
A New Method to Store and Retrieve ImagesZhexuan Song Nick RoussopoulosDepartment of Computer Science Department of Computer Science &University of Maryland Institute For Advanced Computer StudiesCollege Park, Maryland 20742 University of Marylandzsong@cs.umd.edu College Park, Maryland 20742nick@cs.umd.eduFebruary 11, 1999CS-TR-3991AbstractIn this paper, we present a method to accelerate the speed of querying and retrieving imagesin database. First we change the storing method: pixels of an image are saved in Hilbert orderinstead of Row-wise order using in traditional method. Then after studying the property ofHilbert curve, we give a new algorithm which greatly reduce the data segment number on thedisk. Although we have to retrieve more data than necessary, because the speed of sequentialreading is much faster than random reading, we have about 10% improvement on the total querytime which is showed in our simulation experiments.1 IntroductionHandling images in a database in one of the re requirements for the current database managementsystems (DBMSs). Images arise in many applications, including: scienti�c databases, such as thesatellite pictures in GLCF project [9], computer vision [2], etc.1

Many works [8, 5, 4, 6] have been done about how to �nd the part of a image in a databasethat is similar to a the intended target. Once we �nd an interesting range, the remaining problemis: How to retrieve all the pixels inside the range e�ciently? To simplify the problem, we considerthe range as a rectangle in this paper.Normally pixels of images are stored on disk row-wisely: from left to the right, for up to down,saved continuously. Several bytes are used to save the information of one pixel (color informationmost of the time, maybe more in some situation), which are de�ned as pixel size. Those pixels onthe disk can be viewed as a string. Once we have the range, it cuts the string into many smallpieces. We have to �gure out the position of each piece and retrieve them one by one.As we knew, sequential readings are much faster than random access readings. In some otherexperiments, we found that a sequential reading can be as fast as 15 M/sec when random accessreading is less than 1 M/sec. If an algorithm can decreases the segment number for any query, thedata retrieval speed will be improved. Our objective in this paper is to �nd a new way to storeimages and such an algorithm without spending more disk space for each image.In this paper, we use Hilbert Order instead of row-wise order to save an image and design a newalgorithm. As later shown in our experiment, with the same disk space, the segment number can beat least 50% less. The �nal performance is about 10% better than traditional method. The paperis organized as follows. Section 2 gives a brief description of the Hilbert Curve and its property.Section 3 describes our algorithm and gives some discussions. Section 4 presents our experimentalresults. Section 5 gives the conclusions and directions for future research.2 SurveyHilbert Curve is a continuous curve which passes through each point in the space exactly once.So it enables one to continuously map an image onto a line and is an excellent 2-d-image-to-linemapping. Each point in the image has a position to the line which is called the Hilbert Order ofthat point.Given an image, the Hilbert Order of each pixel can be obtained by the following way: �rst,2

create a virtual grid that contains all the pixels which forms a rectangle starting at (0; 0) and endingat point (n; n). Next recursively generate the Hilbert Curve that covers the whole grid. HilbertCurve is a self-similar curve which means it can be generated recursively. The basic curve is ona 2 � 2 grid with order 1. To derive a curve of order i, each vertex of the curve of order i � 1 isreplaced by the basic curve, which may be rotated or re
ected. Figure 1 shows the curves withorder 1, 2 and 3.
Figure 1: Hilbert Curve with order 1, 2 and 3Now each pixel in the image stays in some place of the curve. Finally, follow along the curve,the Hilbert Order of each pixel can be uniquely decided. More detail about the Hilbert Curve canbe found in [7, 1, 3].There is a good property about the Hilbert Curve that can be easily seen from the recursivegeneration of the curve:Property 2.1 (locality) Suppose Hi, Hj are two Hilbert Curve with order i, j, and i > j. Thepath of Hi follows the path of Hj.For example, let j = 1, Hi(i > 1) must �ll the lower-left part of the space, then upper-left,upper-right, �nally lower-right part which is the order of H1.We choose this order because in this order, pixels are grouped locally. To any rectangle range,the pixels inside the range are more likely to form some long strings instead of many short stringsin traditional method, and data segment number should be small.However, the range query on new method is not e�cient as we thought. Look at Figure 23

Figure 2: Range query on Hilbert CurveSince the pixels are saved in Hilbert Order, the Hilbert curve can be viewed as the real datastring on the disk. The dot rectangle is the query range. We can �nd that the range cuts the curveinto several segments. Some segments are long but most of them along the border are quite short.The total segment number does not decrease, which can be found in our experiment later.This can be improved by our new algorithm. The central idea of our algorithm is to increasethe query range a little bit in order to decrease the segment number of Hilbert Curve inside thequery range. Although we may have to retrieve more data than necessary, the query speed becomesfaster.3 Algorithm and discussionWe �rst do some research on Hilbert Curve. In Figure 3, suppose l is the left border of a queryrange in an image. For those pixels on the line, the Hilbert Curve can do the following three things:1. From the near pixel on the right of the line or on the line (upper or down), traverse the pixeland go up (or down) or right.2. From the nearest pixel on the left of the line, traverse the pixel and go up (or down) or right.3. From the nearest pixel on the line or on the right, traverse the pixel and go left.4

lFigure 3: Hilbert Curve with a lineIn the �rst case, the curve still stays inside the query range. (Here we assume that the borderis in the range.) The rest two cases mean that the curve enter or leave the query range. We callthat traverse a cross on the border and the pixel a cross point.Theorem 3.1 The possibility of a cross at any pixels on a border is about 50%.Proof: Suppose p is a pixel on the border and line l is the left border of a query range. Firstwe symbolically move the line left a little bit. Now if p is a cross point, there must be a horizontalline segment on the curve which intersects with l, and p is its right end. Since the number ofhorizontal line segment on the Hilbert Curve is almost as many as the number of vertical ones,and each pixel (except two end points of Hilbert Curve) is the end point of two line segments, phas about 50% possibility to be the right end of a horizontal line segment. Since, p is randomlyselected, the possibility of a cross at any pixels on a border is about 50%. 2Hilbert Curve is a continuous curve. Each range query cut the Hilbert Curve into severalsegments. The end points of the curve segments inside the range can only appear on the queryborder and must be cross points. On the other side, each cross point must be either a beginningpoint or an end point of a segment. So the number of curve segments in the range must be the halfof the number of cross points.Corollary 3.2 To any query range with parameter length c, the number of cross points on theborder is c=2, and the number of Hilbert Curve segment inside the range is c=4.5

Our algorithm is based on the following fact: those cross points are not uniformly distributed.Suppose l is a line segment with the following function: x = x0; y 2 [yl; yh]. Cross points are morelikely to appear if x0 is an odd number. If x0 is an even number, the number of cross points onthat line segment sharply decreases. Furthermore, if x0 is exactly divisible by 4, the number ofcross points can be even less. And so on.The reason can be found from the locality attribute of Hilbert Curve.
Figure 4: Hilbert Curve with order i and i� 1Suppose a curve with order i covers the whole grid space. As we know, the curve with order ican be generated from a curve with order i � 1. We put the curve with order i� 1 into the samegrid space too. As shown in Figure 4. Put a line segment l (x = x0; y 2 [yl; yh]) on the image. If x0is an even number, any cross points of Hilbert Curve with order i must be a cross point of Curvewith order i� 1. (We omit the detail proof here.) So the average number of cross point on l if x0is even is about half of the average number without any limitation on x0.Based on this fact, we present algorithm 1 in Figure 5.In this algorithm, we can �nd that the query range increases a little bit by changing thecoordinate of the query range. That means in our algorithm, the system has to read some uselesspixels which is out of the query range. But the algorithm is still e�cient because the fact wementioned at the �rst section: sequential readings are much faster than random access readings.We also showed that the number of curve segments could still be less if the coordinate of thequery range can be divisible by 4, 8 or 2n. However the more we augment the query range, the moreuseless pixels we have to retrieve. A very extreme example is that we retrieve the whole image. At6

point-set rangeQuery (lowx, lowy, highx, highy) {if (lowx is an odd number)lowx = lowx - 1; // increase the query range a little bitif (highx is an odd number)highx = highx + 1;/* same as lowy, highy */normalRangeQuery (lowx, highx, lowy, highy);filter the useless pixels;} Figure 5: Algorithm 1that time, only one curve segment | the whole curve | will be retrieved.Now We change algorithm 1 a little bit by introducing a new parameter n in Figure 6.point-set rangeQuery (lowx, lowy, highx, highy, n) {if (lowx is not divisible by 2^n)lowx = x, where x <= lowx and x mod 2^n = 0;if (highx is not divisible by 2^n)highx = x, where x >= highx and x mod 2^n = 0;/* same as lowy, highy */normalRangeQuery (lowx, highx, lowy, highy);filter the useless pixels;} Figure 6: Algorithm 2Algorithm 1 is a special case of algorithm 2 when we set n = 1. And if n = 0, we have thenormal range query algorithm.Suppose t1 is the average time of a search on a disk in a system, t2 is the average time of areading. There is a range query with parameter length c. When n = 0, there is no useless pixels7

but c=4 curve segments inside the query range. When n = 1, we have only c=8 segment, whichsaves us (c=8)t1 time. But at the same time, we have c=2 useless pixels in our augmented range.This costs us (c=2)st2, where s is the pixel size. So our bene�t is:B1 = (c=8)t1 � (c=2)st2When n increases by 1, the number of the curve segments in the range decreases by half and thenumber of useless pixels is three times more. As n = k, our bene�t is:Bi = (c=2n+2)t1 � 2c3n�2st2De�ne n� to be the biggest integer which makes Bn� > 0. At that point, the system has the bestperformance.From the above formula, we can �nd that the selection of n� in di�erent system is di�erent.It depends on how fast a search on a disk comparing to a reading. It is obvious that if t1 is bigand/or t2 is small, i.e. a sequential reading is very fast comparing to a random access reading, n�will be big.The other thing that a�ects the selection of n� is the pixel size. If the pixel size is big, when weinclude one more pixel in the query range, we have to retrieve more bytes and spend more time.So we can not a�ord to include many useless pixels. That makes n� to be a small number.One thing we want to mention is that the selection of n� does not depend on the size of thequery range. This is a little di�erent from our original guess, but the experiments prove it.4 Experimental resultsTo access the merit of our algorithm, we implement it in C++. All the experiments are run ona Sun Untra 1 machine with 128 M memory. We compared the performance of our algorithmin di�erent parameters along with traditional method. The CPU time is negligible, we base ourcomparison on (a) the segment number and (b) total data retrieving time.The data space is an image with 1024 � 1024 pixels. In di�erent application, di�erent numberof bytes are used to store the information of one pixel. We call it pixel size. So the total size of8

the image is pixel size �1 M bytes on the disk. Those pixels are saved continuously on the diskaccording to their Hilbert Order. The disk page size is 4 K.We select row-wise method, n = 0 (normal query algorithm), n = 1; 2; 3; 4 and 5. We comparethe segment numbers inside the query range. More than 10,000 possible positions are selected andthe average results are listed in Table 1.Query size Row n = 0 n = 1 n = 2 n = 3 n = 4 n = 5750� 750 750 743:91 356:45 182:73 84:40 48:81 23:85600� 600 600 619:00 273:82 148:80 69:96 39:78 19:78450� 450 450 475:04 212:12 116:75 56:30 29:31 14:57300� 300 300 306:67 142:06 73:92 35:79 16:88 8:17150� 150 150 155:04 71:78 37:70 17:54 9:04 4:0150� 50 50 51:27 24:71 13:36 7:23 4:28 1:41Table 1: Number of data segmentIn the above table, we can �nd that comparing to traditional method, normal query algorithmhas almost the same segment numbers. In our algorithm, as n increases by 1, the segment numbersalmost decrease by half. In large queries, it can be even more than half. Also, when n = 1, segmentnumber in the range is almost a quartor of the total papameter length of the query range. Bothresults �t our theoritical calculation well.Next, we want to compare the running time of di�erent methods. Some issues are very importantto the accuracy of the result:� No bu�er techniques (from C++ functions or Operating System) should be used. Otherwisewe can not �nd the exact time for disk reading.� The position of the query is very crucial to the �nal result, many queries should be selectedrandomly and tested. Only the average number can be used.� No \special" readings. We found from our experiment that in a query, some readings spendmuch more time than average (about 1000 times more). The reason is that when the test9

program ran those readings, the operating system switched the control to other programs.When our test program regained the control, much time has elapsed. We call those readings\special".We do the following things to make the �nal result more accurate:� We use low level function calls (such as read, write etc.) instead of high level function calls.� We create a very large �le on the disk (about 1 G bytes) and a pointer. Before we start anew query, we move the pointer randomly to a new position. That position is viewed as thestart place of the image. Since the main memory is not very large, the old things we readhave very little possibility to be stored in the memory bu�er and reused later.� More than 10,000 test cases are generated and the average time is counted for each data inour �nal result.� We monitor each single reading. If it costs more time than our threshold (normally 1,000times more than average), we do not count the time of that reading. The threshold is sohigh that in each query, number of \special" readings is less than 3 (comparing to about 1000readings in one query).We check di�erent query size along with di�erent pixel size. Results are in Table 2, 3 and 4Look at each row of above three tables, we can �nd that to any query, as n increases, the totaltime decreases at �rst due to the decrease of the segment number, then it increases again. Theoptimized point is at n�. We compare the value in n� with traditional method, and put the resultin the save column.Another observation is about the value of n�. When pixel size = 12, n� is 2, sometimes 3. Aspixel size = 8, n� is 3. And n� is 3 or 4 when pixel size = 4. If the pixel size is big enough, forexample as big as one disk page, n� will be 0, i.e. the normal data retireval algorithm will have thebest performance. 10

Query size Row n = 0 n = 1 n = 2 n = 3 n = 4 Save (%)800� 800 1:28 1:26 1:09 1:15 1:22 1:27 14:44700� 700 1:00 1:02 0:85 0:90 0:96 1:00 15:25600� 600 0:73 0:71 0:63 0:67 0:73 0:77 13:79500� 500 0:58 0:63 0:48 0:46 0:53 0:58 20:44400� 400 0:33 0:33 0:31 0:34 0:37 0:39 6:81300� 300 0:24 0:24 0:20 0:20 0:23 0:25 15:77200� 200 0:13 0:14 0:11 0:12 0:12 0:13 16:39100� 100 0:060 0:062 0:052 0:052 0:062 0:069 13:26Table 2: Average reading time (sec) when pixel size = 12Query size Row n = 0 n = 1 n = 2 n = 3 n = 4 Save (%)800� 800 0:73 0:78 0:70 0:65 0:72 0:81 9:68700� 700 0:57 0:56 0:54 0:51 0:61 0:65 10:33600� 600 0:48 0:48 0:44 0:42 0:48 0:50 12:70500� 500 0:38 0:38 0:31 0:33 0:34 0:37 16:43400� 400 0:27 0:28 0:24 0:24 0:25 0:26 11:93300� 300 0:17 0:19 0:15 0:15 0:16 0:17 11:90200� 200 0:070 0:065 0:062 0:060 0:073 0:080 11:13100� 100 0:035 0:032 0:030 0:030 0:034 0:037 15:36Table 3: Average reading time (sec) when pixel size = 811

Query size Row n = 0 n = 1 n = 2 n = 3 n = 4 Save (%)800� 800 0:37 0:37 0:36 0:34 0:35 0:39 6:66700� 700 0:33 0:34 0:30 0:30 0:29 0:31 13:16600� 600 0:26 0:27 0:25 0:22 0:24 0:27 13:83500� 500 0:18 0:20 0:17 0:16 0:15 0:18 16:90400� 400 0:12 0:13 0:12 0:11 0:10 0:13 12:96300� 300 0:079 0:078 0:075 0:076 0:075 0:081 5:69200� 200 0:043 0:043 0:040 0:038 0:039 0:042 10:63100� 100 0:030 0:031 0:028 0:026 0:026 0:028 11:88Table 4: Average reading time (sec) when pixel size = 45 ConclusionThe goal of our algorithm is to generate more sequential readings in a query. We �rst save the imagepixels in Hilbert Order then exploit the clustering properties of the Hilbert Curve and propose toincrease the query range a little bit before retrieving data from the disk. We performed experimentsto test how big the range should be to get best performance. The major conclusion is that theoptimal value decreases when the pixel size increases.Future research could check the performance in a paralle environment, and use the same tech-nique on Hilbert R-tree.References[1] T. Bially. Space-�lling curves: Their generation and their application to bandwidth redunction,IEEE Trans. on Information Theory, IT-15(6):658-664, November 1969.[2] D. Ballard and C. Brown. Computer Vision. Prentice Hall, 1982.[3] J. Gri�ths. An algorithm for displaying a class of space-�lling curves, Software-Practice andExperience, 16(5):403-411, 1986. 12

[4] K. Hirata and T. Kato. Query by visual example | content based image retrieval. In Advancesin Database Technology, Vienna, Austria, 1992.[5] T. Gevers and A. W. M. Smuelders. An approach to image retrieval for image databases.Database and Expert Systems Application, Prague, Czechoslovakia, 1993.[6] J. Liang and C. C. Chang. Similarly retrieval on pictorial databases based upon module oper-ation. Database Systems for Advanced Application, Taejon, South Korea, 1993.[7] I. Kamel and C. Faloutsos. Hilbert R-tree: An improved R-tree using fractals Proc. of VLDBConference, Santiago, Chile, Sept. 12-15, 1994, pp. 500-509.[8] C. Faloutsos, R. Barber, M. Flickner, J. Hafner, W. Niblack, D. Perkovic, and W. Equitz.E�cient and e�ective querying by image content. Journal of Intelligent Information Systems:Integrating Arti�cial Intelligence and Database Technologies, 3(3-4):231-262, 1994.[9] http://glcf.umiacs.umd.edu/, 1999.

13

