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This dissertation deals with the synthesis of the mechanical power transmis-
sion structure in tendon-driven manipulators. The force transmission character-
istics from the end-effector space to the actuator space has been investigated.
It is shown that tendon forces required to generate an output force at the end-
effector are functions of the transmission structure matrix and the manipulator
Jacobian matrix. The sufficient and necessary conditions for a transmission
structure to be admissible are summarized and an efficient algorithm to check

admissible structures is derived.

Based on the analysis of static force transmission, a general theory is devel-
oped for the synthesis of tendon-driven manipulators with isotropic transmission

characteristics. It is shown that an n-dof (clesree of freedom) manipulator can



possess these characteristics if it is made up of n+1 or 2n tendons and if its link
lengths and pulley sizes are designed according to two equations of constraint.
Design equations for synthesizing a manipulator to possess isotropic transmission

characteristics are derived.

To demonstrate the theory, two examples are used: (1) a two-dof planar
manipulator and (2) a three-dof spatial manipulator. The tendon forces in each
manipulator with different transmission structures are compared. It is shown
that manipulators with an isotropic transmission structure have more uniform

force distribution among their tendons.

To further understand the isotropic transmission characteristics, the proper-
ties of a manipulator with an isotropic transmission structure are then discussed
from many different perspectives. The discussion includes the tension control al-
gorithm, maximum tensions, kinematic performance, antagonistic forces among

tendons, and survivability of a transmission structure with 2n tendons.

Finally, a new design methodology is developed to determine tendon routings
and pulley sizes of a special three-dof tendon-driven manipulator. This design
methodology ensures that each tendon will subject equal maximum tension when
an external force is applied to the end-effector in all possible directions. The de-
sign is further enhanced when the criteria of isotropic transmission are imposed.
A design example is presented to demonstrate the features and to compare with

the Salisbury finger.
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Chapter 1

Introduction

1.1 Background

Today’s industrial robots mostly have a motor mounted on one link to drive its
adjacent link via a gear reduction unit. This means that the motor in the prox-
imal joint must be powerful enough to lift all the outer motors. An individually
joint driven manipulator thus tends to be bulky and heavy. As flexible automa-
tion increases in industry, so is the need for more precise, lightweight, and com-
pact manipulators. By introducing power transmission mechanisms, motors can
be placed in a location away from the joints. Therefore, light weight and compact
manipulators can be produced. With the introduction of a power transmission
mechanism to a system, the possibility of bringing in friction, noise, vibration,
and wear increases. Therefore, the importance of the proper selection and design

of a transmission mechanism for a system can never be over-emphasized.



Among the several means of power transmission, tendon (belt) has advan-
tages of being quiet and clean, not needing lubrication, being able to absorb
shock, easy installation and lower maintenance costs. Two major features of
using tendons as the power transmission elements in manipulators are : (1) Ac-
tuators can be installed on or somewhere close to the base to reduce the size
and inertia of a manipulating system. (2) A properly pretensioned tendon has
no backlash, and therefore improves the precision of a manipulator. These mer-
its have made tendons better suited than other transmission systems in many
power-transmission applications; especially, in a dexterous hand design where

the requirements of small volume and light weight are important.

Another reason to choose tendon power transmission in robots, especially for
dexterous hands, is that it is analogous to tendons in human hands. The human
tendon-sheath system has nearly the lowest friction known to man. To date,
however, the design of tendon-driven manipulators still suffers from the lack
of comprehensive knowledge necessary to take advantage of tendon technology
(Jacobsen, et al., 1984; Jacobsen, et al., 1986). The understanding of tendon

technology is essential to improving robot’s capability.

1.2 Overview of Tendon-Driven Manipulators

Several descriptions of tendon-driven manipulators can be found in the literature.
Okada (1977) used endless type tendons (belts) in the transmission system of a
three fingered hand. Though only n actuators are needed to actuate an n-dof

manipulator, pretension is required to prevent the belts from slacking. For high



speed operations, pretension causes excessive friction and, therefore, degrades the
efficiency of the system. Rovetta (1977) and Sugano and Kato (1987) developed
similar transmission devices using springs for pretensioning the tendons. The
three-fingered UB hand II (Melchiorri and Vassura, 1992) and the five-fingered
Anthrobot-2 (Ali, et al., 1993) also adopted the n-joint-n-actuator actuation

scheme.

To avoid high pretension, Jacobsen, et al. (1984) used two tendons (two
actuators), antagonistically pulled against each other, to drive each joint of the
Utah/MIT dexterous hand. Figure 1.1 shows its finger structure and tendon
routings. The device inevitably increases the number of tendons, actuators, and
the complexity of the controller. On the other hand, Morecki, et al. (1980)
employed seven tendons to actuate a six-dof manipulator. They showed that
n + 1 is the minimum number of tendons required to achieve full control of an
n-dof manipulator. Salisbury designed a three-fingered Salisbury hand (1990)
(formerly called the Stanford/JPL hand) in which each finger has three degrees
of freedom, and is actuated by four tendons (see Fig. 1.2). Both the Morecki and
Salisbury’s designs require no pretension and, therefore, result in lower tendon
forces. The number of actuators needed outnumber that used in belt driven

devices by only one.

1.3 Motivation and Preview

Most of the previous studies on tendon-driven manipulators have focused on the

mechanics of manipulation and control of specific designs (Salisbury and Roth,






1983; Jacobsen, et al., 1989). The construction of actuation systems seems to
rely on the designer’s intuition. Those ad hoc approaches often fail to achieve

an optimal implementation of tendons for power transmission.

In order to better design tendon-driven manipulators, Lee and Tsai (1991a)
developed a methodology for the synthesis of kinematic structures with pseudo-
triangular structure matrices. However, they only focused on those types of
structures in which pulleys mounted on one common joint axis are all of the

same size.

This study aims at improving this limitation by allowing the pulleys to as-
sume different sizes, and developing a theory for synthesizing tendon-driven ma-

nipulators with isotropic transmission characteristics.

In Chapter 2 we look at the fundamental kinematic and static force equa-
tions. The force transmission characteristics, from the end-effector space to the
actuator space, is investigated. It is shown that tendon forces required to gener-
ate an output force at the end-effector are functions of the transmission structure
matrix, and the manipulator Jacobian matrix. The sufficient and necessary con-
ditions for a transmission structure to be admissible are summarized and an

efficient algorithm to check for admissible structures is derived.

In Chapter 3 we explore the concept of isotropic transmission structures and
present a methodology for the kinematic synthesis of tendon-driven manipulators
with isotropic transmission characteristics. Design equations for synthesizing a
manipulator that possesses isotropic transmission characteristics are derived.

Based on the analysis of static force transmission from the actuator space to



the end-effector space, a general theory is developed for the synthesis of tendon-
driven manipulators with isotropic transmission characteristics. It is shown that
an n-dof (degree of freedom) manipulator can possess these characteristics if it
is made-up of n+1 or 2n tendons and if its link lengths and pulley sizes are

designed according to two equations of constraint.

In Chapter 4 we use the criteria developed in Chapter 3 to derive the isotropic
transmission structure with n+1 and 2n tendons. Two design examples: one
two-dof planar manipulator and one three-dof spatial manipulator are presented
to demonstrate the characteristics. Some fundamental design constraints of
isotropic transmission structures with n+1 and 2n tendons are discussed. It
is shown that manipulators which possess isotropic transmission characteristics

do have more uniform force distribution among their tendons.

In Chapter 5 we discuss the attributes of isotropic transmission structures and
compare the similarity and difference between isotropic transmission structures
with n+1 tendons and 2n tendons from many different perspectives, including
the tension control algorithm, maximum tensions, kinematic performance, an-
tagonistic forces among tendons, and survivability of transmission structures

with 2n tendons.

In Chapter 6 we develop a design methodology to determine the tendon rout-
ings and pulley sizes of a particular three-dof tendon-driven manipulator. This
design methodology ensures that all tendons subject to equal maximum tensions
in its entire workspace when an external force is applied at the end-effector in

all possible orientations. The design is further enhanced when the criteria of



isotropic transmission are imposed. An example is presented to demonstrate the

features and to compare with the finger of the Salisbury hand.

Finally, in Chapter 7 we review the study and summarize the findings, and

give suggestions for further research.



Chapter 2

Preliminaries

2.1 Introduction

In the process of designing or synthesizing a mechanism, one inevitable process
is the system analysis. The analysis of a representative model provides ade-
quate understanding of the functions and the responses of a physical system in
operation. Nonetheless, even the simplest physical component in a mechanism
sometimes can be very complex to analyze. It is necessary for a designer to first
establish a simple and yet workable model so that the fundamental characteris-

tics of a system can be examined.

In this chapter, the general assumptions for a tendon-driven manipulator in
this work are listed. Then, by studying kinematic equations of these models, the
relationships among system states are determined. Such state variables include

tendon displacements, joint angular displacements, and end-effector position (or



orientation). Meanwhile, by assuming that an external force is applied at the
end-effector, static equations of the system are examined. By balancing all forces,
the relationships among the external force, joint torques, and tendon forces are

developed.

Through the discussion of the fundamental kinematic and static equations,
the criteria for the controllability of tendon-driven manipulators are then inves-
tigated. A methodology for determining an admissible transmission structure
for a tendon-driven manipulator is derived. And finally, the basic equations for

transmission structures with n+1 tendons will be addressed.

2.2 Planar Schematic Representation

First, we introduce a structural representation of a tendon-driven manipulator:
the planar schematic representation. After assigning a positive direction of ro-
tation to each joint in this representation, each joint axis is twisted so that all
joint axes are parallel to each other and are pointed out of the paper. In this
way, a tendon-driven manipulator can be represented in a planar format. With-
out losing the fundamental relationships between tendons and pulleys in this
presentation, the routing of tendons can be clearly shown. Figure 2.1 shows the
planar schematic of a general n-dof tendon-driven manipulator with m tendons
(actuators). For the convenience of matrix operations, we have numbered the

links and joints from 1 to n starting from the distal end.



Ist joint
2nd joint jez”‘z
~
n-th joint .'(v s ;gn,q;n
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///
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Figure 2.1: Planar schematic of an n-dof tendon-driven manipulator; whenever

a tendon touches a pulley, it implies the tendon is routed around that pulley

several times
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2.3 General Assumptions

Before proceeding with the analysis of the mechanism, a tendon-driven manip-

ulator in this study satisfies the following assumptions:

1. Tendons are always under tension so that the contact between tendons and
pulleys is maintained, and the tension required to maintain such contact

is neglected.
2. The elongation in a tendon due to tension is negligible.
3. Only the open-chain manipulator with revolute joints is considered.

4. All links are assumed to be rigid and each joint in the open-loop chain

contributes to one degree of freedom.

5. The number of actuators is always larger than the degrees of freedom of a

manipulator, i.e., no under-actuated mechanisms are allowed.

2.4 Fundamental Kinematic and Static Equa-
tions

In order to deal with the complexity of a tendon-driven manipulator, the descrip-

tion of the mechanism is divided into three different segments: (1) actuators (or

tendons), (2) joints, and (3) the end-effector. Each segment is considered as a

geometric space where its associated states are described. In actuator space,

11



the tendon input displacements and tendon forces are described. In joint space,
the joint torques and joint angular displacements are traced, and in end-effector
space, the end-effector position (or orientation) and an external force applied at

the end-effector are of concern.

Hence, the study of kinematic and static equations of a tendon-driven manip-
ulator is accomplished in three steps: first, the relationship between joint space
and actuator space, i.e., the displacement and force functions between actuators
and joints; secondly, the association between end-effector space and joint space
which is characterized by the Jacobian matrix; and finally, the overall trans-
formation between actuator space and end-effector space which is obtained by

combining the results from the study of the first two steps.

2.4.1 Joint Space and Actuator Space

From Fig. 2.1, the relationship between tendon/actuator displacements and joint

angles for a tendon-driven manipulator can be expressed as (Lee and Tsai, 1991b)

S=A8 (2.1)
where S = [S51,52,-++,Sm]? denotes an m x 1 linear displacement vector for
the m tendons, § = [01,0,,--,0,]7 denotes an n x 1 joint angular displacement

vector, and A = [a;;] is an m X n matrix. Note that the links and joints are
numbered sequentially from the distal end of the manipulator as shown in Fig. 2.1
and has been done to make the matrix operations in this work convenient. The
elements a;; of the matrix A are functions of tendon routings and pulley sizes.

The absolute value of a;; is equal to the radius of the pulley mounted on the jth

12



joint and routed by the ith tendon. And the sign of a;; is positive if a positive
displacement of tendon 7 produces a positive rotation of the pulley mounted on
joint j, otherwise it is negative. The value of a;; is equal to zero if tendon ¢ is not
routed about joint j. Figure 2.2 shows the definition of a;; where the positive

axis of rotation points out of the paper.
to joint j-1 to joint j-1

A\
=~ i-th tendon 7

GJC j-th joint ﬂ) ;9]
S; S
to joint j+1 to joint j+1

(positive a;;) (negative a;;)

Figure 2.2: Sign convention for a;;

Equation (2.1) is an over-determined problem for the @ since m > n+1. Thus,
only limit sets of tendon displacement vectors S are permissible, which make the
implementation of direct control of tendon displacements impractical. Moreover,
all tendons should be kept under tension while in operation. Therefore, it is

necessary to implement a tension control system for the manipulator.

From eq. (2.1) and by using the principle of virtual work, the relationship

between tendon forces and joint torques can be expressed as
r=AT¢ (2.2)

where T = 11, Ty, -+, 7»]T denotes an n x1 joint torque vector, £ = [¢1,&2, -+, Em)T

13



denotes an m x 1 tendon force vector, and A7, the transpose of A, is called the
structure matrix. Each column of the matrix AT corresponds to one power
“transmission line.” When a unit actuator force is applied at the end of a ten-
don (a transmission line), the torque generated at each joint assumes the value
of the corresponding element of the transmission line. Figure 2.3 shows one

transmission line with its force relationship.

Q1m-1)

M

Figure 2.3: A transmission line of a tendon-driven manipulator

Equation (2.2) transforms tendon forces into joint torques. Given a set of
tendon forces, the resultant joint torques are uniquely determined. Hence, to
control all joint torques independently, AT should be a full rank matrix. How-
ever, eq. (2.2) represents an under-determined linear system for the tendon forces.

The inverse transformation of eq. (2.2) can thus be written as

¢=AYTr +H) (2.3)

where A*7 is the pseudo-inverse of AT (Ben-Israel and Greville, 1974; Strang,
1988), H is an m X (m — n) null space matrix with its column vectors spanning

the null space of AT, and ) is an arbitrary (m — n) x 1 vector. The first term

14




in the right-hand side of eq. (2.3) is known as the particular solution and the
second term is the homogeneous solution. The homogeneous solution or the null

space matrix satisfies

ATH=0 (2.4)

If the positive value of §; (i = 1,---,m) represents tension and the negative
value compression, then all the elements of £ in eq. (2.3) should remain positive
at all times. This uni-directional feature constrains the synthesis of transmission
structures. In this regard, it appears to be sufficient that the column space of
H should contain at least one m-dimensional vector with all positive elements.
On the other hand, if there exists no such a positive vector in the column space
of H, then the particular solution space will contain vectors with all negative
components. This is because the particular solution space is complementary to
the homogenous solution space. Some tendon forces hence can not be adjusted
into positive tensions. Therefore, the existence of such a positive vector is also

a necessary condition for the structure matrix AZ.

2.4.2 End-Effector Space and Joint Space

In many real-world tasks, it is necessary for a manipulator to touch parts, tools
or surfaces. Such situations usually imply an external force acting at the end-
effector. The ability of a manipulator to respond to such an external force is
thus very important. Therefore, the kinematic and static relationships between

end-effector space and joint space of a manipulator are reviewed in this section.
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The Jacobian matrix of a manipulator maps the joint-rate vector 0 to the

generalized velocity vector g of the end-effector (Fu, et al., 1987), i.e.,
i=J4 (2.5)

where J is an n x n Jacobian matrix for a non-redundant degree-of-freedom

manipulator.

It is well known that by neglecting the dynamic effect, the joint torques are
related to an output force at the end-effector by the following equation (Salisbury
and Craig, 1982):

r=J7f (2.6)

where f is an n X1 output force vector at the end-effector. Generally speaking, as
the configuration of a manipulator changes, so does the Jacobian matrix. Thus,
the kinestatic performance of a manipulator varies as its end-effector assumes a

new position.

Most researchers (Salisbury and Craig, 1982; Asada and Cro Granito, 1985;
Gosselin and Angeles, 1988) have studied only the Jacobian matrix, which maps
the joint space to the end-effector space; yet the transmission structure matrix,
which maps the joint space to the actuator space, have not been considered. It is
clear that their results are valid only for direct-drive manipulators. To design a
tendon-driven manipulator, the overall transformation from the actuator space

to the end-effector space should be examined.
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2.4.3 End-effector Space and Actuator Space

Substituting eq. (2.6) into (2.3), yields
E=AYTITf+HA (2.7

The particular solution in eq. (2.7) is the minimum norm solution, which might
contain infeasible negative forces. However, the homogeneous solution can be
controlled, by adjusting A, to compensate for these negative forces so that tendon
tensions are always positive. Both particular solution space (the column space of
the matrix product A*7JT) and homogeneous solution space (the column space
of the matrix H) have significant effects on tendon forces. We may conclude
that the configuration of the transmission structure (i.e. the matrix A) is as

important as that of the linkage structure (i.e. the matrix J).

2.5 Admissible Transmission Structures

Based on the discussions in section 2.4.1, it is clear that a structure matrix with
arbitrary pulley sizes and tendon routings might not be able to control each
joint of a manipulator independently. The column vectors of H in eq. (2.3) form
an m — n dimensional null space for the matrix A7. An inspection of eq. (2.3)
reveals that in order to maintain positive tensions in all tendons, there should
exist at least one vector in the null space of AT which contains all positive
elements. We summarize the sufficient and necessary conditions for a feasible

n X m transmission structure matrix as follows:
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C1. The rank of AT must be equal to n (Morecki, et al., 1980; Lee and Tsai,
1991a).

C2. There exists at least one vector with all positive elements in the null space

of AT.

C3. Non-zero elements in each column of AT must be consecutive since we

assume that tendons are routed from joint to joint in a continuous manner.

Condition C1 ensures the existence of a non-trivial solution of { in eq. (2.3) for
any given 1, while condition C2 makes it possible to adjust tendon forces in the
positive direction. Together, they ensure that all tendons can maintain positive
tensions. Condition C3 results from the physical limitation of tendon routing in

an articulated mechanism.

Conditions C1 and C2 can be interpreted in terms of the elements of the
structure matrix AT. According to Cl, we can always rearrange the matrix A7
so that the determinant of the submatrix formed by the first n columns of matrix

AT is not zero. Let this determinant be d,,, and define

col. 1
@11 G221 -+ G511t Gpl
1=1,---,n
d1j = a12 a22 . s a]z IS a’nZ ) (2.8)
] = (n + 1)a ,m
A1y Q2n ** Qjp °*° Qpq
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where the i-th column of the square matrix formed by the first n columns of the

matrix AT is replaced by the j-th column of the matrix AT. By defining

digs ) — ce
hij = __'((fﬂ‘l; | (2.9)

from eq. (2.4), the null space matrix H of AT can be obtained by using Cramer’s

rule as given below:

Phu hiz -+ Rim-n)

ha1 haz -+ haom-n)

hur hmz 0 Bgmen)

H=|1 0 . 0 (2.10)
0 1
0
0
i 0 0o . 1 ]

Since each column vector of the matrix H in eq. (2.10) is linearly independent, it
forms a basis for the null space of the matrix A7. Equation (2.10) provides the
symbolic form of the null space matrix H. For numerical applications, the same
form in eq. (2.10) can be obtained by first using the Gauss-Jordan reduction to
derive the reduced row echelon form of the matrix A7 and then applying the

reduced row echelon form to solve ATH = 0 for H.

Since any vector in the null space of AT is the linear combination of the
column vectors of H in eq. (2.10), condition C2 can then be interpreted as

follows: There exists a vector A such that H) contains all positive elements, i.e.,
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from eq. (2.10),

H A>0
(2.11)
and A>0
where )
b hiz o higmen
= hat haa <+ hagm-n) (2.12)

| hnl hn2 T hn(m—n) ]
and A = ()‘l, AZ’ Y /\m—-n)T-

It can be seen when one column of the matrix H' contains all positive ele-
ments, then eqs. (2.11) and (2.12) can be satisfied and the corresponding trans-
mission structure matrix is an admissible structure matrix. However, this is a

sufficient but not a necessary condition.

To determine whether a structure matrix is admissible or not, we examine
eq. (2.11). From a geometric point of view, each scalar inequality equation in
eq. (2.11) represents a half space in the (m — n)-dimensional space. Since all
of the half spaces intersect at the origin of the (m — n)-dimensional space, if a
solution A for eq. (2.11) exists, the solution domain is unbounded. Our objective
is to determine whether a solution A exists in eq. (2.11) for a given H'. Therefore,

€q. (2.11) can be changed into

(2.13)

and A>e,
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where ¢; is an n x 1 vector with all positive elements and ¢, is an (m —n) x 1
vector with all positive elements. For ease of computation, in what follows, we
let ¢, = [1,1,---,1] and e, = [1,1,---,1]. By introducing the new variables
ri=X—1(i=1,--,m—n), eq. (2.13) can be rewritten as

H' z 2> (¢, — H'ey)

(2.14)

and z2>0
Equation (2.14) represents the normal constraints of a linear programming prob-
lem. The existence of a “basic feasible solution” for eq. (2.14) hence can be de-
termined efficiently through phase I of the simplex method (Press, et al., 1988).
Thus, if and only if there exist feasible solutions z for the constraints in eq. (2.14),

the corresponding structure matrix then satisfies condition C2.

2.6 Kinestatic Equations for m = n+1

As pointed out by early researchers (Morecki, et al., 1980; Salisbury and Craig,
1982), a minimum of n + 1 tendons is necessary for the control of an n-dof
manipulator. In this section, we shall focus only on those transmission structures
that use the minimum number of tendons. For an n-dof system with (n + 1)

tendons, eq. (2.3) can be rewritten as:

E=ATr 4+ )b (2.15)

where } is a one-dimensional null vector of A7, and X is an arbitrary constant.

Substituting eq. (2.6) into (2.15), we obtain the force relationship between
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the actuator space and the end-effector space as
E=AYTITf + AR (2.16)

As we can see from eq. (2.16), to output a force f, the required tendon force
vector £ consists of two components: a homogeneous solution Ak and a particular
solution A+tTJT f. Since tendons can support only tensional forces, as mentioned

before, all tendon forces must be positive.

Based on eq. (2.15), the condition C2 in Section 2.5 for an admissible (n +

1) X n transmission structure matrix can be simplified as

C2. Each element in the null vector of AT must be of the same sign and not

equal to zero.

This simplified condition C2 can be interpreted as requiring all elements of

h to be positive. Using Cramer’s rule, the null vector can be written as
1 n+1 T
h= [_dl,d%'”)(_l) di,"',(—l) d"+1] (217)

where d; is the determinant of the matrix formed by deleting the ¢th column
of AT. Note that eq. (2.17) also can be obtained by using the Gauss-Jordan
reduction as discussed in Section 2.5. Since d; # 0, for ¢ = 1,---,n + 1, implies
that matrix A is of rank n, conditions C1 and C2 can be combined into a single
condition as

(=1)'d; >0, for i=1,.,n+1 (2.18)

Using eq. (2.18) and condition C3 in Section 2.5 as the constraints, all admissible

n+1 tendon routings can be enumerated.
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Based on the assumption that all pulleys mounted on the same joint axis are
of the same size, Lee and Tsai (1991a) enumerated all and limited numbered
admissible tendon routings. In many applications, pulley sizes can be different,
thus their result is a subset of what can be enumerated by using condition C3
and eq. (2.18). From eq. (2.18) and C3, we can see that, even with the minimum

number of tendons, the selection of transmission structures is unlimited.

2.7 Summary

The kinestatic relationship between joint space and actuator space of a tendon-
driven manipulator depends on its transmission structure matrix AT. Due to the
feature of the uni-directional tension, the transformation between both spaces
is not a one-to-one mapping. Thus, there exist special constraints for the syn-
thesis of the power transmission structure. Through the study of the kinestatic
equations between the joint space and the actuator space, these constraints are
outlined in three conditions in terms of the transmission structure matrix AT, In
return, by examining a transmission structure matrix A7, a feasible transmission

structure can be determined.

The kinestatic relationship between end-effector space and joint space de-
pends on its Jacobian matrix J, which varies as the configuration of the manipu-
lator changes. When the end-effector moves to a singular point, the manipulator
loses one or more degrees of freedom. Both transmission structure matrix AT
and Jacobian matrix J hence play an important role in the kinestatic perfor-

mance of a manipulator.
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As mentioned in the previous section, there are unlimited selection of ad-
missible transmission structures, it is necessary to develop methodologies for
choosing a physical dimension and tendon routings from possible structures to

achieve optimum performance. This is the subject of study of the next chapters.
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Chapter 3

Manipulators with Isotropic

Transmission Characteristics

3.1 Introduction

Tendons feature the capability of supporting tension but not compression. Thus
tendon-driven manipulators inherit and exhibit this unique nature in its trans-
mission structure. Due to this distinct characteristic, as pointed out by early
researchers (Morecki, et al., 1980; Salisbury, 1982; Salisbury and Craig, 1982), a
minimum of n+1 tendons is necessary to gain a full control of an n-dof (degree-
of-freedom) manipulator. A literature survey reveals that tendon-driven manip-
ulators are primarily made up of two types of transmission structures. The first
type employs n+1 tendons to drive an n-dof manipulator. Examples include the

six-dof, seven-tendon manipulator designed by Morecki, et al. (1980) and the
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three-fingered Stanford/JPL hand by Salisbury (1982). The second type uses
2n tendons. One such example is the Utah/MIT dexterous hand designed by
Jacobsen, et al. (1984). Although other types of construction, such as using n+2
tendons to control an n-dof manipulator, are possible, no practical designs have

been found in the literature.

Most of the previous studies on tendon-driven manipulators have focused on
the mechanics of manipulation and control of specific designs. The construction
of actuation systems seems to rely on the designer’s intuition. Those ad hoc
approaches often fail to achieve an optimal implementation of tendons for power
transmission. This chapter aims at improving this limitation by developing a
theory for arriving at a local optimal design of power transmission in a tendon-

driven manipulator.

Salisbury (1982) first applied linear force error analysis to the Stanford/JPL
hand and defined those end-effector points where the Jacobian matrix has a
unity condition number as the isotropic points. Asada and Cro Granito (1985)
used the generalized velocity ratios and the mobility ellipsoid as a measure of
kinematic performance. When the maximal generalized velocity ratio is equal to
the minimal ratio, the manipulator is referred to as having an isotropic mobility
at the given posture. Yoshikawa (1985) developed the manipulability ellipsoid
and defined an index, the reciprocal of the condition number of the Jacobian
matrix, for the directional uniformity of the ellipsoid. Klein and Blaho (1987)
used the condition number of the Jacobian matrix as one of the dexterity mea-

sures to determine optimal postures for redundant manipulator design. Gosselin

and Angeles (1988) defined an index based on the condition number of the Ja-
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cobian matrix for kinematic optimization of manipulators. Angeles (1992) then
extended the isotropic conditions to the kinematic design of redundant manipu-

lators.

The aforementioned condition number is defined as the ratio of the maxi-
mal singular value to the minimal singular value of the Jacobian matrix which
only relates the static force (or velocity) transformation between joint space and
end-effector space. This definition does not consider the effect of mechanical
power transmission mechanism. Lee and Tsai (1991a) first considered the trans-
formation between actuator space and joint space for an n-dof manipulator with
n+1 tendons. Lee (1991) defined the condition number of a tendon transmis-
sion structure as the ratio of the maximal singular value to the minimal singular
value of the structure matrix. The transformation between joint space and actu-
ator/tendon space is said to be isotropic, if the condition number of the structure
matrix is equal to one. When the condition number of the Jacobian matrix and
that of the structure matrix are both equal to one, an isotropic transformation

is obtained for the overall system.

The above two approaches can only achieve partial or limited results. To
make the theory complete, Chen and Tsai (1993) then considered the overall
transformation from actuator space to end-effector space and derived isotropic
transmission conditions for geared robotic mechanisms. They defined the isotropic
transformation as one that has the unity condition number for the overall trans-
formation matrix. It does not require that both the condition numbers of the
Jacobian matrix and the structure matrix to be equal to one. Therefore, it gives

more flexibility for the synthesis of manipulators. However, their results are not
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directly applicable to tendon-driven manipulators. In this chapter, the synthe-
sis of a general n-dof tendon-driven manipulator with m tendons based on the

similar concept of isotropic transmission, where m > n+1, will be discussed.

3.2 Isotropic Condition

The condition number indicates the error sensitivity in a linear transformation
system (Strang, 1988). The Jacobian matrix of a manipulator maps the joint-

rate vector 8 to the generalized velocity vector & of the end-effector, i.e.
i=J0 (3.1)

When the generalized velocity vector z contains inhomogeneous quantities, for
instance linear velocity and angular velocity, the condition number of the Jaco-

bian matrix becomes meaningless. Thus the norm of & is defined as
|2]| = $™We& = ' ITWI6 (3.2)

where W is a positive definite weighting matrix and is defined so that the norm

in eq. (3.2) is frame invariant. By using Cholesky factorization, one can write
W =LTL (3.3)

Hence, when the generalized velocity vector contains inhomogeneous quantities,
the condition number of the matrix product LJ will be used as a measure of
the error sensitivity for the system described by eq. (3.1). When the condition

number is equal to one, one can show that

LJJTLT = 4’1, (3.4)
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where p is an arbitrary non-zero constant and I, is an identity matrix of dimen-
sion n. From eq. (2.6), a Jacobian matrix satisfying eq. (3.4) maps a unit hyper-
sphere in the n-dimensional end-effector force space into a scaled n-dimensional

hypersphere in the joint torque space.

For a tendon-driven manipulator, the feasible domain of actuator forces con-
tains only the positive hyperquadrant of an m-dimensional space. In eq. (2.7),
the particular solution is obtained as a linear transformation of the output force
f. Thus a unit hypersphere in the n-dimensional end-effector force space maps
into an n-dimensional ellipsoid in the m-dimensional actuator force space. The
space occupied by this n-dimensional ellipsoid is called the n-dimensional par-
ticular solution subspace. The superposition of the particular solution with the
homogeneous solution then translates the n-dimensional ellipsoid into the pos-
itive hyperquadrant of the m-dimensional actuator force space by adjusting A.
Therefore, an isotropic transmission structure can be characterized by the fol-

lowing two conditions.

3.2.1 Unity Condition Number

The condition number of A*TJT should be equal to one so that a unit hyper-
sphere in the end-effector force space can be mapped into a scaled hypersphere

in the particular solution space. This leads to

LIATAYTITLT = %1, (3.5)
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Using A" = (ATA)71AT and (ATA)™T = (ATA)™!, eq. (3.5) can be simplified
as
LI(ATA)TPATA(ATA)TUITLT = 41, (3.6)
or
LI(ATA)TITLT = 41, (3.7)
Pre-multiplying (LJ)7 to both sides of eq. (3.7), we obtain
JTWI(ATA) V(LI = 2(LI)T (3.8)
Since eq. (3.8) is valid for any matrix (LJ)?, we conclude that

JTWIATA)™ = 41, (3.9)

Post-multiplying eq. (3.9) by (ATA), we obtain
1

ATA = -
I

(ITWI) (3.10)

Equation (3.10) is the necessary and sufficient condition for the condition
number of A*TJT to be equal to one. Since A is a matrix of rank n, eq. (3.10)
can only be satisfied at those positions where the Jacobian matrix J is of rank n.
Since the Jacobian matrix is position dependent, the condition number is also
position dependent. Therefore, the unity condition number can be achieved only

at a specified manipulator posture.

3.2.2 Isotropic Particular Solution Subspace

Equation (3.10) involves only the mapping from the end-effector space to the

particular solution subspace. The transformation from the particular solution
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subspace to the positive hyperquadrant of the actuator space depends on the
selection of A and the orthogonal projection (Coxeter, 1973) of the positive hy-
perquadrant of the m-dimensional actuator space onto the n-dimensional partic-
ular solution subspace. The value of A is chosen such that the resulting tendon
forces are all positive. The projection of the positive hyperquadrant of the ac-
tuator space onto the particular solution subspace depends on the arrangement
of tendons and pulley sizes. Therefore, it is equally important to consider the
transformation of the coordinate axes of the actuator space to the particular

solution subspace.

Since each positive Cartesian axis of the m-dimensional actuator space rep-
resents a tendon force, the particular solution subspace needs to be in a spe-
cial subspace so that the orthogonal projection of the positive hyperquadrant
of the actuator space onto the particular subspace remains centrally symmet-
rical. Here the phrase central symmetry means that when both origins of the
n-dimensional particular solution subspace and the m-dimensional actuator force
space coincide, orthogonally projected vectors of the positive Cartesian axes of
the m-dimensional actuator space are evenly-distributed in the n-dimensional
particular solution subspace. In such a way, the particular solution space is di-
vided into several equal portions. A particular solution in each portion is always
the resultant of an equal number of actuators. We called this special subspace
“an isotropic subspace.” Note that the magnitudes of the projected vectors are
not necessarily equal to one another even though they are projected from the
Cartesian axes of the same length. Figure 3.1 shows all 3-D positive Cartesian
axes being projected orthogonally onto a 2-D particular solution subspace where

all the projected vectors are 120 degrees apart.
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3-D actuator force space 2-D particular solution subspace

Figure 3.1: The orthogonal projection of a 3-D positive actuator quadrant onto

a 2-D particular solution subspace

It is not always possible to distribute all m orthogonally projected vectors
symmetrically in an n-dimensional subspace. In fact, by connecting the apexes
of all m symmetrically projected unit vectors, an n-dimensional regular convex
polytope is formed. In the 2-D space, a regular m-polygon is formed for any m
greater than two. In the 3-D space, there exists only five regular polyhedra (i.e.
five Platonic solids). They are the tetrahedron, octahedron, cube, icosahedron,
and dodecahedron. Each of them has 4, 6, 8, 12, and 20 apexes, respectively.
Figure (3.2) shows three of the five solids. In the n-D space, a possible regular
polytope contains n+1, or 2n, or 27, - - -, apexes (Coxeter, 1973). Since each apex
represents an actuator/tendon, we conclude that kinematic isotropy 1s possible
only for certain numbers of tendons. For 2-dof manipulators, any number of
tendons (m > 2) can be routed to possess isotropic transmission characteristics.

While for 3-dof manipulators, the feasible number of tendons can only be 4, 6, 8,
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Tetrahedron

Octahedron

Cube (Hexahedron)

Figure 3.2: the tetrahedron, octahedron and cube of five Platonic solids
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12, or 20. For n-dof manipulators (n > 2), the feasible numbers of tendons are
n+1,2n, 2", .- etc. In general, when m is larger than 2n, tendon routings will
be unnecessarily complex and inefficient. Hence, only manipulators with »n + 1

and 2n tendons are considered to be practical.

In the n-dimensional space, a regular simplex polytope has n + 1 apexes.
Each edge connects two apexes. The angle subtended by an edge at the center
of the polytope is Cos™!(—1/n). Let the coordinates of an apex be represented
by a column vector. Also let the origin of the Cartesian frame be located at the
center of the regular simplex, and the distance from the origin to each apex be
one unit length. Then we can locate the first apex at (0,---,0,—1)7, and the
second at (0,---,0,a2,al), where al and a2 can be computed from the angle
relationship with the first apex and the requirement of one unit length of the
second vector. Similarly, the third apex can be located at (0, ...,0,03,52,b1)T,
where b3, b2, and bl can be calculated from its angle relationship with the first
and the second apexes. Following the same procedure, the coordinates of all
apexes can be obtained and expressed in an n X (n+ 1) pseudo-triangular matrix
form:

1 -1 0 e e 0
1/v/3 1/4/3 =2/vV/3 0 0
Pon=\7—|1/V6 1/v6 176 -3/v6 0 - 0 (3.11)

Ve Ver Vet

where each column vector of the matrix P, corresponds to one apex. Hence,
the dot product of any two column vectors is equal to (-1/n). Note that the

coordinates of all apex of a regular simplex polytope can be represented by 2™ — 1
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different pseudo-triangular matrices, which can be obtained by multiplying any
row or combination of rows of the matrix P41 in eq. (3.11) by “1’. We note
that the row vectors of the matrix P,4; are orthogonal to each other and they

span an isotropic subspace.

The null space of matrix 13n+1 can be derived as

H,, =[1,1,---,1)7 (3.12)

A regular cross polytope has 2n apexes, and the angle subtended by an edge
at the center of the polytope is equal to 90°. Let the coordinates of each apex
be represented by a column vector. Then the coordinates of the 2n apexes with
the center of the polytope located at the origin of a Cartesian frame, and the
distance from the origin to each apex be one unit length, can be expressed by

an n X 2n matrix as

1 =10 0 O 0 0
. o 01 -1 0 -0 0
6 0o 0 0 -~ 0 I -1

In this case, the dot product of any two column vectors is equal to zero or minus
one and the row vectors are orthogonal to each other and span an isotropic

subspace.
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The null space of matrix P,, can be derived as a 2n x n matrix:

(10 ... 0]
1 0 --- 0
01
Hy,=|0 1 ... : (3.14)
0
00 --- 1
_0 g --- 1_

Note that P, contains two opposing column vectors (apexes) located on each
axis of the n-dimensional Cartesian space. Although the null space of the matrix
obtained by exchanging any two columns of P,, is different from that of the
matrix P, itself, they represent a permutation of the order of the apexes and,

hence, are isomorphic to each other.

Equations (3.11) and (3.13) represent a regular simplex polytope and a reg-
ular cross polytope in a special orientation. By rotating a regular polytope with
respect to the Cartesian frame, the matrices shown in egs. (3.11) and (3.13) can

be changed to
P, =UP, (3.15)

where m=n+1 or 2n, and U is an n X n orthogonal rotation matrix which
rotates all coordinates by the same angle. Since the row vectors of matrix P,

are orthogonal and span an isotropic subspace, we have
P.PT =41, (3.16)

where o2, = (n 4+ 1)/n and o}, = 2.
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Since the complementary space of the column space of H,,, (m=n+1or2n)
is the row space of P,,, any matrix with the null space of the form of eq. (3.12)
or (3.14) spans the same row space as P,,. Therefore, an isotropic transmission

structure matrix, whose row vectors span an isotropic subspace, should satisty
ATH,, =0, for m=n+1 or 2n (3.17)

From the above derivations, we arrive at the following theorem:

Theorem:
An n-dof tendon-driven manipulator can possess the isotropic transmission char-
acteristics at a given posture if it is constructed by n + | or 2n tendons and if

its structure matrix A7 and Jacobian matrix J satisty eqs. (3.10) and (3.17).

3.2.3 Isotropic Transmission

A manipulator is said to possess isotropic transmission characteristics if its over-
all transformation matrix A*TJ7 has a unity condition number and if the row

vectors of AT span an isotropic subspace.

Equation (3.10) assures that A7 is a matrix of rank n and eq. (3.17) indicates
that the row vectors of matrix AT span an isotropic subspace. We call a structure
matrix, which satisfies eqs. (3.10), (3.17), and condition C3 in Chapter 2, an

isotropic transmission structure (ITS).

Equation (3.10) contains n(n + 1)/2 quadratic equations while eq. (3.17)
contains (m —n) X n linear equations. Thus, there are a total of n(2m —n+1)/2

equations of constraint imposed on the clements of AT,
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Since eq. (3.10) contains an arbitrary constant u, we conclude that once a
kinematical isotropic transmission arrangement is found, the pulley sizes can be
proportionally increased (or decreased) without affecting its isotropic transmis-
sion characteristics. The proportional constant, however, does have an effect on

the pulley sizes and, therefore, on the resulting tensions in the tendons.

3.3 Design Equations

In what follows, we shall assume that the dimensions of the links such as the
offset distances and twist angles of a manipulator are known. Thus, once the
posture of a manipulator is specified, the Jacobian matrix is completely known.
Our objective is to apply eqgs. (3.10) and (3.17) to find appropriate tendon rout-
ings and pulley sizes, which yield isotropic transmission characteristics for the

manipulator at a specified posture of interest.

First, we apply the “skinny” QR factorization (Golub and Van Loan, 1983)

to matrix A, i.e.,

where Q; i1s an m X n matrix with orthonormal columns and Ry is an n X n
upper triangular matrix with positive diagonal entries so that the factorization
is unique. Substituting eq. (3.18) into (3.10), and using the fact Q7 Q; = I, we

obtain

1 1 )
RIR, = F(JTWJ) = F(JT LTLJ) (3.19)
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Since LJ is a full rank matrix, its QR factorization can be written as
LI =QR (3.20)

where Q is an n X n orthonormal matrix and R is an n X n upper triangular

matrix with positive diagonal entries. Substituting eq. (3.20) into (3.19), we

obtain
RIR, = ZIERTR (3.21)
Since both side of eq. (3.21) are in the form of Cholesky factorization, we conclude
that
R, = %R (3.22)

RTQTH,, =0 (3.23)

Since RT is a full rank matrix, its null space is empty. Hence, eq. (3.23) can be
reduced to

QI H, =0 (3.24)
Comparing eq. (3.24) with (3.17) and using eq. (3.16), it can be shown that

1
QT = a—Pm (3.25)

Taking the transpose of eq. (3.18), and substituting eqs. (3.22) and (3.25) into

the resulting equation, yields
AT = ¢, RTP,, (3.26)

where ¢, =1/pay,. Since we may include Q as part of the rotation matrix U,

using eqs. (3.20) and (3.22), eq. (3.26) can be rewritten as

AT = ¢, 37'LP,, = ¢, J7LTUP,, (3.27)
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Equations (3.26) and (3.27) provides a method for generating a general struc-
ture matrix with isotropic transmission characteristics. However the matrix
AT may not necessarily satisfy condition C3; that is, non-zero elements in the
columns of AT may not necessarily be consecutive. In general, AT derived from
eq. (3.26) has the same form as P,,, i.e., the positions of zero elements remain

the same. Thus, a particular form of AT can be obtained by selecting P,,,.

A structure matrix satisfying eqs. (3.10) and (3.17) automatically satisfies
constraints C1 and C2, but not necessarily C3. If the isotropic point is chosen
at a location where the condition number of LJ is equal to one and U is an
identity matrix, then the structure matrix is given by l~3n+1 or P,,. Both 15n+1
and 132n satisfy constraint C3. Since 15"+1 is already in a pseudo-triangular form,
it permits all actuators to be base mounted. However, P,, isin a bi-diagonal

form, and, therefore, does not permit all actuators to be base mounted.

Pre-multiplying P,. by a rotation matrix U as shown in eq. (3.15) changes
P,. into P,,. Therefore, by choosing a proper rotation matrix, it is possible to
obtain a matrix P,, such that all the actuators can be base mounted. In the
next two sections, we will discuss those I'TSs which permit all actuators to be
base mounted and their representative matrices with the minimum number of

non-zero elements.
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3.4 Manipulators with n+1 Tendons Arranged

in a Pseudo-triangular Form

When m is equal to n+1, eqgs. (3.10) and (3.17) impose n(n+3)/2 equations of
constraint on the elements of AT. If we require all actuators to be installed
on the ground and seek a tendon routing method with the minimal number of
pulleys, then the elements of AT can be arranged into a pseudo-triangular form

as shown below (Morecki, et al., 1980):

[ a an 0 ce e 0 ]
a1 aze  azx 0 T 0
AT = (3.28)
Ay p-1 A2n—1 " ' App-1 0
| a1.n az.n et Apn Un41,n ]

where a;; # 0. Note that the number of elements in a pseudo-triangular structure
matrix is exactly equal to the number of constraints. Hence, all elements can
be determined uniquely. Alternately, we can also use eq. (3.26) to find AL, as

follows.

If the desired isotropic point is located at a special manipulator posture where

the condition number of its Jacobian matrix is equal to one, i.e.,
JTWI = 51, (3.29)

where 3 is an arbitrary constant, then both R; and R are proportional to the

identity matrix, and the isotropic transmission structure in eq. (3.26) reduces to

AT = ,BC,,L+1P”+1 (330)
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Now consider a general case for which the condition number of its Jacobian
matrix J at the position of interest is not equal to one. Since R is an n X n
upper-triangular matrix, we conclude from eq. (3.26) that for the matrix AT to
be in a pseudo-triangular form, P,4; must also be a pseudo-triangular matrix.
Since 13,,.,.1 is a pseudo-triangular matrix, we also conclude that for P,y to be
in a pseudo-triangular form, the rotation matrix U in eq. (3.15) must be an

identity matrix. Hence, eq. (3.26) reduces to
AT = Cn+1RTl~)n+1 (331)

Since matrix R is uniquely determined from eq. (3.20), we conclude that eq. (3.31)
is the only pseudo-triangular structure matrix which yields an isotropic trans-

mission structure.

3.5 Manipulators with 2n Tendons Arranged

in a 2n Pseudo-Triangular Form

Each column of AT represents a power transmission line contributed by a ten-
don. Since an ITS matrix satisfies egs. (3.17) and (3.14), corresponding to each
transmission line of an ITS matrix AL there exists an opposing transmission
line. That is, the corresponding elements of two opposing transmission lines
are equal in magnitude but negative to each other. We call these two opposing
transmission lines a “dual transmission line” and the two opposing column vec-

tors a “dual vector”. Thus the simplest routing of an ITS with all the actuators

42



base mounted takes the following form:

r -

a; —ay 0 0 oo 0 0
as —ay b, —by - 0 0
AL=| ¢ i i (3.32)
Un-1 —Gp-1 bpy —bp1 -+ 0 0
| an —ay, b, b, - e, —e,

A matrix of this form is called an “n x 2n pseudo-triangular” matrix. Note that
there are n(n+1)/2 unknown .varia,bles in the matrix of eq. (3.32). When m is
equal to 2n, egs. (3.10) and (3.17) impose n(3n+1)/2 equations of constraint on
the elements of AT . A matrix AL with properly arranged n dual vectors as
in eq. (3.32) satisfies the n? linear constraint equations imposed by eq. (3.17)
automatically. Hence, there are n(n+1)/2 quadratic equations in eq. (3.10) left
to be satisfied by an ITS matrix. Hence, we can solve eq. (3.10) for the elements

of AT in eq. (3.32). Alternately, we can also find AL from eq. (3.26).

In general, the P,, obtained from eq. (3.15) will have non-zero elements
distributed in the upper-right and lower-left corners of the matrix, unless U
is an identity matrix. Since the matrix R in eq. (3.26) is an upper triangular
matrix, we conclude that for AL to be a pseudo-triangular matrix, U must
be an identity matrix and all the elements in the upper triangle of R must be
non-zero. This implies that whether a pseudo-triangular structure matrix can
be achieved or not depends on the matrix R, i.e., the choice of the end-effector
position. This also implies that the isotropic point can not be located at the

position where the condition number of LJ is equal to one.
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3.6 Summary

A general theory for the synthesis of the mechanical power transmission structure
in tendon-driven manipulators has been developed. Based on the static force
analysis, the conditions for the kinematic structure of a manipulator to possess
isotropic transmission characteristics are developed. It is shown that isotropic
transmission characteristics can be achieved only if the manipulator is driven
by either n+1 or 2n tendons. This result matches the two existing types of
tendon-driven manipulators and helps to explain the oddness of the other types.
However, as far as we understand both the Stanford/JPL and the Utah/MIT
hands were not designed to have isotropic transmission characteristics. However,
the structure matrix of the Utah/MIT hand’s finger does satisty eq. (3.17), but

not eq. (3.10).
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Chapter 4

Numerical Examples

4.1 Introduction

The theory for designing a manipulator with isotropic transmission character-
istics has been investigated in the previous chapter. Based on the theory, only
those transmission structures with n+1 or 2n tendons can possess these char-
acteristics. In this chapter, examples of two manipulators with different trans-
mission structures will be examined to demonstrate the features of isotropic
transmission characteristics. The two manipulators considered are: (1) a two-
dof planar manipulator and (2) a three-dof spatial manipulator. In each example,
transmission structures with n+1 tendons are presented first. This is followed
by transmission structures with 2n tendons. For simplicity, an algorithm that
controls the sum of actuator forces to a minimum is applied to all the examples

to regulate the vector A in eq. (2.7) and to maintain non-negative tensions.
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4.2 Example 1: Two-dof Manipulator

77777717 B X

Figure 4.1: A two-dof planar manipulator

A two-dof planar manipulator, with its link lengths proportional to 1/v/2 : 1 as
shown in Fig. 4.1, is selected for the purpose of demonstration. The Jacobian

matrix for this manipulator is given by

J=1¢ ~Sia/V2 =5 = SalV2 (4.1)

Ci2/V2  Cy+ Cra/V2
where C; = Cos(0z), S = Sin(02), Cia = Cos(b1 + 0,), S12 = Sin(by + ;) and ¢
is the second link length. In what follows, we let £ = 1 unit for simplicity. Note
that the link lengths has been proportioned in such a way that its Jacobian
matrix, J, has a unity condition number when the manipulator assumes the

position for which §; = 225°. Also note that the links and joints are numbered

sequentially from the distal end.

4.2.1 Transmission Structures with Three Tendons

Three different 2x3 pseudo-triangular structure matrices shown in Table 4.1

are synthesized for the purposes of comparison. All three structure matrices
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Transmission

Structure AT K £, | Cond(AT)

1 -1 0 !

(a) P 0.7071 | | 1 |
V3 V3 V3 1
1 -1 0 [ 1]

(b) K [ ] 0.6389 | | 1 1.225

1 1 -1
-2-
—
1 -1 0
0.6148 | | 1 1.668
(e) ”[1.264 0.264 —1.528] | ’

Table 4.1: Three transmission structures and their kinematic properties

1111

3rd tendon

2nd tendon

1st tendon

Figure 4.2: Tendon routings of the two-dof manipulator
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share the same tendon routing as shown in Fig. 4.2. However, their pulley sizes
are different from one another. Structure (a) is a structure matrix derived from
eq. (3.11). Hence, structure (a) will possess isotropic transmission characteris-
tics when its end-effector is positioned at x = £/4/2 and y = 0. Structure (b)
uses equal size pulleys. It does not possess isotropic transmission characteristics.
Structure (c) is calculated from eq. (3.31) based on the condition that the manip-
ulator will possess isotropic transmission characteristics when the end-effector is
positioned at the x = £ and y = 0. The homogeneous solutions and the condition
numbers of the structure matrices, AT, are also listed in Table 4.1. We note that

the null vectors of structures (a) and (¢) both point in the isotropic direction.

For these two-dof systems, if we confine the joint torque vector, 7, to be
bounded on a unit circle, then the particular solution ¢, lies on an ellipse (Lee,
1991). To achieve a fair comparison, the values of x in Table 4.1 are chosen so

that the areas bounded by the ellipses in the £,-space are all equal to 7.

Figure 4.3 shows the variation of condition numbers of A*7J7 as functions
of the end-effector position. Structure (a) has a unity condition number at the
x = £/+/2 and y = 0 (6; = 225°) position. The condition number of structure
(b) is fairly close to that of structure (a) due to the fact that the two structure
matrices differ from each other by a small amount. Structure (¢) has a unity
condition number at the x = £ and y = 0 (8, = 249.3°) position. Comparing
structure (a) with (c), structure (¢) seems to be better than structure («) because
the condition number of structure (c) is closer to 1.0 over a greater range of the

workspace.
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structure (a)

10 7 | ——-- structure (b) :
----- structure (c) [

Condition number
wh

End-effector location: %

Figure 4.3: Condition number versus end-effector location for three transmission

structures
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Two manipulator postures are chosen for evaluation. Position 1 is at x =/,
y =0, and position 2 is at x = £/v/2, y = 0. Let a unity force [ (=-f) be applied
to the end-effector as shown in Fig. 4.1. Using eq. (2.16), the required tensions
for each structure are calculated for every given direction, ¢, of the applied
force. For the purpose of comparison, we adjust the value of A in eq. (2.16)
such that one of the tendons will have zero tension while the other two have
nonnegative tensions. Note that the tendon whose force is set to zero by adding
a scalar multiple of the homogeneous solution, must be chosen from the one
which corresponds to the largest negative component in the particular solution
vector. Otherwise negative tensions may occur in some other tendons. As ¢

varies from 0 to 27, the locus of each tendon force forms a closed curve.

Figure 4.4 shows the polar plots of the three tendon forces for transmission
structures (a), (b), and (c), respectively. In a polar plot, the radial distance
represents the magnitude of tendon force while the phase angle represents the
direction of the applied force. From Fig. 4.4a-(ii), we note that the shapes of the
three tendon forces are identical except for a shift in the phase angle. When the
external force is applied along the ¢ = 210°, 330° and 90° directions, only one
tendon is under tension. Under these situations, the resultant torques produced
by one tendon are sufficient to work against the external force. We call these
directions the “solo directions.” At any other directions, only one tendon will
have zero tension. To calculate the solo directions at a given posture where the

Jacobian matrix J is invertible, from egs. (2.2) and (2.6), we have

ITf = AT¢ (4.2)
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(i) Position 1 (z=¢) (ii) Position 2 (z=£/v/2)

180%

160}

c. Transmission structure (¢)

Figure 4.4: Polar plots of tendon forces versus the direction of applied force for
structure (a) and (b). The radial distance represents the tendon force and the

phase angle represents the direction of applied force
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Pre-multiplying J=7 to both sides of eq. (4.2), we obtain
f=J3TAT¢ (4.3)

Therefore, the solo direction for tendon ¢ (i = 1,---,m) can be calculated by
substituting £, into eq. (4.3), where ¢, is a unit vector along the sth axis of the

actuator space.

Since structure (a) possesses isotropic transmission characteristics at the sec-
ond position, the distribution of tensions becomes distorted as the end-effector
moves to position 1 (see Fig. 4.4a-(i)). The corresponding solo directions, as

shown in Fig. 4.4a-(i), also change their locations and become unevenly spaced.

Although the condition number of structure (b) is fairly close to that of
structure (a), the tension distribution of structure (b) is quite different from
that of structure (a) as can be seen in Fig. 4.4b. We note that tension exerted
on the third tendon is much larger than that on the other two. This is due to
the fact that its null vector, [1,1,2])7, points away from the isotropic direction.
As shown in Fig. 4.4¢-(i), structure (c) has isotropic transmission characteristics
at position 1. Again, at the isotropic point, position I, the solo directions,
$=230.7°, 350.7°, and 110.7°, are evenly spaced. Both structures («) and (c)
are equally good in tension distribution. The only difference seems to be that
structure (c) has higher tendon forces than that of structure (a). However, this

difference can be corrected by adjusting the value of &, i.e. the pulley sizes.

Table 4.2 lists the maximum value of each tendon force plotted in Fig. 4.4 and
their ratios. The corresponding condition numbers of A*7JT for the manipulator

at the two specified positions are also listed. It can be seen that structure (c)
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Structure (a) (b) (c)
[ 1478 | | [ 1.107 ] 1.15
position | max. tensions 1.148 1.107 1.15
| 1.478 | | 2.213 | 1.15
1 ratio 1.287:1:1.287 1:1:2 1:1:1
solo [ 204.1 ] [ 2214 | | [ 230.7
directions 341.5 332.1 350.7
¢ (deg) | 1107 | | [ 107 || | 1107
Cond(A*TJT) 1.668 1.488 1
1 FL107 || [ 115 ]
position | max. tensions 1 1.107 1.213
1 | 1.565 | | 1.213 |
2 ratio 1:1:1 1:1:1.414 | 1:1.055:1.055
solo 210 225 [ 231.6 |
directions 330 315 345.2
¢ (deg) 90 90 | 90 |
Cond(A*TJT) 1 1.225 1.668

Table 4.2: Maximum tensions, their ratios, solo directions and the condition

numbers of the three structures
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has the best distribution of tensions. It has a nearly 1 :1 : 1 maximum tendon
force ratio between positions 1 and 2. It can be concluded that the selection of
the isotropic position can have great influence on the tendon force ratios, and

that careful consideration should be given to the selection of this position.

Transmission
Structure AT K H Cond(AT)
o]
1 -1
(a) p 09 oort || L 01 26180
1 -1 1 -1 0 1
| ™3 O 1 -
T o]
1 -1 0 0 1 0
(b) K 0.8695 1.6685
0.5 —0.5 1.33 —1.33 0 1
0 1

Table 4.3: Two transmission structures and their kinematic properties for the

two-dof manipulator shown in Fig. 4.1

1111117
4th tendon

3rd tendon 7

1st tendon 2nd tendon

Figure 4.5: Tendon routings for the two-dof manipulator shown in Fig. 4.1
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4.2.2 Transmission Structures with Four Tendons

Two different 2 x 4 pseudo-triangular structure matrices shown in Table 4.3 are
synthesized and comparied. Both two structures share the same tendon routing
shown in Fig. 4.5, where each positive joint axis points out of the paper. How-
ever, their pulley sizes are different from each other. Structure () is a structure
matrix derived from eq. (3.26) based on the condition that the manipulator will
possess isotropic transmission characteristics when the end-effector is positioned
at the x={, y=0. Structure (a) uses equal size pulleys. It does not possess
isotropic transmission characteristics when the end-effector is positioned at the
same point. The homogeneous solutions and the condition numbers of the struc-
ture matrix, AT, are also listed in Table 4.3. The null spaces of both structures
are the same. To achieve a fair comparison, the values of « in Table 4.3 are

chosen so that the product of the two singular values of each AT is equal to one.

Figure 4.6 shows the variation of the condition number of A*TJT as a func-
tion of the end-effector position. We note that the condition number of the Ja-
cobian matrix is equal to one at x=£/+/2, and y=0 for both cases. The condition
number of A*TJ7 for case (a) is not equal to one within the entire workspace,
while the condition number of A*TJT for case (b) is equal to one at the x=¢,
y=0 position. Comparing structure (a) with (b), structure (b) is better than
structure (@) because the condition number of structure (b) is closer to 1.0 over

a larger range of the workspace.

The same two manipulator postures are chosen for evaluation. Position | is

at x=¢ and y=0; and position 2 is at x=£/+/2 and y=0. Similar to the example
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12 T T T T T T T

——— structure (a)

structure (b)

Condition number
[=>]

End-effector location: —”;—

Figure 4.6: Condition number of A*TJT versus end-effector location for two

transmission structures
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with three tendons, let a unity force f* (=-f) be applied to the end-effector as
shown in Fig. 4.1, where ¢ represents the direction of the applied force. Using
eq. (2.7), the required tensions for each structure are calculated for every given
direction, ¢, of the applied force. As ¢ varies from 0 to 27, the locus of each

tendon force forms a closed curve in a polar plot.

Figure 4.7 shows the polar plots of the four tendon forces for both trans-
mission structures evaluated at these two positions. When the external force is
applied along a solo direction, only one tendon is sufficient to work against the
external force. At other directions two tendons are needed to work against the

external force.

Both structure matrices (@) and (b) contain two pairs of dual vectors. There-
fore, their tendon force plots contain two pairs of opposing solo directions. Fur-
thermore, each tendon force has nonzero values over exactly a 180° range. Since
tendons 3 and 4 of both structures are routed only through the base pulleys,
the corresponding solo directions occur when the applied force is parallel to the
line AB shown in Fig. 4.1. Due to equal size pulleys in structure («), the cor-
responding solo directions of tendons 1 and 2 of structure («) occur when the
applied force is parallel to the line OA shown in Fig. 4.1. Also since the matrix
J at position 2 is equal to a scaled identity matrix, from eq. (4.3), each column

vector of the structure matrix AT defines one solo direction.

From Fig. 4.7b-(i), we note that the shapes of the four tendon forces are
identical to one another except for a shift in the phase angle. The two dual

solo directions are perpendicular to each other. Since structure (b) is designed
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(i)Position 1 (z=¢) (ii)Position 2 (z=£/+/2)

90.0 °
"""""""" " f_,=2
.45.0°
180% -
a. Transmission structure (a)
90.0 °
........ ' =2
. 26,6 °
.:1,”_; ,
180° = :
206.6°
............................ : o e L
270 2907 270.0°

b. Transmission structure (b)

Figure 4.7: Polar plot of tendon forces versus the direction of applied force where

the radial distance represents the tendon force and the phase angle represents

the direction of applied force

58



to possess isotropic transmission characteristics at position 1, the distribution
of tensions becomes distorted as the end-effector moves to position 2, as shown
in Fig. 4.7b-(ii). The corresponding solo directions shown in Fig. 4.7b-(ii) also

change their locations and become unevenly spaced.

Structure (a) (b)
[ 1 ] [ 1.150 |
} 1 1.150
max. tensions
1.414 1.150
| 1.414 | | 1.150 |
position ratio 1:1:14:141:1:1:1:1
221.4 200.7
solo
. . 41.4 20.7
1 directions
4 (deg) 290.7 290.7
& | 110.7 | | 1107 |
Cond(A*TJT) 1.6684 1
[ 1 ] [ 1.150 |
tensi 1 1.150
max. tensions
ax. tenston 1.414 0.972
| 1.414 | | 0.972 |
position ratio 1:1:14:14(12:12:1:1
225 | [ 206.6 |
solo )
directi 45 26.6
2 ze(il 10;18 270 270
e | 90 | |90 |
Cond(A*TJT) 2.6180 1.6685

Table 4.4: List of maximum tensions, their ratios, solo directions and the condi-

tion numbers for structures (a) and (b), each at two positions

Table 4.4 lists the maximum value of each tendon force plotted in Fig. 4.7
and their ratios. The corresponding solo directions and condition numbers of

AYTJIT are also listed. It can be seen that structure () has better distribution
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of tensions. It has a nearly 1 : 1 : 1: 1 maximum tendon force ratios between

positions 1 and 2.

4.3 Example 2: Three-dof Manipulator

A two-dof planar manipulator was investigated in the previous section. In this
section, we explore a three-dof spatial manipulator with different transmission

structures.

-
—
8,

>
®)
\\\E?\—l

£1=0.707¢; = &3

Figure 4.8: Link proportions of the three-dof manipulator

The spatial three-dof manipulator shown in Fig. 4.8 is used to compare the
effect of diffe\rent transmission structures. The joint axes are arranged such
that, starting from the distal joint (first joint), the second joint axis is parallel
to the first while the third is perpendicular to the second. The link lengths are
proportional to 1/ V2 :1:1/v/2. A unity force acting on the end-effector is
assumed, and as shown in Fig. 4.8 ¢ is the angle the external force makes with

the z-axis and 1 is the angle the projected vector of the external force in x-y
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plane makes with the x-axis. The unity force can be expressed as

= [sin(qﬁ)cos(w),sin(¢)sin(¢),cos(¢)]T (4.4)

where ¢ varies from 0 to 7 and ¢ varies from 0 to 2r. Without loosing generality,

we let 63 = 90° and the Jacobian matrix for the manipulator shown in Fig. 4.8

is given by
0 0 —(Cy + (1 4 C12)/V2)
I=4| —S2/vV2 —8:— S12/V2 0 (4.5)
012/\/§ Cy + Cl2/\/§ 0

where Cy = Cos(0;), 52 = Sin(0;), Ci12 = Cos(61 + 03), S12 = Sin(6;, +6,), and ¢
is the length of the second link. In what follows, we let £ = 1 for simplicity. For
this manipulator, it can be shown that the condition number of the Jacobian
matrix is equal to one when 6;=135° and 0;=45°, and that when z = 0,y = z =

1/ \/i, we have one such point on the locus.

4.3.1 Transmission Structures with Four Tendons

To compare the influence of different pulley sizes, the same tendon routing
shown in Fig. 4.9 is adapted. Table 4.5 lists two different transmission structures,
their corresponding homogeneous solutions, and the condition number of A7.
Structure (@) has its null vector pointed 31.4° away from the isotropic direction.
Structure (b) has its null vector pointed in the isotropic direction. Structure (a)
is designed with equal size pulleys while structure (b) is a transmission structure
derived from eq. (3.11). Similar to that of two-dof manipulator, with = bounded

on a unit sphere, the values of x in Table 4.5 are calculated by equating the
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4th tendon
v 3rd tendon

v 2nd tendon
1st tendon

Figure 4.9: Tendon routings of the three-dof manipulator

Transmission
Structure AT K £, | Cond(AT)
&8
1 -1 0 0 |
(a) k1 1 -1 0 0.5974 0 1.520
1 1 1 -1
- 4 -
1 -1 0 0 }
1 1 =2
(b) K ? ? ? O2 0.7071 ) 1
V6 V6 6 e 1

Table 4.5: Two transmission structures and their kinematic properties
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volume enclosed by ép in the particular solution space to 47/3. Two positions
are chosen for evaluation. At position 1: x = 0, y = z = £/+/2; and at position
2:x=0,y =£+£/v/2,z=0. As the applied force, [, varies its direction, the

tension experienced by each tendon varies accordingly.

Figures 4.10 shows the spherical plots of the tensions for structure (a) when
the end-effector is located at position 1. In a spherical plot, the radial distance
represents the tension, and the direction represents the direction of the applied
force. The dotted line in each tendon force plot indicates the corresponding
solo direction. Note that these four figures are different from one another since
structure (a) doesn’t possess isotropic transmission characteristics. Figure 4.11
shows the spherical plots of the tensions in tendons 1, 2, 3, and 4, respectively,
for structure (b) with the end-effector located at position 1. Since position 1 is
an isotropic point for structure (b), the four plots are identical in shape with one
another except for a shift in orientation, i.e., Figs. 4.11b through 4.11d will look
like Fig. 4.11a when they are viewed from some appropriate angle. The solo di-
rections for the four tendons are evenly distributed, and are given by (¢= 144.7°,
Y= 54.7°), (¢= 35.3°, = 54.7°), (¢= 90°, = 289.5°), and (¢$= 90°, 4= 180°),
respectively. The separation angle between every two solo directions is 109.5°.
Figures 4.12 and 4.13 are the spherical plots of the tensions for structures («) and
(), respectively, when the end-effector is located at position 2. Table 4.6 lists
the maximum tensions, their ratios, solo directions and the condition numbers

of ATTJT of the manipulator at the two specified positions.

The overall condition number depends on the linkage structure and the trans-

mission structure of a manipulator. It is strongly position dependent. Yet, it can
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15 1.54

a. tendon 1 b. tendon 2

y 3 2

c. tendon 3 d. tendon 4

Figure 4.10: Spherical plots of tendon force versus direction of applied force for
structure (@) evaluated at position 1. The radial distance represents the tendon

force and the phase angle represents the direction of applied force.
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1.5+

1

y A4

a. tendon 1 b. tendon 2

-1 -05

c. tendon 3 d. tendon 4

Figure 4.11: Spherical plots of tendon force versus direction of applied force for
structure (b) evaluated at position 1. The radial distance represents the tendon

force and the phase angle represents the direction of applied force.
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: 0
y 105 x y i X

a. tendon 1 b. tendon 2

24 3.

y -3 -4 «

c. tendon 3 d. tendon 4

Figure 4.12: Spherical plots of tendon force versus direction of applied force for
structure (a) evaluated at position 2. The radial distance represents the tendon

force and the phase angle represents the direction of applied force.
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2.

a. tendon 1

c. tendon 3 d. tendon 4

Figure 4.13: Spherical plots of tendon force versus direction of applied force for
structure (b) evaluated at position 2. The radial distance represents the tendon

force and the phase angle represents the direction of applied force.
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Structure (a) (b)
[ 1.184 | [ 1]
" . 1.184 1
position | max. tensions
1.674 L
2.899 | | 1]
1 ratio 1:1:1.414:2.449 1:1:1:1
125.3 45 144.7 54.7
solo angles 54.7 45 35.3  54.7
¢, (deg) 90 315 90  289.5
| 90 180 | 90 180 |
Cond(A+TJT) 1.520 L
[ 1.184 | | 2.109 ]
- . 1.184 2.039
position | max. tensions
2.367 2.134
| 4.402 | | 2.134 |
2 ratio 1:1:2:3.719 1.034:1:1.046:1.046
128.1 297.3 [ 113.7 280.5 ]
solo angles 116.8 72.8 108.3 82.1
¢, (deg) 34.9 3272 23.3 298.7
| 90 180 | | 90 180 |
Cond(A*TJT) 2.173 2.711

Table 4.6: Maximum tensions, their ratios and the condition numbers of the

three-dof manipulator
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be seen from Table 4.6 that, even the condition number of structure (b) is worse
than that of structure (a) at position 2, structure (b) still has better maximum
tension ratios than that of structure (@), 1.034 : 1: 1.046 : 1.046 compared with
1:1:2: 3.719. Also, the largest maximum tension in structure (b) is far less
than that of structure (a). This is because the null vector of structure () points
in the isotropic direction while that of structure (a) points in the [1,1,2,4]7

direction.

4.3.2 Transmission Structures with Six Tendons

The upper-triangular matrix R from the QR factorization of the Jacobian matrix
in eq. (4.5) contains zero elements in its upper-triangle. Therefore an isotropic
transmission structure matrix of the pseudo-triangular form is infeasible. In

what follows, we seek a non-pseudo-triangular form of the tendon routing.

Table 4.7 lists two different structure matrices, their corresponding homo-
geneous solutions, and the condition numbers of AT. Structure (a) is designed
with equal size pulleys. Structure (b) is a transmission structure derived from

eq. (3.15) using the following rotation matrix:

1 0 0 Cos(=E)  Sin(F) 0
U=|0 Cos(3) Sin(3) || —Sin(zE) Cos(ZE) 0 (4.6)
0 —Sin(¥) Cos(¥) 0 0 1

The designated isotropic point for structure (b) occurs at the position x=0,

=z=0/+/2, where the condition number of the Jacobian matrix is equal to one.

The routings of structures (a) and (b) are shown in Figs. 4.14 and 4.15,
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Transmission
Structure AT K H Cond(AT)
(100
100
1-100 00
010
(a) k[1-11-10 0] [07071 4.0489
010
1 -11-11 -1
001
00 1]
100
100
1 -1 1 -1 0 O
(b) k|4 =2 =L L 1 —11]0.500 010 L
Vi Vi ViV ' 010
1 -1 -1 1
sAuana v 11 001
001

Table 4.7: Two transmission structures and their kinematic properties for the

three-dof manipulator shown in Fig. 4.8
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1111111
6th tendon
5th tendon

\ 4

¥ 3rd tendon
1st tendon 2nd tendon

4th tendon

Figure 4.14: Tendon routings for transmission structure (a) shown in Table 4.7

1111111
5th tendon
6th tendon
Y 4th tendon
1st tendon 2nd tendon

3rd tendon

Figure 4.15: Tendon routings for transmission structure (b) shown in Table 4.7
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respectively, where each positive joint axis points out of the paper. Similar to
the example of a two-dof manipulator with four tendons, the values of « shown
in Table 4.7 are calculated so that the product of the three singular values of
each AT is equal to one. The same two positions are chosen for evaluation. At

position 1 x=0, y=2=£/+/2, and at position 2 x=0, y=¢+£/+/2, z=0.

Figures 4.16 and 4.17 are the spherical plots of the six tendon forces for
transmission structures (a) and (b) evaluated at position 1, respectively. Since
both structures (a) and (b) contain three pairs of dual vectors, there are three
pairs of solo directions. Hence, each tendon force has zero value over one half of
the end-effector space. Also tendons 5 and 6 of the transmission structure (a)
are routed only through the base pulleys, and the corresponding solo directions
are always perpendicular to the plane of the manipulator. Since the condition
number of the Jacobian matrix at position 1 is equal to one, each solo direction at
position 1 is pointing along one column vector of the corresponding transmission
structure matrix AT. At position 1, the angle between any two solo directions
of structure (b) is either 90° or 180°, whereas that of structure (a) is irregular.
Since position 1 is an isotropic point for structure (b), the six tendon force plots
in Fig. 4.17 are identical in shape with one another, whereas the tendon force
plots in Fig. 4.16 contain shapes with different sizes. Figures 4.18 and 4.19
are the spherical plots of the six tendon forces for the transmission structures
evaluated at position 2. Note that there are at most three tendons under tension
at all times for both cases and both positions. This is because of the particular
tendon routings chosen for the design, which results in a decoupled form of the

null matrix H shown in Table 4.7.
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y -1 -1 X y -1 -1 X
tendon 1 tendon 2

1.55

y 11 X y 14 X
tendon 3 tendon 4

14 1.54

y -1 15

tendon 5 tendon 6

Figure 4.16: Spherical plots of the six tendon forces versus direction of applied
force for structure (a) evaluated at position 1. The radial distance represents

the tendon force and the phase angle represents the direction of applied force.
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y -1 A1 X y 1A X

tendon 2

y Rl . y -0.5 -0.5

tendon 3 tendon 4

y 1A x y -1 -0.5

X

tendon 5 tendon 6

Figure 4.17: Spherical plots of the six tendon force versus direction of applied
force for structure (b) evaluated at position 1. The radial distance represents the

tendon force and the phase angle represents the direction of applied force.
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15 1.55

0.5+ 14

N Of \ _— n 0.5 \

y -1 -05 X y 14 X

tendon 1 tendon 2

y BT y -1 -0.5
tendon 3 tendon 4

25

y 2 -3

tendon 5 tendon 6

Figure 4.18: Spherical plots of the six tendon forces versus direction of applied
force for structure (a) evaluated at position 2. The radial distance represents

the tendon force and the phase angle represents the direction of applied force.
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0.5, 1.8+

y -1 -05 X y -1 <16

tendon 1 tendon 2

y -1 15 . y -05 -0.5

X

tendon 3 tendon 4

tendon 5 tendon 6

Figure 4.19: Spherical plots of the six tendon force versus direction of applied
force for structure (b) evaluated at position 2. The radial distance represents the

tendon force and the phase angle represents the direction of applied force.
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Structure (a) (b) l
1 1
1 1
position | max. tensions 1414 !
1.414 1
1.414 1
1.414 1
1 ratio 1:1:14:14:14:14 I:1:1:1:1:1
125.3 45 135 45
54.7 225 45 225
solo
directions 0 45 135225
6,1 (deg) 90 225 45 45
90 0 90 135
90 180 90 315
Cond(A+TJT) 4.0489 L
1 1.677
1 1.677
position | max. tensions 1414 1450
1.414 1.450
2.798 1.978
2.798 1.978
2 ratio 1:1:14:1.4:28:28|1.2:12:1:1:14:1.4
128.1 297.3 118.3 2884
51.9 117.3 61.7 1084
solo angles 145.1 32.8 68.8 256.9
é, ¢ (deg) 349 212.8 111.2  76.9
90 0 145.1 147.2
90 180 34.9 327.2
Cond(A+TJT) 3.6313 2.7112

Table 4.8: List of maximum tensions, their ratios, solo directions and the condi-

tion numbers
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Table 4.8 lists the maximum tensions, their ratios, solo directions and the
condition numbers of AtTJT of the manipulator at the two positions. Though
both transmission structure matrices have the same null space, the condition
numbers of structure (a) at both positions are worse than that of structure (b).
Therefore the largest maximum tension ratios in structure (b) are far less than

that of structure (a) at both positions

4.4 Summary

Two examples, one two-dof planar manipulator and one three-dof spatial manip-
ulator, are used to demonstrate the methodology introduced in Chapter 3. It is
shown that manipulators which possess isotropic transmission characteristics do
have more even force distribution among their tendons. It is also shown that the
space of the homogeneous solution plays a very important role in tendon force

distribution.

Finally, we note that the isotropic transmission characteristics exist only at
isotropic points. The selection of isotropic points has a great influence on the
static characteristics over the entire workspace of a manipulator. Thus careful
consideration should be given to the selection of this position to achieve a global

optimal design of such manipulators.
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Chapter 5

Attributes of Isotropic

Transmission Structures

5.1 Introduction

The criteria for the design of tendon-driven manipulators with isotropic trans-
mission characteristics and the transmission structures that satisfy the criteria
were derived in Chapter 3. The analytical solutions provide the whole solution
domain for constructing a manipulator with isotropic transmission structures
(ITS). However, the features of ITS weren’t discussed. In this chapter, the at-
tributes of manipulators with ITS are discussed. Since there are two types of ITS
for an n degree-of-freedom (dof) manipulator: one with n+1 tendons and the
other with 2n tendons; their similarities and differences will also be examined.

In what follows, the terms “n+1 ITS” and “2n ITS” represent an n-dof ITS with
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n+1 and 2n tendons, respectively.

A tendon-driven manipulator with ITS has many unique features. In this
chapter, the tension control algorithm, maximum tension, kinematic perfor-
mance, and the sum of the tendon forces will be considered. Since a manipulator
with 2n ITS has many redundant tendons, one might be interested in knowing
how will such a manipulator will perform when one or more tendons malfunction.

Finally, the controllability under such conditions will be studied.

5.2 Minimum Tension Control

It has been shown in Chapter 2 that the fundamental relationship between ten-

don forces and joint torques are related by

r=A"¢ (5.1)

The inverse transformation of eq. (5.1) can be expressed as

¢=A*Tr +H) (5.2)

Given a vector of joint torques, 7, the tendon forces in eq. (5.2) is underdeter-
mined. Hence, a tension control algorithm should be imposed on the system to
regulate the value of A and to maintain positive tensions. One obvious method to
control tendon forces is the algorithm which finds the minimum p-norm tension
forces for p=1, 2, 3, - - -, or co. In this section, the effects of different minimum
p-norm tension control algorithms in regulating tendon forces of a manipulator

are discussed.
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For a transmission structure with n+1 tendons, A and H in eq. (5.2) are a
scalar and a vector, respectively. To maintain non-negative tensions, the mini-
mum value of X is given by

Apin = max{ (An+1).1 —} (5.3)

h;

where ( ); denotes the j-th row of the matrix in the parentheses, h; denotes the
Jth component of H, and max;{ } denotes the maximum value among all the
possible choices of j, for j=1, 2, 3, - - -, n+1. Since all elements in H are positive
for an admissible transmission structure and since any A that is less than A,
will result in at least one negative tendon force, we conclude that eq. (5.2) with A
= Amin yields the minimum p-norm tendon forces, where p could be any positive
real number. In other words, any minimum p-norm tension control algorithm

results in the same A and, therefore, the same tendon forces.

For a transmission structure with 2n tendons, A is no longer a scalar and the
elements of matrix H are not necessarily all positive. Generally speaking, ap-
plying different minimum p-norm tension control algorithms to the manipulator
will result in different A and different tendon forces. However, there are some

exceptions, and a manipulator with 2n ITS is one of them.

For a 2n ITS, the null matrix H in eq. (5.2) can be arranged into the form
given by eq. (3.14). The null matrix decouples each A;, for i=1, 2, 3, .-+, n,
from each other in the homogeneous solution space. Each A; regulates only one
pair of opposing tendons called a “dual transmission line.” It is obvious that

the minimum A; which maintains positive tendon forces in a “dual transmission
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line” is equal to
(A min = max{—(A;"nT)gi_l T, —(A;f)zi r}, 1=1,23,---,n (5.4)
Substituting eq. (3.27) into A*T = A(ATA)™?, we obtain
AT = ¢, PTUT(LI)(E, (LI)TUP,, PTUTLY)™! (5.5)

where J is the Jacobian matrix when the end-effector is located at a designated
isotropic point. Using eq. (3.16), we can simplify eq. (5.5)
AT = L PTuT(Li)(LI) L) (5.6)

Since LJ is a full rank matrix, we obtain
AT = L pTuTLy)wh i’ (5.7)
U
Simplifying eq. (5.7), yields

AT = L pTyT(L})-T (5.8)
«

m

Since PT contains n pairs of opposing vectors, matrix AZ7 in eq. (5.8) also

contains n pairs of opposing vectors, that is
(AfD)2i = (AL )ai (5.9)
Equation (5.4) thus can be further simplified into
A)min =| (A2 £ 1=1,2,3,---,n (5.10)

Therefore, all minimum p-norm tension control algorithms will yield the same

(A)min with the values given by eq. (5.10). Moreover, it is clear that all minimum
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p-norm tension control algorithms applied to a manipulator with a transmission
structure whose null matrix H can be expressed in a decoupled form (i.e. each

row has only one nonzero element) will yield the same tendon forces.

Therefore, we conclude that applying different minimum p-norm tension con-
trol algorithms to a tendon-driven manipulator with either n+1 or 2n ITS will
not result in different tendon forces. We called such control algorithms ”the

minimum tension control algorithm” for manipulators with ITSs.

5.3 Maximum Tensions

For a given manipulator posture, tendon forces required to generate a force f
at the end-effector can be calculated by eq. (2.7). By confining the magnitude
of the output force to one unit, each tendon force will vary as the output force
changes its direction. Under this condition, the minimum tension control algo-
rithm presented in section 5.2 will be applied to evaluate the maximum tension

in each tendon.

For a manipulator with n+1 ITS to output a unit force f, the minimum A is
given by eq. (5.3),
Amin = max{—(A}537); £} (5.11)
§ L

Substituting eq. (5.11) into eq. (2.7) and applying the Cauchy-Schwarz in-

equality, the maximum tension in each tendon can be obtained as

max({,-) = mfx{ll [(‘A'r-it--ij-vl)1 - (Azzl)J]JT ”}? 0= 17273, T, + 1 (5]‘2)
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Substituting eq. (5.8), for m = n+1, into eq. (5.12), yields

max(¢;) =| | max{]| (PRen)i—(PLa), JUT@HTIT |}, i=1,2,3,---,ntl

(5.13)

n+1

If we let L be an identity matrix and the end-effector be located at the isotropic

point, i.e., J = j, then eq. (5.13) becomes

p - - .
max(€) =1 = | max{] (BT — PLIUT I}, i =123, 0 +1

(5.14)

Since U does not affect the norm in eq. (5.14), eq. (5.14) can be further simplified

into

max(£;) =| | max{|| (P7y2)i — (PTa)i I}, i=1,2.3,-,n+1 (515)

Qn41

Hence, the maximum tendon force in each tendon when the end-effector is located

at an isotropic point has a value of

ma'x(é.i)z\/ilﬂla i=1>2)3,""n+1 (5.16)

For a manipulator with a 2n ITS to output a unit force f at the end-effector,

we use eq. (5.10) and (2.6) to obtain the minimum ) as
(A)min = (AFD)ITf], 1=1,2,3,---,n (5.17)

Substituting eq. (5.17) into eq. (2.7), the force in each tendon can be derived as

Eri-1 = max{0, (A3 )ai-1 — (AF))2)37 £} (5.18)
&2 = max{0, (A )oi — (AF])2i-1)37 £} (5.19)

Applying the Cauchy-Schwarz inequality to egs. (5.18) and (5.19), we obtain the

maximum tendon forces as

max(€xi-1) = max(éx) =|| (A3 )ai-1 ~ (A5)237 | (5.20)
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Substituting eq. (5.9) into (5.20), yields

Again when J = J and L = I,, and substituting eq. (5.8) into eq. (5.21), we
obtain
2 ~ .
max(§)) = 2= Il (BL); I, §=1,23,,2n (5:22)
Hence, substituting eq. (3.13) into (5.22) yields the maximum tendon force for

each tendon at an isotropic point as

max(§;) = V2| ul, j=1,2,3,-,2n (5.23)

Since p is a global amplification factor, we can select u to be equal for both

n+1 ITS and 2n ITS. Hence, at the same designate isotropic points, we have

max(&i)nt+1 = max(&;)zn (5.24)

If we further confine the product of all singular values of an ITS to be equal

to one, from eq. (3.10), u is then equal to

| g |= /o100 (5.25)

where o; (i = 1, -+, n) are the singular values of LJ.

Hence, the maximum force in each tendon at an isotropic point has a value

of
max(é‘k) = \/5\/" 01020y, k=1,2,3,---,m (526)
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5.4 Condition Number

Since the Jacobian matrix of a manipulator is position dependent, the condition
number of A*TJ7 is also position dependent. Based on the same designated
isotropic point, in what follows, we prove that the condition number of A*7JT

for an n+1 ITS is equal to that for an 2n ITS in the whole workspace.

From eq. (5.8), the condition number of A*TJT can be expressed as

cond(A+TIT) = cond(aiﬁfnUT(Lj)-TJT) (5.27)

m

where cond( ) denotes the condition number of the matrix in the parenthesis.
Since the selection of a constant u/a,, and a rotation matrix U does not effect

the condition number of AtTJT. we have
cond(AYTIT) = cond(PT (LY)-TIT) (5.28)

From egs. (3.11) and (3.13), it can be shown that both f’fﬂ and PZ have unity

condition numbers. Thus, we conclude

cond(A*TIT) = cond((LI)~TIT) (5.29)

From eq. (5.29), we can see that both n+1 and 2n ITS have equal condition

numbers in the whole workspace.

5.5 Sum of the Tendon Forces

From the previous discussion, it seems that a manipulator with either an n+1

ITS or an 2n ITS possesses many similar features. In this section, both types of
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ITS will be compared based on the sum of all tendon forces in order to understand

the antagonistic relationship among tendons.

Substituting eq. (5.8) into (5.2), the tendon forces of an ITS are

€= LPTuT@h)Tr+HA (5.30)

m

From eq. (5.30), the sum of all tendon forces can be written as

6= —[Z B UTLHTr + [Z(H (5.31)

i=1 Qm i=1

where Y™ (PT); is a row vector with the sum over each column of PZ and

i (H); is a row vector with the sum over each column of H. Since both
YU PI, )i and Y2 (PT); are equal to a zero vector, the sum of tendon
forces due to the particular solution in eq. (5.31) is always equal to zero. Hence,
the sum of the tendon forces are completely determined by the homogeneous
solution. The homogeneous solution has no effect on joint torques. Hence, the
tension sum indicates the antagonistic relationship among tendons for an ITS.
Since H,4; and Hj, of the ITS contain only unit elements, the sum of tendon

forces depends on A. Note that all elements of A for both ITS are always positive.

For n+1 ITS, substituting eqs. (3.12) and (5.3) into eq. (5.31), yields

n+1
Z Ei=(n+ 1 min = (n +1) mf*x{_(A:-{l)j T} (5'32)

i=1
Substituting eq. (5.8) and (2.6) into (5.32), gives

n+1

ZE,-— n+1) max{ (

1=1

)(PL.); UT(LI) 737 £} (5.33)

An41

At an isotropic point, if L is equal to an identity matrix, eq. (5.33) becomes

n+1

Z&— n+1) max{ (

LU (5-34)
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If we confine the magnitude of the output force f to one unit, then the application

of the Cauchy-Schwarz inequality gives the maximum of 371! £; as

n+1 .
max(3_ &) = (n+1) | 2 [max{| (FLL); I} = Va?Fnlul - (535)
i=1 n+1 J

From a geometric interpretation, each row of ISZH represents a position vec-
tor of an apex of a regular simplex. The quantity “—(lsf+1)jUT f7 is the dot
product of the vector “~U7T f” and the position vector of an apex of a regular
simplex. Hence, the smallest value of max;{—(PZ,,);U7 f} happens when the
vector “—U7 f” points to the center of a face of the regular simplex. Since this
direction is opposite to the position vector of an apex, the smallest value of
maxj{—(f’£+1 ;UT f} is the negative dot product of any two position vectors of

the apexes. Hence, we have
~ 1
min{max{~(BZ,.),UT}} = - (5.36)
§ L

Substituting eq. (5.36) into (5.34), yields

.ol n+1 n+1
min(}" &) = = n (5.37)

- n | Ont1 n

For 2n ITS, substituting eqgs. (3.14) and (5.10) into eq. (5.31), we obtain the
sum of the tendon forces as

2n n n
YoE=2) =2 | (A} z| (5.38)
i=1

i=1 i=1

~

Since all rows of (P )y fori =1,2,3, -+, n, form an identity matrix, substi-

tuting eq. (5.8) into eq. (5.38), yields

St=2] A [ (NI £ (5.39
i=1 noog=1
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Using eq. (5.39) in a manner similar to that use for n+1 ITS, the sum of the
tendon forces generating a unit force when the end-effector is located at an

isotropic point is given by

2n n
S&=2 = (U £ (5.40)
i=1 n =1

The maximum sum of the forces 32", {; generating a unit force happens when
UTi points in the [£1,+£1,- .-, £1] direction and is given by
2n n
max()- &) =2| o [ma{ | (UT); f}=vanlnl  (541)
i=1 n i=1
The minimum sum Y22, ¢; happens when U f points in the [0,---,0,%1,0,---,0]
direction and is equal to

min(356) =21 - [min{S | (UT) [ =VEIu] (542

i=1

If we choose the same | p | for both n+1 and 2n ITS matrices, we obtain

1
B WIS VR ISV | plS Ve Fn | (5.43)

n

where the equal sign holds only for n=1. Therefore, the maximum tension sum
of an n+1 ITS is larger than that of an 2n ITS, while the minimum tension sum
of an n+1 ITS is smaller than that of an 2n ITS. For an n+1 ITS, the maximum
tension sum is n times the minimum tension sum. For an 2n ITS, the maximum
tension sum is \/n times the minimum tension sum. This means an n+1 ITS

generates higher antagonistic tendon forces than an 2n ITS does.

The two-dof planar manipulator shown in Fig. 4.1 is chosen to evaluate the
sum of the tendon forces. One 2x3 ITS matrix and one 2x4 ITS matrix are

selected for comparison. The 2x3 ITS matrix is the transmission structure (¢).in
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Table 4.1 whereas the 2x4 ITS matrix is transmission structure (b) in Table 4.3.
Both ITS are designed so that their isotropic points are located the same x = £

and y = 0 position.

— 2x3 ITS 2x4 ITS

Figure 5.1: Polar plots of the tension sums for the manipulator shown in Fig. 4.1

with two different ITS: one is a 2x 3 ITS, and the other is a 2x 4 ITS

Figure 5.1 shows polar plots of the sum of tendon forces working against a
unit external force acting at the end-effector from all possible directions while the
end-effector is located at the isotropic point. Note that by selecting a different U
in eq. (3.15) to derive a different ITS, the resulting polar plots can be obtained
by rotating the original polar plots by an appropriate angle. From Fig. 5.1, we
can see the tension sum of the 2x4 ITS has smaller variation than that of 2x3
ITS does. The maximum tension sum of the 2x3 ITS is also larger than that of
the 2x4 ITS while the minimum tension sum of the 2x3 ITS is less than that
of the 2x4 ITS. Therefore, a 2x3 ITS has higher antagonistic forces than a 2><4
ITS.
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Figure 5.2: Spherical plots of the tension sum for the manipulator shown in

Fig. 4.8 with a 3x 4 ITS

Figure 5.3: Spherical plots of the tension sum for the manipulator shown in

Fig. 4.8 with a 3x 6 ITS
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Figures 5.2 and 5.3 show spherical plots of tension sum for the manipulator
shown in Fig. 4.8 with two different ITS when a unity external force is applied at
the end-effector and when the end-effector is located at the designated isotropic
point (z = 0,y = z = £/+/2). The 3x 4 ITS shown in Fig. 5.2 is the structure
(b) listed in Table 4.5, and the 3x 6 ITS shown in Fig. 5.3 is the structure (b)
listed in Table 4.7. Again, the tension sum for an ITS with six tendons assumes

lower antagonistic forces than that with four tendons.

5.6 Controllability of 2n ITS

Since a 2n ITS employs more tendons than required to fully control an n-dof
manipulator, one might be interested to learn its controllability when one or
more tendons malfunction. To answer this question, we should examine whether
the resulting transmission structure complies with the conditions of admissible

transmission structure presented in Chapter 2.

Due to the existence of “dual transmission lines,” a general 2n ITS matrix

can be expressed as

a;x —an ayz —ai2 . 41 —ain
a1 —azy a2 —Azx - QGpn —A2y
T _
Aw=| (5.44)
Qp1 —Apy Qp2 —Qnp2 *** Qpn —0anp

where the 2i-th columns, 1= 1,2,3,---,n, represents the dual of the (2:-1)-th

column. The null matrix H is given by eq. (3.14).
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When the (2:-1)th (or 2:th) tendon malfunctions, the resulting transmission
structure matrix is obtained by deleting the (2:-1)th (or 2ith) column from the
matrix AT . Hence, the corresponding null matrix H can be obtained by deleting
the (2:-1)th (or 2:th) row and the ith column. Thus, the (2:-1)th row of the
resulting null matrix H contains all zero elements which means positive tension
in the corresponding (2:-1)th tendon can not always be maintained. Therefore,
the resulting transmission structure matrix is not an admissible transmission

structure.

Following the same procedure when another tendon malfunctions, the result-
ing null matrix H will contain another row with all zero elements. Hence, we
conclude that when one or more tendons malfunction, a manipulator with a 2n

ITS becomes uncontrollable.

5.7 Conclusions

In this chapter, many features of ITS have been described. The existence of
a unique minimum tension control methodology for ITS eases and unifies the
design of the control system. With the discussion of the maximum tensions,
the global amplification factor ¢ can be regulated so that a manipulatéor with
any ITS will possess the same maximum tendon force in each tendon against
a unit external force acting at the end-effector. It is shown that the condition
number of the matrix product A*7J7 of a manipulator with either type of ITS
is the same in the whole workspace. The sum of the tendon forces differentiates

between the two types of ITS. The study of controllability when one or more
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tendons are broken reveals that 2n ITS is no better than n+1 ITS.
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Chapter 6

Design of a Three-DOF
Manipulator Having Equal
Maximum Tensions within its

Entire Workspace

6.1 Introduction

For a manipulator designed without any structural optimization, tension in each
tendon against an external force applied at the end-effector will vary as a func-
tion of the direction of applied force and the position of the end-effector. As
a result, the maximum tension for each tendon in the whole workspace would

be different from one another. If equal strength tendons are used, the largest
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maximum tension among all tendons should be used for the sizing of tendons.
This, however, will be inefficient. If different strength tendons are adopted, the
transmission structure will be degraded due to the diverse attributes of the ten-
dons. Therefore, a manipulator with the feature of equal maximum tensions in
its whole workspace is crucial in the design of a manipulator with equal strength
of its actuators and tendons. A manipulator with this feature is also expected

to simplify the process of design.

Lee and Tsai (1991a) developed a methodology to implement all possible
tendon routings for an n-dof manipulator controlled by more than n actuators.
A methodology to optimize the tendon routings and pulley sizes for an n-dof
manipulator with n+1 or 2n actuators based on the concept of local isotropic
transmission characteristics was presented in Chapter 3. An isotropic transmis-
sion structure ensures a unity condition number of the static force transformation
matrix and equal maximum tensions in all tendons against a unity force applied
at the end-effector, when the end-effec‘tor is located at an isotropic point. How-
ever, as the end-effector moves away from the isotropic point, maximum tension

in each tendon may become different.

Generally speaking, the feature of equal maximum tensions cannot be achieved
simply by designing its transmission structure, except for some particular manip-
ulator configurations. For ekample, a manipulator with all perpendicular joint
axes. In this chapter, we present the design of a particular three-dof manipulator
which possesses the feature of equal maximum tensions in its entire workspace.

The description of the manipulator follows.
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6.2 Description of the Three-dof Manipulator

>
\\\3}-1 N

Figure 6.1: The three-dof link structure of the Salisbury finger

To improve static performance of existing devices with the aforementioned fea-
tures and to illustrate the methodology, the linkage structure and the four ten-
dons (actuators) of a three-dof manipulator (taken from the Stanford/JPL hand)
was adopted. Figure 6.1 shows its linkage structure; the first and the second joint
axes are parallel to each other, and the third joint axis is perpendicular the sec-
ond. Note that the links and joints as shown in Fig. 6.1 are numbered from the
outermost to the proximal, where ¢,, £;, £3, and 8, 0, 5 are the corresponding
link lengths and joint angles. Although, the end-effector of this manipulator
travels in a complex three dimensional space, its linkage structure and tendon

routings are simple enough to be applied by the methodology developed here.

By letting 65 be equal to 90°, the Jacobian matrix of the manipulator, which

represents the transformation from the joint space to the end-effector space, can
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be written as

0 0 —(Ca + I3 + C12h2)
J= e2 —512112 —52 - 512112 0 (61)
Cizhz  Ci+ Cialys 0

where 02 = 008(02),52 = Sin(&z),Clz = 003(91 + 92),512 = S'm(91 + 02),
liy = 6 /l; and l3; = €3/¢;. Hence, l;; and I3; are two non-dimensional link

length ratios.

Figure 6.2: The tendon routings and pulleys of the Salisbury finger

Figure 6.2 shows the tendon routings and pulley arrangement of the Stan-
ford/JPL finger. The power is transmitted from the actuators to the joints

through four tendons.
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6.3 Structure Matrix with Equal Maximum

Tensions

Consider an external force f* = [f, f;, f2]T applied at the end-effector. Apply-
ing the minimum tension control algorithm to regulate and to maintain positive
tendon forces, A in eq. (2.15) is given by:

(A+TJT)J,i*

} 7=1,2, 3, and 4 (6.2)
h;

A= m]ax{

where ( ); denotes the j-th row of the matrix in the parentheses, max{ }; de-
notes the maximum value among all the possible choices of j and h; is the jth

element of h in eq. (2.15).

Substituting eq. (6.2) into eq. (2.15), we obtain scalar forms of eq. (2.15) as

6 = max{[(A*TI) + (AFTIT M) PY s 2,8, ande (63)
J j
Confining the externally applied force on a unit sphere and applying the

Cauchy-Schwarz inequality to eq. (6.3) result in

ma'x(&) = max{” (A+TJT)i - (A+TJT).7'% “}’ 1=1, 2, 3, and 4 (64)
J i

When all four maximum tendon forces are equal, it is clear that the elements of

h should satisfy
—=1; i,7=1, 2, 3, and 4 (6.5)

i.e.,

h=1,1,1,1]" (6.6)
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Note that eq. (6.6) is one of the criteria for an isotropic transmission structure.

Using eq. (6.6), the condition of equal maximum tensions can be stated as

maz(giz, 913, §14) = Maz(ga1, gas, g24) = Maz(gs1, gaz, gsa) = Maz(ga1, ga2, 943) (6.7)
where
gii = g5 =|| [(AYT); = (ATT),]IT |; 4,5=1,2, 3, and 4 (6.8)

There are a total of six norms involved in eq. (6.7), namely: g12, ¢13, 914, 923,
924, and ga4. The Jacobian matrix J depends on the posture of a manipulator,
as do the six norms. It is clear that, for eq. (6.7) to be valid, the six norms must

satisfy one of the following two conditions:

1. Three of the six norms are equal to each other and the other three are

always less than or equal to the first three norms in the whole workspace.

2. Each maximum tendon force is determined from an equivalent set of norms,

maz(g12, §13, g14), provided the following conditions are satisfied:

912 = 34, (6.9)
d13 = 24, and (610)
914 = g3 (6.11)

Condition 1 results in rank-deficient transmission structure matrices, which

are not admissible. In what follows, we will only consider condition 2.

Equation (6.9) can be rewritten as

I {(A*): = (AFT)] 3T = [(A*T)s = (A*T) ] I | (6.12)
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To derive matrix A, we first express matrix A*7 as:
a1 a12 G013
a1 a2 a
A+T _ 21 22 23
31 dasz Q33

a41 G4q2 Q43

where a;; (3, j =1, 2, 3, and 4) are the unknown elements of A*T.
Substituting eqs. (6.1) and (6.13) into eq. (6.12), we obtain

[(a12 — a22)® — (@az — ag2)?}(1 + 2012C1) +
[(a13 — (123)2 — (as3 — 043)2](02 + sy + C'12112)2 +

[(012 - (122)(011 - 021) - (a32 - 042)(031 - 041)]211201 +

[(012 —az +an — 1121)2 - ((132 — a4+ a3 — 041)2]132 =0

Since #; and 6, can take any two arbitrary angles, we conclude that

(@13 — a23)* — (ass — ag3)* = 0
(a12 — az2)? — (a2 — as)*+

(@12 — ag2)(@11 — as1) — (as1 — aq1)(as2 — age) =0
(asg — ag2)? — (a12 — az)? =

lfz[(alz — Gy —ay — (121)2 — (asy — ag2 + az — 041)2]
Similarly, from eqs. (6.10) and (6.11), we obtain

(a13 — a33)? — (az3 —ayg3)* =0
(a12 — 032)2 — (a2 — a42)2+

(@11 — a3 )(a12 — as2) — (a1 — agq1)(agp — agg) =0
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(6.14)

(6.15)

(6.16)

(6.17)

(6.18)

(6.19)



(azz - 042)2 - (012 - a32)2 =

(a1 — ass — a1 — az1)? — (ags — aqz + az1 — ag)?] (6.20)
and

(@13 — ag3)? — (ag3 — a3z)®* = 0 (6.21)
(@12 — 4142)2 —(ag — 032)2+

(@12 — ag)(an — aq1) — (az1 — aa1)(azz — az2) =0 (6.22)
(ag2 — as3)? — (@12 — aq2)® =

132[(0'12 — Q42 —A11 — a41)2 - (022 — 439 + aq — 0,31)2] (623)

Since eq. (6.6) is a null vector of AT, and thus the null vector of A*, A+T

must satisfy the following constraints:

aynn +az +as +aq = 0 (624)
a2z + a2+ asz2+ap =0 (6.25)
a1z +as+azs+ags=0 (6.26)

Equations (6.15) through (6.26) are a set of twelve equations in twelve un-
knowns. However, only nine of them are independent. By solving egs. (6.15)
to (6.26) and eliminating those solutions which yield rank-deficient matrices, we

obtain

o -

a
—app 2 a3 a3

+%42 — ¢ a —a
AT " 22 422 13 (6.27)
a F ¥ —ap a3

a
Fi2 4 ax —ax —as
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Since

(ATT)r = AT (6.28)

we have

AT = (ATATT)IAY (6.29)
By introducing the new variables,

1 a12 az2
a=— = —a7 and ¢= —————— 6.30
day;’ 2(0%2 - a%z), 2(“%2 - ‘132) ( )

we obtain AT as
Fclyg +bly, *clys Fblyg
AT =|bFchy —ctblyy, —btechy cFblhy (6.31)
a —a a —a
Therefore, the three-dof manipulator with its structure matrix in the form of
eq. (6.31) possesses the feature of equal maximum tensions in its whole workspace.

Note that the link ratio l3; has no effect on the structure matrix.

6.4 Addition of Isotropic Transmission Char-

acteristics

When the end-effector of a manipulator locates at an isotropic point, the max-
imum tensions on the four tendons are equal to one another. This feature is
compatible with that of equal maximum tensions. The link ratio /3, and the
four free variables in eq. (6.31) leave enough room for introducing more design
constraints. Therefore, we can impose the concept of isotropic transmission to

the design of this manipulator.
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To achieve isotropic transmission characteristics, as discussed in Chapter 3,
two criteria should be satisfied: the first is eq. (6.6), and the second is
T 1 T
A"A=—-TJ] (6.32)
@

where p is an arbitrary constant.

Since eq. (6.31) satisfies (6.6) automatically, we need only to consider eq. (6.32).
Substituting eq. (6.31) into eq. (6.32), we obtain, upon simplification, the fol-

lowing two independent equations:

—2bc

and
2a*

i (I + C2 + 112C12)* (6.34)

From egs. (6.33) and (6.34), it is clear that the link ratios /;; and l3; and
the location of isotropic point can be chosen arbitrary, as long as the Jacobian
matrix is not singular. After selecting the link ratios and the location of the
isotropic point, egs. (6.33) and (6.34) become two constraints for the matrix in
eq. (6.31). Therefore, there is one free variable that serves as an amplification

factor for the whole transmission structure.

The following section provides a numerical example to illustrate the charac-
teristics of this type of manipulators. The results are compared with that of the

Salisbury finger.

104



6.5 Numerical Examples

The link proportion of the Salisbury finger from the distal link to the proximal
link is 1 : 1: 0.685. The radii of the pulleys shown in Fig. 6.2 are B,=1.0795cm,
R;=.8255cm, R3=R;=H¢=.5969cm, Rs=1.1862cm, and R;=.6350cm. Hence,

the transmission structure matrix of the manipulator can be written as

0 —.6350 .6350 0
~1.1862 —.5969 .5969 1.1862 (6.35)
—.8255 5969 .5969 —1.0795

To demonstrate the effect of equal maximum tensions and the isotropic trans-
mission characteristics, a new transmission structure is developed. The link ar-
rangement and link proportion are the same as that of the Salisbury finger. The
variable ¢ in eq. (6.31) is set to zero to maintain the same tendon routings as
that of the Salisbury finger for comparison. Thus, the isotropic points can be
chosen only at the locations where the joint angle 6, is equal to £90°. The new
transmission structure is designed so that the manipulator possesses isotropic
transmission characteristics when 6; = 90° and 6, = 0°, and the point (x=0,
y=£3 + {3, z=1{;) is one of the isotropic points on the locus. The transmission
structure matrix can be derived from eqs. (6.31) and (6.34) by letting b = —1.
After discarding the solutions that involve different routings from that of the
Salisbury finger and after reordering columns of the transmission structure, such

that the new transmission structure matrix has the same form as the matrix in
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eq. (6.35), we obtain

AT=| -1 -1 1 1 (6.36)

-1.192 1.192 1.192 -1.192

The maximum tendon force on each tendon of the two transmission structures
is computed by using eq. (6.4) at three different end-effector positions: the first
is at x=0, y=03 + £, z={;, the second is at x=0, y=£3 + V/2/3, z=0, and the
third is at x=0, y=~£3, z=v/2¢5. The first position is an isotropic point for the

new transmission structure.

Structures (a) (b)
K 1.899 0.5942
. max.
position . [1.514, 2.363,2.415,1.453] | [1.683,1.683,1.683, 1.683]
1 tensions
ratio 1.042:1.626 : 1.662 : 1 1:1:1:1
. max.
position . [1.75,2.749,2.792,1.699] | [1.899,1.899,1.899, 1.899]
9 tensions
ratio 1.03:1.618:1.643:1 1:1:1:1
. max.
position . [1.13,2.104,2.104,1.13] [1.681,1.681,1.681, 1.681]
3 tensions
ratio 1:1.862:1.862:1 1:1:1:1

Table 6.1: List of k’s, maximum tensions, and their ratios at three end-effector

positions

In what follows, we let ;3 = 1 unit for simplicity. To achieve a fair comparison,

each transmission structure matrix is multiplied by a constant «. The value
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of x is chosen so that the product of the three singular values of each AT is
equal to one. Table 6.1 lists the values of x, the maximum tensions and their
ratios at the three positions. In Table 6.1, structure () represents the Salisbury
finger and (b) represents the structure with the transmission structure matrix
derived in eq. (6.36). Structure (@) has different maximum tensions at the three
representative positions, and the ratios of its maximum tensions are never equal
to 1:1:1:1. Structure (b) has equal maximum tensions at all three positions, and

the ratios of its maximum tensions are always equal to 1:1:1:1.

Figures 6.3 and 6.4 show the spherical plots of the four tendon forces for
structures (a) and (b), respectively, evaluated at position 1. In a spherical plot,
the radial distance represents the tendon force and the phase angle represents
the direction of the applied force. Except for a change in orientation, the four
spherical plots shown in Fig. 6.4 are identical in shape with each other while

those shown in Fig. 6.3 are different from one another.

6.6 Summary

Through static force analysis, a design methodology for determining tendon
routings and pulley sizes of a particular three-dof tendon-driven manipulator
is developed. The manipulator features the characteristics of equal maximum
tensions and isotropic transmission. The characteristics of equal maximum ten-
sions ensure that all tendons subject to equal maximum tensions in its whole
workspace when an external force is applied at the end-effector in all possible

orientations. The isotropic transmission with appropriately selected isotropic
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tendon 1 tendon 2

y 2 2 x y 2.2 X

tendon 3 tendon 4

Figure 6.3: Spherical plots of the six tendon forces versus direction of applied
force for structure (a) evaluated at position 1. The radial distance represents

the tendon force and the phase angle represents the direction of applied force.
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y -3 -2 X y -1 -1 X

tendon 1 tendon 2

y 2 -2

y 2 2

tendon 3 tendon 4

Figure 6.4: Spherical plots of the six tendon forces versus direction of applied
force for structure (b) evaluated at position 1. The radial distance represents the

tendon force and the phase angle represents the direction of applied force.
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points helps to improve the static performance of the manipulator.
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Chapter 7

Summary and Future Study

7.1 Summary

This work deals with the synthesis of the mechanical power transmission struc-
ture in tendon-driven manipulators. Four topics were addressed: (1) kinemat-
ically admissible transmission structures, (2) design of transmission structures
with isotropic transmission characteristics, (3) attributes of isotropic transmis-
sion structures, and (4) the design of a three-dof manipulator with equal maxi-

mum tensions everywhere in its workspace.

Due to the constraint of uni-directional force, the synthesis of tendon trans-
mission mechanism is different from that of bi-directional force transmission
mechanisms. In the first topic, the fundamental rules for kinematically admis-
sible transmission structures was addressed; and then an efficient algorithm to

check for kinematically admissible transmission structures was derived. The
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rules and the algorithm are then simplified for transmission structures with the
minimum number of tendons, n+1 tendons, required to independently control

each joint of a manipulator.

Based on the analysis of the static force transmission from the end-effector
space to the actuator space, the design objective is then aimed at the creation of
transmission structures with isotropic transmission characteristics. It is shown
that only transmission structures with n+1 and 2n tendons can be designed
to possess these characteristics. The design equations and their analytic solu-
tions for creating such transmission structures are derived. It is shown that the
designated isotropic point can be chosen at any place where the Jacobian ma-
trix is nonsingular, thereby, increasing the solution space of optimal design of

tendon-driven manipulator.

Comparisons for manipulators with the n+1 type, 2n type isotropic trans-
mission structures and other non-isotropic type transmission structures are il-
lustrated through many different examples. It is shown that manipulators with
isotropic transmission structures have more uniform force distribution among
their tendons. Furthermore, it is also shown that a better global performance

can be achieved through proper selection of the designated isotropic point.

To broaden the understanding of the isotropic transmission characteristics,
many attributes of a manipulator with an isotropic transmission structure was
discussed. The analysis of minimum p-norm tension leads to a unique control
tension algorithm. The analysis of maximum tension proves that the maximum

tension in each tendon can be made equal to one another. The condition number
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of the transformation matrix A*TJ7 is shown to be the same for both the n+1
type and the 2n type isotropic transmission structures. The difference in the sum
of tensions for the n+1 and 2n type isotropic transmission structures reveals that
the 2n type transmission structures has smaller antagonistic forces among their
tendons. A study of the controllability of the 2n type isotropic transmission
structures shows that all 2n tendons are necessary for independently controlling

each joint.

Since the maximum tension in each tendon is equal at an isotropic point,
it is interesting to extend the feature to the whole workspace. A special three-
dof spherical manipulator with isotropic transmission structure was designed
to possess the characteristics of equal maximum tensions everywhere within its

workspace.

Although only small size manipulators are mentioned in this work, the re-
sults are equally applicable to other applications. Examples include construction
robots and space robots where the actuators have to be installed on a base and
the power transmission mechanisms should be compact and lightweight. Such
large scale manipulators usually require isotropic transmission characteristics

within a reasonable working range.

7.2 Future Study

So far, we have established kinematic design constraints and static design method-

ologies for tendon-driven manipulators. Based on kinematic and static analysis,
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this work provides a fundamental analytical and theoretical basis for the design
of such mechanisms. However, in real-world applications, the design goals are
far more complicated than what the analysis can achieve. There is no doubt

that many issues remain to be investigated.

Experimental validation

To verify the concept of the isotropic transmission characteristics and to further
understand the characteristics of a tendon-driven manipulator, it is necessary to
build an experimental prototype. By using different pulleys and tendon routings,
the effects of isotropic transmission structures can be demonstrated and com-
pared. This protype can also serve as a test bed for different force controllers
and tension sensors. The physical properities of a tendon-driven manipulator can

then be studied. Such investigation is essential to better design a manipulator.

Global performance

As mentioned in the conclusion of Chapter 4, the selection of isotropic points has
a great influence on the static characteristics over the entire workspace of a ma-
nipulator. The selection of isotropic points depends on the link lengths and joint
configuration of a manipulator. To achieve global optimal performance, the link
lengths, joint configuration, tendon routings and pulley sizes should be carefully
considered as a whole. The development of a new theory or methodology based
on these parameters is crucial to the global optimal design of a tendon-driven

manipulator. And this is a subject worth pursuing.

Redundant manipulators

Although in this work, the Jacobian matrix is assumed to be a square matrix
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to avoid confusion, the design concept can be extended to those manipulators
with nonsquare Jacobian matrices. The number of degrees of freedom for such a
manipulator is more than that required to perform a primary task. The existence
of redundancy offers the possibility to perform a secondary function such as
obstacle avoidance and optimal path planning. As the design criteria for such
manipulators are more complex than non-redundant manipulators, we feel that

this is a completely new topic for the design of tendon-driven manipulators.

Dynamic effect

A tendon-driven mechanism is widely adopted in the design of dexterous hands
for its lightness and compactness, where the primary tasks of a dextrous hand are
to grasp and to manipulate objects. Such tasks usually involve slow motions and
static analysis of this system can lead to satisfactory results. As we should free
ourself from such limited applications and widen our applications, the impor-
tance of large and fast motions of a manipulator will never be over-exaggerated.
The main concerns in the design of a manipulator for these applications are the
dynamic effect and kinematic performance within its entire workspace. Such
a design problem is a necessary challenge for the completeness of the design

methodologies for tendon-driven manipulators.

Tendon compliance, system friction and control strategies

As mentioned before, human tendon-sheath system has nearly the lowest fric-
tion. However, today’s tendon-technology falls far behind the works of the nature
in this perspective. As a tendon stretches under tension, the tendon unavoid-
ably slides against pulleys. This phenomenon generates friction and causes wear

and fatigue. The selection of tendons affects the reliability and strength of
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tendon-driven manipulators. Together with tendon compliance, the nonlinear
characteristic of friction also cause problems in the design of the control sys-
tem (Townsend and Salisbury, 1987). Since a tendon-driven manipulator per-
forms under the control of antagonistic forces among its tendons, the control
strategies has great influence on the performance of the system. An innovative

methodogy for sensor-based adaptive nonlinear control needs to be developed.

The above discussions only reveal portions of the challenges to the design
of tendon-driven manipulators. As the understanding of all these matters and
other relative technologies increase, the design and the capability of tendon-
driven manipulators can be improved. Before that, much work needs to be

done.
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