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Abstract

This paper addresses the design of controllers, subject to sparsity constraints, for linear and time-

invariant plants. Prior results have shown that a class of stabilizing controllers, satisfying a given sparsity

constraint, admits a convex representation of the Youla–type, provided that the sparsity constraints

imposed on the controller are quadratically invariant with respect to the plant and that the plant is strongly

stabilizable. Another important aspect of the aforementioned results is that the sparsity constraints on

the controller can be recast as convex constraints on the Youla parameter, which makes this approach

suitable for optimization using norm-based costs. In this paper, we extend these previous results to

non-strongly stabilizable plants. Our extension also leads to a Youla-type representation for the class

of controllers, under quadratically invariant sparsity constraints. In our extension, the controller class

also admits a representation of the Youla–type, where the Youla parameter is subject to only convex

constraints.
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I. INTRODUCTION

The design of decentralized control systems is in general a hard problem, partly due to the

lack of convexity induced by restrictions on the structure of the controller. Typically, these

constraints arise from pre–specified information patterns, such as when the controller consists

of interconnected blocks that have access to different measurements.

The theoretical machinery developed in [6] unifies and consolidates many previous results,

pinpoints certain tractable decentralized control structures, and outlines the most general known

class of convex problems in decentralized control. Also in [6], a numerical computational

procedure is proposed for decentralizedH2 optimal synthesis of quadratic invariant, decentralized

structures with strongly stabilizable plants. This paper is an extension of the method from [6]

to the general case of possibly non–strongly stabilizable plants.

Necessary and sufficient conditions for strong stabilizability, of general, multi–input multi–

output, linear and time–invariant plants, are not yet known in the literature. Neither are general

methods for designing stable controllers, for the cases in which they do exist. This makes

designing stable controllers for strongly stabilizable plants a difficult task even in the centralized

setting. More importantly, for most practical situations in control engineering, the working

hypothesis is stabilizability only, rather than strong–stabilizability.

For the design method in [6], the optimal controller (in the H2 sense, for instance) can

be synthesized via convex programming, starting from a stable, stabilizing controller. While

inheriting this feature, our approach has the increased handiness of relying just on any stabilizable

controller, not necessarily stable, which in general is far easier to find. This bridges the gap

between stability constraints and the main optimization paradigm, hence it has the merit of

not over–complicating the final convex program with additional tough constraints related to

stabilization.

It followed quite naturally to develop our results over any ring of stable, linear systems, within

the general framework established in the seminal paper [8] of Vidyasagar et al. Complying with

[8], the notions of proper and strictly proper are introduced in an abstract setting, and any

transfer function is viewed as the ratio of two stable, causal transfer functions. The advantage

of using this setup is that it encompasses within a single framework, continuous or discrete-time

systems, lumped as well as distributed systems, n-D systems, etc The important special case of
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linear, time–invariant, 1-D systems, is immediately retrieved by considering the instance of the

ring of proper, stable, rational functions.

The core of our approach resides in the so called coordinate–free method proposed in [4],

where coprime factorizability of the plant is not needed, to provide a Youla–type parametrization

of all stabilizing controllers. Using this parametrization and much in the spirit of [6], our main

result shows how to deal with the decentralized problem for quadratic invariant structures,

provided the availability of tools to solve the centralized problem.

II. PRELIMINARIES

With all the notation borrowed from [4], A is the set of stable, causal transfer functions and

is assumed to have a commutative ring structure. The set of all transfer functions, which we

denote as F , is therefore the field of fractions of A, defined as follows:

F def
=
{
n/d

∣∣∣ n, d ∈ A; d not a divisor of zero
}

(1)

Accordingly, Fp×m will stand for the set of transfer function matrices (matrices with all entries

in F) with p rows and m columns. Let Z be any be any prime ideal of A with A 6= Z and

such that Z includes all the divisors of zero of A. Define the subsets P and Ps of F as

P def
=
{a
b
∈ F|a ∈ A, b ∈ A− Z

}
,

Ps
def
=
{a
b
∈ F|a ∈ Z, b ∈ A− Z

}
.

We shall call every transfer function in P (Ps) causal (strictly causal). Similarly, if every entry of

some transfer function matrix is in P (Ps) then the transfer matrix will be called causal (strictly

causal).

III. PARAMETRIZATION OF STABILIZING CONTROLLERS VIA THE COORDINATE–FREE

APPROACH

In Fig.1 we depict the standard feedback interconnection between a generalized plant and

controller. Here, w is the vector of reference signals, while ν1 and ν2 are the disturbance signals

and sensor noise respectively. In addition, u are the controls, y are the measurements and z the
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Fig. 1. Feedback interconnection between the generalized plant and the controller

regulated outputs (in general some error signals). For convenience of notation, G is partitioned

accordingly with Gzw ∈ Fnz×nw , Gzu ∈ Fnz×nu , Gyw ∈ Fny×nw and Gyu ∈ Fny×nu . Here, the

integers nw, nu, ny and nz denote the dimensions of w, u, y and z respectively. The generalized

plant G lies in F (ny+nz)×(nu+nw) and the controller in Fnu×ny . We adopt the superscript T as

the notation for matrix transposition. Assuming that the loop is well posed – that is (I−KGyu)

is invertible over Fnu×nu – then the transfer matrix from [wT νT
1 νT

2 ]T to [zT uT yT ]T is

given by

Θ(G,K) =


Gzw +GzuK(I −GyuK)−1Gyw Gzu(I −KGyu)−1 GzuK(I −GyuK)−1

K(I −GyuK)−1Gyw (I −KGyu)−1 K(I −GyuK)−1

(I −GyuK)−1Gyw Gyu(I −KGyu)−1 (I −GyuK)−1

 .
(2)

If the transfer matrix Θ(G,K) is over A then we call it stable, or we say that K is a a stabilizing

controller of G or equivalently that K stabilizes G. If a stabilizable controller of G exists, we

say that G is stabilizable.

Of particular interest is the feedback system displayed in Figure 2, where the transfer function

matrices K ∈ Fnu×ny and P ∈ Fny×nu represent the controller and the plant respectivelly.

Denote by H(P,K) the transfer function matrix from [νT
2 νT

1 ]T to [yT uT ]T (provided that
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(I +KP ) is nonsingular):

H(P,K) =

 (I + PK)−1 −P (I +KP )−1

K(I + PK)−1 (I +KP )−1

 (3)

Fig. 2. Feedback System

Analogously with the generalized–feedback system in (2), if the transfer matrix H(P,K) is over

A we call it stable or we say that K is a stabilizing controller of P or equivalently that K

stabilizes P . If a stabilizable controller of P exists, we say that P is stabilizable. It is important

to note here that H(P,K) can be envisioned as part of the transfer function (2) (the two by

two block in the bottom right corner). This is further related to the following Lemma from [4],

(which is in fact a generalization of the well-known Theorem 4.3.2 in [1].)

Lemma III.1. [4, Lemma 1] Let G and K be a generalized plant and its controller over F ,

with G stabilizable and agreeingly partitioned as in (2). Then Θ(G,K) is stable if and only if

H(−Gyu, K) is stable.

We define the set C of stabilizing controllers of P by

C def
=
{
K
∣∣K ∈ Fny×nu and K stablilizes P

}
. (4)

Clearly, from Lemma III.1, the set C is the same set as

C =
{
K
∣∣K ∈ Fny×nu and K stabilizes G

}
,
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for any generalized plant G for which Gyu = −P .

Of central importance in the sequel is the following result (a summary of Theorem 4.2

and Theorem 4.3 in [3]) as it provides a useful Youla–like parametrization of the stabilizing

controllers of H(P,K).

Theorem III.2. [3] i) Given the integers nu and ny, and a plant P in the set Fny×nu , consider

the following set:

HP
def
=
{
H(P,K) ∈ A(nu+ny)×(nu+ny)

∣∣∣ K is a stabilizing controller for P
}

Given an arbitrary K0 that stabilizes P , and therefore for which H(P,K0) ∈ A(nu+ny)×(nu+ny),

the following holds:

HP =
{

Ω(Q)
∣∣ Q ∈ A(nu+ny)×(nu+ny), Q causal and Ω(Q) nonsingular

}
where for any causal Q in the set A(nu+ny)×(nu+ny), Ω(Q) is defined as follows:

Ω(Q)
def
=

H(P,K0)−

 Iny O

O O

Q

H(P,K0)−

 O O

O Inu

+H(P,K0). (5)

Here Iny and Inu denote the identity matrices of dimension ny and nu respectively.

ii) For Ω(Q) defined in (5), with Ω(Q) in the set A(nu+ny)×(nu+ny), consider the following

partition:

Ω(Q) =

ny nu︷ ︸︸ ︷ ︷ ︸︸ ︷[
Ω11(Q) Ω12(Q)

Ω21(Q) Ω22(Q)

] }
ny}
nu

(6)

If Ω11(Q) is nonsingular then any stabilizing controller of P can be written as

K(Q) = Ω21(Q)Ω−1
11 (Q) (7)

for some causal matrix Q in the set A(nu+ny)×(nu+ny), where Ω21 and Ω11 are the (2, 1)- and

(1, 1)- blocks of Ω(Q) respectively.

Remark III.3. We would like to point out here, that reference [4] contains a typo which is

repeated for several times throughout the paper. Specifically, in Section III of [4], the expression

of K is given as Ω21Ω
−1
22 . It can be easily seen from (3) that under the assumptions of Theorem
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III.2, the actual expression of K is the one given in (7). References to the results in [4] are

made in the sequel, taking into account the above mentioned typo.

Remark III.4. Using Lemma III.1, we conclude that Theorem III.2 ii) provides a parametrization

of all stabilizing controllers of Θ(G,K) for any generalized plant G for which Gyu = −P .

From this point onward we shall make the hypothesis on Gyu to be strictly causal, that is

Gyu ∈ Ps. (8)

This is necessary as to guarantee several conditions in a way made precise by the following

remark (see [4]).

Remark III.5. [4] The assumption of strict causality of Gyu implies that every stabilizing

controller is causal [2, Prop. 6.2] and that the closed loop is well–posed [9, pp.119] for every

stabilizing controller [3, Prop. 5].

IV. PROBLEM FORMULATION

A. The Standard Control Problem

Assume that a consistent norm has been adopted for transfer matrices over F . A standard

problem in control is the following: in the generalized feedback system from Figure 1, with the

given causal and stabilizable plant matrix G, design a stabilizing controller K that minimizes

the norm of the top left corner entry of Θ(G,K) which is the transfer function from w to z,

namely

min

Kstabilizes G

∥∥∥Gzw +Gzu K
(
I −GyuK

)−1
Gyw

∥∥∥ . (9)

The following result, [4, Theorem 1] will be instrumental in our proposed approach, as it

makes clear the equivalence between the standard control problem (9) and the model–matching

problem of minimizing the norm of some affine (and therefore convex) function in the argument

Q – the Youla parameter from Theorem III.2.
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Theorem IV.1. [4, Theorem 1] Let G be a stabilizable, generalized plant such that the block

Gyu ∈ Fny×nu is strictly causal. Given any stabilizable controller K0 ∈ Fnu×ny of Gyu, the

standard control problem (9) is equivalent to

min

Q ∈ A(nu+ny)×(nu+ny)

∥∥∥ T1 − T2 Q T3

∥∥∥ (10)

subject to Q causal and stable, where an optimal solution K∗ to (9) can always be obtained

from the optimal Q in (10), denoted with Q∗, via K∗ = Ω21(Q
∗)Ω−1

11 (Q∗). Here T1, T2 and T3

are the transfer function matrices defined below:

T1
def
= Gzw +Gzu K0(I −GyuK0)

−1Gyw ,

T2
def
=
[
GzuK0(I −GyuK0)

−1 Gzu(I −K0Gyu)−1

]
,

T3
def
=

 (I −GyuK0)
−1Gyw

K0(I −GyuK0)
−1Gyw

 .
(11)

B. The Decentralized Control Problem

For p ≥ 1, we denote the set of integers from 1 to p with 1, p . Throughout the sequel we

consider that the transfer function matrix Gyu ∈ Fny×nu is partitioned in p block–rows and m

block–columns. The i-th block–row has ni
y rows, while the j-th block–column has nj

u columns.

Obviously,
∑p

i=1 n
i
y = ny and

∑m
j=1 n

j
u = nu. For (i, j) ∈ 1, p× 1,m, we denote by

[Gyu]ij ∈ Fni
y×nj

u

the transfer matrix at the intersection of the i-th block–row and j-th block–column of Gyu.

Henceforth, we shall use this square bracketed notation for block indexing of transfer function

matrices. Analogously, the controller’s transfer function matrix K ∈ Fnu×ny is partitioned in m

block–rows and p block–columns, where the j-th block–row has nj
u rows and the i-th block–

column has ni
y columns. Correspondingly, [K]ji is the notation for the element of Fnj

u×ni
y at the

intersection of the j-th block–row and i-th block–column of K.
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The decentralized setting will be modeled throughout the paper via the sparsity constraints

paradigm, as it has been proved to be a suitable method to formalize many problems in decen-

tralized control. The notation we introduce next is entirely concordant with the one used in [5]

and [6] to define the sparsity constraints.

For the
{

0, 1
}

boolean algebra the operations (+, ·) are defined as usual: 0+0 = 0 ·1 = 1 ·0 =

0 · 0 = 0 and 1 + 0 = 0 + 1 = 1 + 1 = 1 · 1 = 1. By a binary matrix we mean a matrix whose

entries belong to the set
{

0, 1
}

. Naturally, the addition and multiplication of binary matrices is

carried out over the Boolean algebra and under the aforementioned assumptions, the addition

and multiplication of binary matrices matrices are defined as in the real case.

Binary matrices will be denoted by capital letters with the “bin” superscript, in order to be

distinguished from transfer function matrices over F which are represented in the sequel by

plain capital letters. Furthermore, for binary matrices only, the notation Abin ≤ Bbin means that

aij ≤ bij for all i and j, that is for all the entries of Abin and Bbin respectively.

Henceforth, we adopt the convention that the transfer function matrices are indexed by blocks

while binary matrices are indexed by each individual entry.

For any binary matrix with m rows and p columns Kbin ∈
{

0, 1
}m×p, we can define the

following linear subspace of Fnu×ny :

Sparse(Kbin)
def
=
{
K ∈ Fnu×ny

∣∣ (Kbin
ij = 0

)
=⇒

(
[K]ij = 0

)
; (i, j) ∈ 1,m× 1, p

}
(12)

Hence Sparse(Kbin) is the set of all controllers K in Fnu×ny for which [K]ij = 0 whenever

Kbin
ij = 0, where by [K]ij = 0 we mean that the (i, j)-th block of K is the zero matrix.

Conversely, for any K ∈ Fnu×ny define Pattern(K) ∈
{

0, 1
}m×p to be the binary matrix

given by

Pattern(K)ij =

 0 if the block [K]ij = 0;

1 otherwise .

Accordingly, the binary value of Pattern(K)kl determines whether controller k may use mea-

surements from the output of the system l, since [K]kl is the map from the outputs of subsystem

l to the inputs of subsystem k, while [Gyu]ij represents the map from the inputs of subsystem j

to the outputs of subsystem i.

Let Kbin ∈
{

0, 1
}m×p be the requested sparsity pattern of the controller. Define the subset S
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of Fnu×ny as

S def
=
{
K ∈ Fnu×ny

∣∣∣ Pattern(K) = K bin
}

(13)

as the set of transfer function matrices that satisfy the cotroller’s imposed sparsity structure.

Similarly, P bin in the set
{

0, 1
}m×p, defined as

P bin def
= Pattern(Gyu) (14)

will be the sparsity pattern of the Gyu block of the generalized plant.

Remark IV.2.

We are ready now for the main result of this subsection. Suppose that the generalized plant

G is stabilizable with a controller K0 ∈ S . The decentralized version of the standard problem

(9) is formulated by simply adding the extra constraint K ∈ S, specifically

min

Kstabilizes G

K ∈ S

∥∥∥ Gzw +Gzu K
(
I −GyuK

)−1

Gyw

∥∥∥ . (15)

The following result (in fact a Corollary of Theorem IV.1) is central in our proposed approach:

Corollary IV.3. Let G be a stabilizable, generalized plant such that the block Gyu ∈ Fny×nu

is strictly causal. Given any stabilizable controller K0 ∈ S of Gyu , the decentralized control

problem (15) is equivalent to

min

Q ∈ A(nu+ny)×(nu+ny)

Ω21(Q)Ω−1
11 (Q) ∈ S

∥∥∥ T1 − T2 Q T3

∥∥∥ . (16)

where an optimal solution K∗ to (15) can always be obtained from the optimal Q in (16),

denoted with Q∗, via K∗ = Ω21(Q
∗)Ω−1

11 (Q∗). Here, T1, T2 and T3 are as in (11).
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Proof: As mentioned at the end of the previous section, throughout the paper we are under

the assumption that the Gyu block is strictly causal. This assumption has the desirable feature

of ensuring that (see Remark III.5) every stabilizing controller is causal and that the closed loop

is well–posed for any stabilizing controller. Moreover, it implies [4, pp. 232] that the Ω11(Q)

block is nonsigular for any causal Q in the set A(nu+ny)×(nu+ny). Later in the paper, we will

point out (Corollary V.2) a straightforward argument on the invertibility of Ω11(Q).

We start with the conclusion of Theorem IV.1 on the equivalence between (9) and (10). Theo-

rem III.2 ii) implies that for any stabilizing controller K ∈ S, there exists a Q ∈ A(nu+ny)×(nu+ny)

such that K = Ω21(Q)Ω−1
11 (Q) (and therefore Ω21(Q)Ω−1

11 (Q) ∈ S). Moreover, for any Q ∈

A(nu+ny)×(nu+ny) it follows also by Theorem III.2 that Ω21(Q)Ω−1
11 (Q) is a stabilizing controller

of G. Hence the constraint K ∈ S in (15) being equivalent to the constraint Ω21(Q)Ω−1
11 (Q) ∈ S,

yields the decentralized model–matching problem (16).

Problems (15) and (16) are in fact versions with a smaller feasible set of the equivalent (via

Theorem IV.1) problems (9) and (10). Here the additional constraint arises from the required

decentraized structure of the controller , i.e. K ∈ S.

C. Sparsity Constraints on the Youla Parameter

The binary matrix Kbin in the set
{

0, 1
}m×p will denote from now on the sparsity pattern of

the feasible decentralized controllers. Similarly, P bin in the set
{

0, 1
}p×m is the sparsity structure

of the Gyu block of G.

Consider now the following natural partition of the Youla parameter Q (Q is in the set

A(nu+ny)×(nu+ny)) :

Q =

ny nu︷︸︸︷ ︷︸︸︷[
Q11 Q12

Q21 Q22

] }
ny}
nu

(17)

Assume for Q12 ∈ Any×nu the same partition by blocks as for Gyu, from the beginning of

the previous subsection. That is, Q12 is partitioned in p block–rows and m block–columns and

the i-th block–row has ni
y rows, while the j-th block–column has nj

u columns. Hence for any

(i, j) ∈ 1, p× 1,m we get that [Q12]ij ∈ Ani
y×nj

u . Similarly, assume for Q21 ∈ Anu×ny the same

partition by blocks as for K: m block–rows and p block–columns and for any (j, i) ∈ 1,m×1, p,
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[Q21]ji ∈ Anj
u×ni

y . It follows that Q11 is naturally partitioned in p block–rows times p block–

columns and the i-th block–row has ni
y rows, while the i-th block–column has ni

y columns.

Consequently, for any (i, j) ∈ 1, p × 1, p we get that [Q11]ij ∈ Ani
y×nj

y . Similarly, Q22 has m

block–rows and m block–columns and the j-th block–row has nj
u rows, while the j-th block–

column has nj
u columns.

For the transfer function matrices Q11, Q12, Q21, and Q22 we define next their corresponding

sparsity patterns. As usually, in (18) below, Pattern (·) is referred blockwise.

Q11
def
=
{
Q11 ∈ Any×ny

∣∣∣Pattern (Q11) = P bin Kbin + Im

}
,

Q12
def
=
{
Q12 ∈ Any×nu

∣∣∣Pattern (Q12) = P bin Kbin P bin + P bin
}
,

Q21
def
=
{
Q21 ∈ Anu×ny

∣∣∣Pattern (Q21) = Kbin
}
,

Q22
def
=
{
Q22 ∈ Anu×nu

∣∣∣Pattern (Q22) = Kbin P bin
}
.

(18)

Next, define the subset of A(nu+ny)×(nu+ny)

Q def
=
{ Q11 Q12

Q21 Q22

 ∣∣∣Q11 ∈ Q11, Q12 ∈ Q12, Q21 ∈ Q21, Q22 ∈ Q22

}
. (19)

Define the following binary matrix in the set
{

0, 1
}(p+m)×(p+m)

Qbin def
=

 (P bin Kbin + Im

) (
P bin Kbin P bin + P bin

)
Kbin Kbin P bin

 (20)

With this we get the following equivalent characterization of the set Q from (20):

Q =
{
Q ∈ A(nu+ny)×(nu+ny)

∣∣∣Pattern(Q) = Qbin
}
. (21)

Remark IV.4. The alternative characterization of Q from (21) points out that Q is perfectly

defined solely by the sparsity matrix Qbin. The set Q , contains only those square, stable Youla

parameters Q from the set A(nu+ny)×(nu+ny), that have the specific sparsity pattern induced by

Qbin.
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D. Quadratic Invariance

From this point on, we take into account the Banach space structure of the linear spaces

Fnu and Fny . For this, we can consider for instance the H2 or H∞ norms. The definition of

these norms for matrices with entries real rational functions of multivariate polynomials is done

by a natural extension from the classical case of real rational matrix functions (which are the

input/output operator of LTI systems).

Furthermore, under these assumptions, the set S defined in (13), is a closed linear subspace

of Fnu×ny .

The following definition is a slight variation of the notion of quadratic invariance introduced

in [7].

Definition IV.5. Suppose P ∈ Fny×nu and S ⊂ Fnu×ny . The set S is called quadratically

invariant under P if

K1PK2 ∈ S for all K1, K2 ∈ S

Define the set

M
def
=
{
K ∈ Fnu×ny

∣∣∣(I − PK)is invertible
}
.

With the same notation as in [7], for any P ∈ Fny×nu and any K ∈ Fnu×ny define the resolvent

set as

ρ(PK)
def
=
{
λ ∈ C

∣∣(λI − PK)is invertible
}
.

We denote by ρuc(PK) the unbounded connected component of ρ(PK). Clearly 1 ∈ ρ(PK)

for all K ∈M and we define the subset N ⊆M as follows

N
def
=
{
K ∈ Fnu×ny

∣∣∣1 ∈ ρuc(PK)
}
.

For any P ∈ Fny×nu and any K ∈ Fnu×ny define the function

hK,P (K1)
def
= K1

(
I − PK

)−1
. (22)

The next theorem follows mutatis mutandis on the exact lines of proof of Theorem 7 in [7].

Theorem IV.6. Suppose P ∈ Fny×nu strictly causal and S ⊆ Fnu×ny is a closed subspace.

Suppose as well that N ∩ S = M ∩ S . Then

S is quadratically invariant under P ⇐⇒ hK,P (S ∩M) = S ∩M
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Remark IV.7. Notice that, according to Theorem 28 in [5], for the case of transfer function

matrices, when the subspace S is defined by block sparsity constraints, quadratic invariance

as introduced in Definition (IV.5) is equivalent with the usual definition of quadratic invariance

from [5], [6], [7], namely:

KPK ∈ S for all K ∈ S.

V. MAIN RESULT

As stated in Theorem III.2 (see also Lemma III.1), any stabilizing controller K of G has the

form

K(Q)
(7)
= Ω21(Q)Ω−1

11 (Q)
(24)
= Ω21(Q)

(
I − PΩ21(Q)

)−1

(23)

for some stable Q ∈ A(nu+ny)×(nu+ny). In a completely similar manner with how the strongly–

stabilizable case was dealt with in [6], in this section we prove that the information constraints

on the controller (K ∈ S), are equivalent to constraints on the Youla parameter Q (namely

that Q ∈ Q). More specifically, if we impose the constraint K ∈ S then any such stabilizing

controller K(Q) of G is going to be of the form K(Q) = Ω21(Q)
(
I − PΩ21(Q)

)−1

and it will

belong to the set
(
C ∩ S

)
for some Q ∈ Q. These important facts are precisely stated in

Lemma V.3 and Theorem V.4.

We summarize here the hypothesis and notations that we assume for our main result:

• The set Fn×r of transfer functions matrices over F along with the invoked norm is a Banach

space. (This will hold true for all the particular instances of A that we are interested in);

• The given generalized plant G is stabilizable by a controller K0 ∈ S;

• The block Gyu is strictly causal (see Remark III.5);

• The set S is quadratically invariant under Gyu;

• We will denote by P the block −Gyu as we refer to it repeatedly, hence P def
= −Gyu.

The following preliminary result will be needed in the sequel.

Proposition V.1. For any Q ∈ A(nu+ny)×(nu+ny), the first block column of Ω(Q) from (6) has

the following expression: Ω11(Q)

Ω21(Q)

 =

 Iny − PΩ21(Q)

Ω21(Q)

 where (24)
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Ω21(Q) =
(
I+K0P

)−1(
K0+K0PK0+K0Q11+K0Q12K0+Q21+Q22K0

)(
I+PK0

)−1

(25)

Proof: The proof is purely algebraic and is deferred to the Appendix.

Under the strict causality assumption of the block P (see also Remark III.5), an immmediate

consequence of the previous proposition is the next Corollary:

Corollary V.2. The block Ω11(Q) is invertible for any causal Q in the set A(nu+ny)×(nu+ny).

Proof: The invertibility of (see (24)) Ω11(Q) = Iny − PΩ21(Q) follows from the causality

of the Ω21(Q) block and the strict causality of P , (see also the statement at the end of first

column on page 232 in [4]).

Lemma V.3. Let G be a causal, generalized plant stabilizable with a controller K0 ∈ S .

Assume that S is quadratically invariant under the strictly causal block P . The function K :

Q 7−→
(
C ∩ S

)
with K(Q)

def
= Ω21(Q)Ω−1

11 (Q) is onto.

Proof: See Appendix.

The previous Lemma is the centerpiece of our main result, as it proves that the constraint

K(Q) ∈ S (equivalent via (7) with Ω21(Q)Ω−1
11 (Q) ∈ S) is actually equivalent in problem

(16) with the constraint Q ∈ Q. Hence, the next Theorem is the extension to the general case

(non–strongly stabilizable) of the optimal controller design procedure proposed in [6] for strongly

stabilizable plants. The equivalent convex program we obtain is utterly similar with the one from

((6), pp. 281 in [6]), only that here, the strong–stabilizability assumption has been removed.

Theorem V.4. Let G be a causal, generalized plant stabilizable with a controller K0 ∈ S.

Assume that S is quadratically invariant under the strictly causal block P . The decentralized

optimal control problem (15) is equivalent with the problem

min

Q ∈ Q

∥∥∥ T1 − T2 Q T3

∥∥∥ . (26)
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Proof: It follows from Corollary IV.3 and the previous Lemma.

The convex problem (26) is completely similar with problem (6) pp. 281 in [6] which is

the equivalent convex problem to solve the decentralized optimal H2 synthesis for strongly

stabilizable plants. If we consider A = RH2 then the vectorization techniques from Section VI

of [6] are readily applicable for solving (26) and get the optimal H2 controller, without any

strong–stabilizability assumption.

APPENDIX

Proof of Proposition V.1 The following algebraic identities will prove to be useful. They

hold true in any ring provided the inverses involved exist:

(I + PK)−1P = P (I +KP )−1, (27)

(I + PK)−1 = I − P (I +KP )−1K (28)

and their duals

(I +KP )−1K = K(I + PK)−1, (29)

(I +KP )−1 = I −K(I + PK)−1P. (30)

We start with the Youla–like parametrization (5) of the stabilizable controllers from Theo-

rem III.2. After expanding the expression of the first block–column of Ω(Q) in (5) we get

that

Ω(Q)

 Iny

Onu×ny

 =

=

 (I + PK0

)−1 − I −P
(
I +K0P

)−1

K0

(
I + PK0

)−1 (
I +K0P

)−1

 Q11 Q12

Q21 Q22

×
×

 (
I + PK0

)−1

K0

(
I + PK0

)−1

+H(P,K0)

 Iny

Onu×ny


(31)
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(28,29)
=

 −PK0

(
I + PK0

)−1 −P
(
I +K0P

)−1

K0

(
I + PK0

)−1 (
I +K0P

)−1

×
×

 Q11

(
I + PK0

)−1
+Q12K0

(
I + PK0

)−1

Q21

(
I + PK0

)−1
+Q22K0

(
I + PK0

)−1

+H(P,K0)

 Iny

Onu×ny


(27,28,29,30,3)

=

 −P(I +K0P
)−1(

K0Q11 +K0Q12K0 +Q21 +Q22K0

)(
I + PK0

)−1(
I +K0P

)−1(
K0Q11 +K0Q12K0 +Q21 +Q22K0

)(
I + PK0

)−1

+

+

 I − P
(
I +K0P

)−1
K0

K0

(
I + PK0

)−1


=

 I − P
(
I +K0P

)−1(
K0 +K0PK0 +K0Q11 +K0Q12K0 +Q21 +Q22K0

)(
I + PK0

)−1(
I +K0P

)−1(
K0 +K0PK0 +K0Q11 +K0Q12K0 +Q21 +Q22K0

)(
I + PK0

)−1



(32)

which is the desired expression.

Proof of Lemma V.3 We divide the proof in two parts: in part I) we prove that the function

K(·) is a well–defined function indeed, from Q to
(
C ∩ S

)
. In part II) we show that the

function K(·) is onto.

I) Let Q ∈ Q be arbitrary but fixed. Since Q ∈ A(nu+ny)×(nu+ny) then by Theorem III.2 ii)

we get that K(Q) ∈ C, so it only remains to show that K(Q) ∈ S.

We expand the product in (25) to get that Ω21(Q) (in the form provided by Proposition V.1)

is the sum of the following six terms:

Ω21(Q) =
(
I +K0P

)−1
K0

(
I + PK0

)−1︸ ︷︷ ︸
t1

+
(
I +K0P

)−1
K0PK0

(
I + PK0

)−1︸ ︷︷ ︸
t2

+

(
I +K0P

)−1
K0Q11

(
I + PK0

)−1︸ ︷︷ ︸
t3

+
(
I +K0P

)−1
K0Q12K0

(
I + PK0

)−1︸ ︷︷ ︸
t4

+

(33)
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(
I +K0P

)−1
Q21

(
I + PK0

)−1︸ ︷︷ ︸
t5

+
(
I +K0P

)−1
Q22K0

(
I + PK0

)−1︸ ︷︷ ︸
t6

To start with, we prove that Ω21(Q) is in S. We prove this by showing that each of the six

terms of the sum in (33) are in S . Since S is a (closed) linear subspace it will follow that Ω21(Q)

is in S indeed. Denote

∆0
def
= K0(I + PK0)

−1 (34)

which belongs to S by Theorem 7 in [7], and the fact that S is quadratically invariant under P .

The first term in (33) is

t1 =
(

(I +K0P )−1K0

)
(I + PK0)

−1 (29)
= ∆0(I + PK0)

−1

which is in S by Theorem IV.6.

The second term

t2 =
(

(I +K0P )−1K0

)
P
(
K0(I + PK0)

−1
)

(29)
= ∆0P∆0

which is in S because ∆0 ∈ S and S is quadratically invariant under P .

Since Q11 ∈ Q11 then from (18) we get that Pattern(Q11) = P binKbin + Im. Furthermore

Pattern
(
∆0Q11

)
= Pattern(∆0)Pattern(Q11) = Kbin

(
P binKbin + Im

)
= KbinP binKbin +Kbin = Kbin +Kbin = Kbin

(35)

because KbinP binKbin = Kbin due to quadratic invariance and obviously Kbin + Kbin = Kbin

due to the way addition is defined for binary matrices.

Define

W11
def
=
(
∆0Q11

)
and since Pattern(W11) = Kbin we conclude W11 ∈ S. The third term is

t3 = ∆0Q11(I + PK0)
−1 = W11(I + PK0)

−1

and it belongs to S by Theorem IV.6.

Since Q12 ∈ Q12 then from (18) we know that
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Pattern(Q12) = P binKbinP bin + P bin

The fourth term is t4 = ∆0Q12∆0. It follows that

Pattern
(
∆0Q12∆0

)
= Pattern

(
∆0

)
Pattern

(
Q12

)
Pattern

(
∆0

)
= Kbin

(
P binKbinP bin + P bin

)
Kbin = Kbin

(
P binKbinP bin

)
Kbin +KbinP binKbin

=
(
KbinP binKbin

)
P binKbin +Kbin = KbinP binKbin +Kbin = Kbin +Kbin = Kbin

(36)

Since Pattern(t4) = Kbin we get that t4 ∈ S as well.

Because Q21 ∈ Q21, from (18) we get that Q21 ∈ S . But then Q21(I + PK0)
−1 ∈ S by

Theorem IV.6. Denote

W21
def
= Q21(I + PK0)

−1. The fifth term is then

t5 = (I +K0P )−1
(
Q21(I + PK0)

−1
)

= (I +K0P )−1W21
(29)
= W21(I + PK0)

−1

which is in S by Theorem IV.6.

Finally, Q22 ∈ Q22 and (18) implies that Pattern(Q22) = KbinP bin and so

Pattern
(
Q22∆0

)
= Pattern

(
Q22

)
Pattern

(
∆0

)
=
(
KbinP bin

)
Kbin

= KbinP binKbin = Kbin

(37)

Denote

W22
def
= Q22∆0.

Since Pattern(W22) = Kbin we get that W22 ∈ S. Therefore the sixth and last term

t6 = (I +K0P )−1
(
Q22∆0

)
= (I +K0P )−1W22

(29)
= W22(I + PK0)

−1
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and it belongs to S by Theorem IV.6.

We have just proved that Ω21(Q) ∈ S for any Q ∈ Q. It follows then by Theorem 7 in [7]

that

K(Q)
(7)
= Ω21(Q)Ω−1

11 (Q)
(24)
= Ω21(Q)

(
I − PΩ21(Q)

)−1

∈ S.

and the first part of the proof ends.

II) Let be K ∈
(
C ∩ S

)
, arbitrary chosen. We will prove that there exists a Q ∈ Q such

that K(Q) = K. We show that such a Q is given by

Q =

 −(I + PK
)−1 −P

(
I +KP

)−1

K
(
I + PK

)−1
I −

(
I +KP

)−1

 . (38)

Note that

Q
(3)
=

 −I O

O I

H(P,K)

 I O

O −I

+

 O O

O I


and because K ∈ C implies that H(P,K) ∈ A(nu+ny)×(nu+ny) , we get that Q is in the set

A(nu+ny)×(nu+ny) as well.

Next, denote

∆
not
= K

(
I + PK

)−1
. (39)

By the quadratic invariance of S under P and then by Theorem 7 in [7], it follows that ∆ ∈ S.

Furthermore,

Q =

 (P∆− I
) (

P∆P − P
)

∆ ∆P

 (40)

because

P∆−I (39)
= PK

(
I+PK

)−1−I (29)
= P

(
I+KP

)−1
K−I (28)

= I−
(
I+PK

)−1−I = −
(
I+PK

)−1
,

P∆P − P = −
(
I + PK

)−1
P

(27)
= −P

(
I + PK

)−1
,

∆P
(39)
= K

(
I + PK

)−1
P

(30)
= I −

(
I +KP

)−1
.

(41)
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It is pretty straightforward now via the definitions in (18) that Q11 = (P∆ − I) ∈ Q11, Q12 =

(P∆P − P ) ∈ Q12, Q21 = ∆ ∈ Q21 and Q22 = ∆P ∈ Q22.

We have just proved that Q ∈ Q so it only remains to prove that K(Q) = K. By plugging (40)

in (25) we get

Ω21(Q) =
(
I+K0P

)−1(
K0+K0PK0+K0(P∆−I)+K0(P∆P−P )K0+∆+∆PK0

)(
I+PK0

)−1

=
(
I +K0P

)−1(
K0P∆ +K0P∆PK0 + ∆ + ∆PK0

)(
I + PK0

)−1

=
(
I +K0P

)−1(
K0P∆(I + PK0) + ∆(I + PK0)

)(
I + PK0

)−1

=
(
I +K0P

)−1(
K0P∆ + ∆

)
=
(
I +K0P

)−1(
I +K0P

)
∆

= ∆

(42)

Finally

K(Q)
(24)
= Ω21(Q)

(
I − PΩ21(Q)

)−1 (42)
= ∆

(
I − P∆

)−1 (39)
= K

hence the proof.
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