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In this dissertation I quantify residential behavior response to interventions

designed to reduce electricity demand at different periods of the day.

In the first chapter, I examine the effect of information provision coupled

with bimonthly billing, monthly billing, and in-home displays, as well as a time-of-

use (TOU) pricing scheme to measure consumption over each month of the Irish

Consumer Behavior Trial. I find that time-of-use pricing with real time usage in-

formation reduces electricity usage up to 8.7 percent during peak times at the start

of the trial but the effect decays over the first three months and after three months

the in-home display group is indistinguishable from the monthly treatment group.

Monthly and bi-monthly billing treatments are not found to be statistically different

from another. These findings suggest that increasing billing reports to the monthly

level may be more cost effective for electricity generators who wish to decrease ex-

penses and consumption, rather than providing in-home displays.

In the following chapter, I examine the response of residential households af-

ter exposure to time of use tariffs at different hours of the day. I find that these



treatments reduce electricity consumption during peak hours by almost four per-

cent, significantly lowering demand. Within the model, I find evidence of overall

conservation in electricity used. In addition, weekday peak reductions appear to

carry over to the weekend when peak pricing is not present, suggesting changes in

consumer habit.

The final chapter of my dissertation imposes a system wide time of use plan to

analyze the potential reduction in carbon emissions from load shifting based on the

Ireland and Northern Single Electricity Market. I find that CO2 emissions savings

are highest during the winter months when load demand is highest and dirtier power

plants are scheduled to meet peak demand. TOU pricing allows for shifting in usage

from peak usage to off peak usage and this shift in load can be met with cleaner

and cheaper generated electricity from imports, high efficiency gas units, and hydro

units.
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Chapter 1: Overview

In most countries, households use electricity and pay for it only at the end of

the billing cycle one or more months later. The disconnect between the time-of-use

(TOU) and the time of payment is sometimes blamed for the little awareness and/or

wastefulness that many consumers appear to have about their usage of electricity.

Real time information feedback combined with various pricing schemes has been

found to reduce residential energy consumption more than information and pricing

policies alone [22, 28, 31]. Within this manuscript, I present three chapters linked

by the commonality of how information and TOU pricing are utilized in in an effort

to curtail peak usage, as well the impact on environmental quality. Specifically, I

examine several research questions that explore the use of various forms of informa-

tion provision to encourage residential households to engage in energy conservation

and load shifting. First, in the context of information provision, I analyze the effect

of how increased frequency of information impact customer consumption patterns.

Then, I examine the potential changes in habit in response to TOU billing and

heterogeneity in such responses. Finally, I apply a hypothetical systemwide TOU

policy to analyze potential savings in generation and CO2 emissions.

In the first two chapters, I utilize a unique dataset from the Irish Consumer
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Behavior Trial to examine the effect of information provision on consumption. The

trial took place between 2009 and 2010 when Irish households that were previously

on a flat rate tariff and bi-monthly billing were invited to participate in a TOU trial.

Households selected to be in the treatment group receive their usage information in

bi-monthly billing, monthly billing, or in-home displays. Socio-demographic infor-

mation such as age, education, house type, homeownership, and employment was

collected through pre and post trial surveys.

In the first chapter, the main method of estimation is a panel fixed effects

model to estimate the information treatment effects with monthly interaction terms.

Results suggest that monthly and bi-monthly billing do not provide significantly

different results. I suspect that households with less educated and older residents

are more likely to drop out of the treatment group. To correct for possible self-

selection out of the trial, I apply fixed effects and a method called coarsened exact

matching where households in the treatment and control group are matched by

household characteristics such as age, education, and type of residence. Results

from robustness checks show similar results.

Second, I examine the response of residential households at different hours of

the day to the introduction of TOU tariffs. TOU pricing encourages households

to alter their electricity consumption patterns. Again, I apply a panel fixed effects

model to hourly observations to estimate the average hourly response to TOU pricing

for weekdays and weekends. Results are consistent with expectations: households

shift usage away from peak periods in order to consume electricity at a lesser tariff

rate. I posit that households with the highest demand would be most responsive to
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TOU treatment. Households in the lowest quantile of demand appear to increase

their overall consumption in response to TOU pricing. Since poor households tend

to have low electricity usage, an increase in the consumption on TOU pricing may

indicate an improvement in comfort.

In the final part of my dissertation, I impose a systemwide TOU plan to

analyze the potential reduction in carbon emissions from load shifting based on

the Ireland and Northern Ireland Single Electricity Market. I utilize generator unit

commercial and technical offer data to create daily merit curves representative of

the island electricity supply. I calculate the cost of generation and subsequent CO2

emissions from generation for actual load demand. I apply the same procedure to

a situation under which residential TOU pricing is imposed on the island based on

average treatment effect results from the previous chapter. Findings suggest that

TOU pricing during fall and winter months provide the largest emissions savings. I

do not find evidence of an increase in emissions that has been found with systems

that use hydro and oil units to meet peak load.
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Chapter 2: The Effectiveness of Information Provision with Time-of-

Use Pricing

2.1 Introduction

Feedback on electricity use has been found to be an effective mechanism in

improving supplier efficiency and encouraging the reduction of residential energy

consumption [28, 35]. One way these savings have been made possible through the

widespread installation of smart meters in the US and European countries such as

the UK, Italy, and France [30]. In this paper, a smart meter is defined as a device

that records a households incremental energy usage and transmits the information

to inform the utility of periods of high and low electricity demand in real time.1 The

consumer is able to access information about his/her real time electricity usage and

current tariff rate from an in-home display (IHD). This information can allow the

consumer to learn about how their energy habits impacts their overall usage and

1Darby (2006) defines meters with one-way customer to utility communication abilities to be

automated meter reading meters. These meters require additional technology, such as IHDs or

web applications, in order for consumers to receive real time information. The general literature

defines smart meters as devices that are capable of transmitting information two ways between the

utility and consumer [22].
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bill and encourage conservation practices.

Utilities often use energy efficiency and demand response programs, such as

time-of-use (TOU) pricing and dynamic pricing (e.g. real time pricing and critical

peak pricing (CPP)), to reduce electricity demand and shift peak usage. These

pricing schemes allow the price of electricity to reflect the cost of generation at

varying efficiency rates of fuel powered generation and fuel prices during times of

high and low demand [20, 30].2 The ideal result is a shifting of usage away from

periods of higher energy costs to periods of lower energy cost and reduce greenhouse

gas emissions when dirtier fuels or less efficient generation units are used to meet

peak demands [30]. Other benefits of dynamic and TOU pricing include reducing

peak congestion and susceptibility to outages by spreading out electricity demand to

other periods and allowing for more efficiently generated electricity to be distributed

to consumers [30,62].

Under TOU pricing schemes, prices are higher during times of peak demand

and lower during off peak periods. These price signals give consumers the incentive

to reduce or shift their usage away from peak hours in exchange for lower bills. TOU

pricing is commonly identified as a separate entity from dynamic pricing because

the rate structure is known in advance and does not vary with system demand in

an unpredictable fashion. This eliminates price uncertainty and enables customers

to alter their habits around peak periods.

Determining how TOU and feedback information are adapted into the house-

2If the baseload is fueled with a more carbon intensive fuel, such as coal or fuel oil, then shifting

peak load may result in an increase in CO2 emissions.
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hold and how households adjust their consumption over time would provide evidence

about the effectiveness of continuous information provision. Although several stud-

ies look at the impact of feedback on household energy savings with various pricing

strategies [26,51,68,78], how these feedback technologies compare with conventional

billing methods have yet to be explored. To determine whether these feedback tech-

nologies are cost-effective, it is necessary to assess if their effect is sustained over

time.

The aim of this paper is to analyze the change in usage with different methods

of information feedback coupled with a TOU pricing scheme. I use the Ireland

Behavior Trial data (Di Cosmo et al. 2014, Caroll et al. 2014). The Commission

of Energy Regulation conducted the trial in 2009-2010 to investigate the impact of

smart metering technology combined with TOU pricing and information stimuli on

consumer behavior during times of peak demand. I take advantage of this unique

panel with information about household electricity consumption to answer three

main questions on the effectiveness of an IHD compared to the conventional methods

of billing.

First, how persistent are the effects of information provision in a TOU setting?

One potential interpretation is that the increased stock of information treatment al-

lows households to learn about their usage patterns and adapt their usage around

peak periods to increase savings. This learning occurs through consumer experi-

mentation by altering daily habits such as turning off lights, unplugging electronic

devices, lowering the thermostat if the home uses electric heating, and waiting until

off peak times to start running appliances. Households can determine which actions
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impact their electricity bill the most and optimize their usage. Alternatively, the

treatment can act as a cue that reminds consumers to cut back on their usage, which

may persist for as long as the treatment is in place, or longer.

Second, how do households with IHDs compare in terms of peak energy savings

to those on monthly or bi-monthly billing in the beginning and the later months of

the trial? In other words, what is the benefit gained from additional information?

On average, a household with an IHD is expected to have a larger response than a

household with conventional billing as they have more complete information sets.

However, information provision has been found to affect households in a heteroge-

neous manner. While households are able to save on average, some increase their

usage with monitoring [68]. And, having the IHD doesnt mean that you necessarily

use it.

And third, what are the overall savings from households with IHDs compared

to conventional billing? This question is tied to the previous question in that house-

holds with more information are expected to make larger changes to their energy

use. Yet, it may be possible that households with extremely low usage may increase

their usage overall when provided with more information [35]. Given the structure

of TOU pricing, gains in reduced peak consumption may be offset by increases in off

peak consumption. This question addresses the overall energy conservation aspect

of information with TOU pricing.

Multiple studies have found that information with pricing policies reduce or

shift energy consumption by encouraging behavioral changes [16, 26, 31, 51–53, 78].

Other studies find time varying pricing to be more effective with critical peak pric-
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ing and load controls [79, 80]. In this paper, I find that households with IHDs on

a bi-monthly billing schedule reduce their peak energy consumption by a larger

percentage than households in the monthly and bi-monthly treatment groups dur-

ing the earlier months of the trial. However, the IHD reductions decline until the

effects are comparable to those of monthly billing. The fading of the effects sug-

gests that IHD reductions are not permanent but become less effective over time

as households become accustomed to the IHD. On the other hand, monthly and

bi-monthly treatment groups show gradual increase in reductions over the course of

the trial, suggesting a slower learning rate as households develop a new habit stock.

In terms of overall conservation I find that monthly billing is more cost effective

than providing IHDs with a 10-year lifespan.

The remainder of this paper is organized as follows: Section 2 provides a

discussion of relevant literatures, Section 3 discusses the background of the Irish

electricity market, Sections 4 and 5 discuss the trial design and provides a descrip-

tion of the data. Section 6 explains the models and provides an analysis of the

results. Section 7 provides a brief cost comparison and section 8 concludes.

2.2 Relevant Literature

Energy is infrequently on the mind of the typical consumer and increasing

information transparency in energy usage can nudge consumers to be more con-

scious of their consumption by encouraging the adoption of energy efficiency and
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conservation practices [14, 35, 39]. Providing households with information on their

usage may increase awareness of their energy consumption and enable learning and

experimentation with their energy usage to potentially increase energy savings by

7-12 percent [56]. Gans et al. (2013) shows that households on a prepaid plan re-

duce their average by 11 to 17 percent when given keypad technology meters that

displayed real time usage information. Similarly, Houde et al. (2013) finds that

households with access to direct feedback through a Google operated web applica-

tion had an average reduction of 5.7 percent in energy usage in the mornings and

the evenings.

In addition, the combination of information with pricing policies is more likely

to encourage further reduction in usage since feedback may become less effective

when it becomes more difficult for households to reduce their consumption after a

certain point without additional incentives [9, 40, 54]. Addressing the behavior of

consumers to change their energy usage may play a larger role in the success of an

IHD than environmental awareness alone [37].

Past literature has studied the effects of information provision and found that

information and pricing policies alone result in lower energy savings than what is

found in studies that combined information and dynamic pricing schemes [22,28,31].

Jessoe and Rapson (2013) find households on CPP combined with IHDs were able to

consistently reduce their consumption by 10 percentage points more than households

with CPP only. Similarly, Ivanov et al. (2013) find that households with smart

meters and smart thermostats use 15 percent less energy than those without enabling

technologies on critical peak days. Ito et al. (2013) analyze a trial in Japan where
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every household receives an IHD and find the impact of critical peak pricing to

be more effective than social pressure, suggesting pricing policies provide further

incentive than conservation alerts.

TOU pricing in conjunction with information has been found to result in the

shift of usage around peak times. Torriti (2012) compares electricity consumption

one year before and one year after the introduction of TOU tariffs and finds that

households shift their usage during peak hours to the hours directly prior and after

the peak period, demonstrating consumers ability to change their habits by starting

their appliances at earlier or later times. His overall findings suggest an increase in

usage by 13.69 percent but billing amounts decreased by 2.21 percent, questioning

the effectiveness of IHDs with TOU pricing. This study, however, did not include a

control group to account for trends that may confound the estimation.

Other studies that have utilized the Ireland Consumer Behavior Trial data used

in this paper have found IHDs to effectively reduce consumption during peak period

under a TOU policy. Di Cosmo et al. (2014) estimate a difference-in-differences

(DID) random effects panel regression to determine presence of a linear relationship

between the size of the TOU tariff applied and the reduction in electricity consumed.

They find households installed with IHDS exhibit a weak price response associated

with the applied TOU during peak hours. Alternatively, households on monthly and

bi-monthly billing are associated with nonlinear responses to changes in TOU tariff,

consistent with non-linear reactions observed in Reiss and White (2005) and Woo et

al. (2013b).3 Caroll et al. (2014) aggregates pretrial and testing period consumption

3Woo et al. (2013b) also estimates the elasticity of substitution from peak to off peak usage
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to two observations per household to estimate a DID fixed effects model. They find

peak reductions of 9.4 percent for households with IHDs, 8.7 percent for households

on monthly billing, and 5.4 percent for households on bi-monthly but do not find

evidence that increasing information provision to have an effect on reducing peak

consumption.

I study the persistence of energy savings of different information feedback to

determine if more information is cost effective. I find a gradual increase in savings

from conventional billing methods and a dramatic decrease in IHD treatment effects

after three months of the trial. Ultimately, I test the difference between treatments

and find the effects are not significantly different from another in the latter parts of

the trial.

These findings regarding consumer learning from information and conventional

billing methods are similar to studies in other areas of research that find evidence

of consumers learning from bills. For example, participants who fill out overdraft

surveys are less likely to incur overdraft fees [10, 71]. Another study analyzed par-

ticipants switching calling plans to minimize cost of service [59]. Narayanan et al.

(2007) find consumers on fixed telephone plans learn slower than consumers on vari-

able plans as the latter provided more information on their usage. Some studies

have found that treatments like this require persistence in information provision.

Houde et al. (2013) finds the effects in their trial begin to fade by the fourth week

to be less than 0.07 for TOU pricing without information. This estimate indicates a low response

compared to estimates in Baladi et al. (1998) who find the elasticity of substitution to be 0.14 for

a typical home, 0.39 for all electric homes, and -0.006 for homes without major electric appliances.
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after their trial terminated. Behavior formed over a three-month period is likely to

persist but only with continued feedback [22].4

In this paper, the treatment group provided with real time information is

associated with high reductions in usage but decays as the trial advances. This

suggests that effectiveness of information wanes when households get used to the

presence of the display. Examples of this can be found in other facets of consumer

research. Richins and Bloch (1991) find that car owner involvement with their vehi-

cle diminishes as they grow accustomed to their purchase. After the initial novelty

of their purchase subsides, consumers dont spend much time thinking, learning, or

talking about the product on a day-to-day basis [65] . Similarly, the shock of the

home energy reports and bills aimed to generate an immediate response in energy

reduction have been found to decay over the days following the report arrival [8,38].

Evidence of reduced effectiveness of signals can also be found in medicine where the

effectiveness of mailed appointment reminders seemed to decrease with time [60].

2.3 Background

2.3.1 Residential Electricity Consumption in the Republic of Ireland

Home heating consists of a significant proportion of energy consumed in res-

idential homes in the Republic of Ireland, where 67 percent of residential energy

consumed goes towards space heating and 16 percent to water heating [72]. The

4The Houde et al. (2013) trial spans a period of three months, March through May 2010.
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late development of a natural gas network makes fuel oil their main source of energy

followed by electricity and natural gas. Fuel oil (40.6 percent in 2010) and natural

gas (38.6 percent) are the fuels predominantly used for residential space heating;

electricity constitutes a mere 4.8 percent. Government programs have aimed to

reduce energy usage and CO2 emissions by providing incentives for households to

adopt energy efficient measures.5

Since Ireland is a country that does not rely on electricity for heating and

cooling, energy savings must come from other end uses. In 2011, the major end use

of electricity is hot water heating with electric immersion (25 percent), followed by

small appliances such as computers and televisions (19 percent). Lighting constitutes

as 16 percent of electricity usage, washers and dryers 11 percent, and refrigeration

10 percent [72]. The rest goes towards cooking, fans, and space heating. Shifting

of usage can come from waiting until the off peak period to use hot water, run the

washers and dryers. Turning off lights and small appliances when not in use can

result in overall electricity savings. Savings can also occur through efficiency gains

when households replace old appliances with more efficient ones (e.g. a new clothes

washer uses 70 percent less energy [63].

5Some recent programs include the Home Energy Saving Scheme, which started in 2008 and

was integrated into the Better Energy Homes Scheme in 2011. The Better Energy Homes Scheme

provided grants totaling up to 160 million Euros and saved 47 million Euros on energy costs [72].
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2.3.2 Electric Ireland, Meter Readings, and Smart Meters

The full deregulation of the electricity market in 2005 allowed electricity cus-

tomers across Ireland to choose their suppliers. Prior to this, the state-owned com-

pany Electric Ireland supplied all domestic electricity. Around the time of the Ire-

land smart meter rollouts in 2008, Electric Ireland continued to supply electricity to

100 percent of the market in Ireland. The company conducted meter readings four

times a year and required a meter reader to be physically present at the home to

record the meter reading. If the reader was unable to get a reading then the utility

used an estimate until the next reading occurred and adjusted the bill accordingly.

Customers received their electric bills every two months that included the meter

reading and the tariff applied to the bill [2].

The conventional method of meter reading is more prone to errors in supplier

services and billing caused by inaccurate readings from human error or estimation

errors if a current reading is not possible. Properly functioning smart meters elim-

inate these errors by providing accurate and real time readings in 15 minute to

hourly intervals. In this trial, smart meters record the households usage at half

hourly intervals and transmit this information to the supplier and households with

IHDs.6

6Smart meter installation does not automatically imply that consumers are given feedback.

Recorded usage information is generally provided to the supplier and an additional display unit is

required for households to gain access to the smart meter information.
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Figure 2.1: Trial Timeline

2.4 Trial

The Commission of Energy Regulation conducted the Irish Consumer Behav-

ior Trial as part of the National Smart Metering Plan in the Republic of Ireland.

The trial took place from 2009-2010 to investigate the impact of smart metering

technology combined with TOU tariffs and feedback stimuli on consumer behavior

on reductions in peak demand and overall electricity use [20].

Figure 2.1 outlines the timeline of the trial:

• Pre-Benchmark period (Mar 2008-June 2009): Recruitment of participants oc-

curred in four waves where subsequent waves are adjusted to ensure a nation-

ally representative sample. An additional non-recruitment survey is conducted

to ensure that those who did not participate in the trial were not significantly

different from those who were. During this period, smart meters are installed

in participating homes.

• Benchmark period (July-Dec 2009): Baseline data are collected prior to the
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start of the test period and the billing period post is adjusted to the calendar

month. Consumers receive bi-monthly electric bills. The pre-trial survey is

also conducted and participants are randomly assigned to control and treat-

ment groups. The treatment group receives the first half of their balancing

credit.7

• Testing period (Jan-Dec 2010): The control group continues to be billed at

their existing flat rate (14.1 cents per kWh) and receive a bi-monthly electric

bill whereas the treatment groups have different TOU tariffs and feedback

stimuli.

• Post trial survey (Jan-Feb 2011): Participants return to their normal billing

cycle and flat rate tariffs on January 1, 2011. The post trial survey is con-

ducted via telephone during this period. The treatment group receives the

second half of their balancing credit.

7Prior to the start of the trial, households were also guaranteed a balancing credit to ensure

they do not incur more costs than if they were on the regular tariff. The credits were distributed in

December 2009 and January 2011 to avoid any unintended effects to household consumption during

the trial. See Tables A.1 and A.2 in Appendix A for details about households that received the

credit. Approximately 41 percent of households in the treatment group received balancing credits.

A larger proportion of the bi-monthly group received balancing credits, followed by the monthly

group. This means that households on the trial not on the IHD were not reducing/redirecting

their usage enough to avoid paying more than if they were on the flat tariff. They therefore had

to be compensated.
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Treatment Night Day1 Peak Day2 Flat Rate
11pm-7:59am 8am-4:59pm 5pm-6:59pm 7pm-10:59pm

Tariff A 12 14 20 14
Tariff B 11 13.5 26 13.5
Tariff C 10 13 32 13
Tariff D 9 12.5 38 12.5
Control 14.1

Table 2.1: Weekday TOU Pricing Schedule (Euro cents per kWh excluding VAT)

At the time of assignment to treatment, the trial had 5,027 participants who

volunteered to participate in the trial, of which 1,170 were randomly assigned to the

control group. Records were deleted from the study for participants who withdrew

from the trial. Of the original sample, 2,407 remain in the treatment group and 928

in the control group for the study.8

Participants in the Residential group are randomly assigned two treatments.

The first treatment is the TOU tariff where each household is assigned to one of four

TOU pricing structures in Table 2.1. The TOU day is divided into the following

periods: peak period from 5pm-6:59pm on weekdays, day periods are between 8am-

4:59pm and 7pm-10:59pm on weekdays and 8am-10:59pm on weekends and holidays

(the peak period is excluded from weekends and holidays), and the night period (off

peak hours) are the hours between 11pm-7:59am. The prices of electricity during

these hours are structured with the peak having the highest tariff when demand for

8Participants were assigned to two TOU tariff groups, a Residential Tariff and a Weekend Tariff.

Participants from the Weekend tariff are omitted from this study (100 households) as they face a

different pricing structure from the Residential Tariff group. An additional information treatment

group also omitted from the study (939 households).
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Treatment Description
BM Bi-monthly billing + energy report
M Monthly billing + energy report
IHD In-home display + bi-monthly billing + energy report
Control Bi-monthly billing

Table 2.2: Information Treatment

BM M IHD Control Total
Tariff A 281 290 293 - 864
Tariff B 108 111 114 - 333
Tariff C 299 295 291 - 885
Tariff D 109 114 103 - 325
Control - - - 928 928
Total 796 810 801 928 3,335

Table 2.3: Treatment Assignment

electricity is highest and off peak having the lowest tariff when demand is lowest.

Tariff A has the highest nighttime rate but has the lowest peak rate. Tariff D, on

the other hand, has the lowest nighttime rate and the highest peak rate.

The second treatment assigns each household one of three feedback groups

that provide varying degrees of feedback on information about their energy usage,

as shown in Table 2.2.9 All three information feedback groups receive a billing state-

ment combined with an energy usage statement providing details on their household

electricity usage along with tips on how to reduce energy use. The first group re-

ceives bi-monthly (BM) electricity bills with the first bill arriving in March. The

second group receives bills on a more frequent monthly (M) basis. The last group

has an IHD (IHD) in addition to receiving a bi-monthly bill. The IHD relays real

9A fourth information stimulus included a bi-monthly bill with an Overall Load Reduction

incentive of 20 Euros if households are able to reach a 10 percent reduction target over a period of

8 months. This group had a later start date than the other treatments and is excluded from the

analysis.
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time information, which is information updated at 30-minute intervals to the par-

ticipants that includes the households electricity usage, associated cost of electricity

consumed, and current price of electricity.10 Appendix A provides information about

the in-home display and shows a picture of one. A budget setting mechanism is also

included into the monitor to allow households to decide their maximum spending

on electricity per day. Table 2.3 shows the distribution of the TOU tariff and infor-

mation treatment assignments.

Participants completed pre- and post-trial surveys that gathered socio-demographic

data about the respondent and household. Questions include respondents age, gen-

der, employment, income bracket, size of the home, number of people residing in

the home, and types of fuel used for heating and cooking. A majority of the ques-

tions in the second half of the survey assess usage behavior during the trial. The

post-trial survey gathered information on respondents perception of the impact of

the trial, tariffs and method of information feedback. The survey also asks after the

ownership and replacement of appliances and if participation in the trial resulted

in more energy efficient investments. Attitudes towards energy reduction were also

included in the survey.

10The post trial survey did not inquire about the frequency of interaction with the IHD. Of

the 622 IHD respondents that completed the follow up survey, 49.36 percent regularly and 22.35

percent occasionally continued to consult their display. Households that stopped using the display

felt they had already learned as much as they could or didnt find the display useful (36.93 percent)

while others claimed their display had stopped working (37.50 percent).
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Treatment Control T-C p-value T obs C obs
Electricity Consumption
Daily baseline mean (kWh) 12.08 (1.79) 11.46 (1.73) 0.62 (0.22) 0.01 123 123
Day1 baseline mean (kWh) 0.51 (0.07) 0.49 (0.07) 0.02 (0.01) 0.01 119 119
Peak baseline mean (kWh) 0.85 (0.20) 0.80 (0.18) 0.05 (0.02) 0.03 119 119
Day2 baseline mean (kWh) 0.78 (0.13) 0.74 (0.12) 0.04 (0.02) 0.02 119 119
Night baseline mean (kWh) 0.29 (0.02) 0.27 (0.02) 0.02 (0.00) 0.00 119 119

Demographics
No. of residents 3.07 (2.21) 2.86 (2.20) 0.21 (0.09) 0.02 2731 768
No. of residents (> 15 years) 2.53 (0.98) 2.47 (0.93) 0.06 (0.04) 0.18 2232 596
No. of residents (< 15 years) 1.89 (0.93) 1.90 (0.97) 0.02 (0.08) 0.85 832 186
Age of respondent 18-35 (%) 11.00 (0.31) 9.46 (0.29) 10.66 (0.01) 0.21 2718 761
Age of respondent 36-55 (%) 46.98 (0.50) 41.79 (0.50) 5.20 (0.02) 0.01 2718 761
No formal education (%) 1.36 (0.12) 1.64 (0.13) 1.42 (0.01) 0.58 2582 731
Primary education (%) 10.88 (0.31) 15.32 (0.36) 4.44 (0.01) 0.00 2582 731
Secondary education (%) 47.13 (0.50) 47.61 (0.50) 0.47 (0.02) 0.82 2582 731
Third level education (%) 40.63 (0.49) 35.43 (0.48) 5.20 (0.02) 0.01 2582 731
Employed (%) 52.07 (0.49) 53.91 (0.50) 8.16 (0.02) 0.00 2731 768
Unemployed (%) 8.79 (0.28) 7.29 (0.26) 1.50 (0.01) 0.17 2731 768
Retired/caretaker (%) 29.15 (0.45) 38.80 (0.48) 9.66 (0.02) 0.00 2731 768

Housing Characteristics
Homeowner (%) 92.99 (0.25) 93.34 (0.25) 0.36 (0.01) 0.73 2723 766
No. of bedrooms 3.47 (0.83) 3.42 (0.87) 0.05 (0.04) 0.16 2726 766
Apartment (%) 1.65 (0.13) 1.96 (0.14) 0.31 (0.01) 0.58 2726 766
Semi-detached home (%) 33.42 (0.47) 29.11 (0.45) 4.31 (0.02) 0.02 2726 766
Detached home/bungalow (%) 50.33 (0.50) 54.44 (0.50) 4.11 (0.02) 0.04 2726 766
Terraced home (%) 14.60 (0.35) 14.49 (0.35) 0.11 (0.01) 0.94 2726 766
No. of appliancesa 6.09 (1.90) 6.01 (1.91) 0.09 (0.08) 0.27 2731 768
No. of electronicsb 4.08 (2.30) 3.72 (2.23) 0.36 (0.09) 0.00 2731 768
Electric space heatingc (%) 6.88 (0.25) 7.68 (0.27) 0.80 (0.01) 0.46 2731 768
Electric water heatingd (%) 62.36 (0.48) 61.85 (0.49 0.51 (0.02) 0.80 2731 768

Note: aAppliances, include dryers, washers, dishwashers, electric cookers, freezers, and water pops
top, are coded at 3; bElectronics, include televisions, computers, laptop, and game consoles, are
top coded at 4; cElectric heating includes central heating, storage heating, and plug-in heaters;
dElectric water heating includes central, immersion, or instantaneous water heater.

Table 2.4: Summary Statistics of Treatment and Control Groups

2.5 The Data

The electricity consumption data, collected in half hour intervals from July

14, 2009 to December 31, 2010, are used extensively in this analysis. I aggregate

usage observations to the daily totals for each period. The Commission for Energy

Regulation in the Republic of Ireland reports that the average household uses 5,067

kWh of electricity in 2009 [72]. The average daily consumption of the households in

the sample ranges from 11.67-12.26 kWh (11.46-12.08 kWh on weekdays) from July

to December of 2009 (see Table 2.45), an estimated average of 4,258-4,475 kWh in
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2009.

The temperature in Fahrenheit is an average of the average daily temperature

from four weather monitoring stations located in four of Ireland’s airports: Cork,

Dublin, Galway, and Shannon. Since the temperature correlations between the sta-

tions are high (correlation coefficients of 0.963-0.980), I average the observations

from each station. I use these 24-hour temperature averages to calculate the daily

heating degree-day. The year 2009 had average annual heating degree-days (HDD)

of 5794.85, and this was slightly warmer than that of 2010, which had an average

of 6414.95 heating degree-days. Annual cooling degree-days are 0.625 for 2009 and

0 for 201011. The trial period (July 14, 2009 to December 31, 2010) did not witness

average daily temperatures over 65◦ F. Daylight hours are also available with an

annual average of 4486.19 hours of daylight for both years.

2.5.1 Is there self-selection into the sample?

One concern with any analysis is that households voluntarily participated in

the study, and therefore estimates may be biased. In theory, random assignment

to treatment and control groups should render both groups to have insignificant

differences. One possible explanation as to why they are different could be that

households with older or less educated residents assigned to the treatment group

may have found the treatment difficult to understand or adopt, resulting in their

11The milder and rainy weather in Ireland is similar to that of the state of Washington (2009:

HDD= 6651.40, CDD=185.59; 2010: HDD=6448.16, CDD=91.38)
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withdrawal from the trial.12

I estimate a probit model as an indirect way to check for selection into the

sample. This is to ensure there are no significant differences between the treatment

and control groups. In the model, the dependent variable takes on a value of one

if household i is assigned to the treatment group and 0 if otherwise. This variable

is then regressed on household and building characteristics with results shown in

Table 2.5. A test of joint significance for the explanatory variables rejects the

null hypothesis at the 5 percent level13, Chi2(18)= 34.93, p=0.010. The t-tests for

each coefficient show that there are also a few variables that are significant and

this is consistent with Table 2.4 that compares the difference in means between

the treatment and control group. I find statistically significant differences in the

mean of the variables for baseline usage, number of residents, number of electronics,

employment status, age, education level, and type of home.

These baseline differences should be accounted for using fixed effects estima-

tion with individual household fixed effects. Additionally, a Wald test on coarsened

exact matching (CEM)14 estimates in Table 2.5 fails to reject the null hypothesis at

12The aging studies literature has often found evidence of a digital divide in that older adults

are less likely to be involved in high level use, culture, and pleasures of using information and

communication technology [67].
13Di Cosmo et al. (2014) perform a similar test on the same data, but found no significance at

the 5 percent level. The difference here is that I use a more exhaustive set of explanatory variables

in this regression model.
14Coarsened exact matching improves the estimation of casual effects by reducing the imbalance

in covariates between treatment and control groups by matching observations similar in covariates

between the treatment and control group and trimming observations that fail to match [49]. Further
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Treatment All (S.E.) CEM (S.E.)
Average daily usage in 2009 1.99E-04 (0.003) 9.67E-04 (0.003)
No. of residents -0.001 (0.015) -0.041** (0.020)
Age 18-35D -0.122 (0.110) -0.208 (0.145)
Age 36-55D -0.113 (0.078) -0.043 (0.103)
No formal educationD -0.072 (0.223) -0.190 (0.328)
Primary educationD -0.203** (0.092) -0.345** (0.115)
Secondary educationD -0.028 (0.059) -0.058 (0.071)
EmployedD 0.288*** (0.080) 0.115 (0.101)
UnemployedD 0.254** (0.115) -0.050 (0.182)
HomeownerD 0.019 (0.118) 0.059 (0.162)
No. of bedrooms 0.032 (0.040) 0.051 (0.046)
ApartmentD -0.173 (0.213) -0.106 (0.331)
Semi-detached houseD -0.028 (0.087) 0.087 (0.110)
Detached houseD -0.079 (0.085) 0.083 (0.108)
No. of appliances -0.006 (0.016) 0.006 (0.019)
No. of electronics 0.024 (0.015) -0.008 (0.021)
Electric space heatingD -0.051 (0.102) 0.041 (0.114)
Electric water heatingD 0.020 (0.056) 0.004 (0.065)
Constant 0.394 (0.177) 0.251 (0.263)
Observations 2,589 1,830

Standard errors in parenthesis. ∗p < 0.10, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01
Note: The first probit model includes all households in the treatment and control
groups that completed the survey. The second probit model includes household in
the treatment and control groups trimmed with coarsened exact matching.

Table 2.5: Probit Results
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the 5 percent level (Chi2(18)= 23.93, p=0.157), suggesting there are no significant

differences between the two groups after CEM is applied.

2.6 The Models

The aim of this paper is to estimate the effect of information provision and

adaptation on usage throughout the trial. The half hourly usage data is aggregated

to the period level per day for each household in the treatment control groups. There

are four observations per day representing “before peak” (8am to 4:59pm), “peak”

(5pm to 6:59pm), “after peak” (7pm to 10:59pm), and “night” (11pm to 7:59am)

period usage. Figure 1a compares the average daily peak usage in the treatment

and control groups. While immediate reductions in energy usage are evident from

the IHD treatment group, the effects gradually dissipate down to the level similar

to billing-only households. This phenomenon suggests that the effectiveness of the

IHD wanes over time and blends into the background of a households routine.

I estimate the following model for the combination of three information treat-

ments and four periods of the day:

Yidmyw = αi + ρw + φmy + γSdmy +
12∑
n=1

∑
t∈T

βn,t([Monthm]n × [TREATiy]t) + εidmyw

(2.1)

where Yidmyw is the natural log of household is daily electricity usage in kWh for

period p of each weekday w, day d in month m of year y. The vector of treatment

emphasis of this method is explained in section 5.1.
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dummies, TREATiy, take a value of 0 for the control group and all observations

during the benchmark period, and a value of 1 for households in either the IHD,

monthly, and bi-monthly information treatment groups after the trial begins. It is

interacted with a vector of monthly dummies, indicated by Monthm, for each month

of the testing period.

I control for a vector of seasonal variables Sdmy including an indicator for a

bank holiday, the natural log of heating degree-days and daylight hours. Day of

the week fixed effects, denoted by ρw, and month by year fixed effects, denoted by

φmy, control for variations in usage due to changes in the work day and season,

respectively. Observations where residents of the household are probably away from

home (their daily usage is below 0.1 kWh for 12 consecutive days or more) are

dropped from the analysis. Residents that are away for long periods of time may

bias estimates if they are not present to react to changes in price. Additionally,

I restrict my observations to weekday usage as weekends are on a different tariff

schedule and do not have peak periods. I estimate Equation 2.1 separately for each

period of the day: day1, peak, day2, and night for a total of 4 regressions.

The coefficients βI,n are the average treatment effects by treatment, period,

and month of the trial. Standard errors are clustered two ways at the household

and day of the trial level as household is errors may be correlated at the household

and day level. Finally, εidmyw is an unobserved error term. The fixed effects model

is estimated using the within estimation approach, which allows for a more flexi-

ble model, exploiting the variation over time within each household. I perform a

Hausman test and reject the null hypothesis suggesting effects are correlated with
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the covariates and that the fixed-effects model is appropriate, Chi2(32)= 1.6e+06

(p=0.000).

Since the main approach is a difference-in-differences estimation, it must meet

the assumption of parallel trends. A pre-treatment trends check between the treat-

ment and control groups to determine whether there are significant differences in

trends between the two groups is done for the benchmark period (model not shown).

I dont find evidence of different trends between the groups before the treatment pe-

riod, F169,3419 = 0.99, p=0.53. I then estimate the following specifications to test for

robustness of results. The first estimates Equation 2.1 using hourly observations,

doubling the observations for the peak period. The third specification introduces

day of the trial fixed effects t, which lends to a more flexible model. This specifi-

cation is more flexible and excludes the variables HDD, daylight, and holiday since

they are controlled for with day of the trial fixed effects.

Finally, I correct for the differences in the control and treatment groups. In

Figure 2.2(a), the control group energy consumption remains below the consump-

tion of the treatment groups throughout the benchmark period. While the design

of the trial is a randomized control, a participants decision to withdraw from his

participation may be correlated to his assigned treatment. One possible explana-

tion is that older or less educated participants may find the TOU structure to be

difficult to understand and withdraw from the trial resulting in an overestimation

of the effects.

I apply coarsened exact matching (CEM) (see Iacus et al. (2011)) to trim

the sample in order to achieve a better balance of the covariates between the treat-
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(a) Average daily peak electricity consumption for the treatment and control groups

(b) Average Daily Peak Electricity Consumption for Treatment and Control Groups with Coars-

ened Exact Matching

Figure 2.2: Average Daily Peak Electricity Consumption for Treatment and Control

Groups
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ment and control groups. I match households on variables that were found to be

significantly different across the control and treatment groups in Section 5.1: age,

education, employment status, type of house, number of electronics, and number

of residents. The control and treatment households are assigned to one of s strata

based on these characteristics. Households in the control group placed in the same

stratum as treatment units serve as matched controls for the latter. Weights are as-

signed to each household. Households in the treatment group are assigned a weight

of 1 and households in the control group are assigned a weight of mC

mT
· m

s
C

ms
T

where

mC and mT are the number of households in the control and treatment groups,

respectively, and ms
C and ms

T are the number of matched control and treatment

households in strata s, respectively. Unmatched households are assigned a weight

of 0. Figure 2.2(b) shows the daily peak electricity consumption with CEM and the

baseline consumption of the control and treatment groups to be closely matched

prior to January 1, 2010.

I further aim to understand the impact of learning and the effect of informa-

tion with TOU pricing on overall daily consumption. Carroll et al. (2014) estimates

a similar DID fixed effects model to compare reduction in overall usage between

pre trial and testing period and finds the largest reductions coming from monthly

billing by 2.9 percent. However, household usages are aggregated to a total of two

observations per household, one before the trial and one during, and ignore seasonal

variation. By contrast, I estimate the daily average treatment effect for each month

of the trial using a similar specification to Equation 2.1. Additionally, I estimate a

single average treatment effect for the trial and a specification including only obser-
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vations during the trial with corresponding baseline usage, that is observations from

July 14 to December 31 of 2009 and 2010, to identify whether increasing information

through reports and IHDs encourages conservation in the form of reduced overall

energy usage.

I estimate the following:

Yidmyw = αi + ρw + φmy + γSdmy + β1BMimy + β2Mimy + β3IHDimy + εidmyw (2.2)

where BMimy, Mimy, IHDimy take a value of 1 for households in a bi-monthly,

monthly, or IHD treatment group, respectively, during the testing period and 0 oth-

erwise. In this case, the betas are the daily average treatment effects for information

treatments. Observations are aggregated at the daily level and standard errors are

clustered at the household level. I repeat this analysis with a sample that applies

CEM with weights as a robustness check.

2.7 Results and Analysis

Table 2.6 presents the estimates of Equation (1) for the peak, day1, day2, and

night periods from using the full sample period from July 14, 2009 to December 31,

2010. Within the table are three Columns for the bi-monthly bill and energy report

(BM), monthly bill and energy report (M), and IHDs with a bi-monthly bill and

energy report (IHD). Separate regressions are run for each information treatment

and compared to the control for the four periods of the day.
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Day1(8am-4:59pm) Peak (5pm-6:59pm) Day2 (7pm-10:59pm) Night (11pm-7:59am)
(1) (2) (3) (4)

Bi-monthly Billing
January -0.018 (0.011) -0.039*** (0.009) -0.005 (0.010) 0.012 (0.011)
February -0.004 (0.011) -0.022*** (0.008) 0.009 (0.010) 0.014 (0.010)
March 0.014 (0.010) -0.030*** (0.008) 0.009 (0.009) 0.025*** (0.009)
April 0.006 (0.010) -0.036*** (0.008) -0.004 (0.009) 0.022*** (0.008)
May -0.014 (0.010) -0.046*** (0.008) -0.008 (0.009) 0.013 (0.008)
June -0.006 (0.011) -0.043*** (0.008) -0.008 (0.010) 0.017** (0.009)
July -0.017 (0.012) -0.043*** (0.009) -0.016 (0.010) 0.018* (0.009)
August -0.023** (0.012) -0.047*** (0.009) -0.017* (0.010) 0.018* (0.009)
September -0.015 (0.011) -0.048*** (0.009) -0.009 (0.010) 0.020** (0.009)
October -0.017 (0.011) -0.044*** (0.009) -0.004 (0.010) 0.020** (0.009)
November -0.009 (0.012) -0.046*** (0.010) -0.012 (0.010) 0.025** (0.011)
December -0.003 (0.015) -0.023** (0.010) -0.003 (0.012) 0.018 (0.014)

Monthly Billing
January -0.027** (0.011) -0.045*** (0.009) -0.014 (0.010) -0.013 (0.011)
February -0.019 (0.012) -0.031*** (0.009) 0.003 (0.010) 0.002 (0.010)
March -0.003 (0.011) -0.037*** (0.008) 0.001 (0.009) 0.011 (0.009)
April -0.022** (0.010) -0.045*** (0.008) -0.013 (0.009) 0.008 (0.008)
May -0.024** (0.010) -0.048*** (0.008) -0.009 (0.009) 0.010 (0.008)
June -0.017 (0.011) -0.047*** (0.008) -0.007 (0.010) 0.013 (0.009)
July -0.024** (0.012) -0.054*** (0.009) -0.015 (0.010) 0.018* (0.010)
August -0.030*** (0.011) -0.054*** (0.009) -0.019* (0.010) 0.013 (0.009)
September -0.027** (0.012) -0.056*** (0.008) -0.007 (0.010) 0.016* (0.010)
October -0.035*** (0.011) -0.052*** (0.009) -0.009 (0.010) 0.013 (0.009)
November -0.026** (0.012) -0.054*** (0.009) -0.010 (0.010) 0.016 (0.011)
December -0.025* (0.014) -0.043*** (0.010) -0.011 (0.012) -0.011 (0.014)

IHD + Bi-monthly Billing
January -0.053*** (0.011) -0.093*** (0.009) -0.045*** (0.010) -0.011 (0.011)
February -0.038*** (0.012) -0.071*** (0.009) -0.026*** (0.009) 0.004 (0.010)
March -0.020* (0.010) -0.058*** (0.008) -0.014 (0.009) 0.008 (0.009)
April -0.016* (0.009) -0.049*** (0.008) -0.015* (0.008) 0.014* (0.008)
May -0.025*** (0.010) -0.053*** (0.008) -0.013 (0.009) 0.019** (0.008)
June -0.015 (0.011) -0.053*** (0.008) -0.014 (0.010) 0.017** (0.009)
July -0.014 (0.011) -0.051*** (0.009) -0.010 (0.010) 0.015 (0.009)
August -0.016 (0.011) -0.060*** (0.009) -0.010 (0.009) 0.022** (0.009)
September -0.017* (0.010) -0.070*** (0.008) -0.010 (0.009) 0.020** (0.009)
October -0.012 (0.011) -0.053*** (0.008) -0.000 (0.009) 0.025*** (0.009)
November -0.017 (0.012) -0.064*** (0.010) -0.012 (0.010) 0.023** (0.010)
December -0.026* (0.014) -0.055*** (0.010) -0.022* (0.011) -0.002 (0.014)
Weekday fixed yes yes yes yes
Month×year yes yes yes yes
Heating degree days S(+) S(+) S(+) S(+)
Holiday S(+) NS S(-) NS
Daylight hours S(-) S(-) S(-) S(-)
Households 3,334 3,334 3,334 3,334
Observations 1,278,568 1,278,568 1,278,568 1,278,568

Standard errors in parenthesis. ∗p < 0.10, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01

Table 2.6: Average Monthly Information Treatment Effects by Period of the Day
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2.7.1 Peak hours

The daily average treatment effects of the TOU pricing and information treat-

ment during the peak periods for each month of the year are reported in Table 2.6,

Columns 4-6. Households on TOU pricing and receiving a bi-monthly bill reduce

their peak usage by 2.22 and 4.92 percent per day. More frequent arrival of bills

(with monthly frequency) indicates an average reduction of 3.05 and 5.45 percent in

kilowatt-hours per day. IHD households reduce their daily consumption on average

by 4.78 and 8.88 percent. These effects are significant for all information treatments.

From these results, it would seem that the households provided with more

information about their consumption attain proportionally larger reductions in con-

sumption. Energy bills and reports may act as reminders for households to be more

aware of their usage and conserve energy. The more frequent the arrival of bills and

reports, the more often is a household’s usage brought to their attention. With bi-

monthly bills, there is a longer period in between the arrival of bills and households

slide back into their old habits as their efforts to reduce usage decline. This finding

is consistent with the study by Allcott and Rogers (2014) who finds attenuation

in the reduction of energy usage directly following a conservation report as more

reports are delivered.

Households receiving bi-monthly and monthly bills show a steadily increasing

reduction of peak usage throughout the trial. The average treatment effect for

households with IHDs starts out with the highest reduction of 8.88 percent but

gradually declines to effects close to that of the households under monthly billing
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(1) (2) (3)
H0 : βM = βBM H0 : βIHD = βBM H0 : βIHD = βM
F1,3333 Prob>F F1,3333 Prob>F F1,3333 Prob>F

January 0.44 0.5078 36.57 0.0000 29.89 0.0000
February 1.00 0.3173 29.49 0.0000 17.08 0.0000
March 0.79 0.3746 11.36 0.0008 6.27 0.0123
April 1.13 0.2870 2.77 0.0958 0.21 0.6477
May 0.10 0.7549 0.69 0.4062 0.30 0.5808
June 0.25 0.6200 1.25 0.2641 0.38 0.5371
July 1.48 0.2245 0.76 0.3823 0.12 0.7336
August 0.53 0.4654 1.96 0.1620 0.46 0.4963
September 0.73 0.3944 5.50 0.0190 2.27 0.1315
October 0.80 0.3708 1.19 0.2763 0.04 0.8453
November 0.67 0.4141 3.30 0.0691 1.04 0.3089
December 3.41 0.0647 9.09 0.0026 1.36 0.2439

Note: Joint F test for significant difference between information treatment effects
for individual months of the year for H0 : β̂M = β̂BM , H0 : β̂IHD = β̂BM , and H0 :
β̂IHD = β̂M , respectively. Column 1 compares monthly and bi-monthly treatment
effects, Column 2 compares IHD with bi-monthly treatment effects, and Column 3
compares IHD and monthly treatment effects. Significant differences at the 5% level
indicated in bold.

Table 2.7: Peak Period Information Treatment Joint F Tests of Significance

within three months. This suggests that IHDs enable faster learning but the initial

advantage of real time information dissipates as households reach a steady state.

After that point, monthly bills are as effective as IHDs. The finding that IHDs

become less effective in reducing energy usage over time is consistent with Hargreaves

et al. (2013) who suggest that IHDs gradually become “backgrounded,” that is,

blended into the background of household routines.

Table 2.7 shows results from comparison of treatments from Equation 2.1. Col-

umn 1 shows that increasing the frequency of bills from bi-monthly to the monthly

level does not significantly influence the peak consumption. A test of joint signif-

icance for the monthly treatment coefficients fails to reject the null hypothesis at

the 5 percent level (F12,3419 = 0.54, p=0.8884). On the other hand, IHD access
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decreases usage during peak hours by 2.08 to 4.69 percent more than households re-

ceiving monthly billing and 2.76 to 5.26 percent more than bi-monthly billing. The

IHD and month effects become insignificantly different from one another after the

third month of the trial. This further suggests that improving real time information

is most effective in the early months of the trial.

2.7.2 Non-peak hours

Table 2.6, Columns 1 and 3 show effects of information on usage for hours

before peak (from 8am to 5pm) and after peak (from 7pm to 11pm), respectively.

The periods are treated as separate periods to account for differences in household

behaviors during times of daylight and evening. Bi-monthly billing does not have

any significant effects on usage during either time period. Monthly billing maintains

consistent and significant reductions on average by 2.18 to 3.44 percent before peak

and insignificant reductions post peak. This can be due to households waiting until

after the peak period to run their appliances or turning on lights, making it less

likely to have reductions in consumption. In Column 1, IHDs suggest significant

reductions in usage within the first five months of the trial but at a decreasing rate

from 5.16 down to 1.59 percent. The IHD group reduces its consumption during this

period more than the bi-monthly group by 2.19 to 3.38 percent during the first four

months. In Column 3, the post peak period IHD group reveal significant differences

between 2.18 and 3.92 percent more in reductions than the bi-monthly group for the
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first three months.

Estimates for nighttime hours (between 11pm and 7:59am) are reported in

Table 2.6 Column 4. In contrast with the average treatment effects during day times,

average treatment effects for bi-monthly billing show an increase in usage from a

weakly significant 1.69 percent to a significant 2.47 percent in March and remains

consistent throughout the year. Estimates for monthly households are insignificant.

Households with IHDs show a similar pattern as households on monthly billing by

starting out with reductions in the first month before showing significant increasing

usage effects in the fourth month. The increase in usage varies between 1.41 and 2.53

percent. This shift in electricity usage from peak and day periods to the night period

implies households wait until after 11pm or before 8am to run major appliances. The

effects of the treatments are not significantly different from one another after the

first month for all information treatments.

2.7.3 Alternative specifications

Table 2.8 includes alternative specifications to Equation 2.1 estimated for the

peak period. I utilize data at a higher resolution (i.e. hourly) to estimate treatment

effects. Column 1 reveals similar usage patterns and significant hourly decrease of

3.54 to 6.48 percent. Estimates are smaller in magnitude since average treatment

effects reductions are estimated by hour for each period compared to previous esti-

mates for reduction per period. Despite introducing 535 fixed effects the estimates

remain robust for each treatment across the four periods.
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FE, hourly FE, DOT FE, CEM
(1) (2) (3)

Bi-monthly Billing
January -0.029*** (0.007) -0.039*** (0.009) -0.036*** (0.013)
February -0.015*** (0.006) -0.022*** (0.008) -0.029*** (0.011)
March -0.021*** (0.005) -0.030*** (0.008) -0.023** (0.011)
April -0.027*** (0.005) -0.036*** (0.008) -0.024* (0.012)
May -0.032*** (0.006) -0.046*** (0.008) -0.036*** (0.011)
June -0.031*** (0.006) -0.043*** (0.008) -0.035*** (0.012)
July -0.029*** (0.006) -0.043*** (0.009) -0.048*** (0.012)
August -0.033*** (0.006) -0.047*** (0.009) -0.048*** (0.013)
September -0.034*** (0.006) -0.048*** (0.009) -0.059*** (0.012)
October -0.032*** (0.006) -0.044*** (0.009) -0.041*** (0.012)
November -0.033*** (0.007) -0.046*** (0.010) -0.047*** (0.013)
December -0.017** (0.008) -0.023** (0.010) -0.026* (0.015)

Monthly Billing
January -0.034*** (0.007) -0.045*** (0.009) -0.052*** (0.013)
February -0.022*** (0.006) -0.031*** (0.009) -0.039*** (0.012)
March -0.027*** (0.006) -0.037*** (0.008) -0.037*** (0.011)
April -0.032*** (0.005) -0.045*** (0.008) -0.049*** (0.012)
May -0.034*** (0.005) -0.048*** (0.008) -0.052*** (0.011)
June -0.033*** (0.005) -0.047*** (0.008) -0.056*** (0.011)
July -0.038*** (0.006) -0.054*** (0.009) -0.057*** (0.012)
August -0.038*** (0.006) -0.054*** (0.009) -0.066*** (0.013)
September -0.039*** (0.006) -0.056*** (0.008) -0.069*** (0.012)
October -0.037*** (0.006) -0.052*** (0.009) -0.057*** (0.012)
November -0.039*** (0.007) -0.054*** (0.009) -0.057*** (0.013)
December -0.032*** (0.007) -0.043*** (0.010) -0.061*** (0.015)

IHD + Bi-monthly Billing
January -0.067*** (0.007) -0.093*** (0.009) -0.089*** (0.012)
February -0.050*** (0.006) -0.071*** (0.009) -0.078*** (0.012)
March -0.042*** (0.006) -0.058*** (0.008) -0.057*** (0.011)
April -0.036*** (0.005) -0.049*** (0.008) -0.045*** (0.012)
May -0.038*** (0.006) -0.053*** (0.008) -0.050*** (0.010)
June -0.038*** (0.006) -0.053*** (0.008) -0.052*** (0.011)
July -0.036*** (0.006) -0.051*** (0.009) -0.042*** (0.012)
August -0.042*** (0.006) -0.060*** (0.009) -0.055*** (0.012)
September -0.049*** (0.006) -0.070*** (0.008) -0.081*** (0.011)
October -0.040*** (0.006) -0.053*** (0.008) -0.054*** (0.011)
November -0.046*** (0.007) -0.064*** (0.010) -0.073*** (0.013)
December -0.040*** (0.008) -0.055*** (0.010) -0.060*** (0.015)
Weekday fixed yes yes yes
Month×year yes yes yes
Heating degree S(+) no S(+)
Holiday NS no S(-)
Daylight Hours S(-) no S(-)
Households 3,334 3,334 1,884
Observations 2,470,546 1,278,568 723,255
Standard errors in parenthesis. ∗p < 0.10, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01

Table 2.8: Robustness Estimation of Average Treatment Effects for Peak Consump-
tion
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Table 2.8 Column 2 shows estimates with day of the trial fixed effects t. Despite

introducing 535 additional controls, the estimates remain robust for each treatment

across the four periods. Substituting daily seasonal controls with daily fixed effects

yields similar results of 4.78 to 8.88 percent in peak reductions. Column 3 models

estimated with CEM data show IHD effects to range from 4.01 to 8.52 percent dur-

ing the peak period, similar to that of the original specification. Similar to findings

for Equation 2.1, effects begin to dissipate after the first month and match the re-

ductions of the monthly billing group after March. The new estimates show peak

effects to have larger magnitudes in a majority of the estimates for monthly and

IHD group and bi-monthly effects for the last four months of the year.

2.7.4 Daily Level Average Treatment Effects

Results in Table 2.9 show how the provision of information in conjugation with

a price policy such as TOU pricing encourages households to reduce their average

weekday usage. Households respond differently to TOU pricing depending on the

frequency of billing and reports. Providing reports with bi-monthly bills does not

affect usage during any month in the trial. Monthly billing shows significant reduc-

tions in overall usage during 6 nonconsecutive months of the trial up to 2.86 percent

in Column 2, and 3.63 percent for CEM adjusted estimates during the latter half

of the trial in Column 5. The largest reductions come from the early months of

the trial for households with IHD at 6.20 percent in January but which disappear
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FE FE,CEM
(1) (2)

Bi-monthly Billing
Jan-Mar -0.001 (0.010) 0.008 (0.014)
Apr-Jun -0.004 (0.009) 0.014 (0.013)
Jul-Sep -0.014 (0.010) -0.013 (0.014)
Oct-Dec -0.009 (0.011) -0.009 (0.016)

Monthly Billing
Jan-Mar -0.016 (0.010) -0.018 (0.014)
Apr-Jun -0.016* (0.009) -0.019 (0.013)
Jul-Sep -0.020* (0.011) -0.033** (0.015)
Oct-Dec -0.025** (0.011) -0.039** (0.016)

IHD + Bi-monthly Billing
Jan-Mar -0.042*** (0.010) -0.042*** (0.013)
Apr-Jun -0.014 (0.009) -0.017 (0.013)
Jul-Sep -0.013 (0.010) -0.023 (0.014)
Oct-Dec -0.019* (0.011) -0.020 (0.015)

Weekday fixed effects yes yes
Month×year fixed effects yes yes
Heating degree days S(+) S(+)
Holiday S(+) S(+)
Daylight hours S(-) S(-)
Households 3,334 1,884
Observations 1,278,568 722,671

Standard errors in parenthesis. ∗p < 0.10, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01

Table 2.9: Monthly Average Treatment Effects for Weekday Consump-
tion
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Full Sample July 14 - December 31

(1a) (1b) (2a) (2b)
FE FE, CEM FE FE, CEM

Bi-monthly Billing -0.007 -0.000 -0.013 -0.012
(0.008) (0.011) (0.009) (0.012)

Monthly Billing -0.019*** -0.027** -0.023** -0.037***
(0.007) (0.011) (0.009) (0.014)

IHD + Bi-monthly Billing -0.022*** -0.025** -0.017** -0.023*
(0.007) (0.010) (0.009) (0.012)

Weekday fixed effects yes yes yes yes
Month×year fixed effects yes yes yes yes
Heating degree days S(+) S(+) S(+) S(+)
Holiday S(+) S(+) S(+) S(+)
Daylight hours S(-) S(-) S(-) S(-)
Households 3,334 1,884 3,334 1,884
Observations 1,278,568 722,671 818,872 465,905
Standard errors in parenthesis. ∗p < 0.10, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01

Table 2.10: Average Treatment Effects for Weekday Consumption

after March. The CEM approach shows a slightly lower estimate for January of

5.26 percent. Estimates in Column 6 tend to be higher in magnitude and more

significant than their counterparts in Column 3. Providing a household with real

time information appears to have a larger effect on the overall daily consumption

although much of the reduction came from the beginning of the trial. Much of the

reduction disappears after the arrival of the first bill in March.

While the main purpose of a TOU pricing is to encourage households to shift

consumption away from peak times and alleviate grid congestion during peak hours,

improving information provision appears to attain reductions in overall consump-

tion. Table 2.10 Columns 1a and 1b show an overall reduction of 1.88 percent for

monthly billing and a 2.18 percent reduction after CEM adjustment, respectively.
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Savings Savings 10 year Additional Cost
for year 1 for years 2-10 savings treatment cost per kWh

(kWh/year) (kWh/year) (kWh) per year
IHD* 67.13 52.01 535.19 e2.30-6.15 e0.043-0.0115
M** 58.07 70.15 689.43 e4.38-6.42 e0.064-0.093
BM 0 0 0 e0 e0

Notes: *Cost of device estimated between e23.04-61.48 [27]. **Ireland domestic mail costs
approximately e0.48-0.57 cents per unit for bulk mailers (Postal rates based on bulk mailer rates
from www.anpost.ie). Assuming each bill has printing cost (paper, ink, data processing, etc.) of
e0.25-0.50 for 6 bills per year additional to the bi-monthly bills. The minimum additional cost
to monthly billing will be (e0.48 + e0.25)×6 months = e4.38 per year. Estimates converted
to 2014 values for comparison.

Table 2.11: Information Treatment Cost Comparison

IHD treatment has larger reductions of 2.27 percent and 2.47 percent, respectively.

Estimates for overall weekend consumption were found to be insignificant (not shown

here). Columns 2a and 2b show estimates for the testing period restricted to the sec-

ond half of the trial from July 14 through December 31. For monthly billing, I find

a reduction of 2.27 percent, consistent with estimates reported by the Commission

of Energy Regulation [20], and a 3.63 percent reduction after CEM adjustment. In

comparison, I find a 1.69 percent reduction and 2.27 percent after CEM adjustment

for the IHD treatment. Estimates for Bi-monthly billing are insignificant. While es-

timates comparing monthly billing and IHD show differing results under full sample

and restricted sample analysis, t-tests reveal monthly billing and IHD estimates are

not significantly different from one another for all four models.
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2.7.5 Cost Comparison

I use the empirical results in Table 2.10 to estimate weekday savings for the

average treatment effects in a back of the envelope calculation. I assume that esti-

mates from Table 11 Column 1a reflect savings from the first year of the intervention

and Column 2a for the years following, as the initial large impact from the start

of the trial would have dissipated. I find that over a 10 year period, information

treatments would result in weekday savings of 535.19 kWh (equivalent to powering

a 60 Watt light bulb for 371.66 days) for IHD households, 689.43 kWh for monthly

billing (equivalent to powering a 60 Watt bulb for 478.77 days), and 0 kWh for

bi-monthly billing (see Table 2.11).15

Assuming an IHD costs between e23 and e60 with a life expectancy of 10

years [27], the cost per kWh saved is e0.043-0.115. In comparison with monthly

billing over 10 years, the cost for printing and delivery, assumed to fall between

e43.80 and e64.20, will result in cost per kWh saved to be e0.064-0.093. Based on

these assumptions, the cost of a monitor will have to be less than e34.25 in order

to be more cost effective than monthly billing. Both estimates induce cost effective

energy savings as they are both less than the flat rate tariff per kWh of electricity

prior to the start of the trial (14.1 cents/ kWh). However, monthly billing may

generate more cost savings than an IHD.

15Estimates based on weekday average consumption of 11.821 kWh and 261 weekdays in a year,

respectively.
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2.8 Conclusion

The aim of this study was to estimate the effects of information provision in

conjunction with a TOU pricing scheme that motivates consumers to shift or reduce

their consumption from peak to off peak periods of the day. It is important to note

that the results in this paper are specific to a single experiment and may not be

applicable in other situations. Past studies have argued that information alone is

not enough to encourage change in behavior and adoption of conservation practices.

Households need additional incentives to encourage participation. At the same time,

the effectiveness of pricing policies applied to reflect the real price of electricity might

be dampened due to imperfect information on the consumer side. Information on

usage and energy prices will allow households to make more informed and more

efficient decisions on their energy consumption during various times of the day.

Previous studies have analyzed the effects of information with pricing policies

but none have yet compared the billing frequency with information technology with

a policy designed to curtail usage during specific times. This paper studies the

combination of information with pricing to analyze how households adapt to different

types of information provision over time. Findings suggest that at the beginning of

the testing period there is a period of learning from households with IHDs where

large reductions in usage are made. These gains in conservation quickly diminish

after the third month, around the time of the arrival of the first bill. After this

learning period, IHDs continue to reduce consumption during the peak period but

at levels similar to households on monthly and bi-monthly billing. This suggests
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that households have learned all they can from the IHD and the display has blended

into the background of household routines. On the contrary, adaptation to the

treatment during peak times for the monthly and bi-monthly treatment groups are

at a gradual increase throughout the trial.

From a conservation perspective, IHDs appear to have a larger impact on

reducing overall energy usage but most of these gains come from the beginning

of the trial. When analyzing effects from the latter half of the trial, households

on monthly billing are able to reduce their overall consumption more than IHD

households. While real time information is effective in reducing initial consumption,

it may be less effective in encouraging conservation practices than conventional

billing methods in the long run. It should be noted that seasonality could play a

factor in the responsiveness associated with IHDs in the early months of the trial,

which also happen to be the coldest months of the year. However this is not a huge

concern due to the low proportion of households that rely on electricity as their

main fuel for space heating and the monthly fixed effects.

One suggestion to maintain the strength of the effects is to increase the fre-

quency of bills for households with IHDs. Households are reminded more frequently

through the “shock” of receiving their bill to reduce their consumption. Addition-

ally, to prevent IHDs from falling into the household routines, utilities can change

TOU rates on a quarterly basis allowing households to adjust their consumption

and a more flexible pricing structure to reflect the cost of electricity generation and

demand for different seasons. In practice, some utilities have adopted programs to
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loan IHDs to residential to allow households to learn about their consumption.16

Overall, the provision of information with TOU pricing has strong initial effects

but similar to the suggestions of Torriti (2012), IHD may not be as effective with

TOU pricing as it is in cases where the price of electricity changes more frequently

such as with dynamic pricing. However, there are different drawbacks from applying

TOU versus dynamic pricing as TOU pricing allows for the change and adaptation

of habits and routines whereas critical peak pricing are infrequent events and real

time pricing introduces uncertainty in price. The results are specific to TOU pricing,

which has a routine to it, and may not be applicable to dynamic pricing, which does

not have a routine, and where real time information may well play a vital role that

persists over time. More research will be needed to determine the benefits drawn

from IHDs versus billing frequency with different pricing schemes.

16San Diego Gas and Electric is an example of a utility that loans IHDs to their customers for

a 1-month period.
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Chapter 3: Time-Of-Use Pricing and Heterogeneity in Consumer Re-

sponse

3.1 Introduction

Growing concerns over environmental quality and climate change have height-

ened policymakers efforts to increase energy savings through energy efficiency and

demand management programs. While these programs were once popular in the

1970s and 80s, they have become increasingly important as of late among those that

wish to reduce energy demand, shift peak load, lower energy bills, and/or curtail

the generation of greenhouse gas emissions [4, 6]).

In recent years, many countries have called for more transparency in suppliers

practices and policies in order to encourage active participation of consumers in the

energy market [20]. In 2009, the European Union passed multiple directives, which

called for its members to implement the widespread installation of “Smart Metering

Systems” that allow utilities to monitor, track, and inform customers of usage in-

formation. These polices, Directive 2009/72/EC and Directive 2009/73/EC, reflect

the growing effort of demand side management to encourage active participation of

consumers and energy efficiency [20,26].
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Overall, these efficiency and demand management programs provide alterna-

tives to the energy suppliers that would otherwise have to increase their generation

and transmission capacities, via capital and time intensive ventures. One such alter-

native scheme available to utilities is time-of-use (TOU) pricing, which encourages

load shifting to the other times of the day. During hours of peak demand, suppliers

must purchase higher cost electricity from the wholesale market in order to meet

the electricity demands. Because of network constraints due to limited generation

and grid capacity, generation and transmission congestion can occur during peak

hours and prevent the delivery of lowest cost electricity to consumers. Congestion

conditions can also reduce the reliability of the grid and make areas more susceptible

to outages with costly impacts [3].1 In addition to more expensive electricity and re-

duced reliability, transmission congestion also results in inefficiency when electricity

is lost through the lines in the form of heat.

The ability for smart meters to record and transmit electricity usage infor-

mation in real time has allowed utilities to offer TOU and other pricing plans to

their customers that encourage load shifting or curtailing demand at specific times.

These plans allow the energy price to vary throughout the day and more accurately

reflect demand and changes in the costs of production [20, 30]. By charging higher

prices during times of peak demand, consumers are encouraged by price signals to

shift their usage to less expensive off peak periods in exchange for lower bills.

1For example, the California electricity crisis in 2000-2001 caused rolling blackouts through the

state due to shortages in electricity supply from market manipulations which resulted in $40 billion

of added energy costs, not including costs from black outs and reductions in economic growth [76].
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The goal of this paper is to study the impact of TOU pricing in a region that

had previously not experienced this type of pricing plan. Concerns exist about the

short duration of typical TOU studies, such as [7,11,58], and are expressed by Sexton

et al. (1987), who question the ability of the trials to accurately reflect consumer

response to TOU pricing. Previous TOU studies consisting of two periods [12, 58],

with the peak period spanning from 12 to 16 hours raises concerns about the ability

to appropriately capture load-shifting effects away from hours of peak demand when

the system is at its peak [57]. To overcome this and other concerns, I examine data

form a trial where the treatment period spans from January through December 2010

and the TOU day is divided into three different TOU pricing periods reflect daily

demand with the peak period spanning two hours. This trial was conducted in the

Republic of Ireland.

In addition to analyzing the effects of TOU pricing on different hours of the

day, I examine the heterogeneity in the TOU effects to identify the characteristics of

households most responsive to TOU pricing. Determining these characteristics has

policy implications for targeting customer groups to optimize load-shifting efforts.

Finally, I assess the total impact of TOU pricing to determine whether there exists

evidence of overall savings in energy usage and bills paid.

The Irish trial was studied by Di Cosmo et al. (2014) who used random

effects models for each period of the day to estimate the impact of TOU pricing and

information stimuli on usage. However, such a model imposes strong assumptions

on the nature of the unobserved heterogeneity and its correlation with observables.

I use a fixed effects model and check carefully for significant differences between the
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control and treatment group, which is critical for unbiased difference-in-difference

estimation. I do not distinguish the different information treatments, which are

examined in a separate paper in the previous chapter.

Since I estimate regressions for hourly weekday and weekend usage to analyze

the effects of the treatment, I find that reductions in peak usage during the weekdays

carry over to the weekends even when peak pricing is not in place. I also find that

the effect of the TOU pricing scheme vary with the initial level of usage: the lowest

quintile shows evidence of increasing overall usage, whereas households in the upper

quintiles show the greatest reduction in their overall usage. A simple calculation

and comparison of usage and bills shows, on average, households may be able to

increase their overall usage all the while reducing their monthly bill, similar to the

main findings in [73].

The rest of this paper is organized as follows: Section 2 reviews the litera-

ture, section 3 gives a brief overview of the trial, section 4 describes the models, and

section 5 the data. Section 6 presents the estimation results and section 7 concludes.

3.2 Relevant Literature

In recent years, a number of papers have studied consumer response to ex-

treme price jump such as the impact of critical peak pricing (CPP) on residential

consumption [51, 53, 78]. CPP differs from TOU pricing in that the former is occa-

sional, whereas TOU exists as a stable recurring plan where the price of electricity
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is high during peak hours and low during off peak hours. In principle, this allows

customers to adjust their habits of consumption according to price changes during

fixed periods throughout the day.

Historically, TOU studies undertaken in the 1980s focused primarily on esti-

mating own and cross price elasticities using monthly aggregate consumption during

peak and off peak periods [19,44,55].

Baladi et al. (1998) compare usage patterns of a flat rate tariff with the tariff

of a voluntary TOU program and estimate demand response using the conditional

demand system model in Caves et al. (1984). Their results indicate 4.7 percentage

point reduction in share of peak usage under the TOU rate in the first stage. The

tariff structure in the experiment only consists of a peak (noon-7pm) and off peak

period (rest of the day) and did not offer pricing levels at varying degrees. Thus a

single elasticity of substitution between peak and off-peak electricity consumption

can be estimated. Their main finding is that households under volunteer TOU do

not experience significantly larger effects than households on a mandatory TOU

scheme.

Filippini (1995a) estimated elasticities for TOU pricing using city level data in

Switzerland by deriving the indirect utility function and finds static short- (long-)

run elasticities to be -0.6 (-0.71) during peak hours and -0.71 (-1.92) during off peak

hours. Filippini (1995b) uses the same data to estimate partial elasticities using an

almost ideal demand system model.

More recently, Filippini (2011) argues that the previous studies estimated short

run elasticities that do not allow customers to react to changes in price and do not
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account for investments in energy efficient appliances and retrofits. In his study, he

estimates own price elasticities using a dynamic partial adjustment approach and

aggregate consumption data from 22 cities in Switzerland that range from 2000 to

2006. Short- (long-) run own price elasticities to range from -0.77 (-1.60) to -0.84

(-2.26) during the peak period and -0.65 (-1.27) to -0.75 (-1.65) during the off peak

period. These estimates are very similar to his findings in Filippini (1995a). One

limitation of the study is that the data are aggregated at the municipal city level,

that there are few cities (22) and the length of the longitudinal component is short.

Researchers have been attempting to model how variable pricing affects resi-

dential demand for electricity for some time. While general consensus is that TOU

and real time pricing are effective in load shifting, the findings on overall conserva-

tion are mixed. Sexton et al. (1989) analyzes the effects of providing households

with monitors displaying their usage information in a TOU experiment. They es-

timate a maximum likelihood model using the weekday ratio of peak and off peak

usage. Despite finding evidence of load shifting, they do not find evidence of over-

all conservation. Allcott (2011), on the other hand, finds evidence of households

conserving energy usage during peak hours and did not shift consumption over to

off-peak hours in a real time pricing experiment. Matsukawa (2001) investigates

the impact of TOU pricing using cross-sectional data on electricity consumption

and household survey on Japanese households. Evidence of load shifting is small

compared to the incentives, which he attributes to the 16 peak periods.

Other studies have compared the before and after effects of TOU pricing on

residential household consumption. Torriti (2012) compares the time-related elec-
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tricity consumption before (July 1, 2009 - June 30, 2010) and after (July 1, 2010

- June 30, 2011) the introduction of TOU tariffs in Northern Italy and finds that

consumption of electricity increased by 13.69 percent but bills decreased by 2.21

percent. Additionally, there is evidence of peak usage shifting to the hour prior to

the start of the peak pricing period in the morning and after the end of the peak

pricing period in the evening. While these results indicate changes in habits such

as waiting to start appliances after a peak period, Torriti notes of a third peak

emerging in the middle of the peak pricing period which goes against expectations

of shifting consumption away from higher priced periods. Similarly, Bartusch et al.

(2011) conduct a before and after demand response analysis of TOU pricing study

implemented in Sweden. They find evidence of load shifting by 0.8 percentage points

and an overall decline in usage by 11.1 percent over the first year.

3.3 Trial Design

In this paper I use the data from the Irish TOU trial. The Republic of Irelands

Commission of Energy Regulation (CER) conducted the Irish Consumer Behavior

Trial as part of the National Smart Metering Plan. The trial took place in 2008-

2011 to investigate the impact of smart metering technology combined with TOU

tariffs and feedback stimuli on consumer behavior on reductions in peak demand

and overall electricity use [20].

There are four phases to the trial. A timeline and description of the trial

50



are shown in Figure 2.1. The Pre-Benchmark period occurred from March 2008

through June 2009. During this period participant recruitment took place in four

waves. Each wave was adjusted to ensure that the sample was representative of the

national population. Smart meters are also installed in participating homes.

From July through December of 2009, the Benchmark period gathered baseline

data prior to the start of the test period. During this time, customers are on a bi-

monthly billing schedule and the pre-trial survey is conducted. Participants are

also randomly assigned to control and treatment groups. Additionally, to ensure

households did not pay more than they normally would were they on the regular

tariff schedule, households were given the first half of a balancing credit. During the

Testing period from January through December 2010, the control group continues

to be billed at their existing flat rate at 14.1 cents per kWh on bi-monthly billing

whereas the treatment groups face different TOU tariffs and feedback stimuli. The

trial ends January 1, 2011 and all participants return to their normal billing cycle and

flat rate tariffs. A survey is conducted during this Post-Trial period via telephone

and the treatment group receives the second half of their balancing credit.

Although the original 5,375 participants were self-selected into the trial, the

assignment of treatment and control were randomized. Records were deleted from

the study for participants who withdrew from the trial. A group of households were

selected for a special Weekend tariff group on a different tariff structure than the

residential treatment group, which is subsequently dropped from this study. Of the

original sample, 2,406 remain in the Residential TOU treatment group and 928 in

the control group.
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Participants in the Residential group are assigned two treatments. The first

is the TOU tariff that introduces variation in price throughout the day where each

household is assigned to one of four TOU pricing structures shown in Table 2.1.

A weekday for the treatment group is divided into four periods where the price of

electricity reflects the demand of electricity for those periods. The night period

spans from 11pm to 7:59am is the lowest cost period, followed by the day period

from 8am to 4:59pm and 7pm to 10:59pm, while the peak period, from 5pm to

6:59pm, has the highest tariff. Weekend days and public holidays exclude the peak

period and are divided into two periods with the day period spanning from 8am to

10:59pm and the night period from 11pm to 7:59am.

In addition to variation in price throughout the day is variation in price be-

tween treatment groups. Households in Treatment Group A have the highest night-

time rate of e0.12/kWh and daytime rate of e0.14/kWh and these rates decrease

with each group. However, with having the highest off peak rates it also has the

lowest peak rate of e0.20/kWh and increases with the next group. I expect that

households in Group D, with the highest peak rate and lowest off peak rates, will

reduce their peak usage the most.

Each household in the treatment group is also assigned to an information

stimulus group that provides household usage and billing in the form of a monthly,

bi-monthly, and in-home display.2 In addition to a utility bill, households also

2The IHD relays real time information every 30 minutes on current electricity usage and cost.

The monitor includes a preset budget setting mechanism that allows households to set maximum

daily spending amount on electricity.
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receive an energy usage statement that provides detailed information on their usage

and tips on how to reduce their electricity usage. The effects of these treatments

are averaged, as I am only looking at the effects of TOU pricing on usage in this

paper. Assignment to the information treatment is orthogonal to the pricing scheme

assignment.

Participants completed pre- and post trial surveys that gathered socio demo-

graphic data about the respondent and household. Questions include respondents

age, gender, employment status, and income bracket. These questions also cover

household characteristics such as the square footage of the house, number of people

residing in the home, types of fuel used for space heating and cooking, number of

electronics and appliances. A majority of the questions in the second half of the

survey assess usage behavior during the trial. I will be mainly utilizing information

gathered from the pre-trial survey.

3.4 Methods

3.4.1 Research Question and Econometric Model

The goal of this paper is to examine the effects of time-of-use pricing on house-

hold energy consumption in an area that had time-constant pricing before the im-

plementation of the trial. I ask three research questions. First, I am interested in

whether there is a significant reduction in peak usage when the price of electricity

is the highest. Second, I am especially interested in whether this reduction in peak
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usage is a reduction in overall usage or a shift in usage to another period of the

day. I use difference-in-differences to estimate the average treatment effects for the

following model:

Yihdmyw = αi+θh+ρw+φmy+γSdmy+
∑
p∈P

∑
t∈T

βp,t([Periodh]p×[TREATiy]t)+εihdmyw

(3.1)

where Yihdmyw is the natural log of household is hourly electricity usage in kWh

for period P of each weekday w, day d in month m of year y, Sdmy is a vector

of seasonal variables including an indicator for a bank holiday, the natural log of

heating degree-days and daylight hours, θh are dummies for the period of the day,

ρw denotes day of the week dummies, and φmy is a set of month-year dummies.

Observations where residents of the household are away from home determined by a

daily usage that is below 0.1 kWh for 12 consecutive days or more are dropped from

the analysis. Period is a vector of dummy variables for the four periods of the day,

P ∈ Day1, P eak,Day2, Night. TREAT is a vector of dummy variables that equals

1 for whether household i is assigned to tariff treatment, T = A,B,C,D, during the

trial period and 0 for the control group and all observations in the pre-trial period.

The coefficients βp,t are the average treatment effects by period of the day P

and tariff treatment T . Finally, εihdmyw is an unobserved error term. The model

results are reported using the “within” estimator. I estimate Model 1 separately

for weekday and weekend observations to account for differences in daily routines.

I cluster all standard errors at the household level.

I estimate additional specifications to assess for the robustness of the estimates.
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First I estimate Equation 3.1 for weekdays where I use day of the trial fixed effects

(373 dummies, excluding holidays). Next, I limit the observations to period between

July 14 and December 31 in 2009 and 2010. This is because baseline data in 2009

was only gathered for this period.

Similar to that of Houde et al. (2013), I estimate the treatment effects each

individual hour of the day to gain further insight on electricity usage, reductions,

and increases for specific hours of the day. In doing so, I can observe whether during

which times the greatest increases and decreases in usage occur and whether there

are formation of new peaks. I regress a model similar to that of Equation 3.1 to

obtain hourly treatment effects by aggregating the treatment group and interacting

them with the hours of the day:

Yihdmyw = αi + θh + ρw + φmy + γSdmy + (θh × TREATiy) + εihdmyw (3.2)

where the interaction term is allowed to take on different coefficients depending on

the different hour of the day, where h = 1, , 24.

My study design relies on the common trends assumption, which I test. I run

a fixed effects panel regression with a time trend to ensure that preexisting trends

across the control and treatment groups are similar prior to the start of the trial.

I regress the natural log of usage on the day of the year dummies interacted with

TREAT before the treatment period:

Yihdmyw = αi + θh + ρw + φdm + γSdm + (φdm × TREATi) + εihdmyw (3.3)

where φdm is a vector of day by month dummies. I test the null hypothesis that the

coefficients on (φdm × TREATi) are jointly equal to zero.
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3.4.2 Heterogeneous Peak Effects

My third research question is about the driving forces of the peak period

treatment effects. I check for heterogeneous effects for different households by esti-

mating the following two-step estimation procedure. I estimate a modified version

of Equation 3.1:

Yhdmyw = αi + θh + ρw + φmy + γSdmy +
∑
p∈P

βp([Periodh]p × posty) + εhdmyw (3.4)

for each individual household i, a total of 3,334 regressions. This difference approach

compares a household with its usage from before and after the treatment period to

obtain individual βPeak. The βPeak for each household is regressed on household

characteristics using OLS with heteroskedasticity-robust standard errors.

In the second step, I estimate the following model:

β̂Peak,i =γ0 + γ1Age1i + γ2Age2i + γ3RTAi + γ4RTBi + γ5RTCi + γ6RTDi+

γ7ThirdEdui + γ8Resi + γ9Employi + γ10Homeowneri + γ11FloorSqfti+

γ12MissingSqfti + γ13DetHousei + γ14Bdrmsi + γ15Applsi + γ16Elecsi+

γ17ElecHeati + εi

(3.5)

where Age1 and Age2 are indicator variables for respondents between ages 18

to 35 and 36 to 55, respectively, ThirdEdu is an indicator for respondents with at

least a third level education equivalent to a college degree, Res is the number of
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residents residing in the household, Employ is an indicator for whether respondent is

employed, andHomeowner indicates whether the respondent owns or pays mortgage

on the place of residence. Additionally, RTA, RTB, RTC, and RTD are indicators

for households assigned to one of the four TOU treatment groups. A variable for

income is omitted due to inconsistencies in survey reporting.

Household characteristics include FloorSqft for the square footage of the

home. This variable has a large number of missing observations as this question

may be left blank if the respondent did not know the size of his/her home or did not

wish to respond to the question. In order to prevent households with missing values

from being dropped from the analysis, the missing values in FloorSqft are recoded

to zero and a dummy, MissingSqft, is used to indicate whether a household is miss-

ing square footage information. Other household characteristics include the number

of bedrooms Bdrms, appliances Appls, and electronics Elecs, and DetHouse, which

is an indicator for a detached house or bungalow. Additionally, a dummy ElecHeat

is included for households that rely mainly on electric space heating to warm their

homes during winter months. An income variable is omitted due inconsistencies in

reporting.
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3.4.3 Quantile Regression and Conditional Average Treatment Ef-

fects

As utilities have limited information about their customers’ socio economic

information, it is difficult to target customers who will be the most responsive to

pricing policies based on these characteristics. However, utilities are able to separate

the low users from the high users with historic electricity consumption data. By

exploring heterogeneity based on usage in response to price, we can gain insight on

the customers who are most responsive to treatment.

Literature suggest that households may be able to take advantage of the lower

off peak pricing and increase their overall usage all the while reducing their energy

bills [5, 73]. Other studies have found no effects as reductions in usage during peak

times are offset by increases in usage in other times [68], and in some cases, the

lowest users are able to increase their overall daily usage [35]. If this were the case,

then this would suggest that TOU pricing might allow the lowest electricity users

to re-optimize consumption.

Highest users will have the most leeway in reducing usage than middle and low

users [43]. This is consistent with studies that argue that it gets harder to reduce

their usage after a certain point, more than just changing habits without upgrading

appliances and investing in energy efficient retrofits [9, 40, 54].

The estimation of panel fixed effects quantile regression is adapted from a two-

step estimation procedure developed by Ivan Canay (2011) to determine whether

treatment effects vary across light and heavy electricity users. My adaptation is
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similar to that of Alberini et al. (2016):

Pr(Yit ≤ xitβ(τ) + αi|xit, αi) = τ (3.6)

where τ is a specific quantile. I analyze usage at the septiles.

By the assumption that the fixed effects are independent of τ , the model can

be written as:

Yit = xitβµ + αi + uit. (3.7)

In this two-step estimation procedure, the dependent variable is transformed

into Yit − α̂i, where α̂i are the estimated household fixed effects from “within”

estimation in the first step [6]. In the second step, βµ is estimated with quan-

tile regression. Estimates produced by the two-step estimator are consistent and

asymptotically normal [15].

Wichman (2015) models heterogeneity in residential water demand and dis-

cusses concerns about the strong assumption of rank preservation necessary for the

validity of FE quantile regression estimates. Rank preservation means that if each

household was ranked by their usage, this order must be preserved over time. In this

case, this condition is weakly met in that some users ranks may change in response

to the treatment but their assigned septiles are assumed to be preserved.

In addition to FE quantile regressions, I estimate conditional average treat-

ment effects with the following model:

Yidmyw = αi + θh + ρw +φmy + γSdmy +
∑
q∈Q

βq([Sidmy]q ×TREATiy) + εihdmyw (3.8)
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where βq captures the conditional average treatment effects depending on the differ-

ent septile, indicated by a vector of dummies in Sidmy. Equation 3.8 is a modification

of Equation 3.1 with observations aggregated to the daily level, all else the same.

3.5 Data

3.5.1 Electricity usage data

I use hourly electricity consumption data extensively in my analysis. The base-

line data are collected from July 14 through December 31, 2009. Treatment period

data were collected from January 1 through December 21, 2010. The Commission

for Energy Regulation in the Republic of Ireland reports that the average household

uses 5,067 kWh of electricity in 2009 [72].3 The average daily consumption of the

households in the sample range from 11.67-12.26 kWh are calculated from the base-

line data from July to December 2009. The households in this sample use roughly

estimated at around 4,258 to 4,475 kWh in 2009, less electricity than the country

average. This is a lower bound as I expect electricity usage to be higher during the

winter months of January through early March that is not captured in the baseline

3Information from the World Energy Council and Enerdata show that Irelands 2009 annual

household electricity consumption (at 5,157 kWh, slightly higher than what is reported by the

SEIA) to be to be similar to that of Belgium (4,405 kWh), the UK (4,525 kWh), and France

(5,374 kWh). On average, Irish households consume more than Italy (2,772 kWh), Germany

(3,459 kWh), Greece (4,030 kWh), and Spain (4,147 kWh) but less than Sweden (8,888 kWh),

Canada (11,083 kWh), the US (12,283 kWh), and Norway (16,844 kWh).
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data.

Table 3.1 breaks down the baseline usage by hour for each period of the day

for weekend and weekdays. The Day1 period shows lower usage than the Day2 rate

for the weekdays. This is not surprising as the hours during the Day1 periods are

also the same hours people attend school and work. This is graphically depicted

in Figure 3.1(a). The same pattern is not reflected in Figure 3.1(b) where there is

more fluctuation in the average daily weekend usage throughout the course of the

day.

Figures 3.1(a) and 3.1(b) show the hour-by-hour usage for the pre trial and

trial (treatment) period for the treatment group. Usage is noticeably more spread

out during the course of the day during weekends whereas there is a sharp increase

in usage during the peak period during the weekdays. Without accounting for sea-

son and unobserved heterogeneity of the households, the figures show a majority of

reductions occur between 4 pm and 10 pm and slight increases in usage at night.

3.5.2 Weather and household variables

The temperature in Fahrenheit is an average of the average daily temperature

from the Cork, Dublin, Galway, and Shannon weather monitoring stations. The

temperature correlations between the stations range from 0.963-0.980, suggesting

that it is reasonable to use a single average value of the observations from each

station. The year 2009 was a warmer year than 2010 with annual average heating
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Treatment Control p-value Population
Mean (S.D.) Mean (S.D.)

Day1 weekday usage 0.51 (0.62) 0.49 (0.60) 0.01 -
Peak weekday usage 0.85 (0.85) 0.80 (0.82) 0.03 -
Day2 weekday usage 0.78 (0.71) 0.74 (0.71) 0.02 -
Night weekday usage 0.29 (0.37) 0.27 (0.35) 0.00 -
Day weekend usage 0.68 (0.75) 0.65 (0.74) 0.00 -
Night weekend usage 0.28 (0.34) 0.27 (0.33) 0.00 -

Demographics
No. of residents 3.07 (2.21) 2.86 (2.20) 0.02 2.70
Age of respondent 18-35 (%) 11.00 (0.31) 9.46 (0.29) 0.21 22.27
Age of respondent 36-55 (%) 46.98 (0.50) 41.79 (0.50) 0.01 41.19
No formal education (%) 1.36 (0.12) 1.64 (0.13) 0.58 36.53
Primary education (%) 10.88 (0.31) 15.32 (0.36) 0.00 1.36
Secondary education (%) 47.13 (0.50) 47.61 (0.50) 0.82 16.40
Third level education (%) 40.63 (0.49) 35.43 (0.48) 0.01 49.50
Employed (%) 52.07 (0.49) 53.91 (0.50) 0.00 28.89
Unemployed (%) 8.79 (0.28) 7.29 (0.26) 0.17 11.03
Retired/caretaker (%) 29.15 (0.45) 38.80 (0.48) 0.00 23.44

Housing Characteristics
Homeowner (%) 92.99 (0.25) 93.34 (0.25) 0.73 69.70
No. of bedrooms 3.47 (0.83) 3.42 (0.87) 0.16 -
Apartment (%) 1.65 (0.13) 1.96 (0.14) 0.58 10.74
Semi-detached home (%) 33.42 (0.47) 29.11 (0.45) 0.02 27.61
Detached home/bungalow (%) 50.33 (0.50) 54.44 (0.50) 0.04 42.31
Terraced home (%) 14.60 (0.35) 14.49 (0.35) 0.94 17.04
No. of appliancesa 6.09 (1.90) 6.01 (1.91) 0.27 -
No. of electronicsb 4.08 (2.30) 3.72 (2.23) 0.00 -
Electric space heatingc (%) 6.88 (0.25) 7.68 (0.27) 0.46 8.49
Electric water heatingd (%) 62.36 (0.48) 61.85 (0.49) 0.80 -

Note: aAppliances, include dryers, washers, dishwashers, electric cookers, freezers, and water pops top,
are coded at 3; bElectronics, include televisions, computers, laptop, and game consoles, are top coded
at 4; cElectric heating includes central heating, storage heating, and plug-in heaters; dElectric water
heating includes central, immersion, or instantaneous water heater. Household population statistics are
from the 2011 Census reported from the Irish Central Statistics Office. For the population statistics,
Age is percentage of population between ages 18-35, 36-55, and 56 and up; percentage of education is
based on education level of people over the age of 15.

Table 3.1: Summary Statistics
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(a) Weekday Hourly Usage

(b) Weekend and Holiday Hourly Usage

Figure 3.1: Weekday and Weekend Hourly Usage Comparison for the Treatment

Group
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degree-days of 5794.85 and 6414.95, respectively. The moderate temperatures of

Ireland do not go above 65 F and thus do not require a variable for cooling degree-

days. In addition to controlling for the temperature, I also control for the number

of hours of daylight, which averages 4486.19 hours of daylight per year.

A pre-trial survey was conducted to gather socio-demographic information

and structural characteristics of the home information. A total of 2,755 households

completed the survey, an 82.6 percent response rate. Chapter 2 Table 5 compares

the summary demographic and housing characteristic information across the treat-

ment and control households. T tests reveal that Treatment households tend to be

younger, employed, and more educated. Electricity consumption by hour is up to 6

percent higher among treatment households. However, these differences and other

unobservable characteristics are assumed to be time constant and can be controlled

for using individual household fixed effects.

In comparison to the population statistics in Ireland in the last column of

Table 3.1, households in the trial are older, more educated, and more likely to own

a single-family home than the average household in Ireland. Employment, number

of residents, and electric space heating in the sample are similar to the population

averages. One concern is whether findings are representative of the entire popula-

tion as trial participation was voluntary.
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3.6 Results

3.6.1 Results from the Difference-in-Difference Approach

A pre-treatment trends check between the treatment and control groups is

conducted to determine whether there are significant differences in trends between

the two groups. I estimate Equation 3.3 and failure to reject the null means no

evidence of difference trends, F169,3419 = 0.99, p = 0.53.

Results from the panel fixed effects difference-in-differences Equation 3.1 are

reported in Table 3.2 Column 1 where reductions during the Day1 period are signifi-

cant for Treatment Groups A and C of 0.80 percent and 0.60 percent per hour of the

period, respectively. I find significant reductions of similar magnitude for the Day2

period for Treatment Group B and D of 1.19 and 1.00 percent reduction per hour.

These estimates are consistent with economic theory in that Group A will have a

larger reduction than Group C in that Group A has a higher day time rate than

Group C. The same concept applies for Groups B and D. However, it is uncertain

as to why reductions occur during Day1 for Groups A and C whereas significant re-

ductions occur during Day2 for Groups B and D. One reason may be due the sample

size of the treatment groups in that Groups A and C is over twice the number of

households in Groups B and D. While these coefficients are jointly different from 0,

they are not jointly different from each other during their respective periods of the

day.

Next, I look at the peak period effects to address one of the main questions
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(a) Weekday Average Treatment Effects by Hour

(b) Weekend Average Treatment Effects by Hour

Figure 3.2: Average Hourly Treatment Effects

in this study. I find that increasing the peak period price for Treatment Group A

results in a 2.66 percent reduction per hour of the peak period. The increase in peak

period price corresponds to increasingly larger reductions with the Group B with a

2.86 percent reduction, Group C with a 3.25 percent reduction, and Group D with a

3.73 percent reduction per hour. However, despite the different tariff schemes, these

estimates are not jointly different from each other, F3,333 = 0.71, p = 0.5477.

Finally, a slightly increased but significant usage of 0.70 to 0.90 percent per

hour from Treatment Groups C and D during the night period. On average, night

period treatment effects for all groups appear to be small and vary in significance,
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which is not surprising given that these estimates are the average effects of 9 hours.

Figure 3.2(a) shows the average treatment for the combined treatment groups by

hour. The first hour of the night period show an increase of 1.18 percent whereas the

estimates for the hours following are insignificant. This suggests that households

shift some of their peak consumption to the hour directly after the Day2 period

when the price of electricity is at its lowest.

I find that increasing a temperature by 1 heating degree-day increases electric-

ity usage by 0.009 percent. This minute effect may be due to the fact that only 1.85

percent of households in our sample rely on electricity for heating through central

heating and plug in heaters. In addition, longer daylight hours imply a reduction

in electricity usage as longer daylight hours generally indicates delaying turning on

lights and more time spent outdoors.

Column 2 shows the average period treatment effects for the weekend to be

insignificant during the Day1 period, some reduction for Groups B and D during

the Day2 period, and some increase for Groups A and C during the night. The

surprising element is the significant hourly reduction in the peak period across all

four treatment groups ranging from 1.39 to 1.98 percent. When broken down to the

hourly average effects, shown in Figure 3.2(b), the figure largely resembles that of

the weekday hourly treatment effects. The effects are insignificant for most of the

2am through 4 pm followed by significant reductions from 4 to 10 pm. One possible

reason for this is the formation of habits around the peak pricing periods that carry

over from the weekdays to the weekend when peak pricing is not in effect. Another

reason can be that the period after 4pm is when residents are home and thus respond
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to higher day prices. These reasons can only be taken as conjectures, as there is

not sufficient information available to support the claims or discrimination between

them.

I test the robustness of the results from Model 1 with two other specifications.

I first estimate Equation 3.1 using day of the trial fixed effects for a more flexible

model, shown in Table 3.2 Column 3. I find that estimates closely resemble that

of Equation 3.1. Second, I restrict the data set to only observations from July 14

through December 31 to have a more accurate analysis of the before and after trial

period for the treatment and control groups. These results also closely resemble

that of Equation 3.1.

Finally, I consider a specification where I look at households that completed

the pre-trial survey. This is because analyses reported below are conducted using in-

formation from the survey and households with missing values are dropped from the

regression, thus losing 579 households. I find average treatment effects for the peak

period to yield the largest reductions as well as largest increases during the night

compared to the other specifications. This suggests that households that completed

the pre-trial survey may have originally been more interested in their electricity

usage or completing the survey raised awareness of their electricity usage patterns,

resulting in larger responses to changes in price.
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β̂peak (1) (2) (3)
Detached home -0.009*** (0.003) -0.008*** (0.003) -0.007** (0.003)
Employed 0.001 (0.004) 0.002 (0.004) 0.002 (0.004)
Homeowner -0.008 (0.006) -0.006 (0.006) -0.005 (0.006)
RTA -0.027*** (0.003) -0.027*** (0.003) -0.027*** (0.003)
RTB -0.042*** (0.006) -0.042*** (0.006) -0.043*** (0.006)
RTC -0.039*** (0.004) -0.039*** (0.004) -0.039*** (0.004)
RTD -0.051*** (0.006) -0.051*** (0.006) -0.051*** (0.006)
Age 18-35 -0.004 (0.006) -0.003 (0.006) -0.004 (0.006)
Age 36-55 -0.008** (0.004) -0.007* (0.004) -0.008** (0.004)
No. of residents -0.008*** (0.002) -0.008*** (0.002) -0.007** (0.003)
No of residents2 0.001** (2.29E-4) 0.001** (5.74E-4) 0.001** (2.41E-4)
No. of bedrooms -0.008*** (0.002) -0.007*** (0.002) -0.006** (0.002)
College educated 0.006* (0.003) 0.007** (0.003) 0.008** (0.003)
Floor area sqft 1.42E-6* (7.64E-7) 1.35E-6 (7.95E-7)
Missing floor 0.011*** (0.004) 0.010*** (0.004)
No. of appliances -0.003*** (0.001)
No. of electronics -1.35E-03 (0.001)
Electric space heating -0.011* (0.006)
Constant 0.043*** (0.008) 0.031*** (0.009) 0.040*** (0.009)
Observations 2748 2748 2748
R2 0.079 0.82 0.087

Standard errors in parenthesis. ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01 Note: Variables for appliances
and electronics are top coded.

Table 3.3: Effects of Household and Structural Characteristics of the Home on Peak
Effects
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3.6.2 Heterogeneous Peak Effects

I report the results from Equation 3.5 in Table 3.3 for peak effects. The

dependent variable is the effect of the TOU treatment on the peak period; therefore

a negative coefficient should be interpreted to increase the effect on peak usage

whereas a positive coefficient will reduce the effect on peak usage. Columns 1

and 2 include independent variables for respondent and family characteristics and

structural characteristics of the house. Being a homeowner does not impact peak

effect, suggesting that, all else the same, there are no differences between renters and

homeowners on peak usage. However, having a detached home does result in higher

reductions in peak consumption. These households may have more autonomy over

the electricity usage in their homes. Contrary to expectation, respondents who are

college educated reduce peak usage less than households without a college education.

Respondents aged 36-55 have a larger reduction than those above 56. Having more

residents in a household increases the peak effect but at a decreasing rate. As

expected, being in a treatment group results in larger reductions during the peak

period compared to households in the control group.

Table 3.3 Column 1 omits the FloorSqft and MissingSqft variables as 58.19

percent of respondents did not know or did not wish to report the size of their

homes. It is also possible that misreporting errors were present with the 42 percent

who were able to answer the question. However, including the two variables shows

robustness in the estimates in Column 2. The coefficient FloorSqft indicates the

larger homes have lower peak effects, although weakly significant at the 10 percent
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level.

Finally, estimates in Table 3.3 Column 3 reveal significant impact of having

more appliances results in a larger peak effect, but having more electronics do not.

Households that rely mainly on electricity for space heating are capable of a larger

impact on peak usage. Higher peak pricing may encourage households to increase

their heating during periods prior to and after the peak period while reducing heat-

ing during the peak period.

3.6.3 Results for Fixed Effects Quantile and Conditional Average
Treatment Analysis

I graph the coefficients on the treatment variable for the septiles from fixed

effects quantile regression as described in Equation 3.7. Figure 3.3(a) shows a de-

creasing trend with the lowest 25 percentile of households exhibiting the smallest

and statistically insignificant effects. Households in the top 12.5 percentile exhibit

the highest effects.

Alternatively, I present estimates for the conditional average treatment effects

for the septiles of 2009 baseline usage in Figure 3.3(b). The results are broadly

consistent with those of the FE quantile estimates reflecting a downward trend in

effects. The highest septiles, bottom 12.5 percentile of users exhibit a statistically

significant average increase of 5.23 percent whereas the second to fourth septiles

exhibit no significant effects. The top 12.5 percentile of users exhibit the highest

negative effects of 5.82 percent.
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(a) FE Quantile ATEs on Septiles of 2009 Usage

(b) ATEs Conditional on Septiles of 2009 Usage

(c) ATEs Conditional on Septiles of 2009 Usage for College Educated
Respondents

Figure 3.3: Fixed Effects Quantile Regression and Conditional ATEs
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Control Treatment
2009 2010 % change 2009 2010 % change

August 321.95 314.4 -2.40% 338.47 323.82 -4.33%
e45.40 e44.33 -2.41% e47.72 e44.68 -6.37%

September 308.18 319.49 3.54% 327.1 330.77 1.12%
e43.45 e45.05 3.55% e46.12 e46.03 -0.20%

October 339.34 333.75 -1.67% 360.38 346.85 -3.75%
e47.85 e47.06 -1.68% e50.81 e48.19 -5.16%

November 378.08 353.67 -6.90% 400.13 364.96 -8.79%
e53.31 e49.87 -6.90 e56.42 e52.00 -7.83%

December 446.42 412.09 -8.33% 470.39 423.51 -9.97%
e62.95 e58.10 -8.35% e66.32 e60.29 -9.09%

Table 3.4: Average Monthly Usage (kWh) and Bill(e)

These effects are further emphasized for households whose respondent is col-

lege educated in Figure 3.3(c) where the first and seventh septiles exhibit larger

effects of 5.42 percent increase and 6.63 percent decrease, respectively. Unlike Fig-

ure 3.3(b), septiles in between do not exhibit any significant effects. More educated

households may be better at understanding prices and how their electricity con-

sumption patterns impact their overall bill. Users in the first septile or the bottom

users may be more efficient in reducing electricity during the peak period all the

while increasing their usage during off peak periods, resulting in higher increase in

usage than average effects of the full sample. These findings are consistent with Di

Cosmo et al. (2014) and Ito (2011).

I compute average monthly usage and bills for the treatment and control groups

and report them in Table 3.4. They refer to August through December with com-

plete pre and post trial data. For every month with the exception of September,

monthly usage and bill in 2010 declined for both Control and Treatment group.

September of 2010 saw an average increase in usage for both control and treatment
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groups from 2009. Despite this, there was an average decrease in the bill for the

treatment group compared to an increase in the bill for the control group from the

previous year. On average, households under TOU in the treatment group were able

to increase their overall monthly usage while decreasing their total bill. While a ma-

jority of households in the treatment and control groups received bi-monthly bills,

this comparison is not meant to analyze effect of billing frequency and information

on usage.

3.7 Conclusion

In this paper, I analyze the effects of TOU pricing in a region that has never

experienced this type of pricing scheme before. Ireland is a temperate region with

mild winters and cool summers where temperatures during this study do not fall be-

low 22◦F or exceed 65◦F. In other countries where there is greater seasonal variation

and larger reliance on electric heating, heating and cooling may drive effects of TOU

pricing. I find evidence that TOU is still effective in a region where electricity is

not the main fuel used for heating and does not require air-conditioning for cooling.

The effect of peak period pricing, is however, modest. It is possible that TOU may

produce larger effects in areas that use air conditioning and electric space heating.

In the Irish Trial, households that were on TOU pricing reduce their consump-

tion by 2.66 to 3.73 percent for each hour during the peak period. Effects increase

by tariff group which face increasing differences between the peak and day prices.

Hourly estimates show evidence of load shifting from the peak and day periods to
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the beginning of the night period. I find no evidence of load shifting of usage from

the weekday to the weekend suggesting reductions in overall usage. Surprisingly,

results also show that the peak effects also occur on the weekend at lower magni-

tudes. In other words, households reduce their usage during weekday designated

peak hours, which carry over to the weekend suggesting evidence of changes and

formation of new habits. Weekend reductions may also be corresponding to periods

when household members are active at home. Overall, the effects are generally small

compared to CPP studies that have found reductions from events to range from 7

to 16.2 percent [51, 53, 78]. Real time pricing has been found to be more effective

for conservation measures than for load shifting [7].

I investigate the source of heterogeneity in the response to TOU pricing. I find

that the type of housing structure, size of the house, age and education of survey

respondent and total appliances in the home significantly impacts effects on peak

usage. These are opposite to the findings of Houde et al. (2011) and Davis (2011),

who do not find survey variables to be significant sources of heterogeneity.

Households that consume the lowest electricity in kWh are more likely to in-

crease their overall consumption whereas households on the higher end of consump-

tion have the largest reduction effects. In some circumstances, TOU pricing may be

beneficial to low users. It may allow for them increase their overall usage and level

of comfort without increasing their bill, particularly in households located in areas

with extreme temperatures. Being able to increase the comfort levels in their homes

can lower mortality rates particularly for children, the elderly, and poor [21,41,42].

When these patterns of response to TOU are observed, TOU is the most effective
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at smoothing peak demand when reductions for the high-end users are greater that

the increases from the low-end users.

Overall, TOU may also be more effective for reducing usage of the highest

users and useful for targeting purposes, as some households are more responsive to

TOU than others. However, caution is needed in interpreting these results as effects

TOU pricing on peak load are small and are reflective of single-family households

with educated heads of households of the working age. Results are not represen-

tative of the entire population since participation in the trial was voluntary and

participants were compensated if their bills under TOU pricing were higher than if

they were on a flat rate tariff. Feedback and energy efficiency policies may be com-

bined with TOU to encourage further adjustments to usage beyond altering energy

consumption habits. Additionally, reducing peak consumption has implications for

savings in greenhouse gas emissions.4 Further research requiring information on

plant generation will be necessary to address these concerns.

4However, if more efficient generators or cleaner fuels, such as natural gas and renewables, are
used to generate electricity to meet peak demand then programs that focus on shifting peak load
to other periods where electricity is generated with low cost but dirtier generators, such as coal
and fuel oil, may result in higher greenhouse gas emissions.
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Chapter 4: The Effects of TOU Pricing on CO2 Emissions and Gen-
eration

4.1 Introduction

The Republic of Ireland (IE) electricity market is the first of its kind in that

in 2007, the two separate markets serving IE and Northern Ireland (NI) were inte-

grated into a Single Electricity Market (SEM) for the island. The Commission for

Energy Regulation (CER) mandates the SEM require electricity generators to sell

electricity into a single spot market for the island in, “which all electricity gener-

ated on or imported onto the island of Ireland must be sold, and from which all

wholesale electricity for consumption on or export from the island of Ireland must

be purchased.” The SEM is operated by the Single Electricity Market Operator

(SEMO) and is responsible for paying generators for their electricity produced and

invoicing suppliers for electricity purchased. Requiring all trading to occur in the

SEM allows for more price and market outcome transparency, which are often ob-

scured in European bilateral markets [20]. The SEMO market is a relatively isolated

system with imported electricity treated as generation units that must be placed as

a bid into the market. As a result, all electricity imported and exported to and from

the island can be closely tracked.

The previous chapters emphasized the importance of curtailing peak load on
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emissions savings and reducing the need to increase capacity of generation to meet

peak demand. In this chapter, I look at the make up of the island system to look

at the implications of an island wide implementation of a residential TOU pricing

policy. I estimate and compare the cost of generation and CO2 emissions for four

select weekdays in 2011 representing each of the four seasons. By using the generator

technical parameters, heat rate requirements, and commercial offer data, I am able

to build the merit curve for the sample days. I repeat this procedure on the adjusted

load to simulate the loads under TOU pricing and compare with the actual load.

Simulation variable pricing studies have found that, in the short run, time-

varying the price of electricity as it is generated results in average load increases, a

decrease in profits for all generating sectors, an increase in consumer surplus, modest

efficiency gains, and a decrease in CO2 emissions [45]. Yet in the long run, efficiency

gains usage are concomitant even with inelastic demand [13]. When examining

short run, simulation studies, others have found that the distributions of electricity

loads and prices becomes compressed, and as all rates decrease, the average loads

increase. This implies decreases in profits for all generating sectors, consumers

surplus increases for all consumers, modest efficiency gains, and the increase of SO

and NO emissions and decrease CO2 emissions [45].

Fuel mixes used to meet load generation demand may have implications on

the impact of time varying pricing aimed to reduce within day variation. In Hol-

land and Mansur (2008), regions where oil is predominantly used in the generation

of electricity to meet peak demand have larger decreases in emissions than regions

where peak demand is met by hydropower. Their findings further suggest that re-
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ducing peak demand in regions where more hydro is used to meet peak demand

would result in increases in emissions as demand is shifted to other periods in which

a dirtier generator is used to meet the demand. The SEMO consists of a similar

fuel mix of hydro, oil, and gas used to meet peak demand suggesting that a policy

that reduces within day variation of load may have positive or negative impacts on

emissions.

4.2 Background

The objective of the SEM is to provide the least cost source of electricity

generation at any point in time across the country by accessing the more efficient

generators to meet demand [20]. This is important as more expensive and/or less

efficient generators are used, too, during periods of high demand. Fossil fuels account

for 80 percent of the islands electricity generation where the base load generation

is powered by coal and peat1, mid-merit generation met by natural gas combined

cycle generation units, and peaking power generation is powered by oil and natural

gas [17, 20]. Despite the remaining 20 percent of electricity generation powered by

renewable energy from wind, bioenergy, and hydro [17], fossil fuels used in electricity

generation is the second largest contributor of greenhouse gas emissions in Ireland,

totaling 21.9 percent of national emissions [29].

In addition generators on the Island of Ireland, the Moyle Interconnector im-

1Peat generators are the dirtiest and most expensive to operate of the fuels. However, peat is
subsidized in order to provide employment in the Midlands region of the Republic of Ireland and
continues to be a topic of debate amongst politicians and economists [74].
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ports and exports electricity to and from Northern Ireland and Scotland. It has a

capacity to import and export up to 500MW of electricity between Northern Ireland

and Scotland. Between 2008 and 2011, electricity was mainly imported from Scot-

land. In mid-September 2011, the Moyle interconnector went out of service until

February of 2012. The East West Interconnector is the other importation source of

electricity to Ireland from Great Britain. It did not go online until September 2012.

According to the 2011 Republic of Ireland Census [1], these interconnectors de-

liver electricity to approximately 1,654,208 private residential households within the

Republic of Ireland. And between 2008 and 2011, residential electricity consump-

tion consists on average of 33 percent of the overall share of electricity consumed

in Ireland [72]. The large portion of electricity consumed by these residences has

significant implications as they relate to curtailing electricity demand and increasing

efficiency gains in generation.

Interconnector units are scheduled and fixed a day ahead of the next scheduled

run. In the SEM, wholesale prices are determined for every half hour. Generation

plants bid in the day ahead market and generate electricity in the order ranked from

lowest to highest by their bids until demand is met [25].

4.2.1 SEMO Merit Curve and Electricity Generation

Generator production and start up cost information submitted for each active

generator on the island to the SEMO are used to calculate half hourly and total

production costs. Plants (including available capacity submitted by the Moyle In-
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Source: UK Department of Energy and Climate Change

Figure 4.1: Weekday and Weekend Hourly Usage Comparison for the Treatment
Group

terconnector generator units) are allowed to submit up to 10 price and quantity

pairs that define the cost of generation by increments and a no load cost.2 These

costs are associated with the generator heat rate curve.

The merit curve is created for each half hour of the day ranking priority dis-

patch generators, such as predicted wind generation and peat generators, followed by

price making generators by least cost while taking into account their fixed technical

parameters. Fixed technical parameters for each generation unit include minimum

stable capacity and maximum stable capacity, minimum up and down time, and

start up temperature (See Tables B.1 and B.2 in Appendix B). These parameters

also play a role in determining generation unit position in the merit curve. For

example, a condensing steam cycle generator (CSCG) uses fossil fuels to boil water

to generate steam to run the turbine. They require the most energy to start up and

2Cost of generation varies by type of generator and price of fuel. A no load cost is the cost to
run the generator per hour at 0 electricity output.
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have the highest minimum on time requiring the unit to run for a fixed time before

it can be powered down. These generators make up the baseload as long as coal is

cheaper than natural gas (see Figure 4.1).

Combined cycle gas turbines (CCGTs) can be ramped up faster and require

less energy to start up than CSCGs. These units make up the bulk of the mid-merit

generators. Open cycle generators that use natural gas and distillate oil make up

the peaking units as they have the lowest minimum on times and can be rapidly

ramped up and down to meet peak demand. Hydro generator units have moderate

ramp up and down rates and no minimum on times making them flexible generators

for meeting base, mid-merit, and peak demand.

In addition to providing the SEMO with unit generation cost, plants had to

also provide information on incremental heat rate slopes, no load heat rate, and

generation increments. These variables are used to create the heat rate curve to

determine the amount of energy required by each generator to produce a MW of

electricity.

4.3 Data

As of 2011, the Island had a total of 73 grid-connected predictable generator

units3, 53 thermal and 15 hydro generators. Table 4.1 breaks down the fuel used

for generation, unit type, and installed capacity for Ireland and Northern Ireland.

Natural gas fueled generators have the largest capacity followed by coal. Distillate

3Wind generation is considered to be variable generation and is not counted as a predictable
generator unit.
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Fuel for generation Unit Type IE installed NI installed % of total
capacity (MW) capacity (MW) capacity

Peat or peat/biomass Baseload 345.6 - 3.99%
Coal Baseload 840 476 15.20%
Natural gas Baseload/mid-merit 3415.5 1,536 57.17%
Hydro/ pumped storage Peaking/mid-merit 508 - 5.87%
Distillate Peaking 424 315.2 8.54%
Oil Peaking 800 - 9.24%

Table 4.1: Installed island system generation capacity by fuel

and oil make up the next largest thermal capacity.

Half hourly load data by generator unit is collected from the SEMO for January

12, April 13, July 13, and October 12, 2011. These days, shown in Figures 4.3(a)-

4.3(d), represent a weekday for each season of the year to illustrate the difference

in the shape of the daily load curve and fuel mix. Figures 4.2(a)-4.2(d) provide

comparisons for the daily load and fuel mix averaged by month. In 2011, generation

load is highest during the fall and winter months. Generators fueled by distillate oil

are mainly used in the winter, spring, and fall months when peak demand days are

more prominent. Generators fueled by heavy fuel oil are the dirtiest emitters of CO2

and are used to meet peak demand on rare occasions. Initial analysis shows fuel oil

is occasionally used as a peaking plant on the highest load days in January and is

more often used as startup fuel. Figure 4.2(c) shows a decrease in the proportion

of coal-generated electricity in July away from coal as demand is reduced. During

months of lower demand, generation is met with primarily baseload and mid-merit

generators. On this day, available gas generators were cheaper to run than coal

generators.

The half hourly load data is used to calculate the CO2 emissions produced
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(a) January Daily Load (b) April Daily Load

(c) July Daily Load (d) October Daily Load

Figure 4.2: Average daily load duration curves and fuel mix for select months in
2011
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(a) January 12, 2011 (b) April 13, 2011

(c) July 13, 2011 (d) October 12, 2011

Figure 4.3: Daily load duration curves and fuel mix for select days in 2011

in electricity generation. The methodology used is similar to that of Wheatley

(2013) and Di Cosmo and Valeri (2016). I use individual plant information on load,

incremental heat rates, and no load heat requirements to calculate a heat rate curve

that determines the heat energy required to meet individual generator loads (from

Allislandproject.com). The heat energy is converted to carbon dioxide emissions

using energy factor conversions from the SEIA Annual Energy in Ireland report (see

Table B.1 in Appendix B) [48].

The load data is also used with commercial offer data submitted by the plants

for each generator unit for the SEMO to calculate generation costs. commercial

offer data depends on the price of fuel, technical limitations of generation units,

scheduled maintenance, etc. Since the data is in half hour increments, converting
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from MW to MWh requires the daily production cost to be divided by two. The no

load cost, price and quantity pairs and maximum load were used to calculate the

hourly operating rate less the start up costs to determine the merit curve. I use the

following equation to calculate the daily production cost for each generator unit:

Daily Production Cost for Generator Unit i =

1

2

48∑
h=1

NoLoadih + (P1× 1st Increment)ih + ...+ (Pn ×N th Increment)ih

(4.1)

where the first increment is the measure between 0 and Quantity 1 (from the first

price quantity pair), the second increment is the measure between Quantity 1 and

Quantity 2 (from the second price quantity pair) less the first increment. For exam-

ple, on January 12, 2011, the Aghada Combined Cycle Gas Turbine coste35.62/MW

for the first increment between 0-213MW, e45.08/MW for the increment between

213-430MW, e46.43/MW for the last increment between 430-448MW, and a no

load cost of e4712.21/hour. Generating a load of 435MW of electricity for 1 hour

would cost e22313.78 (e51.30/MWh) minus the startup cost.

4.4 Method

I simulate daily load under time of use response based off the average treatment

effects estimated in Chapter 3 Figure 3.2(a) to calculate the percentage change

in half hourly load, generation cost, and CO2 emissions. In 2011, 33 percent of

electricity consumed in the Republic of Ireland went to residential households. This
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statistic assumed to be islandwide implies an average 1 percent reduction to peak

load, 0.30 percent reduction to day load, and a 0.35 percent increase in night time

load.

Additionally, load shifting in response to the TOU pricing simulation is con-

strained within other times of the day and is not transferrable to other days. Wind

and peat generators are scheduled first followed by the least cost generator units

while taking into consideration startup costs, minimum stable capacity, and incre-

mental costs. After calculating the MW reduction (increase) for each half hourly

load resulting from a TOU scenario, I apply the reduction (increase) to the hourly

merit curve. Load generation is reduced (increased) from the generating unit with

the highest (lowest) incremental price. The least cost generator, usually a hydro

unit or high efficiency gas generator but can also be a coal unit, is updated in the

schedule to meet the increased load.

Startup cost and startup emissions were determined based on the number of

hours the generators are off after the previous scheduled runtime. The hours off

determine whether the generators start off cold, warm, or hot and are associated

with different costs, a cold start being the most costly as it requires more energy to

start.

4.5 Results and Discussion

Table 4.2 reports results for generation costs and emissions from generation.

System generation load was highest in October due to the Moyle Interconnector
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January 12, 2011 Actual Load TOU Load Savings
Total Load (MWh) 111,593.48 111,373.45 220.03

System Generation Load (MWh) 89,028.77 88,808.74 220.03
Generation cost (e) 4,372,533.34 4,357,172.64 15,380.70
Startup Cost (e) 175,572.11 175,572.11 -
CO2 Emission from Generation (metric Tonnes) 45,200.89 44,961.73 239.15
CO2 Emission from Startup (metric Tonnes) 574.14 574.14 -
CO2 Emission from MWh (metric Tonnes/MWh) 0.51 0.51 1.09
April 13, 2011 Actual Load TOU Load Savings
Total Load (MWh) 94,502.02 94,309.54 192.48

System Generation Load (MWh) 73,061.55 72,869.07 192.48
Generation cost (e) 3,601,869.83 3,589,091.68 192.48
Startup Cost (e) 357,197.63 357,197.63 -
CO2 Emission from Generation (metric Tonnes) 39047.01 38893.87 153.14
CO2 Emission from Startup (metric Tonnes) 1,464.52 1,464.52 -
CO2 Emission from MWh (metric Tonnes/MWh) 0.55 0.55 0.80
July 13, 2011 Actual Load TOU Load Savings
Total Load (MWh) 85,438.06 85,246.66 191.40

System Generation Load (MWh) 79,493.55 79,297.17 196.38
Generation cost (e) 3,587,483.67 3,577,943.98 9,548.69
Startup Cost (e) 24,168.60 24,168.60 -
CO2 Emission from Generation (metric Tonnes) 36,145.60 35,989.31 156.29
CO2 Emission from Startup (metric Tonnes) 94.51 94.51 -
CO2 Emission from MWh (metric Tonnes/MWh) 0.46 0.46 0.80
October 12, 2011 Actual Load TOU Load Savings
Total Load (MWh) 98,614.94 98,383.8 231.77

System Generation Load (MWh) 89,606.92 89,375.15 231.77
Generation cost (e) 4,100,552.49 4,087,233.29 13,319.19
Startup Cost (e) 274,360.80 274,305.82 54.98
CO2 Emission from Generation (metric Tonnes) 47,542.52 47,322.50 220.02
CO2 Emission from Startup (metric Tonnes) 588.30 587.72 0.59
CO2 Emission from MWh (metric Tonnes/MWh) 0.54 0.54 0.95

Table 4.2: Daily load, generation costs, and CO2 emissions under actual load and
time-of-use load

89



being out of service. January represents the winter months with the highest total

load and July represents the summer months with the lowest total load.

The variable of interest is the ratio of CO2 emissions reduced per MWh saved.

Savings on January 12th were 1.09 metric tonnes of CO2 reduced per MWh saved.

These results suggest that time of use pricing is most effective during winter months

when baseload, mid-merit, and interconnector generation units are operating at

maximum capacity. This demonstrates that reducing load from dirtier and more

expensive peak units will result in larger emissions savings.

April 13 represents a weekday in the spring. Of the four samples, April 13 has

the highest startup costs because mid-merit generators are scheduled to ramp up

during the day to meet demand. A larger proportion of generation for coal units

indicates that natural gas generation may be costlier on this day. Peak generation is

mainly met with hydro and distillate generators, however, TOU simulation results

indicate that the more expensive natural gas generation is reduced during peak hours

resulting in lower emissions savings than if distillate generation were displaced.

Average weekdays in the summer, represented by July 13th, have the lowest

overall load and within day variation compared to other seasons. On days with low

within day variation, fewer generators are required to ramp up and down resulting

in lower startup costs and emissions. Figure 4.2(c) shows low wind generation

compared to other months and natural gas generators are scheduled to meet the

majority of the load. Simulated TOU peak and day reductions mainly impact coal

and less efficient gas generation whereas increased usage during the night can be

met by available Moyle units.
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Figures 4.3(b) and 4.3(d) suggest weekdays during fall and spring months have

similar load shapes but fall months with a more defined peak period met with gas

and distillate units. October 12 shows an example of a day when interconnectors are

offline and replaced by a mix of gas and coal fired units. These units are generally

more expensive to operate and are dirtier emitted due to lower efficiency and type

of fuel. As a result, CO2 emissions per MWh generated may be higher than that of

months when the interconnector is on. Unsurprisingly, 0.95 metric tonnes of CO2

emissions per MWh saved is the second highest of the four days, suggesting TOU

pricing is more efficient in reducing CO2 emissions during the fall than in the spring

and summer months.

Of the four days, there was one instance in the TOU simulation where the peak

reductions allowed for a scheduled peaking generator to remain offline, resulting in

start up and generation savings on this particular day. This suggests the potential

for efficiency gains even with a TOU scheme with low estimated effects.

In the SEMO, the Moyle Interconnector is treated as a price-making unit and

is subject to submitting daily bids in the market. The interconnector unit offers

are relatively low cost (e20-30 per MW) and compete with cheaper gas and coal

generation units on the merit curve to meet mid-merit generation needs. During

the summer months when interconnection is not importing at maximum capacity,

load shifting can displace gas and coal units with interconnector and hydro units.

With the interconnector down in the fall of 2011, emission and cost of generation is

expected to increase, as the island is required to ramp up more expensive generation

units to meet the gap in demand.
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4.6 Conclusion

Despite criticism of a low response to time of use pricing in the literature, I

find evidence that suggests that even small reductions in peak and daily demand

result in emissions and generation cost savings. TOU pricing appears to be the most

effective in the winter and fall months when a larger proportion of peak demand

is met with distillate and oil generation units. This policy is less effective over

spring and summer months when the daily load is relatively flat without defined

peak periods. The unique temperate region of Ireland makes this an interesting test

case as we can see from the relatively flat daily loads shapes in the summer months.

TOU pricing would have larger impacts if this particular fuel mix were located in

regions with more variability in climate called for air conditioning. During these

times, reducing daily load would result in lower emissions savings per kWh reduced.

Often times, load shifting to the night time can be met with cleaner generation units

from hydro and high efficiency gas units.

Still, the results in this chapter should be considered as optimistic as residen-

tial electricity consumption accounts for 30 percent of overall consumption in the

Republic of Ireland. The Republic of Ireland consumes approximately 75 percent

of electricity on the island. The TOU results imposed from the previous chapter

assumes that The results in this chapter have significant policy implications for the

future as demand for electricity continues to grow. Since 2011, installed wind capac-
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ity in the Republic of Ireland alone has almost doubled from 1631MW to 3015MW.4

Coal and peat, the dirtiest of the fuels, continue to dominate a significant portion

of the fuel mix in the generation market. As Ireland moves away from fossil fuel

intensive generation and imported electricity, wind is expected to continue to fill in

the gaps and phase out distillate and heavy fuel oil generation, emissions reductions

will be determined primarily by natural gas and coal generators. Real time pricing

may be a better policy alternative as it has been found to result in larger demand

response than TOU pricing [13,45].

4Installed wind capacity of 3015 MW in the Republic of Ireland is a 2015 figure from the Irish

Wind Energy Association.
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Appendix A: Appendix A

Figure A.1 shows the in-home display monitor provided through ESB Net-

works. The display home screen shows the following information:

1. Shows how household is doing compared to their pre-set daily budget,

2. Current price of electricity,

3. Cost of electricity has accumulated for the current month,

4. Price for each kWh of electricity at the peak, day, and night periods.

Figure A.1: In-home display monitor
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BM M IHD Total
Did not receive payment 448 467 492 1,407

56.28% 57.73% 61.42% 58.48%
Received payment 348 342 309 999

43.72% 42.47% 38.58% 41.52%
Total 769 809 801 2,406

Note: Received payment means there was a positive balance of
the trial, which was paid out to trial participants (See page 16).

Table A.1: Balancing credit payment: Percentage receiving pay-
ment by information treatment group

Mean Mean* S.D. Min. Max.
BM 5.62 12.86 11.65 0 91.96
M 5.78 13.68 11.84 0 93.85
IHD 4.97 12.89 11.64 0 105.25

Note: Mean, S.D, Min., and Max. are descrip-
tive statistics that include every household in
the treatment group. Mean* is the average for
those households who participated in the trial
and received a payment at the end of it.

Table A.2: Summary of balancing credit pay-
ment (e): payment received by information
treatment group
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Appendix B: Appendix B

Fuel t CO2/TJ
Natural gas 56.9
Gas/diesel/distillate oil 73.3
Residual oil 76.0
Coal 94.6
Milled Peat 116.7

Table B.1: Fuel and CO2 conversion factors
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ID Unit	Name IE/	NI Cycle Start	Fuel
Fuel	for	

Generation	
and	No	Load

Min	
Stable	
Capacity

Max	
capacity

No	Load	Heat	
Requirement		

(GJ/hr)

AD1 Aghada	Unit	1 IE CSC Gas Gas 35.0 258.0 188.15 35 120 190 258 8.03 8.03 8.70 8.77
ADC Aghada	CCGT IE CCGT Gas Gas 215.0 431.6 354.51 215 432 - - 5.50 5.50 - -
AT4 Aghada	CT	Unit	4 IE OCGT Gas Gas 15.0 90.0 285.30 15 40 90 - 7.83 7.83 9.72 -
DB1 Dublin	Bay	Power IE CCGT Gas Gas 207.0 415.0 479.34 207 415 - - 5.16 5.16 - -
HN2 Huntstown	Phase	II IE CCGT Gas Gas 194.0 404.0 603.60 195 230 412 - 4.24 5.62 5.74 -
HNC Huntstown IE CCGT Gas Gas 200.0 343.0 541.20 200 230 250 352 4.46 5.19 5.99 6.01
MRC	No	ST Marina	No	ST IE OCGT Gas Gas 20.0 85.0 257.13 47 81 85 - 8.66 9.48 11.41 -
PBC Poolbeg	Combined	Cycle IE CCGT Gas Gas 232.0 480.0 426.19 232 480 - - 6.26 6.26 - -
SK3 Sealrock	3 IE OCGT Gas Gas 40.0 83.0 100.00 40 83 - - 5.00 5.00 - -
SK4 Sealrock	4 IE OCGT Gas Gas 40.0 83.0 100.00 40 83 - - 5.00 5.00 - -
TY Tynagh IE CCGT Gas Gas 196.0 388.5 584.00 196 388 - - 5.09 5.09 - -
WG Whitegate IE CCGT Gas Gas 222.5 445.0 680.00 223 224 445 - 4.72 4.72 4.98 -
GI1 Great	Island	Unit	1 IE CSC 61%	Oil,	39%	Distillate Oil 25.0 54.0 51.07 25 45 54 - 13.59 13.59 13.67 -
GI2 Great	Island	Unit	2 IE CSC 61%	Oil,	39%	Distillate Oil 25.0 49.0 51.07 25 45 49 - 13.59 13.59 13.67 -
GI3 Great	Island	Unit	3 IE CSC 61%	Oil,	39%	Distillate Oil 30.0 109.0 102.65 30 98 109 - 10.88 10.88 10.98 -
TB1 Tarbert	Unit	1 IE CSC 61%	Oil,	39%	Distillate Oil 20.0 54.0 44.66 18 46 54 - 11.63 11.63 11.75 -
TB2 Tarbert	Unit	2 IE CSC 61%	Oil,	39%	Distillate Oil 20.0 54.0 44.66 18 46 54 - 11.63 11.63 11.75 -
TB3 Tarbert	Unit	3 IE CSC 70%	Oil,	30%	Distillate Oil 34.9 240.0 247.61 35 100 180 240 8.07 8.07 9.06 9.15
TB4 Tarbert	Unit	4 IE CSC 70%	Oil,	30%	Distillate Oil 34.9 240.0 247.62 35 120 190 241 8.40 8.40 9.43 9.64
MP1 Moneypoint	Unit	1 IE CSC 68%	Coal,	32%	GasOil Coal 136.0 280.0 173.41 128 195 280 - 9.46 9.46 9.56 -
MP2 Moneypoint	Unit	2 IE CSC 68%	Coal,	32%	GasOil Coal 136.0 280.0 173.41 128 195 280 - 9.46 9.46 9.56 -
MP3 Moneypoint	Unit	3 IE CSC 68%	Coal,	32%	GasOil Coal 136.0 280.0 173.41 128 195 280 - 9.46 9.46 9.56 -
ED1 Edenderry IE CSC Oil Peat/Biomass 41.0 117.6 497.60 88 112 118 - 3.93 8.95 8.95 -
LR4 Lough	Rea IE CSC Peat Peat 73.0 91.0 84.10 73 91 - - 8.53 8.53 - -
WO4 West	Offaly	Power IE CSC Peat Peat 106.2 137.0 114.71 106 137 - - 8.24 8.24 - -
AA1 Ardnacrusha	Unit	1 IE Hydro Hydro 11.9 21.0 - - - - - - - - -
AA2 Ardnacrusha	Unit	2 IE Hydro Hydro 11.9 22.0 - - - - - - - - -
AA3 Ardnacrusha	Unit	3 IE Hydro Hydro 11.9 19.0 - - - - - - - - -
AA4 Ardnacrusha	Unit	4 IE Hydro Hydro 11.9 24.0 - - - - - - - - -
ER1 Erne	Unit	1 IE Hydro Hydro 4.0 10.0 - - - - - - - - -
ER2 Erne	Unit	2 IE Hydro Hydro 4.0 10.0 - - - - - - - - -
ER3 Erne	Unit	3 IE Hydro Hydro 5.0 22.5 - - - - - - - - -
ER4 Erne	Unit	4 IE Hydro Hydro 5.0 22.5 - - - - - - - - -
LE1 Lee	Unit	1 IE Hydro Hydro 3.0 15.0 - - - - - - - - -
LE2 Lee	Unit	2 IE Hydro Hydro 1.0 4.0 - - - - - - - - -
LE3 Lee	Unit	3 IE Hydro Hydro 3.0 8.0 - - - - - - - - -
LI1 Liffey	Unit	1 IE Hydro Hydro 3.0 15.0 - - - - - - - - -
LI2 Liffey	Unit	2 IE Hydro Hydro 3.0 15.0 - - - - - - - - -
LI4 Liffey	Unit	4 IE Hydro Hydro 4.0 4.0 - - - - - - - - -
LI5 Liffey	Unit	5 IE Hydro Hydro 0.2 4.0 - - - - - - - - -
TH1 Turlough	Hill	Unit	1 IE Pumped	Storage Pumped	Storage 5.0 73.0 0.00 - - - - - - - -
TH2 Turlough	Hill	Unit	2 IE Pumped	Storage Pumped	Storage 5.0 73.0 0.00 - - - - - - - -
TH3 Turlough	Hill	Unit	3 IE Pumped	Storage Pumped	Storage 5.0 73.0 0.00 - - - - - - - -
TH4 Turlough	Hill	Unit	4 IE Pumped	Storage Pumped	Storage 5.0 73.0 0.00 - - - - - - - -
AT1 Aghada	CT	Unit	1 IE OCGT Gas Gas 15.0 88.0 285.30 15 40 90 - 7.83 7.83 9.72 -
AT2 Aghada	CT	Unit	2 IE OCGT Gas Gas 15.0 90.0 285.30 15 40 90 - 7.83 7.83 9.72 -
ED3 Cushaling IE OCGT Distillate Distillate 5.0 56.0 85.00 56 - - - 9.00 - - -
ED5 Cushaling IE OCGT Distillate Distillate 5.0 56.0 85.00 56 - - - 9.00 - - -
NW5 Northwall	Unit	5 IE OCGT Distillate Distillate 5.0 104.0 310.93 5 104 - - 9.76 9.76 - -
RH1 Rhode	1 IE OCGT Distillate Distillate 5.0 52.0 85.01 5 52 - - 9.82 9.82 - -
RH2 Rhode	2 IE OCGT Distillate Distillate 5.0 52.0 85.01 5 52 - - 9.82 9.82 - -
TP1 Tawnaghmore	1 IE OCGT Distillate Distillate 5.0 52.0 86.62 5 52 - - 9.59 9.59 - -
TP3 Tawnaghmore	3 IE OCGT Distillate Distillate 5.0 52.0 86.62 5 52 - - 9.59 9.59 - -
B10 Ballylumford	Unit	10 NI CCGT Gas Gas 63.0 101.0 88.34 63 101 - - 6.00 6.00 - -
B31 Ballylumford	CCGT	Unit	31 NI CCGT Gas Gas 113.0 247.0 280.80 113 247 - - 5.94 5.94 - -
B32 Ballylumford	Unit	32 NI CCGT Gas Gas 113.0 247.0 280.80 113 247 - - 5.94 5.94 - -
B4 Ballylumford	Unit	4 NI CSC Gas Gas 54.0 170.0 166.50 54 170 - - 9.72 9.72 - -
B5 Ballylumford	Unit	5 NI CSC Gas Gas 54.0 170.0 166.50 54 170 - - 10.20 10.20 - -
B6 Ballylumford	Unit	6 NI CSC Gas Gas 54.0 170.0 166.50 54 170 - - 10.00 10.00 - -
Contour	1 Contour	Global	unit	1 NI CHP Gas Gas 1.5 3.0 2.45 3 - - - 7.35 - - -
Contour	2 Contour	Global	unit	2 NI CHP Gas Gas 1.5 3.0 2.54 3 - - - 7.35 - - -
CPS	CCGT Coolkeeragh	CCGT NI CCGT Gas Gas 260.0 425.0 624.51 260 328 372 425 4.32 5.26 5.49 5.52
K1	Coal	220 Kilroot	Unit	1	FGD NI CSC Oil Coal 54.0 238.0 272.45 54 175 198 238 8.87 8.87 8.87 28.26
K2	Coal	220 Kilroot	Unit	2	FGD NI CSC Oil Coal 54.0 238.0 272.45 54 175 198 238 8.87 8.87 8.87 28.26
BGT1 Ballylumford	GT1 NI OCGT Distillate Distillate 8.0 58.0 171.00 8 53 58 - 10.50 10.50 10.50 -
BGT2 Ballylumford	GT2 NI OCGT Distillate Distillate 8.0 58.0 171.00 8 53 58 - 10.50 10.50 10.50 -
CGT8 Coolkeeragh	GT8 NI OCGT Distillate Distillate 8.0 58.0 171.00 8 58 - - 10.50 10.50 - -
KGT1 Kilroot	GT1 NI OCGT Distillate Distillate 5.4 29.0 97.38 5 24 29 - 10.50 10.50 10.50 -
KGT2 Kilroot	GT2 NI OCGT Distillate Distillate 5.4 29.0 97.38 5 24 29 - 10.50 10.50 10.50 -
KGT3 Kilroot	GT3 NI OCGT Distillate Distillate 12.8 41.6 115.39 13 42 - - 9.24 9.24 - -
KGT4 Kilroot	GT4 NI OCGT Distillate Distillate 12.8 41.6 115.39 13 42 - - 9.24 9.24 - -
Contour	3 Contour	Global	unit	3 NI CHP Gas Gas 1.5 3.0 2.54 3 - - - 7.35 - - -

Capacity	Point	[MW	
exported]

Incremental	Heat	Rate	
Slope	[GJ/MWhr]

Note: OCGT= open cycle gas turbine, CSC = condense steam cycle, CHP = combined heat and

power, Pumped Storage = pumped storage hydro. Source: Commission for Energy Regulation All

Island Project.

Figure B.1: Generation unit cycle, fuel, and heat rate parameters
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ID Unit	Name
Forced	
Outage	
Rate,%

Mean	Time	
to	Repair,	

hrs

Ramp	Rate	
Up,	

MW/min

Ramp	Rate	
Down,	

MW/min

Min	Up	
Time	(hrs)

Min	Down	
Time	(hrs)

Start	up	
Energy	(GJ)	

Cold

Start	up	
Energy	(GJ)	

Warm

Start	up	
Energy	(GJ)	

Hot

Hot	to	
Warm,	hrs

Warm	to	
Cold,	hrs

AD1 Aghada	Unit	1 6.3% 50 3.4 3.7 4.00 3.50 4302 2185 1273 5 72
ADC Aghada	CCGT 2.9% 50 22.0 22.0 4.00 4.00 2400 1800 1200 12 72
AT4 Aghada	CT	Unit	4 4.8% 50 5.0 5.0 0.00 0.75 63 63 63 12 60
DB1 Dublin	Bay	Power 2.0% 24 10.0 9.0 4.00 0.00 7700 2604 2600 1 72
HN2 Huntstown	Phase	II 7.0% 55 20.0 20.0 4.00 4.00 644 531 318 12 60
HNC Huntstown 7.0% 55 7.0 7.0 4.00 4.00 4772 2803 835 12 60
MRC	No	ST Marina	No	ST 4.8% 50 5.0 5.0 1.00 0.50 63 63 63 12 120
PBC Poolbeg	Combined	Cycle 5.9% 50 16.5 16.5 4.00 4.00 2800 1800 1500 8 120
SK3 Sealrock	3	(Aughinish	CHP) 3.0% 33 6.0 6.0 4.00 4.00 1200 1000 800 8 24
SK4 Sealrock	4	(Aughinish	CHP) 3.0% 33 6.0 6.0 4.00 4.00 1200 1000 800 8 24
TY Tynagh 3.6% 55 15.0 15.0 4.00 4.00 4115 2954 1900 8 40
WG Whitegate 3.4% 32.14 30.0 30.0 4.00 4.00 333 310 277 12 72
GI1 Great	Island	Unit	1 0.2% 50 1.0 1.0 4.00 2.00 562 449 218 12 48
GI2 Great	Island	Unit	2 8.6% 50 1.0 1.0 4.00 2.00 562 449 218 12 48
GI3 Great	Island	Unit	3 1.7% 50 0.6 1.5 4.00 4.00 743 600 293 12 60
TB1 Tarbert	Unit	1 0.3% 50 1.0 1.0 2.00 2.00 562 449 218 12 60
TB2 Tarbert	Unit	2 1.1% 50 1.0 1.0 2.00 2.00 562 449 218 12 60
TB3 Tarbert	Unit	3 0.3% 50 2.8 2.2 24.00 4.00 3180 1934 1072 14 120
TB4 Tarbert	Unit	4 5.0% 50 2.8 2.2 24.00 4.00 3180 1934 1072 14 120
MP1 Moneypoint	Unit	1	FGD	SCR 6.3% 50 1.4 5.0 6.00 5.00 14620 6920 4360 12 72
MP2 Moneypoint	Unit	2	FGD	SCR 5.9% 50 1.4 5.0 6.00 5.00 14620 6920 4360 12 72
MP3 Moneypoint	Unit	3	FGD	SCR 6.1% 50 1.4 5.0 6.00 5.00 14620 6920 4360 12 72
ED1 Edenderry 4.0% 72 1.8 1.8 4.00 0.50 2308 1084 436 4 48
LR4 Lough	Rea 5.0% 50 1.5 1.5 4.00 4.00 500 400 300 12 60
WO4 West	Offaly	Power 7.1% 50 1.5 1.5 4.00 4.00 750 600 450 12 60
AA1 Ardnacrusha	Unit	1 2.4% 60 6.0 6.0 0.00 0.25 0 0 0 12 60
AA2 Ardnacrusha	Unit	2 2.4% 60 6.0 6.0 0.00 0.25 0 0 0 12 60
AA3 Ardnacrusha	Unit	3 2.4% 60 6.0 6.0 0.00 0.25 0 0 0 12 60
AA4 Ardnacrusha	Unit	4 2.3% 60 6.0 6.0 0.00 0.25 0 0 0 12 60
ER1 Erne	Unit	1 2.4% 60 5.0 10.0 0.00 0.17 0 0 0 12 60
ER2 Erne	Unit	2 2.4% 60 5.0 10.0 0.00 0.17 0 0 0 12 60
ER3 Erne	Unit	3 2.4% 60 10.0 22.5 0.00 0.17 0 0 0 12 60
ER4 Erne	Unit	4 0.9% 60 10.0 22.5 0.00 0.17 0 0 0 12 60
LE1 Lee	Unit	1 2.3% 60 2.4 15.0 0.00 0.17 0 0 0 12 60
LE2 Lee	Unit	2 2.3% 60 1.5 4.0 0.00 0.17 0 0 0 12 60
LE3 Lee	Unit	3 2.3% 60 0.6 8.0 0.00 0.17 0 0 0 12 60
LI1 Liffey	Unit	1 2.5% 60 5.0 10.0 0.00 0.20 0 0 0 12 60
LI2 Liffey	Unit	2 2.3% 60 5.0 10.0 0.00 0.20 0 0 0 12 60
LI4 Liffey	Unit	4 2.5% 60 2.0 2.0 0.25 0.13 0 0 0 12 60
LI5 Liffey	Unit	5 2.5% 60 0.0 2.0 0.00 0.12 0 0 0 12 60
TH1 Turlough	Hill	Unit	1 6.4% 60 210.0 270.0 0.00 0.00 0 0 0 12 60
TH2 Turlough	Hill	Unit	2 2.1% 60 210.0 270.0 0.00 0.00 0 0 0 12 60
TH3 Turlough	Hill	Unit	3 6.4% 60 210.0 270.0 0.00 0.00 0 0 0 12 60
TH4 Turlough	Hill	Unit	4 6.4% 60 210.0 270.0 0.00 0.00 0 0 0 12 60
AT1 Aghada	CT	Unit	1 4.9% 50 5.0 5.0 0.00 0.75 63 63 63 12 60
AT2 Aghada	CT	Unit	2 4.9% 50 5.0 5.0 0.00 0.75 63 63 63 12 60
ED3 Cushaling 2.0% 24 5.0 5.0 0.00 0.08 20 20 20 0.5 1
ED5 Cushaling 2.0% 24 5.0 5.0 0.00 0.08 20 20 20 0.5 1
NW5 Northwall	Unit	5 4.4% 50 8.0 8.0 0.00 0.50 50 50 50 12 60
RH1 Rhode	1 0.0% 50 5.0 10.0 0.00 0.75 24 24 24 12 60
RH2 Rhode	2 0.2% 50 5.0 10.0 0.00 0.75 24 24 24 12 60
TP1 Tawnaghmore	1 1.3% 50 5.0 10.0 0.00 0.75 24 24 24 12 60
TP3 Tawnaghmore	3 0.3% 50 5.0 10.0 0.00 0.75 24 24 24 12 60
B10 Ballylumford	Unit	10 5.0% 72 1.1 4.0 0.02 0.25 405 225 135 8 40
B31 Ballylumford	CCGT	Unit	31 4.0% 72 3.1 11.0 0.02 0.25 1611 666 567 8 40
B32 Ballylumford	Unit	32 4.0% 72 3.1 11.0 0.02 0.25 1611 666 567 8 40
B4 Ballylumford	Unit	4 8.0% 72 2.0 9.7 0.02 0.02 2070 1530 810 10 26
B5 Ballylumford	Unit	5 8.0% 72 2.0 9.8 0.02 0.02 2070 1530 810 10 26
B6 Ballylumford	Unit	6 8.0% 72 2.0 9.8 0.02 0.02 2070 1530 810 10 26
Contour	1 Contour	Global	unit	1 4.0% 60 0.8 0.8 0.17 0.25 - - - 0.25 0.25
Contour	2 Contour	Global	unit	2 4.0% 60 0.8 0.8 0.17 0.25 - - - 0.25 0.25
CPS	CCGT Coolkeeragh	CCGT 3.0% 72 8.0 18.5 4.00 4.00 5220 3024 1080 8 36
K1	Coal	220 Kilroot	Unit	1	FGD 3.2% 72 4.6 5.8 4.00 0.02 2152 1580 941 10 55
K2	Coal	220 Kilroot	Unit	2	FGD 3.2% 72 4.6 5.8 4.00 0.02 2152 1580 941 10 55
BGT1 Ballylumford	GT1 1.4% 72 10.0 18.0 0.02 0.25 8 8 8 n/a	=	OCGT 0
BGT2 Ballylumford	GT2 1.4% 72 10.0 18.0 0.02 0.25 8 8 8 n/a	=	OCGT 0
CGT8 Coolkeeragh	GT8 1.1% 72 10.0 10.0 0.02 0.25 8 8 8 n/a	=	OCGT 0
KGT1 Kilroot	GT1 0.8% 72 6.0 6.0 0.33 0.25 8 8 8 n/a	=	OCGT 0
KGT2 Kilroot	GT2 0.8% 72 6.0 6.0 0.33 0.25 8 8 8 n/a	=	OCGT 0
KGT3 Kilroot	GT3 2.0% 72 10.0 10.0 0.33 0.38 10 10 10 n/a	=	OCGT 0
KGT4 Kilroot	GT4 2.0% 72 10.0 10.0 0.33 0.38 10 10 10 n/a	=	OCGT 0
Contour	3 Contour	Global	unit	3 4.0% 60 0.8 0.8 0.17 0.25 - - - 0.25 0.25

Source: Commission for Energy Regulation All Island Project.

Figure B.2: Generation unit operation parameters
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