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ABSTRACT

Title of Dissertation: Lie Algebraic Methods for Treating Lattice
Parameter Errors in Particle Accelerators

Liam Michael Healy, Doctor of Philosophy, 1986

Dissertation Directed By: Dr. Alex J., Dragt, Professor
Department of Physics and Astronomy
University of Maryland

Orbital dynamics in particle accelerators, and ray tracing in light
optics, are examples of Hamiltonian systems. The transformation from
initial to final phase space coordinates in such systems is a symplectic
map. Lie algebraic techniques have been used with great success in the
case of idealized systems to represent symplectic maps by Lie
transformations. These techniques allow rapid computation in tracking
particles while maintaining complete symplecticity, and easy extraction

of analytical quantities such as chromaticities and aberrations.

Real accelerators differ from ideal ones in a number of ways.
Magnetic or electric devices, designed to guide and focus the beam, may
be in the wrong place or have the wrong orientation, and they may not
have the intended field strengths. The purpose of this dissertation is
to extend the Lie algebraic techniques to treat these misplacement,

misalignment and mispowering errors.

Symplectic maps describing accelerators with errors typically have
first-order terms. There are two major aspects to creating a Lie
algebraic theory of accelerator errors: creation of appropriate maps

and their subsequent manipulation and use.



There are several aspects to the manipulation and use of symplectic
maps. A first aspect is particle tracking. That is, one must find how
particle positions are transformed by a map. A second is concatenation,
the combining of several maps into a single map including nonlinear
feed-down effects from high-order elements. A third aspect is the
computation of the fixed point of a map, and the expansion of a map
about its fixed point. For the case of a map representing a full turn

in a circular accelerator, the fixed point corresponds to the closed

orbit.

The creation of a map for an element with errors requires the
integration of a Hamiltonian with first—-order terms to obtain the
corresponding Lie transformation. It also involves a procedure for the
complete specification of errors, and the generation of the map for an

element with errors from the map of an ideal element.

The methods described are expected to be applicable to other
electromagnetic systems such as electron microscopes, and also to light

optics systems.
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Introduction

The work presented here is part of an ongoing effort in the appli-
cation of Lie algebraic techniques to particle accelerators and related
areas such as light optics (Dragt and Finn [1976], Dragt [1982], Douglas
[1982], Dragt and Forest [1983], Forest [1984]). In particular, I treat
the problem of lattice parameter errors, especially beam element align-

ment, positioning and powering errors.

Such errors will generally introduce a first-order term into the
factorized Lie transformation, i.e., a particle on the design trajec-
tory, once it passes through one of these erroneous beamline elements,
will no longer be on the design trajectory. There thus need to be the
mathematical tools available to work with these maps: concatenation,
tracking and finding the fixed point (closed orbit) in particular. Part

I covers these mathematical tools.

Part II then treats a problem which perhaps conceptually comes be-
fore Part I: how the maps of erroneous elements are computed in the
first place. What is described here is an extension of the methods
developed previously in the references given above for ideal elements,

together with some computation of actual elements.

Finally, the appendices cover various topics of related interest:
the beginnings of a method for treating random distributions of errors;
description, examples, testing and listing of MARYLIE 3.1, the computer
code that embodies the work here by extending the Lie algebraic particle
tracking code MARYLIE 3,0 (Dragt et. al. [1985]) to include errors; a
description of ANNALIE, the code written in the language SMP to assist

with the analytical computations needed to write MARYLIE.



Part I: General Lie Algebraic and Group Theoretical Tools

This part deals with the mathematics necessary to treat beamline
element errors, which produce first—-order terms in the factored Lie
transformations. It is an extension of the methods without first-order
terms developed by Dragt and Finn [1976], Dragt [1982], and Douglas
[1982]. Chapter 1 is an introduction to the mathematics, showing how
Lie algebras play a role in Hamiltonian systems. Much of the informa-
tion comes from the references above, but is repeated for the sake of
completeness. Chapter 2 deals with the tracking of particles through
the maps, and how a first-order term affects this process. Chapter 3
describes, in mathematical terms, the various Lie algebras implied by
possible approximation schemes, and shows a particular one as natural
for concatenation. Chapter 4 is a computation of the concatenation
rules, Chapter 5 shows how to handle the symplectification of matrices,
necessary when a first—order term is concatenated with higher order
terms. Chapter 6 is a description of a method for finding the fixed
point, or closed orbit, of a map, and the map around it. This is ex-
tremely important because in the presence of machine errors, one almost
always wants to find the new fixed point and the map around it.
Finally, Chapter 7 deals with the Euclidean group, the group of rigid

body motions, which we shall need for description of element alignment

errors.



1. Introduction

a. The Motion of Charged Particles in Accelerators

A charged particle moving in an accelerator is subject to electro-
magnetic forces of various origins. In most cases, the predominant
force is from the magnets, radio frequency cavities, and perhaps
electrostatic elements installed as part of the accelerator to guide and
accelerate the beam. Other possible sources include space-charge
forces, that is, the force of other charged particles in the bunch, and
wake—field forces, the electromagnetic force reflected off the walls of
a cavity from the earlier passage of particles. In additiom,
synchrotron radiation plays a significiant role in some machines, and
minor effects may be caused by collision of the accelerated particles

with residual gas in the beam pipe.

A major task of accelerator physics is to simulate the motion of
particles in accelerators to insure proper behavior and to understand
what magnet arrangements and strengths — the lattice - will produce de-
sirable behavior, and what arrangments will produce undesirable be-
havior. If we are lucky, we may find some entity that represents the
lattice, and from which we may extract the potential for good or ill

behavior directly, or use this entity for simulation of particle motion.

For simplicity, I shall assume the only significant effects in beam
motion arise from the external magnetic or electric forces, that is,
those forces coming from fixed elements such as bending magnets,
focusing magnets (quadrupoles), and so on. We then choose a set of

coordinates: the z direction will be along the direction of a particle
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following the design trajectory ("design particle"”), the x direction
will be in the midplane of the bending magnets, or horizontal and

perpendicular to z, y will be perpendicular to both, and t will be

flight time (see Figure 1.1). Both x and y are measured from the design

trajectory. Each of these has a conjugate momentum Pxs Pys Pys O Pp.

Six of these quantities (three pairs) form the phase space, and the
other pair become the independent variable and the negative of the

Hamiltonian. Given a particle's initial position in phase space,

Vo = (x’px’y’py’z,pz) lt:to’ (1'1)
one way to analyze particle dynamics is to study six dependent
variables, denoted by {, as a function of time, say

BIvO.eY = slv®,t), p 080 we 2 00°%,20. (1.2)

A simple representation of particle behavior would be to give these
functions for the whole time a particle would be in a machine.
Certainly, undesirable properties would become obvious - if a beam were
doomed to head for a wall, this would be indicated in the function.
Unfortunately, these functions are difficult to calculate in general,
due to non-linearities that arise from the kinematics and from the

lattice elements, and we would be mathematically unable to make use of

an obvious property of circular machines: as far as the forces are

concerned, one turn is like another.

We shall make an important change that remedies this problem: all

phase space variables will be measured as deviations from the design



values., This allows us to approximate the motion by Taylor expansion of

the functions:

Zy(vg,t) =§ mp3(e) v§ + _Zk £y (E) ViV + .o (1.3}

where v°

are the coordinates at t = 0 and my 35 tijk’ «es are real co-
efficients. For convenience, we may take a fixed section of the
accelerator, say one turn, as implicit, and drop the t. This corres~-
ponds to a Poincare surface of section; we give the coordinates of a
particular particle only at a particular position on the ring at each
pass and do not care what happens to it elsewhere. These functions -

together form what is called a transfer map and shall usually be repre-

sented with script letters M,N etc.

Generally, this is an effective method, because most accelerators
are quite linear. That 1s, each term in the expansion is much larger
than the next, so that truncation of the series after two or three turns

gives reasonable answers.

The quantities M = {mij}, T £ {tijk}’ «e. are determined solely by
the machine construction, and not at all by the initial (or any)
conditions of the particle. This is the representation of the lattice
we sought. We may track particles through a lattice by repeatedly
applying (1.2), or we may extract useful information directly from the
coefficients mij’ tijk’ ees o« Further, we may concatenate: determine
the matrices M, T, ... for a section from two pieces M;,T;, and Mo, To,
.+. that make it up, e.g., obtaining the lattice matrices for two turns
from those for one. If the nonlinearities are not too great, the terms

that have been eliminated in truncation will not be significant.

-



So far, I have assumed that all elements are perfectly positioned
and powered: there are no constant terms in the expansion (l1.3), so a
design particle, with coordinates (0,0,0,0,0,0), maintains those coordi-
nates. This need not be the case, of course; magnets, as well as

particles, may fail to be in the design position.

The introduction of constant terms represents no major problem
until we try to combine maps. Suppose we have two maps, from time ty, to
t; and from t; to t,.

F1%%0 (409 (1.4a)

and

tott
v2 = 2 lv?) (1.4b)

and we wish to combine these into a single map

£2%%0 0y, (1.5)

v2 = M
Then, with the truncation of the Taylor series at each step, we may
introduce "feed down" errors: a particular map's fourth-order term,
when concatenated with a first—order term, generates a third-, second-
and first—order term. If the fourth-order term had been neglected, the
resultant third-order term would be wrong. The solution to this, which
I shall discuss in greater detail later, is to assume that the constant
terms are small in the sense that the phase space coordinates are small,

and may be similarly truncated.



b. Hamiltonian Systems and Lie Groups

i. Hamilton's Equations

The motion of a charged particle in an accelerator, assuming no
synchrotron radiation effects, is a Hamiltonian system. The description
is given with a set of 2n coordinates {, which form n groups of
canonical pairs, and there is a function H({,t), the Hamiltonian, such

that Hamilton's equations hold,
E=J+ vH, (1.6)

Here the matrix J and the generalized gradient are defined by

B 0
gea] @ L . B=[20 ] (1.7)
and -
| 5
V. =3 s (1.8)
‘e
acZn

On the face of it, there is nothing special about a Hamiltonian
system as opposed to a non-Hamiltonian system. However, the motion
possible from a Hamiltonlan system, a Hamiltonian flow, is more re-
stricted than an arbitrary flow. In essence, some of the coefficients
M, T, ... of Section la are redundant. It will be possible to recast

the description of an accelerator section with fewer numbers. This is



done by means of a Lie transformation, a method describing a symplectic
map. All Hamiltonian flows give rise to symplectic transformations on

phase space, as I shall show later.

ii. Groups

To study Hamiltonian systems, we shall need the concept of a group.
A group is a set, together with a "multiplication"” operation which will

be denoted by juxtaposition, satisfying the following four axioms:

1) Closure: if A and B are in the group, so is AB;

2) Identity: there is an identity element I such that AI = IA = A;

3) Inversion: for every element A there is an inverse A"1 such that
A"l = a7la = 14

4) Associativity: group multiplication obeys the relation A(BC) =

(AB)C.

All the groups that will be introduced are lie groups. Lie groups
are groups that are also manifolds (have a differentiable structure)
such that the group operation and inversion are both ¢” (infinitely

differentiable).

A mapping p: G > H from a group G to a group H is a group

homomorphism if the group operation is preserved,

p(gy) p(gy) = p(g18y). (1.9)

If p is injective (one-to—one) and surjective (onto), i.e., is a one-to-

one correspondence, then it is an isomorphism and the groups are

~Q—



isomorphic.

Groups of transformations frequently appear in physics and are of
particular importance to Hamiltonian dynamics. For example, the set of
all possible rotations of a rigid body in space (or transformation of
the coordinate axes) forms a group. A particular kind of transforma-
tion, the linear transformation, acts on a vector space V. A

transformation T : V > V is linear if

T(alvl + a2V2) = alT(Vl) =+ azT(Vz) (1.10)

where v;,vy € V and a;,x, € R. If a set of basis vectors has been picked
for V, there is a 1-1 correspondence between the set of linear transfor-
mations on V and the set of n by n matrices, where n is the dimension of

V. For this reason, the distinction between these will be blurred.

A homomorphism from a group to a group of transformations is called
a realization of the first group. We shall see that a particular
realization is useful for computing the effects of misalignments (see
Chapter 12). If the homomorphism maps to a group of linear transforma-
tions, the realization is called a representation. If a realization or

a representation is an isomorphism it is called faithful.

A subgroup is a subset of a group that is also a group in itself,

under the same operation. An invariant or mnormal subgroup H of G is one

where for all h e H, g € G, ghg—1 € H.

iii. The Symplectic Group and the Group of Symplectic Maps

A linear transformation or matrix M is symplectic if it satisfies

=] 0=



the property

MIM = J, (1.11)

where M denotes the transpose of M. These transformations or matrices
form a group under matrix multipliation called the symplectic group,

designated Sp(2n).

A map M from R2D to R?n, £ =Mf, is symplectic if its Jacobian

matrix defined by

. PR (1.12)

is symplectic for all {. These maps form a group under composition, the

group of symplectic maps. The symplectic group is a subgroup of it.

iv. The Poisson Bracket and Canonical Transformations

The Hamiltonian evolution
(.; o J ° VCH (1.13)

can be used to study an arbitrary function on phase space f({,t). Then

the time dependence is
S= = Vet AL (1.14)

Hamilton's equations allows us to substitute for (:

-11-



df'— L3 ° 6_f
oVt TP (1.15)

It 1s useful to define the Poisson Bracket for two functions on phase

space
[f,g]C =Ygk ¥ I % Ypp (1.16)

so that
4 - rem) + 2L (1.17)

If there is no explicit time dependence in the function f, then

df _ = . .
o [£,H] = Vpf * J « VeH, (1.18)
Closely related to the concept of a Poisson Bracket is the impor-

tant concept of a canonical transformation. A canonical transformation

is a set of functions E(C,t) which preserve the Poisson Bracket:

I have used the subscript £ to indicate the derivative VC to be used,
because we now have another set of coordinates [ that could also be used
as canonical coordinates, In fact, if we invert the transformation C

+ T locally around the image { to form &(Z,t), we find
[€4,845]_ = 6,580 = Jy5, (1.20)
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so it too 1s canonical.

Suppose we make two canonical transformations in succession § »

E > E . Then

d3C a:.

= 2 Ci e J ° __C.l.
(o4 mn 3L

m,n °m n

) 2 GCi 6Ck 5 acl GCi
k,2,m,n Gak aCm . aCn 661

because [ak’al]C = Jyq, this is

e I3
5 el e TE P11 =
8C, oC,

So the composition of two canonical transformations { E is
canonical., Therefore, the composition of an arbitrary number of

canonical transformations is canonical.

Finally, canonical transformations are assoclative because all
transformations are. For these reasons, canonical transformations on

phase space form a group under composition.

One may ask what the connection 1s between thils group and the group
of symplectic maps. Specifically, are they the same? The answer is
yes, 1f canonical transformations are defined, as above, as those trans-
formations that preserve the Poisson bracket, However, it 1Is possible

to define them as transformations that preserve the Hamiltonian., Then

_13_



the symplectic group is a subgroup of the canonical group. What is not
included are the scaling transformations: i1f we allow transformations

with Jacobian M such that

M AJ (1.23)

B
=

then this extended group is the canonical group.

Proof [Ei,Ej] = vzi « J e ij (1.24)
= ¥ Mg Jug M
) Tk “kk ~3X

because MIM = AJ « MIM = AJ.

v. Hamiltonian Flows and Symplectic Maps

Now that we have the canonical group and the symplectic maps

identified, we would like to relate Hamiltonian flows to them. Thus we

have

Theorem: A Hamiltomian flow that takes the coordinates £° at time O to

C at time t gives rise to a symplectic transformation from C to A

Proof: The Jacobian matrix M is defined by

C1:35)

", P



Then

. _ 6 ° _ 6
ij ar0 C1 AL [Ci’H]C
J J
o) ( dH
= Je==(a )
k
k or® ¢ 9%
i
Sy, 22y %%y 3%
= e % = k "o Br
PN IS ac? 3% 98%
= § Jik S My
S .
SO
M = JSM
where
2

»°H

S, o(8) = "
K2

Now suppose t is divided up into N equal intervals of length €.

(1.26)

(1.27)

(1.28)

If M is

the Jacobian matrix at the end and M is the Jacobian matrix at the

beginning of one of these intervals

M=M+eM+ 0(e2) = M + £JSM + 0(£2).

If we assume M is symplectic to order €

MIM = J + 0(e?)

=] G

(1.29)

(1.30)



we may check the symplecticity of M

MIM = (M + eJSM + o(ez)) J(M + eJSM + o(ez)) (1.31)

= (1 + €JS + 0(82)) MIM (1 + eJS + o(sz))

= (1 + eJS + 0(e2))(J + 0(e2))(1 - €8T + 0(e2))

=J + eJS - €JS + 0(82) =J + O(sz).

At time O, M is the identity, which is symplectic. Each of the N trans-
formations is symplectic through order €. By letting € * 0, we get
exact symplecticity at the end; since N = t/e, the remainder term 0(e?)

goes to zero faster than the number of intervals increases,

c. Lie Algebras and Operators

We have seen the symplectic mapping that governs particle behavior
in an accelerator can be viewed as an element of a Lie group. We now
wish to look at this Lie group from a differential view: 1f a particle
is at a particular set of coordinates at a particular time, what are its
coordinates a short time later? This information is given by the Lie

algebra.

An algebra over the reals 1s a vector space S, with a multiplica-

tion rule A:S x S + S satisfying the bilinearity properties:

1) A(as,t) = A(s,at) = aA(s,t) where @ € R; s,t € S;
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2) A(s,t + v) A(s,t) + A(s,v)

A(s + t,v) = A(s,v) + A(t,v).

The algebra will be called associative if A(s,A(t,v)) =
A(A(s,t),v). The algebra is a Lie algebra if the multiplication

satisfies antisymmetry and the Jacobi identity:

3) A(s,t) = -A(t,s)

4) A(s,A(t,u)) + A(t,A(u,s)) + A(u,A(s,t)) =0

A Lie algebra multiplication is usually indicated with brackets [,].

A linear operator u on a vector space S is a mapping from the
vector space to itself, u:S + S. Call the space of all linear operators
S*, It has a vector space structure adopted from S. If u,v € S*, a,B

scalars, and s € S, then

(au + Bv) s = au(s) + Bv(s).

The composition of operators makes S* into an assoclative algebra.

Repeated composition of operators shall be indicated with a super-

script, by analogy with real numbers:

u2 = uu , u3 = uuu , etc. (1.32)

An operator with the superscript 0 is the identity.

A derivation D of an algebra S is a linear operator that satisfies

-17-



DA(s,t) = A(Ds,t) + A(s,Dt). (1.33)

One may verify by induction that

n
DUA(s,t) = ) (:1) A(D"s, DV M), (1.34)
m=0
1
where (n) = — ' js the binomial coefficient.
m m! (n-m)!

An associative algebra can be made into a Lie algebra by defining

the Lie product via the operation

[s,t] = st - ts, (1.35)

which the reader may verify gives a Lie algebraic structure. It is

called the commutator Lie algebra.

The derivations do not form a subalgebra of S* under composition.
That is, the composition of two derivations is not in general a

derivation. However, by forming the commutator Lie algebra

we can make the space of derivations a subalgebra, because [DI’DZ] will

always be a derivation if Dy and D2 are, as may be easily verified.

A useful concept when dealing with Lie algebras is that of the
adjoint map. An adjoint map of S gives, for each element of S, a linear

operator on S,
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Ady: S > S* L3713

in the following way:

Ad,(f) = A(f,*). (1.38)

That 1s, multiplication by a fixed element of the algebra gives an

operator, and the map Ad, promotes that fixed element to that operator.

Since S* is an associative algebra, it can be made into a commuta-

tor Lie algebra.

The map Ad from the underlying Lie algebra S to S* is a (Lie

algebra) homomorphism, that is, it preserves the Lie structure:

[Ad s, Ad t] = Ad[s,t], (1.39)

which may easily be verified from the Jacobi identity and the anti-

symmetry property:

Ad s Ad t - Ad t Ad s (1.40)

[Ad s, Ad t]

[, f£,21] =~ le,[8,°]1]

[s[t,*]1] + [t,[=,s]]

=[*, [s,t]]

= [[s,t],*] = Ad[s,t],
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where * indicates an unspecified arbitrary argument of S upon which the

operators are to act.

An operator in the image of Ad is called a Lie operator. If the
Lie algebra is a commutator Lie algebra, such an operator is a deriva-

tion on the associative algebra:

(Ad s) tu = [s,tu] = stu - tus (1.41)

stu — tsu + tsu — tus

[s,t] u + tls,u]
= ((ad s) t) u + (t(ad s) u).

Also, the Jacobi identity, together with the antisymmetry condition,
means that a Lie operator is a derivation on the underlying Lie algebra,
whether or not it is a commutator Lie algebra

(Ad s) [t,u] = [s,[t,u]]l = = [u,[s,t]] - [t,[u,s]] (1.42)

= [(Ad s)t,u] + [t,(Ad s)ul.
Lie operators are sometimes called inner derivations.
Now we may apply these results. Let S be the space of continuous

functions on phase space with at least one derivative,

s ={f:R0 » R | £e cl}. (1.43)
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Consider the algebra given by pointwise multiplication on this space

Alf,g) = fg = {h | [h(x) =f(x) g(x) Vx e rRY}. (1.44)

Consider another multiplication operation [,] that makes this space a

Lie algebra, whose adjoint is a derivation in A

[f,gh] = [f,glh + glf,h] (1.45)

Furthermore, let the values on the phase space coordinates be

[Ci’cj] " Jij (1.46)

where we are considering the phase space variables { as functions.

These rules uniquely define the Poisson Bracket Lie Algebra multi-
plication, which we indicate by [,]. The reader should convince himself

that the rules imply the relation given before:

if gl Ve X = Vg e g ¥ 8 (147)

In the Poisson Bracket Lie Algebra we indicate the adjoint with a pair

of colons

:f:g = [f,g]. (1.48)

Because Ad is not a bijection (one-to-ome and onto map), however, it ig

not an isomorphism. For example :f + c: = :f:, where ¢ = constant, be-
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cause :c: = 0., The kernel of the adjoint, that is the set of all points
that map to zero, 1s called the center of the algebra; clearly, then, in

this Lie algebra, the functions constant on phase space are the center.

The time evolution of phase space functions in a Hamiltonian system

is governed by this Lie algebra:

¢ = -[H,C] (1.49a)

or

g = - mH:L. (1.49b)

Obviously, the Lie operator :H: is very important in Hamiltonian
systems, and one may reasonably expect that Lie algebras can play a
significant role in analyzing these systems. Despite its importance, it
is not practical in exactly this form. In accelerator physics, we
usually want to find the coordinates after a finite time (or axial
position) rather than the instantaneous rate of change. In other words,
we need the integral rather than the differential form of the dynamical

equations. In this case, Lie transformations are more useful.

d. Lie Transformations

We have thus far seen that Hamiltonian flows give rise to
symplectic maps or canonical transformations which form a Lie group; we
also have seen that the differential form of a Hamiltonian flow is
governed by Lie operators which form a Lie algebra. One may conclude

that Lie got his name on everything. One may also wonder what the
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relation is between the two; it is given by the exponential of a Lie

operator, called a (yes) Lie transformation.

As motivation for the use of a lLie transformation, consider the

dynamical differential equation
g = -:H(t):C. (1.50)
This reminds one of the ordinary differential equation
f'(x) = g(x) f(x). (1.51)

The solution to this, of course, is

rx g(x") dx'
f(x) =be? , (1.52)

where b = f(a) is the initial condition. Thus we might propose that the

solution of (1.50) is, if :H(t): commutes with itself at different

times,

~ F :H(t ') : dt!
t(t) =e ° £(0). (1.53)

Here we must define the exponential of a Lie operator suitably. If we

define it with the Taylor expansion that the ordinary exponential has,

(1.54)

then it can be shown that (1.53) solves the differential equation
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(1.50).

These exponentials of Lie operators give elements of the Lie group
of symplectic maps and are called Lie tramsformations. We say that the
Lie algebra generates the Lie transformation (group). The Lie transfor-

mations have the remarkable property

e:f:[g,h] = [e:f:g,e:f:h]. {1 »B5)

This may be shown as follows. Using the derivation property (1.34)

8

eifi[g,n] = ﬁ:fn:[g,h] (1.56)

il &~

© ) n n!
) e Y R [(:f:Mg,), (£ ™) ]

:mg :f:n—mh]

m! * (n-m)!

_ X X [:f:mg :f:lh]

m! > !

An identical calculation also based on the derivation rule yields

e:f:(gh) - (e:f:g)(e:f:h). (1.57)

This means that the transformation of a polynomial may be done on the

coordinates. A polynomial is just a sum of monomials of the form

i B



m, m m
2n

1 2
a Cl CZ - C2n (1.58)
Then because of the relation (1.57) the Lie transformation may be
distributed across the product,

mm2

1 £LE )+ 1 ™n
e (a Cl )" e C2n )

m

: o S5 ; 5 o (L)
< a (@) g Ny ) 2 wen (3H(D)E Moy
and by linearity for any polynomial,
e:f(C):g(C) = = g(e:f(C):C). (1.59)

It is clear by the above relations that transformations of the form

e " o @B
e are canonical for any f: if 7 = e’ p.q

C.1 = [effig; ety (1.60)

The converse is more interesting: given a canonical transformation, § +
£ 1is there an f such that £ = e‘f%¢? 1In general the answer is no.
However, as we saw at the beginning of the section, the canonical trans-
formation occurring under the flow of a Hamiltonian that commutes with
itself at different times can be represented this way. Note that real
accelerators have time-dependent Hamiltonians that do not commute with

themselves, because the electromagnetic field seen by a given particle
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depends on the time. In general it will not be possible to make a
single Lie transformation representing the Hamiltonian flow. However,
we can approximate the transformation by a finite series of transforma-

tions I shall discuss in section f.

From the Poisson bracket Lie algebra A of functions on phase space
S, we used the map Ad to induce the adjoint Lie Algebra A*, or Commuta-
tor Lie Algebra S*, Since this is itself a Lie Algebra, it is possible

to get its adjoint. Define

Adps: S* » SH% (1.61)

where S**:S% » S* is the space of operators on S*. We denote the map

Ad,x by surrounding with "#', that is

fefeftege = [:fe,ige] = efeige — :geefe, (1.62)

Douglas [1982] uses '“' as an abbreviation for #: :#, e.g. £ = #:f:#.

The Lie Algebra in S** is a commutator, as in S*

A A AA AN

[f,g] = fg - gf . (1.63)

The following theorem is useful for exchanging the order of two Lie

transformations

Theorem (Douglas [1982], Dragt and Finn [1976]). 1If f,g € F with

n € Z, then
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(a) e ig: = e'lig: (1.64)
(b) e:f::g:ne_:f: = (ef:g:)n = :e:f:g:n (1.65)
(c) eifigrgig=ifr o exp(ef:g:) “ exp(:e:f:g:). (1.66)

~

Here ef is defined as

et = ] S, (1.67)
n=0
Proof
£ . £ v 1
(a) e g = ) S gy = E = Ny (1.68)
n! n!
n=0 n=0
o n
of ¢ :f:
= 3 g = :e‘f'g .
n=0 :

To show (b) start with n=1. Let T be a real parameter, and define

:h(t): = eTif it paomifr (1.69)

Differentiation gives
dé?: = :f::h: - thi:if: = %:h:, (1.70)

which has the solution
th(t) = eT%:g:. (1.71)
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Setting T=l yields

e w8 f e f
e'f‘:g:e oo H= (1.72)
For n > 1, note e ‘fieif? jg5 the identity so
& £ g:Ne” f: _ & f g.e—:f:e:f g'e—‘f " £ gre” f
= (ef:g:)n = :e:f:g:n. (1.73)
Finally, we have
© n
e:f:e:g:e—:f: - e:f: ( X -%; ) Pt i (1.74)
n= ’
!
_ X — e f g:ne_ i
n!
n=0

This relation is useful if we have, say,

e figig:

3

fs

and want the transformation e*'® on the right. Then, using e thigitt =

identity, we have the result
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eifigig: o gifigigig—ifi if (1.76)

where

gT = eifig, (1.77)

This will be called the transformation rule.

e. Canonical Transformations to Convenient Coordinates

In this section, following Douglas [1982] and Dragt [1981], I shall
make certain coordinate changes to facilitate the use of Iie algebraic

methods in particle accelerator physics.

The first step is to make a canonical transformation so that the
independent variable is no longer flight time t, but distance along the
flight path z., Generally speaking, a dependent variable Qi in a

Hamiltonian system may be made into the independent variable if

3, o (1.78)

Formally, the theorem is (Douglas [1982], p. 94, Dragt [1981], p. 151)

Theorem Let H(z,t) be the Hamiltonian for a system with n degrees of

freedom (Q;,Py, .., Q,,P,). Suppose

Q =20 +#0 (1.79)



in some region of state space. Then within this region, Qi can be
introduced as the independent variable replacing the time t. Moreover,
the equations of motion with Q; as independent variable may be obtained

by using K = -P; as an effective Hamiltonian.

For a proof, which is based on the implicit function theorem, the

reader is urged to consult the references given above.

It should be clear that for any reasonable motion of particles in

an accelerator, this condition holds for z:

z # 0 (1.80)

since z(t) is, we hope, a monotonically increasing function of time.

Thus we may take as the Hamiltonian the quantity

K(Xapxa)’)py,t,f)t;z) = —pZO (1-81)

The second step is to make a canonical transformation measuring

time and its momentum as deviations from the design trajectory

t*(z) = t(z) - t%2) (1.82a)

pE(z) = py(2) - p(2) (1.82b)

where the superscript o indicates the value of the quantity on the de-
sign trajectory, and the superscript * indicates the new coordinates.
This is a canonical transformation. We may use a generating function of

type 2 (Goldstein [1950], p. 240)

._30._



F(t,ps2) = (£ = t%(2)) (p* + p.(2)). (1.83)
Then the new Hamiltonian is
NEW oF
KK, 4, Y5 Py, t%,P%52) = K(X,Py, Y5 Py E,Pe32) + 5 o (1.84)

In this system of coordinates, the design trajectory has the value
(0,0,0,0,0,0) and particles "near" the design trajectory will be des—
cribed by "small" values of the phase space variables. Thus the motion
is amenable to a perturbation description, and the Taylor series des-

cribed in section a will have validity.

The notions of smallness and nearness can be given precision by
scaling these variables so that the result is dimensionless. This
scaling preserves the Hamiltonian form of the equations of motion.
Choose an arbitrary scale length %; it could be, for instance, the
bending radius of the machine. Choose as the scale momentum Py the

design momentum. Then

= X
X = 0 (1.85a)
p
Py = — (1.85b)
pO
Yy = {_ (1.85¢c)
P
Py = X (1.85d)
pO
R - ;
= o) (1.85e)



t
By = s (1.85f)

These imply that the Hamiltonian must be scaled

K = (1.85g)

.3
Py

f. The Relation Between Lie Transformations and Symplectic Maps

Lie operators and transformations are more general than the
corresponding map and symplectic maps on phase space. A symplectic map
is a map M: S >+ S, that is, M maps phase space into itself. A Lie
transformation, e:f:, or series of the form e:f:e:g: «ss, On the other

hand, acts on real functions of phase space S: S > R.
e'fis > s ’ (1.86)
=m
or sets of them, S : S > R,

etfi.gm 5 g (1.87)

In particular, we may consider the set of 2n functions { which give each
of the 2n canonical coordinates X, P., etc., in succession. If we apply
a Lie transformation or series, then substitute specific values v, for

£, we will have a symplectic map:

v =efiegr ¢ .y (1.88)
(o]

e



We then say e:f:e:g: .+« corresponds to M, and vice versa.

At this point a brief explanation of the notation and terminology
used in this thesis is in order. As I have used the symbols above, the
Greek letters ,, £, ... will stand for the dependent phase space

variables
L= (X,PX, cee), (1.89)

either as abstract symbols or as functions on phase space where now the
new variables are used. For example,

g = e:fz(C):C, (1.90)

means to apply the transformation formed from the homogeneous second-
order polynomial f2 of the phase space variables to each of the phase
space variables separately, i.e.
= :fz(C):
X e X

) (1.91)

= of :
s 5 (2) b

etc.

To indicate specific values of these variables - i.e., a point in
R6 phase space, I shall use lower case Latin letters v,w, ... « For

example,
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5 e:fz(C):

¢ lc=vo , .08

Means to make the transformation above, then substitute the s B L

Vaxs By = von, etc., in order to get 6 values corresponding to a ney

point in R6 :

A convenient shortcut will be to leave off the symbol { for the
Phase space variables. Where its presence will be missed, a bullet ()

Will be used, For example, the equation (1.92) above can be written as

ify:

v=e 3 (1.93)

o

The distinction made above between the Lie transformations and
Symplectic maps based on the objects on which they act may seem like an

irrelevant technicality until one considers a serles of Lie

transformations.

Consider just two Lie transformations, and their effect on phase

Phase: jJet Mg = e:f:’ andAAg = e‘8°, Suppose we look at their

Successive effect on phase space,

e:f(C)=e=g(C): C i ais
" e:f(C):e:g(C):e-zf(C)=e:f(C): ¢
- e:e’f‘g(C):e:f(C): ¢

_ gt @ g
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= e:g(g): g’ where g = e:f(C): “

or

:f: . (1.95)

We see that the corresponding symplectic transformations must be applied

in reverse order:

Mg Mg =1y = eitie BT o | = 4y .’Mf | (1.96)

In the future, I shall occasionally abuse notation and write v for

A"’V, when doing so will not cause confusion.

Now that we have a correspondence between the Lie transformationg
and symplectic maps, we shall take a look at the subgroup of linear

transformations and their Lie algebras.

For a homogeneous second-order polynomial, fy, the Lie transforma-

tion

e " (1.97)

is a linear transformation, because each application of the operator
:fZ’ leaves the order of its argument unchanged. Thus, the correg-

Ponding symplectic map is linear and we may represent it with the

Symplectic matrix M,

‘7= e . ’V=Mv=e Ve (1098)



In this case, S is a symmetric matrix obtained from the coefficients of

Thus we have a mapping of the set of Lie transformations of the

injective but not surjective mapping;
:fqy:

).
:fz:
form e into Sp(6). It is an

atrices to which mo e corresponds (see Dragt

there are symplectic m

and Finn [1976]).

This mapping has a corresponding homomorphism in the ILie algebra,
which is easily computed. It ccicj is the coefficent of Cicj in f,,

then the matrix JS is given by

e i B - = . _
KPs 2cp,Py Cpy Y PyPy PyT PP,
- -2c - -c
“CXPy “CpyPy Py PyPy PyT PPy
c c s
exy CpyY 2eyy YPy YT Py
CXPT PXPT T Y
2¢c c
T TP
c i
- gt YT PyT B
- (1.99)
g. The Factorization Theorem h
- J° Hlz"): de’
y is awkward

onian flow 86 €

Representing the Hamilt
ional standpoint because the

tat
for combining and tracking from a compu
exponential jes will in general never terminate, and there will be no
a serlies
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reasonable basis for truncating it.

For this reason, the factorization theorem is very powerful. It
allows us to split up any analytic symplectic map, order by order, and

stop at any point.

Before giving the theorem, let us take a look at the effect of the
Poisson bracket operation on the order of polynomials in Lie
operators. Let a subscript n on a polynomial indicate that it is
homogeneous in nth order in the phase space variables; e.g. f3 = 5X2PY -
YP% is homogeneous third-order. 1In a Poisson bracket of homogeneous

polynomials, the resultant order is two less than the sum of the orders:

[fqs8n] = hpyg-p (nim > 2) (1.100)
because there are two derivatives, and a multiplication. Thus, a Lie
operator :f : raises the order of its argument by n-2., In particular,
:f;: lowers it by 1, :fo: does not change the order, :f3: increases it
by one, etc.

£y ifq:
As Lie transformations, e 2 corresponds to a linear map, e 3 in

ooff ok
general corresponds to quadratic and all higher orders, e 4
corresponds to only higher even orders, and so on. I shall refer to

N -
e ™ as an nth-order transformation.

Now we are ready for the factorization theorem, an extension of the

theorem and proof in Dragt and Finn [1976], Dragt [1981].

Theorem (Factorization) Let M be an analytic symplectic map. That is,

suppose the relation

o P



-Z-=Mz
C -
an be written as a Taylor series in the form

z, = F;(z) = (o) 2
T L 161X> 5 S 300 = (1.101)

Where ¢ is a collection of exponents 0, 0, ses Oy, and

2n x - 5 %n
’O’, = %o’i ; Z =Zl S8 Zzn . (1_102)

c oA
Then there exist homogeneous polynomials fj, fz’ fz’ £35 «eo o of degree

1,2, 2,3, ... . such that the map (1.101) can be written in the form
- [e:fc.e:fz:e:e3: " e:f1:] . Iz. -
These Polynomials are unique.
2522{ First, gplit off the constant terms ¢;
Zg= gt ak=cy ¥ F¥(z) = ¢ * I a(0) 2 (1.104)

o] >0

and put them aside.

Let M(z) be the Jacobian matrix of the functions F*(z), Then
M(0) = L (1.105)

Where the matrix L is defined as being the coefficients of the linear
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part of F(z):
Lyj = a;(py), (1.106)

where P is a collection of 2n integers, the jth integer being 1 and the

rest O,

Since M(z) is symplectic for all values of z, so is L. Thus, by a

theorem of Dragt [1982], it can be written in the form

a C:
L = eJ5%eIST, (1.107)

where S? is a symmetric matrix that anticommutes with J and S¢ is a
symmetric matrix that commutes with J. Because of the Lie algebra iso-
morphism between the matrix Lie algebra and the polynomial Poisson
bracket Lie algebra, we may find the second-order polynomials that are
the image under $% and S¢. We shall call them f; and fg. The iso-

morphism between the corresponding Lie groups therefore gives the appro-

al . cl . . . a.
f, % 4 - 1 .f2.

priate maps e and e 2 , and thelr product e e for T

Now we note that the action of the linear transformations on z; is
e e e = 2 ¥ 20 13 (1.108)
where r(> 1) is a generic symbol for a polynomial of the phase space

variables consisting of terms higher than first degree. To show this,

use the expansion for F* written as

- .



2t =Ff (z) = ] 8(0) 22+ ] a0 z%  (1.109)

i o] = 1 o)™ 1
—if5: —ifS:
appl 2 f2. .
y e e to both sides to get
—:f5: —ufC, o It
e 2 2 2 2
e e .= 1 aloe e s | gD (1.110)
z
i ’Ul =1 z
which can be written
c
—:f;: —:f;: —ifyr mify
e e . ,z* =) Lyj e e “l, * r(> 1). (l.111)
i j J
4 c. at
- .f2. 'f2' .
€ correspondence between L and e e gives
a &
—fSs —if
. 2 _ _1
e 2e e, - L LTk 2 (1.112)
i k
Thus we obtain the desired result
-ify: —ify O 1)
- e ° ’z* = Zi r . (1.113)
i

Next, we assume the series (1.103) exists to ordelf. By #hd exted it
b

to order n+l. Assuming the geries

a £ (n > 2) (1.114)

48 f n’
v .f2~e ) o z + r(> n-1), (1.115)
F*(z) = €
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a ; 2
term fn+1 may be obtained such that the remainder term is of order n:

:2: : F H
e . ’Z + r(> n). (1-116)

Because we have assumed that the series (l.114) has been carried through

order n, there is some homogeneous polynomial of order n, g , such that

~:f_: —3£S:
.f2

n - i
ees € Zi * Iz* =2z; * gn (z) +r O n), (1.117)

e
i

By forming the Poisson Bracket of this with j replacing i in it, we

Obtain
i 1
Jig = lzg + g (z) + r(> n), z; + g,(2) + r(> n)] (1.118)
i i -
= Jy5 + lzg, g2 4 (25, 8,(2)] +r O n - 1),
Looking at the terms of order n-l in z, we see
[z gg] + [gi, z3] = 0. (1.119)
This implies there exists a function fnt1
(1.120)

gi(Z) = 41924

i
dg g
_? _._—2 (1.121)
5
azi ZJ



T ifferential, so
where ZT - 2 Jesz:o Thus ) g 424 is an exact differe "
i 3 13%]

i
__qz T £,(z") Jyde] (1.122)
£41(2) I i%j i 373
is the function desired.
Now
=2fy e” £, s | =8 + 4 (% +r (O n) (1,123)
e a® 9 —
Zy
so
._cfc'
—ifgert ~HHat TR2L | ey b x O (1.124)
e e ... i

e, and applying them to both sides,
)

- id
Inverting the maps On 1eft-hand S

£2: 41’ .

s [ =  n)s (1.125)
= z

nl

e series to any order.
Thi inductive rule for carrying th
s gives us an induc
to account for the constant term; this
s to

1
The one task that remains

1s now easy to do. Recall
(1.126)
s =F(z) =€ # PHE)
off. Find an £, such that
wh th sent notation has been left
ere e compo
(1,128)
c = [fl,C]'
~42-



This 1s golved by
£ (E) = = ) e Jka G (1.129)
kX
Finally, we have a complete factorization,

c, .ga, af o pfn
5 i) 'f2' . 1
o) =5 ° i e *l, + O n-1), (1.130)

which may be verified by applying the map to a specific point in phase

Space. By applying the transformations as in (1.95), we have

e a ofn  Efas
- R ) 1
F(z) = e 2 e 2 ees € e .lz * r(> n-‘l‘) (1-131)
if + r(On-1) .
= e "
e % a. .f H
:fz: .fz. e .'
e e see € z

sEq2 : g
Then observe that e 1* evaluated at z is just z &,

M1, = @ H 1D e (1.132)
=z + [£f,C]
=8+ ¢
and g,
F(z) = e=f§=e ! e:fn: o |, e+ x> nml) = FX(2) + e+ x> n-1)

(1.133)
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as desired,

In practice we would want to cut off any of these series after a

certain number of terms, say four:

e fe Ve e 1. (1.134)

Although this would be symplectic and in general would give terms of a1]
orders, it would be accurate only through third order. Thus, as with a
Taylor expansion, we are using a perturbation method. Therefore, we
Must know that the remaining terms are insignificant. This will be trye
if the dimensionless momenta are small, and if the coordinates are small

With respect to the scale of non-linearities in the system.

It will be more ugseful for our purposes to factorize with the

first-order term on the left
M:e e e e e eee o (1.135)

This is a much more difficult problem. If, however, we keep terms in
the Taylor series (1.101) only through order n, which we have to do 1n

Practice anyway, we may use the factorization theorem to write this ag
)

:fl:
G e olg + 20 nds {1,156

P Y Chapter 4 will show us how to rewrite

this with the first—order term oD the left,

c. .08 :gq Bn+l ¢
igec go: Bst 83 .
= £1 R, e s W lg * % 5O s (L0573

e




Notice how the remainder polynomial r. , 1s now a function of both 4 and
b
€» the constants in F. Thus, this factorization is only accurate

through a set order in the constant terms. This restriction shall pe no

8reat burden, as we shall assume the machine errors (misalignment,

mispowering, etc.) which give rise to the constant terms are small.
shall be the standard

The form (1.137) in ascending order

factorization we shall use. However, we shall occasionally need the

deSCending-—order factorization

(1.138)

It is possible to write this from the form (1.135) given truncation at a

Certain order.
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2. Ray Tracing

In tracing rays we are given a set of phase space variable values

Vo 8t a particular time (or axial position z) and ask what the values vy

are after having been transformed by the map M:

(2.1)

In a circular accelerator, for instance, M could be the map for one turp

around the machine. Then 1if T is the phase space position of ga

Particle at a particular turn, v will be the position at the next

turn, By applying M to v, the position at a subsequent turn will pe
This process may be repeated for any number of turns to find

Obtained.

the long-term behavior of the machine.

With the ILie transformations the relation (2.1) would be written as

’ . ¢ tE (L)
i e:fl(C):e'fz(C)'e fs(C) - 4 P rC=VO é {2.2)

These Lie transformations may be rearranged using the transformation

Fule:
of, (L)
. (C) s :fl(C): 1 £):
y 1 £): aE e . :£,(8):
ef,.( ) :£.(e 4 .. 1
vV = e 2 . & 3 e i §e CIC“VO
{2.3)

—order transformation of phase space

In thig equation, the first

46



of 5
e g C ()

occurs often, so let us call it £. Then (2.3) can be shortened to

f ifqs of
ve=e 2 37 [ E | i 3 (2.5)
£
E=e A
L N
52 #f4: RE
= @ 2e3e4'..,v+[f C].
o 1
If we call the coordinates shifted by the operator :f;: w,
w = VO + [fl’C] (2.6)
then v becomes
Eot Zfqs f
V- =hae 2e 36 4 se s IW. (2.7)
:fz:
A similar process with the transformation e gives
of tE
v=e 34, | ‘ (2.8)
5
2
e |
W
:fz:
It is more convenient from a practical standpoint to keep e as
simply the matrix of the linear transformation M. In thils case,
fqr f,n
% B (2.9)

To compute the effect of the remaining terms we use a different tactic,

e



making use of the higher orders of the polynomials which increase the

order with each term in the Taylor case.

The point at which the exponential series are truncated determines
the order of the transformation. Since each homogeneous Lie operator

:f ¢ of order n changes the order of its operand by n-2, and we wish to

keep terms through order p, we may truncate the exponential of the Lie

. e ]
transformation e after [E:E] terms, where [x] means greatest integer

less than x, and the identity is the zeroth term.

For example, if the terms in the ellipses are disregarded,
il
v (14 iyt 45 i3+ L L+ My b ad) eee @ g (2.10)

will be accurate through order 3. The end result can be given as a

transfer map for each phase space variable
|
v = (C + [f3,C] it [f4,z;] +7 [f3,[f3,C]] + --o) |C=MW (2.11)

Once the terms in the exponential are truncated, the map is no longer
symplectic. MARYLIE (Dragt et. al. [1985]) has an alternative method of
tracking that symplectifies the truncated series, but I shall not go
into it here, except to say that it may be applied to w to include the
effects of f;.

When factorized in the reverse order, the process is similar, but
the linear and higher-order parts of the transformation do not act on

the constant term

ol



g H H
V=--Oe 3eg2eg1 .,v (212)
o L]
= Mw + ¢
Wwhere poyw
:g3:
w vaw B ’Vo (2.13)
G &= [gl,C]

The truncation point of the exponential series was determined above

by the highest final order desired. This is a reasonable criterion for

Phasge Space variables small, so that the truncated series is close tq

the 1imit value. It assumed, however, that the function on which the
tranSformation acted was just a single phase space variable., Thig would

B0t be true if we had more than one map in succession.

Suppose the final value z is related to the initial 2z, by two

Successive transformations M and Mg where | is represented by

:f . :f [ . . .
@ d M A f3.e.f4. ol h% by a similar series in 81s82s ++« Then

:f3: :f4:

e (2.14)

.,.-;:::f::f
c""Z'e'g3 e e te —w ’z
(o]

gy e e
=ele
The g transformations yield the result above. However, we may no longer
CUt Off the exponential series at any point, even if in the end we only

desire 5 transformation of order Pp. This is because the succeeding

transformation e:fl: decreases the order of 1ts operand by one for each
Thus, even if we need only third-order terms,

term in the exponential.
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:
we would have to keep higher terms in the g, because the e i would

bring it back below 3 in the end.

The resolution of this problem is to assume the first-order trans-
formations are small in the same way the phase space variables are.
Then we are supplied with a natural guide for truncation again. This is

discussed in more detail in Chapters 3 and 4.
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Ideal Structure of the Lie Algebra

3.

The truncation of the Lie transformation series (1.135) or (1.137)

both with and without a first-order term deserves closer

i“VeStigation. It is of particular interest in concatenation. Given
tWo maps in the standard factorization
sfy s sfgs ifg: :fy:
Nk = e 1 e : e (] ees (3.13)
igy: igot 83% 184°
Mg:egle ze 3e see (3.1b)
'j
What are the polynomials l‘).n such that
Me Mg = Mp» (3.1c)
where
: thy: the: thy:
Mhze'hle 2e 3e 4 L) ? (3.ld)
= 4, then

at a fixed value of n, say n

If we truncate each series M, Mé
it is also reasonable to truncate the Mh geries at that value of n. 1Ip
r, higher—order terms will be produced,

Combining the polynomials, howeve
by

48 we shall see in Chapter 4. The question we need to answer {is:
What standard are we permitted toO ignore or choose arbitrarily the
The answer i1s divided into

?
Poisson bracket of two polynomials [fq:8n ]
order term present, as 1s computed in

two parts: without a first~
985]), and with first—order

P i |
MARYLIE 3.0 (Douglas [1982], Drasgt et. als [
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terms present, as we will need to handle misalignment and other machine

errorse.

a. First—-Order Terms Absent

The presumption of the Lie transformation series (1.135) or (1.137)
is that the correspondng Taylor series is convergent (see Chapter 1).
Since we are truncating this series, we want the remainder term that is
left off to be so small that it can be safely dropped. In order to do
this, we take the values of each of the phase space variables [ to be
small so that sufficiently high orders may be ignored. Specifically,
let each of the phase space variables carry the small factor &, so that
powers of & count the order of these variables. Polynomials homogeneous

of order n, f, have a factor 8", and will be said to have 6-rank n.

The behavior of the &-rank of polynomials in a Poisson bracket has
been explored (1,100) in a slightly different guise; the &-rank of the
Poisson bracket is 2 less than the sum of the participants' &-rank,

provided each was at least 1.

Since 8§ is small we may, when taking Poisson brackets, neglect
terms of a given order or higher. Thus, for example, if we choose to
neglect terms of fourth order and higher, the Poisson bracket [f3,g4]

may be ignored.

We now give this process some rigor; before doing this however, it

is necessary to introduce some new definitions.

A subset S' C S is a subalgebra if A(S',S') € S', where A(S',S') is
the image of the multiplication restricted to S'. A subset S' € S is an

ideal if A(S',S) € S', that is, for s' € S', s € S, A(s',s) € S". (For
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@ Lie algebra this is equivalent to if A(S,S') S S'.) Clearly, apn Sdeki

is also a subalgebra,

An algebra S is graded if S is the direct sum of subspaces 5 (1 =

031y 4eu, ®) and A(Si,Sj) g;si+j. An algebra S is filtered if for each

Non-negative integer i, there is a subspace s(1) such that

D S(i)S; S(j> for i € j;

2 (Js) = g
3) as(d) 5(3)y ¢ s(1+D),

If 5 ig graded, then it is filtered by the rule

j<i

Similarly, an algebra S is complementary filtered* if for each nop-

i
Negative integer i, there is a subspace S( ) such that

1 s(1) 5 5 gor 1 < jj

3) as() 51y ¢ s+,

If S is graded, then it is complementary filtered by the rule

s = @ sy (3.3)
> 1

R ————

*Thig ig my own terminology-.

-53-



It is clear from the above definition that each of the members S(i)
of a complementary filter is an ideal. Let s(i) € S(i), s € S. There-
fore, there is a j such that s € S(j). Then A(s,s(i)) € s(i+j)g; S(i),
and also A(s(i),s) € S(i+j) g;s(i). Since s and s(i) were arbitrary

within their respective sets, S(i) is an ideal in S§.

Let S be a (Lie) algebra, I an ideal in S. Define S/I to be the

set of equivalence classes given by the equivalence relation: s; 2 sy
if s; = s9p + 1, for some i € I. We denote these classes by s + I, where

s € S. Since an ideal is a subalgebra, S/I is a (Lie) algebra with the

rules

(sl +I) +(sp +I) =(s) + sy) + I, (3.4a)
e(s; + I) =esy + I, c & R, (3.4b)
A(s) + I, sy + I) = A(sy,sy) + 1. (3.4c)

These rules are easily seen to be consistent. If 1;, i, € I are

arbitrary, the left side of (3.4a) is
(Sl L il) + (82 ¥ 12) = (Sl ¥ Sz) + (il + 12). (3.5)
e (s) +s9) + 1,

since I is a vector subspace of S. A similar argument holds for

(3.4b), The left side of (3.4c) is
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A(s, +
1 a4 + =
1,52 12) A(Sl,Sz) + A(Sl,iz) + A(il’sz) + A(il’iz)' (3 6)

a
re in I, thus upholding (3.4¢) .

articular problem: let S be the

ply this to our p
pace that have powe

stricted definition than before)

Let us now ap
r series expansions with

spa
pace of functions on phase B

(note the more re

n
o first—-order terms
in a particular order

Gr
ade it with subspaces of polynomials homogeneous

of

the phase space variables: 1let
Sp = {constants}tj{homoge“eous polynomials of order 2}, (3.6a)
8 = {homogeneous polynomials of order 142} for i > 0. (3.6b)

g that this 1s @ grading on S under the Poisson

One may easily verif
they could have

ants are not relevant;

B
racket, (Note that the const
If a part r Lie

(or S;)’ the

jcular polynomial (o

been included with any S4)-
n I will say it has 65—

o
perator) belongs to the subspace 51

rank 1.
ynomial order, we have the corres—

Given this grading 54
This gives us & series of

given by (3.3)

ot algebras S/S(i). The ideal (1)

ponding complementaly filter
g of quotie

!
deals (1), and a serl
ith coefficie

nts zero for the terms of

wer series w
(i+1
S ) is a rigorous
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ebra Q(i) = 8/

The quotient alg

gebrd s but

order 1 through it+l.
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w "
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greater."”
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MARYL

IE 3.0 (Douglas [1982], Dragt et al. [1985]) which doe
s Lie

hrough fourth order a

(2)
gebra Q77 If f,, 8,,» and h, are

nd has no first—order

al
gebraic computations t

terms
, 1s actually computing in the al

hom
ogeneous ntP order polynomials,

[fz,g3] Z 83 (3.7a)
[f3,f4] z 0, (3.7b)
[£,,84) % 0 (3.7¢)
etcC.
The results that are in 3(3) are taken o0 be 0, although any
e acceptablés In applying the Iie transforma-
(3)

element of S(3) would b
result that are in$S

ortions of the

coordinates, P
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ti
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rms of all orders, are accurate only through order

while containing te
G be the group of symplecti

i+l for Q(i). Specifically, let c maps on

(1) (1 = 0,1,00 p of these maps that

phase space and G ) be the subgrou
has a power series expansion consisting of terms only order i+l and

G(i) is a normal oT invariant subgroup

higher plus the identity. Then
1, ¢) for all g & &

valence classes given by g = &
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i
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multiplies each first-order polynomial. We may now consider how this
changes the analysis of the algebra and the corresponding group in the

last section.

The polynomial spaces S; now need to be supplemented. Let S_1 be
the space of first—order polynomials. The §; (1 = -1,0,1,...) 1is still
a grading. However, we can not construct a corresponding complementary
filter according to (3.3), because we now have a negative i. Thus the
S(i) are no longer ideals and we cannot form the quotient algebra.
There 1s a corresponding destruction of the normal subgroups and

quotient groups of symplectic maps.

Instead of using a grading, let us try to create a complementary
filter, and thus a series of ideals and a series of quotient algebras,
in another way. Let us define a second index j (j = 0,1,...) on the S
that is equal to the € order. Thus Sij is a subset of S that is
homogeneous of order i+2 in the phase space coordinates, and homogeneous
of order j in €. The index i ranges from -1,0,1,...®», and the index j
ranges from O,1,...,». I will say that a polynomial (or Lie operator)
has 8-rank 1 and e-rank j if it belongs to Sij (or S;j). The only
combination of 1 and j within these ranges that is prohibited is 1= -1,
j=0, the smallness requirement on first-order terms discussed above. We

now seek a complementary filter constructed from the sij'

*
Let 22 = {-1,0,1,...} x {0,1,...} = {(-1,0)}, the pairs of allowed
coefficients. Let z' be the non-negative integers, Let v be a function

v:22* > Z' with the property

v{i;)) + wlkd) € w(itk; ). (3.8)
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Now define the sequence of subspaces S(i), ie 2zt by
s(1) - D s,.. (3.9)

This sequence is a complementary filter, which may be verified using the

fact

Then the product of an element in S(v(i’j)) with one in S(v(k’l)) is in
S(V(i+k’j+£)) :

A(s(V(isj))’S(v(k:l))) g S(V(i"'k) b V(j+2')) (3.11)

C S(v(i+k,j+2))

because of the rule (3) of the definition of the complementary filter,

and the relation (3.8).

With this complementary filter, we have a sequence of ideals S(i)

in the algebra which may be used to define quotient algebras.

Note that v is undetermined except for the condition (3.8). Con-
sider two examples, v(i,j) = min(i,j) and v(i,j) = ai + Bj where a,B €
Z' are constants. The former case corresponds to keeping all terms
except those whose §-rank and whose e€e-rank each exceed a certain value.
The latter exclude those whose weighted sum exceeds a certain value.

This form of v satisfies a stricter condition than (3.8), in fact
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v(i,j) + v(k,R) = v(i+k, j+R) (3A12)

and so we have a grading Sv(i i) which may take a complementary filter
b
by (3.3). This complementary filter is the same a<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>