
ABSTRACT 

 

Background: In the United States, 26% of deaths are attributable to cardiometabolic 

diseases. Cardiometabolic risk in adolescence tracks over time and can presage 

cardiometabolic health during adulthood. Area-level determinants of cardiometabolic risk 

among adolescents are underexamined.  This study contributes evidence regarding the 

association between area-level poverty and cardiometabolic risk among U.S. adolescents. 

Methods: 1999-2012 National Health and Nutrition Examination Survey data was linked 

via census tract with 2000 Census data and 2005-2009 and 2009-2013 American 

Community Survey data. The sample included 10,415 adolescents, aged 12-19 years. 

Area-level poverty was parameterized by percent population living in poverty, grouped 

into quartiles for analysis. Cardiometabolic risk was parameterized by summing z-scores 

of systolic and diastolic blood pressure, glycosylated hemoglobin, waist circumference, 

HDL cholesterol, and total cholesterol. Hierarchical linear models were used to examine 
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the relationship between area-level poverty and cardiometabolic risk. Cotinine levels and 

physical activity were assessed as mediators. Post-hoc analysis explored associations 

between area-level poverty and family poverty-to-income ratio. Analyses were conducted 

for the overall sample and by race/ethnicity. 

Results: For the overall sample, compared to the first quartile of area-level poverty, 

residence in second (.218, 95% CI: .012, .424), third (.438, 95% CI: .213, .665), and 

fourth (.451, 95% CI: .204, .698) quartiles of area-level poverty was associated with 

increased cardiometabolic risk. Area-level poverty was associated with cardiometabolic 

risk among non-Hispanic Whites and Mexican Americans, but not among non-Hispanic 

Blacks. No evidence of mediation was observed. In post-hoc analysis, overall mean 

family Poverty-income-ratio declined from 3.34 in quartile 1 to 1.42 in quartile 4 (p< 

.001), however, this differed by race/ethnicity.   

Discussion: Residence in the highest area-level poverty quartiles was associated with 

increased cardiometabolic risk. Race/ethnicity specific analyses are consistent with 

literature on the Hispanic Paradox, and exposure to adversity among non-Hispanic 

blacks. Evidence suggests specific biomarker choice results in different cardiometabolic 

profiles within the same racial/ethnic group. Post-hoc analyses suggest the effect of area-

level poverty on family PIR is greatest among non-Hispanic whites. Efforts to improve 

cardiometabolic health and reduce racial/ethnic disparities in cardiometabolic diseases 

should include targeted community-level investments aimed to improve the social 

conditions for all residents. 
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Chapter I. Overview 

The primary aim of this study was to examine the association between exposure 

to area-level stress during adolescence and cardiometabolic risk during adolescence, 

independently of individual-level determinants of these biomarkers.  The secondary aim 

of this study was to examine whether lifestyle behaviors mediate the relationship between 

area-level stress and cardiometabolic risk, and whether these lifestyle behaviors partially 

explain racial/ethnic disparities in cardiometabolic risk of adolescents.  

In the United States, 26% of all deaths are attributable to cardiometabolic diseases 

such as cardiovascular disease and diabetes.1 Consequently,  the Office of Disease 

Prevention and Health Promotion has identified prevention of mortality from 

cardiometabolic diseases as a national public health priority.2  Prevention of 

cardiometabolic disorders is predicated on identifying its earliest precursors. While 

evidence is accumulating that precursors to cardiometabolic disorders manifest as early 

as adolescence,3–9 the majority of research on cardiometabolic disorders has been 

conducted among adult populations.10–14 Additionally, the American Academy of 

Pediatrics15 and the American Heart Association16 have identified adolescence as a key 

period for cardiovascular disease prevention efforts. 

Cardiometabolic functions, such as blood pressure17–19 and glucose 

metabolism,20,21 track over time. Accordingly, cardiometabolic functions during 

adolescence can presage cardiometabolic health during adulthood. Thus, although 

approximately 99% of adolescents do not meet diagnostic criteria for any 

cardiometabolic diseases,22 adolescents with cardiometabolic function deviating 
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significantly from population-level norms are considered to be at elevated risk of 

developing cardiometabolic disease as adults.6,8,9  For example, among a population-

based sample (n=814) of Ohio youth, high cardiometabolic risk at mean age 13 was 

associated with elevated risk (OR: 11.5, 95% CI: 2.1, 63.7) of developing type-2 diabetes 

during adulthood (mean age 38 years).8 Similarly, among a population-based sample 

(n=1,453) of Finnish youth, high cardiometabolic risk at mean age 13 year was associated 

with elevated risk of type-2 diabetes (RR: 2.54 95% CI 1.25-5.17) during adulthood 

(mean age 23).23 Among this cohort, high cardiometabolic risk during adolescence also 

predicted elevated risk for cardiovascular disease during adulthood (RR: 1.76 95% CI 

1.26-2.43).23 Similarly, among a sample from Louisiana (N=486), high cardiometabolic 

risk during ages 4-17 predicted elevated risk of cardiovascular disease at ages 25-37 

years (OR: 1.42, 95% CI:1.14-1.78).9 Given this evidence, an improved understanding of 

determinants of cardiometabolic risk during adolescence may provide opportunities to 

reduce risk of disease over the life-course. 

Additionally, racial disparities in deaths attributable to cardiometabolic diseases 

have long been recognized.24 Among adolescents in the U.S., non-Hispanic Black 

adolescents have the lowest prevalence of high cardiometabolic risk compared to non-

Hispanic Whites and Hispanics.  This observed disparity is temporally consistent. Non-

Hispanic Black adolescents have the lowest prevalence of high cardiometabolic risk 

(range: 1.6% – 6.4%), followed by non-Hispanic Whites (range: 2.2% – 14.7%), and 

closely followed, typically within 1%, by Hispanic adolescents (range: 2.6% – 

17.5%).3,4,25–30  Furthermore, other evidence points to racial/ethnic differences in health 

behaviors, such as smoking31 and physical activity,32  which have been identified as 
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predictors of cardiometabolic risk.28,29 No study to date has explored whether racial 

differences in lifestyle behaviors explain racial disparities in cardiometabolic risk among 

U.S. adolescents. 

Individuals’ residential area is another under-examined determinant of disparities 

in cardiometabolic risk among US adolescents.  Health is shaped, in part, by social and 

economic conditions within individuals’ residential area.33,34   Although an inverse 

association between area-level socioeconomic status (SES) and cardiometabolic health 

among adults is well established,14 research on this association among adolescents is 

limited to studies of adiposity and blood pressure.14,35–38 With 2 exceptions,39,40 studies 

conducted in the previous decade consistently observe an association between exposure 

to low-SES areas and elevated risk of adiposity during adolescence.41–56  These studies 

have been conducted among large population-based samples (range: 775-73,079) from 

various countries. 41–56  Of the 16 studies observing an association, 10 conducted 

hierarchical analysis.41–43,46,48,52–56 Six longitudinal studies suggest individuals residing in 

low-SES areas are heavier at baseline, and gain more weight during adolescence than 

individuals in high-SES areas.43,50–53,55  

In contrast, only four studies (sample range: 24 – 325) have examined the link 

between area-level SES and blood pressure among adolescents,35–38 and one found an 

association.35 None of these four studies conducted appropriate hierarchical analyses,35–38 

and two included only individuals with a family history of cardiometabolic disease.36,38  

To date, the potential association between area-level SES and other 

cardiometabolic factors, including glucose metabolism and lipid levels13,57–60 among 
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adolescents remain unexamined. Furthermore, cardiometabolic functions cluster6,13,58,61 

and are often considered together in an index representing an individual’s 

cardiometabolic risk.6,13,58,61 To date, no studies have examined the association between 

area-level poverty and a continuous index of cardiometabolic risk among adolescents. 

Additionally, evidence among adults suggests area-level SES contributes to racial 

disparities in cardiometabolic health,62,63 yet similar studies among adolescents are sparse 

and have focused solely on adiposity.  Four studies of population based samples (range: 

17,100 – 20,745) of U.S. children and adolescents using hierarchical methods suggest 

area-level SES contributes to racial disparities in adiposity.48,54,64,65  For example, among 

US adolescents, accounting for area-level SES resulted in 18% reduction in odds of 

adiposity for non-Hispanic black girls compared to non-Hispanic white girls.65 Among 

another sample of US children and adolescents, the racial-ethnic disparity in the odds of 

adiposity was explained away by addition of area-level SES.54   To date, no study has 

examined the link between area-level SES and racial disparities in cardiometabolic risk 

using a cardiometabolic risk index among adolescents.  

This study describes associations between area-level poverty (as an indicator of 

area-level SES) and cardiometabolic risk among adolescents. We also examine 

racial/ethnic disparities in this association. Furthermore, mediation by lifestyle behaviors 

is also assessed. We fit hierarchical models, for the full sample and by race, to determine 

the association between area-level poverty and cardiometabolic risk among a nationally 

representative sample of adolescents free of diagnosed cardiometabolic disease. We 

hypothesized that residing in areas with high poverty would result in an increased 
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cardiometabolic risk score, and exposure to tobacco smoke and physical activity would 

partially explain observed differences by race. 

To better understand the potential link between area-level poverty and 

cardiometabolic risk, and to examine the role of lifestyle behaviors, the following specific 

aims were proposed: 

1. Determine the relationship between area-level poverty and cardiometabolic risk, 

independent of individual- and area-level covariates. 

2. Determine if the relationship between area-level poverty and cardiometabolic risk 

differs by race/ethnicity. 

3. Determine if exposure to tobacco smoke, as a mediator between area-level 

poverty and cardiometabolic risk, partially explains racial/ethnic disparities in 

cardiometabolic risk. 

4. Determine if physical activity, as a mediator between area-level poverty and 

cardiometabolic risk, partially explains racial/ethnic disparities in cardiometabolic 

risk. 

 

 

 

 

 



6 

 

Chapter II. Area-level Determinants of Health 

Both individual- and area-level determinants of health are important in 

understanding the panoply of influences that determine health.  Area-level determinants 

of health include physical, social, and environmental exposures. A key area-level 

determinant of health is area-level socioeconomic status (SES). Area-level SES is related 

to both indirect and direct determinants of health, such as access to resources (e.g. food 

stores, health care)54 and exposure to environmental toxins.66 How area-level SES is 

assessed is important and is a key aspect in understanding how area-level SES impacts 

health. 

Racial/ethnic composition at the area-level has been utilized as a measure of 

SES,35 yet may be an inappropriate measure of SES, as areas with high racial/ethnic 

minority populations can have high SES, just as areas with high racial/ethnic majority 

populations can have low SES.67,68  Moreover, racial/ethnic composition is associated 

with health, even after controlling for area-level SES, suggesting that while these two 

constructs are related, they are separate area-level exposures.69–71 It stands to reason that 

a more direct method of assessing area-level socioeconomic status can be more useful. 

Economic indices are useful indicators of both area-level SES and are considered 

area-level stressors.  They are easily interpretable, consistently measured over time, and 

relate well to multiple other measures of area-level SES such as housing quality, crowded 

living spaces, and the built environment.72–75 Concentration of poverty, the percent of 

individuals living below the federal poverty line, is a common measure of area-level 

SES.54,64,72–74  Other measures including educational attainment, median household 
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income, percent unemployment, and median home value are indicative of access to 

resources (e.g. healthy food, insurance coverage, safe housing) and other area-level 

stressors (e.g. crime and violence).  

Singular indices of area-level SES allow for greater ease in interpretation, yet may 

not fully depict area-level stressors. Multivariate indices are conceptualized to allow for a 

more robust complete assessment of the area-level stress, yet due to their complexity, it 

may be difficult to determine which economic factors are driving an association. 

Multivariate indices that have transformed and averaged multiple indicators of area-level 

SES (e.g. educational attainment, employment, concentration of poverty, percentage of 

female-headed households) have been linked with health outcomes.54,64 Yet, using 

concentration of poverty at the census-tract level as a singular indicator is easily 

interpretable, and has been shown to produce similar results as multivariate indices.54,72–74 

Among adolescents, the potential association between area-level exposures and 

biomarkers that predict future development of disease have rarely been examined. As 

exposure to area-level SES during adolescence has been linked with adult health 

outcomes,76,77 examining the potential links between area-level SES and biomarkers of 

cardiometabolic risk which track over time (such as blood pressure and glycosylated 

hemoglobin) among adolescents may allow for a better understanding of area-level 

factors’ contribution to future disease risk.  
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Chapter III. Blood Pressure among Juveniles 

As this study attempts to better understand the pathways to disease, blood 

Pressure (BP) is an appropriate biomarker to examine as it is a good indicator of health, 

and can be tracked across the lifespan. Literature reviewed in this chapter incorporates 

both children (less than 12 years of age) and adolescents, (between 12 and 19 years of 

age) as the extant literature as largely considered these distinct age group together. BP 

during adulthood is associated with risk of cardiovascular disease, stroke, premature 

death, and other health problems in adulthood.78–82 Longitudinal studies provide evidence 

that BP tracks over time among juveniles. BP in early childhood is independently 

predictive of BP in adolescence.83 BP has also been tracked during adolescence, as BP at 

age 13 correlates with BP at age 17.84 Most relevant to the proposed study, is the 

consistent observation that adolescents with high BP levels are likely to have high BP 

levels in adulthood.17–19 

Measurement of blood pressure 

 There are two components to blood pressure (BP): systolic blood pressure (SBP) 

is the blood pressure during a heartbeat, and diastolic blood pressure (DBP) is the blood 

pressure between heart beats.85,86 Hypertension is diagnosed when SBP or DBP are at or 

above the 95th percentile based on age, gender, and height.87 Another measure is blood 

pressure reactivity (i.e., rise and fall of BP) in response to a stressor.88–91 This review 

focused on BP levels and hypertension, as these two indicators are considered to be risk 

factors for development of future disease.17–19  
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Additionally, SBP and DBP are highly correlated and have many of the same 

determinants, these shared determinants were identified as a determinant of overall 

BP.85,86 Determinants of only SBP or only DBP were identified as such. However, SBP is 

considered a stronger predictor of disease,85,86 and determinants unique to SBP (i.e. 

sodium intake18,92) have been identified.  

Distribution of BP among juveniles 

Age-gender-height specific BP charts based on 1999-2000 National Health and 

Nutrition Examination Survey (NHANES) data can be used to provide normative 

references for juvenile BP.87 For example, according to this chart the 50th percentile for 

systolic blood pressure (SBP) for a 5 year old female at the 50th percentile for height is 

93, while the 50th percentile for SBP for a similar male is 95.87 The gender difference 

becomes more apparent in adolescence, as the 50th percentile for SBP for a 17 year old 

female at the 50th percentile for height is 111, while the 50th percentile for SBP for a 

similar male is 118.87  

From NHANES 1999-2012, for youth aged 8-12 years, boys had mean SBP of 

102.96 mean DBP of 52.97, and girls had mean SBP of 102.09, and mean DBP of 

54.39.93 For youth aged 13-17 years, boys had mean SBP of 111.99, and mean DBP of 

58.74, and girls had mean SBP of 106.48, and mean DBP of 61.57. 93 Also from 

NHANES 1999-2012, the prevalence of prehypertension and hypertension among youth 

aged 8-17 years has remained near 10 percent for much of the previous decade.7 

Demographic correlates of BP in juveniles 
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Blood pressure co-varies with age, gender, and height.  Among juveniles age has 

an independent and positive association with blood pressure (BP).18,94–96 This age-related 

increase in BP is normative, and is not considered a risk factor among this population.  

 Furthermore, male juveniles have elevated BP levels compared to females, with 

large increases in SBP observed in males during adolescence, yet not in females.18,84,94 

Physiologic changes in adolescence likely drive gender-based differences in BP. For 

example, males have larger skeletal and muscle growth, and larger gains in red blood cell 

mass than females, and this contributes to higher increases in BP levels seen in males 

during adolescence.18,94,97 While hormonal pathways are not yet well specified, 

differences in estrogen receptors between genders may be partially responsible for 

elevated levels of BP in males.84  

Finally, BP also co-varies with height.18,83,87,94,95,98 Therefore, age, gender, and 

height must be taken into account when determining normal levels of BP in juveniles. 

Determinants of BP among juveniles 

Although there is a wealth of knowledge of determinants of blood pressure (BP) 

among adults, research on juveniles is not as prevalent. Twenty-six studies have 

examined individual- and area-level determinants of adolescent SBP and DBP,  and 

hypertension.17,18,35–38,75,83,84,92,94–96,98–110 Studies measuring BP at 5 years of age and 

above are of particular interest to this review in order to examine BP levels tracking over 

time in childhood and adolescence. In the review below children below age 12 and 

adolescents aged 12-19 are referred to as juveniles.111,112 
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Prenatal and neonatal factors play an important role in juvenile BP. Maternal age 

and height, pre-pregnancy BMI, number of previous pregnancies, and smoking 

throughout pregnancy, are all independently and positively associated with juvenile 

SBP.109  Birthweight is also inversely related with BP among adolescents.83,96 

Additionally, juveniles who were breastfed at least 6 months have lower SBP in 

childhood.109,110   

Family characteristics are also linked with juvenile BP.37,94,96,103,106,107 Juveniles 

from families with a history of hypertension or cardiac arrest are more likely to have high 

BP levels.96,107 This relationship may signal hereditary factors in BP, or it could be 

indicative of the health behaviors of the family or other shared influences such as SES. 

Family SES correlates well with exposure to stress, and various indicators of low family 

SES (i.e. low income and assets, poor parental education, female-headed household, low 

paternal education) are associated with elevated juvenile BP.37,103,106 However, one study 

found that juveniles with low family SES had lower BP levels than others.94 Additionally, 

family SES is also related to access to resources, yet it may be more appropriate to 

measure health behaviors related to certain resources in order to better understand how 

family SES is linked to juvenile BP.37 

Access to healthy food and quality housing are intrinsically tied to family SES, 

and influence health behaviors such as diet and sleep.113–115 Sodium intake is positively 

associated with SBP, and sugar intake is positively associated with overall BP 

levels.18,92,100,109 High sodium intake may further elevate SBP in obese juveniles, as 

sodium may interact with obesity-related health conditions (e.g. metabolic syndrome, 

hyperinsulinemia) leading to elevated SBP.18,92 High sugar intake effects BP levels by 
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increasing production of nitric oxide in the kidneys, leading to elevated BP.100 Inefficient 

sleep is thought to lead to metabolic and endocrine disorder, in turn leading to elevated 

SBP in juveniles.99  

Adolescent Growth and BP 

Measures of body size, other than height, are also independently associated with 

BP levels. While increases in weight, head circumference, waist circumference, and 

waist-to-height ratio are associated with elevated BP, Body Mass Index (BMI) is the most 

widely used measure.18,83,94–96,98,101,102,104,108 The association between BMI and BP 

becomes stronger as BMI increases.94–96 Normative increases in BMI are associated with 

normative increases in BP, yet excessive increases in BMI greatly increase risk for 

prehypertension and hypertension.101 94–96  The relationship between BMI and BP is 

complicated by rate of growth during childhood.  Children with high BMI may grow 

faster than others, leading to higher than average height for their age. 94 This interaction 

between height, BMI, and growth is physiologically complicated, not allowing the true 

relationship between BMI and BP to be clearly distinguished.94 

Rate of growth may play an important role in adolescent BP levels, as 

adolescence is the only developmental period after infancy in which the rate of growth 

accelerates, and great physiological changes occur to prepare the body for adulthood.97,116 

A study of  rate of growth from infancy to age 5 observed an inverse relationship  

between rate of growth during early childhood and adolescent BP; whereas, rate of 

growth from age 5 to 15 was independent of adolescent BP.83 However, rate of growth in 

adolescence is age and gender dependent. For instance, until approximately age 10, males 
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and females have similar height, yet during early adolescence (approximately 10-12 years 

of age), females make larger gains in height than males.116 Later in adolescence 

(approximately 12-13 years of age), males catch up to and overtake females in terms of 

height and rate of growth. 116 Measuring rate of growth over a 10 year period 

encompassing both childhood and early adolescence may have obscured the true 

relationship between rate of growth and BP in juveniles. Due to accelerated rate of 

growth and physiologic changes associated with adolescence, children and adolescents 

should not be considered a single group when assessing BP levels and other health 

outcomes.87,97 

Many of the reviewed studies are either cross-sectional studies unable to measure 

rate of growth,17,18,35–38,75,92,94–96,98–109 or longitudinal studies that did not measure growth 

over time.84,110  As age is related to growth in children and adolescents, these studies 

account for age in analysis. Accounting for age may partially account for growth, yet the 

true relationship between rate of growth and BP cannot be observed in cross-sectional 

studies. 

Area-level studies 

To date five studies have considered the association between area-level 

determinants (i.e., concentration of poverty, proportion of residents with less than high 

school level of education, multivariate index of SES, built environment) of juvenile 

BP.35–38,75  The only study to observe a relationship between area-level SES and BP 

examined concentration of poverty at the census tract level.35 In contrast, the studies with 

null findings used indicators of area-level SES at the block group level.36–38 These 
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findings, in the context of the discussion of area-level units of analysis in chapter 6, 

suggest that constructs may operate differently depending on unit of analysis, and this can 

result in different effects.  

Additionally, the study to observe a relationship fit hierarchical models to nest 

individuals within schools.35 In contrast, studies with null findings estimated bivariate 

correlations 37,38  and another conducted a multivariate analysis of covariance but without 

considering the two levels of analysis. Given that in all these studies individuals are 

nested within various contexts, such as neighborhoods and schools, hierarchical models 

are most appropriate.36–38 (See chapter 6 for a discussion of hierarchical models).  

Furthermore, of the studies with null findings, one study sampled participants 

from a single school district, 37 while others sampled from a small number of schools.36,38 

Additionally, two studies included only individuals with a family history of 

cardiovascular disease in the sample.36,38 The studies with null findings were likely 

limited in the variability of the outcome variable, as well as the predictor variables at both 

the individual and area levels. 

The study to observe an association between area-level SES and BP sampled 212 

students from two schools.35 The sample was diverse in regards to racial/ethnic 

background and socioeconomic status, yet the small sample resulted in all tract-level 

factors to be treated as individual-level factors, thus not allowing for true hierarchical 

analysis of the relationship between area-level SES and BP.35 A large, nationally 

representative sample allows for better generalizability, as well as the potential for a 

sufficient number of juveniles within area-level units to allow for hierarchical analysis. 
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Exposure to Stress and Blood Pressure 

BP is responsive to stress. In the face of acute stressors, BP rises and returns to 

basal levels once the stressor is mitigated.82,117–119 As discussed in chapter 5, the HPA 

axis releases hormones such as epinephrine when faced with a stressor.119 These 

hormones increase heart rate and narrow blood vessels, thus increasing blood pressure.  

Evidence has also linked area-level stressors with elevated basal levels of BP, yet 

research examining this relationship among juveniles is scarce.35 Exposure to place-based 

stress may lead to continual HPA activity and resultant physiologic consequences, as 

discussed in chapter 5.  
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Chapter IV. Glycosylated Hemoglobin among Juveniles 

This study focuses on the relationship between exposure to placed-based stressors 

and stress-related biomarkers to better understand how physiologic reaction to stressors 

may provide a pathway to disease. Glycosylated hemoglobin (HbA1c) is an important 

biomarker of exposure to chronic stress,120–122  and it is also a marker of prediabetes123–127 

and cardiovascular disease.128–131 Much of the research on the relationship between 

chronic stress and HbA1c has occurred among adults, yet examining this potential 

relationship among juveniles may provide a better understanding of the link between 

chronic stress and future disease. Literature reviewed in this chapter incorporates both 

children (less than 12 years of age) and adolescents, (between 12 and 19 years of age) as 

much of the relevant research has focused on diabetic individuals under the age of 19.  

Glycosylated hemoglobin 

HbA1c represents the average blood glucose level over approximately three 

months, with high HbA1c levels suggesting poor blood glucose regulation.123,124 While 

traditionally used to determine average glucose levels among diabetics, HbA1c levels 

have recently been recommended for use in screening for prediabetes among adults.123–127 

Prediabetes is a condition in which blood glucose levels are higher than normal, yet 

below diagnostic criteria for diabetes; prediabetes is often a precursor to Type 2 

diabetes.132 Cross-sectional studies have identified a link between HbA1c and 

cardiovascular disease among adults, with evidence suggesting the severity of 

cardiovascular disease increases with elevated HbA1c.128,131 In a longitudinal study 

among adults examining how well various biomarkers of glucose regulation (HbA1c, 

fasting glucose, 2 hour post prandial glucose) predict onset of cardiovascular disease, 
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HbA1c was the most accurate predictor of cardiovascular disease and mortality over a 10 

year period.129 Another longitudinal study found that adults without diabetes with 

elevated HbA1c (≥6.2%) over a 5 year period were more likely to have cardiovascular 

disease compared to individuals with lower levels of HbA1c (<6.2%).130  

 Among diabetic juveniles, HbA1c is a key biomarker of glucose regulation, and 

much of the existing research on HbA1c among juveniles has focused on this 

population.20,123,133–147 Research examining HbA1c among juveniles without diabetes has 

largely focused on high-risk (e.g. overweight or obese) populations, as weight and Body 

Mass Index are key risk factors for diabetes and heart disease.148,149 Among obese 

juveniles, initial studies suggested HbA1c may not be an appropriate screen for 

prediabetes or diabetes,123,148,149 yet more recent studies suggest measuring HbA1c levels 

is a valid screen for prediabetes and diabetes.150,151 While all studies found the same 

association, initially observers123,148,149 were hesitant to recommend HbA1c as a screen 

for prediabetes and diabetes due to lack of research, while the more recent studies150,151 

reflect a better understanding of HbA1c as a screening measure. However, no clinically 

relevant cut point for HbA1c levels for use in screens has been established. 123,148–151  As 

utility of HbA1c as a biomarker of disease among high-risk and non-high-risk 

populations increases,152 this study focuses on the general population in order to better 

understand the effect area-level exposures have on HbA1c. Additionally, HbA1c tracks 

over time among diabetic20 and non-diabetic children,21 underlining the importance of 

examining early influences on HbA1c in the general population. 
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Glucose Regulation and Chronic Stress 

Among adults, exposure to chronic stress has been linked with elevated levels of 

HbA1c among both diabetics121 and non-diabetics.120,122  Insulin is a key factor in the 

pathway linking exposure to chronic stress with elevated levels of HbA1c.120,121 

Insulin is a hormone produced by the pancreas that plays a major rule in blood 

glucose regulation.153 When blood glucose levels are high, insulin is released and triggers 

cells to store glucose for future use and inhibits additional glucose secretion, thus 

lowering blood glucose levels.153 If insulin production is inhibited, this can lead to 

chronically high blood glucose levels and severe health consequences, such as diabetes 

and cardiovascular disease.125–129 Exposure to chronic stress has been linked with 

inhibited insulin production and poor glucose regulation.120,121 

As discussed in chapter 5, chronic exposure to stress can lead to a continual 

activation of the HPA axis and continual release of adaptation hormones such as cortisol. 

Continual release of cortisol, can lead to both an increased production of glucose and 

inhibited production of insulin.154–157 Exposure to chronic stress is also linked with 

elevated levels of c-reactive protein, a marker of inflammation,158 in turn, inflammation 

has been linked with insulin resistance.120,159 In sum, chronic stress leads to elevated 

levels of HbA1c as glucose production is increased, insulin levels are reduced, and 

inflamed cells are less likely to respond to insulin.120,154–159  

Distribution of HbA1c among Juveniles 

Among a nationally representative sample of juveniles without diagnosed 

diabetes, the mean HbA1c among individuals aged 5 to 9 years is 4.98% (10th- 95th 

percentile: 4.46-5.47); among individuals aged 10 to 14 years, the mean is 5.03% (10th - 
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95th percentile: 4.53 - 5.57); those aged 15-19 years had a mean of 4.97% (10th - 95th 

percentile: 4.45 - 5.51).152 The heightened HbA1c levels among those aged 10-14 years is 

likely due to normative insulin resistance that occurs in early adolescence.160,161  Among 

juveniles from NHANES 1988-1994 data, the prevalence of elevated HbA1c (≥6 percent) 

was 0.39%.162 

Gender differences in HbA1c levels among juveniles have also been observed 

across age groups in large, nationally representative studies.152,163–165 In studies utilizing 

NHANES 1988-1994 data, males had higher average HbA1c in the overall sample, and 

when stratified by age and race/ethnicity.152,163 In the study of adolescent blood donors, 

boys had higher prevalence of elevated HbA1c overall, and when stratified by 

race/ethnicity. 164 

 

Determinants of HbA1c among juveniles without diabetes 

Studies examining the distribution of HbA1c and prevalence of elevated HbA1c 

among juveniles observed differences by racial/ethnic group. 152,163–165 Studies utilizing 

NHANES 1988-1994 data found that across each age group, non-Hispanic Blacks had the 

highest mean HbA1c, followed by Mexican-Americans, and non-Hispanic Whites, 

respectively. 152,163 In the study of adolescent blood donors, prevalence of elevated 

HbA1c (≥5.7 percent) was highest among non-Hispanic Blacks (32.7 percent), followed 

by Asians (19.7 percent), Hispanics (13.1 percent), and non-Hispanic Whites (8 

percent).164 Studies suggest that race/ethnicity is a key predictor of HbA1c among 

juveniles, with racial/ethnic differences remaining after controlling for other determinants 

such as SES, and body mass index.163 
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Among NHANES (1988-1994), determinants of HbA1c among juveniles without 

diabetes  include juvenile BMI, maternal BMI, and family income to poverty ratio, yet 

these relationships became non-significant in multivariate models once race/ethnicity was 

included.163 Among Dutch children without diabetes, HbA1c was found to be 

independent of ethnicity, BMI, waist circumference, parental diabetes status, and 

maternal BMI.166 A study of Native American juveniles observed a relationship between 

intrauterine exposure to diabetes and HbA1c, yet body fat percentage was not a 

determinant.167 In sum, demographic factors (i.e., age, gender, race) are the only factors 

that have been consistently linked with HbA1c. 

Stress and HbA1c among Juveniles 

Eleven studies have examined the relationship between stress and HbA1c among 

juveniles with diabetes.20,133–142 These studies suggest that individual- and family-level 

stressors, such as negative life events and family socioeconomic status, are linked with 

HbA1c among this population.20,133–142 None of these studies considered area-level 

stressors. 

Two studies have examined the relationship between stress and HbA1c among 

juveniles without diabetes.143,144 A cross-sectional study of 6 year olds examined the 

relationship between family-level stressors and HbA1c, yet neither parent-reported 

negative life events nor family socioeconomic status were associated with HbA1c levels; 

area-level stressors were not considered in this study.143 The sole study examining area-

level stressors and HbA1c was a longitudinal study among 11,100 adolescents.144  Results 

suggest that living in a context with low collective efficacy during adolescence was 
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associated with increased odds of having elevated HbA1c (>5.7 percent) in early 

adulthood.144  

While the literature on stress and HbA1c among juveniles without diabetes is 

sparse, current findings suggest a potential relationship. Findings are consistent with the 

notion that exposure to stress must accumulate in order to negatively impact health. The 

link between stress and HbA1c was not observed among 6 year olds as they have not 

accumulated enough exposure to stress to influence a physiologic outcome.143 As 

exposure to stress accumulates, physiologic consequences are observed, as evidenced in 

the longitudinal study of adolescents.144  

Exposure to chronic stress has been linked with biomarkers of future disease 

among adults, yet this remains understudied among adolescents. As discussed in chapter 

5, the physiologic response to chronic stress may shift the body’s physiologic balance to 

a new equilibrium. 
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Chapter V. Stress and hypothalamic-pituitary-adrenal activity during adolescence 

Homeostasis refers to the body’s physiologic balance, the optimal ranges that 

physiologic systems operate within under normal conditions.168,169 This homeostatic state 

is maintained by the hypothalamic-pituitary-adrenal (HPA) system through its 

interconnections with multiple biologic systems (i.e., central nervous, immune, 

cardiovascular, inflammatory, and endocrine systems).154,156,170–173  Exposure to stressors 

results in the release of two sets of hormones by the HPA axis: adaptation hormones and 

growth hormones.174 Adaptation hormones provide energy for the fight or flight response 

through increased heart rate, blood flow, respiration, as well as immune and 

inflammatory responses.154,156,170–174 For example, cortisol, a key adaptation hormone, 

breaks down proteins and regulates glucose levels, providing energy for the fight or flight 

response.154–156 After an acute stressor is resolved, growth hormones, such as insulin, 

growth hormone174 and dehydroepiandrosterone (DHEA), allow a return to homeostasis 

by counteracting the arousal effects of adaptation hormones.155,174–176 More specifically, 

as an acute stressor is mitigated, release of growth hormones allow cells to store glucose 

for future use and the body to relax, this is referred to as a “restorative break.”174,177 

A critical distinction between acute and chronic stressors in terms of HPA activity 

is that exposure to chronic stress prevents the onset of restorative breaks.  Chronic 

exposure to stressors results in continued and excessive release of adaptation hormones, 

causing a shift in the adaptation-growth hormone balance in favor of adaptation 

hormones.  This shift reduces the effect of growth hormones, preventing onset of 

restorative breaks.174 Lacking restorative breaks, the HPA continues release of adaption 
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hormones with  physiologic consequences.174 As discussed below, continual HPA activity 

may have severe consequences, especially among adolescents.  

Another possible consequence of repeated exposure to stressors that cease (due in 

part to some action of the individual) is development of a sense of mastery over that 

stressor.  This sense of mastery is physiologically expressed as a less pronounced spike in 

cortisol when faced with the acute stressor, allowing for a quicker onset of restorative 

breaks and return to homeostasis. 174 For example, novice pilots experience elevated 

levels of both cortisol and growth hormone following exposure to experimentally induced 

stressors while expert pilots have increased levels of growth hormone only.174,178 The 

elevated levels of growth hormone in conjunction with low levels of cortisol suggest that 

the expert pilots had learned to manage the stressor; therefore, a quicker onset of a 

restorative break occurs, allowing energy to be available for functions other than stress 

management.  Likewise, in animal studies, repeated exposure to acute stressors early in 

life leads to lower basal cortisol levels and smaller spikes in cortisol in response to 

similar stressors later in life. 174,179–182 In summary, exposure to chronic stressors inhibits 

onset of restorative breaks. Inhibition of restorative breaks may uniquely effect 

adolescents due to a normative period of heightened HPA activity during this 

developmental period.  

HPA activity during Adolescence 

Adolescence is a unique period of HPA activity.  For reasons that are not fully 

understood,183–185 adolescents enter a normative period in which basal levels of both 

adaptation and growth hormones are elevated.183–193 To the extent that exposure to acute 
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stressors of adolescence, such as changing social roles and integration into the larger 

society, is prevalent, adolescence is a time of particularly high HPA activity.183,186,194–197 

Furthermore, during adolescence the HPA axis responds to stressors in an exaggerated 

manner.183,184,186,195–200 For example, compared to adult rats, adolescent rats experience 

larger spikes in HPA hormones in reaction to stressors, and require a longer period to 

return to basal HPA levels following the spike.198–200 In humans, when children and 

adolescents are exposed to a similar stressor, adolescents have a larger spike in cortisol 

than children.183,184,186,201  With age, individuals’ stress response becomes less 

pronounced, with lower spikes in hormonal levels and a quicker return to basal levels 

throughout adulthood.198–200,202  

Consequence of Exposure to Chronic Stress 

 Chronic physiologic reaction to stressors and anticipation of exposure to stress 

may lead physiologic systems (such as the cardiovascular system and the immune 

system) to operate at levels that are below diagnostic thresholds.112,156,170–173,201–208  
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Chapter VI. Methods 

The purpose of this study was to determine the relationship between area-level 

poverty (a measure of area-level stress) and cardiometabolic risk in adolescents. This 

chapter describes the data sources, variables analyzed in this study, and analysis. 

Individual-level Data 

All individual-level data was drawn from the 1999-2012 waves of the National 

Health and Nutrition Examination Survey (NHANES). NHANES is a continuous, cross-

sectional survey that provides vital and health statistics for the United States population. 

209,210 NHANES began as a series of surveys in the 1960s, and since 1999 has been a 

continuous survey, releasing data every 2 years.209,210 The survey utilizes a population-

based, nationally-representative sample of the non-institutionalized United States 

population.209,210  NHANES uses a 4 stage sampling procedure. 211 Stage 1 identifies and 

selects Primary Sampling Units (PSUs) that typically consist of one county, or groups of 

contiguous counties. Stage 2 divides PSUs into segments equivalent to the size of a city 

block. Stage 3 identifies and selects households within each selected segment, and a 

sample is randomly drawn from the existing households. Stage 4 identifies and selects 

individuals within each household, and randomly selects a participant by age, sex and 

race/ethnicity.211 Certain groups are of particular interest to public health officials and 

researchers, and NHANES is designed to oversample these groups in order to provide 

reliable statistics. 209–213 In the 2007-2012 waves of NHANES, Hispanics, Non-Hispanic 

Blacks, Non-Hispanic Asians, Non-Hispanic Whites at or below 130 percent of the 

poverty level, and Non-Hispanic whites aged 80 years and older were oversampled.212,213 
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This procedure results in a sample of approximately 5,000 people across 15 PSUs per 

year.209,210  NHANES data are collected via a Household Interview, a Mobile 

Examination Center (MEC) visit, and Post-Mobile Examination Center procedures using 

standardized questionnaire interviews, clinical examinations and laboratory 

procedures.209,210,214   

During the Household Interview, a trained interviewer first screens the household 

and residents for participation. The screening process gathers information on age, gender, 

race/ethnicity, and income; this information is used in an algorithm to randomly select 

participating households and participants. For selected households, the relationship 

questionnaire divides all household residents into family units in order to identify the 

number of families residing in a household. Informed consent is obtained for all selected 

participants, who are then interviewed for information related to demographics, 

socioeconomics, dietary and health history. For each family unit within a sampled 

household, a family questionnaire obtains information on education, race/ethnicity, 

family income, occupation and other household characteristics.  

After the Household Interview, selected participants are scheduled for an 

appointment at the Mobile Examination Center (MEC) for laboratory and clinical 

assessment. The MEC set up in a location easily accessible to participants in a selected 

PSU. The MEC is a combination of 4 trailers containing exam rooms and equipment 

needed for data collection. During the MEC visit, trained staff collect data related to 

components such as audiometry, anthropometry, blood pressure, body composition, bone 

density, cardiovascular fitness, oral health, and a physician examination, among others. 

Participants also complete a dietary interview, and a private health interview (covering 
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topics such as current health status, substance use and physical activity) during the MEC 

visit. Biospecimen samples of blood, hair, nasal swab, urine, vaginal swab, and glucose 

tolerance are collected and sent to external laboratories for analysis.214 

A sub-sample of participants are also recruited to participate in Post-MEC Data 

Collection. This data collection includes allergen data, dietary interview, physical activity 

monitoring, health questionnaire, and urine sample. Post-MEC Data Collection is 

completed via phone interview, in-home questionnaire, and mailed return of completed 

tasks (i.e. urine collection and physical activity monitoring) to appropriate laboratories 

for analysis.214  

Sample 

 Individuals were drawn from the 1999-2012 waves of NHANES. Combining 14 

years of NHANES data provides greater statistical reliability, is more representative of 

the United States population, and provides greater geographic variability in the sample. 

This study focuses on a subset of male and female adolescents aged 12 to 19 from 

NHANES. The sample included individuals from all racial/ethnic groups. Individuals 

with a self-reported diagnosis of diabetes that are currently using medication/insulin to 

control their blood glucose levels were not included in the subset as medication/insulin 

use may result in altered HbA1c levels. Individuals with a self-reported diagnosis of 

hypertension that are taking medication to treat hypertension were not included in the 

subset as medication use may result in altered BP levels. Individuals reporting current 

pregnancy were not included in the subset as pregnancy influences cardiometabolic 

biomarker levels.215216  
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The analytic sample was drawn from 13,343 adolescents, ages 12–19 years who 

completed examination in the mobile examination center (MEC).  We excluded 

respondents who reported to be pregnant (n=181), had been told by health professional to 

have hypertension or diabetes and using medication for hypertension or diabetes (n=83).  

Of the remaining 13,079 adolescents, 2,934 were excluded due to missing data on 

cardiometabolic outcome variables, leaving a final analytic sample of 10,415 adolescents 

(79% of sample who completed the mobile examination center component).   

Area-level Data 

 Area-level data were drawn from the 2009-2013 American Community Survey, 

the 2005-2009 American Community Survey, and the 2000 Decennial Census. 3,140 

census tracts were included in analysis. 

Fully implemented in 2005, the American Community Survey (ACS) is a 

continuous survey of demographic, social, and economic indicators (e.g., poverty, 

education, family makeup, and housing). Since 2010, the ACS has replaced the long form 

Decennial Census in order to provide contemporary statistics for the United States 

population. The United States Census Bureau collects and releases data annually. The 

ACS samples approximately 3,500,000 addresses in the United States each year. Data are 

released in 1-year, 3-year, and 5-year estimates, with multiyear estimates combining data 

from the previous 3- or 5-year periods.217 This study used 5-year estimates as they 

include the largest sample size, are considered the most accurate, and provide estimates 

for small geographic units.  
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The 2000 decennial census was a cross-sectional survey that collected 

demographic, social, and economic indicators (e.g., poverty, education, family makeup, 

and housing). As the decennial census collects data from all households in the United 

States, decennial census data accurately describes the United States population in the year 

2000. Decennial census data provides statistics for multiple levels of geography in the 

United States.218 With multiple levels of geography available in Census and ACS data, it 

is important to identify an appropriate geographic unit of analysis with which to depict 

area-level poverty. 

Area-level Units of Analysis 

When examining area-level determinants of health it is important to determine the 

appropriate geographic unit of analysis that allows for observation of the construct of 

interest as well as adequate statistical power to observe an association reliably.   

Area-level units of analysis range from census blocks to nations. Larger 

geographic units include many smaller geographic units that have been shown to be 

relevant to the health of individuals within those units.72 While factors such as income 

inequality measured at national or state levels219–221 have been linked to health outcomes, 

much of the research on area-level determinants of health utilizes smaller geographic 

units, such as census block group, census tract, or ZIP codes. Additionally, some 

constructs are more relevant at smaller geographies (e.g. social cohesion) while others are 

only relevant in larger geographies (e.g. income inequality).222 

Krieger et al examined how heterogeneity of various units relates to consistency 

of observations. Relatively smaller geographic units have more homogenous populations 
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and allow for the most consistent observations.72–74 Census block groups (on average, 

1,000 residents) and census tracts (on average,  4,000 residents) are considered to have 

relatively homogeneous populations, and both block groups and census tracts yielded 

consistent observations between area-level exposures and health outcomes.72–74 In 

contrast, ZIP codes (on average, 30,000 residents) have relatively more heterogeneous 

populations, and inconsistent observations.72–74 Furthermore, similar relationships at the 

block group and tract levels exist.223,224 For many social constructs related to area of 

residence, census tracts are also considered to be the more socially relevant geographic 

unit.225,226 Tract boundaries are derived with input from local communities in attempt to 

capture natural neighborhood boundaries.227 Furthermore, aggregating resident-reported 

data to the tract level can result in socially relevant variables (e.g. collective efficacy) that 

have links to health outcomes.228,229 Additionally, tracts are utilized by federal, state, and 

local entities for resource allocation and to determine eligibility for social programs. 225–

227  Due to these factors, census tracts are considered to best approximate social context 

compared to other small geographic units of analysis. 

Other considerations are statistical power, precision of estimates, and reliability 

that a particular unit of analysis allows. High margins of error occur when population 

among a particular unit is small.223,224 Census tracts, on average, have a larger population 

than block groups.72–74  Therefore, while similar relationships at the block group and tract 

levels exist, results at the tract level are more reliable, due to relatively higher statistical 

power in census tracts.223,224  Finally, census tracts have also been shown to be ideal for 

geocoding individuals within their contexts, with approximately 95% accuracy in placing 
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individual within appropriate tracts.226,230  Consequently, for the reasons outlined above, 

NHANES data was linked with ACS and census data at the census tract level. 

Data Linkage 

Individuals from NHANES were linked with contemporary area-level data using 

census tract identifiers For example, 1999-2000 NHANES data were linked with 2000 

Decennial Census data via 2000 census tract identifiers, and 2011-2012 NHANES data 

were linked with 2009-2013 ACS data via 2010 census tract identifiers (Figure 1). 

Linking NHANES data with contemporary area-level data was beneficial in that 

individuals were placed in their relevant social context. 

Cardiometabolic Biomarkers 

All biospecimen were obtained by trained technicians during the MEC.  

Glucose Metabolism: A single measurement of glycosylated hemoglobin, representing 

the average blood glucose level over approximately three months, was assessed with a 

high performance liquid chromatography analyzer.231  

Blood Pressure: systolic and diastolic blood pressure (mmHg) were assessed up to three 

times with a mercury sphygmomanometer according to standards of the American Heart 

Association.231 When multiple measurements were available (n= 10266; 98%), they were 

averaged to obtain mean systolic and diastolic blood pressure. Z-scores based on age, 

gender, and height were calculated using the following formula:87 

Zsbp = (X - µ)/σ 

  X: Observed value 
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𝜇: Expected value based on age, gender, height 

  𝜎: Gender − specific standard deviation (Male: 10.7128, Female: 

10.4855)87 

Lipid Metabolism: Two measures of lipid metabolism were used: 1) HDL Cholesterol 

(mg/dL) levels are analyzed using an endpoint reaction technique specific for HDL 

cholesterol.231 2) Total cholesterol (mg/dL) levels are analyzed using a single-reagent 

endpoint technique specific for cholesterol.231 Previous analyses of cardiometabolic risk 

have utilized triglycerides instead of total cholesterol, in an attempt to diagnose 

Metabolic Syndrome.25,30 As the aim of this study is to examine pre-clinical indicators of 

disease, the use of total cholesterol is appropriate as total cholesterol tracks better over 

time compared to other biomarkers of lipid metabolism.232 Additionally, using 

triglycerides would have reduced the sample size by 51.8 percent (n= 5019), limiting 

hierarchical analyses due to a potentially small number of individuals residing in each 

census tract.233  

Adiposity: Waist circumference (cm) is measured by a trained health technician.231   

Index of Cardiometabolic Risk  

We created a continuous index of cardiometabolic risk by summing z-scores for 

glycosylated hemoglobin levels, 234–236 waist circumference,14 and HDL cholesterol and 

total cholesterol,57,58,234 and for systolic and diastolic blood pressure.17–19 All z-scores 

were age and gender specific, except the z-score for blood pressure which was based on 

age, gender, and height.87  Higher scores indicate higher risk (HDL was multiplied by -1).  

Parametrization of this cardiometabolic index was informed by evidence indicating a 
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multivariate measure better predicts future development of disease than any individual 

biomarker alone.61 Additionally, a continuous measure reflects population-level variation 

in cardiometabolic risk237,238 and, thus, better predicts adult health compared with a 

categorical measure.239  A related point is that false positive and false negative errors may 

arise when categorical measures are used.  Finally, a continuous measure allows more 

statistical power, an important consideration given that prevalence of high 

cardiometabolic risk during adolescence may be only 4% (depending on the definition 

used).3,237  

Individual-level Variables - Figure 2 identifies variables that have been linked with 

cardiometabolic risk in previous studies, and which variables have been included for this 

study.  

Survey Wave – Indicator variables for waves of NHANES data were included to account 

for potential period effects. Survey wave was coded as 1/0, with 1 indicating wave of 

data. This is included in the Demographic Variables and Sample Weights file from 

NHANES. 

Age – Age in years is reported as a continuous variable (parental/guardian report for 

individuals <16 years of age). This was collected during the Household Interview portion 

of data collection.  

Gender – Gender is reported as a categorical variable: Male, Female. Gender was dummy 

coded as 1/0 with 1 indicating female (parental/guardian report for individuals <16 years 

of age). This was collected during the Household Interview portion of data collection. 
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Race/ethnicity – Race/ethnicity is reported as a categorical variable: non-Hispanic White, 

Non-Hispanic Black, Non-Hispanic Asian, Mexican American, Other Hispanic, and 

Other Race/Ethnicity Non-Hispanic  (parental/guardian report for individuals <16 years 

of age). Non-Hispanic Asian, Other Hispanic and Other race/ethnicity were grouped 

together as “Other.” Because the group of participants identified as belonging to “other” 

races/ethnicities is small and heterogeneous, race-specific regression results are not 

presented for this group, although they were included in the analytic sample and overall 

results. Race/ethnicity was coded as 1/0, with 1 indicating belonging to that racial/ethnic 

group. This was collected during the Household Interview portion of data collection. 

Cotinine Levels – Cotinine (ng/mL) is a metabolite of nicotine exposure. Cotinine is 

collected via blood sample from the participant as part of the Mobile Examination Center. 

This is collected for participants aged 3 years and above, and was measured using an 

isotope dilution-high performance liquid chromatography/atmospheric pressure chemical 

ionization tandem mass spectrometry.231  Cotinine was kept as continuous. 

Physical Activity – Self-reported “Over the past 30 days, did you do moderate activities 

for at least 10 minutes that cause only light sweating or a slight to moderate increase in 

breathing or heart rate? Some examples are brisk walking, bicycling for pleasure, gold, 

and dancing.” This is reported as a categorical variable: Yes, No, Unable to do activity, 

Refused, Don’t know. This was coded as 1/0 with 1 indicating any physical activity. For 

individuals aged 12 to 15 years, this was asked during an interview at the Mobile 

Examination Center. Individuals aged 16 to 19 years were asked this question during 

Home Interview portion of data collection.  
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Hypertension Status – For individuals over >= 16 years of age, a self-reported diagnosis 

of hypertension, “Have you ever been told by a doctor or other health professional that 

you had hypertension, also called high blood pressure?” is reported as a categorical 

variable: Yes, No, Refused, Don’t Know. Hypertension status was coded as 1/0 with 1 

indicating a previous hypertension diagnosis. Refused and Don’t Know was treated as 

missing. This was collected during the Household Interview portion of data collection. 

Hypertensive using medication – For individuals over >= 16 years of age, a  self-reported 

use of medication to treat hypertension, “Are you now taking prescribed medicine?” is 

reported as a categorical variable: Yes, No, Refused, Don’t Know. This was coded as 1/0 

with 1 indicating taking medication to treat hypertension. Refused and Don’t Know was 

treated as missing. This was collected during the Household Interview portion of data 

collection. 

Diabetes Status – A self-reported previous diagnosis of diabetes (parental/guardian report 

for individuals <16 years of age), “Other than during pregnancy, have you ever been told 

by a doctor or health professional that you have diabetes or sugar diabetes?” is reported 

as a categorical variable: Yes, No, Borderline, Refused, Don’t Know. Diabetes status was 

coded as 1/0 with 1 indicating a previous diabetes diagnosis. Borderline individuals were 

included in the No category for the previous diabetes diagnosis variable. Refused and 

Don’t Know was treated as missing. This was collected during the Household Interview 

portion of data collection.  

Diabetic using insulin – A self-reported use of insulin (parental/guardian report for 

individuals <16 years of age), “Are you now taking insulin?” asked of individuals self-
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reporting as diabetics. Reported as a categorical variable: Yes, No, Refused, Don’t Know. 

This was coded as 1/0 with 1 indicating diabetic taking insulin. This was collected during 

the Household Interview portion of data collection. 

Diabetic using pills – A self-reported use of pills (parental/guardian report for individuals 

<16 years of age), “Are you now taking diabetic pills to lower your blood sugar?” asked 

of individuals self-reporting as diabetics. Reported as a categorical variable: Yes, No, 

Refused, Don’t Know. This variable was coded as 1/0 with 1 indicating diabetic using 

pills to control blood sugars. This was collected during the Household Interview portion 

of data collection. 

Family Poverty Income Ratio (PIR) – PIR represents the ratio of family income to their 

appropriate federal poverty threshold.240 Ratio < 1 indicates a family below the federal 

poverty threshold, while ratios >=1 indicate a family above the federal poverty threshold. 

PIR is reported as a top-coded continuous variable, with all values ≥5 coded 5. This was 

reported by the Household Reference Person during the Household Interview portion of 

data collection. 

Area-level Variables 

Area-level Poverty – The percentage of individuals below the poverty line was used as 

the measure of area-level SES. From Census 2000, the variable is “All individuals for 

whom poverty status is determined – Percent Below Poverty Level.” From 2005-2009 

ACS, the variable is “Population for whom poverty status is determined – Percent Below 

Poverty Level.” From 2009-2013 ACS, the variable is “Population for whom poverty 

status is determined – Percent Below Poverty Level.” This measure is available at the 
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census tract level and is available from decennial Census data and American Community 

Survey data. This is reported in Census and ACS data as a continuous variable. To avoid 

assuming a linear relationship with CM risk, area-level poverty was grouped into 

quartiles for analysis.  Indicator variables for each poverty quartile were created, with 

Quartile 1 (≤ 25th percentile) used as the reference category.  

Percent Non-Hispanic Black Population – Racial/ethnic concentration at the census tract 

level is available from Census 2000, ACS 2005-2009 and ACS 2009-2013 data. The 

percent non-Hispanic Black population at the census tract level was used as a measure of 

racial/ethnic concentration. This is reported as a continuous variable.  

 

Missing Data  

Responses of “Don’t Know,” “Refused,” and “Missing” were treated as missing 

values. Missing values for body mass index, cotinine, and Family PIR were imputed 

using SAS MI PROC MI procedure in SAS 9.3.241 Indicator variables were not imputed, 

as imputed values may fall between 0 and 1, and rounding these values may introduce 

bias. Multiple imputation was carried out using the entire sample in SAS 9.3.241 Multiple 

imputation models used truncated regression with the PROC MI procedure. PROC MI 

produced 10 imputed datasets. Hierarchical linear models for each of the 10 imputed 

datasets were fit using PROC MIXED. PROC MIANALYZE is then used to combine the 

estimates produced from the imputed datasets, and produces 1 set of estimates based on 

results from the 10 imputed datasets.242 
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Analytic Plan 

1) Descriptive statistics were reported for index of cardiometabolic risk and 

individual cardiometabolic biomarkers by individual-level and area-level covariates. 

The mean and 95% confidence interval were reported.  

 

2)  A model estimating the crude association between area-level poverty and 

cardiometabolic risk was fit to establish a baseline effect of area-level poverty. 

Indicator variables for survey cycle were included at the individual level. Indicator 

variables for area-level poverty quartiles were included on the intercept, with area-level 

poverty quartile 1 (i.e. lowest quartile of area-level poverty) serving as the reference 

category. Regression coefficients, standard errors and 95% confidence intervals were 

reported. 

 

3) Next, a model to determine the effect of area-level poverty, independent of 

individual-level covariates was fit. Race/ethnicity, and family PIR were included in the 

model. Regression coefficients, standard errors and 95% confidence intervals were 

reported. 

 

4) Next, a model to determine the effect of area-level poverty, independent of 

individual-level and area-level covariates was fit. Tract-level percentage non-Hispanic 

black and group mean values for family PIR were added to the intercept. Regression 

coefficients, standard errors and 95% confidence intervals were reported (Specific 

Aim 1). 
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5) To determine if the association between area-level poverty and cardiometabolic 

risk differs by race/ethnicity, models in steps 2-4 were fit by racial/ethnic groups: non-

Hispanic White, non-Hispanic Black, Mexican Americans and Other. Regression 

coefficients and 95% confidence intervals were reported (Specific Aim 2). 

 

6) I evaluated exposure to tobacco smoke and physical activity as potential 

mediators of the association between area-level poverty and cardiometabolic 

risk.28,29,243,244  To test mediation, I first fit regression models for each potential 

mediator:245  

a) The net association between area-level poverty and cardiometabolic risk 

without adjusting for mediators. 

b) The association between area-level poverty and the mediator. 

c) The association between the mediator and cardiometabolic risk. 

If significant associations were observed in each of the first three steps, a model was fit 

for the association between area-level poverty and cardiometabolic risk, adjusting for 

the mediator. Partial mediation is considered to exist if both area-level poverty and the 

lifestyle behaviors have a significant association with cardiometabolic risk in the full 

model.  Full mediation occurs if the effect of area-level poverty becomes non-

significant when adjusting for lifestyle behaviors.  
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I examined potential mediators for the overall sample and by race to determine if the 

pathway of area-level poverty to lifestyle behavior to cardiometabolic risk partially 

explains disparities in cardiometabolic risk (Specific Aims 3 & 4). 

In post-hoc analysis, I explored associations between area-level poverty and family PIR, 

and whether these associations differ by race/ethnicity. I compared mean Family PIR by 

area-level poverty for the overall sample, and by race/ethnicity. 

All analysis was conducted in SAS 9.3.241 

Hierarchical Linear Models 

 Hierarchical linear models (HLM) were used to examine the relationship between 

area-level poverty and biomarkers that predict development of future disease among 

adolescents. As this study linked individual-level data (NHANES) and area-level data 

(ACS and Census) with area-level data, HLM allowed for more appropriate statistical 

conclusions than other statistical techniques such as ordinary least squares or logistic 

regression.  

The multistage sampling of NHANES results in selection of individuals based on 

geographic location.211  Therefore, in this analysis, individual-level data are clustered, or 

dependent on the census tract in which residents reside.233,246 A key assumption of 

ordinary least squares and logistic regression is independence of the residuals.  However, 

statistical dependency, that occurs when individuals are nested within a census tract, 

violates this assumption and leads to negatively biased standard errors and thus a greater 

likelihood of Type I error.233,246  



41 

 

Statistical dependency of multilevel data also suggests that covariance of the 

outcome variable exists within each geographic unit. For example, within a census tract, 

BP of individuals are likely to co-vary. Additionally, variance in the outcome may exist 

between census tracts as the relationship between a predictor variable and the outcome 

variable may differ between census tracts.233,246 Data with statistical dependency (e.g. 

survey data, multilevel data) is often analyzed with general estimating equations in order 

to properly estimate variance. However, in general estimating equations, variance is 

controlled for, and not explicitly examined. Without partitioning variance into within- 

and between-tract components, it is difficult to understand total variability in the 

outcome. 

HLM provides an error term for both the individual- and area-level models, 

allowing variance to be partitioned into within- and between-unit components. HLM 

accounts for statistical dependency by assigning one statistical model to the individual-

level and one statistical model to the area-level. Standard errors are estimated for 

parameter estimates at both the individual- and area-level; this produces unbiased 

standard error estimates, allowing for more appropriate statistical conclusions.233,246 

As this study aims to understand the relationship between area-level poverty and 

cardiometabolic risk among adolescents (independent of individual- and area-level 

covariates), a random intercept model with fixed slopes is appropriate. This type of 

model allows for area-level predictors (e.g. area-level poverty) and confounders (e.g. 

racial/ethnic concentration) to be included, as well as individual-level covariates. The 

intercept (average outcome within each census tract) varies as a condition of the area-
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level poverty within each census tract, while the slope (effect of individual-level 

covariates) is constant across census tracts. 

 

Linear Regression Model Components 

The following describes the hierarchical linear regression model, with random 

intercepts, using the cardiometabolic index as the outcome.  

 

𝐶𝑀𝐼𝑖𝑗: Cardiometabolic Index of Individual 𝑖 in census tract 𝑗 

Area-level Poverty: Poverty rate quartiles of census tract j  

Racial ConcentrationCentered = (Racial Concentrationj – X Racial Concentration..) : 

Percent non-Hispanic Black of census tract j grand mean centered 

 

Level 1 Components 

𝛽0𝑗: Intercept (Average outcome when all covariates at the mean, and all dummy 

variables are at 0) 

[

𝛽1𝑗

…
𝛽𝑥𝑗

]: Vector of individual-level coefficients 

[𝑋2𝑖𝑗 … 𝑋𝑛𝑖𝑗]: Matrix of individual − level covariates (n= number of covariates) 

𝑟𝑖𝑗: Individual − level residual   

 

Level 2 components 

𝛾00 ∶ Intercept  (Average outcome when all covariates at mean, and all dummy 

variables are at 0) 
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𝛾01 … 𝛾03(𝐴𝑟𝑒𝑎 − 𝑙𝑒𝑣𝑒𝑙 𝑝𝑜𝑣𝑒𝑟𝑡𝑦 𝑄𝑢𝑎𝑟𝑡𝑖𝑙𝑒𝑠): Effect of Area-level Poverty 

quartile of unit  j on the intercept (average effect of area-level poverty) 

𝛾04(𝑅𝑎𝑐𝑖𝑎𝑙 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛𝐶𝑒𝑛𝑡𝑒𝑟𝑒𝑑) = ∶ Effect of Racial Concentration of unit  j 

on the intercept (average effect of racial concentration) 

 

[

𝛾1𝑗

…
𝛾𝑥𝑗

]: Coefficient for Level-1 covariates (effect of individual-level covariates on 

𝐶𝑀𝐼𝑖𝑗) 

𝑢0𝑗: Area − level residual  

 

Hierarchical Model 

𝐶𝑀𝐼𝑖𝑗 =  𝛽0𝑗 + [

𝛽1𝑗

…
𝛽𝑥𝑗

] [𝑋1𝑖𝑗 … 𝑋𝑛𝑖𝑗] + 𝑟𝑖𝑗 

𝛽0𝑗 =  𝛾00 + [𝛾
01

… 𝛾03(𝐴𝑟𝑒𝑎 − 𝑙𝑒𝑣𝑒𝑙 𝑆𝐸𝑆𝑗)] + 𝛾
04

(𝑅𝑎𝑐𝑖𝑎𝑙 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛𝑗) +  𝑢0𝑗   

[

𝛽1𝑗

…
𝛽𝑥𝑗

] =  [

𝛾1𝑗

…
𝛾𝑥𝑗

] 

 

Mixed Model 

𝐶𝑀𝐼𝑖𝑗 =  𝛾𝑜𝑜 + [𝛾01(𝑄2 𝐴𝑟𝑒𝑎 − 𝑙𝑒𝑣𝑒𝑙 𝑃𝑜𝑣𝑒𝑟𝑡𝑦𝑗) +  𝛾02(𝑄3 𝐴𝑟𝑒𝑎 − 𝑙𝑒𝑣𝑒𝑙 𝑃𝑜𝑣𝑒𝑟𝑡𝑦𝑗)

+  𝛾03(𝑄4 𝐴𝑟𝑒𝑎 − 𝑙𝑒𝑣𝑒𝑙 𝑃𝑜𝑣𝑒𝑟𝑡𝑦𝑗)] + 𝛾04(𝑅𝑎𝑐𝑖𝑎𝑙 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛𝑗)

+  [

𝛾1𝑗

…
𝛾𝑥𝑗

] [𝑋1𝑖𝑗 … 𝑋𝑛𝑖𝑗] + 𝑟𝑖𝑗  + 𝑢0𝑗 
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Centering  

All individual-level variables were group mean centered (centered on the mean 

value for the census tract), excluding the dichotomous variables. The group mean of all 

individual-level group mean centered variables was included at the area-level. Area-level 

variables were grand mean centered.  

This method of centering is preferred when testing “2-1-1” mediation, in that an 

individual-level variable is the potential mediator between an area-level exposure and an 

individual-level outcome.245 By centering individual-level variables at the group mean 

and including the group mean at the area-level, the relationship between the potential 

mediator (i.e. cotinine, physical activity) and the outcome (i.e. cardiometabolic index) is 

decomposed into within-tract and between-tract components. Decomposing the 

relationship is important for two reasons: First, mediation can occur both within and 

between tracts. Secondly, the effect of the area-level group mean variable on the outcome 

may be different than the effect of the group-mean centered individual-level variable.245 

This may help identify three distinct types of mediation. First, mediation could mainly 

occur between tracts, and the relationship between the mediator and outcome within 

tracts may be weak. Second, mediation could mainly occur within tracts, and the 

relationship between the mediator and outcome between tracts may be weak. Third, there 

may be a moderately strong relationship between the mediator and the outcome both 

within and between tracts. These distinct types of mediation would be confounded under 

grand-mean centering or no centering of the individual-level variables, as the individual -

level coefficient is then a composite of the within- and between-tract variation.245  
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Weighting  

Weights were utilized in NHANES data to account for the complex sample design 

of NHANES data, and survey non-response. Using these weights are important, as 

analyses without weights will likely result in biased estimates and inaccurate significance 

levels. Additionally, use of weights allows for generalizations about the United States 

non-institutionalized population between 1999 and 2012. 

NHANES data also includes various weights for analysis. For example, weights 

are provided for the in-home interview data from NHANES, and separate weights are 

available for the clinical and biomarker data. It is recommended that the weight for the 

smallest subpopulation that includes all variables in analysis be used. The analysis 

includes data collected during the in-home interview (e.g. age, race/ethnicity) and data 

collected at the Mobile Exam Centers. Due to this, the Mobile Exam Center weight was 

used, because the Mobile Exam Center population represents the smallest subpopulation 

represented in the data. When combining 14 years of data, a 14-year weight was 

constructed. This 14-year weight consists of a 4-year weight from the 1999-2002 waves 

of NHANES, and 2-year weights from each of the waves from 2003-2012. SAS code 

used to construct this 14 Year Weight is in Appendix C.1.247 

 As this study uses hierarchical models, sampling weights were scaled to the 

census tract level. Scaling weights is suggested as it better allows for investigations of 

variance between and within clusters.248 It is recommended to use two methods of 

scaling, and compare results. With Method A, weights are scaled so that the new weights 

sum to the cluster sample size.248 This method may provide smaller standard error 

estimates if interested in reporting point estimates, and may be more appropriate with a 
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large number of Level 2 units. With Method B, weights are scaled so that the new 

weights sum to the effective cluster size.248 This method may be more appropriate if 

discussion of variance-covariance is of greater importance. Models were initially fit with 

Method A scaled weight, as point estimates are of interest, and there are a large number 

of Level 2 units (n= 3140). Models were fit with 14 Year MEC Weight and Method B 

scaled weight. Estimates and standard errors across weighting methods were compared to 

determine which method provides the most precise estimates.248 The recommended SAS 

code is in Appendix C.2.248 

 

Linearity  

In this study, the relationship between the continuous predictor variables and the 

outcome variables is assumed to be a linear relationship. This was assessed by plotting 

the residuals against predictor variables. If the likelihood of linearity is low, this may be 

addressed by transforming the predictor variables. The type of transformation performed 

depends on the relationship observed between the predictor and the outcome. 

 

Assumptions of Hierarchical Linear Regression 

 The following assumptions of hierarchical linear models were tested233: 

1. Individual-level 𝑟𝑖𝑗 are independent and normally distributed with a mean of 0 

and variance for every individual within each census tract.  

a. This was tested by obtaining a Q-Q Plot of the Level-1 residuals. 

Homogeneity of variance was tested by plotting frequencies of individual-

level variances. 
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2. The individual-level predictors [𝑋1𝑖𝑗 … 𝑋𝑛𝑖𝑗] are independent of 𝑟𝑖𝑗 . 

a. This was tested by plotting the individual-level residuals against the 

individual-level predicted values. 

3. Area-level 𝑢′𝑠  are multivariate normal, each with a mean of 0, some variance 

and covariance. 𝑢′𝑠 are independent among the area-level units. 

a. This was tested by obtaining a Q-Q Plot of the area-level residuals. 

Homogeneity of variance was tested by plotting frequencies of area-level 

variances. 

4. The set of area-level predictors are independent of every 𝑢. 

a. This was tested by plotting the area-level residuals against the area-level 

predicted values.  

5. The individual-level errors and area-level errors are independent of one another. 

a. This was tested by plotting the individual-level residuals against area-level 

residuals. 

6. The predictors at each level are independent of the residuals at the other level. 

a. This was tested by plotting predictors against the residuals from the other 

level. 
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Chapter VII. Results 

Descriptive Statistics  

The analytic sample includes 10,415 adolescents and 3140 census tracts, resulting in 3.34 

adolescents per tract, on average.  Descriptive statistics appear in Table 1. Mean area-

level poverty across census tracts is 14.46 percent (interquartile range 6.1, 19.8), and 

mean percent non-Hispanic Black population is 12.90 percent (interquartile range: .58, 

12.84).  

Mean score on the index of cardiometabolic risk for the total sample is -.810 

(95% CI: -.884, -.737). Residents in the fourth quartile of area-level poverty (highest 

area-level poverty) had the highest average cardiometabolic risk score (-.535, 95% CI: -

.669, -.371), followed by third (-.531, 95% CI: -.694, -.367), second (-.855, 95% CI: -

.984, -.726), and first quartiles (-1.048, 95% CI: -1.182, -.915). Differences in mean 

cardiometabolic risk were observed by race. Non-Hispanic blacks have highest average 

cardiometabolic risk score (-.643, 95% CI: -.759, -.526), followed by Mexican Americans 

(mean: -.692, 95% CI: -.817, -.567), and non-Hispanic Whites (-.855, 95% CI:-.963, -

.747). 

Hierarchical Linear Model Results 

Table 2 includes results of hierarchical models estimating the association between 

area-level poverty and the index of cardiometabolic risk. In the crude model (model 1), 

increasing area-level poverty is associated with increasing cardiometabolic risk scores, 

and this pattern is independent of individual-level covariates (model 2) as well as racial 

concentration (model 3).  In the fully adjusted model, relative to the first quartile of area-
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level poverty, residents of the second, third, and fourth quartiles of area-level poverty 

experienced .218 (95% CI: .012, .424), .438 (95% CI: .213, .665), and .451 (95% CI: 

.204, .698) elevated cardiometabolic risk scores, respectively (Figure 3).   

Of note is inclusion of individual-level covariates (model 2) reduced the 

coefficients of the second, third, and fourth quartiles of area-level poverty by 19.6%, 

18.2%, and 22.2%, respectively, yet all remain statistically significant.  This suggests 

individual-level covariates partially explain the association between area-level poverty 

and cardiometabolic risk. In contrast, when including area-level racial concentration in 

the model (Model 3), the coefficients for the quartiles of area-level poverty increased by 

1.8%, 2.5%, and 4.8%, respectively, when compared to Model 2.  This suggests that the 

association between area-level poverty and cardiometabolic risk is not explained by 

concentration of racial minorities. 

Model Fit 

Log likelihood ratio tests for the overall sample suggest including additional 

individual-level variables in Model 2 did not improve model fit compared to Model 1 (x2: 

2.49 df=5 p=.778). Compared to Model 2, addition of area-level covariates in Model 3 

improved model fit (x2: 10.48 df=1 p=.001). Compared to Model 1, the full model 

improved model fit (x2: 12.97 df=6 p=.043). 

Race/Ethnicity Specific Analysis  

In race/ethnicity specific analyses (Table 2), area-level poverty is associated with 

cardiometabolic risk among non-Hispanic Whites and Mexican Americans, but not 

among non-Hispanic Blacks.   
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Mediation Analyses  

We did not find any evidence of mediation by exposure to tobacco smoke (Table 

3) and physical activity (Table 4) for the full sample or by race/ethnicity.   

Post-hoc analysis  

In post-hoc analysis, we explored associations between area-level poverty and 

family poverty-to-income ratio (PIR), and whether these associations differ by 

race/ethnicity (Table 5). Overall, mean family PIR declined from 3.34 in quartile 1 to 

1.42 in quartile 4 (p< .001). Within each racial/ethnic group, mean family PIR declined 

across area-level poverty quartiles. However, the magnitude of this difference varied by 

race/ethnicity.  Between the first and fourth quartiles, non-Hispanic Whites had a 1.93 

unit decline (p<.001), non-Hispanic Blacks had a 1.27 unit decline (p<.001), and 

Mexican Americans experienced a 1.22 unit decline (p<.001). 

Within each quartile of area-level poverty, racial/ethnic differences in mean 

family PIR are attenuated as area-level poverty increases.  For example, in quartile 1, 

mean family PIR for non-Hispanic whites is .92 units higher than mean family PIR for 

non-Hispanic blacks, and this difference is only .26 in quartile 4 (Table 5).  

Variance Components  

Variance components for overall models and models by race/ethnicity are 

included in Table 2. Total variance explained (τ00  + σ2 = 5.93) does not differ across 

models for the overall sample. The intraclass correlation does not change across models 

for the overall sample, as approximately 25 percent of the variance in cardiometabolic 



51 

 

risk is found between tracts and approximately 75 percent of the variance is found within 

tracts.  

Comparison of model weights  

 

Table 6 includes area-level results of full models weighted with scaling method 

A, scaling method B, and MEC 14 year weights. Models were initially fit with method A 

scaled weights. In models using method A scaled weights, coefficient estimates and 

standard errors of the second, third, and fourth quartiles of area-level poverty were .218 

(se: .105), .438 (se:.115), and .451 (se:.126), respectively. Method B scaled weights 

coefficient estimates and standard errors of the second, third, and fourth quartiles of area-

level poverty were .229 (se:.107), .454 (se:.117), and .466 (se:.128), respectively. 

Compared to method A scaled weight results, method B scaled weight results in a 3 to 5 

percent increase in coefficient estimates, and a 2 percent increase in standard errors. 

Using MEC 14 year weights, results of the second, third, and fourth quartiles of area-

level poverty were .218 (se: .105), .443 (se:.120), and .459 (se:.136), respectively. 

Compared to method A scaled weight results, MEC 14 year weight results in no change 

for the second quartile, and an approximately 1 percent increase in coefficient estimates 

and 4 to 7 percent increase in standard errors. 

 

Assumptions of Hierarchical Linear Regression  

The six assumptions for hierarchical linear regression were tested for the overall 

model as outlined in the methods section. Plots for each assumption are in Figure 4. 
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For assumption 1, a Q-Q plot and a histogram of individual-level residuals were 

obtained to observe distribution of individual-level residuals. Initial results suggest the 

individual-level residuals are not normally distributed (Figure 4a). Outliers (observations 

with individual-level residuals ≥ 14) were deleted, and this improved the distribution of 

individual-level residuals (Figure 4b). To test independence of individual-level residuals, 

residuals were plotted against predicted values for both the initial model, and model with 

deleted observations (Figure 4c). The independence assumption was violated in both the 

initial model and the model with deleted observations. Inclusion of physical activity and 

cotinine at the individual level, and percent of female-headed households and percent of 

individuals receiving public assistance at the area-level did not result in independence of 

individual-level residuals (Figure 4d). Homogeneity of variance was tested with Levene’s 

test of homogeneity. Homogeneity of variance was violated for the initial model (F=1.45, 

p<.001) and for the model with deleted observations (F=1.45, p<.001).  

For assumption 2, the individual-level residuals were plotted against all 

individual-level predictor variables, and results suggest assumption 2 has been met 

(Figures 3e - 3f).  

For assumption 3 a Q-Q plot and a histogram of area-level residuals were 

obtained to observe distribution of area-level residuals. Initial results suggest the area-

level residuals are not normally distributed (Figure 4g). Outliers were deleted, and this 

improved the distribution of area-level residuals (Figure 4h). To test the independence of 

area-level residuals, residuals were plotted against the predicted value of the intercept. 

The independence of area-level residuals was met in the initial model, and in the model 

with deleted observations (Figure 4i). 
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For assumption 4, the area-level residuals were plotted against all area-level 

predicted values, and the results suggest assumption 4 has been met (Figure 4j).  

For assumption 5, the individual-level residuals were plotted against the area-

level residuals, and results suggest an association (Figure 4k). In an attempt to address 

this violation of assumption 5, additional area-level predictors of percent of female-

headed households and percent of individuals receiving public assistance were added to 

the model, yet the association between individual- and area level residuals remained 

(Figure 4k). Additionally, the association between individual- and are-level residuals 

remained after the addition of interactions between area-level poverty and racial 

concentration were added to the model to the model (Figure 4k).  

For assumption 6, individual-level residuals were plotted against area-level 

predictors, and area-level residuals were plotted against individual-level predictors, with 

results suggesting this assumption has been met (Figures 4l-4n). 
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Chapter VIII. Discussion 

In this examination of the association between area-level poverty and 

cardiometabolic risk among a nationally representative sample of U.S. adolescents, we 

found that among US adolescents there is a dose-response association between area-level 

poverty and cardiometabolic risk. Moreover, this was the first study to identify important 

distinctions by race/ethnicity.  

Area-level poverty is associated with cardiometabolic risk among non-Hispanic 

whites and Mexican Americans but not among non-Hispanic blacks. Notably, among 

non-Hispanic whites and Mexican Americans, a non-linear association was observed as 

the effect of residence in quartile 4 of area-level poverty was not larger than the effect of 

residence in quartile 3 of area-level poverty. This suggests that while exposure to high 

levels of area-level poverty has negative consequences on cardiometabolic risk, the dose-

response effect plateaus within quartiles 3 and 4 of area-level poverty. Additionally, there 

may be few non-Hispanic whites and Mexican Americans residing in quartile 4 of area-

level poverty, resulting in more unstable estimates. This possibility is supported by the 

wider confidence intervals for the estimates of quartile 4 of area-level poverty for both 

non-Hispanic whites and Mexican Americans. 

Among our sample, the association between area-level poverty and 

cardiometabolic risk was similar for both non-Hispanic whites and Mexican Americans. 

Additionally, post-hoc analysis suggests non-Hispanic whites have a higher average 

family PIR than Mexican Americans (Table 5). Taken together, these observations are 

accordant with literature on the Hispanic paradox. The Hispanic paradox suggests that in 
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the United States, despite generally lower socioeconomic status among Hispanic 

populations, they have similar or better outcomes to non-Hispanic whites.249,250 

In contrast, among non-Hispanic blacks, area-level poverty was independent of 

cardiometabolic risk. These findings are in line with previous work which observed a 

greater gradient in the association between individual-level SES and health among non-

Hispanic whites than other racial/ethnic groups.251–254 The improvement in health-related 

outcomes associated with higher SES appears to be greater for non-Hispanic whites than 

for other racial/ethnic groups. Additionally, evidence suggests non-Hispanic blacks 

experience greater levels of social adversity across all levels of socioeconomic status,254 

and the experience of social adversity is an under-addressed determinant of health.254,255 

This suggests when examining the role of area-level poverty in racial/ethnic disparities in 

health, the individual-level experience of individuals within a particular socioeconomic 

group (i.e. residence in a specific quartile of area-level poverty), and not solely their 

membership within that particular socioeconomic group, is an important determinant of 

health. 

Racial/ethnic differences in cardiometabolic risk scores were observed, as non-

Hispanic blacks have the highest cardiometabolic risk score (Table 1). The observed 

racial/ethnic disparities in cardiometabolic risk differed from the racial/ethnic disparities 

reported in previous literature.3,4,25–30   The differences in reported racial/ethnic disparities 

in cardiometabolic risk are likely due to biomarker-specific racial/ethnic differences for 

lipid metabolism and glucose metabolism (Table 1). Among biomarkers for lipid 

metabolism, non-Hispanic whites have lowest average levels of HDL cholesterol, and 

there are no racial/ethnic differences in total cholesterol levels. For glucose metabolism, 
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non-Hispanic blacks have highest average levels of HbA1c. These racial/ethnic 

differences among specific biomarkers are in line with extant literature.4,25,27 

Additionally, the observed racial/ethnic disparities in cardiometabolic risk in the current 

study is consistent with studies among adults suggesting non-Hispanic blacks have higher 

prevalence of cardiometabolic diseases in adulthood.24  

The estimated degree of racial/ethnic disparities in cardiometabolic risk can 

depend, in part, on the choice of biomarkers used to measure lipid metabolism and 

glucose metabolism.  This is because the biomarkers that can be used to assess lipid 

metabolism and glucose metabolism  yield distinct cardiometabolic risk profiles.4,25,27  

For example, among biomarkers of lipid metabolism, non-Hispanic whites consistently 

have lower HDL cholesterol and triglycerides than both non-Hispanics and Mexican 

Americans, while there are no differences by race/ethnicity in total cholesterol 

levels.4,25,27  Among biomarkers of glucose metabolism, non-Hispanic whites have fasting 

glucose levels that are similar to that of Mexican-Americans and higher than fasting 

glucose levels observed among non-Hispanic blacks.4,25,27  However, when examining 

Hba1c levels, non-Hispanic blacks have a three-fold higher prevalence of elevated Hba1c 

than both non-Hispanic whites and Mexican Americans.27  

In turn, these differences are reflected in the performance of indices of 

cardiometabolic risk. For example, when fasting glucose and triglycerides were included 

in an index of cardiometabolic risk among a nationally representative sample of US 

adolescents,30 Hispanics had the highest cardiometabolic risk, followed by non-Hispanic 

whites and non-Hispanic blacks, respectively.30 In contrast, for the current study, we used 
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glycosylated hemoglobin and total cholesterol in our index of cardiometabolic risk, and 

found non-Hispanic blacks to have the highest cardiometabolic risk. 

Our choice of biomarkers was informed by evidence that total cholesterol tracks 

better over time compared to other biomarkers of lipid metabolism,232 and availability of 

total cholesterol measures in NHANES allows for sufficient sample size for analyses. 

Similarly, HbA1c represents a three-month average of glucose metabolism tracks over 

time, thus is a more stable indicator of glucose metabolism than fasting glucose tests as it 

is less influenced by recent diet or illness.236,256,257 Thus, for the purposes of our study, 

total cholesterol and HbA1c are appropriate biomarkers for use in our index of 

cardiometabolic risk. Furthermore, the racial/ethnic disparities observed in the current 

study are similar to racial/ethnic disparities in cardiometabolic health among adults,24 

suggesting our parameterization of cardiometabolic risk is consistent with findings from 

previous studies. 

Post hoc analysis was conducted to determine if the economic experience of 

residing in areas with high poverty differed by race/ethnicity. We explored associations 

between area-level poverty and family PIR, and whether these associations differ by 

race/ethnicity.  Across the range of area-level poverty quartiles, non-Hispanic whites 

have greater variability in their family-level economic conditions than non-Hispanic 

blacks and Mexican Americans. More specifically, with lower area-level poverty, there is 

a more pronounced increase in family PIR among non-Hispanic whites than among non-

Hispanic blacks and Mexican Americans. Additionally, within quartiles of area-level 

poverty, the differences in mean family PIR between racial/ethnic groups are attenuated 

as area-level poverty increases. This suggests that at higher levels of area-level poverty, 
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the economic experience of non-Hispanic whites is more similar to that of non-Hispanic 

blacks and Mexican Americans. Racial/ethnic differences in the associations between 

area-level poverty and cardiometabolic risk may be related to the different relationships 

between area-level poverty and family-level SES by race/ethnicity. 

Discrimination and health 

Discrimination, manifest as both an individual- and area-level stressor, is a key 

determinant of racial/ethnic disparities in health,258–261  thus, discrimination may partially 

explain racial/ethnic disparities in cardiometabolic risk observed in this study. 

Race is a social construct, which individuals are grouped into social strata based 

on phenotype.260  In race-conscious societies, like the United States, social advantages 

(e.g. educational and employment opportunities, access to resources, political 

participation, etc.) are distributed based on these strata.260–262  Discrimination, which is 

premised on this distribution of advantages, is a system in which the advantages are 

differentially allocated towards a racial group in power, and away from other racial 

groups.261 Historically, in the United States, social advantages are allocated towards the 

white population, and allocated away from other racial groups as a means of maintaining 

power.260–262 

At the individual level, discrimination includes intentional and unintentional 

actions that manifest itself as, yet are not limited to, lack of respect, devaluation, 

dehumanization, and oppression.260,263–266 One hypothesis on the link between 

discrimination at the individual level and disparities in cardiometabolic health is John 

Henryism.267 This hypothesis states that individuals exposed to discrimination (a stressor) 
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exert more energy to respond to consequences associated with exposure to stress (as 

detailed in Chapter V). However, not all individuals respond the same way, as some 

individuals may have a greater physiologic reaction to discrimination than others.267  

Furthermore, under this hypothesis, individuals that jointly are of low SES and react 

more actively to discrimination will experience worse cardiometabolic health as a 

result.267   

More related to the current study, discrimination at the area-level, referred to as 

structural discrimination, operates independently of individual-level discrimination.268  

Structural discrimination (including but not limited to racial segregation, low level of 

political participation among racial minorities, poor judicial treatment of racial 

minorities) is the result of laws, policies, and political infrastructures at the federal, state, 

and local levels, aimed to protect advantages of Whites while denying advantages to 

other racial groups in the United States.260,269–271  Resource Deprivation Theory267  

hypothesizes that structural discrimination  is associated with racial/ethnic disparities in 

cardiometabolic health, as racial/ethnic minorities in the United States are less likely to 

reside in areas with the necessary infrastructure to promote good cardiometabolic 

health.267   The lack of access to resources is a source of stress, and is associated with a 

lack of healthy food options and lack of access to medical care.267  

Individual-level discrimination and cardiometabolic health 

Recent evidence among non-Hispanic black adolescents (n = 47) suggests 

perceived discrimination (i.e. treated with less respect, poor service at restaurants), an 

individual-level stressor, is associated with increased cardiometabolic risk.263 This aligns 
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with a more substantial body of evidence among adults suggesting perceived 

discrimination is associated with cardiometabolic health.264,272–276 Among a small sample 

of U.S. adults (n=176), evidence suggests perceived discrimination lies on the pathway 

between race/ethnicity and disparities in cardiometabolic risk.264 

Structural discrimination and cardiometabolic health 

The Resource Deprivation Theory aligns with evidence of racial segregation, the 

forced residence of certain racial groups into specific areas, as a fundamental social 

determinant of racial/ethnic disparities in health.258,259 Racial segregation is associated 

with racial differences in educational and employment opportunities, thus, is a key factor 

in racial differences in SES in the United States. 258,259 These racial differences in SES 

lead to areas with high levels of poverty, a reduction in the tax base in segregated areas, 

and a lack of services which promote good health.258,259 Racial segregation is associated 

with racial disparities in cardiometabolic  health among adults,277–279 and recent evidence 

suggests a link between racial segregation and cardiometabolic risk among children and 

adolescents.280,281  

While state-level measures of structural discrimination (i.e. ratio of blacks versus 

whites in terms of political participation, employment and job status, educational 

attainment, and judicial treatment) are understudied, a nationally-representative study 

among adults (n = 32752) observed that blacks residing in states with a high degree of 

structural discrimination against blacks had higher risk of cardiometabolic disease 

compared to blacks residing in states with a low degree of structural discrimination 

against blacks.269 Among whites, those residing in states with a high degree of structural 
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discrimination against blacks  had lower risk for cardiometabolic disease than whites 

residing in states with a low degree of structural discrimination against blacks.269  

As the focus on this study is on the association between area-level poverty at the 

census tract level and cardiometabolic risk among adolescents, exposure to 

discrimination was not accounted for in this study. Variables representing perceived 

discrimination are not available in NHANES data, thus, exposure to discrimination at the 

individual level cannot be accounted for in this study. At the area level, racial 

concentration (a crude measure of racial segregation) was accounted for in analysis. 

However, evidence suggests racial segregation is best measured at larger geographies, 

(i.e. Metropolitan Statistical Areas, cities, or counties)258,277–279 as measures of racial 

segregation will then depict a more racially and geographically diverse population, 

allowing for a better understanding of how different racial groups are distributed. 

Mediation Analysis 

The lack of association observed between cotinine levels and cardiometabolic risk 

may be due to the use of linear models, and mixing of effects. As the aim of this study is 

to examine pre-clinical indicators of disease, the linear association between cotinine 

levels and cardiometabolic risk was tested, yet a lack of association was observed. This 

differs from prior studies, which observed an association between cotinine levels and 

cardiometabolic risk among adolescents when using a diagnostic approach when 

measuring cardiometabolic risk.29 Furthermore, the association between cotinine levels 

and cardiometabolic risk may be biomarker specific.282–285 Evidence suggests cotinine 

levels are associated with glucose metabolism,282 adiposity,285 and blood pressure.283 
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However, among nationally representative sample, cotinine levels were not associated 

with cholesterol levels.284 The lack of association observed between cotinine levels and 

cardiometabolic risk in this study may be due to a mixing of effects, as the index of 

cardiometabolic risk incorporates multiple biomarkers of cardiometabolic risk.  

The physical activity variable used in mediation analysis is self-reported, thus, 

measurement error and self-report bias are inherent. Social desirability may have 

contributed to individuals reporting more frequent or intense physical activity than was 

actual. This introduces measurement error, thus lowering the reliability of the data. Less 

reliable data increases the chance of observing a nonsignificant association when a 

significant association is true, and lowers the strength of association. Also, the question 

asked of physical activity was, “Over the past 30 days, did you do moderate activities for 

at least 10 minutes that cause only light sweating or a slight to moderate increase in 

breathing or heart rate? Some examples are brisk walking, bicycling for pleasure, gold, 

and dancing.” This suggests individuals with only one 10-minute period of physical 

activity in the past 30 days are included in the same category as individuals with much 

more frequent and intense physical activity. Thus, this categorical variable doesn’t 

represent this potentially wide variability of physical activity in the sample, which may 

contribute to the lack of association between physical activity and cardiometabolic risk 

observed in this study.  

Comparison of weighting method  

Results suggest that the coefficient estimates for the association between area-

level poverty and cardiometabolic risk does not significantly differ based on weighting 
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method. Additionally, the standard errors for Method A scaled weights are the smallest, 

yet do not significantly differ from standard errors for Method B scaled weights for MEC 

14 year weights. As coefficient estimates and standard errors do not significant differ 

across weighting methods, this increases confidence in the observed association between 

area-level poverty and cardiometabolic risk.247 Based on our interest in reporting point 

estimates, the large number of census tracts in analysis, convergent results across 

weighting methods, and the smallest standard errors for Method A scaled weights, results 

from Method A scaled weights are most appropriate to report. All models in Table 2 were 

weighted using Method A scaled weights. 

Assumptions of Hierarchical Linear Regression  

As assumptions 2, 4, and 6 were initially met, this suggests there are no errors in 

the estimates for the fixed effects. As the primary purpose of this study is to examine the 

association between area-level poverty and cardiometabolic risk, a lack of errors in the 

fixed effects increases confidence in the results reported in Table 2. As assumptions 1, 3, 

and 5 were violated in the initial model, and attempts to address these violations were 

largely unsuccessful, this suggests model misspecification. Models presented here could 

be under specified due to the absence of important predictors – at both the individual- and 

area-levels - of cardiometabolic risk not included in the model, known or unknown. Thus, 

the observed regression coefficients may be biased, and may not represent the true 

strength of association. 
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Strengths and Weaknesses  

These findings should be considered in the context of this study’s strengths and 

weaknesses. This current study adds to the body of evidence on racial disparities in 

cardiometabolic risk among adolescents, and the race-specific associations between area-

level poverty and cardiometabolic risk among adolescents, and improves upon limitations 

in previous work. To date, Theall et al is the only other study to observe an association 

between area-level socioeconomic status and cardiometabolic risk among a national 

representative sample of U.S. adolescents.286 However, the previous study utilized a 

dichotomous outcome to identify individuals with high cardiometabolic risk, did not 

utilize contemporary area-level data, and did not account for area-level covariates, such 

as racial concentration.286  

The use of a continuous measure of cardiometabolic risk better reflects 

population-level variation in cardiometabolic risk237,238 and may be a better predictor of 

adult health.239 It also reduces potential misclassification of an individual’s 

cardiometabolic risk. Our use of contemporary area-level data also minimizes potential 

misclassification of an individual’s area-level poverty due to temporality.  For example, 

for an individual in NHANES 2011-2012, the poverty rate of their census tract of 

residence will be more accurately reflected in ACS 2009-2013 data than in Census 2000 

data. Results from the current study are in line with previous work that area-level racial 

concentration is a unique area-level exposure, and should be considered as an important 

covariate.69–71 Furthermore, by using hierarchical models, parameter estimates and 

standard errors are estimated at both the individual- and area-level, allowing for proper 
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variance estimates that account for the clustered nature of the data, which allows for more 

appropriate statistical conclusions. 

This study is limited by its cross-sectional approach, prohibiting causal 

conclusions. However, findings are in line with prospective studies suggesting exposure 

to high area-level poverty is associated with future disease.43,50–53,55 The modifiable areal 

unit problem  is a potential source of bias when data are aggregated at the area level,287,288  

however, Census 2000 and ACS 5-year estimates are considered the most accurate and 

reliable estimates for smaller geographic areas such as census tracts.289 It should also be 

noted that ACS data has sampling error, while Census 2000 data does not. These 

sampling errors were not included in regression models, which may result in artificially 

smaller standard errors.  

Another limitation relates to the arbitrary geographic boundaries used to define 

contexts. Individuals residing within the arbitrarily defined contexts may not identify 

with those boundaries. Results were interpreted in terms of census tracts, and 

implications and recommendations of the findings should recognize this limitation. 

Results may be subject to residual confounding if important area-level predictors of 

cardiometabolic risk were not included in the model, such as environmental 

exposures.290,291 
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Chapter IX. Implications 

The implications of this study are discussed in this chapter. Interventions should 

target disadvantaged communities, with the aim of improving the area-level economic 

and social conditions residents are exposed to, in order to improve population-level 

health. Individuals with high cardiometabolic risk may be more susceptible to additional 

exposures, and reducing cardiometabolic risk during adolescence may reduce risk for 

poor health outcomes across the life course. 

Implications for Public Health Policy and Practice  

United States health promotion objectives include identifying social determinants 

of racial/ethnic disparities in cardiometabolic disease,2 especially among adolescents15,16 

Results of this study highlight the importance of addressing upstream factors such as 

social determinants of health, (e.g., area-level poverty) in order to reduce cardiometabolic 

risk among adolescents.  

 In order to reduce disparities, policy interventions should target disadvantaged 

communities, identified by indicators of area-level economic and social conditions such 

as area-level poverty.292 Poverty is an economic indicator of area-level disadvantage, and 

relates well to other measures of area-level determinants of health, such as housing 

quality, crime and violence, and the built environment,72–75 and these factors are 

associated with poor health outcomes.293–295 However, area-level economic and social 

conditions of a community are not solely comprised of indicators of disadvantage. 

Indicators of area-level advantage (e.g. civic engagement, social cohesion, existing 

infrastructure) should also be considered, as these exposures (i.e. greater political 

participation by women, high social cohesion) are associated with better health 



67 

 

outcomes,296,297 and should be incorporated into interventions aiming to improve the 

health of the population. Community-based participatory research may facilitate a better 

understanding of a given community’s economic and social conditions, allowing 

communities to build upon their unique advantages (e.g. social cohesion, high civic 

engagement) while addressing economic and social disadvantages in order to improve 

population-level health and reduce racial/ethnic disparities. This approach also allows 

residents to take ownership of various policies and programs aiming to improve the area-

level economic and social conditions in which they reside, facilitating the development 

and implementation of geographically, socially, and culturally acceptable solutions to the 

economic, social and population health problems that disadvantaged communities often 

face. 

 As discussed in Chapters II and VIII, social determinants of health, such as area-

level poverty, are related to intertwined historic, social, economic, and political factors 

that, over time, result in differential distribution of resources based on social strata such 

as race/ethnicity or socioeconomic status.298 Thus, no single policy or program 

intervention can sufficiently address the unique area-level economic and social conditions 

disadvantaged communities face. Policymakers, funders, and community members 

should identify a spectrum of policy and program interventions that, in conjunction, aim 

to improve population health. 

Policies targeting disadvantaged communities aiming to improve area-level 

economic and social conditions are in line with recent federal- and state-level efforts. The 

Community Preventive Services Task Force, through systematic review of program 

evaluations, has recommended initiatives aiming to improve health outcomes by 
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addressing area-level economic and social conditions.292 One approach recommended by 

the  Community Preventive Services Task Force are, tenant-based rental assistance 

programs, which typically target low SES or racial/ethnic minority populations to address 

discrimination in housing.299300 These programs  are designed to offer financial assistance 

to low-income families residing in low-SES or segregated areas in order for these 

families to move to areas that are of higher SES or less segregated.299 These interventions 

(e.g., Moving to Opportunity300) have been shown to reduce exposure to crime and social 

disorder, while limited evidence suggests emotional and behavioral health benefits. 300 

Evidence also suggests these programs have similar benefits across racial/ethnic 

populations in the United States. 300 Taking the results of the current study into 

consideration, moving to a lower poverty area may reduce cardiometabolic risk in 

adolescence. Expansion of tenant-based rental assistance programs would give families 

greater control over the economic and social climate they are exposed to, and could be a 

contributing factor in reducing population-level cardiometabolic risk, and reducing 

racial/ethnic disparities in cardiometabolic health.  

Other initiatives aim to improve the area-level economic and social conditions of 

disadvantaged neighborhoods, with the goal of improving living conditions for all 

residents in these communities. These neighborhood revitalization initiatives are often the 

result of citizen groups, local healthcare organizations, or business associations working 

together to address the challenges their communities face. For example, the Dudley Street 

Neighborhood Initiative (DSNI), is a Boston-area resident-led effort formed to address 

intergenerational poverty, a lack of investment, and environmental hazards in a 

historically racially and economically segregated community.301–303 To address a history 
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of discriminatory practices in housing and property ownership in the neighborhood,301–303 

DSNI established a land trust to use vacant lots for affordable housing, while taking an 

anti-displacement approach to housing aiming to limit the potential of residents being 

pushed out due to gentrification.301,302 Current programs include a Promise Neighborhood 

designation (from the U.S. Department of Education and the Boston Promise Initiative), 

in which DSNI is taking a multi-faceted “cradle-to-career” approach, focusing on early 

childhood education, healthy families and career development in order to break the cycle 

of intergenerational poverty in their community.301,302  

Funding organizations, whether governmental or non-governmental, that are 

interested in improving their communities, should provide funding to neighborhood 

revitalization initiatives. Taking an equitable approach to neighborhood revitalization 

initiatives allows disadvantaged communities greater support and funding in order to 

meet their neighborhood revitalization goals and fully achieve their potential. Policy 

makers and community groups should collaborate on multi-faceted neighborhood 

revitalization initiatives promoting equitable opportunities for all citizens in an effort to 

improve population health and reduce racial/ethnic disparities.301 

Tenant-based rental assistance and neighborhood revitalization initiatives aiming 

to improve the area-level economic and social conditions populations are exposed to are 

intermediate- to long-term solutions to improving population health. Targeted 

community-level initiatives can also aim to have a more immediate impact on the health 

of residents. For example, the Community Preventive Services Task Force recommends 

community-wide campaigns to increase physical activity levels.304 Community-wide 

campaigns focused on physical activity typically combine medical-model interventions, 
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such as health screenings, physical activity counseling, and support groups, with 

ecologically focused efforts such as creating and maintaining walking paths and parks.304   

One example of a community-wide campaign is Shape Up Somerville, which 

originated as an attempt to reduce childhood obesity in Somerville, MA.305,306 This 

campaign brought together 25 stakeholder groups to engage the community as a whole, 

including businesses, government, schools, and citizen groups.305,306  Shape Up 

Somerville included providing healthier food options at local restaurants and at school, 

retraining clinicians and school nurses to identify and address childhood obesity, and 

expanding and renovating parks in Somerville.305,306Within the first school year after 

Shape Up Somerville was implemented (2003-2004), 1st to 3rd grade students in 

Somerville reduced their body mass index, and gained less weight than children in 

comparable communities.305,306 Similar benefits have been observed in the following 

decade for students at other grade levels in Somerville.305,306 

The policy and programmatic interventions similar to those presented here should 

be taken in concert in order to address a community’s unique area-level economic and 

social climate. Building upon the area-level advantages of a community may allow 

communities to better address the disadvantages they are faced with. By involving an 

array of stakeholders, such as businesses, governments, schools, and citizen groups, the 

community will be better reflected as these interventions are designed and implemented. 

Policymakers and funders should recognize the importance of these multi-faceted 

approaches in an attempt to improve the population of all residents in their communities. 
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Future Research on Double Jeopardy  

The concept of double jeopardy suggests that the same exposure can have more 

adverse consequences among individuals with high allostatic load than among others.  

For example, among a nationally representative sample of US adults, the association 

between blood lead levels and BP was stronger among individuals with high allostatic 

load than among individuals with low allostatic load.170 Similarly, among a group of 

industrial workers, smoking interacted with allostatic load, resulting in greater risk for 

cardiovascular disease.307  

While the physiology of double jeopardy is not well understood, dysfunction 

across multiple physiologic systems may indicate compromised immune function.  For 

example, this compromised immune function may be expressed in an inability to contain 

inflammation, a key factor in development of disease.308–310 If a compromised immune 

system is faced with an external insult, there may be an excessive release of pro-

inflammatory cytokines, leading to excessive inflammation and damage to healthy cells, 

which in turn can lead to insulin resistance and endothelial dysfunction, both of which are 

signs if high cardiometabolic risk.308,310 

The concept of cardiometabolic risk, as assessed here, is similar to the concept of 

allostatic load. In the current study, exposure to chronic stress (i.e. area-level poverty) is 

associated with increased cardiometabolic risk, and allostatic load is also considered a 

consequence of exposure to chronic stress.203–206 Additionally, both concepts are 

considered to reflect functioning across similar physiologic systems (i.e. metabolic, 
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cardiovascular, adipose tissue), and both are concerned with preclinical levels of 

physiologic functioning.203–206   

Based on these similarities, the concept of double jeopardy in the allostatic load 

literature may be applicable to individuals with high cardiometabolic risk. As individuals 

with high cardiometabolic risk are considered to have poor functioning across multiple 

physiologic systems, their immune systems may not be capable of properly responding to 

additional external insults. Thus, compared to individuals with low cardiometabolic risk, 

individuals with high cardiometabolic risk may also have worse outcomes when exposed 

to hazards. This is in line with evidence suggesting adults with diagnosed diabetes, when 

compared to healthy individuals, have a higher risk of poor cardiovascular outcomes 

when exposed to ambient air pollution.311 

Further research is warranted to better understand cardiometabolic risk during 

adolescence, the potentially increased susceptibility to additional exposures, and how 

these factors influence health and racial/ethnic health disparities across the life course. 

Specifically, prospective longitudinal research is needed to better understand the 

relationship between cardiometabolic risk in adolescence and various chronic diseases in 

adulthood. These studies may provide evidence to support efforts to reduce 

cardiometabolic risk in adolescence, as this may be protective against increased 

susceptibility to external insults (such as air pollution and tobacco smoke) and the 

resulting increased risk for disease.  

Research should take advantage of natural experiments (e.g. tenant-based rental 

assistance programs, neighborhood revitalization initiatives) to better understand how 
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addressing various social determinants of health can reduce the risk for multiple poor 

health outcomes, especially among adolescents. Reducing cardiometabolic risk in 

adolescence may result in lower prevalence of cardiometabolic diseases such as diabetes 

and cardiovascular disease later in life. In turn, the concept of double jeopardy suggests 

that reducing cardiometabolic risk in adolescence could facilitate better physiological 

resilience to external insults such as the exposure to ambient air pollution or second-hand 

smoke, potentially mitigating the negative consequences of these exposures. More 

research is needed to better understand how programs aiming to improve area-level 

economic and social conditions can maximize their return on investment, reducing the 

prevalence of various chronic diseases and negative health outcomes throughout the life 

course. 

In conclusion, we observed that residence in the highest area-level poverty 

quartiles was associated with increased cardiometabolic risk among U.S. adolescents, 

independent of individual-level and area-level covariates. Additionally, we found 

evidence that these associations differ by race/ethnicity. Specifically, findings suggest a 

stronger association between area-level poverty and cardiometabolic risk among non-

Hispanic whites and Mexican Americans then among non-Hispanic blacks. Efforts taken 

to improve cardiometabolic health at the population-level and reduce racial/ethnic 

disparities in cardiometabolic diseases should include targeted area-level interventions 

that consider the strengths and weaknesses of the targeted areas, in order to improve the 

social conditions for all residents.  
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Appendix A. Tables 

Table 1. Weighted mean cardiometabolic index scores and biomarkers by independent variables (NHANES 1999-2012) 

Variable 

(Unweighted N; %) 
CMI 

Mean 95% CI 

SBP  

Mean 95%CI 

DBP  

Mean 95%CI 

Total (10415; 100) -.810 (-.884, -.737) 109.62 (109.34, 109.90) 60.72 (60.41, 61.04) 

Area-level Poverty    

Quartile 1(2599; 24.95)  -1.048 (-1.182, -.915) 109.06 (108.55, 109.58) 60.68 (60.10, 61.26) 

Quartile 2(2615; 25.10)  -.855 (-.984, -.726) 109.57 (109.04, 110.10) 60.70 (60.11, 61.29) 

Quartile 3(2584; 24.81) -.531 (-.694, -.367) 109.98 (109.39, 110.58) 60.86 (60.16, 61.55) 

Quartile 4(2595; 24.91)  -.535 (-.669, -.371) 110.56 (110.00, 111.12) 60.69 (60.04, 61.33) 

Racial Concentration    

Quartile 1(2599; 24.95)  -.792 (-.921, -.662) 109.14 (108.59, 109.68) 61.30 (60.71, 61.88) 

Quartile 2(2604; 25.00)  -.837 (-.992, -.682) 109.59 (109.04, 110.15) 60.88 (60.23, 61.53) 

Quartile 3(2605; 25.01) -.869 (-1.011, -.726) 109.65 (109.13, 110.16) 60.06 (59.50, 60.62) 

Quartile 4(2599; 24.95)  -.700 (-.845, -.556) 110.73 (110.22, 111.24) 60.22 (59.93, 60.91) 

Family PIR    

< 1 (3074 ; 29.52) -.590 (-.734, -.445) 109.99 (109.49, 110.49) 60.72 (60.12, 61.32) 

1-2.9 (4005; 38.45)  -.685 (-.809, -.561) 109.71 (109.27, 110.15) 60.53 (60.02, 61.05) 

3-4.9 (1606; 15.42) -.929 (-1.091, -.767) 109.61 (108.95, 110.26) 60.85 (60.15, 61.56) 

≥ 5  (967; 9.28) -1.225 (-1.422, -1.028) 108.92 (108.07, 109.78) 61.12 (60.21, 62.03) 

Missing (763; 7.33)  -.834 (-1.127, -.541) 109.65 (108.52, 110.77) 60.39 (58.90, 61.88) 

Age     

12-14 (3981; 38.22) -.810 (-.930, -.690) 106.86 (106.45, 107.28) 51.98 (57.44, 58.52) 

15-17 (3964; 38.06) -.759 (-.874, -.645) 110.49 (110.06, 110.93) 61.65 (61.17, 62.12) 

18-19 (2470; 23.72) -.896 (-1.054, -.738) 112.60 (111.99, 113.21) 63.60 (62.97, 64.22) 

Gender    

Female (5015; 48.15)  -.659 (-.763, -.034) 106.83 (106.48, 107.18) 61.74 (61.32, 62.16) 

Male (5400; 51.85)  -.952 (-1.055, -.849) 112.23 (111.82, 112.64) 59.78 (59.31, 60.24) 

Race/Ethnicity    

White (2756; 26.46)  -.855 (-.963, -.747) 109.42 (109.01, 109.83) 61.27 (60.80, 61.74) 

Black (3052; 29.30)  -.643 (-.759, -.526) 111.83 (111.40, 112.25) 60.71 (60.21, 61.21) 

Mex.Am. (3342; 32.09)  -.692 (-.817, -.567) 109.34 (108.90, 109.79) 58.33 (57.79, 58.87) 

CMI: Cardiometabolic risk index is a sum of z-scores for glycosylated hemoglobin levels, waist circumference, HDL cholesterol and total cholesterol, 

and for systolic and diastolic blood pressure. All z-scores were age and gender specific. Blood pressure z-score based on age, gender, and height. SBP: 

Systolic Blood Pressure (mmHg); DBP: Diastolic Blood Pressure (mmHg); HbA1c: Glycosylated Hemoglobin (% blood glucose); WC: waist 

circumference (cm); TC: total cholesterol (mg/dL); HDL-C: High Density Lipoprotein Cholesterol (mg/dL). Due to small cell size, missing values not 

reported for Area-level Poverty (n=22) and Racial Concentration (n= 8). Other race/ethnicity not reported here. 
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Table 1 (cont.). Table 1. Weighted mean cardiometabolic index scores and biomarkers by independent variables (NHANES 1999-

2012) 

Variable 

(Unweighted N; %) 
HbA1c  

Mean 95%CI 

WC  

Mean 95% CI 

TC 

Mean 95% CI 

HDL-C 

Mean 95% CI 

Total (10415; 100) 5.15 (5.15, 5.16) 81.42 (81.04, 81.81) 159.83 (159.00, 160.65) 50.69 (50.37, 51.01) 

Area-level Poverty     

Quartile 1(2599; 24.95)  5.13 (5.11, 5.14) 79.97 (79.31, 80.62) 160.14 (158.61, 161.66) 50.81 (50.21, 51.41) 

Quartile 2(2615; 25.10)  5.14 (5.13, 5.16) 81.57 (80.85, 82.29) 159.76 (158.19, 161.33) 50.38 (49.78, 50.98) 

Quartile 3(2584; 24.81) 5.18 (5.16, 5.19) 82.72 (81.82, 83.61) 159.63 (157.85, 161.40) 50.62 (49.94, 51.29) 

Quartile 4(2595; 24.91)  5.20 (5.19, 5.22) 82.83 (82.00, 83.66) 159.40 (157.87, 160.94) 51.05 (50.38, 51.72) 

Racial Concentration     

Quartile 1(2599; 24.95)  5.14 (5.12, 5.15) 81.54 (80.86, 82.23) 159.91 (158.38, 161.44) 50.08 (49.49, 50.66) 

Quartile 2(2604; 25.00)  5.14 (5.12, 5.15) 81.54 (80.74, 82.34) 159.34 (157.65, 161.03) 50.48 (49.84, 51.12) 

Quartile 3(2605; 25.01) 5.16 (5.14, 5.17) 81.44 (80.71, 82.17) 159.92 (158.36, 161.48) 50.93 (50.28, 51.59) 

Quartile 4(2599; 24.95)  5.21 (5.20, 5.23) 80.89 (80.11, 81.67) 160.36 (158.80, 161.93) 52.02 (51.38, 52.66) 

Family PIR     

< 1 (3074 ; 29.52) 5.18 (5.16, 5.19) 82.84 (82.08, 83.16) 159.58 (158.03, 161.12) 50.37 (49.75, 50.99) 

1-2.9 (4005; 38.45)  5.15 (5.14, 5.17) 81.86 (81.22, 82.05) 160.26 (158.92, 161.60) 50.19 (49.68, 50.70) 

3-4.9 (1606; 15.42) 5.15 (5.13, 5.17) 80.54 (79.66, 81.41) 158.71 (156.77, 160.65) 50.54 (49.77, 51.30) 

≥ 5  (967; 9.28) 5.12 (5.10, 5.14) 79.62 (78.62, 80.63) 160.49 (158.08, 162.90) 52.12 (51.20, 53.04) 

Missing (763; 7.33)  5.18 (5.15, 5.21) 81.65 (80.18, 83.12) 160.41 (157.59, 163.24) 51.62 (50.42, 52.82) 

Age      

12-14 (3981; 38.22) 5.18 (5.17, 5.19) 77.65 (77.07, 78.24) 158.59 (157.33, 159.85) 51.70 (51.18, 52.22) 

15-17 (3964; 38.06) 5.15 (5.13, 5.16) 82.35 (81.75, 82.95) 158.03 (156.68, 159.38) 49.99 (49.48, 50.51) 

18-19 (2470; 23.72) 5.13 (5.11, 5.14) 85.94 (85.13, 86.75) 164.82 (163.03, 166.61) 50.21 (49.54, 50.89) 

Gender     

Female (5015; 48.15)  5.14 (5.13, 5.15) 80.81 (80.28, 81.35) 162.54 (161.36, 163.72) 53.14 (52.67, 53.62) 

Male (5400; 51.85)  5.17 (5.16, 5.18) 81.99 (81.45, 82.54) 157.29 (156.15, 158.43) 48.39 (47.97, 48.82) 

Race/Ethnicity     

White (2756; 26.46)  5.12 (5.10, 5.13) 81.54 (80.97, 82.12) 160.17 (158.93, 161.42) 49.82 (49.34, 50.30) 

Black (3052; 29.30)  5.26 (5.25, 5.28) 80.66 (80.03, 81.29) 160.26 (159.09, 161.42) 54.25 (53.75, 54.75) 

Mex.Am. (3342; 32.09)  5.17 (5.16, 5.19) 83.44 (82.83, 84.06) 158.78 (157.60, 159.96) 50.36 (49.83, 50.89) 

CMI: Cardiometabolic risk index is a sum of z-scores for glycosylated hemoglobin levels, waist circumference, HDL cholesterol and total cholesterol, 

and for systolic and diastolic blood pressure. All z-scores were age and gender specific. Blood pressure z-score based on age, gender, and height. SBP: 

Systolic Blood Pressure (mmHg); DBP: Diastolic Blood Pressure (mmHg); HbA1c: Glycosylated Hemoglobin (% blood glucose); WC: waist 

circumference (cm); TC: total cholesterol (mg/dL); HDL-C: High Density Lipoprotein Cholesterol (mg/dL). Due to small cell size, missing values not 

reported for Area-level Poverty (n=22) and Racial Concentration (n= 8). Other race/ethnicity not reported here. 
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Table 2. HLM models estimating the association between area-level poverty and 

cardiometabolic risk index 
 Overall Sample 

(n= 10415) 

Estimate (95% CI) 

White NH 

(n=  2756) 

Estimate (95% CI) 

Black NH 

(n=  3052) 

Estimate (95% CI) 

Mexican American 

(n = 3342) 

Estimate (95% CI) 

Model 1: 

Crude Model† 

Area-level 

Poverty 

    

Quartile 1 Ref. Ref. Ref. Ref. 

Quartile 2 .266 (.069, .463) .260 (-.032, .552) -.121 (-.057, .335) .445 (.004, .885) 

Quartile 3 .522 (.322, .722) .807 (.452, 1.162) -.086 (-.513, .339) .679 (.257, 1.100) 

Quartile 4 .552 (.354, .751) .735 (.265, 1.204) .238 (-.163, .639) .508 (.086, .930) 

     

Variance in 

intercept (τ00) 

1.52* 1.84* 1.64* 1.50* 

Variance within 

tracts (σ2) 

4.41* 5.44* 3.88* 3.39* 

Model Fit: -

2LL 

52496.20 13277.5 15534.6 16989.6 

 

Model 2: 

Individual 

Covariates†† 

Area-Level 

Poverty 

    

Quartile 1 Ref. Ref. Ref. Ref. 

Quartile 2 .214 (.008, .420) .142 (-.161, .446) -.083 (-.548, .422) .445 (-.004, .894) 

Quartile 3 .427 (.203, .651) .591 (.203, .978) -.025 (-.473, .422) .678 (.234, 1.122) 

Quartile 4 .430 (.191, .670) .462 (-.046, .972) .325 (-.119, .771) .508 (.048, .969) 

     

Variance in 

intercept (τ00) 

1.53* 1.82* 1.64* 1.51* 

Variance within 

tracts (σ2) 

4.40* 5.43* 3.88* 3.38* 

Model Fit: -

2LL 

52498.69 13279.2 15541.1 16993.1 

 

Full Model††† 

Area-Level 

Poverty 

    

Quartile 1 Ref. Ref. Ref. Ref. 

Quartile 2 .218 (.012, .424) .155 (-.149, .460) -.071 (-.538, .394) .440 (-.009, .890) 

Quartile 3 .438 (.213, .665) .634 (.240, 1.028) -.001 (-.456, .453) .663 (.217, 1.109) 

Quartile 4 .451 (.204, .698) .541 (.014, 1.067) .369 (-.098, .836) .487 (.023, .952) 

Racial 

Concentration 

-.001 (-.004, .002) -.005 (-.016, .004) -.001 (-.005, .003) .003 (-.005, .012) 

     

Variance in 

intercept (τ00) 

1.53* 1.81* 1.64* 1.51* 

Variance within 

tracts (σ2) 

4.40* 5.43* 3.88* 3.38* 

Model Fit: -

2LL 

52509.17 13282.5 15551.1 17001.4 

 

CMI: Cardiometabolic Risk Index. Models predicting Cardiometabolic Index did not include Age, Gender, 
or BMI.  †Model includes NHANES Survey Cycle. ††Model includes Race/Ethnicity (except race-specific 
models), Family Income to Poverty ratio, and NHANES survey cycle. †††Model includes all variables in 
model 2 plus area-level racial concentration. *p<.001 
 



 

77 
 

 

Table 3. HLM Models estimating cotinine as a mediator 
Variable Overall Sample 

(n= 10415) 

Estimate 95% CI 

White NH 

(n=  2756) 

Estimate 95% CI 

Black NH 

(n=  3052) 

Estimate 95% CI 

Mexican American 

(n = 3342) 

Estimate 95% CI 

CardioMet Index as 

outcome† 

Area-Level Poverty 

    

Quartile 1 Ref. Ref. Ref. Ref. 

Quartile 2 .222 (.020, .424) .260 (-.032, .552) -.121 (-.057, .335) .445 (.004, .885) 

Quartile 3 .444 (.228, .660) .807 (.452, 1.162) -.086 (-.513, .339) .679 (.257, 1.100) 

Quartile 4 .458 (.228, .689) .735 (.265, 1.204) .238 (-.163, .639) .508 (.086, .930) 

     

Cotinine as outcome 

model † 

Area-Level Poverty 

    

Quartile 1 Ref. Ref. Ref. Ref. 

Quartile 2 6.47 (2.33, 10.60) 8.25 (.57, 15.93) 1.98 (-6.496, 10.460) -1.47 (-6.06, 3.11) 

Quartile 3 6.41 (1.95, 10.86) 6.76 (-3.20, 16.73) 8.97 (.786, 17.169) -2.43 (-6.90, 2.03) 

Quartile 4 6.24 (1.49, 10.99) 20.75 (7.52, 33.98) 11.22 (2.847, 19.607) -2.15 (-6.69, 2.37) 

     

Cotinine predicting 

CardioMet Index†† 

    

Cotinine -.002 (-.003, .001) -.002 (-.003, .0008) -.003 (-.005, .001) -.002 (-.006, .0009) 

     

Full mediation 

model††† 
 

    

Cotinine -.002 (-.003, .001) -.002 (-.003, .0008) -.003 (-.005, .001) -.002 (-.006, .0009) 

Area-Level Poverty     

Quartile 1 Ref. Ref. Ref. Ref. 

Quartile 2 .222 (.016, .429) .159 (-.154, .457) -.067 (-.533, .399) .440 (-.009, .890) 

Quartile 3 .446 (.219, .673) .632 (.237, 1.027) .010 (-.445, .465) .662 (.215, 1.108) 

Quartile 4 .458 (.211, .706) .552 (.023, 1.080) .388 (-.080, .857) .487 (.023, .952) 

 

CarMet Index: Cardiometabolic Risk Index. Models predicting Cardiometabolic Index did not include Age, 
Gender, or BMI.  
 † Model includes area-level racial concentration, Race/Ethnicity, Family Income to Poverty ratio, and 
NHANES survey cycle. 
†† Model includes Race/Ethnicity, Family Income to Poverty ratio, and NHANES survey cycle at Level 1. No 
area-level poverty or racial concentration at level 2. 
†††Model includes all variables in model 2 plus area-level racial concentration and group-mean cotinine. 
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Table 4. HLM Models estimating physical activity as a mediator 

Variable Overall Sample 

(n= 10415) 

Estimate 95% CI 

White NH 

(n=  2756) 

Estimate 95% CI 

Black NH 

(n=  3052) 

Estimate 95% CI 

Mexican American 

(n = 3342) 

Estimate 95% CI 

CardioMet Index 

as outcome† 

Area-Level 

Poverty 

    

Quartile 1 Ref. Ref. Ref. Ref. 

Quartile 2 .222 (.020, .424) .260 (-.032, .552) -.121 (-.057, .335) .445 (.004, .885) 

Quartile 3 .444 (.228, .660) .807 (.452, 1.162) -.086 (-.513, .339) .679 (.257, 1.100) 

Quartile 4 .458 (.228, .689) .735 (.265, 1.204) .238 (-.163, .639) .508 (.086, .930) 

     

PhysAct as 

outcome model †† 

Area-Level 

Poverty 

    

Quartile 1 Ref. Ref. Ref. Ref. 

Quartile 2 -.138 (-.289, .011) .094 (-.164, .354) .283 (-.080, .647) -.005 (-.398, .387) 

Quartile 3 -.178 (-.344, -.013) .205 (-.128, .538) .103 (-.245, .451) .115 (-.266, .497) 

Quartile 4 -.269 (-.447, -.090) .274 (-.165, .715) .433 (.079, .788) .101 (-.287, .491) 

     

PhysAct predicting 

CardioMet 

Index††† 

    

PhysAct .089 (-.021, .200) .231 (.023, .439) .079 (-.132, .291) -.111 (-.311, .088) 

     

Full mediation 

model† 
 

    

PhysAct .082 (-.028, .193) .204 (-.003, .411) .063 (-.149, .275) -.118 (-.318, .081) 

Area-Level 

Poverty 

    

Quartile 1 Ref. Ref. Ref. Ref. 

Quartile 2 .227 (.020, .433) .147 (-.157, .452) -.052 (-.524, .419) .518 (.065, .972) 

Quartile 3 .442 (.215, .670) .637 (.242, 1.032) -.014 (-.472, .444) .733 (.283, 1.18) 

Quartile 4 .478 (.231, .752) .578 (.052, 1.103) .391 (-.005, .003) .606 (.142, 1.070) 

 

CarMet Index: Cardiometabolic Risk Index. Models predicting Cardiometabolic  Index did not include Age, 
Gender, or BMI.  

 
 † Model includes area-level racial concentration, Race/Ethnicity, Family Income to Poverty ratio, and 
NHANES survey cycle. 
†† Logistic regression Model includes area-level racial concentration, Race/Ethnicity, Family Income to 
Poverty ratio, and NHANES survey cycle. 
††† Model includes Race/Ethnicity, Family Income to Poverty ratio, and NHANES survey cycle at Level 1. 
No area-level poverty or racial concentration at level 2. 
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Table 5. Mean Family Income-Poverty Ratio by area-level poverty quartile and 

race/ethnicity 
 Area-level Poverty 

 Quartile 1 

Mean (se) 

Quartile 2 

Mean (se) 

Quartile 3 

Mean (se) 

Quartile 4 

Mean (se) 

Trend 

p-value 

Overall (n= 10415) 3.34 (.03) 2.59 (.02) 1.95 (.02) 1.42 (.02) <.001 

White (n= 2756)  3.53 (.04)b,c 2.79 (.04) b,c 2.20 (.07) b,c 1.60 (.10) b,c <.001 

Black (n= 3052)  2.61 (.07)a 2.29 (.06)a,c 1.84 (.04) a,c 1.34 (.03)a <.001 

Mex.Am. (n= 3342)  2.55 (.07)a  1.91 (.04)a,b 1.54 (.03) a,b 1.33 (.03)a <.001 

Trend assessed with multiple means comparisons. 

a. Significant difference from White (p<.05) 

b. Significant difference from Black (p <.05) 

c. Significant difference from Mexican American (p<.05) 
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Table 6. Comparison of scaled and mobile exam center weights: Full model 

 
 Method A Scaled Weights   Method B Scaled Weights   Mobile Exam Center 

Weights 

 Estimate (se) 95% CI  Estimate (se) 95% CI  Estimate (se) 95% CI 

Intercept -0.831 (0.161) -1.14, -.515   -0.857 (.165) -1.181, -.533  -.873 (.165) -1.198, -.548  

Area-level Poverty       

Quartile 1 Ref. - Ref. - Ref. - 

Quartile 2 .218 (0.105) .012, .424 .229 (.107) .019, .438 .218 (.105) .012, .425 

Quartile 3 .438 (0.115) .213, .665 .454 (.117) .223, .684 .443 (.120) .206, .680 

Quartile 4 .451 (0.126) .204, .698 .466 (.128) .215, .718 .459 (.136) .191, .727 

Percent Black NH -.001(0.001) -.004, .002 -.0007 (.001) -.004, .002 -.002 (.001) -.006, .001 

Models include NHANES Survey Cycle, Race/Ethnicity, Family Income to Poverty ratio, and area-level racial concentration. 
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Appendix B. Figures 

Figure 1. Linking NHANES data with contemporary Census/American Community 

Survey data 
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Figure 2. Determinants of Cardiometabolic Risk 
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Figure 3. Association between area-level poverty and index of cardiometabolic risk: 

Overall sample 
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Figure 4a. Assumption 1: Q-Q Plot and Histogram of Individual-Level Residuals: 

Initial Results 
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Figure 4b. Assumption 1: Q-Q Plot and Histogram of Individual-Level Residuals: 

Deleted Observations 
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Figure 4c. Assumption 1: Individual-level residuals plotted against predicted values 
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Figure 4d. Assumption 1: Individual-level residuals plotted against predicted values 
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Figure 4e. Assumption 2: Individual-level residuals plotted against individual-level 

predictors 
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Figure 4f. Assumption 2: Individual-level residuals plotted against individual-level 

predictors 
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Figure 4g. Assumption 3: Distribution of area-level residuals: Original Model 
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Figure 4h. Assumption 3: Distribution of area-level residuals: Deleted observations 

model 

 

 

 

 

 



 

92 
 

Figure 4i. Assumption 3: Plot of area-level residuals against predicted values 
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Figure 4j. Assumption 4: Plot of area-level residuals against area-level predictor 

variables 

 

 

 

 



 

94 
 

Figure 4k. Assumption 5: Individual-level residuals plotted against area-level 

residuals 
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Figure 4l. Assumption 6: Plot of individual-level residuals against area-level 

predictor variables 
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Figure 4m. Assumption 6: Area-level residuals plotted against individual-level 

predictors 
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Figure 4n. Assumption 6: Area-level residuals plotted against individual-level 

predictors 
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Appendix C. SAS Code 

Appendix C.1. 14 Year Weight Sample SAS Code 

if sddsrvyr=1 or sddsrvyr=2 then  

     MEC14YR  = 2/7 * WTMEC4YR ; /* for 1999-2002 */ 

if sddsrvyr=3 or sddsrvyr=4 or sddsrvyr=5 or sddsrvyr=6 or sddsrvyr=7 then 

     MEC14YR = 1/7 * WTMEC2YR ; /* for 2003-2012  */ 
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Appendix C.2. Scaling Weights to Census Tracts Sample SAS Code 

proc sort data = dataset; 

by tract;  

   run; 

proc summary data = dataset; 

   by tract; 

   var MEC14YR; 

   output out = intermediate 

      uss = sumsqw 

      sum = sumw 

      n = nj; 

   run; 

data dataset; 

   merge dataset intermediate; 

      by tract; 

   aw = MEC14YR/(sumw/nj); 

   label aw = "Method A"; 

   bw = MEC14YR/(sumsqw/sumw); 

   label bw = "Method B"; 

   run; 

data dataset; set dataset; drop _freq_ sumsqw sumw nj _type; run; 
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