255

0

),()(
i

B Total
jihjp

Total
jihjip),(),(

Fig. 5.3 Mutual Histogram divided between four blocks

The similarity between the cluster implementation ends with the above discussion.

We now go on to the nuances of the GPU implementation. Each block has more than

one thread running simultaneously. On the NVIDIA 8800 GTX GPU atomic updates

 49

are not supported. Hence we cannot have more than one thread from a warp making

simultaneous updates to the same memory location which in our case is the mutual

histogram stored in the shared memory of each block (threads from a different warp

do not update the same location at the same time). As a consequence we have to limit

each thread in a warp to updating only one column of the histogram assigned to that

block and that limits the number of threads running in that block. If we were to follow

the naïve approach, we assign to each block an equal number of intensities to process.

However, as each thread from the warp does processing on a single intensity of the

reference image, we could have a load imbalance resulting in slower processing time

as the other blocks will have to wait for the block whose thread has many voxels to

process.

Hence we do load balancing to ensure each thread of a block processes about the

same number of voxels. This is done by allowing for an intensity to be split so

another thread can work on different voxels but of the same intensity. We allocate a

2D array of size 256x10 (256 rows and 10 columns) of type float (10KB) in the

shared memory. When an intensity is split, the threads that do processing for the split

intensity have to have a separate column of the 2D array in the shared memory

assigned to it. The split intensities are then combined by summing up the columns

processed by the corresponding threads. If only one intensity is assigned to a block,

then its split 10 times and processed by 10 threads each working on its own column of

memory (1KB). The load balancing algorithm assigns an intensity to a block, splits it

and compares the voxels being processing per thread with the average voxels per

 50

thread for the entire image. If its lower than the average voxels per thread then it

assigns another intensity to the block. (The steps of the load balancing algorithm are

given in detail later on) Now there are two intensities assigned to the block. We split

all the intensities assigned to the block equally. All the intensities need not be split

equally but splitting it equally makes it easier to indicate how many times the

intensities have been split for a block. The intensities assigned to a block are split

such that the total columns in the 2D array required by the threads are still less than

10. We thus allow the two intensities to split five times each so that each intensity is

covered by 5 threads and hence by 5 columns of the 2D array. Fig 5.4 shows the case

for 3 intensities. Our constraint is that after splitting we can only have a maximum of

10 columns of the 2D array in the shared memory being used by the threads. Another

constraint is that we split all the intensities equally. Hence three intensities can be

split up only 3 times and nine columns of the 2D array are used. If there are six

intensities assigned to a block then it isn’t split up as all the intensities need to be split

equally as per our implementation and that would result in the need of 12 columns of

the 2D array in the shared memory...

We show results for 40 blocks. We could have used 26 blocks but then 25 of the 26

blocks would need to process 10 intensities each. By using 40 blocks we allow more

flexibility in grouping together intensities without being forced to assign many

intensities to a block. This allows us to split the intensities which have many voxels.

 51

CUDA schedules 32 threads at a time. This is known as a warp. As we do not have

atomic updates, we will make active only a part of the 32 threads for processing the

data for the mutual histogram. The number of threads made active in the warp is

dependent on the number of intensities assigned to the block by the load balancing

algorithm and also the number of times those intensities have been split. The other

threads are left idle. Each thread in the warp is assigned a column of the 2D array

allocated in the shared memory. Threads from a different warp are however allowed

to update to the same column of the 2D array in the shared memory. We run four

warps so we have four threads updating the same column in memory. As threads in

the same warp are not allowed to update to the same location we do not have a

problem of different threads updating to the same location. Also as threads from

different warps are scheduled separately, we again do not have threads from different

warps trying to update the same location..

 52

.

.

.
h(i,j)

.

.

Reference Image

j

i

.

.
h(i,j)

.

.

Reference
Image





255

0

),()(
i

B Total
jihjp

j

i





255

0

),()(
j

A Total
jihip

Total
jihjip),(),(

i

i=2i=0

i=2i=0 i=0 i=0 i=2i=2 i=1i=1i=1

j=0

j=255

Sum

Fig 5.4 Mutual Histogram assigned to a block is further split up to have more threads
active in a block

 53

We use the following algorithm for assigning intensities to each block.

1) Calculate the histogram of the reference image

2) Find the total number of voxels that have to be processed

3) Find the average number of voxels to be processed by a thread in a block Avg

Voxels=Total/(Total Number of Blocks x Threads Per Block)

4) Starting at the first block, assign to it intensities that it will process while

keeping track of the maximum of the number of voxels of the intensity levels

assigned to the block (MaxVox). After each intensity is assigned to the block

compute the Voxels per thread for that block (VoxperThread[i]). This is

computed using MaxVox/Ntimes where Ntimes is the number of times we can

split the currently assigned intensity levels so that it is still below 10. For

example when intensity levels is 3, Ntimes is 3 since we can split 3 intensity

levels 3 times and still be below 10. When voxels per thread for the block

(VoxperThread [i]) > Avg Voxels, we start assigning intensity levels to the

next block but distribute the remaining voxels to be processed among the

remaining threads. However, if there are more intensities left to be assigned

than there are remaining threads then we do not move on to assign intensities

to the next block but we keep on assigning intensities to the current block till

we are left with equal number of remaining intensities and threads.

5) Repeat Step 4 until all the intensity levels have been assigned to all the blocks

 54

We summarize the steps involved in computing MI using the bit slicing idea on the

GPU

1) Pre-process the reference image and assign voxels to each thread in a block on

the GPU based on the intensities that each block will be processing. The

number of voxels processed by each thread needs to be load balanced and thus

the number of intensities of the reference image that each block processes will

need to be assigned dynamically as per the algorithm we defined earlier

2) Start the registration process

3) For each iteration of the registration process, the mutual histogram is

computed and as shown in Fig. 5.e, we get a part of the mutual histogram on

each block

4) MI computation follows from equations 1, 2 and 3 of chapter 3. Each block

computes km which is necessary for computing H(A,B), ke which is necessary

for computing H(A) and 255
0)(jk jl which is necessary for computing 255

0)(


j
jB jp

5) Each block stores the following in global memory. Here ‘k’ denotes the block

number

i. kTotal

ii. km

iii. ke

iv. 255
0)(jk jl

6) Another kernel call sums up the results stored in global as described below:

i. kTotal to get Total

 55

ii. km and uses equation (1) to get H(A,B)

iii. ke and uses equation (2) to get H(A)

iv. 255
0)(jk jl to get 255

0)(


j
jB jp using equation (4) and finally uses equation

(3) to get H(B)

7) MI is computed as H(A)+H(B)-H(A,B)

Results

Table 5.1 Comparison of CPU and GPU execution times for rigid registration using
mutual information computed from mutual histogram having floating point counters.

Table 5.2 indicates that registration using the bit-slicing algorithm for computing the
mutual information on the GPU recovers the same transformation parameters as the
rigid registration process on a single processor.

Discussion

We have been able to implement computation of mutual information from the mutual

histogram using PV interpolation. This has been made possible by the bit-slicing

algorithm which allows us to maintain only a part of the mutual histogram in the

 #1 #2 #3

Single CPU Time (s) 119 151 349
GPU Time (s) 19.8 26 53

Speedup 6 5.9 6.58

 #1 #2 #3
Single CPU (mm)

Translation (Tx,Ty,Tz)
Rotation(Rx,Ry,Rz)

5.52, 36.57, 16.42
0.58, -1.19, -5.28

17.82,1 3.19, 14.37
-4.03, -0.98, -0.47

-7.68, -19.42, -6.64

6.76, 7.24, 12.69

GPU (mm)
Translation (Tx,Ty,Tz)

Rotation(Rx,Ry,Rz)

5.52, 36.57, 16.42
0.58, -1.19, -5.28

17.82,1 3.19, 14.37
-4.03, -0.98, -0.47

-7.68, -19.42, -6.64

6.76, 7.24, 12.69

 56

shared memory of each block. We see from Table 5.2 that our implementation

recovers the same transformation as the CPU version of the rigid registration

algorithm. We however were limited to floating data type as the 8800 GTX GPU does

not support double data types. We see from Table 5.1 that we get a speedup of

approximately 6. In [10], they were able to report a speedup of the order of four but

then they were limited to 10000 bins and could not implement PV interpolation.

However, our implementation is for 65536 bins. An avenue worth exploring is to try

this implementation on a GPU that offers atomic updates on the hardware. An

implementation with double data types for the mutual histogram can also be explored

on a supporting GPU.

 57

Chapter 6: Conclusions

We have seen that the 32 processor cluster is able to reduce the time of registering

two 256x256x256 CT images from 2 hours to 7.5 minutes. We get a speedup of

approximately 16. We had indicated that a dynamic algorithm for assigning

subvolumes to idle processors in the cluster will help improve speedup by better load

balancing.

By dividing the image based on its histogram rather than a spatial subdivision we

showed how the bit-slicing algorithm allows speeding up of mutual information

computation by reducing the communication time. The bit-slicing algorithm is useful

for scaling up the computation of mutual histogram to many processors. We see that

for 32 processors in the cluster, the communication time is only 0.7% of the total

processing time. However, for computation of mutual information by image

subdivision the communication time is 23% of the computation time for 32

processors. With increasing processors the communication will become much more

significant in the latter case. The bit-slicing algorithm, on the other hand, will allow

the number of processors to be scaled up much higher. Taking the bit-slicing

algorithm onto a cluster with many more processors is one avenue that can be

explored.

An application of the bit-slicing algorithm on the GPU has also been demonstrated.

While previous investigators were unable to implement mutual information

computation with PV interpolation for sufficient number of bins, the bit-slicing

algorithm has made this possible for us. Our implementation has given a speedup of

 58

six but has been limited by the lack of hardware support for atomic updates.

Investigation of the bit-slicing algorithm on another GPU board with hardware

support of atomic updates will be necessary to judge how much speedup can be

obtained. The bit-slicing algorithm can also be used to implement computation of

mutual information from mutual histogram having memory locations of type double

on a supporting GPU board.

 59

 Bibliography

 [1] F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens,

Multimodality image registration by maximization of mutual information, IEEE

Trans. Med. Imag., vol. 16, no. 2, pp. 187–198, Apr.1997.

[2] W.M. Wells, P. Viola, H. Atsumi, S. Nakajima, R. Kikinis, Multi-modal volume

registration by maximization of mutual information, Medical Image Analysis 1

(1996) 35-51

[3] J.P.W. Pluim, J.B.A. Maintz, M.A. Viergever, Mutual-information-based

registration of medical images: A survey, IEEE Trans. Med. Imaging 22 (8) (2003)

986–1004.

[4] V.Walimbe and R. Shekhar, “Automatic elastic image registration by

interpolation of 3-D rotations and translations from discrete rigid-body

transformations,” Med. Image Anal., vol. 10, pp. 899–914, 2006.

[5] D. Rueckert, L.I. Sonoda, C. Hayes, D.L.G. Hill, M.O. Leach, D.J. Hawkes,

Nonrigid registration using free-form deformations: application to breast MR images,

IEEE Trans. Med. Imaging 18(8) (1999) 712–721.

[6] O.Dandekar and R. Shekhar, FPGA-Accelerated Deformable Image Registration

for Improved Target-Delineation During CT-Guided Interventions, IEEE

Transactions on Biomedical Circuits and Systems, vol. 1, no. 2, June 2007

[7] F. Ino, K. Ooyama, and H. Kenichi, A data distributed parallel algorithm for non-

rigid image registration, Parallel Computing, vol. 31, pp.19–43, 2005

 60

[8] Victor Podlozhnyuk, 64-bin Histogram,

http://developer.download.nvidia.com/compute/cuda/sdk/website/projects/histogram6

4/doc/histogram64.pdf

[9] NVIDIA CUDA Programming Guide, ver 1.1,

http://developer.download.nvidia.com/compute/cuda/1_1/NVIDIA_CUDA_Progr

amming_Guide_1.1.pdf

[10] R. Shams and N. Barnes. Speeding up mutual information computation using

Nvidia CUDA hardware, Digital Image Computing Techniques and Applications,

pages 555–560, 2007

[11] R. Shams and R. A. Kennedy, Efficient histogram algorithms for NVIDIA

CUDA compatible devices, Proc. Int. Conf. on Signal Processing and

Communications Systems (ICSPCS), Gold Coast, Australia, Dec. 2007, pp. 418-422

[12] MPICH2 User's Guide, ver 1.0.5,

http://www.mcs.anl.gov/research/projects/mpich2/documentation/files/mpich2-

doc-user.pdf

[13] Message Passing Interface (MPI), SP Parallel Programming Workshop,

http://www.mhpcc.edu/training/workshop/mpi/main.html

[14] C. Studholme, D. L. G. Hill, and D. J. Hawkes, “An overlap invariant entropy

measure of 3D medical image alignment,”Pattern Recognit., vol. 32, no. 1, pp. 71–86,

1998

[15] A. Collignon, F. Maes, D. Delaere, D. Vandermeulen, P. Seutens, and G. Mar.al,

Automated multimodality image registration using information theory, in Information

Processing Medical Imaging: Proc. 14th Int. Conf. IPMI’95, 1995, pp. 263–274

 61

[16] Krucker, J.F., LeCarpentier, G.L., LeCarpentier, G.L., Fowlkes, J.B., Carson,

P.L., 2002, Rapid elastic image registration for 3-D ultrasound, IEEE Trans. Med.

Imaging 21, 1384–1394

[17] A. Collignon, D. Vandermeulen, P. Suetens, and G. Marchal, “3D multimodality

medical image registration using feature space clustering,” in Proc. 1st Int. Conf.

Computer Vision, Virtual Reality and Robotics in Medicine; Lecture Notes in

Computer Science 905, N. Ayache, Ed. New York: Springer-Verlag, Apr. 1995, pp.

195–204.

[18] J. B. West, J. M. Fitzpatrick, M. Y. Wang, B. M. Dawant, C. R. Maurer, Jr., R.

M. Kessler, R. J. Maciunas, C. Barillot, D. Lemoine, A. Collignon, F. Maes, P.

Suetens, D. Vandermeulen, P. A. van den Elsen, S. Napel, T. S. Sumanaweera, B.

Harkness, P.. Hemler, D. L. G. Hill, D. J. Hawkes, C. Studholme, J. B. A. Maintz, M.

A. Viergever, G. Malandain, X. Pennec, M. E. Noz, G. Q. Maguire, Jr., M. Pollack,

C. A. Pelizzari, R. A. Robb, D. Hanson, and R. P. Woods, “Comparison and

evaluation of retrospective intermodality image registration techniques,” J. Comput.

Assisted Tomogr., vol. 21, pp. 554–566, 1997

[19] Yuping Lin, Medioni G, Mutual information computation and maximization

using GPU, Computer Vision and Pattern Recognition Workshops, 2008. CVPR

Workshops 2008. IEEE Computer Society Conference on 23-28 June 2008

Page(s):1 -6

[20] S. Warfield, F. Jolesz, R. Kikinis, A high performance computing approach to

the registration of medical imaging data, Parallel Computing 24 (9/10) (1998) 1345–

1368

 62

[21] C. Studholme, D. L. G. Hill, and D. J. Hawkes, “An overlap invariant entropy

measure of 3D medical image alignment,” Pattern Recognition, vol. 32, no. 1, pp. 71

86, 1999

[22] Pluim, J.P., Maintz, J.B.A., 2000. Interpolation artefacts in mutual information

based image registration. Comput. Vis. Image Understanding 77, 211–232

[23] Victor Podlozhnyuk, Histogram Calculation in CUDA,

http://developer.download.nvidia.com/compute/cuda/sdk/website/projects/histogram2

56/doc/histogram.pdf

