
ABSTRACT

Title of dissertation: EXISTENCE AND WEAK-STRONG
UNIQUENESS FOR THE
NAVIER-STOKES-SMOLUCHOWSKI
SYSTEM OVER MOVING DOMAINS

Stefan Doboszczak, Doctor of Philosophy, 2016

Dissertation directed by: Professor Konstantina Trivisa
Department of Mathematics

This dissertation concerns the well-posedness of the Navier-Stokes-Smoluchowski

system. The system models a mixture of fluid and particles in the so-called bub-

bling regime. The compressible Navier-Stokes equations governing the evolution of

the fluid are coupled to the Smoluchowski equation for the particle density at a

continuum level.

First, working on fixed domains, the existence of weak solutions is established

using a three-level approximation scheme and based largely on the Lions-Feireisl

theory of compressible fluids.

The system is then posed over a moving domain. By utilizing a Brinkman-type

penalization as well as penalization of the viscosity, the existence of weak solutions

of the Navier-Stokes-Smoluchowski system is proved over moving domains. As a

corollary the convergence of the Brinkman penalization is proved.

Finally, a suitable relative entropy is defined. This relative entropy is used

to establish a weak-strong uniqueness result for the Navier-Stokes-Smoluchowski



system over moving domains, ensuring that strong solutions are unique in the class

of weak solutions.



Existence and weak-strong uniqueness for the
Navier-Stokes-Smoluchowski system over moving domains

by

Stefan Doboszczak

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2016

Advisory Committee:
Professor Konstantina Trivisa, Chair/Advisor
Professor Pierre-Emmanuel Jabin
Professor Matei Machedon
Professor Antoine Mellet
Professor James Duncan (Dean’s Representative)



c© Copyright by
Stefan Doboszczak

2016



Dedication

To my parents and family.

ii



Acknowledgments

In writing this dissertation and throughout my studies, countless people have

offered their assistance, have been an influence, and helped me succeed. This dis-

sertation is in a very real sense a shared accomplishment and I wish to thank all of

you.

First, I thank both my parents from the bottom of my heart for always be-

lieving in me and supporting me throughout my career. They have been a positive

influence in my life and I thank them dearly for it. Thanks also to my brother and

sister, who have always supported me and have made my life only more pleasant.

To my grandparents, aunts, uncles, cousins, and all others considered family, thank

you all. I’ve been influenced by each of you more than you may know.

Thanks to my advisor, Dr. Konstantina Trivisa, for taking me on as a student

and introducing me to many interesting problems. She has provided much help

for me to succeed through graduate school and given me much advice throughout.

Thanks also to professors Pierre-Emmanuel Jabin, Antoine Mellet, Matei Machedon,

and James Duncan, for serving on my committee. I have learned much from them

throughout the years, both inside and outside the classroom.

Thanks to all the friends I’ve made at UMD, who have helped me both in

mathematics and partaking in the joys of life. First of all, thanks to Allison Ring for

all her love and support. Thanks to members of the ‘AMSC house’ for their generous

friendship: Lee Mendelowitz, Joe Paulson, Andrew Brandon, David Darmon, Chae

Clark, Ryan Hunter, James Murphy, and Matt Guay. Thanks also to Sam Punshon-

iii



Smith, Matias Delgadino, Scott Smith, Lucia Simonelli, Dana Botesteanu, and Matt

Whiteway, for their help and friendship. Finally, thanks to all other friends in the

AMSC and AOSC departments, and to all friends from the past who have driven

me to succeed.

Finally, thanks to Alverda McCoy for her assistance throughout the years.

I also acknowledge the financial support I’ve received through the University

of Maryland, and grants from the National Science Foundation.

To all those I inadvertently left out, know that your assistance has been much

appreciated.

iv



Table of Contents

List of Abbreviations vii

1 Introduction 1
1.1 The Navier-Stokes-Smoluchowski system . . . . . . . . . . . . . . . . 2
1.2 Existence theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Moving domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4 Relative entropy and weak-strong uniqueness . . . . . . . . . . . . . . 15
1.5 Outline of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Global existence: fixed domains 18
2.1 Weak formulation and main result . . . . . . . . . . . . . . . . . . . . 19
2.2 Approximation scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 Local-in-time existence of approximate solutions . . . . . . . . . . . . 26
2.4 Global-in-time existence of approximate solutions . . . . . . . . . . . 28
2.5 Faedo-Galerkin limit . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5.1 Uniform bounds . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.5.2 Convergent subsequences . . . . . . . . . . . . . . . . . . . . . 35

2.6 Vanishing viscosity limit . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.6.1 Strong convergence of the density . . . . . . . . . . . . . . . . 45

2.7 Artificial pressure limit . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3 Global existence: moving domains 53
3.1 Moving domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.1.1 Function spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.2 Weak formulation and main result . . . . . . . . . . . . . . . . . . . . 57
3.3 Penalization scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.4 Uniform estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.5 Pressure estimates and pointwise convergence of the fluid density . . 67
3.6 The limit ε→ 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.7 Convergence in the set Qs . . . . . . . . . . . . . . . . . . . . . . . . 68
3.8 The limit ω → 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

v



4 Relative entropy and weak-strong uniqueness for NSS: moving domains 73
4.1 Definitions of relative entropies . . . . . . . . . . . . . . . . . . . . . 73
4.2 Relative entropy inequality . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2.1 Regularity of smooth solutions . . . . . . . . . . . . . . . . . . 79
4.3 Weak-strong uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . 80

A Pressure estimates 90

Bibliography 94

vi



List of Abbreviations

ALE Arbitrary Lagrangian-Eulerian
NSS Navier-Stokes-Smoluchowski

vii



Chapter 1: Introduction

Models of fluids arise in a variety of physical phenomena including combustion,

atmospheric dynamics, pollution control, amongst others. When mixtures of liquid,

gas, or solid phases appear, the resulting flow is called multiphase flow. In this

dissertation, we consider a two-phase flow consisting of a bulk fluid phase (liquid

or gas), as well as a dispersed (particulate) phase. The particles are assumed to

be light compared to the fluid and therefore due to buoyancy effects they tend to

‘bubble’ upwards.

Both fluid and particles are modeled at a macroscopic level, that is, we ignore

the individual behavior of particles at a microscopic scale. The fluid will be governed

by the compressible Navier-Stokes equations, describing the evolution of a linearly

viscous compressible fluid. The dispersed phase is governed by a convection-diffusion

equation, the so-called Smoluchowski equation, and coupled to the fluid via a drag

force. The modeling of the Navier-Stokes-Smoluchowski (NSS) system is described

in Section 1.1.

Applications of fluid-particle systems are numerous: hemodynamics ( [43],

[53], [62]), swarms ( [8], [30]), suspensions ( [16], [68]), sprays and aerosols ( [3],

[4], [10], [49], [59]), combustion [71], and sedimentation [11]. The macroscopic NSS
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model presented in Section 1.1 is in part1 introduced by Carrillo et al. [18] as a

formal hydrodynamic limit from a kinetic-fluid system. See [12], [13], and [69] for

other fluid-particle models and modeling considerations. Some numerical schemes

for models similiar to the NSS system can be found in [19], [48]. For a practical

treatment of multiphase flows, see [14].

1.1 The Navier-Stokes-Smoluchowski system

The NSS equations describe the evolution of a fluid-particle system, and consist

of a set of PDE for the fluid velocity u = u(t, x), fluid density ρ = ρ(t, x), and

particle density η = η(t, x):

∂tρ+ divx(ρu) = 0, (1.1a)

∂tη + divx(η(u−∇xΦ))−∆xη = 0, (1.1b)

∂t(ρu) + divx(ρu⊗ u) +∇x(p(ρ) + η) = divxS− (η + βρ)∇xΦ. (1.1c)

These are respectively equations for the conservation of fluid mass, conservation

of particle mass, and conservation of momentum. Except for the parameter β, all

physical constants in the equations have been set to unity. The system (1.1) is posed

over the space-time domain ((0, T )×Ωt) ⊂ R×R3, where T ≥ 0 is fixed. Note that

the spatial domain Ωt ≡ Ω(t) is in general time-dependent.

We assume the fluid pressure p(ρ) follows the isentropic pressure law

p(ρ) = aργ, γ >
3

2
, (1.2)

1Viscous terms are ignored due to modeling considerations, while in this work they are retained.
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where a > 0 is a constant, which we set to unity in the sequel. The restriction on

the value of γ is a technicality needed for the existence theory presented in Chapter

2. The stress tensor is assumed to obey Newton’s law of viscosity,

S(∇xu) = µ(∇xu + (∇xu)T ) + λdivxuI. (1.3)

The viscosity coefficients are assumed to be constant and satisfy

µ > 0, λ+
2

3
µ ≥ 0,

where µ is the shear (dynamic) viscosity coefficient and ζ ≡ λ+ (2/3)µ is the bulk

viscosity coefficient.

The external potential Φ, incorporating external forces through ∇xΦ, is de-

termined up to a constant. We therefore assume Φ is non-negative and in addition

suppose Φ ∈ C1(Ω).

The Navier-Stokes equations are well-known and well-studied. Issues of mod-

eling and applications can be found in [66]. Let us make some comments regarding

the particle contribution.

First, the pressure term in the momentum equation,

P (ρ, η) = p(ρ) + pη(η) = ργ + η,

contains contributions from the fluid and the particle density. Therefore the par-

ticle density gradient also drives the fluid evolution. Such a ‘particle pressure’ is

oftentimes neglected in particle-fluid dynamics, though it can influence the overall

behavior of the system (cf. [17], [42]).
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In order to explain the coupling between the particles and fluid, the kinetic-

fluid origin of the NSS system (1.1) is examined next.

The NSS system is formally derived from a Vlasov-Fokker-Planck type equa-

tion in [18], describing the evolution of the particle mass density function f(t, x, v),

and coupled to a compressible Euler system for the fluid, where v represents the

microscopic ‘actual’ velocity of a particle. Assume the particles have constant mass

mp. The function f(t, x, v) has the interpretation that f(t, x, v)dxdv is the total

mass of particles enclosed at time t ≥ 0 in the infinitesimal domain of phase space

centered on (x, v) ∈ R3 × R3 with volume dxdv, standard in the kinetic theory of

gases. Macroscopic observables are then obtained as averages with respect to the

velocity v. For instance, the macroscopic particle mass density η(t, x) is defined by

η(t, x) =

∫
R3

f(t, x, v) dv.

The coupling between the fluid and particles is obtained from the mutual drag force,

F(t, x, v), modeled as the linear Stokes’ drag

F(t, x, v) = 6πµa(u(t, x)− v), (1.4)

where a is the typical particle radius (assumed constant) and u(t, x) is the local ve-

locity of the fluid. We assume the particle radius is small so that the low Reynold’s

number assumption for the Stokes’ drag is satisfied. The force exerted by the par-

ticles on the fluid, denoted Ffl, is then obtained by taking moments as

Ffl(t, x) = 6πµa

∫
R3

(v − u(t, x))f(t, x, v) dv. (1.5)

In fact, the NSS system (1.1) describes fluid-particle systems in the so-called bubbling
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regime. To make this more precise, we will now (formally) take the hydrodynamic

limit of the governing kinetic-fluid model. For rigorous hydrodynamic limits in a

similar context, see [46], [47], [56].

As our starting point, we consider the dimensionless system

∂tf + σv · ∇xf − κ∇xΦ · ∇vf =
1

ε
divv((v − σ−1u)f +∇vf), (1.6a)

∂tρ+ divx(ρu) = 0, (1.6b)

∂t(ρu) + divx(ρu⊗ u) + χ∇xp(ρ) + ασκρ∇xΦ

=
1

ε

ρp
ρf

(J − ηu) +
2

9

( a
L

)2 1

ε

ρp
ρf

divxS, (1.6c)

which can be found in [18]. This system consists of the Vlasov-Fokker-Planck equa-

tion (1.6a) coupled to the compressible Navier-Stokes system (1.6b), (1.6c). Let the

parameters L, T, and U , denote typical length, time, and velocity scales respectively.

Let ρp denote a typical particle density and let ρf denote a typical fluid density. The

parameter χ represents the ratio of a typical pressure to the dynamic pressure ρfU
2,

and will be set equal to unity. The particle momentum J is defined by

J = σ

∫
R3

vf dv,

where σ :=
vth
U

. The quantity vth is a measure of the fluctuation of particle veloc-

ity. For instance, if the particles’ velocities are described by a Maxwell-Boltzmann

distribution, then one possible definition is vth =
√
kθ/mp, the root mean square in

one direction, where k is the Boltzmann constant and θ is the temperature.

The parameter α is supposed to represent the different effects the potential Φ

has on the fluid and dispersed phases. For instance, consider Φ incorporating gravity
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in the vertical direction. The dispersed phase is then acted upon by a gravitational

and buoyancy force. The force on a particle is given by −mp∇xΦ, where mp is

a typical particle mass, and Φ = (1− ρf/ρp) gx3. The force exerted on the fluid

should then be ρfgê3 = αρf∇xΦ, with α = (1− ρf/ρp)−1. A typical situation in

this context is air bubbles in water, in which case ρf/ρp ≈ 103, and α ≈ −10−3.

The rest of the parameters are defined as follows:

1

ε
=
T

τs
, κ =

vs
vth

T

τs
.

The quantities τs and vs are the Stokes settling time and settling velocity of a par-

ticle. Under the effects of drag, buoyancy, and weight, a particle’s vertical position

X(t) relative to rest will evolve like

dX(t)

dt
= vs

(
1− e−t/τs

)
,

as can be seen by a force balance. The velocity vs is therefore the terminal speed of a

particle settling and τs is a natural relaxation time (the time it takes for the particle

to reach 63% of its terminal speed). With ε << 1 denoting a small parameter, we

therefore assume τs is small.

In order for the energy of the system to dissipate, it is required that

σ = κ,
ρp
ρf

=
1

σ2
.

See [18] for details on this condition. We can now scale the system by setting

σ =
1√
ε
.

Using this scaling in the definitions above implies the following:

ρp
ρf

= ε,
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and

vs ≈ U << vth.

The system bears the name bubbling in particular due to the fact that the particle

density is assumed to be much less than the fluid density.

Taking moments of equation (1.6a) with respect to 1 and v, using the ε scalings,

and employing Corollary 1 of [18] yields

∂tη + divxJ = 0, (1.7a)

ε∂tJ +∇xη + η∇xΦ = −J + ηu. (1.7b)

Formally letting ε→ 0 in (1.7b) yields

J = ηu−∇xη − η∇xΦ.

Inserting this J into (1.7a) we then recover the Smoluchowski equation (1.1b), while

inserting into (1.6c) we recover the momentum equation (1.1c).

Remark 1: The model (1.6) slightly differs from that of [18], where the Euler equa-

tions are considered. There they neglect the viscous terms (the last term in (1.6c)),

due to the assumption a << L, where a is the particle radius and L is a typical

length scale for the problem. The system (1.1) as stated is then more similar to

the one analyzed in [21], and keeping the viscous term is necessary to stay in the

Navier-Stokes regime.

Remark 2: In taking the hydrodynamic limit as ε→ 0, we have overlooked the term

1
ε
αρ∇xΦ, where an assumption needs to be made on the coefficient. In [18], it is

assumed that α = sign(α)ε, in which case β = sign(α) in equation (1.1c). This is
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in contrast to [21] where β seems to be defined as a more general parameter. We

choose the setting of [21] and include a generic β in this term. In any case, the

hydrodynamic limit only requires that α = O(ε) as ε → 0. This is verified for the

case of gravitational forces as α = ε/(ε− 1) when ρp/ρf = ε

1.2 Existence theory

Regarding the compressible Navier-Stokes equations, the existence of weak

solutions is originally due to Lions [51] for γ-type pressure laws with γ ≥ 9/5 (in

three dimensions). Feireisl [34] later extended Lions’ results to the range γ > 3/2,

and the existence of weak solutions in this case was proven by Feireisl et al. [38].

The existence theory nowadays is often referred to as the Lions-Feireisl theory.

The existence of weak solutions for the Navier-Stokes-Smoluchowski system

is originally proved in Carrillo et al. [21] using a time-discretization scheme and

arguments of Lions. Another proof in the context of the Feireisl theory is provided

by Ballew et al. [9]. For some work related to the 1d model, see [32], [65].

Let us now briefly mention the key ideas regarding the proof of the existence

of weak solutions to the NSS system, leaving the details to Chapter 2.

The proof relies on a three-level approximation scheme and weak compactness

arguments ensuring weak stability of the class of weak solutions. The first level

approximation relies on a Galerkin method, with the density and fluid velocity

approximated by a smooth-enough family dense in a suitable function space. At the

second level of the approximation, the continuity equation (1.1a) is modified by the
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addition of a Laplacian term (i.e. artificial viscosity), regularizing the fluid density

and providing spatial compactness in the fluid density. To save an energy estimate,

the momentum equation (1.1c) is also modified at this level. Finally, the third level

of the approximation consists of the addition of an artificial pressure term, providing

us with increased integrability of the fluid density and necessary to save an estimate

at the second level of the approximation.

Having set the approximation scheme, the existence of solutions is proved

locally in time using a fixed-point argument and then extended to the full time

interval [0, T ] using uniform-in-time estimates. Uniform estimates provided by an

energy inequality at the Galerkin level then allow us to pass to the limit in the first

level of the approximation. At each level, weak lower semicontinuity of the norms

allow us to keep the energy inequality valid.

In passing to the limit at the second and third levels of the approximation,

the linear terms in (1.1) cause no difficulty. The nonlinear convective terms (ρu, ηu,

and ρu ⊗ u) are handled in a natural way as the NSS system provides estimates

on the time derivatives (∂tρ, ∂tη, and ∂t(ρu)). Along with a priori estimates on the

velocity u ∈ L2(0, T ;H1
0 (Ω;R3)), the passage to the limit in the convective terms

follows.

The difficuly is passing to the limit in the pressure term p(ρ) = ργ. First, the

a priori estimates only bound the pressure in L∞(0, T ;L1(Ω)), which only allows

passage weakly as a measure. It is therefore necessary to prove estimates on the
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pressure of the form ∫ T

0

∫
Ω

ργ+ω dxdt ≤ c,

where ω > 0 is small. This type of estimate, first shown by P.L. Lions, allows us to

pass to the limit weakly in the pressure to deduce

ργε,δ ⇀ ργ,

in a suitable Lebesgue space, where the subscripts ε, δ indicate the second and third

levels of the approximation respectively, and the overbar indicates a weak limit. The

trick is now to show that in fact ργ = ργ almost everywhere, which requires strong

convergence of the fluid density.

To this end, two tools are employed: renormalization of the continuity equation

(1.1a) and weak-continuity of the so-called effective viscous pressure, defined as

Peff = ργ − (λ+ 2µ)divxu.

The renormalization property essentially says that provided the density ρ is square

integrable, we are allowed to conclude that for a suitable function B(ρ) that

∂tB(ρ) + divx(B(ρ)u) + (B′(ρ)ρ−B(ρ))divxu = 0

holds in the sense of distributions. This is where Lions requires that γ ≥ 9/5,

ensuring the square-integrability of the density in light of the pressure estimates.

Choosing the convex function B(ρ) = ρ log ρ in the renormalized equation for both

ρε,δ and the limit density ρ, we can show that

0 ≤
∫

Ω

(
ρ log ρ− ρ log ρ

)
(t) dx ≤

∫ t

0

∫
Ω

ρdivxu− ρdivxu dxdt. (1.8)
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The left inequality follows from the convexity of the map z 7→ z log z. Provided we

can show the upper bound of this inequality is non-positive, it follows that

ρ log ρ = ρ log ρ a.a.

From this equality we deduce strong convergence of the density ρε,δ again due to

convexity of the map z 7→ z log z. To close the argument, the weak continuity of the

effective viscous pressure is used to ensure the non-positivity of the upper bound in

(1.8) by transferring information from the monotonicity of the pressure ργ to the

terms ρdivxu. In particular the result on the effective viscous pressure reads2

lim
ε,δ→0

∫ T

0

∫
Ω

(ργε,δ − (λ+ 2µ)divxuε,δ)ρε,δ dxdt

=

∫ T

0

∫
Ω

(ργ − (λ+ 2µ)divxu)ρ dxdt.

(1.9)

This highly nontrivial equality, along with the monotonicity of the pressure implying∫ T

0

∫
Ω

ργρ dxdt ≤ lim inf
ε,δ→0

∫ T

0

∫
Ω

ργ+1
ε,δ dxdt,

allows us to conclude the non-positivity of the upper bound in (1.8), and therefore

deduce strong convergence of the density. This allows us to pass to the limit in the

pressure term.

Finally, Feireisl [34] showed that (ρ,u) is a renormalized solution even if the

density is not square integrable, by obtaining estimates on the possible density oscil-

lations that can occur in the limit passage. In particular, introducing the oscillations

defect measure

oscp[ρn → ρ](O) := sup
k≥1

(
lim sup
n→∞

∫
O

|Tk(ρn)− Tk(ρ)|p dxdt

)
,

2This is essentially correct though some truncation and localization is necessary in general. See

Chapter 2 for more details.
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where the Tk are suitable cutoff functions, and providing appropriate uniform bounds

on the oscillations defect measure via the effective viscous pressure, we can show that

(ρ,u) are a renormalized solution of the equation of continuity. Similar arguments

can then be used to extend the theory to pressures satisfying γ > 3/2.

1.3 Moving domains

Oftentimes a set of PDE is described on a fixed domain Ω. This is the situation

for instance when studying air flow in a fixed cylinder. On the other hand, if for

example the cylinder changes volume due to the compressive effect of a piston, the

domain is no longer fixed but changes in time. A similar situation holds for objects

moving through a fluid.

Details on the moving domain will be given in Chapter 3 but let us briefly

mention some of the key ideas. We will denote by Ωt ≡ Ω(t) a time-dependent

domain depending on t ∈ [0, T ]. Unlike free boundary problems, where Ωt is an un-

known, we assume the boundary behavior is given, perhaps from some experimental

data. Let V(t,x) be the boundary velocity and X(t,x) be the associated boundary

position. The transport of the domain by V is expressed by the following ODE

d

dt
X(t,x) = V(t,X(t,x)), t > 0,

X(0,x) = x.

(1.10)

We then set

Ωt = X(t,Ω0), (1.11)
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and define the non-cylindrical space-time domain Qf by

Qf = {(t,x) | t ∈ (0, T ),x ∈ Ωt}.

In fact, the definition (1.11) requires a slight correction. The velocity V only de-

scribes movement of boundary points. Hence it is unclear in which manner the map

X transports points interior to the domain. In other words, extension of the map

X(t,x) to the interior of the domain needs to be defined as well.

This problem has been studied before in the context of Arbitrary Lagrangian-

Eulerian (ALE) methods. In this context we denote by Tt the ALE map such that

Tt(x) = X(t,x), x ∈ ∂Ω0,

and ask how to define Tt(x) for x ∈ Ω0. Two techniques for constructing this

extension are given in [44], along with additional detail on the ALE method. Since

this dissertation makes no specific use of this interior extension, it suffices for our

purposes that a suitable extension is assumed known and we assume that the velocity

V, as well as the position X is known for the entire domain.

A popular class of methods to deal with moving domains are the so-called

penalization methods. We explain the basic idea by considering the incompressible

Navier-Stokes equations in a domain containing an obstacle. Let D be an open

set containing the ‘obstacle’ Ω̃, that is, Ω̃ ⊂ D and the set D\Ω̃ is filled with

incompressible fluid. Whereas normally the fluid equations are posed strictly in the

fluid domain D\Ω̃, we instead add a singular term to the momentum equation and
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pose the Navier-Stokes equations over the entire domain D as follows,

∂tu + u · ∇u +∇P = ∆u− 1

ε
1Ω̃u,

divxu = 0, in (0, T )×D.
(1.12)

The term −(1/ε)1Ω̃u added in the momentum equation is a penalty term, where ε

is a small parameter tending to zero and 1Ω̃ denotes the characteristic function of

the domain Ω̃.

In the limit as ε→ 0, the penalization forces u = 0 in the obstacle domain Ω̃

and u satisfies the standard Navier-Stokes in the true fluid domain D\Ω̃. Indeed,

formally expanding the velocity as

u = u0 + εu1 +O(ε2),

and plugging into the momentum equation in (1.12), we can match orders of ε to

deduce

O(1/ε) : 1Ω̃u0 = 0,

O(1) : ∂tu0 + u0 · ∇u0 +∇P = ∆u0 − 1Ω̃u1.

(1.13)

This implies the leading order term u0 vanishes in Ω̃, satisfies the standard Navier-

Stokes equations in D\Ω̃, and in addition the correction u1 satisfies the Darcy law

in the obstacle domain

u1 +∇P = 0, in (0, T )× Ω̃.

The penalty approach therefore exchanges information about a possibly complicated

domain setting for a global description on a ‘nicer’ domain. For numerical methods,

this has the benefit of being able to use finite-difference methods without need-

ing body-fitted non-Cartesian meshes. The penalization technique is used in [50]
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in the context of nonlinear evolution equations on moving domains. Some other

presentations include [5], [6], [52] and [67].

Leray-Hopf weak solutions for the incompressible Navier-Stokes equations on

moving domains are first established by Sather [64]. There the function spaces

defined over moving domains are employed directly. A proof involving penalization

methods is found partly in [45], while a proof based on mapping back to cylindrical

domains is found in [7].

For compressible Navier-Stokes equations on moving domains, penalization

methods were used to prove the existence of weak solutions in [36] in the context of

no-slip boundaries, and in [39] for the case of slip boundaries. The NSS system (1.1)

over moving domains is analyzed in [25], as well as Chapter 3 of this dissertation.

In the context of cancer dynamics models, global weak solutions are proven to exist

in [70] for the context of symmetrical tumors with free boundary. With boundary

behavior given, the weak solutions have been analyzed via the penalty method in

various contexts in [27], [28], [29].

1.4 Relative entropy and weak-strong uniqueness

Relative entropies are functionals that measure a sort of distance between two

solutions in a given function space. Relative entropies originate in the works of

Dafermos [22] and DiPerna [23], see also the review article [20]. These functionals

are often used to compare a weak solution with a (possibly hypothetical) strong

or classical solution. This is particularly relevant for the case of Navier-Stokes
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equations, in which typically only weak solutions are known to exist. The principle

of weak-strong uniqueness establishes that a weak and strong solution coincide,

provided they both exist and have the same initial data. This principle can be

deduced from the relative entropy inequality.

A relative entropy and weak-strong result in the context of compressible Navier-

Stokes on fixed domains is established in [35], and over moving domains in [26]. For

similar results on the Navier-Stokes-Smoluchowski system, see [9]. Relative entropies

in the context of hydrodynamic limits can be found in [49], [56], [63], amongst others.

1.5 Outline of thesis

The contents of this dissertation are outlined as follows.

1. In Chapter 2, the existence of weak solutions to the NSS system is proved in

the context of fixed spatial domains. The proof relies on a three-level approx-

imation scheme involving Galerkin approximation, the addition of a vanishing

fluid viscosity and the addition of an artificial pressure. The results presented

are largely rooted in the Lions-Feireisl theory for viscous compressible fluids,

and adapted for the NSS system in [9], [21]. In this dissertation some alternate

results are presented regarding the functional setting for the particle density.

2. In Chapter 3, the existence of weak solutions to the NSS system is proved in

the context of moving spatial domains. This is the content of the candidate’s

work in [25]. The proof utilizes a Brinkman-type penalization and penalization

of the viscosity, both penalizing the momentum equation through the addition
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of singular terms. As a corollary, convergence of the Brinkman penalization is

proved.

3. In Chapter 4, the weak-strong uniqueness property of the NSS system is proved

on moving domains. In the context of compressible Navier-Stokes equations,

this is the content of the candidate’s work in [26]. The proof involves estab-

lishing an appropriate relative entropy, and working in a functional framework

whereby functions are extended by zero outside the moving domain.
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Chapter 2: Global existence: fixed domains

In this chapter we prove the existence of global-in-time weak solutions of the

compressible Navier-Stokes-Smoluchowski system (1.1) where the domain Ω is as-

sumed to be fixed.

We assume the spatial domain Ω ⊂ R3 is bounded, with boundary of class

C2,ν , with 0 < ν ≤ 1, and the time interval is fixed at [0, T ] for some T > 0.

Boundary conditions are prescribed such that

u(t, x) = 0 for (t, x) ∈ [0, T ]× ∂Ω, (2.1)

and

(∇xη + η∇xΦ) · n = 0 for (t, x) ∈ [0, T ]× ∂Ω, (2.2)

where n is the outward unit normal to the boundary. These are respectively the no-

slip and no-flux conditions for the fluid velocity and particle density. In particular

the boundary conditions are conservative in the sense that they preserve the total

fluid and particle mass.
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Initial data (ρ0, η0,m0) are prescribed such that

ρ0 ∈ Lγ(Ω), ρ0 ≥ 0 a.e. in Ω

η0 ∈ L1(Ω), η0 ≥ 0 a.e. in Ω

m0 ∈ L1(Ω;R3),
|m0|2

ρ0

∈ L1(Ω).

(2.3)

The initial data should satisfy the compatibility condition

m0 =
1

2

|m0|2

ρ0

= 0 for a.a. x ∈ {ρ0 = 0}.

The function

P (ρ) :=

∫ ρ

1

p(z)

z2
dz,

sometimes called the elastic pressure potential, will be used frequently in the sequel.

Often P (ρ) is taken to be a
γ−1

ργ−1. In particular the quantity
∫

Ω
ρP (ρ) represents

the total potential energy of the fluid in Ω.

2.1 Weak formulation and main result

In this section we state the definition of weak solutions of the Navier-Stokes-

Smoluchowski system (1.1), and state the main result of this chapter.

Definition 1. We say that (ρ,u, η) comprise a weak solution of the Navier-Stokes-

Smoluchowski system (1.1), along with the boundary conditions (2.1) and (2.2), and

the initial data (2.3) provided

• The density ρ = ρ(t, x) and velocity u = u(t, x) represent a weak renormalized

solution of equation (1.1a) over (0, T )× Ω, that is, for any test function ϕ ∈
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D([0, T )× Ω) and any b such that

b ∈ L∞ ∩ C[0,∞), B(ρ) = B(1)ρ+ ρ

∫ ρ

1

b(z)

z2
dz,

the following integral identity holds:∫ T

0

∫
Ω

(
B(ρ)∂tϕ+B(ρ)u · ∇xϕ− b(ρ)divxuϕ

)
dxdt = −

∫
Ω

B(ρ0)ϕ(0, ·) dx.

(2.4)

The density, velocity, and momentum are required to have the following regu-

larity

ρ ∈ L∞(0, T ;Lγ(Ω)), ρ ≥ 0 a.e. in (0, T )× Ω,

u ∈ L2(0, T ;W 1,2
0 (Ω;R3)),

ρu ∈ L∞((0, T );L2γ/(γ−1)(Ω;R3)).

• The particle density η = η(t, x) and the velocity u = u(t, x) represents a weak

solution of equation (1.1c). In particular, for all ϕ ∈ D([0, T )× Ω)∫ T

0

∫
Ω

η∂tϕ+ ηu · ∇xϕ− η∇xΦ · ∇xϕ−∇xη · ∇xϕ dxdt = −
∫

Ω

η0ϕ(0, ·) dx.

(2.5)

The particle density is required to have the following regularity

η ∈ L2(0, T ;W 1,1(Ω)) ∩ L1(0, T ;W 1,3/2(Ω)),

η ≥ 0 a.e. in (0, T )× Ω.

• The momentum equation holds in distributional sense. In particular, for all

ϕ ∈ D([0, T );D(Ω;R3)), the following integral identity holds∫ T

0

∫
Ω

(
ρu · ∂tϕ+ ρu⊗ u : ∇xϕ+ (p(ρ) + η)divxϕ

)
dxdt

=

∫ T

0

∫
Ω

S : ∇xϕ+ (η + βρ)∇xΦ · ϕ dxdt−
∫

Ω

(ρu)0 · ϕ(0, ·) dx.
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• Defining the total energy of the system by

E(ρ,u, η)(t) :=

∫
Ω

(
1

2
ρ|u|2 + ρP (ρ) + η log η + ηΦ

)
dx(t),

the energy inequality

E(ρ,u,η)(t) +

∫ t

0

∫
Ω

S : ∇xu + |2∇x
√
η +
√
η∇xΦ|2 dxds

≤ E(ρ,u, η)(0)− β
∫ t

0

∫
Ω

ρu · ∇xΦ dxds.

holds for a.a. t ∈ [0, T ].

The main result of this chapter is the following.

Theorem 1. Let Ω ⊂ R3 be a bounded domain, with boundary of class C2,ν, 0 < ν ≤

1. Suppose the pressure is given by (1.2), and the stress tensor given by (1.3). Then

the system (1.1), along with the boundary conditions (2.1) and (2.2), and initial

data (2.3), has at least one weak solution (ρ,u, η) over (0, T ) × Ω in the sense of

Definition 1.

2.2 Approximation scheme

In this section the scheme used to construct the weak solutions to the NSS

system is presented.

A three-level approximation scheme is employed to construct weak solutions of

the NSS system. Let n, ε, δ > 0 and let α > 1. Rather than use the cumbersome no-

tation (ρn,ε,δ,un,ε,δ, ηn,ε,δ), the subscript will denote the level of approximation. The

Galerkin (first) level is denoted (ρn,un, ηn), the vanishing viscosity (second) level

is denoted (ρε,uε, ηε), and the artificial pressure (third) level is denoted (ρδ,uδ, ηδ).
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In other words, during the construction, the chain of convergences that we take are

as follows: ρn → ρε → ρδ → ρ, as n→∞, ε→ 0, and δ → 0 respectively (similarly

for u, η.)

The approximating system we use is

∂tρn + divx(ρnun) = ε∆xρn (2.6a)

∂tηn + divx(ηn(un −∇xΦ)) = ∆xηn (2.6b)

∂t(ρnun) + divx(ρnun ⊗ un) +∇x(p(ρn) + ηn + δραn) + ε∇xun∇xρn

= divxSn − (ηn + βρn)∇xΦ, (2.6c)

considered over (0, T )×Ω, and where Sn denotes S(∇xun). The boundary conditions

imposed are

∇xρn · n = 0, un = (∇xηn + ηn∇xΦ) · n = 0 on (0, T )× ∂Ω. (2.7)

Initial data {ρ0,δ,m0,δ, η0,δ} is prescribed over Ω, and modified such that

1. The density ρ0,δ ∈ C2,ν(Ω) satisfies

0 < δ ≤ ρ0,δ(x) ≤ δ−1\2α, ρ0,δ → ρ0 in Lγ(Ω), (2.8)

and

|{x ∈ Ω : ρ0,δ(x) < ρ0(x)}| → 0 as δ → 0. (2.9)

2. The momenta m0,δ are defined as

m0,δ =


m0 if ρ0,δ(x) ≥ ρ0(x),

0 else.

(2.10)
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3. The particle density η0,δ satisfies

0 < δ ≤ η0,δ ≤ C, η0,δ → η0 in L2(Ω). (2.11)

In part, these hypotheses ensure that the initial energy

E(0) = Eδ(0) :=

∫
Ω

1

2

|m0,δ|2

ρ0,δ

+ρ0,δP (ρ0,δ)+
δ

α− 1
ρα0,δ+η0,δ log η0,δ+η0,δΦ dx (2.12)

is finite.

The approximating system is motivated as follows. The fluid density equation

(2.6a) contains the additional Laplacian term ε∆xρ, known as vanishing viscosity,

in order to increase the regularity of the density ρ and obtain strong compactness

of the density at the first level of the approximation. In order to keep the energy

estimate satisfied, the ε∇xu∇xρ term in the modified momentum equation (2.6c)

is introduced to balance the vanishing viscosity term. Finally, the δρα term in the

momentum equation serves to increase the integrability of the pressure during the

first two levels of approximation. This is called the artificial pressure.

Proposition 1. Fix any n and T . Then there exist functions {ρn,un, ηn} solving

the modified system (2.6) on the interval [0, T ], along with boundary conditions (2.7)

and initial data (2.8)-(2.11) such that

ρn, ηn ∈ C([0, T ];C2,ν(Ω)), ∂tρn, ∂tηn ∈ C([0, T ];Cν(Ω)),

un ∈ C1([0, T ];Xn),
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In addition, the following energy equality is satisfied∫
Ω

(
1

2
ρn|un|2 + ρnP (ρn) +

δ

α− 1
ραn + ηn log ηn + ηnΦ

)
(t) dx

+

∫ t

0

∫
Ω

Sn : ∇xun + |2∇x
√
ηn +

√
ηn∇xΦ|2 dxds

+ ε

∫ t

0

∫
Ω

|∇xρn|2
(
p′(ρn)

ρn
+ δαρα−2

n

)
dxds

=

∫
Ω

1

2
m0,δ · u0,δ,n + ρ0,δP (ρ0,δ) +

δ

α− 1
ρα0,δ + η0,δ log η0,δ + η0,δΦ dx

− β
∫ t

0

∫
Ω

ρnun · ∇xΦ dxds,

(2.13)

for any t ∈ [0, T ].

The next two sections, 2.3 and 2.4, are dedicated to a proof of Proposition

1, concerning existence of the Galerkin approximate solutions over the time inerval

[0, T ]. The results follow the general framework of the compressible Navier-Stokes

and Navier-Stokes-Fourier framework of [33], [37], and [58].

We first setup some preliminaries. Let Xn = span{πj}nj=1, for some integer

n, where πj ∈ [D(Ω)]3 are linearly independent functions ranging in R3. Equipped

with the L2(Ω;R3) inner product, the space Xn is a finite dimensional Hilbert space.

We rewrite the momentum equation (2.6c) in integral form as∫
Ω

ρun(t) · π dx−
∫

Ω

m0,δ · π dx

=

∫ t

0

∫
Ω

(ρun ⊗ un − Sn) : ∇xπ + [p(ρ) + η + δρα]divxπ dxds

−
∫ t

0

∫
Ω

[ε∇xun∇xρ+ (βρ+ η)∇xΦ] · π dxds,

(2.14)

for any π ∈ Xn, and any t ∈ [0, T ]. The goal is to seek a fixed point un ∈

C([0, T ];Xn) of (A.1). In order to carry this out, we need information on the
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mappings assigning each un to the unique solutions ρ, η, via equations (2.6a) and

(2.6b). The following two propositions address these maps.

Proposition 2. Let Ω ∈ R3 be a bounded domain of class C2,ν , 0 < ν ≤ 1. Suppose

that ρ0,δ ∈ C2,ν(Ω) is positive, and satisfies the condition ∇xρ0,δ · n = 0 on ∂Ω.

Let u 7→ ρ[u] assign to any u ∈ C([0, T ];C2
0(Ω;R3)) the unique solution ρ of the

modified fluid density equation (2.6a). Then this map takes bounded sets in the space

C([0, T ];C2
0(Ω;R3)), into bounded sets of the space

V :=


∂tρ ∈ C([0, T ];Cν(Ω))

ρ ∈ C([0, T ];C2,ν(Ω)),

and the map u ∈ C([0, T ];C2
0(Ω;R3)) 7→ ρ[u] ∈ C1([0, T ]× Ω) is continuous.

Proof. See Proposition 7.1 in [33].

Proposition 3. Let Ω ⊂ R3 be a bounded domain of class C2,ν, 0 < ν ≤ 1. Assume

that η0,δ ∈ C2,ν(Ω), and u ∈ C([0, T ];C2
0(Ω;R3)). Let the compatibility condition

(∇xη0,δ(x) + η0,δ(x)∇xΦ(x)) · n(x) = 0, x ∈ ∂Ω

be satisifed. Then the problem (2.6b) has a unique classical solution η such that

η ∈ V , where V is the space introduced in Proposition 2. The solution operator

u 7→ η[u], assigning to any u ∈ C([0, T ];C2
0(Ω;R3)) the unique solution η of (2.6b),

takes bounded sets of C([0, T ];C2
0(Ω;R3)) into bounded sets of V .

Proof. See Theorem 5.1.21 in [54].
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2.3 Local-in-time existence of approximate solutions

Define the linear operators M[ρ] : Xn → X∗n such that

〈M[ρ]v,w〉 :=

∫
Ω

ρv ·w dx.

Let ρ > 0 be a positive constant, and let ρ ≥ ρ. Then M[ρ] is invertible and

‖M−1[ρ]‖L(X∗n;Xn) ≤
1

infΩ ρ
.

Also, for any ρ1, ρ2 ≥ ρ, the identity

M−1[ρ1]−M−1[ρ2] =M−1[ρ2]
(
M[ρ2]−M[ρ1]

)
M−1[ρ1],

implies the continuity result

‖M−1[ρ1]−M−1[ρ2]‖L(X∗n;Xn) ≤ c(n, ρ)‖ρ2 − ρ1‖Xn . (2.15)

Since all norms are equivalent on Xn, the Xn-norm can be taken to be, for instance,

the L1(Ω) or L∞(Ω) norm.

Now we can rewrite the integral form (A.1) as an implicit equation in Xn for

un,

un(t) =M−1[ρ(t)]

(
m∗0,δ +

∫ t

0

N [un(s), ρ(s), η(s)] ds

)
, (2.16)

where

m∗0,δ ∈ X∗n, 〈m∗0,δ, π〉 :=

∫
Ω

m0,δ · π dx for any π ∈ Xn

and

N : Xn → X∗n

〈N [un, ρ, η], π〉 :=

∫
Ω

(ρun ⊗ un − Sn) : ∇xπ + [p(ρ) + η + δρα]divxπ dx

−
∫

Ω

[ε∇xun∇xρ+ (βρ+ η)∇xΦ] · π dx.
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Recall that ρ = ρ[un] and η = η[un] are uniquely determined by un through Propo-

sitions 2 and 3.

Now let B be the unit ball in C([0, T ];Xn),

B :=

{
v ∈ C([0, T ];Xn)

∣∣∣∣ sup
t∈[0,T ]

‖v(t)− u0,δ,n‖Xn ≤ 1

}
.

Since ρ0,δ > 0, the value u0,δ,n is uniquely determined from m0,δ. It is easy to check

that B is closed, bounded, and convex.

We now rewrite (2.16) as the fixed point problem un = T [un], where the

mapping

T : B → C([0, T ];Xn),

is defined by the right-hand side of (2.16). To determine whether this fixed point

problem has a solution, we check the conditions of the Schauder fixed point theorem,

stated below (for a proof, see [57]):

Theorem 2. Let B be a closed, convex, bounded subset of a Banach space X, and

T : B → B a compact operator. Then T has a fixed point.

Using (2.15), and Propositions 2 and 3, it is easy to check the following in-

equality holds:

sup
t∈[0,T ]

‖T [u]− u0,δ,n‖Xn ≤ c sup
t∈[0,T ]

(
‖ρ(t)− ρ0,δ‖L1(Ω) + t

)
,

where c = c(n, ρ, ‖m∗0,δ‖X∗n , ‖N‖L(Xn;X∗n)). Then the continuity in time for ρ(t)

implies the right-hand side is made small provided T = T (n) is small. We conclude

T maps B into itself over a possibly short time interval.
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It remains to show that T is a compact operator. To this end, it suffices to

demonstrate the family {T un}n≥1 is equicontinuous in C([0, T ];Xn), after which the

Arzelá-Ascoli theorem applies (Theorem 2.1 in [33]). Without loss of generality, let

s < t. A simple computation reveals that

‖T un(t)− T un(s)‖Xn ≤ c
(
‖M−1[ρ(t)]−M−1[ρ(s)]‖L(X∗n;Xn) + |t− s|

)
≤ c|t− s|,

where we used the definition of T , the inequality (2.15), and the time-continuity of

ρ(t). We can now apply the Schauder fixed point theorem to conclude the existence

of a fixed point un of un = T [un] on the time interval [0, T (n)].

2.4 Global-in-time existence of approximate solutions

In this section, uniform bounds in time are derived that extend the local

solutions constructed in the previous section to the time interval [0, T ].

At this point, we can integrate (2.6a) and (2.6b) over Ω to deduce that masses

are conserved for all time, provided the solutions exist. In particular,

∫
Ω

ρ(t) dx =

∫
Ω

ρ0,δ dx for any t ≥ 0, (2.17)

and ∫
Ω

η(t) dx =

∫
Ω

η0,δ dx for any t ≥ 0. (2.18)

In addition, the following proposition provides bounds from below on the densities

which imply that (2.17) and (2.18) provide L∞(0, T ;L1(Ω)) estimates.

Proposition 4. Let ρ and η be solutions of problems (2.6a) and (2.6b). Assume
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ρ(0, ·), η(0, ·) ≥ 0. Then

ρ(t, x) ≥ 0, η(t, x) ≥ 0,

for any t ≥ 0 and almost every x ∈ Ω.

Proof. The proof is similar for both cases. Here we prove it for the particle density

η. Let

G(η) = η− = max{−η, 0} =


0, η ≥ 0

−η, η < 0.

Note that G is convex, nonnegative, and G(η) = G′(η)η with weak derivative

G′(η) =


0, η ≥ 0

−1, η < 0

.

Multiplying (2.6b) by G′ and integrating by parts yields

∫
Ω

G′∂tη dx+G′
∫

Ω

divx(ηu− η∇xΦ−∇xη) dx.

The second term is equal to zero by the boundary conditions, while integrating the

first term in time gives

∫
Ω

G(η(t, ·)) dx =

∫
Ω

G(η(0, ·)) dx = 0,

for any t ≥ 0, provided that η(0, ·) ≥ 0. Since G(η) ≥ 0, this implies that G(η) is

identically zero, yielding the desired result η ≥ 0.

Since un satisfies the integral equation (A.1), un is continuously differentiable
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in time. Then differentiating (A.1) and setting π = un(t) yields∫
Ω

∂t(ρnun) · un dx(t)

=

∫
Ω

(ρnun ⊗ un − Sn) : ∇xun + [p(ρn) + ηn + δραn]divxun dx(t)

−
∫

Ω

[ε∇xun∇xρn + (βρn + ηn)∇xΦ] · un dx(t).

(2.19)

The above identity holds for any t ∈ (0, T (n)). Recall we set ρn = ρ[un] and

ηn = η[un].

The following lemma contains some preliminary computations.

Lemma 1. The following identities hold:

1.

∫
Ω

∂t(ρnun) · un − (ρnun ⊗ un) : ∇xun dx

=
d

dt

∫
Ω

1

2
ρn|un|2 dx+

ε

2

∫
Ω

∆xρn|un|2 dx

2.

∫
Ω

p(ρn)divxun dx = − d

dt

∫
Ω

ρnP (ρn) dx− ε
∫

Ω

p′(ρn)

ρn
|∇xρn|2 dx,

3.

∫
Ω

ραndivxun dx = − 1

α− 1

d

dt

∫
Ω

ραn dx− αε
∫

Ω

ρα−2
n |∇xρn|2 dx,

4.

∫
Ω

ηndivxun dx−
∫

Ω

ηn∇xΦ · un dx

= − d

dt

∫
Ω

ηn log ηn dx− d

dt

∫
Ω

ηnΦ dx−
∫

Ω

|2∇x
√
ηn +

√
ηn∇xΦ|2 dx.

Proof. Since all quantities have the appropriate regularity, the proof consists of

repeated applications of integration by parts and using (2.6a), (2.6b). The second

identity requires the following preliminary equality,

p(ρn)divxun = divx(pnP (ρn)un)− ∂t(ρnP (ρn)) + ε∆xρn

(
P (ρn) +

p(ρn)

ρn

)
.
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Using Lemma 1 and integrating (2.19) in time we deduce the energy equality∫
Ω

(
1

2
ρn|un|2 + ρnP (ρn) +

δ

α− 1
ραn + ηn log ηn + ηnΦ

)
(t) dx

+

∫ t

0

∫
Ω

Sn : ∇xun + |2∇x
√
ηn +

√
ηn∇xΦ|2 dxds

+ ε

∫ t

0

∫
Ω

|∇xρn|2
(
p′(ρn)

ρn
+ δαρα−2

n

)
dxds

=

∫
Ω

1

2
m0,δ · u0,δ,n + ρ0,δP (ρ0,δ) +

δ

α− 1
ρα0,δ + η0,δ log η0,δ + η0,δΦ dx

− β
∫ t

0

∫
Ω

ρnun · ∇xΦ dxds,

(2.20)

holds for any t ∈ [0, T (n)]. The terms on the left-hand side of (2.20) are all non-

negative with the potential exception of ηn log ηn. The following lemma provides

bounds on the negative contribution ηn log− ηn.

Lemma 2. Suppose Ω is a bounded domain, and η ∈ L1
+(Ω). Assume∫

Ω

η(x) log η(x) dx ≤ C1

for some constant C1. Then η log η ∈ L1(Ω) and∫
Ω

|η(x) log η(x)| dx ≤ c(C1, |Ω|).

Proof. We define as usual f+ = max{f, 0} and f− = min{−f, 0}. Note that∫
Ω

|η(x) log η(x)| dx =

∫
Ω

η(x) log η(x) dx+ 2

∫
Ω

η(x) log− η(x) dx.

Therefore it suffices to bound the quantity
∫

Ω
η(x) log− η(x) dx. Let η := η1{η≤1}.

Since z 7→ z log z is convex for z > 0, an application of Jensen’s inequality yields

−
∫

Ω

η(x) log η(x) dx ≥
(
−
∫

Ω

η(x) dx

)
log

(
−
∫

Ω

η(x) dx

)
,

which proves the lemma after observing that η log η = −η log− η, and using z log z ≥

−1/e for z > 0.
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Now, the first term on the right-hand side of (2.20) is bounded due to bound-

edness of the initial energy (2.12). Upon splitting ρnun =
√
ρn
√
ρnun and using

Cauchy’s inequality with ε, the second term on the right-hand side of (2.20) is

bounded as follows:∫
Ω

ρnun · ∇xΦ dx ≤ 1

2
ess sup

x∈Ω
|∇xΦ(x)|

(
1

4ε

∫
Ω

ρ0,δ dx+ ε

∫
Ω

ρn|un|2 dx

)
.

Making ε small enough, the kinetic energy term can be absorbed into the left-hand

side of (2.20). This yields estimates independent of n and T (n) ≤ T .

Based on these observations and Lemma 2, the energy equality (2.20) implies

that un is uniformly bounded in the space L2(0, T (n);W 1,2
0 (Ω;R3)) independent of

n. Since un(t) ∈ Xn, and all norms are equivalent on Xn, we get that un is uniformly

bounded in L1(0, T (n);W 1,∞(Ω;R3)). This implies

1

c
≤ ρn(t,x) ≤ c,

for some constant c independent of T (n) ≤ T (see Section 7.3.1 of [33] for de-

tails). Going back to the energy equality (2.20), this implies that un(t) is uniformly

bounded in L2(Ω;R3), and so in Xn, for any t. We can now iterate the local-in-time

existence to the full interval [0, T ], concluding the proof of Proposition 1.

2.5 Faedo-Galerkin limit

In this section we take the limit n → ∞. To carry out this feat, estimates

independent of the dimension n must first be established. The bounds obtained in

this section will therefore be uniform in n, but potentially depend on the parameters

ε and δ.
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2.5.1 Uniform bounds

The energy equality (2.13) provides the following simple estimates

√
ρnun ∈ L∞(0, T ;L2(Ω;R3)),

ρn ∈ L∞(0, T ;Lγ ∩ Lα(Ω)),

un ∈ L2(0, T ;W 1,2
0 (Ω;R3)),

(2.21)

where the last estimate follows from a Poincaré inequality. Using Lemma 2, we also

have that

ηn ∈ L∞(0, T ;L logL(Ω)). (2.22)

From (2.13), and the equality

|∇xρ
α/2
n |2 =

α2

4
ρα−2
n |∇xρn|2,

it is easy to see that ∇xρ
α/2
n is bounded in L2((0, T ) × Ω). Along with available

estimates on ρn, a Poincaré-type inequality (Proposition 2.2 in [37]) then yields

ρα/2n ∈ L2(0, T ;W 1,2(Ω)). (2.23)

The energy equality (2.13) also provides the estimate

2∇x
√
ηn +

√
ηn∇xΦ ∈ L2(0, T ;L2(Ω;R3)).

Since ηn ∈ L∞(0, T ;L1(Ω)) and ∇xΦ is uniformly bounded, this implies

∇x
√
ηn ∈ L2(0, T ;L2(Ω;R3)),

and so

√
ηn ∈ L2(0, T ;W 1,2(Ω)) ↪→ L2(0, T ;L6(Ω))
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Using these estimates, the equality

∇xηn = 2
√
ηn∇x

√
ηn,

and Hölder’s inequality, the particle density ηn satisfies

ηn ∈ L1(0, T ;W 1,3/2(Ω)) ↪→ L1(0, T ;L3(Ω)),

ηn ∈ L2(0, T ;W 1,1(Ω)) ↪→ L2(0, T ;L3/2(Ω)).

(2.24)

Although at this stage the regularized equation (2.6a) can be shown to be satisfied in

D′((0, T )×Ω) (indeed we can estimate ∂tρn and apply the Aubin-Lions lemma), we

can show (ρn,un) is in fact a strong solution. This result is obtained via the Lp−Lq

theory of parabolic equations followed by a bootstrap argument. The following

computations for ρn follow Section 3.5.2 of [37].

To begin, we renormalize the equation (2.6a) with G(ρn) (meaning multiplying

by G′(ρn) and integrating by parts), to find

∂t

∫
Ω

G(ρn) dx+ ε

∫
Ω

G′′(ρn)|∇xρn|2 dx =

∫
Ω

(G(ρn)−G′(ρn)ρn)divxun dx.

Letting G(ρn) = ρn log ρn, we see that

ε

∫ T

0

∫
Ω

|∇xρn|2

ρn
dxdt ≤ C.

Therefore,

‖∇xρn · un‖L1(Ω) ≤
∥∥∥∥∇xρn√

ρn

∥∥∥∥
L2(Ω;R3)

‖√ρnun‖L2(Ω;R3), (2.25)

with the right hand side bounded in L2(0, T ). In addition, the estimates (2.21) and

(2.23) yield

∇xρn · un ∈ L1(0, T ;L3/2(Ω)). (2.26)
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Interpolating the estimates (2.25) and (2.26), we get

∇xρn · un ∈ Lp(0, T ;Lq(Ω)), p ∈
(

1,
3

2

)
, q(p) ∈ (1, 2). (2.27)

Using the Lp − Lq theory for parabolic equations (see Section 7.3.1 in [33]), the

estimate on ρndivxun provided by (2.21), and (2.27), the density ρn satisfies

∂tρn, ∂xi∂xjρn ∈ Lp(0, T ;Lq(Ω)) for i, j = 1, 2, 3, (2.28)

where p, q > 1.

Next, since (2.6b) is satisfied in D′((0, T ) × Ω) we get estimates on the time

derivative ∂tηn of the form

∂tηn ∈ Lp(0, T ;W−1,q(Ω)), (2.29)

for some p, q > 1. This follows from interpolating

ηn ∈ L2(0, T ;L3/2(Ω)) ∩ L∞(0, T ;L1(Ω))

and

∇xηn ∈ L1(0, T ;L3/2(Ω)) ∩ L2(0, T ;L1(Ω))

and using the embeddings of Lebesgue spaces into Sobolev duals (cf. [33], Theorem

2.8).

2.5.2 Convergent subsequences

We next extract the relevant converging sequences from the estimates previ-

ously derived. Subsequences (without relabeling) are taken when necessary.
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First, we make sense of the initial condition by showing that the density ρn is

continuous in time with values in an appropriate function space. Consider the map

t 7→
[∫

Ω

ρnϕ dx

]
(t) =: Lρn(t), ∀ϕ ∈ C∞c (Ω).

By virtue of Proposition 1, we can multiply (2.6a) by a smooth function ϕ ∈ C∞c (Ω)

and integrate in space and time to find that for all t, t′ ∈ [0, T ],

[∫
Ω

ρnϕ dx

]
(t′)−

[∫
Ω

ρnϕ dx

]
(t) =

∫ t′

t

∫
Ω

[ε∆xρn − divx(ρnun)]ϕ dxds. (2.30)

Since the integrand of the right hand side of (2.30) is integrable, this equation

yields the equicontinuity of the family Lρn(t). This equicontinuity, along with ρn ∈

L∞(0, T ;Lα(Ω)), and the fact that C∞c (Ω) is dense in Lα(Ω), implies (by Corollary

2.1 in [33]) that

ρn ∈ C([0, T ];Lαweak(Ω)), (2.31)

and therefore there exists ρε such that

ρn → ρε in C([0, T ];Lαweak(Ω)). (2.32)

By Lemma 6.4 in [58], we conclude that

ρn → ρε in Lp(0, T ;W−1,q(Ω)), 1 ≤ p <∞, 3

2
< q <∞, (2.33)

provided 6/5 < α <∞. The strong convergence (2.33), along with

un ⇀ uε in L2(0, T ;W 1,2
0 (Ω)), (2.34)

yields

ρnun ⇀
∗ ρεuε in L∞(0, T ;L2γ/(γ+1)(Ω;R3)). (2.35)
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The time continuity of the momentum ρnun is treated in a similar way. Define the

map

t 7→
[∫

Ω

ρnun · ϕ dx

]
(t) =: Lρnun(t), ∀ϕ ∈ C∞c (Ω).

Multiplying the momentum equation (2.6b) by a function ϕ ∈ [C∞c (Ω)]3 and inte-

grating over space and time we find[∫
Ω

ρnun · ϕ dx

]
(t′)−

[∫
Ω

ρnun · ϕ dx

]
(t)

=

∫ t′

t

∫
Ω

[−divx(ρnun ⊗ un)−∇x(p(ρn) + ηn + δραn)

− ε∇xun∇xρn + divxSn − (ηn + βρn)∇xΦ] · ϕ dxds

(2.36)

Using available estimates, the integrand on the right hand side is integrable, and so

this equation yields the equicontinuity of Lρnun(t). We deduce that

ρnun → ρεuε in C([0, T ];L
2γ/(γ+1)
weak (Ω;R3)). (2.37)

Invoking the compact embedding of L2γ/(γ+1)(Ω) into W−1,2(Ω) we deduce that

ρnun ⊗ un → ρεuε ⊗ uε in L2(0, T ;L6γ/(4γ+3)(Ω;R3)). (2.38)

Finally we show strong convergence of the density gradient. First, ρn and ρε, being

strong solutions of (2.6a), satisfy the energy equalities

‖ρn(t)‖2
L2(Ω) +2ε

∫ t

0

‖∇xρn‖2
L2(Ω) ds = −

∫ t

0

∫
Ω

divxunρ
2
n dxds+‖ρ0,δ‖2

L2(Ω), (2.39)

and

‖ρε(t)‖2
L2(Ω) + 2ε

∫ t

0

‖∇xρε‖2
L2(Ω) ds = −

∫ t

0

∫
Ω

divxuερ
2
ε dxds+ ‖ρ0,δ‖2

L2(Ω) (2.40)
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for any t ∈ [0, T ]. Next, we demonstrate strong compactness of the sequence

{ρn}n≥1. Note that

ρn ∈ L2(0, T ;W 1,2(Ω)) ∩ L∞(0, T ;Lα(Ω)),

and from equation (2.6a) it is easy to see that

∂tρn ∈ L2(0, T ;W−1,2(Ω)).

Provided 1 ≤ α < 6, the compact embedding W 1,2(Ω) ⊂⊂ Lα(Ω) holds, while

Lα(Ω) ↪→ W−1,2(Ω) provided α > 6/5. A version of Aubin-Lions lemma (Theorem

1.71 in [58]) then implies that

ρn → ρε in Lp(0, T ;Lα(Ω)), 1 ≤ p <∞. (2.41)

In particular, we can take α ≥ 4 to conclude ρn converges strongly in L4((0, T )×Ω).

This implies that ρ2
n → ρ2

ε strongly in L2((0, T )×Ω) and ‖ρn(t)‖L2(Ω) → ‖ρε(t)‖L2(Ω).

These observations, along with the equalities (2.39) and (2.40) imply that

‖∇xρn(t)‖L2((0,T )×Ω) → ‖∇xρε(t)‖L2((0,T )×Ω).

Since ∇xρn also converges weakly, we deduce that

∇xρn → ∇xρε in L2((0, T )× Ω). (2.42)

We can then pass the limit into the momentum correction term, namely,

∇xun∇xρn → ∇xuε∇xρε in [D′((0, T )× Ω)]3. (2.43)

The strong convergence in (2.41) allows us to conclude the pressure terms converge,

that is,

ργn + ραn → ργε + ραε in L1((0, T )× Ω). (2.44)
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The estimates (2.24) and (2.29), along with the chain of embeddings

W 1,1(Ω) ↪→↪→ L6/5(Ω) ↪→ W−1,q(Ω),

for some q > 1, allows us conclude via Aubin-Lions lemma that

ηn → ηε in L2(0, T ;L6/5(Ω)) (2.45)

The time continuity of ηn follows from the control on ∂tηn in Lp(0, T ;W−1,q(Ω))

provided by (2.29), for some p, q > 1. In particular, along with the integrability of

ηn ∈ L∞(0, T ;L1(Ω)) we deduce that

ηn ∈ W 1,p(0, T ;W−1,q(Ω)) ↪→ C([0, T ];W−1,q(Ω))

for some p, q > 1 (see for instance Theorem 2 in [31]). This allows us in particular

to make sense of the initial condition for the particle density.

The previous discussion is summarized in the following proposition.

Proposition 5. Let Ω ⊂ R3 be a bounded domain of class C2,ν , ν > 0. Let ε, δ > 0

be fixed. Assume ∪n≥1Xn is dense in the space W 1,2
0 (Ω;R3) Then problem (2.6a)-

(2.6c) admits a solution (ρε,uε, ηε) in the following sense:

1. The density ρε ≥ 0 has the regularity

ρε ∈ Lr(0, T ;W 2,r(Ω)), ∂tρε ∈ Lr((0, T )× Ω) for some r > 1,

the velocity uε belongs to L2(0, T ;W 1,2
0 (Ω;R3)), and the particle density ηε ≥ 0

belongs to the following spaces

ηε ∈ L2(0, T ;W 1,1(Ω)) ∩ L1(0, T ;W 1,3/2(Ω)), ∂tηε ∈ Lp(0, T ;W−1,q(Ω)),

for some p, q > 1.
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2. Equation (2.6a) holds a.a. on (0, T )×Ω, and the boundary conditions (2.7) are

satisfied in the sense of traces. Equation (2.6b) is satisfied in D′((0, T )× Ω).

Moreover,

ρε ∈ C([0, T ];Lαweak(Ω)), ηε ∈ C([0, T ];W−1,q(Ω))

for some q > 1 and the initial conditions ρε(0, ·) = ρ0,δ and ηε(0, ·) = η0,δ are

satisfied. In addition, the total masses are conserved,

∫
Ω

ρε(t, ·) dx =

∫
Ω

ρ0,δ dx,

∫
Ω

ηε(t, ·) dx =

∫
Ω

η0,δ dx, (2.46)

for all t ∈ [0, T ].

3. All quantities appearing in equation (2.6c) are locally integrable, and the equa-

tion is satisfied in D′((0, T )× Ω). In addition,

ρεuε ∈ C([0, T ];L
2γ/γ+1
weak (Ω;R3)),

and ρεuε satisfies the initial condition (ρεuε)(0) = m0,δ.

4. The energy inequality∫
Ω

(
1

2
ρε|uε|2 + ρεP (ρε) +

δ

α− 1
ραε + ηε log ηε + ηεΦ

)
(t) dx

+

∫ t

0

∫
Ω

Sε : ∇xuε + |2∇x
√
ηε +

√
ηε∇xΦ|2 dxds

≤
∫

Ω

1

2
m0,δ · u0,δ + ρ0,δP (ρ0,δ) +

δ

α− 1
ρα0,δ + η0,δ log η0,δ + η0,δΦ dx

− β
∫ t

0

∫
Ω

ρεuε · ∇xΦ dxds,

(2.47)

holds for a.a. t ∈ [0, T ].
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Proof. It only remains to check the validity of the energy inequality (2.47). First,

it is clear from the weak continuity of the momentum that

lim
n→∞

∫ t

0

∫
Ω

ρnun · ∇xΦ dxds =

∫ t

0

∫
Ω

ρεuε · ∇xΦ dxds.

The other terms are treated by the weak lower-semicontinuity of convex functions

on L1((0, T ) × Ω), see [33] Theorem 2.11 and Corollary 2.2. In particular, the

functions z 7→ z2, z 7→ zα, and z 7→ z log z are convex. Along with the convergences

established in this section, we conclude that∫
Ω

(
1

2
ρε|uε|2 + ρεP (ρε) +

δ

α− 1
ραε + ηε log ηε + ηεΦ

)
(t) dx

+

∫ t

0

∫
Ω

Sε : ∇xuε + |2∇x
√
ηε +

√
ηε∇xΦ|2 dxds

≤ lim inf
n→∞

[∫
Ω

(
1

2
ρn|un|2 + ρnP (ρn) +

δ

α− 1
ραn + ηn log ηn + ηnΦ

)
(t) dx

+

∫ t

0

∫
Ω

Sn : ∇xun + |2∇x
√
ηn +

√
ηn∇xΦ|2 dxds

]
.

2.6 Vanishing viscosity limit

The next step is to let the parameter ε vanish and demonstrate that the

solution (ρε, ηε,uε), constructed in the previous section, converges to (ρδ, ηδ,uδ).

At this stage, we lose control of ρε in a positive Sobolev space. Because of this,

demonstrating strong compactness of ρε is key in order to pass to the limit in the

nonlinear terms.

First, the energy inequality (2.47) provides bounds for the pressure p(ρε)+δραε

in L1((0, T ) × Ω). This is estimate is not strong enough to prevent concentration
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phenomena from occurring in the pressure terms. The following lemma provides the

necessary pressure estimates.

Lemma 3. There exists a nonnegative constant c, independent of ε, such that∫ T

0

∫
Ω

ρα+1
ε dxdt ≤ c.

Proof. The proof is given in Appendix A.

Lemma 3 implies that ραε ∈ L1+1/α((0, T ) × Ω), and in particular guarantees

that there exists a weak limit1 ρ of p(ρε) + δραε , i.e.

p(ρε) + δραε ⇀ ρ in Lp((0, T )× Ω), p > 1. (2.48)

Next, from the estimates provided by the energy inequality (2.47) we deduce that

ρε ⇀
∗ ρδ in L∞(0, T ;Lα(Ω)), (2.49)

uε ⇀ uδ in L2(0, T ;W 1,2
0 (Ω;R3)), (2.50)

ηε ⇀ ηδ in L2(0, T ;W 1,1(Ω)) ∩ L1(0, T ;W 1,3/2(Ω)). (2.51)

In the same way as in the previous section, it follows that

ηε → ηδ in L2(0, T ;L6/5(Ω)). (2.52)

Then (2.50) and (2.52) imply that

ηεuε ⇀ ηδuδ in L1((0, T )× Ω). (2.53)

By interpolation and using (2.51), we also deduce that

∇xηε ⇀ ∇xηε in Lp(0, T ;Lq(Ω;R3)),

1An overbar will denote a weak limit unless otherwise stated.
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for some p, q > 1. Next, in a similar way as in the previous section, the equicontinuity

of the map Lρε(t) (defined in Section 2.5.2) and boundedness of ρε in L∞(0, T ;Lα(Ω))

imply

ρε → ρδ in C([0, T ];Lαweak(Ω)). (2.54)

Provided α > 6/5, this implies

ρε → ρδ in Lp(0, T ;W−1,q(Ω)), 1 ≤ p <∞, 3/2 < q <∞. (2.55)

In a similar way, equicontinuity of the map Lρεuε(t), and boundedness of ρεuε in

L∞(0, T ;L2α/(α+1)(Ω;R3)) imply

ρεuε → ρδuδ in C([0, T ];L
2α/(α+1)
weak (Ω;R3)). (2.56)

Since L2α/(α+1)(Ω) ⊂⊂ W−1,2(Ω) provided α > 3/2, (2.56) implies that

ρεuε → ρδuδ in Lp(0, T ;W−1,2(Ω;R3)), 1 ≤ p <∞. (2.57)

Along with (2.50), the last observation implies

ρεuε ⊗ uε ⇀ ρδuδ ⊗ uδ in L2(0, T ;L6α/(4α+3)(Ω;R3×3)). (2.58)

Next we show convergence of the ∇xρε term. By virtue of Proposition 5, equation

(2.6a) is satisfied almost everywhere. Hence, upon multiplying (2.6a) by ρε and

integrating by parts we get

1

2

∫
Ω

ρ2
ε(T, ·) dx+ ε

∫ T

0

∫
Ω

|∇xρε|2 dxdt

=
1

2

∫
Ω

ρ2
0,δ dx− 1

2

∫ T

0

∫
Ω

ρ2
εdivxuε dxdt

(2.59)
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Using (2.49) and (2.50), this implies
√
ε∇xρε is bounded in L2(0, T ;L2(Ω;R3)) and

so

ε∇xρε → 0 in L2(0, T ;L2(Ω;R3)).

Along with (2.50), we deduce that

ε∇xuε∇xρε → 0 in L1((0, T )× Ω). (2.60)

As a result of the convergences established in (2.48)-(2.60), and passing to the limit

in the weak formulations, it follows that

1. For all ϕ ∈ D([0, T )× Ω),

∫ T

0

∫
Ω

ρδ∂tϕ+ ρδuδ · ∇xϕ dxdt = −
∫

Ω

ρ0,δϕ(0, ·) dx. (2.61)

2. For all ϕ ∈ D([0, T )× Ω),

∫ T

0

∫
Ω

ηδ∂tϕ+ ηδuδ · ∇xϕ− ηδ∇xΦ · ∇xϕ−∇xηδ · ∇xϕ dxdt = −
∫

Ω

η0,δϕ(0, ·) dx.

(2.62)

3. For all ϕ ∈ D([0, T );D(Ω;R3)),∫ T

0

∫
Ω

(
ρδuδ · ∂tϕ+ ρδuδ ⊗ uδ : ∇xϕ+ (p+ ηδ)divxϕ

)
dxdt

=

∫ T

0

∫
Ω

S(∇xuδ) : ∇xϕ+ (ηδ + βρδ)∇xΦ · ϕ dxdt−
∫

Ω

(ρu)0,δ · ϕ(0, ·) dx.

(2.63)

It remains to show that p = p(ρδ) + δραδ . This will be carried out in the next section

where we show strong convergence of the density ρε.
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2.6.1 Strong convergence of the density

There are two key results needed to obtain the strong convergence of the

density: 1) establishing the weak continuity of the effective viscous pressure, and 2)

renormalizing the continuity equation both at the level of the approximate solution

and the limiting solution. The former is originally due to Lions [51] and asserts that

the effective viscous pressure, defined as

Peff = p− (2µ+ λ)divxu,

satisfies a weak continuity property in the sense that its product with another weakly

converging sequence converges to the product of the weak limits. The latter result

allows us to deduce that if ρ satisfies the continuity equation, then so does a suitable

nonlinear composition B(ρ), up to minor modification of the equation. This so-called

renormalization property is originally due to DiPerna and Lions in the context of

linear transport PDE [24].

The theory of the strong convergence of the fluid density is well-established

(cf. [51], [37]). There are some additional terms to consider when the Smoluchowki

equation is included, in particular in proving the weak continuity of the effective

viscous pressure. These computations can be found in [9]. For the details on the

following lemmas we refer the reader to [51], [37], and [9].

Lemma 4. Let α > max{4, γ}. For any ψ ∈ D(0, T ) and ζ ∈ D(Ω), it holds that

lim
ε→0

∫ T

0

∫
Ω

ψζ (p(ρε) + δραε − (λ+ 2µ)divxuε) ρε dxdt

=

∫ T

0

∫
Ω

ψζ (p− (λ+ 2µ)divxuδ) ρδ dxdt.
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Lemma 5. The pair (ρδ,uδ) is a renormalized solution of equation (1.1a) on (0, T )×

R3 after extending by zero outside Ω. In particular, for any B ∈ C[0,∞)∩C1(0,∞),

b(z) = B′(z)z − B(z) such that b ∈ C[0,∞) ∩ L∞[0,∞), and B(0) = b(0) = 0, the

equation

∂tB(ρδ) + divx(B(ρδ)uδ) + b(ρδ)divxuδ = 0

holds in D′((0, T )× R3).

Since the pair (ρε,uε) satisfies equation (2.6a) a.a. on (0, T )×Ω by Proposition

5, we can easily renormalize to find that for any twice-differentiable B,

∂tB(ρε) + divx(B(ρε)uε) + b(ρε)divxuε

= εdivx(1Ω∇xB(ρε))− ε1ΩB
′′(ρε)|∇xρε|2 in D′((0, T )× R3).

(2.64)

The goal now is to use the renormalized equations for ρε and ρδ with the

renormalization B(z) = z log z and argue that

ρδ log ρδ = ρδ log ρδ a.a. on (0, T )× Ω. (2.65)

This equivalence would imply, by virtue of Theorem 2.11 [33], that ρn → ρ almost

everywhere and therefore strongly in L1((0, T ) × Ω). The Dominated Convergence

Theorem, along with the integrability estimates on the pressure, then allows us to

conclude that the weak limit p in (2.63) is in fact equal to p(ρδ) + δραδ . We next

explain the details of this approach based on Lemma 4.

First, let B(z) = z log z and choose test functions ϕ(t, x) = ψn(t)ζn(x) in

Lemma 5 such that ψ ∈ D(0, T ) and ζ ∈ D(R3) are nonnegative. Letting ψn → 1(0,t)

and ζn → 1Ω it follows that for any t ∈ (0, T ),∫ t

0

∫
Ω

ρδdivxuδ dxds =

∫
Ω

ρ0,δ log ρ0,δ dx−
∫

Ω

[ρδ log ρδ](t, ·) dx. (2.66)
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Next, choosing B(z) = z log z in (2.64), along with ϕ(t, x) as used in deriving (2.66)

and letting ε→ 0, it follows that for any Lebesgue point t,∫ t

0

∫
Ω

ρδdivxuδ dxds ≤
∫

Ω

ρ0,δ log ρ0,δ dx−
∫

Ω

ρδ log ρδ(t, ·) dx. (2.67)

Here we used that z log z is convex. Now combining (2.66) with (2.67), the following

inequality holds∫
Ω

(
ρδ log ρδ − ρδ log ρδ

)
(t) dx ≤

∫ t

0

∫
Ω

ρδdivxuδ − ρδdivxuδ dxds, (2.68)

for a.a. t ∈ (0, T ). Note the left-hand side of this inequality is nonnegative due

to convexity of the map z 7→ z log z. Provided the right-hand side of (2.68) is

nonpositive, the equality (2.65) is established and therefore also strong convergence

of the density. But this follows directly from the continuity of the effective viscous

pressure via Lemma 4. Indeed, rearranging Lemma 4 we have that for any O ⊂⊂

(0, T )× Ω,∫
O

ρδdivxuδ − ρδdivxuδ dxdt

≥ 1

2µ+ λ
lim inf
ε→0

∫
O

(
p(ρε)ρε + δρα+1

ε

)
−
(
p(ρδ) + δραδ

)
ρδ dxdt.

(2.69)

By appealing to the weak lower semi-continuity of convex functions and using that

z 7→ zp is increasing for p > 0, a monotonicity argument implies that the right-hand

side of (2.69) is nonnegative. In particular,∫
O

δραδ ρδ + aργδρδ ≤ lim inf
ε→0

∫
O

δρα+1
ε + aργ+1

ε dxdt.

We conclude that the right-hand side of (2.68) is nonpositive and the strong con-

vergence of the density at the ε-level approximation has been proved.

The results of this section are summarized in the following proposition.
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Proposition 6. Let Ω ⊂ R3 be a bounded domain of class C2,ν, ν ∈ (0, 1). Let

α > max{5, γ} and δ > 0 be given. Then there exists a solution (ρδ, ηδ,uδ) such

that

1. The density ρδ ≥ 0 belongs to Lα+1(O) such that O ⊂⊂ ((0, T ) × Ω). In

addition,

ρδ ∈ C([0, T ];Lαweak(Ω)).

The velocity uδ belongs to L2(0, T ;W 1,2
0 (Ω;R3)) and the particle density ηδ ≥ 0

satisfies

ηδ ∈ L2(0, T ;W 1,1(Ω)) ∩ L1(0, T ;W 1,3/2(Ω)), ∂tηδ ∈ Lp(0, T ;W−1,q(Ω)),

for some p, q > 1. In addition,

ρδuδ ∈ C([0, T ];L
2γ/(γ+1)
weak (Ω;R3)) and ηδ ∈ C([0, T ];W−1,q(Ω)),

for some q > 1.

2. The initial conditions ρδ(0, ·) = ρ0,δ, ηδ(0, ·) = η0,δ, and (ρδuδ)(0, ·) = m0,δ are

satisfied. Upon extending by zero, the pair (ρδ,uδ) represents a renormalized

solution of (1.1a) on (0, T )× R3 in the sense that

∂tB(ρδ) + divx(B(ρδ)uδ) + b(ρδ)divxuδ = 0, in D′((0, T )× R3),

for any B ∈ C[0,∞) ∩ C1(0,∞), b ∈ C[0,∞) ∩ L∞[0,∞), such that B(0) =

b(0) = 0 and b(z) = B′(z)z −B(z).

The pair (ηδ,uδ) satisfies equation in D′((0, T )×Ω) and the triple (ρδ, ηδ,uδ)

satisfies (1.1c) in D′((0, T )× Ω) where p(ρδ) is taken to be aργδ + δραδ .

48



3. The energy inequality holds for almost every t ∈ [0, T ],∫
Ω

(
1

2
ρδ|uδ|2 + ρδP (ρδ) +

δ

α− 1
ραδ + ηδ log ηδ + ηδΦ

)
(t) dx

+

∫ t

0

∫
Ω

Sδ : ∇xuδ + |2∇x
√
ηδ +

√
ηδ∇xΦ|2 dxds

≤
∫

Ω

1

2
m0,δ · u0,δ + ρ0,δP (ρ0,δ) +

δ

α− 1
ρα0,δ + η0,δ log η0,δ + η0,δΦ dx

− β
∫ t

0

∫
Ω

ρδuδ · ∇xΦ dxds,

(2.70)

2.7 Artificial pressure limit

Having taken the artificial diffusion limit ε → 0 in the previous section, it

remains to let δ → 0 in the artificial pressure and obtain a weak solution to the

full system (1.1a) in the sense of Definition 1, thereby proving Theorem 1. The

approach is similar to that of the last section. The largest difference is that we lose

integrability of the fluid density due to loss of the artificial pressure term.

At this stage, the assumption that the pressure satisfies p(ρ) = aργ with

γ ≥ 9/5 ensures that the density would be square-integrable (a consequence of the

pressure estimates), and we can conclude in much the same way as before. This

constitutes the original approach of Lions. Our assumption that the pressure is

given instead with γ > 3/2 requires additional tools, in particular the so-called

oscillations defect measure introduced by Feireisl.

To begin, the energy inequality in Proposition 6 provide various estimates

independent of δ. This is a consequence of the choice of initial data (2.8)-(2.11). Note

that the assumption (2.8) implies that the initial data corresponding to the artificial
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pressure in (2.70) vanishes as δ → 0. In addition, the initial data (ρ0,δ, η0,δ,m0,δ)

converges to (ρ0, η0,m0). The other term on the right-hand side of the energy

inequality is independent of δ after invoking Hölder’s inequality. As a consequence

the energy inequality (2.70) provides estimates uniformly in δ > 0.

As in the previous sections, Proposition 6 allows us to secure subsequences

such that

ρδ → ρ in C([0, T ];Lγweak(Ω)), (2.71a)

uδ ⇀ u in L2(0, T ;W 1,2
0 (Ω;R3)), (2.71b)

ηδ → η in L2(0, T ;L6/5(Ω)) (2.71c)

∇xηδ ⇀ ∇xη in Lp((0, T )× Ω), for some p > 1. (2.71d)

The convective nonlinear terms are handled as in previous sections and we can easily

conclude that

ρδuδ ⇀
∗ ρu in L∞(0, T ;L2γ/(γ+1)(Ω;R3)), (2.72a)

ρδuδ → ρu in C([0, T ];L2γ/(γ+1)(Ω;R3)), (2.72b)

ηδuδ ⇀ ηu in L1((0, T )× Ω), (2.72c)

ρδuδ ⊗ uδ ⇀ ρu⊗ u in L2(0, T ;L6γ/(4γ+3)(Ω;R3×3)). (2.72d)

Next, in a similar way as Lemma 3, we get pressure estimates of the form∫
K

ργ+ω
δ + δρα+ω

δ dxdt ≤ c, 0 < ω < min

{
1

3
,
2

3
γ − 1

}
, (2.73)

for some constant c independent of δ, where K ⊂⊂ ((0, T )×Ω). Note that in order

to get estimates uniformly in δ, we must restrict the integrability gains more than

that of Lemma 3. For details see [33], and also the remark in Appendix A.
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The pressure estimates (2.73) along with a Hölder inequality ensures that

δραδ → 0 in L1((0, T )× Ω), (2.74)

and therefore the corresponding term in the weak formulation of the momentum

equation vanishes as δ → 0. The final step is to again prove the strong convergence

of the density ρδ in L1((0, T )×Ω) and invoke the pressure estimates to pass to the

limit in the pressure term aργδ when γ > 3/2.

Recall that in the previous section, the key in renormalizing the equation of

continuity was using the integrability gain from the artificial pressure to ensure

that ρε was bounded in L2(0, T ;L2(Ω)). Having lost this integrability through the

passage δ → 0 and since we require that γ > 3/2, we proceed by first defining the

oscillations defect measure, a tool introduced by Feireisl. The oscillations defect

measure is defined as

oscp[ρδ → ρ](O) := sup
k≥1

(
lim sup
n→∞

∫
O

|Tk(ρδ)− Tk(ρ)|p dxdt

)
.

A bound on the oscillations defect measure will replace the requirement that ρδ needs

to be bounded in L2(0, T ;L2(Ω)). The functions Tk are cutoff functions defined by

Tk(z) := kT
(z
k

)
where T is such that for nonnegative arguments, T (z) = z for z ∈ [0, 1], T (z) = 2

for z ≥ 3, and a smooth concave extension is used over the interval [0, 2].

At this level of the approximation, the weak continuity of the effective viscous
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pressure reads

lim
δ→0

∫ T

0

∫
Ω

ψζ (p(ρδ)− (λ+ 2µ)divxuδ)Tk(ρδ) dxdt

=

∫ T

0

∫
Ω

ψζ
(
p(ρ)− (λ+ 2µ)divxu

)
Tk(ρ) dxdt,

(2.75)

where ψ ∈ D(0, T ) and ζ ∈ D(Ω). Again, this is a highly nontrivial observation and

we refer to [33] and [9] for further details.

The validity of the weak continuity of the effective viscous pressure in fact

implies that the oscillations defect measure is bounded:

oscγ+1[ρδ → ρ](O) ≤ c(|O|). (2.76)

For details see Proposition 6.2 of [33]. In turn, the boundedness of the oscillations

defect measure implies that (ρ,u) is a renormalized solution of the equation of

continuity. This is the contents of Proposition 6.3 in [33]. Given that the limiting

functions (ρ,u) are renormalized, we can proceed in almost the exact same way as

in Section 2.6.1 to conclude that

ρδ → ρ strongly in L1((0, T )× Ω).

Therefore we can pass to the limit in the pressure term in the weak formulation of

the momentum equation. Theorem 1 has been proved.
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Chapter 3: Global existence: moving domains

In Chapter 2, the existence of weak solutions to the NSS system on fixed

domains was proved using the Lions-Feireisl theory of compressible Navier-Stokes

equations. In this chapter, the NSS system is posed on a moving domain and the

existence of weak solutions is established by the penalization technique introduced

in Section 1.3. The main components of this method are the introduction of a sin-

gular term in the momentum equation (the so-called Brinkman penalization), and

penalizing the viscosity. From a modeling perspective these terms model the solid

portions of domain as porous media, with permeability approaching zero. Effec-

tively, the problem is reformulated over a fixed domain such that the fluid is allowed

to ‘flow’ through solid obstacles. Penalization of the viscosity is used to get rid of

extra shear terms that appear in the solid portion of the domain. A key ingredient

is getting rid of the terms supported on the ‘solid’ part of the domain. This part

of the analysis will make use of the level set method (cf. [60]). As a straightforward

corollary, convergence of the Brinkman penalization is established. As a remark,

the original work of Brinkman involves a Laplacian regularization of the Darcy law,

rather than a singular penalization as here. See [15] for details.
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3.1 Moving domains

We continue the discussion of Section 1.3 and describe the mathematical frame-

work of moving domains in more detail. Let Ω0 ⊂⊂ D ⊂ R3 denote a domain

contained in the fixed domain D, sometimes called the universal domain. At a later

time t > 0, the initial domain Ω0 has moved to the new position Ωt. The family

{Ωt}Tt=0 then forms a one-parameter transformation of the domain Ω0. We assume

that each image is compactly contained within D. The boundary ∂Ωt is denoted by

Γt.

When viewed as a subset of [0, T ] × D, moving spatial domains form non-

cylindrical space-time domains. In this context, we define the ‘fluid’ space-time

domain Qf by

Qf :=
⋃

t∈(0,T )

({t} × Ωt).

The set

Qs := ((0, T )×D)\Qf ,

in many contexts is often called the ‘solid’ domain. The evolution of the domain

is characterized by a prescribed velocity field V(t,x) defined over (0, T )×D. Note

in applications typically only boundary behavior is known (cf. Section 1.3). The

velocity field allows us to define the position X(t,x) as the solution to
d

dt
X(t,x) = V(t,X(t,x)), t > 0,

X(0,x) = x, x ∈ Ω0.

(3.1)
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The domains therefore evolve according to

Ωt = X(t,Ω0).

We also recall the definition of the ALE map Tt, defined such that

Tt(x) = X(t,x), for all x ∈ Ω0. (3.2)

Furthermore, the velocity V is assumed to have the following regularity,

V ∈ C2,ν([0, T ]×D;R3).

3.1.1 Function spaces

With an evolving spatial domain, the function spaces in which solutions are

looked for need to be modified accordingly. Consider for example the heat equation

ut −∆u = 0 in (0, T )× Ω,

supplemented with Dirichlet boundary data. Weak solutions are typically sought in

the Bochner spaces

u ∈ L2(0, T ;H1
0 (Ω)), ut ∈ L2(0, T ;H−1(Ω)).

The functions u : (0, T ) → H1
0 (Ω) therefore are valued in the fixed space H1

0 (Ω).

Naively replacing Ω with Ωt, we would obtain u : (0, T ) → H1
0 (Ωt), which isn’t

exactly correct since the interval (0, T ) should get mapped to the full range of

spaces, for instance
⋃

({t}×H1
0 (Ωt)). We therefore can not directly use the standard

Bochner spaces when dealing with moving domains.
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The way out of this situation is simple: embed functions into the ‘global’ space

and extend by zero outside the moving domains Ωt.

Let p ∈ [1,∞], q ∈ [1,∞] be given exponents, with dual exponents p′, q′,

respectively. We define

Lp,q(Qf ) ≡ Lp(0, T ;Lq(Ωt))

:=

{
u ∈ Lp(0, T ;Lq(D))

∣∣∣∣u(t, ·) = 0 over D\Ωt for a.e. t ∈ (0, T )

}
,

with the norm

‖u‖Lp,q(Qf ) :=


(∫ T

0

‖u(t)‖pLq(Ωt) dt

) 1
p

, if p <∞.

ess sup
t∈(0,T )

‖u(t)‖Lq(Ωt), if p =∞.

If p = q, we write Lp(Qf ) ≡ Lp,p(Qf ).

Remark. The spaces Lp,q(Qf ) are Banach spaces and enjoy similar properties to the

standard Bochner spaces. See [55] for details.

Let l ∈ N, and let α be a multi-index. We define

W l
p,q(Q

f ) ≡ Lp(0, T ;W l,q(Ωt)) :=

{
u ∈ Lp,q(Qf )

∣∣∣∣ ∂αu ∈ Lp,q(Qf ), ∀|α| ≤ l

}
,

with the norm

‖u‖W l
p,q(Q

f ) :=
∑
|α|≤l

‖∂αu‖Lp,q(Qf ).

The definition of W 0,l
p,q(Q

f ) is similar, with the addition of a zero trace condition.

The space of functions continuous with respect to the weak-topology of Lγ(Ωt)

is defined by

C([0, T ];Lγwk(Ωt)) :=

{
u ∈ C([0, T ];Lγwk(D))

∣∣∣∣u(t, ·) = 0 on D\Ωt for all t ∈ (0, T )

}
.
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In order to define the space of test functions we need to make use of the map

Tt, defined in (3.2). The homeomorphism Tt is used to push the test functions

D([0, T ]×Ω0;RN) to the set (0, T )×Ωt. The space D([0, T ]×Ωt;RN) is defined as

D([0, T ]×Ωt;RN) :=

{
u : Qf → R

∣∣∣∣ u(t, x) = û(t, T−1
t (x)), û ∈ D([0, T ]× Ω0;RN)

}
.

The spaces as defined here are introduced in various contexts in [50], [41], [55]

and [61]. A more general framework of evolving function spaces (rather than spaces

defined on evolving domains), can be found in [1], [2].

3.2 Weak formulation and main result

Let us recall the governing equations, introduced in Chapter 1. The fluid-

particle system is given by

∂tρ+ divx(ρu) = 0, (3.3a)

∂tη + divx(η(u−∇xΦ))−∆xη = 0, (3.3b)

∂t(ρu) + divx(ρu⊗ u) +∇x(p(ρ) + η) = divxS− (η + βρ)∇xΦ. (3.3c)

The system (3.3) is posed on the space-time domain Qf . The no-slip boundary

conditions are imposed on the velocity,

u(t, ·)
∣∣
Γt

= V(t, ·)
∣∣
Γt
, for any t ≥ 0, (3.4)

while the no-flux condition for particle density holds,

(∇xη + η∇xΦ) · ν = 0 on (0, T )× Γt, (3.5)

with ν(t, x) denoting the outer normal vector to the boundary Γt.
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Initial data are prescribed such that

ρ0 ∈ Lγ(D), ρ0 ≥ 0 a.e. in Ω0

η0 ∈ L1(D), η0 ≥ 0 a.e. in Ω0

m0 ∈ L1(D;R3),
|m0|2

ρ0

∈ L1(D),

(3.6)

and all initial data is assumed to vanish on D\Ω0.

Definition 2. We say that (ρ,u, η) comprise a weak solution of the NSS system

(3.3) over the noncylindrical domain Qf , along with the boundary conditions (3.4)

and (3.5), and the initial data (3.6) provided

• The density ρ = ρ(t, x) and velocity u = u(t, x) represent a weak solution of

equation (3.3a) over Qf . In particular, for any test function ϕ ∈ D([0, T )×Ωt),

the following integral identity holds:∫ T

0

∫
Ωt

ρ∂tϕ+ ρu · ∇xϕ dxdt

=

∫
ΩT

ρ(T, ·)ϕ(T, ·) dx−
∫

Ω0

ρ0ϕ(0, ·) dx.

(3.7)

The density, velocity, and momentum are required to have the following regu-

larity

ρ ∈ L∞(0, T ;Lγ(Ωt)), ρ ≥ 0 a.e. in Qf ,

u ∈ L2(0, T ;W 1,2
0 (Ωt;R3)),

ρu ∈ L∞((0, T );L2γ/(γ−1)(Ωt;R3)).

• The particle density η = η(t, x) and the velocity u = u(t, x) represents a weak

solution of equation (3.3b). In particular, for all ϕ ∈ D([0, T )× Ωt)∫ T

0

∫
Ωt

η∂tϕ+ ηu · ∇xϕ− η∇xΦ · ∇xϕ−∇xη · ∇xϕ dxdt

=

∫
ΩT

η(T, ·)ϕ(T, ·) dx−
∫

Ω0

η0ϕ(0, ·) dx.

(3.8)
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The particle density is required to have the following regularity

η ∈ L2(0, T ;W 1,1(Ωt)) ∩ L1(0, T ;W 1,3/2(Ωt)),

η ≥ 0 a.e. in Qf .

• The momentum equation holds in distributional sense. In particular, for all

ϕ ∈ D([0, T )×Ωt;R3) such that ϕ|Γt = 0, the following integral identity holds∫ T

0

∫
Ωt

(
ρu · ∂tϕ+ ρu⊗ u : ∇xϕ+ (p(ρ) + η)divxϕ

)
dxdt

=

∫ T

0

∫
Ωt

S : ∇xϕ+ (η + βρ)∇xΦ · ϕ dxdt

+

∫
ΩT

(ρu · ϕ)(T, ·) dx−
∫

Ω0

(ρu)0 · ϕ(0, ·) dx.

(3.9)

• Defining the total energy of the system by

E(ρ,u, η)(t) :=

∫
Ωt

(
1

2
ρ|u|2 + ρP (ρ) + η log η + ηΦ

)
dx(t),

the energy inequality∫
Ωτ

(
1

2
ρ|u|2 + P (ρ) + η log η + ηΦ

)
(τ, ·) dx

+

∫ τ

0

∫
Ωt

S : ∇xu + |2∇x
√
η +
√
η∇xΦ|2 dxdt

≤
∫

Ωτ

(
1

2
ρ0|u0|2 + P (ρ0) + η0 log η0 + η0Φ

)
dx

+

∫
Ωτ

(ρu ·V)(τ, ·)− (ρu)0 ·V(0, ·) dx

+

∫ τ

0

∫
Ωt

S : ∇xV − ρu · ∂tV − %u⊗ u : ∇xV

+ (η + βρ)∇xΦ ·V − (p(ρ) + η) divxV dxdt

− β
∫ τ

0

∫
Ωτ

ρ∇xΦ · u dxdt

(3.10)

holds for a.a. t ∈ [0, T ].
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Remark. In anticipation of proving the weak-strong uniqueness in Chapter 4, the

weak formulations in Definition 2 include integral terms at the fixed time T . By the

results of Chapter 2, we in fact have that ρ, η, and ρu are continuous in time with

values in a negative Sobolev space. Therefore these integrals are well-defined.

We now state the main result of this chapter.

Theorem 3. Let Ω0 ⊂⊂ D ⊂ R3 be a bounded domain with boundary of class

C2,ν , 0 < ν ≤ 1. Assume that the pressure is given by

p(ρ) = ργ, γ > 3/2,

and the stress tensor is given by

S(∇xu) = µ(∇xu + (∇xu)T ) + λdivxuI.

Let V be a given vector field belonging to C2,ν([0, T ]×D;R3), such that

V

∣∣∣∣
∂D

= 0.

Suppose the initial data (ρ0,m0, η0) satisfy (3.6), and all initial data vanishes on

D\Ω0. Then there exists a weak solution (ρ,u, η) of problem (3.3) in the sense of

Definition 2.

The rest of Chapter 3 is devoted to the proof of Theorem 3. The proof follows

some of the main ideas of [36], and is based on the work of the candidate in [25].

3.3 Penalization scheme

The proof of Theorem 3 relies on a two-level approximation scheme. In the

first level, we penalize the momentum equation by addition of the singular term
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−(1/ε)χ(u−V) (Brinkman’s penalization), and in the second level we penalize the

viscosities µ = µω and λ = λω. Theorem 3 will be proven after taking the limits

ε→ 0, followed by ω → 0.

Denote by χ = χ(t,x) the characteristic function of Qs, that is,

χ(t,x) =


0, if t ∈ (0, T ), x ∈ Ωt

1, otherwise.

The function χ represents a distributional solution of the transport equation
∂tχ+ V · ∇xχ = 0

χ(0, ·) = 1D − 1Ω0 .

(3.11)

The system (3.3) is then replaced by the penalized problem

∂tρ+ divx(ρu) = 0, (3.12a)

∂tη + divx(η(u−∇xΦ))−∆xη = 0. (3.12b)

∂t(ρu) + divx(ρu⊗ u) +∇x(p(ρ) + η)

= divxSω − (η + βρ)∇xΦ−
1

ε
χ(u−V) (3.12c)

considered in the cylinder (0, T )×D. The penalized problem is supplemented with

boundary conditions

u
∣∣
∂D

= V
∣∣
∂D

= 0, (3.13)

(∇xη + η∇xΦ) · ν
∣∣
∂D

= 0, (3.14)

with ν denoting the outer normal vector to the boundary ∂D, and initial conditions
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(ρ0,ε,m0,ε, η0,ε) such that

ρ0,ε → ρ0 in L
γ(D), ρ0|Ω0 > 0, ρ0|D\Ω0 = 0,

m0,ε →m0 in L
1(D;R3), m0|D\Ω0 = 0,

η0,ε → η0 in L
2(D), η0|Ω0 > 0, η0|D\Ω0 = 0,∫

D

|m0,ε|2

ρ0,ε

dx < c.

(3.15)

In order to eliminate extra stresses that appear due to the moving domain, the

variable viscosity coefficients µ = µω(t,x) and λ = λω(t,x) are defined such that

the modified viscosity vanishes in the solid domain Qs as ω → 0. In particular,

µω ∈ C∞c
(
[0, T ]× R3

)
, 0 < µ

ω
≤ µω(t,x) ≤ µ in [0, T ]×D,

µω =


µ = const > 0 in Qf

µω → 0 a.e. in ((0, T )×D)\Qf ,

such that µ
ω
→ 0 as ω → 0. The coefficient λ = λω(t, x) is penalized in exactly the

same way. The initial data is also assumed to satisfy the compatibility condition

(ρu)0,ε =
|(ρu)0,ε|2

ρ0,ε

= 0, whenever ρ0,ε = 0.

The weak formulation of the penalized problem reads as follows.

Definition 3 (Weak solutions of the penalized problem). We say that (ρ,u, η)

comprise a weak solution of the penalized NSS system (3.12), along with the boundary

conditions (3.13) and (3.14), and the initial data (3.15) provided

• The density ρ = ρ(t, x) and velocity u = u(t, x) represent a weak renormalized

solution of equation (1.1a) over (0, T )×D, that is, for any test function ϕ ∈
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D([0, T ]×D) and any b such that

b ∈ L∞ ∩ C[0,∞), B(ρ) = B(1)ρ+ ρ

∫ ρ

1

b(z)

z2
dz,

the following integral identity holds:∫ T

0

∫
D

(
B(ρ)∂tϕ+B(ρ)u · ∇xϕ− b(ρ)divxuϕ

)
dxdt

=

∫
D

B(ρ)(T, ·)ϕ(T, ·) dx−
∫
D

B(ρ0,ε)ϕ(0, ·) dx.

(3.16)

The density, velocity, and momentum are required to have the following regu-

larity

ρ ∈ L∞(0, T ;Lγ(D)), ρ ≥ 0 a.e. in (0, T )×D,

u ∈ L2(0, T ;W 1,2
0 (D;R3)),

ρu ∈ L∞((0, T );L2γ/(γ−1)(D;R3)).

• The particle density η = η(t, x) and the velocity u = u(t, x) represents a weak

solution of equation (1.1c). In particular, for all ϕ ∈ D([0, T ]×D)∫ T

0

∫
D

η∂tϕ+ ηu · ∇xϕ− η∇xΦ · ∇xϕ−∇xη · ∇xϕ dxdt

=

∫
D

η(T, ·)ϕ(T, ·) dx−
∫
D

η0ϕ(0, ·) dx.

(3.17)

The particle density is required to have the following regularity

η ∈ L2(0, T ;W 1,1(D)) ∩ L1(0, T ;W 1,3/2(D)),

η ≥ 0 a.e. in (0, T )×D.

• The momentum equation holds in distributional sense. In particular, for all
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ϕ ∈ D([0, T ];D(D;R3)), the following integral identity holds∫ T

0

∫
D

(
ρu · ∂tϕ+ ρu⊗ u : ∇xϕ+ (p(ρ) + η)divxϕ

)
dxdt

=

∫ T

0

∫
D

S : ∇xϕ+ (η + βρ)∇xΦ · ϕ dxdt+

∫ T

0

∫
D

χ(u−V)

ε
· ϕ dxdt

+

∫
D

(ρu)(T, ·) · ϕ(T, ·) dx−
∫
D

(ρu)0 · ϕ(0, ·) dx.

(3.18)

• Defining the total energy of the system by

E(ρ,u, η)(t) :=

∫
D

(
1

2
ρ|u|2 + ρP (ρ) + η log η + ηΦ

)
dx(t),

the energy inequality

E(ρ,u,η)(t) +

∫ t

0

∫
D

S : ∇xu + |2∇x
√
η +
√
η∇xΦ|2 dxds

≤ E(ρ,u, η)(0)−
∫ t

0

∫
D

χ

ε
(u−V) · u dxds

− β
∫ τ

0

∫
D

ρ∇xΦ · u dxdt.

(3.19)

holds for a.a. t ∈ [0, T ].

For any fixed ε, weak solutions in the sense of Definition 3 exist by the same

methods of Chapter 2. Estimates from the energy inequality (3.19) are uniform

after applying a Cauchy and Poincaré inequality to the extra term on the right

hand side of (3.19) and absorbing into the left hand side. Passing to the limit in the

momentum equation in Definition 3 causes no new difficulties as the penalty term

is linear in u.
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3.4 Uniform estimates

We eventually will take the limits ε → 0, and ω → 0. We therefore denote a

solution at the ε−level by (ρε,uε, ηε), and at the ω-level by (ρω,uω, ηω).

To obtain estimates uniform in ε, we first derive a modified energy inequality.

Choosing as a test function ϕ = ψn(t)V, ψn ∈ C∞c [0, T ), ψn → 1[0,τ) in (3.18) and

adding to the inequality (3.19), we find that∫
D

(
1

2
ρε|uε|2 +

a

γ − 1
ργε + ηε log ηε + ηεΦ

)
(τ, ·) dx

+

∫ τ

0

∫
D

(
µω|∇xuε|2 + λω|divxuε|2 + |2∇x

√
ηε +

√
ηε∇xΦ|2

)
dxdt

+
1

ε

∫ τ

0

∫
D

χ|uε −V|2 dxdt

≤
∫
D

(
1

2

|(ρu)0,ε|2

%0,ε

+
a

γ − 1
%γ0,ε + η0,ε log η0,ε + η0,εΦ

)
dx

+

∫
D

(ρεuε ·V)(τ, ·)− (ρu)0,ε ·V(0, ·) dx

+

∫ τ

0

∫
D

Sε : ∇xV − ρεuε · ∂tV − %εuε ⊗ uε : ∇xV

− (ηε + βρε)∇xΦ ·V − (p(ρε) + ηε) divxV dxdt

− β
∫ τ

0

∫
D

ρε∇xΦ · uε dxdt

(3.20)

for a.a. τ ∈ (0, T ). This yields uniform bounds on (ρε,uε, ηε) independent of ε→ 0

provided V is sufficiently smooth, and using the Cauchy and Grönwall inequalities.

In accordance with the boundary conditions (3.13) and (3.14), the total fluid

and particle mass

Mρ,ε =

∫
D

ρε(t, ·) dx =

∫
D

ρ0,ε dx (3.21)
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Mη,ε =

∫
D

ηε(t, ·) dx =

∫
D

η0,ε dx (3.22)

are constants of motion (see [21], lemma 3.13). The following bounds, uniform in

ε, ω, are evident from a quick inspection of (3.20):

√
ρεuε ∈ L∞(0, T ;L2(D;R3)) (3.23)

ρε ∈ L∞(0, T ;Lγ(D)) (3.24)

∇xuε ∈ L2(0, T ;L2(D;R3 × R3)) (3.25)

divxuε ∈ L2(0, T ;L2(D)) (3.26)

∇x
√
ηε ∈ L2(0, T ;L2(D;R3)) (3.27)

In addition,

∫ τ

0

∫
D

χ|uε −V|2 dxdt =

∫
Qs
|uε −V|2 dxdt ≤ εc, (3.28)

for a.a. τ ∈ (0, T ) with c independent of ε, ω, where we used the definition of χ(t, x).

Using the embedding of W 1,2(D) in L6(D) (since D ⊂ R3) on the last bound

listed above, it is clear that ηε ∈ L1(0, T ;L3(D)). This, and mass conservation

implies

ηε ∈ L1(0, T ;L3(D)) ∩ L∞(0, T ;L1(D)). (3.29)

Using this result, and that

2∇x
√
η =
∇xη√
η
,

it is also clear that

ηε ∈ L1(0, T ;W 1, 3
2 (D)) ∩ L2(0, T ;W 1,1(D)). (3.30)
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By Poincaré’s inequality and (3.25), we get that

uε ∈ L2(0, T ;W 1,2
0 (D;R3)). (3.31)

3.5 Pressure estimates and pointwise convergence of the fluid density

The detailed analysis in [36] yields the estimates needed to deal with the

nonlinear pressure, p(ρ) = aργ, obtain pointwise convergence of the fluid density ρ,

and pass to the limit in (3.16), (3.18). In particular,∫
K

p(ρε)ρ
ν
ε dxdt ≤ c(K) for any compact K ⊂ Qf , (3.32)

and these estimates can be extended up to the boundary, and

ρε → ρω in Lq((0, T )×D) for any 1 ≤ q < γ.

Though we omit the proof, let us simply remark that the appearance of extra terms

involving the particle density η pose no additional difficulty in obtaining these esti-

mates.

Observe that the penalization term, singular in ε over Qs, doesn’t allow any

uniform pressure estimates in the solid portion of the domain. The estimates are

therefore local in Qf .

3.6 The limit ε→ 0

Combining (3.24), (3.31) with equation (3.16) we may infer that

ρε,ω → ρω in C([0, T ];Lγweak(D)), (3.33a)

uε,ω ⇀ uω in L2(0, T ;W 1,2
0 (D;R3)), (3.33b)
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passing to subsequences if necessary. Moreover as a consequence of (3.28),

uω = V a.e. in Qs, (3.34)

again after passing to a subsequence. From (3.29) and interpolation we get that

ηε,ω → ηω in L2(0, T ;L
3
2 (D)). (3.35)

To deal with the ∇xηε,ω term in (3.17), we can interpolate in (3.30) and conclude

that

∇xηε,ω ⇀ ∇xηω in Lp(0, T ;Lq(D)), (3.36)

for some p, q > 1.

3.7 Convergence in the set Qs

In this section we show that the densities in the ‘solid’ domain Qs vanish in

the limit. That

ρ(t, x) = 0 for a.e. (t,x) ∈ Qs

holds has been worked out in [36]. The proof relies on regularizing the equation of

continuity (3.12a) and employing the commutator lemma of DiPerna and Lions [24].

It remains to show that

η(t, x) = 0 for a.e. (t,x) ∈ Qs.

Before proving the following lemmas, first we set some notation. Recall that the

cutoff function χ(t,x) satisfies the transport equation (3.11). In anticipation of using
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a suitable (smooth) test function, consider instead the unique function χ ∈ C∞(R3)

solving

∂tχ+ V · ∇xχ = 0 t > 0, x ∈ R3,

with the initial data satisfying

C∞(R3) 3 χ(0, ·) =


> 0 x ∈ D\Ω0

< 0 x ∈ Ω0 ∪ (R3\D)

, ∇xχ0 6= 0 on ∂Ω0.

We define the level-set test function,

ϕξ =



1 χ ≥ ξ

χ

ξ
0 ≤ χ < ξ

0 χ < 0

= min

{
χ

ξ
, 1

}+

, (3.37)

supported on D\Ωτ , see [39], [60].

Lemma 6. Let ηε,ω ∈ L2(0, T ;W 1,1(D)) ∩ L1(0, T ;W 1, 3
2 (D)), ηε,ω ≥ 0,

and uε,ω ∈ L2(0, T ;W 1,2(D;R3)) be a weak solution of (3.17), that is,∫ T

0

∫
D

ηε,ω∂tϕ+ ηε,ωuε,ω · ∇xϕ− ηε,ω∇xΦ · ∇xϕ−∇xηε,ω · ∇xϕ dxdt

= −
∫
D

η0,ε,ωϕ(0, ·) dx,

(3.38)

holds for all ϕ ∈ D([0, T )×D) and any T > 0. Let the initial data satisfy

η0 ∈ L2(D) ∩ L1
+(D), η0

∣∣
D\Ω0

= 0.

Then for ξ > 0 and χ defined as above, it holds that

lim
ξ→0

1

ξ

∫ τ

0

∫
{0≤χ̄<ξ}

(η∇xΦ +∇xη) · ∇xχ̄ dxdt = 0, (3.39)

for any τ > 0.
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Proof. Plugging (3.37) into (3.38) and rearranging we get that

1

ξ

∫ τ

0

∫
{0≤χ<ξ}

(ηε,ω∇xΦ +∇xηε,ω) · ∇xχ dxdt =

1

ξ

∫ τ

0

∫
{0≤χ<ξ}

ηε,ω(uε,ω −V) · ∇xχ dxdt+

∫
D

η0,ε,ωϕξ(0, ·) dx.

(3.40)

Since we can pass ε, ω → 0 on the left side in (3.40), it suffices to show that right

side vanishes as we take ε, ω → 0 and ξ → 0 successively. First,

lim
ε,ω→0

∫
D

η0,ε,ωϕξ(0, ·)dx =

∫
Ω0

η0ϕξ(0, ·) dx = 0,

since on Ω0, we have χ(0, ·) < 0 and so ϕξ(0, ·) = 0. Now,

lim
ε,ω→0

1

ξ

∫ τ

0

∫
{0≤χ<ξ}

ηε,ω(uε,ω−V)·∇xχ dxdt =
1

ξ

∫ τ

0

∫
{0≤χ<ξ}

η(u−V)·∇xχ dxdt = 0,

since u = V a.e. in D\Ω0, i.e. where χ ≥ 0, using (3.34). Letting ξ → 0 concludes

the proof of the lemma.

Lemma 7. Under the same conditions as lemma 6, the following holds,

η(τ, ·)|D\Ωτ = 0 for a.a. τ ∈ [0, T ].

Proof. First note that by choosing a test function having the form

ϕn = ψn(t)ϕ(t, x), ϕ ∈ C∞c ([0, T )× D̄), ψn → 1[0,τ) as n→∞,

and ψn ∈ C∞[0, T ), we can rewrite the weak form (3.38) as∫
D

ηε,ω(τ, ·)ϕ(τ, ·)− η0,ε,ωϕ(0, ·) dx =

∫ τ

0

∫
D

ηε,ω(∂tϕ+ uε,ω · ∇xϕ)

− (ηε,ω∇xΦ +∇xηε,ω) · ∇xϕ dxdt,

(3.41)

for any ϕ ∈ C∞c ([0, T )× D̄). It suffices to establish that∫
D\Ωτ

η(τ, ·) dx = 0, a.a τ ∈ (0, T ).
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Inserting ϕξ into (3.41), using the initial conditions, and letting ε, ω → 0 yields,∫
D

η(τ, ·)ϕξ(τ, ·) dx =
1

ξ

∫ τ

0

∫
{0≤χ<ξ}

η(u−V) · ∇xχ− (η∇xΦ +∇xη) · ∇xχ dx dt.

(3.42)

Since ϕξ(τ, ·) → 1D\Ωτ as ξ → 0 in any Lp(D), p < ∞, and η ∈ L2(0, T ;L3/2(D)),

the left-hand side of (3.42) converges to∫
D\Ωτ

η(τ, ·) dx,

as ξ → 0. Finally, using lemma 6 and that u = V for any ξ > 0, it is clear the right

hand side of (3.42) vanishes as ξ → 0.

3.8 The limit ω → 0

Performing the limit ε→ 0, we arrive at the weak formulation of the momen-

tum satisfied, except for the following term∫ ∞
0

∫
D

(µω∇xuω + λωdivxuωI) : ∇xϕ dxdt. (3.43)

Using that the viscosity penalization is assumed to vanish on ((0, T )×D)\Qf and

using that uω = V here, we conclude that∫ T

0

∫
D\Ωt

(µω∇xuω + λωdivxuωI) : ∇xϕ dxdt→ 0 as ω → 0.

We can now pass all terms in the weak formulation as ω → 0, using the same

estimates in the previous sections.

Remark. In fact when letting ε, ω → 0 in the momentum equation (3.18), the pe-

nalization term remains as a weak limit,

uε,ω −V

ε
⇀ h in L1(Qs),
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where h is the weak limit. This term, which appears artificially in the solid domain,

is then removed in the weak formulation by proper choice of test functions. For

some remarks on this term see [6].

In order to obtain the limiting energy inequality, we first state the following

lemma. See Corollary 2.2 in [33] for the proof.

Lemma 8. Let O ⊂ Rm be a bounded measurable set, and {vn}∞n=1 a sequence of

functions such that

vn → v weakly in L1(O;Rn).

Let Φ : Rn → (∞,∞] be a convex lower semi-continuous function. Then Φ(v) :

O → R is integrable, and

∫
O

Φ(v) dy ≤ lim inf
n→∞

∫
O

Φ(vn) dy.

Using this lemma, the previously derived estimates, and lemma 7, it is now

easy to pass ε, ω → 0 in (3.20) to derive the energy inequality (3.10).
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Chapter 4: Relative entropy and weak-strong uniqueness for NSS:

moving domains

In Chapters 2 and 3 we discussed the existence of solutions for the NSS system

in a weak sense. One of the many outstanding problems surrounding the Navier-

Stokes equations, at least in three dimensions, concerns the question of uniqueness.

Though a uniqueness result is in general not available, we can instead prove a partial

result concerning the uniqueness of strong solutions in the class of weak solutions.

This is known as a weak-strong uniqueness, and ensures that the class of weak

solutions is somehow not too big. In this chapter we establish a relative entropy

inequality for the compressible NSS system on moving domains. The relative entropy

is then used to deduce the weak-strong uniqueness result.

4.1 Definitions of relative entropies

We define the energy contributions of the fluid and particle by

Hf (ρ) :=
a

γ − 1
ργ,

and

Hp(η) := η log η
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respectively.

Suppose that (ρ, η,u) is a weak solution of the NSS system over moving do-

mains in the sense of Definition 2, and suppose that (r, s,U) are arbitrary smooth

functions, with regularity to be made precise later. The relative entropy contribution

of the fluid potential energy is defined by

Ef (ρ|r) := Hf (ρ)−H ′f (r)(ρ− r)−Hf (r), (4.1)

and the relative entropy contribution of the particles is defined by

Ep(η|s) := Hp(η)−H ′p(s)(η − s)−Hp(s). (4.2)

The total relative entropy E
(
ρ, η,u

∣∣∣r, s,U) is defined by

E
(
ρ, η,u

∣∣∣r, s,U) =

∫
Ωt

1

2
ρ|u−U|2 + Ef (ρ|r) + Ep(η|s) dx. (4.3)

Having defined, but not yet motivated the definitions of relative entropy, we can

now state the theorem to be proved in Section 4.2.

Theorem 4. Let (ρ, η,u) be a weak solution of the NSS system (3.3) in the sense of

Definition 2. Let (r, s,U) be a triple of smooth functions such that U ∈ D([0, T ]×

Ωt;R3), and r, s ∈ D([0, T ]×Ωt). Both u and U are required to agree with V on the

boundary Γτ , for any τ ≥ 0. Then the relative entropy (4.3) satisfies the inequality

E
(
ρ, η,u

∣∣∣r, s,U)+

∫ τ

0

∫
Ωt

(S(∇xu)− S(∇xU)) : (∇xu−∇xU) dxdt

≤ E
(
ρ0, η0,u0

∣∣∣r0, s0,U0

)
+R(ρ, r, η, s,u,U),

(4.4)
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for a.a. τ > 0. The remainder term R appearing in (4.4) is defined as

R(ρ, r, η, s,u,U)

= −
∫ τ

0

∫
Ωt

(η + βρ)∇xΦ · (u−U) dxdt

−
∫ τ

0

∫
Ωt

(ρ− r)∂tH ′f (r) + (ρu− rU) · ∇xH
′
f (r) + (p(ρ)− p(r))divxU dxdt

−
∫ τ

0

∫
Ωt

(η − s)∂tH ′p(s) + (ηu− sU) · ∇xH
′
p(s) + (η − s)divxU dxdt

+

∫ τ

0

∫
Ωt

S(∇xU) : ∇x(U− u) + ρ(U− u) · ∂tU + ρu⊗ (U− u) : ∇xU dxdt

+

∫ τ

0

∫
Ωt

(η∇xΦ +∇xη) · ∇x(H
′
p(s)−H ′p(η)) dxdt.

(4.5)

The proof of Theorem 4 will be given in Section 4.2. Let us next motivate the

definitions of the relative entropy. Following the notation of [9] (see also [20]), the

relative entropy is defined by

E(V |V ) = E(V )− E(V )−∇E(V ) · (V − V ), (4.6)

where ∇ denotes the gradient (∂ρ, ∂u, ∂η), E is functional

E(V ) =
1

2
ρ|u|2 +

a

γ − 1
ργ + η log η, (4.7)

and V, V are the vectors

V = (ρ,u, η), V = (r,U, s).

Therefore, the relative entropy essentially characterizes the quadratic correction to

the Taylor expansion of E(V ) about the state V . Using the inequalities 1 − 1/x ≤

log x and 1 + γ(x − 1) ≤ xγ, it is easy to check that E(V ) is strictly convex and
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vanishes precisely when V = V . This quantity therefore provides a measure of

the ‘distance’ between two solutions. The definition (4.3) is then a straightforward

consequence of substituting (4.7) into (4.6).

4.2 Relative entropy inequality

In this section we prove Theorem 4. The derivation of the relative entropy

inequality consists of choosing appropriate test functions in the weak formulations

of Definition 2 and combining with the energy inequality (3.10). We proceed in

several steps.

Using 1
2
|U|2 as a test function in the weak formulation (2.64) yields

−
∫

Ωτ

1

2
ρ|U|2(τ, ·) dx =−

∫
Ω0

1

2
ρ0|U(0, ·)|2 dx

−
∫ τ

0

∫
Ωt

ρU · ∂tU + ρu⊗U : ∇xU dxdt.

(4.8)

Next, use U−V as a test function in the momentum equation (3.9), which is valid

since U = V on Γt,

−
∫

Ωτ

ρu ·U(τ, ·) dx = −
∫

Ω0

ρ0u0 ·U(0, ·) dx−
∫ τ

0

∫
Ωt

ρu · ∂tU dxdt

−
∫ τ

0

∫
Ωt

ρu⊗ u : ∇xU + (p(ρ) + η)divxU− S : ∇xU dxdt

+

∫ τ

0

∫
Ωt

(η + βρ)∇xΦ ·U dxdt−
∫

Ωτ

ρu ·V(τ, ·) dx

+

∫
Ω0

ρ0u0 ·V(0, ·) dx+

∫ τ

0

∫
Ωt

ρu · ∂tV dxdt

+

∫ τ

0

∫
Ωt

ρu⊗ u : ∇xV + (p(ρ) + η)divxV dxdt

−
∫ τ

0

∫
Ωt

S : ∇xV + (η + βρ)∇xΦ ·V dxdt.

(4.9)
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Using that H ′f (r)r −Hf (r) = p(r) for any time τ ≥ 0, and the equality∫
Ωτ

p(r)(τ, ·) dx =

∫
Ω0

p(r)(0, ·) dx+

∫ τ

0

∫
Ωt

∂tp(r) + divx(p(r)U) dxdt

=

∫ τ

0

∫
Ωt

r∂tH
′
f (r) + p(r)divxU + rU · ∇xH

′
f (r) dxdt,

we deduce that∫
Ωt

[H ′f (r)r −Hf (r)](τ, ·) dx =

∫
Ω0

[H ′f (r)r −Hf (r)](0, ·) dxdt

+

∫ τ

0

∫
Ωt

r∂tH
′
f (r) + p(r)divxU + rU · ∇xH

′
f (r).

(4.10)

By a similar computation, using instead the equality H ′p(s)s−Hp(s) = s (valid for

any τ ≥ 0) we get that∫
Ωt

[H ′p(s)s−H ′p(s)](τ, ·) dx =

∫
Ω0

[H ′p(s)s−H ′p(s)](0, ·) dxdt

+

∫ τ

0

∫
Ωt

s∂tH
′
p(s) + sdivxU + sU · ∇xH

′
p(s).

(4.11)

Using H ′p(s) as a test function in equation (3.8) and combining with (4.11) yields

−
∫

Ωτ

[H ′p(s)(η − s) +Hp(s)](τ, ·) dx

= −
∫

Ω0

H ′p(s0)(η0 − s0) +Hp(s0) dx

−
∫ τ

0

∫
Ωt

(η − s)∂tH ′p(s) + (ηu− sU) · ∇xH
′
p(s) dxdt

−
∫ τ

0

∫
Ωt

(η∇xΦ +∇xη) · ∇xH
′
p(s)− sdivxU dxdt.

(4.12)

Next, test equation (3.8) against Φ to get

−
∫

Ωτ

η(τ, ·)Φ dx = −
∫

Ω0

η0Φ dx−
∫ τ

0

∫
Ωt

ηu · ∇xΦ− (η∇xΦ +∇xη) · ∇xΦ dxdt

(4.13)
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Let us now put together the energy inequality (3.10), and the equalities (4.8)-(4.13),

to deduce

E
(
ρ, η,u

∣∣∣r, s,U)+

∫ τ

0

∫
Ωt

(S(∇xu)− S(∇xU)) : (∇xu−∇xU) dxdt

+

∫ τ

0

∫
Ωt

|2∇x
√
η + η∇xΦ|2 dxdt

≤ E
(
ρ0, η0,u0

∣∣∣r0, s0,U0

)
−
∫ τ

0

∫
Ωt

(η∇xΦ +∇xη) · ∇xH
′
p(s) dxdt

+

∫ τ

0

∫
Ωt

η|∇xΦ|2 +∇xη · ∇xΦ dxdt+ R̃(ρ, r, η, s,u,U).

(4.14)

The remainder term R̃ appearing in (4.14) is defined by

R̃(ρ, r, η, s,u,U)

= −
∫ τ

0

∫
Ωt

(η + βρ)∇xΦ · (u−U) dxdt

−
∫ τ

0

∫
Ωt

(ρ− r)∂tH ′f (r) + (ρu− rU) · ∇xH
′
f (r) + (p(ρ)− p(r))divxU dxdt

−
∫ τ

0

∫
Ωt

(η − s)∂tH ′p(s) + (ηu− sU) · ∇xH
′
p(s) + (η − s)divxU dxdt

+

∫ τ

0

∫
Ωt

S(∇xU) : ∇x(U− u) + ρ(U− u) · ∂tU + ρu⊗ (U− u) : ∇xU dxdt

(4.15)

To deal with the remaining terms in (4.14), we proceed by adding and subtracting

the terms

±
∫ τ

0

∫
Ωt

4|∇x
√
η|2 dxdt±

∫ τ

0

∫
Ωt

∇xη · ∇xΦ dxdt (4.16)

on the right hand side of (4.14). This allows us to create the term

−
∫ τ

0

∫
Ωt

4|∇x
√
η|2 +∇xη · ∇xΦ dxdt = −

∫ τ

0

∫
Ωt

(∇xη + η∇xΦ) · ∇xH
′
p(η) dxdt

(4.17)

which when combined with the similar term on the right hand side of (4.14) yields

+

∫ τ

0

∫
Ωt

(η∇xΦ +∇xη) · ∇x(H
′
p(s)−H ′p(η)) dxdt. (4.18)
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Finally, the remaining terms in (4.16) combined with the remaining terms in (4.14)

become

∫ τ

0

∫
Ωt

4|∇x
√
η|2 + 2∇xη ·∇xΦ + η|∇xΦ|2 dxdt =

∫ τ

0

∫
Ωt

|2∇x
√
η+
√
η∇xΦ|2 dxdt.

(4.19)

This term cancels with the same term also appearing on the left hand side of (4.14).

Combining (4.15) and (4.18), we define

R(ρ, r, η, s,u,U) = R̃(ρ, r, η, s,u,U)

+

∫ τ

0

∫
Ωt

(η∇xΦ +∇xη) · ∇x(H
′
p(s)−H ′p(η)) dxdt.

(4.20)

Finally, we put together the results from (4.14)-(4.20) and deduce that the relative

entropy inequality (4.4) is satisfied.

4.2.1 Regularity of smooth solutions

The smooth solutions (r, s,U) can be extended to a larger class of less regular

solutions by means of a density argument on the relative entropy inequality (4.4).

Indeed, with known regularity of weak solutions (ρ, η,u), we need only check what

regularity of (r, s,U) is necessary to make each term integrable. It is not difficult
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to check that (r, s,U) can be extended to the following class:

r ∈ L∞(0, T ;Lγ(Ωt))

∂tH
′
f (r) ∈ L1(0, T ;Lγ/(γ−1)(Ωt))

∇xH
′
f (r) ∈ L1(0, T ;L2γ/(γ−1) ∩ L2(0, T ;L6γ/(5γ−6)(Ωt;R3))

U ∈ L1(0, T ;Lγ/(γ−1)(Ωt;R3)) ∩ L∞(0, T ;L2γ/(γ−1)(Ωt;R3)) ∩ L2(0, T ;W 1,2(Ωt;R3))

divxU ∈ L1(0, T ;L∞(Ωt)) ∩ L2(0, T ;L3/2(Ωt)), U
∣∣
∂Ωt

= V
∣∣
∂Ωt

∂tU ∈ L1(0, T ;L2γ/(γ−1)(Ωt;R3)) ∩ L2(0, T ;L6γ/(5γ−6)(Ωt;R3))

∇xU ∈ L2(0, T ;L2 ∩ L6γ/(2γ−3)(Ωt;R3×3))

s ∈ L∞(0, T ;L logL(Ωt)) ∩ L2(0, T ;L3(Ωt))

∂tH
′
p(s) ∈ L2(0, T ;L3/2(Ωt))

∇xH
′
p(s) ∈ L∞(0, T ;L3(ΩtR3)).

(4.21)

This regularity can potentially be further weakened with a more careful analysis but

this suffices for our purposes.

4.3 Weak-strong uniqueness

In order to obtain the weak-strong uniqueness result, we let the triple (r, s,U)

be a solution of the NSS system (3.3), originating from the same initial data. It will

be shown that the relative entropy E
(
ρ, η,u

∣∣∣r, s,U) vanishes for almost every time

τ ≥ 0. We assume furthermore that the densities r, s are bounded strictly away
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from zero,

r(t, ·), s(t, ·) > 0, for any t ≥ 0.

First, we can rewrite the momentum equation for (r, s,U) on condition that r is

strictly positive to get

∂tU + U · ∇xU =
1

r
divxS(∇xU)−

(
β +

s

r

)
∇xΦ−∇xH

′
f (r)−

1

r
∇xs. (4.22)

Next we manipulate the remainder term R(ρ, r, η, s,u,U) in (4.4) in order to put it

in a form suitable for the Grönwall inequality. We proceed in several steps.

1. By appropriately adding and subtracting the term U · ∇xU, we deduce∫ τ

0

∫
Ωt

S(∇xU) : ∇x(U− u) + ρ(∂tU + u · ∇xU) · (U− u) dxdt

=

∫ τ

0

∫
Ωt

S(∇xU) : ∇x(U− u) dxdt

+

∫ τ

0

∫
Ωt

ρ(∂tU + U · ∇xU) · (U− u) dxdt

+

∫ τ

0

∫
Ωt

ρ(u−U) · ∇xU · (U− u) dxdt

= I1 + I2 + I3.

(4.23)

2. Using the identity (4.22) we deduce that

I1 + I2 =−
∫ τ

0

∫
Ωt

ρ∇xH
′
f (r) · (U− u) dxdt

+

∫ τ

0

∫
Ωt

1

r
(ρ− r)divxS(∇xU) · (U− u) dxdt

−
∫ τ

0

∫
Ωt

[(
βρ+ ρ

s

r

)
∇xΦ +

ρ

r
∇xs

]
· (U− u) dxdt

(4.24)

3. Next, the first integral in (4.24) combines with the fluid pressure terms in
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R(ρ, r, η, s,u,U) to yield

−
∫ τ

0

∫
Ωt

(ρ− r)∂tH ′f (r) + (ρu− rU) · ∇xH
′
f (r) + (p(ρ)− p(r))divxU dxdt

−
∫ τ

0

∫
Ωt

ρ∇xH
′
f (r) · (U− u) dxdt

=

∫ τ

0

∫
Ωt

(r − ρ)[∂tH
′
f (r) + U · ∇xH

′
f (r)]− (p(ρ)− p(r))divxU dxdt

= (1− γ)

∫ τ

0

∫
Ωt

Ef (ρ | r)divxU dxdt,

(4.25)

where in the last step we made use of the equality

∂tH
′
f (r) + U · ∇xH

′
f (r) = −p′(r)divxU.

4. To simplify things, let us combine the steps in (4.23)-(4.25) to write the re-

mainder term as

R(ρ, r, η, s,u,U)

=

∫ τ

0

∫
Ωt

ρ(u−U) · ∇xU · (U− u) dxdt+ (1− γ)

∫ τ

0

∫
Ωt

Ef (ρ | r)divxU dxdt

+

∫ τ

0

∫
Ωt

1

r
(ρ− r)divxS(∇xU) · (U− u) dxdt

+

∫ τ

0

∫
Ωt

[
−ρs

r
∇xΦ−

ρ

r
∇xs

]
· (U− u) dxdt+

∫ τ

0

∫
Ωt

η∇xΦ · (U− u) dxdt

+

∫ τ

0

∫
Ωt

(η∇xΦ +∇xη) · ∇x(H
′
p(s)−H ′p(η)) dxdt

−
∫ τ

0

∫
Ωt

(η − s)∂tH ′p(s) + (ηu− sU) · ∇xH
′
p(s) + (η − s)divxU dxdt

=
7∑

n=1

Jn,

(4.26)

where Jn denotes the nth integral in the remainder.
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5. By appropriately adding and subtracting the term ηU, we deduce that

J7 =−
∫ τ

0

∫
Ωt

(η − s)[∂tH ′p(s) + U · ∇xH
′
p(s)] dxdt

+

∫ τ

0

∫
Ωt

ηH ′p(s) · (U− u)− (η − s)divxU dxdt.

(4.27)

Then, the equality

∂tH
′
p(s) + U · ∇xH

′
p(s) =

1

s
∆xs− divxU +

1

s
divx(s∇xΦ),

the condition that (∇xs + s∇xΦ) · n̂ vanishes on the boundary, and equation

(4.27) imply that

J4 + J5+J6 + J7 =

∫ τ

0

∫
Ωt

(η∇xΦ +∇xη) +∇x(H
′
p(s)−H ′p(η)) dxdt

−
∫ τ

0

∫
Ωt

[
ρ
s

r
∇xΦ− η∇xΦ +

ρ

r
∇xs−

η

s
∇xs

]
· (U− u) dxdt

−
∫ τ

0

∫
Ωt

η

s
divx(∇xs+ s∇xΦ) dxdt.

(4.28)

Notice in writing (4.28) that we require the densities to be bounded away from

zero.

6. By a simple computation (cf. Ballew et al. [9]), the first and third terms in

equation (4.28) together are equal to

−
∫ τ

0

∫
Ωt

1

s

∣∣∣∣√η

s
∇xs−

√
s

η
∇xη

∣∣∣∣2 dxdt ≤ 0. (4.29)

Since this term has the correct sign, it can subsequently be ignored from the

relative entropy inequality (4.4).

Finally, we rewrite the second term in equation (4.28) as

−
∫ τ

0

∫
Ωt

(ρ− r)
[
s

r
∇xΦ +

1

r
∇xs

]
· (U− u) dxdt

−
∫ τ

0

∫
Ωt

(s− η)

[
∇xΦ +

1

s
∇xs

]
· (U− u) dxdt.

(4.30)
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As a result of the previous computations, we can rewrite the remainder R in the

relative entropy inequality (4.4) as

R(ρ, r,η, s,u,U) =

∫ τ

0

∫
Ωt

ρ(u−U) · ∇xU · (U− u) dxdt

+ (1− γ)

∫ τ

0

∫
Ωt

Ef (ρ | r)divxU dxdt

+

∫ τ

0

∫
Ωt

1

r
(ρ− r)divxS(∇xU) · (U− u) dxdt

−
∫ τ

0

∫
Ωt

1

r
(ρ− r) [s∇xΦ +∇xs] · (U− u) dxdt

−
∫ τ

0

∫
Ωt

1

s
(s− η) [s∇xΦ +∇xs] · (U− u) dxdt

=
5∑

n=1

Kn.

(4.31)

The relative entropy inequality (4.4) can be reformulated as

E
(
ρ, η,u

∣∣∣r, s,U)+

∫ τ

0

∫
Ωt

|∇x(u−U)|2 dxdt

≤ E
(
ρ0, η0,u0

∣∣∣r0, s0,U0

)
+R(ρ, r, η, s,u,U),

(4.32)

on account of the following computation∫
Ωt

|∇x(u−U)|2 dx ≤ C

∫
Ωt

µ|∇x(u−U)|2 + (µ+ λ)|divx(u−U)|2 dx

=

∫
Ωt

S(∇x(u−U)) : ∇x(u−U) dx.

(4.33)

This is convenient, as the following Poincaré-type inequality for the velocity terms

holds,

‖u−U‖2
L6(Ωt;R3) ≤ C‖∇x(u−U)‖2

L2(Ωt;R3×3), (4.34)

on account that u−U ∈ W 1,2
0 (Ωt;R3). We can therefore eventually absorb velocity

gradient terms to the left hand side of (4.32) using a Cauchy inequality with ε.

The following lemma concerning growth properties of the relative entropy will

be used in the remaining computations.
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Lemma 9. Let ρ, r, η, s ≥ 0 and let the relative entropies Ef and Ep be defined as

in (4.1) and (4.2). Assume γ > 3/2. Then

1. If η ≤ 2s, then |η − s|2 . sEp(η | s),

2. If η ≥ 2s, then |η − s|2 . ηEp(η | s),

3. If r/2 ≤ ρ ≤ 2r, then |ρ− r|2 . Ef (ρ | r),

4. It ρ ≤ r/2 or ρ ≥ 2r, then (1 + |ρ|γ) ≤ C(r)Ef (ρ | r).

Remark. The requirement on γ in Lemma 9 can be weakened. At the least it should

be strictly greater than 1 to keepHf strictly convex to avoid a trivial relative entropy.

Proof. The first two inequalities are proved in [47], Lemma 2. In particular, the

second follows by writing

Ep(η|s) =

∫ η

s

η − z
z

dz,

and using that η dominates s. Statement 3 follows from Ef being strongly convex

over the set r/2 ≤ ρ ≤ 2r. To prove statement 4, note Ef (ρ | r) = Hf (r)h
(
ρ
r

)
where

h(z) := zγ − γ(z − 1)− 1. Define

F (z) :=
h(z)

|z|γ + 1
.

It suffices to show F (z) is bounded below by some positive constant C, after which

setting z = ρ/r completes the proof. On the interval 0 ≤ z ≤ 1/2, it is easy to

check F is decreasing, with F (1/2) = 1 + (γ/2− 1)2γ. On the interval z ≥ 2, F is

also decreasing with limit 1 as z →∞. Therefore we can choose

C ≤ min{1, [1 + 2γ(γ/2− 1)](2γ + 1)−1}.
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Going back to (4.31), we easily bound K1, K2 by

K1 +K2 ≤
∫ τ

0

a1(τ)

∫
Ωt

ρ|u−U|2 + Ef (ρ | r) dxdt

≤
∫ τ

0

a1(τ)E
(
ρ, η,u

∣∣∣r, s,U) dt,

(4.35)

where a1(τ) is in L1(0, τ). Next, following the approach of [35], the terms K2

and K3 will be split over the sets {r/2 ≤ ρ ≤ 2r}, {ρ ≤ r/2}, and {ρ ≥ 2r}.

First considering K2, using Hölder and Cauchy’s inequalities, along with (4.34) and

Lemma 9, we have∫
{r/2≤ρ≤2r}

(ρ− r)(r−1divxS(∇xU)) · (U− u) dx

≤ ‖r−1divxS(∇xU)‖L3(Ωt;R3)

(∫
{r/2≤ρ≤2r}

|ρ− r|2 dx

)1/2

‖U− u‖L6(Ωt;R3)

≤ 1

4ε
‖r−1divxS(∇xU)‖2

L3(Ωt;R3)

∫
Ωt

Ef (ρ | r) dx+ ε‖U− u‖2
L6(Ωt;R3)

≤
∫

Ωt

a2(t)Ef (ρ | r) dx+ εC‖∇x(u−U)‖2
L2(Ωt;R3×3),

(4.36)

where a2(t) ∈ L1(0, τ) and ε > 0. It is also required that

divxS(∇xU) ∈ L2(0, T ;L3(Ωt;R3×3)).

In a similar way, we observe that∫
{ρ≤r/2}

(ρ− r)(r−1divxS(∇xU)) · (U− u) dx

≤
∫

Ωt

a3(t)Ef (ρ | r) dx+ εC‖∇x(u−U)‖2
L2(Ωt;R3×3),

(4.37)

using that ρ is uniformly bounded, and where a3(t) ∈ L1(0, τ). On the set {ρ ≥ 2r},

and using that

E
(
ρ, η,u

∣∣∣ r, s,U) ∈ L∞(0, T ),
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we observe that

‖ρ‖Lγ . E
(
ρ, η,u

∣∣∣ r, s,U)1/γ

. E
(
ρ, η,u

∣∣∣ r, s,U)1/2

‖ργ/2‖L2 . E
(
ρ, η,u

∣∣∣ r, s,U)1/2

.

We now compute∫
{ρ≥2r}

(ρ− r)(r−1divxS(∇xU)) · (U− u) dx

≤
∫
{ρ≥2r}

∣∣∣∣ρ− rρr

∣∣∣∣max{ρ, ργ/2}|divxS(∇xU)||U− u| dx

. ‖u−U‖L6(Ωt;R3)‖divxS(∇xU)‖Lq∩L3(Ωt;R3)

(∫
Ωt

Ef (ρ | r) dx

)1/2

≤
∫

Ωt

a4(t)Ef (ρ | r) dx+ εC‖∇x(u−U)‖2
L2(Ωt;R3×3),

(4.38)

where q = 6γ/(5γ − 6) and a4(t) ∈ L1(0, τ). It is therefore required that

divxS(∇xU) ∈ L2(0, T ;Lq(Ωt;R3×3)).

The term K4 is treated in exactly the same way as K3 and we deduce that∫
Ωt

(ρ− r)r−1[s∇xΦ +∇xs] · (U− u) dx

≤
∫

Ωt

a5(t)Ef (ρ | r) dx+ εC‖∇x(u−U)‖2
L2(Ωt;R3×3)

(4.39)

where a5(t) ∈ L1(0, τ). Finally, we split K5 over the sets {η ≤ 2s} and {η ≥ 2s}.

First, on the set {η ≤ 2s} we have∫
{η≤2s}

1

s
(s− η) [s∇xΦ +∇xs] · (U− u) dx

≤ ‖η − s‖L2(Ωt)‖∇xΦ +∇xs/s‖L3(Ωt;R3)‖u−U‖L6(Ωt;R3)

≤ 1

4ε
‖∇xΦ +∇xs/s‖2

L3(Ωt;R3)‖η − s‖2
L2(Ωt)

+ ε‖u−U‖2
L6(Ωt;R3)

≤ a6(t)

∫
Ωt

Ep(η | s) dx+ εC‖∇xu−∇xU‖2
L2(Ωt;R3×3),

(4.40)
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with a6(t) in L1(0, τ). Now over the set {η ≥ 2s} we have∫
{η≥2s}

1

s
(s− η) [s∇xΦ +∇xs] · (U− u) dx∥∥∥∥s− η√η

∥∥∥∥
L2(Ωt)

‖√η‖L3(Ωt)‖∇xΦ +∇xs/s‖L∞(Ωt;R3)‖U− u‖L6(Ωt;R3)

≤ 1

4ε

∥∥∥∥s− η√η
∥∥∥∥2

L2(Ωt)

+ ε‖η‖L3/2(Ωt)‖∇xΦ +∇xs/s‖2
L∞(Ωt;R3)‖∇x(u−U)‖2

L2(Ωt;R3×3)

≤ C

∫
Ωt

Ep(η|s) dx+ ε‖η‖L3/2(Ωt)‖∇xΦ +∇xs/s‖2
L∞(Ωt;R3)‖∇x(u−U)‖2

L2(Ωt;R3×3).

(4.41)

Remark. This requires further the condition that

∇xs

s
∈ L∞((0, T )× Ωt;R3),

as well as

η ∈ L∞(0, T ;L3/2(Ωt)).

Note this estimate on η isn’t known a priori for the weak solutions and must be

taken as an assumption.

Now integrating (4.36)-(4.40) over the time-interval (0, τ), and using (4.35),

we estimate the remainder term (4.31). Absorbing the small ε terms into the left

hand side of (4.32), we deduce that the relative entropy satisfies

E
(
ρ, η,u

∣∣∣ r, s,U) (τ) ≤ E
(
ρ0, η0,u0

∣∣∣ r0, s0,U0

)
+

∫ τ

0

a(t)E
(
ρ, η,u

∣∣∣ r, s,U) (t) dt,

(4.42)

where a(t) ∈ L1(0, τ). Since the initial data are assumed the same for both classes of

solution, E(0) ≡ 0 and an application of Grönwall’s inequality allows us to conclude

that for all time, (r, s,U) ≡ (ρ, η,u), after possibly modifying on a set of measure

zero. We therefore have proved the following theorem.
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Theorem 5. Let Ωt ⊂⊂ D ⊂ R3 be a bounded domain for all t ≥ 0 of class C2,ν,

0 < ν ≤ 1. Assume the pressure is given by

p(ρ) = ργ, γ > 3/2,

and the stress tensor is given by

S(∇xu) = µ(∇xu + (∇xu)T ) + λdivxuI.

Assume the triple (ρ, η,u) is a weak solution of the NSS system (3.3) in the sense

of Definition 2. Assume furthermore that

η ∈ L∞(0, T ;L3/2(Ωt)).

Let (r, s,U) be a strong solution of the same problem, with regularity (4.21), and in

addition

0 < c1 ≤ s(t,x), r(t,x) ≤ c2 <∞

∇xH
′
p(s) ∈ L∞((0, T )× Ωt;R3), divxS(∇xU) ∈ L2(0, T ;L3 ∩ Lq(Ωt;R3×3))

where q = 6γ/(5γ − 6) and c1, c2 > 0 are constant. Then, after possibly modifying

(ρ, η,u) on a set of measure zero, we have

ρ ≡ r, η ≡ s, u ≡ U in Qf .
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Appendix A: Pressure estimates

This appendix is devoted to the proof of Lemma 3 of Section 2.6. This proof,

based on the Bogovskii operator, was first established in [40] for the case of com-

pressible Navier-Stokes equations. More details can be found in [37]. The local

pressure estimates by different methods were originally established by Lions [51].

Let us recall the weak formulation of the momentum equation (2.6c), at the

ε-level. For all ϕ ∈ D([0, T );D(Ω;R3)), it holds that∫ T

0

∫
Ω

(
ρεuε · ∂tϕ+ ρεuε ⊗ uε : ∇xϕ+ (p(ρε) + ηε + δραε )divxϕ

)
dxdt

=

∫ T

0

∫
Ω

S(∇xuε) : ∇xϕ+ (ηε + βρε)∇xΦ · ϕ+ ε∇xuε∇xρε · ϕ dxdt

−
∫

Ω

(ρu)0,δ · ϕ(0, ·) dx.

(A.1)

One notices that if we formally choose a test function ϕ such that ϕ ≈ div−1
x ρε,

where div−1
x is somehow the inverse of the divergence operator, then we obtain the

desired estimates from (A.1) as long as all terms are sufficiently bounded. This is

accomplished at a rigorous level by means of the Bogovskii operator, B ≈ div−1
x .

Details on this operator can be found in Section 10.5 of [37]. We only mention that

provided g is a smooth compactly supported function with zero mean, then so is B[g]

and divxB[g] = g. In addition, B is a bounded operator from Wm,q(Ω) to Wm+1,q(Ω)

for any m ≥ 0 and 1 < q <∞, provided the domain is Lipschitz continuous.
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Following [37], we choose

ϕ(t, x) = ψ(t)φ(t, x),

where ψ ∈ C∞c (0, T ) and φ = B[ρε − ρ]. Here ρ denotes the average of ρε over the

set Ω. Basic properties of the Bogovskii operator ensure that since B is linear, we

have that

∂tφ = −B[divx(ρεuε − ε∇xρε)],

where we also used that ρε solves the mass conservation equation. In addition, for

a.a. t ∈ (0, T ) and 1 < p <∞, the following estimates hold:

‖φ(t, ·)‖W 1,p(Ω;R3) ≤ c‖ρε‖Lp(Ω)

‖∂tφ(t, ·)‖Lp(Ω;R3) ≤ c‖ρεuε + ε∇xρε‖Lp(Ω;R3).

(A.2)

By a density argument and provided α ≥ 5, we can use ϕ(t, x) = ψ(t)φ(t, x) as a

test function in (A.1). Rearranging, it follows that

∫ T

0

ψ

∫
Ω

(p(ρε) + δραε )ρε dxdt =
8∑
j=1

Ij, (A.3)

where

I1 = −
∫ T

0

ψ

∫
Ω

ρεuε · ∂tφ dxdt,

I2 =

∫ T

0

ψρ

∫
Ω

p(ρε) + δραε dxdt,

I3 = −
∫ T

0

ψ

∫
Ω

ηεφ dxdt,

I4 = −
∫ T

0

ψ

∫
Ω

ρεuε ⊗ uε : ∇xφ dxdt,
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and

I5 = −
∫ T

0

ψ′
∫

Ω

ρεuε · φ dxdt,

I6 =

∫ T

0

ψ

∫
Ω

S(∇xuε) : ∇xφ dxdt,

I7 =

∫ T

0

ψ

∫
Ω

(ηε + βρε)∇xΦ · φ dxdt,

I8 =

∫ T

0

ψ

∫
Ω

ε∇xuε∇xρε · φ dxdt.

Applying Hölder’s inequality to the Ij and invoking (A.2) yields

|I1| ≤ c‖ψ‖L∞T ‖ρεuε‖L∞T L2α/(α+2)
X

‖ρεuε + ε∇xρε‖L1
TL

2α/(α−2)
X

,

|I2| ≤ c‖ψ‖L∞T ‖p(ρε) + δραε ‖L∞T L1
X
,

|I3| ≤ ‖ψ‖L∞T ‖ηε‖L1
TL

3
X
‖ρε‖L∞T L3/2

X
,

|I4| ≤ ‖ψ‖L∞T ‖ρεuε ⊗ uε‖L2
TL

6α/(4α+3)
X

‖ρε‖L2
TL

6α/(2α−3)
X

,

|I5| ≤ ‖ψ′‖L∞T ‖ρεuε‖L∞T L2α/(α−2)
X

‖ρε‖L∞T LαX ,

|I6| ≤ ‖ψ‖L∞T ‖Sε‖L2
T,X
‖ρε‖L2

T,X
,

|I7| ≤ ‖ψ‖L∞T ‖∇xΦ‖L∞X ‖ηε + βρε‖L2
TL

3
X
‖ρε‖L2

TL
3/2
X
,

|I8| ≤ ε‖ψ‖L∞T ‖∇xuε‖L2
T,X
‖∇xρε‖L2

T,X
‖ρε‖L∞T LαX .

Since the right hand sides are all finite given as a result of the known a priori

estimates, Lemma 3 is proved.

Remark. The argument above is valid for any finite δ > 0, and is the result of

the integrability gains provided by the artificial pressure. In a similar way, we can

modify the proof to show that the pressure estimates

∫ T

0

∫
Ω

ργ+ω
δ dxdt ≤ c,
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and

δ

∫ T

0

∫
Ω

ρα+ω
δ dxdt ≤ c

hold independently of δ > 0, for any 0 < ω < min
{

1
3
, 2

3
γ − 1

}
.
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[7] G.M. Araújo and S.B. de Menezes. On equations of Navier-Stokes type in mov-
ing domains. Matematica Contemporanea, 32 (2007), 1-24.

[8] H.-O. Bae, Y.-P. Choi, S.-Y. Ha and M.-J. Kang. Time-asymptotic interaction
of flocking particles and an incompressible viscous fluid. Nonlinearity, 25(4)
(2012), 1155-1177.

[9] J. Ballew and K. Trivisa. Weakly dissipative solutions and weak-strong unique-
ness for the Navier-Stokes-Smoluchowski system. Nonlinear Anal., 91 (2013),
1-19.

94



[10] C. Baranger, L. Boudin, P.E. Jabin and S. Mancini. A modeling of biospray for
the upper airways. CEMRACS 2004-mathematics and applications to biology
and medicine, ESAIM Proc., 14 (2005), 41-47.

[11] S. Berres, R. Bürger, K.H. Karlsen and E.M. Rory. Strongly degenerate
parabolic-hyperbolic systems modeling polydisperse sedimentation with com-
pression. SIAM J. Appl. Math., 64 (2003), 41-80.

[12] L. Boudin, B. Boutin, B. Fornet, T. Goudon, P. Lafitte, F. Lagotiére and
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