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Abstract

Model Predictive Control algorithms minimize on-line and at every sampling point
an appropriate objective function, subject to the satisfaction of possible hard con-
straints on the process outputs, inputs or other state variables. The presence of the
hard constraints in the on-line optimization problem results in a nonlinear closed-loop
system, even though the process dynamics are assumed linear. This paper describes
a procedure for analyzing the nominal and robust stability properties of such control
laws, by utilizing the Operator Control Theory framework.

1 Preliminaries

This section sets some notation for later use. An impulse response model description is used:
y(k+1) = Hyu(k) + Hyu(k — 1) + ... + Hyu(k— N + 1) 1

where y is the output vector, u is the input vector and N is an integer sufficiently large for
the effect of inputs more than N sample points in the past on y to be negligible. The plant
is assumed to be open-loop stable, but it may be non-square.

A quadratic objective function is used in this paper, in the lines of Quadratic Dynamic
Matrix Control (Garcia and Morshedi, 1986):

E+DTr2%e(k+1 E+1-1DTBu(k+1-1
. i‘,‘(‘k+M-1),§_:[e( FO ek + 1) 4+ u(b+1-1) Bk +1-1)

+ Au(k +1-1)TD*Au(k +1-1)] (2)

where k is the current sample point. The minimization is subject to possible hard constraints
on the inputs u, their rate of change Awu, the outputs y and other process variables usually
referred to as associated variables. After the problem is solved on-line at &, only the optimal
value for the first input vector Au(k) is implemented and the problem is solved again at
k + 1. The optimal u(k) depends on the tuning parameters of the optimization problem,
the current output measurement y(k) and the past inputs u(k — 1),..., u(k — N) that are
involved in the model output prediction. Let f describe the result of the optimization:

u(k) = f(y(k),u(k ~1),...,u(k = N),rp(k)) (3)

where rp(k) includes all the values of the reference signal (setpoint) during the prediction
horizon from k + 1 to k + P.

The optimization problem of the QDMC algorithm can be written as a standard Quadratic
Programming problem:

min g(v) = %UTG'U + g7 (4)
subject to
ATv > b (5)
where - -
=[Auk) ... Au(k+M -1 (6)
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and the matrices G, A, and vectors g, b are functions of the tuning parameters (weights,
horizon P, M, some of the hard constraints). The vectors g, b are also linear functions of
y(k), u(k —1),..., u(k — N). For the optimal solution v* we have (Fletcher, 1981):

G -A v* g |
| o“»]""[a] g
where AT, b consist of the rows of AT, b that correspond to the constraints that are active
at the optimum and A* is the vector of the Lagrange multipliers correspondmg to these
constraints. The optimal Au(k) corresponds to the first m elements of the v* that solves
(7), where m is the dimension of u.

The special form of the LHS matrix in (7) allows the numerically efficient computation
of its inverse in a partitioned form:

¢ -A17 H -T
[—AT 0 ] =[—-TT U] (8)
Then R
v* = —Hg+Th (9)
=TT - Ub (10)
and
u®) =uE=1)+ [ 0 ... 0]v" ¥ fy®),uk-1),...,uEk - N),rp(k)) (1)
B

2 Stability Conditions

The framework selected for the study of the properties of the overall nonlinear system is
that of the Operator Control Theory (Economou, 1985). In this approach, the stability and
performance of the nonlinear system can be studied by applying the contraction mapping
principle on the operator F' that maps the “state” of the system (plant + controller) at
sample point k to that at sample point £+ 1. The fact that the plant dynamics are assumed
linear allows us to obtain results and carry out computations that are not yet feasible in the
general case. We can define as the “state” of the system at sample point k the following
vector

(k) = : (12)
u(k—N+1)

The “state” vector z(k) is defined so that knowledge of it and of the external inputs (setpoints
and disturbances) allows the computation of z(k + 1) by applying the plant and controller
equations on it. Note, however, that this operator is “uncertain” since it involves the actual
plant, i.e., the “true” plant impulse response coeflicients Hj,..., Hy.



Convergence of the successive substitution z(k + 1) = F(x(k)) implies stability of the
overall nonlinear system; fast convergence implies good performance. Zafiriou (1989a) ob-
tained sufficient and necessary stability conditions for the overall nonlinear system by ob-
taining conditions under which the mapping described by F is a contraction. The terms
stability and instability of the control system are used in the global asymptotical sense over
the domain of F' under consideration. These conditions were shown to be able to capture
the nonlinear characteristics of the constrained controller and were used to analyze a 2 x 2
subsystem of the Shell Heavy Oil Fractionator (model published in Prett and Garcia, 1988).

In this paper we shall concentrate on a necessary condition for the closed-loop operator
to be a contraction. For this condition an interpretation has been obtained that allows us to
bypass the problem of dealing with model uncertainty in the time domain, and use the tools
that were developed for Robust Linear Control (e.g., the structured singular value (Doyle,
1982)) to treat any of the types of model error that can be handled by that theory. Let J;
be a set of indices for the active constraints of (4) and Ji,..., J, correspond to all possible
active sets of constraints when all zs in the domain of F' are considered. For each J; define
a standard feedback controller Cj,(z):

Co() % = [T = (Ve sz = o = (Ve Haz™] 7 (VD (13)

Also define the transfer matrices:
e - ._ -1
Qi) ¥ [I = (Vo )az™ = ... = (Vay az™V] (14)

Then the following theorems hold (Zafiriou,1989a):

Theorem 1 F can be a contraction only if all feedback controllers Cj(z), ¢ 2 (V,f)s # 0,
produce a stable system when applied to the linear unconstrained process and all transfer
matrices Q;(2), ¢ 3 (Vyf)s =0, are stable.

Theorem 2 F can be a contraction for all plants in a set II, only if all feedback controllers
Cy(2), ¢ © (Vyf)s # 0, stabilize all unconstrained plants in the set Il and all transfer
matrices Qg,(z), ¢ 3 (Vyf)s =0, are stable.

These theorems allow us to can handle any set II that Robust Linear Control theory
can (for a discussion of the possible IIs see Morari and Zafiriou, 1989). The above interpre-
tation of the contraction conditions also indicates that robust performance conditions can
be formulated for the same set of feedback controllers. One should note that violation of
the above conditions does not necessarily imply instability. From a practical point of view,
however, violation for some ¢, should be taken as a very serious warning that the control
system parameters should be modified. The reason is that when in the region of the domain
of F' that corresponds to that i, the system will behave as a virtually unstable system, the
only hope for stability being to move to a stable region. It might be the case that for a
particular system in question this will always happen, making this system a stable one. But
even in this case, a temporary unstable-like behavior might occur, thus making the control
algorithm practically unacceptable.



3 Search for Practically Relevant Sets of Active Con-
straints

3.1 Practical Relevance of a J;

The number of all possible combinations of active constraints for the on-line optimization
problem is very large for any control problem of reasonable complexity. A particular J;,
however, is relevant to the stability question only if that combination of active constraints
at the optimum can actually occur during the operation of the control system. Let us use
the subscrlpt ¢ in A,, b; to denote that they correspond to a particular J;, 2 = 1,...,n. Also
let AT, b; consist of the rows of AT, b that correspond to the inactive constraints at the
optimum. Then by using (9), (10) we see that in order for such a combination to be possible
at the optimum we need to have

AT(~Hig + Tob;) > b (15)
T g - Ub; >0 (16)

Equation (15) is the requirement that the inactive constraints should be satisfied for the
solution v* that is given by (9). Equation (16) requires that the Lagrange multipliers have
the correct sign so that v* is indeed optimal. Since g, b are linear combinations of the past
manipulated variables and the current measurement, (15), (16) can be combined with the
hard constraints on the past us, the past Aus and the current output measurement y to
constitute a system of linear inequalities that have to have a feasible solution over the values
of the past inputs and the current measurement. Note that “past” in this context refers
to the QP parameters that correspond to points k£ — 1,..., k — N, and current to k. Note
that the constraint on y(k) is really an estimate, since any constraints that may have been
placed on it in the QP may not have been satisfied due to modeling error and unmeasured
disturbances. Also, it may be better to use a constraint on the estimated possible difference
between the plant and model output (y(k) — §(k)). If the problem has no feasible solution,
then that particular J; is of no practical importance. Note that the above procedure can
also serve to construct a sequence of possible past inputs that can lead to a situation during
the operation of the control system where the stability conditions are not satisfied.

3.2 Search over z

The procedure of section 3.1 determines whether one particular Cj,(2) needs to be checked
for stability. Applying this test however to all possible J; could require a tremendous amount
of computational effort for even moderately complex control problems. A search method is
needed that would allow us, when a particular J; fails the test, to discard not only that J;
but also a whole class of other J;s without having to test them. A reasonable candidate for
this “class” is all J;s with the same plus more active constraints than the one that failed the
test. If the nature of the relevance test is such that it allows this inference, then a tree-like
search procedure could implemented. This is described schematically in Table 3.2, for the
case of four one-sided constraints.



0000 0000

1000 1000

1100 110 0<-notrelevant
1110 111 0<-skip
1111 111 1<-skip
1011 1011

1001 1001

0100 0100

0110 0 11 0<-notrelevant
0111 011 1<-skip
0101 010 1<-skip
0010 0010

0011 0011

0001 0001

Table 1: Search over ¢; O:inactive, 1:active

Unfortunately, the test described in section 3.1 does not allow us to make the inference
shown in Table 3.2. The reason is the presence of (16) in the test, which assures that a “past”
exists such that the particular combination of active QP constraints is not only feasible but
also optimal. It is possible that, say, two specific constraints cannot be active at the optimal
solution of the QP, unless a third also becomes active. If however for a J;, (15) has no
solution over the constrained past us, Aus, and the y measurement values, then one can
indeed infer that all J;s with the same plus more active constraints are not relevant either.
As a result of this observation, we decided to subject every J; that is tested during the search
procedure, to the following three tests.

Test I: Check whether rank[AT] =#rows[AT]. If not, discard this J; and all with the same
plus more active constraints.

Test II: Check whether (15) has a solution over the variables (subject to the u, Au and y
constraints on these variables): u(k — N),...,u(k — 1), y(k). If not, discard this J; and
all with the same plus more active constraints.

Test III: Check whether the system of (15), (16) has a solution over the same variables as
Test II. If not, discard this J; only. ~

Tests II and III were discussed in the previous paragraph. Let us explain Test 1. Clearly,
before one can even consider Tests II or III, one has to make sure that (7) has indeed a
solution, or equivalently that the LHS matrix is invertible. Hence one would to add a rank
test on this matrix. However, it is sometimes possible to find a “past” such that the number
of active constraints in (5) (equal to the number of rows of AT), is larger than than the
available variables of the on-line QP (u(k), ...,u(k4 M —1)). This is something that requires
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certain exact values for the “past” that one would not expect to take place during the actual
implementation. Hence the rank test on the LHS of (7) is substituted with the stronger
requirement described by Test I.

The three tests are applied in the above sequence. Test I involves a rank computation,
but not always. When the number of rows of AT is larger than the that of the columns,
the J; under consideration fails Test I. Tests II and III involve solving Phase I of a standard
Linear Program, i.e., finding a feasible solution for an LP. When a J; fails Test I or Test II,
then one can skip other J;s as shown in Table 3.2. If it fails Test III, one can discard that
J;, but cannot skip other J;s.

4 TIllustration

In this section we shall study the application of the search procedure of section 3 on the
Shell Standard Control Problem (SSCP) (Prett and Garcia, 1988). Let us consider the top
2 x 2 part of the Heavy Oil Fractionator of the SSCP. This system has as outputs 1 and 2,
the Top End Point and the Side End Point correspondingly. The inputs are the Top Draw
and the Side Draw. The transfer function of this subsystem is

(4.0542.11¢1)e=272  (1.77+40.39¢;)e—282
Y| o 50s+1 60s+1 Uy (17)
Y2 - (5.3943.29¢) )e~18%  (5.7240.57¢x)e14s ug
50s+1 60s+1

where €;, €; represent the model uncertainty and they can take any value between —1 and
+1, 0 corresponding to the nominal model. A sampling time of T' = 6 min is selected which
results in lower and upper constraints of -0.3 and 0.3 for the changes in the inputs from one
sampling point to the next. Lower and upper constraints of -0.5 and 0.5 exist for all the
inputs and outputs.

In the objective function of (2) we initially select P = 6, M = 2, B = D = 0. The
minimization is carried out subject to the above described hard constraints. The Constraint
Window for the outputs includes future points 5-6 for the Top End Point and 3-4 for the
Side End Point. Beginning the windows at earlier times may result in infeasibilities because
of the longer time delays.

The on-line QP for this example has 12 two-sided constraints. The results of the appli-
cation of the search over 7 for this system are shown in Table 4. Note that the tree structure
shown in Table 3.2 is modified to allow for two-sided constraints (2: lower side active, 1: up-
per side active). This produces a smaller number of total J;s than if 24 one-sided constraints
were used, since 3!? < 224, Still, the total number is huge. The search procedure, however,
reduces that number to only 68 J;s that need to be examined. One should note though,
that this number could be 3-4 times as large, depending on how one defines the problem. In
this case, we limited ourselves to starting from steady-state situations, and in Tests II and
III, we looked for output disturbances that could result in the J; under consideration. The
bounds used for these disturbances, however, were quite large, equal to -1 and +1, which is
twice the size of the output constraints in the on-line optimization.

Let us now apply the theorems of section 2 on the J;s that were judged as relevant to the
stable operation of the controller. Note that for this example, if one changes all the 1s to 2s
and all the 2s to 1s in the J; descriptions, the feedback controller Cj;(2) remains the same,
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Total possible J;s 531,441

Enumerated J;js = 4,985
Jis that failed the 1st criterion = 2,300
J;s that failed the 2nd criterion = 585
Jis that failed the 3rd criterion = 2,032

Relevant Jjs 68

Table 2: Search results for the 2 x 2 example

and so there is no need to check symmetric cases. The first 12 entries in Table 3 describe
the status of the 12 constraints for the J;s under examination. The second to last column
lists the largest magnitude of the closed-loop poles for the corresponding Cj,(z), when the
plant is the same as the model. Hence for nominal stability of the corresponding controller,
we need that value to be inside the Unit Circle. This is not the cacse for quite a few of
these J;s. However, simulations for no model-plant mismatch (Zafiriou, 1989b), showed no
instability. The explanation is that the closed-loop nominal operator is not a contraction,
but it is stable nevertheless. This is something that is expected and which we have observed
before. One would expect however, the simulations to show some bad performance at regions
where the corresponding J;s take hold. This does not happen and the explanation lies in the
nature of the J;s that correspond to nominal closed-loop poles outside the Unit Circle. All
of these have at least one of the constraints on Awu;(k) and Aug(k) active at the optimum.
Since these values are actually implemented (see section 1), it is essentially impossible to
have such J;s occur again and again during the perfect model simulations, because of the
constraints on u (at -0.5 and +0.5; the Au constraints are at -0.3 and +0.3). Hence, the
second to last column in Table 3 should raise no concerns if the model was accurate. If
however, model-plant mismatch is present, the J;s that correspond to active Au constraints
might occur often enough to cause instability.

The last column in Table 3 gives the Structured Singular Value (Doyle, 1982) for each
Cj(z). Note that the fact that the uncertain parameters €; and ¢, are real-valued had
been taken into account. The value of p is equal to the inverse of the smallest value of
maz{|e1], |€2]} that is needed to have the Robust Stability condition violated for the corre-
sponding C,(z). By looking at these values, we see that the smallest needed € has magnitude
of approximately 1.2. Hence one would not expect any problems when the es are within the -1
and +1 bounds. If they can take values up to 1.2 though, the controller will become unstable.
This is exactly the behavior that was observed in the simulations of Zafiriou (1989b).

Table 4 repeats the information of Table 3 in the case where a penalty has been introduced



No. Auglk) duglk) duy(ket) auptke) uyik) upth) uyteVhualiet) yotked) yolked) v the5) yqtke6) max | PQj* 1
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(1) 0 0 0 0 0o 0 o 0 0 0 0 0 0.9068 0.8002
(2) 2 0 0 0 0o 0 0 0 0 0 0 0 1.0000 0.0000
(3) 2 1 0 0 o 0 0 0 0 0 0 0 1.0000 0.0000
(4) 2 1 1 0 P 0 0 0 0 0 1.0000 0.0000
(5) 2 1 1 2 0 0 o 0 0 0 0 0 1.0000 0.0000
(6) 2 1 1 0 o 0 0 1 0 0 0 0 1.0000 0.0000
(7) 2 1 0 2 o 0 0 0 0 0 0 0 1.0000 0.0000
(8) 2 1 0 0 0 o 2 0 0 0 0 0 1.0000 0.0000
(9) 2 1 0 0 o 0 2 1 0 0 0 0 1.0000 0.0000
(10) 2 1 0 0 0 0 o 1 0 0 0 0 1.0000 0.0000
(11) 2 1 0 0 0 0 0 1 0 0 0 1 1.0000 0.0000
(12) 2 2 0 0 6 0 o 0 0 0 0 0 1.0000 0.0000
(13) 2 2 1 0 0 0 o 0 0 0 0 0 1.0000 0.0000
(14) 2 2 1 1 0 0 o 0 0 0 0 0 1.0000 0.0000
(15) 2 2 0 1 0 0 0 0 0 0 0 0 1.0000 0.0000
(16) 2 0 1 0 0 0 0 0 0 0 0 0 1.0000 0.0413
an 2 0 1 1 0 o 0 0 0 0 0 0 1.0000 0.0087
(18) 2 0 1 1 o 0 0 0o 0 0 1 0 1.9027 0.0000
(19) 2 0 1 2 o 0 © 0 0 0 0 0 1.0000 0.0087
(20) 2 0 1 0 0 o0 o0 1 0 0 1 0 1.9027 0.0000
(21) 2 0 ¢ 1 0 0 © 0 0 0 0 0 1.0000 0.0000
(22) 2 0 0 1 o o0 2 0 0 0 0 0 1.0000 0.0087
(23) 2 0 0 1 0o o 2 1 0 0 0 0 1.0000 0.0000
(24) 2 0 0 1 0 o0 2 0 0 0 1 0 1.9027 0.0000
(25) 2 0 0 1 0o o0 o 1 0 0 0 0 1.0000 0.0000
(26) 2 0 0o 1 o 0 o0 0o © 0 1 0 1.9027 0.0000
(21 2 0 0o 2 0 o0 o 0 0o _ o0 0 0 1.0000 0.0000
(28) 2 0o 0 0 6o o0 2 o 0 0 0 0 1.0000 0.0413
(29) 2 0 0 0 o 0 2 1 0 0 0 0 1.0000 0.0418
(30) 2 0 0 o 0 o0 2 1 0 0 1 0 1.9027 0.0000
(31) 2 0 0 0 0 0 o0 1 0 0 0 0 1.0000 0.0476
(32) 2 0 0o 0 o o o0 10 0 1 0 1.9027 0.0000
(33) 2 0 o 0 0o o 0o 1 0 0 1 1 1.9027 0.0000
(38) 0 2 0o o0 o0 o0 o0 © 0 0 0 0 1.0000 0.0000
(35) 0 2 1 o 0 0 0 0 0 0 0 0 1.0000 0.0000
(36) 0 2 1 1 o 0 0 0 0 0 0 0 1.0000 0.0000
(377 0 2 1 0 o 0 1 0 0 0 0 0 1.0000 0.0000
(38) 0 2 1 0 o 0o 1 2 0 0 0 0 1.0000 0.0000
(39) 0 2 1 0 0o o0 o 2 0 0 0 0 1.0000 0.0000
(40) 0 2 2 0 o 0 o 0 0 0 0 0 1.0000 0.0000
(41) © 2 2 1 0o o0 0 0 0 0 0 0 1.0000 " 0.0000
(42) 0 2 2 0 o o o0 2 0 0 0 0 1.0000 0.0000
(43) 0 2 2 0 o o o0 2 0 0 2 0 1.0000 0.0000
(44) 0 2 2 0 o o o0 2 0 0 0o 2 1.0000 0.0000
(45) 0 2 0 1 o 0 o0 0 0 0 0 0 1.0000 0.0000
(46) 0 2 0 0 o o 1 0 0 0 0 0 1.0000 0.0000
47y 0 2 0 0 0o o 1 2 0 0 0 0 1.0000 0.0000
(48) 0 2 0 0 o o o 2 0 0 0 0 1.0000 0.0000
(49) 0 2 0 0 o o0 o 2 0 1 0 2 1.0000 0.0000
(50) 0O 2 0 0 o o0 o 2 0 0 2 0 1.0000 0.0000
(51) © 2 0 0 o o o 2 0 0 2 2 1.0000 0.0000
(52) O 2 0 0 o 0 o 2 0 0 0 2 1.0000 0.0000
(53) 0 0 2 o 0 0 0 0 0 0 0 0 0.9075 0.6786
(54) 0 0 2 1 o o0 o0 0 0 0 0 0 0.9067 0.7728
(55) 0 0 2 1 o o0 2 0o 0 0 0 0 0.9038 0.0087
(56) 0 0 2 1 o o0 2 1 0 0 0 0 0.0000 0.0000
(57) 0 0 2 1 o o0 o0 1 0 0 0 0 0.8863 0.0000
(58) 0 0 2 2 0o 0 © 0 0 0 0 0 0.9067 0.7728
(59) 0 0 2 0 o o0 2 0 0 0 0 0 0.9058 0.0413
(60) 0 0 2 0 0o o0 2 1 0 0 0 0 0.9046 0.0418
(61) © 0 2 0 6o o0 o 1 0 0 0 0 0.8996 0.3382
(62) 0 0 0o 2 o o0 0 o 0 0 0 0 0.9055 0.6260
(63) 0 0 0o 2 0o 0 1 0 0 0 0 0 0.9012 0.3891
(64) 0 0 0 2 0o 0 1 2 0 0 0 0 0.8868 0.0000
(65) 0 0 0 2 0 o0 0 2 0 0 0 0 0.8869 0.0000
(66) 0 0 0 o 0 0 2 0 0 0 0 0 0.9075 0.8570
(67) 0 0 0 0 0o o0 2 1 0 0 0 0 0.9071 0.7189
(68) O 0 0 0 o o0 0 2 0 0 0 0 0.9064 0.6918

H
H

Table 3: B=(



on the inputs in the on-line optimization (B = 0.2] in (2)). The values of p are reduced
and as result, es of magnitude 1.2 do not cause a violation of the robust stability conditions.
Note that the location of the nominal closed-loop poles is not significantly affected for the J;s
corresponding to active Au constraints. This however is not expected to cause any problems
because p is not large enough for the other J;s. Again, this is exactly the behavior previously
observed in simulations (Zafiriou, 1989b).
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(28) 2 0o 0 o 0o o0 2 0 o0 0 0 0 1.0000 0.0318
(29) 2 0 o o o0 0 2 1 0 0 0 0 1.0000. 0.0380
30) 2 0 o o o o0 2 1 0 0 1 0 1.9027 0.0000
(31) 2 -0 o o o o0 o0 1 0 0 0o 0 1.0000 0.0373
(32) 2 6o o o0 o0 0 0 1 o o "1 o0 1.9027 0.0000
(33. 2 0 0 6o o o o 1 o 0 1 1 1.9027 0.0000
(34) 0 2 o o0 o o0 o0 o0 O 0 0 0 1.0000 0.0000
(35) 0O 2 1 0 ©0 o0 o0 0 O 0 0 o0 1.0000 0.0000
(3) 0 2 1 1 0 0 0 0 O 0 0o o 1.0000 0.0000
(37) © 2 1 0 0 0 1 0o 0 0 0o 0 1.0000 0.0000
(38) 0 2 i 0 0 0 1 2 0 0 0 o0 1.0000 0.0000
(39) © 2 1 0 0 0 0 2 0 0o o0 "0 1.0000 0.0000
(40) © 2 2 o0 o0 o0 o ©° o© 0 0 o 1.0000 0.0000
(41) 0 2 2 1 0 o0 o0 o0 o 0 0 o 1.0000 0.0000
(42) 0 2 2 o 0 o0 o0 2 o0 o o0 o 1.0000 0.0000
(43) 0 2 2 0o o0 0 o 2 0 0 2 0 1.0000 0.0000
(44) O 2 2 o o o0 o0 2 0 0 0 2 1.0000 0.0000
(45) 0 2 .0 1 o0 o0 0 0 o© 0 0 0 1.0000 0.0000
(46) 0 2 0 o 0o o0 1 0 O 0 o 0 1.0000 0.0000
(47) 0 2 o o o0 .0 1 2 0 0 0 0 1.0000 0.0000
(48) 0 2 0 o o o0 o 2 0 0 0 0 1.0000 0.0000
(49) © 2 0 o o o0 o0 2 0 1 0o 2 1.0000° 0.0000
(50) © 2 o o o o o 2 0 0 2 0 1.0000 0.0000
(1) 0 2 o o0 o0 o o0 2 0 o 2 2 1.0000 0.0000
(52) © 2 o o0 o0 o0 0 2 0 0 0o 2 1.0000 0.0000
(53) 0 0 2 0 0 0 o0 0 O 0 0o o0 0.9055 0.5707
(54) 0 0 2 1 0 0 0 0 o 0 0 0 0.9054 0.5897
5 o0 ©0 2 1 0 0 2 o 0 0 o 0 0.9038 0.0085
(56) O 0o 2 1 o o 2 1 0 0 0 0 0.0000 0.0000
(579 0 0 2 1 0 o0 0 1 0 0 0o 0 0.8863 0.0000
(58) 0O 0 2 2 0 o0 0 0 0 0 o o0 0.9054 0.5897
(59) O 0 2 o o o0 2 0 0 0 0o 0 0.9051 0.0318
(60) O o 2 o0 o0 o0 2 1 0 0 0o 0 0.9046 0.0380
(61) 0 0o 2 o o o0 0 1 0 0 o 0 0.8969 0.2896
(62) 0 0 o 2 0o 0 o0 o0 0O 0 0o 0 0.9048 0.4355
(63) 0 0 o 2 0 o0 1 o 0 0 0 0 0.9006 0.8342
(64) O 0 o 2 0 0 1 2 0 0 o o0 0.8868 0.0000
(65) 0 0 o 2 0 0 0o 2 0 0 0o o0 0.8869 0.0000
(66) 0 0 o o o0 o 2 0 0 0 0 0 0.9058 0.5465
(67) 0 0 o o o0 o 2 1 0 0 0 0 0.9059 0.5473
(68) 0 0 o o o o o0 2 0 0 0o 0 0.9053 0.5333
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Table 4: B=0.2 I




