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Non-rigid image registration finds use in a wide range of medical applications 

ranging from diagnostics to minimally invasive image-guided interventions. 

Automatic non-rigid image registration algorithms are computationally intensive in 

that they can take hours to register two images. Although hierarchical volume 

subdivision-based algorithms are inherently faster than other non-rigid registration 

algorithms, they can still take a long time to register two images. We show a parallel 

implementation of one such previously reported and well tested algorithm on a cluster 

of thirty two processors which reduces the registration time from hours to a few 

minutes.  

 

Mutual information (MI) is one of the most commonly used image similarity 

measures used in medical image registration and also in the mentioned algorithm. In 

addition to parallel implementation, we propose a new concept based on bit-slicing to



accelerate computation of MI on the cluster and, more generally, on any parallel 

computing platform such as the Graphics processor units (GPUs). GPUs are 

becoming increasingly common for general purpose computing in the area of medical 

imaging as they can execute algorithms faster by leveraging the parallel processing 

power they offer. However, the standard implementation of MI does not map well to 

the GPU architecture, leading earlier investigators to compute only an inexact version 

of MI on the GPU to achieve speedup.  The bit-slicing technique we have proposed 

enables us to demonstrate an exact implementation of MI on the GPU without 

adversely affecting the speedup. 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 



 
 
 
 
 
 
 

PARALLELIZATION OF NON-RIGID IMAGE REGISTRATION 
 
 
 

By 
 
 

Mathew Philip 
 
 
 
 
 

Thesis submitted to the Faculty of the Graduate School of the  
University of Maryland, College Park, in partial fulfillment 

of the requirements for the degree of 
Master of Science 

2008 
 
 
 
 
 
 
 
 
 
 
Advisory Committee: 
Professor Raj Shekhar, Chair 
Professor Shuvra S. Bhattacharyya 
Professor Peter Petrov 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© Copyright by 
Mathew Philip 

2008 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



ii 

 
 

Acknowledgements 

 
First and foremost, I offer my utmost gratitude to my advisor, Dr. Raj Shekhar 

without whose supervision, patient direction and technical expertise this thesis would 

not have been possible., Our many insightful discussions and his constructive 

feedback at various stages, have been instrumental in shaping this work on to 

completion. I would also like to thank Dr. Shuvra Bhattacharyya and Dr. Peter Petrov 

for serving on my thesis committee amidst their busy schedules. 

 

I am also grateful to my colleagues at the Imaging Technologies Laboratory, 

Baltimore who created a stimulating and cooperative working atmosphere. In 

particular, I greatly appreciate Dr. William Plishker's invaluable suggestions and 

assistance on various aspects of my research.  

 

Finally, I am forever indebted to my wife, Pam for her support and encouragement at 

all times. I also am grateful to my parents, Philip and Mercy who have always guided 

me and directed my steps. On a different note, many people have been part of my 

graduate education and I take this opportunity, to thank them all.  

 

 
 
 
 
 
 



iii 

 
 
                                   Table of Contents 

 
Ackowledgements .....................................................................................................ii 
Table of Contents .....................................................................................................iii 
List of Tables............................................................................................................iv 
List of Figures ...........................................................................................................v 
Chapter 1: Introduction and Motivation .....................................................................1 

Introduction ...........................................................................................................1 
Contribution of this Thesis.....................................................................................2 
Outline of Thesis ...................................................................................................3 

Chapter 2: Background on Image Registration ...........................................................5 
Image Registration.................................................................................................5 
Rigid Registration..................................................................................................9 
Non-Rigid Registration........................................................................................11 
Hierarchical Subvolume Division based Non-rigid Registration...........................13 

Chapter 3: Parallelization of Hierarchical Volume Subdivision based Registration ..15 
Introduction .........................................................................................................15 
Hardware Setup ...................................................................................................15 
Implementation....................................................................................................16 
Results.................................................................................................................20 

Chapter 4: MI Calculation from Mutual Histogram based on Bit-Slicing .................26 
Introduction .........................................................................................................26 
Implementation....................................................................................................29 
Results.................................................................................................................35 

Chapter 5: MI Calculation on GPU using Bit-Slicing...............................................41 
Introduction .........................................................................................................41 
GPU Architetcure ................................................................................................42 
Implementation....................................................................................................45 
Results.................................................................................................................54 

Chapter 6:  Conclusions...........................................................................................56 
Bibliography............................................................................................................58 
 
 
 
 
 
 
 
 
 



iv 

                                       List of Tables 
 
Table 3.1 Execution time, speed up and accuracy for registering four CT image using 
four subdivision levels of sub-volume division based non rigid registration………. 23 
 
Table 3.2 Accuracy, execution time and speedup for different configurations of the 
cluster for registering CT images of the abdomen for four subdivision levels of sub-
volume division based non rigid registration………………………………………...24 
 
Table 3.3 Break up of execution time for different configurations of the cluster for 
registering two 256x256x256 CT images of the abdomen using four subdivision 
levels of sub-volume division based non rigid registration……………………….....25 
 
Table 3.4 Computation time for processors that take the maximum time and 
processors that take the minimum time given for different levels and different 
configurations of the cluster. Communication time is also shown…………………..26 
 
Table 3.5 Breakup of computation time in rigid registration on various configurations 
of the cluster (All run on 8 nodes)…………………………………………………...26 
  
Table 4.1 Execution time for rigid registration of three CT images shown for different 
configurations of the cluster with and without bit-slicing algorithm………………...38 
 
Table 4.2 Accuracy of rigid registration using bit-slicing algorithm as compared to 
the single CPU version. ………………………………..…………………………….36 
 
Table 4.3 Histogram computation time and the associated communication time for 
different cluster configurations………………………………………………….......42 
 
Table 5.1 Comparison of CPU and GPU execution times for rigid registration using 
mutual information computed from mutual histogram having floating point 
counters………………………………………………………………………………57 
 
Table 5.2 indicates that registration using the bit-slicing algorithm for computing the 
mutual information on the GPU recovers the same transformation parameters as the 
rigid registration process on a single processor……………………………………...57 
 
 
 
 
 
 
 
 
 
 



v 

                                                   List of Figures 
 
 
Figure 2.1 Mutual Histogram at different angles of rotation when registering an MR 
image with itself ........................................................................................................8 
 
Figure 2.2 A flow diagram showing the process of rigid registration........................10 
 
Figure 2.3 PV interpolation shown for 2D images....................................................11 
 
Figure 2.4 Computation of probability density from the mutual histogram...............12 
 
Figure 2.5 Hierarchical subvolume division based non rigid registration..................16 
 
Figure 3.1 Eight node cluster set-up.........................................................................19 
 
Figure 3.2 Rigid part parallelization of the hierarchical subvolume based algorithm.21 
 
Figure 3.3 Average speedup for different configurations of the cluster.....................23 
 
Figure 3.4 Overlay of CT image ..............................................................................24 
 
Figure 4.1 Mutual Histogram on each processor after processing using the bit-slicing 
algorithm on a cluster with four processors..............................................................31 
 
Figure 4.2 Execution time for different configurations of the cluster with and without 
the bit-slicing algorithm for image set 1...................................................................38 
 
Figure 4.3 Execution time for different configurations of the cluster with and without 
the bit-slicing algorithm for image set 3...................................................................38 
 
Figure 4.4 Histogram of the reference image ...........................................................39 
 
Figure 4.5 Distribution of voxels on 8 processors.....................................................39 
 
Figure 4.6 Distribution of voxels on 16 processors...................................................39 
 
Figure 4.7 Distribution of voxels on 32 processors...................................................40 
 
Figure 5.1 Tesla Architecture...................................................................................45 
 
Figure 5.2 CUDA Programming Model ...................................................................47 
 
Figure 5.3 Mutual Histogram divided between four blocks .....................................49 
 
Figure 5.4 Mutual Histogram assigned to a block being split ...................................53



 1 
 

 
 

 Chapter 1: Introduction and Motivation 

Image Registration is the process of geometrically aligning two images. One of the 

images known as the reference image is kept unchanged, while the second image, 

known as the floating image, is allowed to deform to match the reference image. 

The floating image is then re-sampled on the grid of the reference image, which 

allows us to overlay or subtract the two, depending on the specific application needs. 

This is extremely useful in many areas in the medical field. For example, the field of 

diagnostic medicine benefits from a new type of image created from complementary 

information of images acquired using different technologies (modalities). Another 

application area is the field of image-guided interventions, in which pre-operative 

images often need to be registered with intra-operative images. Image registration can 

be classified either as rigid or non-rigid. In rigid registration, the floating image is 

only allowed to translate and rotate while in non-rigid registration we allow the 

floating image to deform in a more complex manner.  

 

Many applications need non-rigid registration as rigid registration is insufficient to 

recover misalignments between two images. However non-rigid registration is 

computationally very intensive and can take many hours to register two images. One 

technique for non-rigid registration is the FFD (free form deformation) based 

approach, which takes approximately 12 hours to align two CT images of the liver 

having a size of 512 x 512 x 295 on a single 1-GHz Pentium III system [7]. Such a 

long execution time prevents the use of such an algorithm in many practical 
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applications. Parallel processing power offered by cluster computing has been used 

previously to address this issue [7]. In the paper by Ino et al. [7], a cluster of 128 

processors is used to parallelize FFD-based registration to reduce the computation 

time to ten minutes. However, non-rigid registration based on hierarchical volume 

subdivision is inherently faster than other non-rigid registration algorithms [16].  By 

parallelizing this type of non-rigid registration algorithm, we are able to perform 

accurate registration with far less hardware and also have the ability to scale up the 

hardware to reduce processing time even further.  

Contributions of this Thesis 

We use cluster computing to parallelize a non-rigid registration algorithm based on 

hierarchical volume subdivision which has previously been reported by Walime and 

Shekhar[4]. We are able to reduce processing time from 2 hours for registering CT 

images of size 256 x 256 x 256 to an acceptable 8 min on a cluster of 32 processors. 

Mutual Information (MI) is a widely used similarity metric in image registration and 

is also used in the above mentioned algorithm. Mutual information based registration 

is an iterative process which tries to maximize the similarity metric (MI). To compute 

mutual information the probability densities of the intensities of the two images need 

to be estimated. There are two main techniques for estimating the probability 

densities for computing mutual information The parzen window approach is 

computationally more demanding than the mutual histogram approach. The mutual 

histogram for estimating probabilities for image registration has been shown to be 

accurate [1]. The mutual histogram approach is also used in the volume subdivision 

based non-rigid registration algorithm.  
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We also demonstrate a new technique based on bit-slicing for computing mutual 

information from the mutual histogram on a parallel computing platform. In contrast 

to the most common way of constructing the mutual histogram by assigning portions 

of the reference image to different compute cores on a parallel platform, we divide 

the reference image based on its histogram. In this approach the portion of the image 

assigned to a compute core on the parallel platform depends on the area of the 

histogram assigned to it. We exhibit how this technique further reduces processing 

time on the cluster and also how this algorithm maps on to a graphics processor unit 

(GPU). GPUs are becoming increasingly widespread for use in general purpose 

computing as they are able to accelerate algorithms with the parallel computing 

power they offer. While registration algorithms have been implemented on GPUs 

with promising results, exact and efficient MI computation from mutual histogram 

has not been possible. Previous investigators have not been able to perform a full MI 

implementation without sacrificing speedup [11] as they were not able to utilize the 

limited shared memory size of the GPU. By using the bit-slicing technique we show 

how we are able to work around the shared memory size and also parallelize the 

computations involved in computing MI without an additional communication 

overhead.   

 

Outline of Thesis 

This thesis is structured in the following manner. Chapter 2 gives a brief background 

on image registration and the different techniques commonly used in image 
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registration. In the same chapter we introduce mutual information which is a widely 

used similarity metric for image registration. We also go on to present the hierarchical 

subvolume based non rigid registration algorithm which we have used in the work we 

present in this thesis.  

 

Chapter 3 covers the cluster implementation of the hierarchical subvolume based non 

rigid registration algorithm. We also present results for this implementation.  

 

Chapter 4 introduces the bit-slicing algorithm for computing mutual information on a 

parallel platform. We present details of the implementation of this algorithm on a 

cluster followed by the associated results. 

 

Chapter 5 describes how the bit-slicing algorithm allows us to map computation of 

mutual information on to a GPU. Results for this implementation are also presented in 

this chapter. 

 

Chapter 6 is a discussion of the work we present in this thesis. We also cite areas for 

future work in this field.  
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Chapter 2: Background on Image Registration 

Image Registration 

There are several different techniques for image registration [1]. Landmark-based 

methods use corresponding landmarks in the two images to align them. Surface-based 

techniques use delineation of corresponding surfaces in both images. Landmark-based 

techniques are labor intensive if the landmarks are identified manually and also 

dependent on how accurately the landmarks are identified. If done automatically, the 

accuracy of registration will depend on how well corresponding landmarks are 

identified. Surface-based methods will also depend on how well the surfaces are 

extracted and this will be highly data dependent. The technique we use comes under 

voxel-based registration methods, which optimize a function measuring the similarity 

of geometrically corresponding voxels pairs. This technique is not influenced by 

segmentation errors. Algorithms which have been proposed for voxel-based 

registration methods have used metrics like absolute difference between image 

intensities of regions of interest. However, this is not suitable for multimodality 

applications as absolute difference assumes that there is a linear dependence between 

image intensities of the two images which may not be true. Other algorithms in this 

genre have proposed cross correlation of intensities in corresponding regions. This 

also assumes some form of linear relationship between intensities of the two images.  

 

Mutual Information-based approach was first suggested by Collignon et al. [15] and 

Wells, et al. [2]. The advantage with this approach is that no assumptions are made 

regarding the dependence of intensities of the two images. Mutual Information based 
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registration has been shown to align images accurately and robustly [18]. Mutual 

information is a statistical concept used to measure the dependence between two 

random variables. 

I(X,Y) = H(X) – H(X/Y)      (1) 

 = H(Y) – H(Y/X)      (2) 

 = H(X) + H(Y) – H(X,Y)       (3) 

Intuitively, entropy H(X) is regarded as a measure of uncertainty which is also a 

measure of the amount of information of random variable X. H(X|Y) is a measure of 

the amount of uncertainty remaining in X after Y is known. The right side of equation 

1 can be read as "the amount of uncertainty in X, minus the amount of uncertainty in 

X which remains after Y is known," which is equivalent to "the amount of uncertainty 

in X which is removed by knowing Y." This corroborates the intuitive meaning of 

mutual information as the amount of information (that is, reduction in uncertainty) 

that knowing either variable provides about each other. 

 

Image registration uses mutual information to measure the statistical dependence of 

intensities of corresponding voxels in the floating and reference images. We consider 

intensities from the reference and floating images as random variables. The 

registration process searches through different candidate transforms to find the best 

transform. At each candidate transform, the MI value is computed by looking at 

intensities in corresponding locations to find joint probability density of intensities 

and also the probability density of the intensity of each image.  As discussed the 

mutual information value indicates the reduction in uncertainty in the distribution of 
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one random variable (intensity of reference image in this case) by knowledge of the 

intensity distribution of the floating image. Thus the candidate transform which 

reduces the uncertainty the most or, in other words, that maximizes mutual 

information is the best transform as that transform indicates when the two random 

variables are the most dependent. In order to compute probability densities required 

for mutual information calculation, Wells et al. [2] used the Parzen window approach. 

The probability density and joint probability density of intensities of the two images 

is estimated for each candidate transformation using Parzen windows. However this 

approach is computationally intensive. Another method that has been used widely is 

the mutual histogram method of estimating probabilities. This approach has been 

shown to give accurate registration results by Maes et al. [1]. 

 

The mutual histogram is computed by looking at corresponding voxels in the two 

images to be registered. The intensities of the voxels in corresponding locations are 

used to index a 2D array and increment the value at that location by 1. This is 

repeated for all corresponding voxels in the two images. The intensity of one of the 

images is used to index one axis of the mutual histogram while intensity of the 

corresponding voxel is used to index the other axis of the mutual histogram. Fig 2.1 

shows the mutual histogram for registering a magnetic resonance (MR) image with 

itself. When the image is aligned with itself then corresponding voxels have the same 

intensity and the mutual histogram is always incremented along a line. This is 

illustrated in the first panel of Fig. 2.1. The joint histogram of two images disperses 

with mis-registration.  
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      0 Degrees                  2 Degrees                    5 Degrees                     10 Degrees 

Fig 2.1 Mutual Histogram at different angles of rotation when registering an MR 
image with itself (Courtesy [3]) 
 

When the images are registered then there is clustering in the mutual histogram. Joint 

entropy is a measure of the uncertainty or dispersion in the mutual histogram. Thus 

when the images are registered there is more clustering and thus joint entropy is 

minimal. During the registration process, the joint histogram is created from the 

overlapping sections of the two images. If we use only the joint entropy as the metric 

during registration then the mutual histogram could show maximal clustering when 

only the background of the two images overlap. This will result in a very small value 

for joint entropy which will give wrong results during registration. However, mutual 

information incorporates entropy of the two images in the metric and when the 

images have just the background in them, the individual entropies are low and hence 

maximization of MI is a more accurate metric to use in registration.  

 

However mutual information can actually increase with increasing misregistration. 

This can occur when the relative areas of object and background even out and the 

sum of the marginal entropies increases, faster than the joint entropy. We use a 
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variant of mutual information, called normalized mutual information (NMI), for 

registration which has been shown to be even more overlap invariant than MI [21]. 

NMI can be calculated using the following formula.  

),(
)()(),(

BAH
BHAHBANMI 

   

Rigid Registration 

Rigid registration allows only rotations and translations of the floating image during 

the registration process. Fig 2.2 illustrates the process of rigid registration. The 

registration process is iterative. Different candidate transforms are applied to 

reference image. For each candidate transform the metric (mutual information) is 

evaluated. The iterative process stops when mutual information function reaches 

maximum. The optimizer block in Fig 2.2 ensures that the search space of the applied 

transform is stepped through in an optimal fashion. From Fig 2.2 we see that the 

transform is applied on the reference image. This is to avoid the problem of holes 

when re-sampling the floating image on the reference image. Once the transform that 

maximizes MI is computed, the floating image has to be resampled on to the 

reference grid. Since we know the transformation that takes us from reference image 

to floating image the intensity at the matching location in floating image space can be 

determined for each grid location of the reference image. This can be used to 

resample the floating image on to the reference image grid. If the transformed point in 

the floating image does not lie on a grid position the algorithm uses trilinear 

interpolation involving intensities of surrounding voxels. If the transformation had 

been computed for the floating image, then when we re-sample onto the reference 
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grid, there could be possible grid locations that we miss resulting in holes in the re-

sampled image.  

 

Fig 2.2 A flow diagram showing the process of rigid registration. 
 

Fig 2.2 also indicates an interpolation stage before mutual information is calculated. 

This is because mutual information is calculated from the mutual histogram which is 

computed by looking at corresponding voxel locations for each candidate transform 

as has been described earlier. A transform applied on the reference image may result 

in a corresponding location in the floating image which is not on a grid position, 

warranting some form of interpolation. We use a special form of interpolation, called 

PV interpolation, for computing the mutual histogram as it has been shown [1] to give 

a smooth registration function which is necessary during optimization to ensure 

 Transform Interpolation   Optimizer 

   Metric (MI) 

 
Reference 
Image 

 
Floating 
Image 

Is MI 
max? 

No 

Yes 

Resample floating 
image 
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accurate registration. PV interpolation ensures sub-voxel accuracy. PV interpolation 

is performed as follows: We update the mutual histogram in a weighted manner by 

indexing the mutual histogram with joint intensities obtained by the reference image 

voxel lying in between the grid location of the floating image and the voxels at the 

nearest eight corners of the floating image.  

 

 

Fig 2.3 PV interpolation on a 2D image (Courtesy [1]) 

 

Once the mutual histogram is computed for each candidate transform the MI value is 

calculated from the joint entropy and the entropy of each image. The mutual 

histogram is used to compute the entropy from the probability density of the 

intensities of the two images. The joint probability density is calculated by 

normalizing each value in the mutual histogram. This is illustrated in Fig 2.4.  

Fig 2.4 also illustrates that the probability density of image A (reference image) is 

calculated by summing the values in the mutual histogram along the rows followed 

by normalization. Similarly the probability density of image B is computed by 

summing the values in the mutual histogram by summing along the columns followed 
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by normalization.  Once the probability densities are computed the entropies are 

calculated from equations 5, 6, 7. Finally MI can be computed from equation 4.  

),()()( BAHBHAHMI         (4) 
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Fig 2.5 An illustration of how to compute probability density form the mutual 
histogram 

Non-rigid Registration 

Non-rigid registration allows for the floating image to deform in a complex manner. 

While rigid registration limited the deformation to rotations and translations, non-

rigid registration allows many more degrees of freedom. One popular way of 
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modeling non-rigid registration is by the using free form deformation (FFD) [5]. In 

this approach the image is allowed to deform by manipulating a mesh of control 

points. The degree of non-rigid deformation that can be modeled is dependent on the 

resolution of this mesh. This form of non-rigid registration is also an iterative process. 

The mesh of control points are allowed to deform and the resulting deformed image is 

compared with the reference image to evaluate the degree of similarity between the 

two. To recover finer misalignments the mesh of control points need to be at a high 

resolution. However, the computational demand of the algorithm increases as there 

are more control points to optimize to compare the two images.  

 
Another class of non-rigid registration algorithms models the misalignment between 

the two images by multiple local rigid body registrations. These algorithms generally 

subdivide the image into smaller subvolumes and perform independent rigid 

registration on each subvolume. To recover finer misalignments the registered 

subvolumes are divided further and registered. A smoothly varying transformation 

field is generated from the independent subvolume registration results by 

interpolation to create the deformed image. Image subdivision based algorithms for 

non-rigid registration are inherently fasters than other non-rigid registration 

algorithms [5]. In this thesis we worked on the non-rigid registration algorithm of this 

class proposed by Walimbe and Shekhar[4]. We describe this algorithm in the next 

section.  
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 Hierarchical Volume Subdivision based Non Rigid Registration 

The algorithm as proposed in [4] allows six degrees of freedom (three translations 

and three rotations) for the rigid registration of each subvolume. Volume subdivision 

based algorithms previously allowed only translations for the subvolume registrations 

because interpolating the registration results which allowed for rotations was difficult. 

This algorithm is able to interpolate rotations by using quaternion interpolation. Thus 

this algorithm is able to model complex misalignments at larger subvolumes. The 

previously adopted translation only approach had to register smaller subvolumes to 

recover the same amount of misalignment and this also is prone to more error from 

interpolation of many small subvolumes. The ability to recover complex 

misalignments without having to divide the image into very small subvolumes poses 

the advantage of less execution time.  

 

This algorithm proceeds by first performing a rigid registration as illustrated by the 

second cube in Fig 2.6. The rigid registration mechanism proceeds as described in the 

section on rigid registration. Once the global misalignment has been recovered, local 

misalignment is recovered by dividing the image into 8 sub-volumes and 

independently performing local rigid registration on each subvolume. This is 

illustrated by the 3rd and 4th cubes in Fig 2.6. To further recover misalignments, each 

subvolume is divided into 8 smaller subvolumes. Thus at the second level of 

registration there are 64 subvolumes to register. The process of dividing the 

subvolume carries on till a predefined subvolume size. 
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However, for small subvolumes there are only a few voxels for creating the mutual 

histogram. This can lead to artifacts in the registration function which may result in 

registration errors [22]. The mentioned algorithm addresses this problem by 

compiling the mutual histogram as the sum of two mutual histograms MHsubvoluime  

and  MHrest. MHsubvoluime is compiled by the voxels of subvolume being registered 

while MHrest is compiled from the rest of the voxels. MHrest does not vary as the 

subvolume transformation is being optimized. It is therefore only a one time overhead 

for each subvolume. As the subvolume transformation is being optimized MHsubvoluim 

varies and hence the summed mutual histogram is proportionally influenced. This 

reflects in the NMI and the problem of having a sparse mutual histogram is avoided.    

 

Once all the subvolumes have been registered, a smooth deformation field is created 

by interpolating the registration results of each subvolume. The deformation field is 

used to resample the floating image on the reference image grid. The translations can 

be linearly interpolated to generate the translation component of each voxel in the 

deformation field. The three rotations are interpolated by quaternion based 

interpolation.   

 

 
 
Fig 2.5 Hierarchical subvolume division based non rigid registration (Courtesy  [6]) 
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Chapter 3: Parallelization of Hierarchical Volume Subdivision 
based Registration 

Introduction 

We parallelized the hierarchical volume subdivision based registration algorithm [4] 

to run on a cluster of eight nodes each with four cores, effectively giving a total of 32 

processors for processing. Though this algorithm is inherently faster than other non-

rigid registration techniques, a single processor implementation can take several 

hours for processing. The parallel implementation we present reduces the processing 

time significantly. The technique used for parallelizing this registration algorithm is 

undertaken in two parts. First the rigid registration part is parallelized followed by 

parallelization of the non-rigid volume sub-division part. We present results for 

various configurations of the cluster and for four image sets.  

Hardware Setup 

We use an eight node cluster each with two dual-core Intel Xeon processors running 

at 2.33 GHz. Each of the nodes has 4GB RAM that is shared by the four cores. The 

nodes are connected together using a 1-Gbps Ethernet switch. APIs provided by MPI 

are used for communication between the individual cores [12]. MPI is a language 

independent communications protocol that is widely used to program parallel 

computers. We used the MPICH2 implementation of MPI which is developed by 

Argonne National Laboratory (Argonne, IL). The nodes run Linux. During run time 

the MPI environment assigns a single process to each core. With the above mentioned 

cluster setup, MPI can abstract the number of cores and nodes to effectively give 
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thirty two processors at our disposal. Figure 3.1 shows the cluster setup used in this 

research.  

 

Fig 3.1 Eight node cluster connected together by a 1Gbps Ethernet switch. Each node 
has two duo core Intel Xeon processors running at 2.33GHz with 4GB RAM.   

Implementation 

As presented earlier, the volume subdivision based registration algorithm [4] 

proceeds by first performing a global rigid registration, followed by levels of rigid 

registration of hierarchically divided subvolumes to recover local misalignments. The 

volume sub-division part of the algorithm cannot proceed without first finishing the 

global rigid registration. As a result we parallelize the rigid registration part followed 

by the non-rigid registration part.  

 

Internet

8x1Gbps 
Switch 



 18 
 

The most intuitive way of parallelizing rigid registration is to have each processor in 

the cluster process a part of the image. For load balancing the reference image is 

divided equally among the processors so that each processor processes the same 

number of voxels. The individual processors compute the mutual histogram with the 

voxels assigned to it. Although a processor only needs the portion of reference image 

during the rigid phase of the sub-volume division based non rigid registration 

algorithm, the complete reference image and floating image were stored on each node 

for following reasons. The complete reference image is store on each node because 

we require access to the entire reference image for parallelizing the non rigid part of 

the algorithm where as the floating image was stored on each node for this same 

purpose as well as the fact it is required during the rigid part of the algorithm because 

although we are processing only a part of the reference image on each processor, the 

candidate transform being evaluated may cause the corresponding voxel to lie 

anywhere in the floating image. Memory was not a limiting size for storing the 

images on the cluster. However we store only one copy on each node because the 

hardware schedules access to the data by four cores on each node. The mutual 

histogram is a 2D array that indicates how many times a pair of intensities at 

corresponding voxel locations (in the reference and floating images) occur. Since we 

are processing a part of the image on each node, each node has to store a 2D array the 

size of the original mutual histogram, which we call a partial mutual histogram. The 

final mutual histogram is computed by summing all the partial mutual histograms. 

This is illustrated in Fig 3.2. 
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The algorithm for parallelizing the rigid part of the volume subdivision based non-

rigid registration can be summarized as follows: 

1) At each iteration of the rigid registration process, a processor in the cluster 

processes only a portion of the reference image for computing the MI value 

2) The mutual histogram is computed on each processor. Each processor has a 

partial mutual histogram at the end of the processing stage.  

3) The partial mutual histogram on each processor is summed together to get the 

mutual histogram. The total voxels processed by each node is summed to get 

the total voxels in the mutual histogram. This stage involves network 

communication between the nodes.  

4) The MI value is computed and passed on to the optimization stage to check 

whether we can stop the iteration 
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Fig. 3.2 Parallelization of the rigid part of hierarchical subvolume based registration 
algorithm. Each node computes a partial mutual histogram which are summed 
together to get the mutual histogram. 
 
The non-rigid part of the subvolume division based non rigid registration takes place 

over different levels. At each level of sub-division we perform rigid registration on 

the subvolumes. The sub-volume registrations are independent and thus they can be 

assigned to different processors. Once all the subvolumes at a level have been 
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processed by the processors in the cluster, we communicate across the registration 

parameters to all the other processors so that registration parameters for all the 

subvolumes are available on each processor. We then go on to the next sub-division 

level. At the first sub-division level, there are eight sub-volumes to be registered. If 

the number of processors in the cluster is more than eight we use only eight of the 

processors while the other processors remain idle. At the next sub-division level we 

have sixty four sub-volumes while we only have 32 two processors in the cluster 

hence none of the processors are idle. To assign a sub-volume to a processor for 

processing we first number each sub-volume sequentially. Then we assign to each 

processor the subvolume whose number modulus the total number of processors in 

the cluster is equal to the processor number which is assigned by MPI during run 

time.  

Results 

All the Results shown are form 256x256x256 CT images. The voxel sizes in mm are: 
Reference Image: 1.56, 1.56, 1.5 
Image #1: 1.484375, 1.484375, 1.605468 
Image #2: 1.484375, 1.484375, 1.716798 
Image #3: 1.484375, 1.484375, 1.68750 
Image #4: 1.484375, 1.484375, 1.68750 
 

Table 3.1: Execution time, speed up and accuracy for registering four CT 
256x256x256 images. of the abdomen using four subdivision levels of subvolume 
division based non rigid registration   

 #1 #2 #3 #4 
Single CPU accuracy (mm) 

 
32 CPU accuracy (mm) 

 
Single CPU Time (seconds) 

 
32 CPU Time (seconds) 

 

0.71 
 

0.71 
 

7380 
 

452 

0.82 
 

0.82 
 

7234 
 

452 

0.85 
 

0.85 
 

7403 
 

454 

0.73 
 

0.73 
 

7374 
 

451 

32 CPU Speedup 16.3 16 16.3 16.4 
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 #1 #2 #3 #4 

Accuracy(mm) 
Single CPU  

(Run on 8 Nodes) 
8 Processor  

16 Processor  
32 Processor  

 

 
0.71 

 
0.71 
0.71 
0.71 

 

 
0.82 

 
0.82 
0.82 
0.82 

 
0.85 

 
0.85 
0.85 
0.85 

 
0.73 

 
0.73 
0.73 
0.73 

Execution Time(s) 
Single CPU  

(Run on 8 Nodes) 
8 Processor  

16 Processor  
32 Processor  

 
7380 

 
1158 
686 
452 

 
7234 

 
1102 
714 
452 

 
7403 

 
1153 
697 
451 

 
7374 

 
1128 
682 
455 

Speedup 
8 Processor 

16 Processor 
32 Processor  

 
6.37 

10.75 
16.3 

 
6.56 

10.13 
16 

 
6.42 

10.62 
16.4 

 
6.54 

10.81 
16.2 

    
Table 3.2: Accuracy, execution time and speedup for different configurations of the 
cluster for registering two 256x256x256 CT images of the abdomen four subdivision 
levels of subvolume division based non rigid registration 
 
 
 

Average Performance Improvement
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                 Fig 3.3: Average speedup for different configurations of the cluster 
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Table 3.3: Break up of execution time for different configurations of the cluster for 
registering two 256x256x256 CT images of the abdomen using four subdivision 
levels of subvolume division based non rigid registration.  
 

 
 
Fig 3.4: Overlay of 256X256 CT images of the liver before and after registration 
using four subdivision levels of subvolume division based non rigid registration  
 

 #1 #2 
1 CPU Execution Time (s) 

1 CPU Rigid 
1st Level 
2nd Level  
3rd Level  
4th Level  

Total  
 

 
104 
231 
374 
1226 
5445 
7380 

 
136 
229 
362 

1175 
5332 
7234 

8 CPU Execution Time (s) 
Global Rigid Level 

1st Level 
2nd Level  
3rd Level  
4th Level  

Total: 

 
21 
79 
95 

206 
757 
1158 

 
26 
72 
91 
200 
713 

1102 
16 CPU Execution Time (s) 

Global Rigid Level 
1st Level 
2nd Level  
3rd Level  
4th Level  

Total: 

 
15 
80 
73 

121 
397 
686 

 
19 
71 
69 
122 
433 
714 

32 CPU Execution Time (s) 
Global Rigid Level 

1st Level 
2nd Level  
3rd Level  
4th Level  

Total: 

 
11 
80 
52 
88 

221 
452 

 
15 
71 
56 
87 
223 
452 
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.  
 
     

 
Table 3.4 Computation time for processors that take the maximum time and 
processors that take the minimum time given for different levels and different 
configurations of the cluster. Communication time is also shown 
 

 
Table 3.5 Breakup of computation time in rigid registration on various configurations 
of the cluster (All run on 8 nodes) 

 
 

Processing 
Time(s) 

max 

Processing 
Time(s) 

Min 

Communication 
Time(s) 

Non Rigid Registration 8 CPU 
(8 Nodes) 

Level 1: 
Level 2: 
Level 3: 
Level 4:  

 

 
 

71.399802 
94.331788 

204.667939 
757.449903 

 

 
 

51.463611 
67.189734 
132.011615 
653.332129 

 
 

0.002232 
0.003423 
0.014778 
0.255158 

Non Rigid Registration 16 CPU  
(On 8 Nodes) 

Level 1: 
Level 2: 
Level 3: 
Level 4:  

 
 

 
 

71.711030 
72.194589 

121.247008 
395.980341 

 
 

34.015598 
47.387165 
81.714842 
296.191406 

 
 

0.053994 
0.061570 
0.018530 
0.259062 

Non Rigid Registration 32 CPU  
(On 8 Nodes) 

Level 1: 
Level 2: 
Level 3: 
Level 4:  

 

 
 

71.407932 
57.329186 
87.428625 

219.763279 

 
 

33.996349 
41.848857 
60.840469 
166.062945 

 
 

0.076562 
0.252386 
0.023571 
0.270316 

 
Global 

Rigid Registration 

Histogram 
Computation 

Time(s)  

 
Communication 

Time(s) 

Percentage 
Comm. Time to 

Tot. Time(s) 
 

                      1 Processor 
(Different Cluster 

configurations on 8 Nodes) 
8 Processor  

 
16 Processor  

 
32 Processor  

 

 
1.97 

 
0.305947 

 
0.211320 

 
0.119552 

 
N.A 

 
0.029223 

 
0.030716 

 
0.035948 

 
N.A 

 
8.6 

 
11 

 
23 
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Discussion 
 
The accuracy figures shown in Table 3.1 and 3.2 are for CT images which have been 

deformed with a known deformation field. The registration process recovers tries to 

recover the deformation field.. [The accuracy figure is obtained by taking a mean 

square difference with the known deformation field]. We observe that the cluster 

version of the code generates the same result as the single CPU version.  

 

From Table 3.1 we observe a speedup of the order of 16 when using 32 nodes. We are 

able to reduce processing time from over 2 hours to 7.5 minutes. This is practical for 

many applications. However, we note that more speedup can be achieved.  

 

From Table 3.2 and Fig 3.2, we note that the speedup decreases with increasing 

number of processors. There are two reasons for this. From Table 3.4 we see that 

some processors take less time than others to register the subvolumes assigned to it. 

Thus there is a load imbalance resulting from volumes being assigned statically. In 

the future this can be resolved by adopting a dynamic strategy for assigning 

subvolumes to processors that are idle. Another reason is that even when we assign 

more processors to the registration algorithm, the first subdivision levels only uses 

eight of the available processors. We see from Table 3.3 that for the different 

configurations of the cluster, the execution time of the first subdivision level remains 

the same because of this reason. Thus our total execution time has the first 

subdivision level execution time as a fixed cost even if we increase the number of 

processors. Table 3.3 shows that the speedup of the global rigid registration level 



 26 
 

does not improve much with increasing processors. This is because there is a large 

amount of data being transferred over the network for computing the mutual 

histogram. This is evident from Table 3.4 which shows that the communication time 

becomes significant as we keep on increasing the number of processors used in rigid 

registration. We address a way to handle this in the next chapter. 
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Chapter 4: Mutual Information Calculation from Mutual 

Histogram based on Bit Slicing 

Introduction 

As part of parallelization of the global rigid portion of the subvolume division based 

registration algorithm we presented results for a parallel implementation of mutual 

information in the previous chapter. In that implementation mutual information was 

computed using the most commonly available technique which is to sub-divide the 

data (image) between processors where each processor is assigned a portion of the 

reference image. This technique has the limitation that each processor has to hold a 

partial mutual histogram which is the size of the original histogram. To calculate the 

mutual information value the full mutual histogram has to be calculated by summing 

the individual partial mutual histograms followed by arithmetic operations for entropy 

calculation.  Summing individual partial histograms entail transfer of big chunks of 

data between processors in the cluster. This is followed by a large number of 

arithmetic operations (66048 multiplications and logarithms) for entropy calculation 

which has to be carried out on the master processor or it can be parallelized but it will 

involve an additional communication overhead. We propose a new technique which 

allows us to maintain only a portion of the final mutual histogram on each processor 

during mutual histogram computation instead of a full-size partial mutual histogram 

which has to be reduced to get the final mutual histogram. This allows us to transfer 

much less data between processors and also to do arithmetic operations for entropy 

calculation before communicating data between processors for computing the mutual 
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information value. In essence, we have been able to parallelize arithmetic 

computations involved in the mutual information computation process as well as 

transfer less data between processors.  

Implementation  

As described in the introduction, this concept allows us to maintain a part of the 

mutual histogram on each processor instead of a partial mutual histogram which 

needs to be summed with other partial mutual histograms to yield the mutual 

histogram. This is accomplished by pre-processing the reference image. To each 

processor we assign an intensity range of the reference image that it will process. The 

pre-processing involves finding all the data (voxels) that each processor will process 

based on the intensity range it will be processing. Figure 4.1 shows the mutual 

histogram after processing has completed calculation on each processor. We reason 

that the reference image is available before the floating image in image registration 

applications and so we can pre-process it and that the pre-processing time does not 

need to be considered part of the time required for registration. Another reason that 

the pre-processing does not need to be part of the registration process is that the 

reference image can be stored in the desired format during the acquisition process 

itself.  

 

The data associated with the intensity range (bins) assigned to a processor has to be 

balanced. Since the intensity range assigned to a processor determines the amount of 

data it will be processing, we have to vary the intensity range assigned to a processor 

for load balancing. We describe below the technique we have used for load balancing.  
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1) Calculate the histogram of the reference image 

2) Find the total number of voxels that have to be processed 

3) Find the average number of voxels to be processed by a processor Avg Voxels 

= Total/Total Number of Processors 

4) Starting at the first processor, assign to it intensities that it will process while 

keeping track of the total number of voxels assigned to it. (Total[1]). When 

Total[1] > Avg Voxels, start assigning voxels to the next processor but 

distribute the remaining voxels to be processed among the remaining 

processors.  

5) (New) Avg Voxels = Remaining Voxels/Remaining Processors 

6) Now assign intensities to the next processor and keep track of the total 

number of voxels assigned to that processor. (Total[i]) when Total[i] >Avg 

Voxels then go to step 5 until all the voxels have been assigned to all the 

processors.  
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Fig: 4.1 Mutual Histogram on each processor after processing using the bit-slicing 
algorithm on a cluster with four processors. Note how the mutual histogram is divided 
based on intensities of the reference image. The probability densities are calculated as 
shown in the figure. Formulas for computing entropy values from the probability 
densities are also shown.  

 
Part of the computation for mutual information calculation can be carried out on each 

processor after the mutual histogram computation is completed. From Fig. 4.1 we see 

that pA(i) (and hence part of H(A)) and pA,B(i,j) (and hence part of H(A,B)) could be 

computed if we knew Total (the total number of voxels processed during this iteration 

of the registration process). Each processor knows only Totali which is the total 
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voxels processed on that processor. This necessitates the need for communication 

between processors to sum up Totali to get Total. However, we derive below that we 

do not need to communicate Totali   between processors to carry out the computations 

we need to perform. We also point out that we cannot do similar computations for 

H(B) since we do not have pB(j). However we can reduce it as shown in equation (3).  

 

MI =  AH  +  BH -  BAH ,  

A: Reference Image 

B: Floating Image 

 AH : Entropy of Image A 

 BH : Entropy of Image B 

 BAH , : Joint Entropy of Image A and B 
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Equation 2 shows that the entropy of the reference image can be computed by 

evaluating e1,e2..eN on each processor and then summing them up and 

applying total to compute )(AH . 
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Equation 4 indicates that the probability density of each intensity (j) can be 

computed by evaluating l1(j), l2(j), .., lN(j),  on each processor and then 

summing them up and applying equation 4 to compute )( jpB . 

 

We summarize the steps involved in computing MI using the bit slicing idea: 

1) Pre-process the reference image and assign voxels to each processor in the 

cluster based on the intensities that each processor will be processing. The 

number of voxels processed by each processor need to be load balanced and 

thus the number of intensities of the reference image that each processor 

processes will need to be assigned dynamically as per the algorithm we 

defined earlier 

2) Start the registration process 

3) For each iteration of the registration process, the mutual histogram is 

computed and as shown in Fig. 4.2, we get a part of the mutual histogram on 

each processor 
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4) MI computation follows from equations 1, 2 and 3. Each processor computes 

km which is necessary for computing H(A,B), ke which is necessary for 

computing H(A) and 255
0)( jk jl  which is necessary for computing 255

0)( 


j
jB jp  

5) Finally all processors communicate to one another to sum  

i. Totali (the total voxels processed on each processor) to get Total 

ii. km  and use equation (1) to get H(A,B) 

iii. ke and use equation (2) to get H(A) 

iv. 255
0)( jk jl  to get 255

0)( 


j
jB jp  using equation (4) and finally use equation 

(3) to get H(B) 

6) MI is computed as H(A)+H(B)-H(A,B) 
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Results 

 
 
 
 

 
 
 
 
 
 
 
 

Table 4.1 Execution time for rigid registration of three 256x256x256 CT images 
shown for various configurations of the cluster with and without bit-slicing algorithm 
 
 

 
Table 4.2 Accuracy of rigid registration using bit-slicing algorithm as compared to 
the single CPU version. The transformation parameters recovered by the bit-slicing 
algorithm is the same as that of the single CPU version. 
 

 #1 #2 #3 #4 
Single CPU  

Translation (Tx,Ty,Tz) 
Rotation(Rx,Ry,Rz) 

 
17.82, 13.19,14.37 
 -4.03, -0.98, -0.47 

 
5.52 36.57, 16.42 
0.58, -1.19, -5.28 

 
-7.79, -19.38, -6.85 
6.65, 7.19, 12.57 

 
2.43, 0.0081,6.97 
-2.72, 1.50, -3.91 

8 CPU Bit Slicing  
Translation (Tx,Ty,Tz) 

Rotation(Rx,Ry,Rz) 

17.82, 13.19,14.37 
 -4.03, -0.98, -0.47 

5.52 36.57, 16.42 
0.58, -1.19, -5.28 

-7.79, -19.38, -6.85 
6.65, 7.19, 12.57 

2.43, 0.0081,6.97 
-2.72, 1.50, -3.91 

16 CPU Bit-slicing  
Translation (Tx,Ty,Tz) 

Rotation(Rx,Ry,Rz) 

17.82, 13.19,14.37 
 -4.03, -0.98, -0.47 

5.52 36.57, 16.42 
0.58, -1.19, -5.28 

-7.79, -19.38, -6.85 
6.65, 7.19, 12.57 

2.43, 0.0081,6.97 
-2.72, 1.50, -3.91 

32 CPU Bit-slicing  
Translation (Tx,Ty,Tz) 

Rotation(Rx,Ry,Rz) 

17.82, 13.19,14.37 
 -4.03, -0.98, -0.47 

5.52 36.57, 16.42 
0.58, -1.19, -5.28 

-7.79, -19.38, -6.85 
6.65, 7.19, 12.57 

2.43, 0.0081,6.97 
-2.72, 1.50, -3.91 

 #1 #2 #3 #4 
Execution Time (s) 

Single CPU 
8 CPU image subdivision 

8 CPU bit-slicing 
16 CPU image subdivision  

16 CPU bit-slicing  
32 CPU image subdivion  

32 CPU bit-slicing  

 
104 
21 
20 
15 
11 
11 
7 

 
136 
26 
26 
19 
14 
15 
9 

 
301 
55 
44 
43 
26 
30 
18 

 
89 
18 
17 
12 
9 
10 
6 
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Fig 4.2 Execution time for rigid registration of the first set of 256x256x256 CT 
images shown for various configurations of the cluster with and without bit-slicing 
algorithm compared with the single CPU version 
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Fig 4.3 Execution time for rigid registration of the third set of 256x256x256 CT 
images shown for various configurations of the cluster with and without bit-slicing 
algorithm compared with the single CPU version 
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Fig 4.4 Histogram of the reference image from image set 3 
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Fig 4.5 Distribution of voxels for 8 processors  
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Distribution of Voxels on Different Processors
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Fig 4.6 Distribution of voxels on 16 processors by the load balancing algorithm 
 

 
 
    Fig 4.7 Distribution of voxels on 32 processors by the load balancing algorithm 
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Table 4.3: Histogram computation time and the associated communication time for 
different cluster configurations.   
 
 
 
Discussion 
 
Table 4.2 indicates that registration using the bit-slicing algorithm for computing the 

mutual information recovers the same transformation parameters as the rigid 

registration process on a single processor.   

 

From the comparisons of execution time in Table 4.1 we see that the bit-slicing 

algorithm runs more efficiently for 32 processors than for eight processors. The 

execution time for bit-slicing algorithm for 8 processors does not improve 

significantly from the execution time of the image subdivision based algorithm for 

eight processors. This is because the bit-slicing algorithm mainly speeds up the 

communication time required for transferring results across the network. When there 

 Histogram 
Computation 

Time(s)  

Communication 
Time(s) 

Percentage 
Comm. Time 

to Tot. 
Time(s) 

MI Computation by Image 
Subdivion 

8 CPU  
 

16 CPU  
 

32 CPU  
 

 
 

0.305947 
 

0.211320 
 

0.119552 

 
 

0.029223 
 

0.030716 
 

0.035948 

 
 

8.6 
 

11 
 

23 

MI Computation by Bit-
slicing 
8 CPU  

 
16 CPU  

 
32 CPU  

 

 
 

0.313878 
 

0.160779 
 

0.092174 

 
 

0.000615 
 

0.000630 
 

0.000653 

 
 

0.2 
 

0.39 
 

0.7 
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are only eight processors the communication time is not a big factor of the processing 

time as seen in Table 4.3. In the image subdivision based algorithm for computing 

mutual information, the image is divided equally between processors and hence no 

load balancing is done to ensure that equal amount of foreground voxels are being 

assigned to each processor. Better load balancing could be done in the image 

subdivision based approach by dividing the image based on the foreground pixels but 

a preprocessing stage would be required and demarcation of regions to process on 

each processor in the cluster would need to be communicated. However the bit-

slicing algorithm balances the load on the cluster by assigning only foreground voxels 

of the reference image by the previously mentioned load balancing algorithm. As a 

result there is an improvement in execution time of the bit-slicing algorithm on eight 

processors due to contributions from speed up in communication and better load 

balancing. If the load balancing algorithm is not able to balance the load perfectly 

then the performance of the bit-slicing algorithm can be severely hampered.  

 

We see from Table 4.3 that with increasing number of processors, the communication 

time becomes a larger factor in the processing time. Consequently the bit-slicing 

algorithm performs better because it reduces the communication time. We have run 

the bit-slicing algorithm only for 32 processors but we see that with increasing 

number of processors the bit-slicing algorithm is able to perform much better than the 

image subdivision based algorithm for computing mutual information. However there 

will be a stage at which increasing the number of processors will not improve the  

overall speed up because the communication time will become more significant.  
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Chapter 5:  MI calculation on GPU using Bit-Slicing Idea  

Introduction and Related Work 

We present an implementation of mutual information calculation on an NVIDIA 

GPU. GPUs have been increasing in computation power rapidly as they has evolved 

into a highly parallel, multithreaded, multicore processor with high memory 

bandwidth [9]. Compute intensive processing which involves data parallel processing 

is well suited for implementation on the GPU. We use the compute unified device 

architecture (CUDA) for programming the GPU. CUDA is a programming model that 

allows the programmer to utilize the parallelism offered by the GPU while limiting 

the learning curve as it is an extension of the C programming language. However 

current implementations for MI calculation on the GPU have been limited by the 

shared memory size of the GPU. In [8], we see a 64-bin implementation (six bit 

intensity values of  a histogram which is far too low for any practical image 

registration purpose. In [10], an approximate method is proposed for MI calculation 

which reduces these inefficiencies. However, they are limited to byte data types and 

10000 bins (100x100) for the mutual histogram, in addition to calculating only an 

approximate MI value. The byte data type does not allow them to use PV 

interpolation as it required float data type for the mutual histogram. However an 

accurate implementation of MI computation needs to have PV interpolation and in 

cases 16384 bins (128x128) mutual histogram. The bit- slicing idea we proposed for 

the cluster maps well to the GPU and this implementation is the first that is able to 

calculate MI for 8 bit images (65,536 bins) using float data types for the mutual 

histogram and allows us to use PV interpolation. As seen in the cluster 
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implementation arithmetic computations for entropy can be parallelized without 

additional overhead with this new idea.  

GPU Architecture 

 
This GPU is based on the TESLA architecture by NVIDIA which provides a platform 

for both graphics and general purpose parallel computing applications. Figure 5.1 

shows the Tesla Architecture which consists of a scalable array of streaming 

multiprocessors. A multiprocessor consists of eight scalar processors two special 

function units for transcendental operations, an instruction unit and shared memory. 

Access to the shared memory is fast (four clock cycles) but access to device memory 

is much slower (400 to 600 clock cycles). . In CUDA threads are scheduled in groups 

of 32 known as warp. A block having 128 threads will have four groups of 32 or in 

other words four warps in the block. Threads in a half warp (half the threads of the 

warp) can access the global memory together if the address accessed by each thread 

in the half warp is aligned. If the addresses accessed by the threads in the half warp 

are not aligned then the resulting access to global memory will be sequential. NVIDA 

GPUs with compute capability 1.0 do not provide atomic updates (when two or more 

threads try to update the same memory location at the same time, only one thread will 

update the location if atomic updates are not supported)or support double (i.e., 

double-precision floating point) data types. 
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Fig. 5.1 Tesla Architecture (Courtesy [9]) 
 
CUDA abstracts the program to be run as a kernel. A kernel is composed of a Grid 

and blocks. The number of blocks and threads are set by the programmer and this is 

known as the execution configuration. Each block is composed of several threads. 

This is shown in the Fig 5.2. Each block of the grid runs on a streaming 

multiprocessor with the threads in a block running concurrently. Each thread is 

mapped to a scalar processor core and it has its own instruction address and register 
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state which allows each thread to run a different program, though not efficiently. As 

mentioned earlier the multiprocessor schedules threads in groups of 32, called warps. 

A warp executes a common instruction at a time so maximum efficiency is obtained 

when the code in a warp does not diverge.  This architecture is known as Single 

instruction Multiple Thread (SIMT) 

 

 Threads within a block can be synchronized. It is not possible to synchronize 

between threads of different blocks. As a programmer, this limits some of the options 

like waiting for results from other blocks. We handle this by copying results from 

each block into device memory and then using another kernel call (programs are 

written as kernels in CUDA) to sum the results in device memory. The GPU 

scheduler waits for all the blocks to finish processing before another kernel is allowed 

to execute. We achieve synchronization between blocks in this manner.  

 

The steps necessary to implement a CUDA program involve the following: 

1) Have the host computer allocate memory on the GPU 

2) Copy data to be processed into the GPU device memory 

3) Set the execution configuration and invoke the kernel 

4) Once execution is over, copy the processed data back to the host 

 

We have used an NVIDIA 8800 GTX GPU with 16 streaming multiprocessors and 8 

scalar processor cores per multiprocessor, which is of compute capability 1.0 (the 

compute capability indicates whether some feature such as atomic updates or double 
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precision operations are supported) and uses CUDA 2.0 programming model. It has 

16 KB shared memory per multiprocessor and 768 MB global memory. 

 
 

 
Fig. 5.2 CUDA Programming Model (Courtesy [9]) 

Implementation Details 

The implementation on the GPU is similar to that on the cluster with some key 

differences noted in the next paragraph. Here a block plays the role of the processor 

in the cluster. The reference image is pre-processed to assign intensities to blocks. 
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After processing, each block will have a part of the final mutual histogram. This was 

the case with each processor in the cluster. This is shown in Fig. 5.3. The MI value 

can then be computed making use of the same equations we presented for the cluster 

implementation.  

 

Each block in the GPU can have many threads to do the computation assigned to it. 

We maintain the mutual histogram in the shared memory as updates are faster to the 

shared memory and it also allows us to do the arithmetic computations for entropy 

calculation faster. The problem with previous implementations was that a partial 

mutual histogram which is the size of the final mutual histogram had to be stored in 

the shared memory. Since current GPUs have only 16Kb of shared memory, these 

implementations were limited in the number of bins (10,000) of the mutual histogram 

and also the data type for the storage of the frequency of each bin was limited to an 

unsigned char. That meant they were unable to implement PV interpolation because 

they have to make a trade of between the number of bins and the size of the data type 

of each bin. As the bit-slicing algorithm allows us to store only part of the final 

mutual histogram on each block, we can use float data type for each memory location 

of the mutual histogram without having to sacrifice the number of bins we are using.  

. We show results for 8 bit intensities for 256x256 mutual histogram. We are also 

using PV interpolation. Due to the shared memory size we are limited to the number 

of intensities (i.e., bins) of the mutual histogram we can store. We assign a maximum 

of 10 intensities to each block which necessitates the need for 10Kb of shared 

memory (1Kb per intensity of the reference image assigned to the block). As we are 
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limited to 10 intensities for each block we have to have at least 26 blocks to cover 

256 intensity levels. After processing we have a part of the mutual histogram on each 

block. This is similar to having a part of the mutual histogram on each processor in 

the cluster. This is shown in Fig 5.3. We then do arithmetic operations to find the MI 

value. Each block does the same processing that each processor in the cluster did. In 

the cluster, after processing, data has to be communicated between processors 

through the network. In the GPU, we store the processed data in the global memory, 

which is then processed by a single block to find the final MI value. We give a 

summary of the whole process which gives a better picture of the processing 

involved.  
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Fig. 5.3 Mutual Histogram divided between four blocks 

The similarity between the cluster implementation ends with the above discussion. 

We now go on to the nuances of the GPU implementation. Each block has more than 

one thread running simultaneously.  On the NVIDIA 8800 GTX GPU atomic updates 
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are not supported. Hence we cannot have more than one thread from a warp making 

simultaneous updates to the same memory location which in our case is the mutual 

histogram stored in the shared memory of each block (threads from a different warp 

do not update the same location at the same time). As a consequence we have to limit 

each thread in a warp to updating only one column of the histogram assigned to that 

block and that limits the number of threads running in that block. If we were to follow 

the naïve approach, we assign to each block an equal number of intensities to process. 

However, as each thread from the warp does processing on a single intensity of the 

reference image, we could have a load imbalance resulting in slower processing time 

as the other blocks will have to wait for the block whose thread has many voxels to 

process.  

 

Hence we do load balancing to ensure each thread of a block processes about the 

same number of voxels. This is done by allowing for an intensity to be split so 

another thread can work on different voxels but of the same intensity. We allocate a 

2D array of size 256x10 (256 rows and 10 columns) of type float (10KB) in the 

shared memory. When an intensity is split, the threads that do processing for the split 

intensity have to have a separate column of the 2D array in the shared memory 

assigned to it. The split intensities are then combined by summing up the columns 

processed by the corresponding threads. If only one intensity is assigned to a block, 

then its split 10 times and processed by 10 threads each working on its own column of 

memory (1KB). The load balancing algorithm assigns an intensity to a block, splits it 

and compares the voxels being processing per thread with the average voxels per 
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thread for the entire image. If its lower than the average voxels per thread then it 

assigns another intensity to the block. (The steps of the load balancing algorithm are 

given in detail later on) Now there are two intensities assigned to the block. We split 

all the intensities assigned to the block equally. All the intensities need not be split 

equally but splitting it equally makes it easier to indicate how many times the 

intensities have been split for a block. The intensities assigned to a block are split 

such that the total columns in the 2D array required by the threads are still less than 

10. We thus allow the two intensities to split five times each so that each intensity is 

covered by 5 threads and hence by 5 columns of the 2D array. Fig 5.4 shows the case 

for 3 intensities. Our constraint is that after splitting we can only have a maximum of 

10 columns of the 2D array in the shared memory being used by the threads. Another 

constraint is that we split all the intensities equally. Hence three intensities can be 

split up only 3 times and nine columns of the 2D array are used. If there are six 

intensities assigned to a block then it isn’t split up as all the intensities need to be split 

equally as per our implementation and that would result in the need of 12 columns of 

the 2D array in the shared memory...  

 

We show results for 40 blocks. We could have used 26 blocks but then 25 of the 26 

blocks would need to process 10 intensities each. By using 40 blocks we allow more 

flexibility in grouping together intensities without being forced to assign many 

intensities to a block. This allows us to split the intensities which have many voxels.  
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CUDA schedules 32 threads at a time. This is known as a warp. As we do not have 

atomic updates, we will make active only a part of the 32 threads for processing the 

data for the mutual histogram. The number of threads made active in the warp is 

dependent on the number of intensities assigned to the block by the load balancing 

algorithm and also the number of times those intensities have been split. The other 

threads are left idle. Each thread in the warp is assigned a column of the 2D array 

allocated in the shared memory. Threads from a different warp are however allowed 

to update to the same column of the 2D array in the shared memory. We run four 

warps so we have four threads updating the same column in memory. As threads in 

the same warp are not allowed to update to the same location we do not have a 

problem of different threads updating to the same location. Also as threads from 

different warps are scheduled separately, we again do not have threads from different 

warps trying to update the same location..  
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Fig 5.4 Mutual Histogram assigned to a block is further split up to have more threads 
active in a block 
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We use the following algorithm for assigning intensities to each block.  

1) Calculate the histogram of the reference image 

2) Find the total number of voxels that have to be processed 

3) Find the average number of voxels to be processed by a thread in a block Avg 

Voxels=Total/(Total Number of Blocks x  Threads Per Block ) 

4) Starting at the first block, assign to it intensities that it will process while 

keeping track of the maximum of the number of voxels of the intensity levels 

assigned to the block (MaxVox). After each intensity is assigned to the block 

compute the Voxels per thread for that block (VoxperThread[i]). This is 

computed using MaxVox/Ntimes where Ntimes is the number of times we can 

split the currently assigned intensity levels so that it is still below 10. For 

example when intensity levels is 3, Ntimes is 3 since we can split 3 intensity 

levels 3 times and still be below 10. When voxels per thread for the block 

(VoxperThread [i]) > Avg Voxels, we start assigning intensity levels to the 

next block but distribute the remaining voxels to be processed among the 

remaining threads. However, if there are more intensities left to be assigned 

than there are remaining threads then we do not move on to assign intensities 

to the next block but we keep on assigning intensities to the current block till 

we are left with equal number of remaining intensities and threads.  

5) Repeat Step 4 until all the intensity levels have been assigned to all the blocks 
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We summarize the steps involved in computing MI using the bit slicing idea on the 

GPU 

1) Pre-process the reference image and assign voxels to each thread in a block on 

the GPU based on the intensities that each block will be processing. The 

number of voxels processed by each thread needs to be load balanced and thus 

the number of intensities of the reference image that each block processes will 

need to be assigned dynamically as per the algorithm we defined earlier 

2) Start the registration process 

3) For each iteration of the registration process, the mutual histogram is 

computed and as shown in Fig. 5.e, we get a part of the mutual histogram on 

each block 

4) MI computation follows from equations 1, 2 and 3 of chapter 3. Each block 

computes km which is necessary for computing H(A,B), ke which is necessary 

for computing H(A) and 255
0)( jk jl  which is necessary for computing 255

0)( 


j
jB jp  

5) Each block stores the following in global memory. Here ‘k’ denotes the block 

number 

i. kTotal  

ii. km  

iii. ke  

iv. 255
0)( jk jl   

6) Another kernel call sums up the results stored in global as described below: 

i. kTotal to get Total 
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ii. km  and uses equation (1) to get H(A,B) 

iii. ke and uses equation (2) to get H(A) 

iv. 255
0)( jk jl  to get 255

0)( 


j
jB jp  using equation (4) and finally uses equation 

(3) to get H(B) 

7) MI is computed as H(A)+H(B)-H(A,B) 

Results 

 
 
 
 
 

 
Table 5.1 Comparison of CPU and GPU execution times for rigid registration using 
mutual information computed from mutual histogram having floating point counters. 

 

 
Table 5.2 indicates that registration using the bit-slicing algorithm for computing the 
mutual information on the GPU recovers the same transformation parameters as the 
rigid registration process on a single processor.  
 
 
Discussion 

We have been able to implement computation of mutual information from the mutual 

histogram using PV interpolation. This has been made possible by the bit-slicing 

algorithm which allows us to maintain only a part of the mutual histogram in the 

 #1 #2 #3 

Single CPU Time (s) 119 151 349 
GPU Time (s) 19.8 26 53 

Speedup 6 5.9 6.58 

 #1 #2 #3 
Single CPU (mm)  

Translation (Tx,Ty,Tz) 
Rotation(Rx,Ry,Rz) 

 
5.52, 36.57, 16.42 
0.58, -1.19, -5.28 

 
17.82,1 3.19, 14.37 
-4.03, -0.98,  -0.47 

 
-7.68, -19.42, -6.64 

6.76, 7.24, 12.69 
 

GPU (mm) 
Translation (Tx,Ty,Tz) 

Rotation(Rx,Ry,Rz) 

 
5.52, 36.57, 16.42 
0.58, -1.19, -5.28 

 
17.82,1 3.19, 14.37 
-4.03, -0.98,  -0.47 

 
-7.68, -19.42, -6.64 

6.76, 7.24, 12.69 
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shared memory of each block. We see from Table 5.2 that our implementation 

recovers the same transformation as the CPU version of the rigid registration 

algorithm. We however were limited to floating data type as the 8800 GTX GPU does 

not support double data types. We see from Table 5.1 that we get a speedup of 

approximately 6. In [10], they were able to report a speedup of the order of four but 

then they were limited to 10000 bins and could not implement PV interpolation. 

However, our implementation is for 65536 bins. An avenue worth exploring is to try 

this implementation on a GPU that offers atomic updates on the hardware. An 

implementation with double data types for the mutual histogram can also be explored 

on a supporting GPU.  
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Chapter 6:  Conclusions 
 
We have seen that the 32 processor cluster is able to reduce the time of registering 

two 256x256x256 CT images from 2 hours to 7.5 minutes.  We get a speedup of 

approximately 16. We had indicated that a dynamic algorithm for assigning 

subvolumes to idle processors in the cluster will help improve speedup by better load 

balancing.  

 
By dividing the image based on its histogram rather than a spatial subdivision we 

showed how the bit-slicing algorithm allows speeding up of mutual information 

computation by reducing the communication time. The bit-slicing algorithm is useful 

for scaling up the computation of mutual histogram to many processors. We see that 

for 32 processors in the cluster, the communication time is only 0.7% of the total 

processing time. However, for computation of mutual information by image 

subdivision the communication time is 23% of the computation time for 32 

processors. With increasing processors the communication will become much more 

significant in the latter case. The bit-slicing algorithm, on the other hand, will allow 

the number of processors to be scaled up much higher. Taking the bit-slicing 

algorithm onto a cluster with many more processors is one avenue that can be 

explored.  

 
An application of the bit-slicing algorithm on the GPU has also been demonstrated. 

While previous investigators were unable to implement mutual information 

computation with PV interpolation for sufficient number of bins, the bit-slicing 

algorithm has made this possible for us. Our implementation has given a speedup of 
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six but has been limited by the lack of hardware support for atomic updates. 

Investigation of the bit-slicing algorithm on another GPU board with hardware 

support of atomic updates will be necessary to judge how much speedup can be 

obtained. The bit-slicing algorithm can also be used to implement computation of 

mutual information from mutual histogram having memory locations of  type double 

on a supporting GPU board.  
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