
A Review of Software InspectionsAdam Porter�, Harvey Siy Lawrence VottaComputer Science Department Software Production Research DepartmentUniversity of Maryland AT&T Bell LaboratoriesCollege Park, Maryland 20742 Naperville, Illinois 60566faporter,harveyg@cs.umd.edu votta@research.att.comOctober 18, 1995AbstractFor two decades, software inspections have proven e�ective for detecting defects in software. We havereviewed the di�erent ways software inspections are done, created a taxonomy of inspection methods, andexamined claims about the cost-e�ectiveness of di�erent methods.We detect a disturbing pattern in the evaluation of inspection methods. Although there is universalagreement on the e�ectiveness of software inspection, their economics are uncertain. Our examination ofseveral empirical studies leads us to conclude that the bene�ts of inspections are often overstated and thecosts (especially for large software developments) are understated. Furthermore, some of the most in
uentialstudies establishing these costs and bene�ts are 20 years old now, which leads us to question their relevanceto today's software development processes.Extensive work is needed to determine exactly how, why, and when software inspections work, and whethersome defect detection techniques might be more cost-e�ective than others. In this article we ask some questionsabout measuring e�ectiveness of software inspections and determining how much they really cost when theire�ect on the rest of the development process is considered. Finding answers to these questions will enable usto improve the e�ciency of software development.1 IntroductionFor twenty years, software inspections have been described as one of the most cost-e�ective ways to improvethe quality of computer software[5] . Although it's clearly an expensive process, its cost is often justi�ed onthe grounds that the longer a defect remains in a software system the more expensive it is to repair; therefore,the cost of �nding defects today will always be less than the cost of repairing them in the future. However,this argument is simplistic { for example, it doesn't consider the powerfully negative e�ect inspections have onschedule.We have observed that a typical release of AT&T's 5ESSR
 switch[30] (� .5M lines of added and changedcode per release on a base of 5M lines) can require roughly 1500 inspections, each with four, �ve or even more�This work is supported in part by a National Science Foundation Faculty Early Career Development Award, CCR-9501354. Mr.Siy was also partly supported by AT&T's Summer Employment Program1

Draft: October 18, 1995 2participants. Scheduling so many meetings causes delays, lengthens cycle time and greatly increases cost. (Inthe case of one 5ESS release we estimate that inspections alone increased cycle time 10 weeks { from 60 to 70.)Three expensive but often uncontested assumptions are that inspections must include group meetings, thatinspection plus later testing is always much more cost-e�ective than testing alone, and that every part of everyartifact must be inspected.We have also seen that reviewers spend considerable amounts of time identifying and reporting issues thatmight be found more easily or prevented altogether with automated tools. As new tools appear, inspections mayno longer be cost-e�ective for �nding certain kinds of defects.Although these are only examples, they reveal two fundamental problems that undermine the cost-e�ectiveuse of software inspection: (1) the costs and bene�ts of software inspections haven't been adequately de�nedand therefore haven't been properly measured; and (2) the causal agents responsible for increasing the bene�tsand/or lowering the cost of inspections haven't been rigorously studied, making it impossible to determine howand when to best use inspections.1.1 Levels of AnalysisThese problems lead to two questions whose answers will help us understand exactly when inspections are justi�edfor desired levels of cost, quality, and interval.1. How should the costs and bene�ts of inspections be measured?2. What factors signi�cantly in
uence these costs and bene�ts?Several studies have addressed these questions, usually at one of two di�erent levels of analysis:� Local Analysis { comparing inspection methods, but without regard to their e�ect on the entire developmentprocess, or� Global Analysis { examining the e�ect of one or more inspection methods on the entire development process.In this article we survey existing research with the goal of understanding how how well these questions havebeen answered at each level of analysis. We will also identify areas in which further work is needed.

Draft: October 18, 1995 32 The Software Inspection ProcessTo eliminate defects, many organizations use an inspection process with at least three steps: Preparation, Col-lection, and Repair. First, each member of a team of reviewers reads the artifact separately, detecting as manydefects as possible. Next, these newly discovered defects are collected and discussed, usually at a team meeting.Then the author repairs them. Under some conditions an artifact can be inspected one or more times.The several variations on this process are detailed in the following taxonomy of inspection methods.2.1 Variations Among Di�erent Inspection MethodsWe choose to describe inspection methods based on the following attributes: (1) team size, (2) number of sessions,(3) coordination between multiple sessions, (4) collection technique, (5) defect detection method, and (6) use ofpost-collection feedback. Although other classi�cation schemes could also be used, we believe these attributesrepresent underlying mechanisms that drive the costs and bene�ts of inspections.Team Size. Team sizes can be large or small. The inspection team is normally composed of several reviewers.Presumably, this allows a wide variety of defects to be found since each reviewer relies on di�erent expertise andexperiences when inspecting. Thus, the larger and more varied the team, the better the coverage. However, largeteams require more e�ort since more people analyze the artifact (which is often unfamiliar to them). This alsoreduces the time they can spend on other development work. In addition, it becomes harder to �nd a time asuitable meeting time as the number of attendees grows. Finally, it is more di�cult for everyone to contributefully during the meeting because of limited air time.Smaller teams take less e�ort and are easier to schedule. However, they risk missingmore defects and becomingsuper�cial if personnel with required domain expertise are not included.Number of Sessions. This refers to the number of times the artifact undergoes the inspection process, possiblywith di�erent teams of inspectors. Multiple-session inspections will �nd more defects as long as some importantor subtle defects escape detection by any one inspection session. Also, splitting one large team inspection intomultiple sessions with smaller teams might be more e�ective. The main problem with multiple sessions is thatinspection e�ort increases as the number of sessions grows.Coordination of Multiple Sessions. For multiple-session inspections, there is the additional option of con-ducting the sessions in parallel { with each session inspecting the same version of the artifact { or in sequence {

Draft: October 18, 1995 4with defects found in one session being repaired before going on to the next session. Parallel sessions will be moree�ective only if di�erent teams �nd few defects in common. They should also have nearly the same interval tocompletion as single-session inspections since the meetings can be scheduled to occur at nearly the same time. Inaddition, the author can collect all defect reports and do just one pass at the rework. But collecting the reportstakes more e�ort, especially in sorting out which issues from di�erent reports actually refer to the same defectin the artifact. Additionally, there might be con
icting issues which would take time to resolve.Sequential sessions shouldn't duplicate issues since those found by an earlier team would have already beenrepaired. More defects may be found, since cleaning out old defects might make it easier to �nd new ones.However, it does take longer because the author cannot schedule the next phase of the inspection until defectsfrom the �rst session have been resolved.Collection Technique. This refers to whether an collection meeting is to be held (group-centered) or not(individual-centered). Although there is almost always some meeting between reviewers and the artifact's authorto deliver the reviewer's �ndings, the goal of group-centered meetings is to �nd defects. Many people consider themeeting to be the central step of the inspection process because they believe that several people working togetherwill �nd defects that none of them would �nd while working separately. This is known as \synergy". Meetings alsoserve as a way to spread domain knowledge since unfamiliar inspectors interact with more experienced developers.Finally, meetings provide a natural milestone for the project under development. It does however takes time ande�ort to schedule a meeting and recent studies have shown that meetings do not create as much synergy aspreviously believed[47] . In addition, the problems of improperly held meetings are well-documented[11, 34] .These include free-riding (one person depending on others to do the work), conformance pressure (the tendencyto follow the majority opinion), evaluation apprehension (failure to raise a seemingly \stupid" issue for fearof embarrassment), attention blocking (failure to comprehend someone else's contribution and to build on it),dominance (a single person dominating the meeting), and others.Individual-centered inspections sidestep these problems by eliminating the inspection meeting or de-emphasizingit (e.g., making it optional, making attendance optional, etc.). However, they risk losing the meeting synergy.Defect Detection Method. Preparation, the �rst step of the inspection process, is accomplished through theapplication of defect detection methods. These are composed of defect detection techniques, individual reviewerresponsibilities, and a policy for coordinating responsibilities among the review team. Defect detection techniques

Draft: October 18, 1995 5range in prescriptiveness from intuitive, nonsystematic procedures (such as ad hoc or checklist techniques) toexplicit and highly systematic procedures (such as scenarios or correctness proofs).A reviewer's individual responsibility may be general, to identify as many defects as possible, or speci�c, tofocus on a limited set of issues (such as ensuring appropriate use of hardware interfaces, identifying untestablerequirements, or checking conformity to coding standards).Individual responsibilities may or may not be coordinated among the review team members. When they arenot coordinated, all reviewers have identical responsibilities. In contrast, each reviewer in a coordinated teamhas di�erent responsibilities.The most frequently used detection methods (ad hoc and checklist) rely on nonsystematic techniques. Re-viewer responsibilities are general and identical. However, multiple-session inspection approaches normally requirereviewers to carry out speci�c and distinct responsibilities.Use of Post-Collection Feedback. In most inspections, the author is left alone after the inspection meetingto analyze the issues raised and deal with the rework. Consequently, the development community may not learnwhy defects were made, nor how they they could have been avoided. Some authors argue that a brainstormingmeeting should be held after the inspection meeting to determine the root cause of each issue recorded in themeeting.The problems with this are the same as with other meetings: they require more e�ort and congest schedulesas well as su�er from other group-interaction problems.2.2 Example Inspection MethodsFagan Inspections. In 1976, Fagan[15] published an in
uential paper detailing a software inspection processused at IBM. Basically, it consists of six steps. :1. Planning. The artifact to be inspected is checked to see whether it meets certain entry criteria. If so, aninspection team, usually composed of up to four persons, is formed. Inspectors are often chosen from apool of developers who are working on similar software, software that interfaces with the current artifact.The assumption is that inspectors familiar with the artifact will be more e�ective than those who aren't.2. Overview. The author meets with the inspection team. He or she provides background on the artifact, e.g.,its purpose and relationship to other artifacts.

Draft: October 18, 1995 6Method Team No. of Detection Meet PostSize Sessions MethodFagan[15] Large 1 Ad hoc Yes |Bisant Small 1 Ad hoc Yes |Gilb[20] Large 1 Checklist Yes Root causeanalysisMeetingless Large 1 Unspeci�ed No |Inspection[47]ADR[35] Small >1 Scenario Yes |ParallelBritcher[6] Unspeci�ed 4 Scenario Yes |ParallelPhased Small >1 Checklist Yes |Inspection[27] Sequential (Comp) (Reconcile)N-fold[44] Small >1 Ad hoc Yes |ParallelCode Small 1 Ad hoc Optional |Reading[33]Table 1: Example Inspection Methods. This table compares the example inspection methods based on theinspection taxonomy.3. Preparation. The inspection team independently analyzes the artifact and any supporting documentationand record potential defects.4. Inspection. The inspection team meets to analyze the artifact with the sole objective of �nding errors. Themeeting is held on the assumption that a group of people working together �nds defects that the members,working alone, would not.Before the meeting, one person is designated as the team leader or moderator, who orchestrates the meeting.Another person, designated as the reader, paraphrases the artifact. Defects are found during the reader'sdiscourse and questions are pursued only to the point that defects are recognized. The issues found arenoted in an inspection report and the author is required to resolve them. (Extensive solution hunting isdiscouraged during inspection.) The inspection meeting lasts no more than two hours to prevent exhaustion.5. Rework. All issues noted in the inspection report are resolved by the author.6. Follow-up. The resolution of each issue is veri�ed by the moderator. The moderator then decides whetherto reinspect the artifact depending on the quantity and quality of the rework.Many software organizations have adopted this process (or a variation) for their own review procedures. Theterm \software inspection" is now almost exclusively associated with some form of this method and its variations.

Draft: October 18, 1995 7Table 1 describes Fagan's method. It uses a large team of three or more persons; there is one session; thepreparation uses ad hoc techniques; and there is a meeting.Two-person Inspections. Bisant and Lyle[4] proposed reducing the inspection team to two persons: theauthor and one reviewer.Table 1 describes Bisant and Lyle's method. It uses a small team of one reviewer; there is one session; thepreparation uses ad hoc techniques; and there is a meeting between the sole reviewer and author.Gilb Inspections. Gilb[20] inspections are similar to Fagan inspections, but introduces a process brainstormingmeeting right after the inspection meeting. This step enables process improvement through studying and dis-cussing the causes of the defects found at the inspection to �nd positive recommendations for eliminating them inthe future. These recommendations may a�ect the technical, organizational, and political environment in whichthe developers work.Table 1 describes Gilb's method. It uses a large team usually varying between four and six persons; there isone session; the preparation uses checklists, and there is an inspection meeting which is immediately followed bya root cause analysis meeting.Meetingless Inspections. Many people believe that most defects are identi�ed during the inspection meeting.However, several recent studies have indicated that most defects are actually found during the preparationstep[39, 47] . Humphrey[22] states that \three-quarters of the errors found in well-run inspections are foundduring preparation." Votta[47] suggests replacing inspection meetings with depositions, where the author and,optionally, the moderator meet separately with each of the reviewers to get their inspection results.Table 1 describes meetingless inspection. It uses many small (one-person) teams; there are multiple sessions(one per reviewer); the preparation technique is left unspeci�ed; and there are no team meetings. Instead, theauthor meets with each reviewer separately.Active Design Reviews. Parnas and Weiss[35] present active design reviews (ADR). The authors believe thatin conventional design reviews, reviewers are given too much information to examine, and they must participatein large meetings which allow for limited interaction between reviewers and author. In ADR, the authors providequestionnaires to guide the inspectors. The questions are designed such that they can only be answered by carefulstudy of the document. Some of the questions force the inspector to take a more active role than just readingpassively. For example, he or she may be asked to write a program segment to implement a particular design in

Draft: October 18, 1995 8a low-level design document being reviewed.Each inspection meeting is broken up into several smaller, specialized meetings, each of which concentrateson one attribute of the artifact. An example is checking consistency between assumptions and functions, i.e.,determining whether assumptions are consistent and detailed enough to ensure that functions can be correctlyimplemented and used.Table 1 compares ADR to the rest of the example methods. It uses small teams usually varying between 2{4persons; there is more than 1 session; sessions are held in parallel with each examining one aspect of the artifact;the preparation uses questionnaires, a form of scenarios; and each session has a meeting.Inspecting for Program Correctness. Britcher[6] takes ADR one step further by incorporating correctnessarguments into the questionnaires. The correctness arguments are based on four key program attributes: Topol-ogy (whether the hierarchical decomposition into subproblems solves the original problem), Algebra (whethereach successive re�nement remains functionally equivalent), Invariance (whether the correct relationships amongvariables are maintained before, during, and after execution), and Robustness (how well the program handleserror conditions).By applying formal veri�cation methods informally through inspections, this approach makes a compromisebetween the di�culty of scaling formal methods to large systems and the bene�t of using systematic detectiontechniques in inspection.Table 1 describes Britcher's method. The team size is left unspeci�ed; there are four sessions, which may beheld in parallel, with each session examining one aspect of the artifact; the preparation uses scenarios; and eachsession has a meeting.Phased Inspections. Knight and Myers[27] present phased inspections, where the inspection step is dividedinto several mini-inspections or \phases." Standard inspections check for many types of defects in a singleexamination. With phased inspections, each phase is conducted by one or more inspectors and is aimed atdetecting one class of defects. Where there is more than one inspector, they will meet just to reconcile theirdefect list. The phases are done in sequence, i.e., inspection does not progress to the next phase until rework hascompleted on the previous phase.Table 1 describes phased inspections. It uses small teams usually varying between one and two persons;there is more than one session; sessions are held in sequence and each examines one aspect of the artifact; the

Draft: October 18, 1995 9preparation uses checklists; and each session with more than one reviewer includes a team meeting, held just toreconcile and consolidate the reviewer's defect lists.N-fold Inspections. Schneider, et al.[44] , developed the N-fold inspection process. This is based on thehypotheses that a single inspection team can �nd only a fraction of the defects in an artifact and that multipleteams will not signi�cantly duplicate each others e�orts. In an N-fold inspection, N teams each carry out parallel,independent inspections of the same artifact. The results of each inspection are collated by a single moderatorwho removes duplicate defect reports.Table 1 describes the N-fold inspections to the rest of the example methods. It uses large teams (threereviewers per team in their study); there is more than one session; sessions are held in parallel, with each sessionlooking at all aspects of the artifact; the preparation uses ad hoc techniques; and each session includes a teammeeting.Code Reading. Code reading has been proposed as an alternative to formal code inspections[33] . In codereading, the inspector simply focuses on reading source code and looking for defects. The author hands out thesource listings (1K-10K lines) to two or more inspectors who read the code at a typical rate of 1K lines per day.This is the main step. The inspectors may then meet with the author to discuss the defects, but this is optional.Removing the emphasis on meetings allows for more emphasis on individual defect discovery. In addition, theproblems associated with meetings automatically disappear (including scheduling di�culties and inadequate airtime).Table 1 describes code reading. It uses a small teams; there are multiple sessions; the preparation uses adhoc techniques; and holding a meeting is optional.Code Reading by Stepwise Abstraction. Code reading by stepwise abstraction[2] is a code-reading tech-nique. The inspector decomposes the program into a set of proper subprograms where a proper subprogram isa chunk of code that performs a single function that can be conveniently documented. A proper subprogramimplementing a function that cannot be decomposed further is known as a prime subprogram. The program isdecomposed until only prime subprograms remain. Then their functions are composed together to determinea function for the entire program. This derived function is then compared to the original speci�cations of theprogram.

Draft: October 18, 1995 103 Measuring the Costs and Bene�ts of InspectionsSoftware inspections are one of many techniques for improving the quality of software artifacts. Consequently,before choosing to perform inspections we should ascertain (1) the costs and bene�ts of individual inspectionmethods and (2) how the use of a given inspection method a�ects the costs and bene�ts of the entire softwaredevelopment process. This section discusses models for measuring the costs and bene�ts of software inspectionsand then presents examples of cost-bene�t analyses from previous studies.3.1 Local Analysis of Inspection Costs and Bene�tsTo measure the local costs and bene�ts of one or more inspection methods we can construct two models: one forcalculating inspection interval and e�ort, and another for estimating the number of defects in an artifact. Thesemodels are depicted in Figure 1.3.1.1 Modeling Local CostTwo of the most important inspection costs are interval and e�ort. The inspection process begins when anartifact is ready for inspection and ends when the author �nishes repairing the defects found. The elapsed timebetween these events is called the inspection interval.The length of this interval depends on the time spent working (preparing, attending collection meetings, andrepairing defects) and the time spent waiting (time during which the inspection is held up by process dependencies,higher priority work, scheduling con
icts, etc).In order to measure inspection interval and its various subintervals, we devised an inspection time modelbased on visible inspection events [50] . Whenever one of these events occurs it is timestamped and the event'sparticipants are recorded.These events occur, for example, when the artifact is ready for inspection, or when a reviewer starts or �nisheshis or her preparation. This information is entered into a database, and inspection intervals are reconstructedby performing queries against the database. Inspection e�ort can also be calculated using this information.

Draft: October 18, 1995 11
AUTHOR

REV'S

TIME

1

2

N

•
•

PREPARATION COLLECTION REPAIRCODINGACTIVITY

U
N

D
IS

C
O

V
E

R
E

D
D

E
F

E
C

T
S

 (
%

)

100

0

Undiscovered Defects

Engaged in
Inspection
Discretionary UseUNFILLED

Interval Committed to
Other Activities

Figure 1: This �gure depicts a simple model of the inspection process. The �gure's lower panel summarizes theinspection's time usage. Speci�cally, it shows the inspection's participants (an author and several reviewers), theactivities they perform (coding, preparation, collection, repair, and other), the interval devoted to each activity(denoted by the shaded areas), and the total inspection interval (from end of coding to completion of repair). Italso shows how inspections must compete with other development processes for limited time and resources. Theupper portion of the �gure shows when and to what extent inspections remove defects from the artifact.3.1.2 Modeling Local Bene�tThe most important bene�t of an inspection is its e�ectiveness, and one important measure of an inspection'se�ectiveness is its defect detection ratio { the number of defects found during the inspection divided by the totalnumber of defects in the artifact. Because we never know exactly how many defects an artifact contains, it isimpossible to make this measurement directly, and therefore we are forced to approximate it.Several methods can provide these approximations. Each di�ers in their accuracy (how close they come tothe true measure), and their availability (how early in the software development process they can be applied).� Observed detection ratio: Assume that total defect density is constant for all artifacts of the same typeand that we can compare the observed defect densities. This is always available, but very inaccurate.� Partial estimation of detection ratio: Statistical methods such as capture-recapture estimation canbe used to estimate pre-inspection defect content[14, 46] . This method can be used when there are at leasttwo reviewers and they discover some defects in common. Under these conditions this method can be moreaccurate than the observed detection ratio and is available immediately after every inspection.

Draft: October 18, 1995 12� Complete estimation of detection ratio: Track the artifact through testing and �eld deployment,recording new defects as they are found. This is the most accurate method, but is not available until wellafter the project is completed.3.1.3 Assessing Local Costs and Bene�tsIn this section we survey previous work, showing how each study justi�ed the costs and bene�ts of its proposedinspection method.Anecdotal Studies. The cost-e�ectiveness of a method may be described anecdotally. Parnas and Weiss[35]applied ADR on an actual review of the design document for the operational
ight program of one of the Navy'saircraft.Case Studies. An implied requirement of inspections is understanding the artifact being reviewed. Rifkin andDeimel[41] suggest teaching program comprehension techniques during code inspection training classes in orderto improve program understanding during preparation and inspection. Using historical data they argued thatwhile inspections reduced the number of defects discovered by testing, they did not signi�cantly decrease thenumber of customer-identi�ed defects.Rifkin and Deimel hypothesized that introducing inspections have had little e�ect on reducing customer-identi�ed defects because, although reviewers were being thoroughly trained in the group aspects of the inspectionprocess, they were being given little guidance how to analyze a software work product.To test this hypothesis, they collected data from three software development groups, each composed of 30{35professionals. Everyone was familiar with the inspection process. One group was given 1.5 days training inprogram reading comprehension. The variable being measured was the number of customer-identi�ed defectsreported to each group per day.The data showed that the number of customer-reported defects dropped by 90% after the reviewers receivedreading comprehension training, while results of the other two groups of reviewers showed no change.Controlled Experiments. Bisant and Lyle[4] ran an experiment using two sets of student projects in aprogramming language class to study the e�ects of using a two-person inspection team, with no moderator, onprogrammer productivity, or time to complete the project. The experiment used a pretest-posttest, control groupdesign. The students were divided into an experimental group, which held inspections, and a control group, which

Draft: October 18, 1995 13did not. There were 13 students in the experimental group and 19 students in the control group. Both groups didnot inspect their design or code during the �rst project. For the second project, the members of the experimentalgroup were asked to inspect, along with a classmate, each other's design or code. The results showed that theprogramming speed of the experimental group improved signi�cantly in the second project.Knight and Myers[27] carried out an experiment involving 14 graduate students and using a phased inspectionwith four phases. Each student was involved in exactly one of the phases. The artifact was a C program withmore than 4,000 lines and 45 seeded defects, whose types were distributed across those which the four phasesare expected to �nd. The inspections raised a total of 115 issues. (Of these, only about 26 appear to a�ect theexecution of the program.) The inspectors also found 30 of the 45 seeded defects. The amount of e�ort totaled66 person-hours. This was determined from the usage of the inspection tool, and from the meeting times of theof the phases using more than one inspector.Acknowledging that they cannot make de�nitive comparisons, Knight and Myers found it interesting tocompare their results to Russell[43] ; which are also described in Section 3.2. They show that while Russell found1 defect per hour, the phases found 1.5 to 2.75 defects per hour.Mathematical Modeling. To test the cost-e�ectiveness of meetingless inspections, Votta[47] collected datafrom 13 inspections with meetings. He modeled the e�ort needed to hold depositions by the following formula:Edepositions = 3kad + t � 3Sum(pi)wherek = number of reviewers (apart from the moderator and recorder)ad = overhead time of starting and stopping a deposition (assume 10 minutes)pi = the fraction of faults found by the ith reviewert = inspection time (assume 2 hours).The model suggests that depositions would always take less e�ort than an inspection meeting, as long as thenumber of reviewers is not greater than 20. Their actual data showed that foregoing inspection meetings wouldhowever reduce the percentage of defects found by only 5%.

Draft: October 18, 1995 143.2 Global Analysis of Inspection Costs and Bene�tsThe rationale most often used to justify inspections is that it's cheaper to �nd and �x defects today than it is todo it later. Several studies have evaluated this conjecture by (1) measuring the costs and bene�ts of inspections(local analysis) and by (2) estimating the e�ect of inspections on the rest of the development process (globalanalysis).Global analysis usually involves evaluating alternative scenarios (i.e., if we hadn't found those 20 defectsduring the inspection, how much more testing and rework would we have had to do?) This information isnormally extrapolated from historical data and requires that the analyst make strong assumptions about itsrepresentativeness. As a result any analysis of the global cost-bene�ts of inspections must be examined critically.3.2.1 Modeling Global CostThe costs of performing inspections include the local costs described in Section 3.1 as well as any costs thatstem from including inspections in the development process, for example, duplicating inspection artifacts andmaintaining inspection reports. Another signi�cant cost comes from increasing schedule. Inspections, like otherlabor-intensive processes, require group meetings, which can cause delays and increase interval. Since longerintervals may incur substantial economic penalties, this cost must be considered. Extra interval can lead to:� late market entry - products that enter the market when there are few competitors often do better thantechnically superior products that enter later when there are more competitors;� opportunity costs - resources devoted to one product can't be used on others;� carrying costs - the longer it takes to build a product, the higher the cost of maintaining hardware labs,o�ce space, etc.Since these costs are di�cult to quantify, we believe that the cost of inspections is often underestimated.3.2.2 Modeling Global Bene�tInspections provide the direct bene�t of �nding defects. Many people believe that they also positively a�ectlater stages of development by reducing rework, testing, and maintenance. As we mentioned earlier, measuringthese bene�ts directly is impossible and therefore they must be estimated. Of course, any attempt to do this

Draft: October 18, 1995 15will involve making certain assumptions about how observed data relates to the values being estimated. Thissection examines several commonly made assumptions and explains why the some studies may be overstating thebene�ts of inspections.A1. All defects not found at an inspection would be shipped with the delivered system. Severalarticles compute the bene�t of �nding a defect during an inspection by equating it with the observed costof �nding and �xing defects that appear in the �eld. However, some of these defects would be found byanother means prior to system release.A2. Inspections �nd the same type and distribution of defects as testing. Other authors calculatethe bene�t of �nding a defect during inspection by equating it with the average cost to �nd defects duringtesting. For example, if it was determined that �nding and repairing a defect during testing costs an averageof 10 hours per defect, then the cost of �nding and repairing a defect found in inspection is also equated to10 hours per defect.One of the problems with this approach is that inspections may not �nd the same classes of defects astesting. For example, inspections turn up many issues which do not a�ect the operational behavior of thesystem. Figure 2 shows that in an industrial case study of more than 100 inspections, 60% of all issuesrecorded during an inspection meeting fall into this class[40] . These defects will never be found by testing.In another example, some studies have shown that almost half the defects found in testing are interfacedefects[38] , suggesting that inspections are not e�ectively �nding this class of defects, even though e�ort isspent looking for them.A3. Each defect found during inspection results in a linear reduction in testing e�ort. Anotherproblem with equating the bene�t of �nding defects at inspections with the average cost of testing isthat �nding defects during inspection does not proportionately reduce the e�ort spent in testing. For theexample given in A2, if 40 defects were found during inspection, it is usually estimated that 40� 10 = 400hours of testing will be saved. However, in our experience, testers make no assumptions on the reliabilityof pretested code and will run the same test suites whether the code was inspected or not. The amountof time spent testing depends more on the resources that are available and the desired reliability than theexact number of defects. Also, as testing progresses and defects are removed, it often takes longer to �nd

Draft: October 18, 1995 16
Inspection ID

0 20 40 60 80

0
20

40
60

80
10

0

S
of

t M
ai

nt
en

an
ce

 D
ef

ec
ts

 (

P
er

ce
nt

 o
f A

ll
Is

su
es

)

Figure 2: Percentage of soft maintenance defects recorded per inspection meeting. The term \soft maintenancedefects" refers to defects which do not a�ect the operational behavior of the software system. The dashed lineshows the mean percentage.new defects. Therefore defects found later in testing may disproportionately increase the mean number ofhours to �nd and �x defects in testing.A4. Inspection costs and bene�ts aren't a�ected by changing technology. Several early studies ofinspections studied the cost and bene�ts they provide. In the intervening 20 years, changes in technologyhave changed these tradeo�s. For example, Perry and Evangelist[37] suggest that there are signi�cantsavings in �nding and repairing interface defects when formal semantic information is added to subprograminterfaces and then the software is analyzed using tools like Inscape[36] , App[42] and Aspect[23] . Also,for code, fast machines make extensive unit testing possible which again changes the bene�ts of inspecting.Finally, several early articles equate machine e�ort with human e�ort. Clearly one hour of human e�ortmay be more expensive than one hour of machine e�ort.3.2.3 Assessing Global Costs and Bene�tsIn this section, we present examples of cost bene�t analyses from previous papers on software inspections. Weevaluate each one in the context of the four assumptions stated in Section 3.2.2.The reader must be cautioned that claims on improvement cited by each study occurred within speci�cdevelopment environments, under the in
uence of many factors not directly related to inspection such as design

Draft: October 18, 1995 17notation, programming language, development processes, available hardware, process maturity, artifact size, etc.Also, units of measurement may have di�ering operational de�nitions.Fagan[15] studied the use of design and code inspections on an IBM operating system component. The datawas compared against that for similar components which did not use inspections. The results showed an increasein productivity, attributed to a minimized overall amount of error rework. For instance, there was a 23% increasein coding productivity compared to projects which did not use inspections. Design and code inspections resultedin a net savings of 94 and 51 person-hours per KNCSL, respectively. This included the cost of defect rework,which was 78 and 36 person-hours per KNCSL for design and for code inspections, respectively. It should benoted that this data is 20 years old! As explained in assumption A4, the advertised bene�ts may have diminishedover the years as technology, defect prevention methods, and software development skills improved.In a follow-up study, Fagan[16] summarized several industrial case studies of inspection performance. Hisconclusions were that inspections of a 4,000 line program at AETNA Life and Casualty and a 6,000 line programat IBM detected 82% and 93%, respectively, of all defects detected over the entire life cycle of the programs; thatthe inspection of a 143,000 line software project at Standard Bank of South Africa reduced corrective maintenancecosts by 95%; and that inspection of test plans and test cases for a 20,000 line program at IBM saved more than85% of programmer e�ort by detecting major defects through inspection instead of testing.Russell[43] observed inspections for a two year period at Bell-Northern Research. These inspections foundabout one defect for every man-hour invested in inspections. He also concluded that each defect found before itreached the customer saved an average of 33 hours of maintenance e�ort. As the following excerpt shows, thearticle assumes that the bene�t of �nding a defect during inspection equals the cost of �xing it after the softwarehas been released.Here's some more perspective on this data. Statistics collected from large BNR software projects show thateach defect in software released to customers and subsequently reported as a problem requires an averageof 4.5 man-days to repair. Each hour spent on inspection thus avoids an average of 33 hours of subsequentmaintenance e�ort, assuming a 7.5-hour workday.Using assumption A1 Doolan[13] calculated that inspecting requirements speci�cations at Shell Researchsaved an average of 30 hours of maintenance work for every hour invested in inspections (not including rework).

Draft: October 18, 1995 18Bush[8] related the �rst 21 months of inspection experience at the Jet Propulsion Laboratory. In that time300 inspections had been conducted over 10 projects. She calculated that inspections cost $105 per defect. (Thee�ort to �nd, �x, and verify the correction of a defect varies between 1.5 and 2.1 hours, corresponding to acost between $90 and $120 or an average of $105.) But this saved them $1,700 per defect in costs which wouldhave been incurred by testing and repair. (It was not explained how this value was calculated.) The papersassumes that �nding and �xing a defect during inspection costs the same as �nding and �xing a defect duringtest (assumption A2).Kelly, et al.[26] , report on 203 inspections at the Jet Propulsion Laboratory. They showed that inspectionscost about 1.6 hours per defect, from planning, overview, preparation, meeting, root cause analysis, rework, andfollow-up. This is less than the 5 to 17 hours required to �x defects found during formal testing. Although thiscalculation requires assumption A2, many of the defects found didn't a�ect the behavior of the software andwouldn't have been caught by testing.Weller[49] relates 3 years of inspection experience at Bull HN. In one case study, data at the end of systemtest showed that inspections found 70% of all defects detected up to that point. In the same project, which wasto replace C code with Forth, the developers had initially decided not to do any inspections on the rewrittencode, but found that testing was taking six hours per failure. After inspections were instituted, they began to�nd defects at the cost of less than one hour per defect. In another case study, inspections of �xes dropped thenumber of defective �xes to half of what it had been without inspections.Franz and Shih[18] report the e�ects of using inspection on various artifacts of a sales and inventory trackingproject at Hewlett-Packard. They calculate that inspections saved a total of 618 hours (after taking into accountthe 90 hours needed to perform the inspections). The total time saved by inspection is the time saved in systemtest plus the time saved by reduced maintenance. System test time is the estimated black box testing e�ort neededto �nd each critical defect. Maintenance e�ort is the estimated e�ort saved for noncritical defect These savingsare subtracted from the cost of performing inspections { the time to do preparation, meeting, causal analysis,discussion, rework, and followup. In this particular project, inspections found 12 critical and 78 noncriticaldefects. Based on an estimated black box testing time of 20 hours per defect and 6 hours of maintenance for eachnoncritical defect, the total time saved amounted to 20� 12+ 6� 78� 90 = 618 hours. The estimated black boxtesting time and noncritical defect maintenance time seem to be loose upper bounds, based also on assumptions

Draft: October 18, 1995 19A1, A2 and A3. Also, unit and module testing found and �xed another 51 defects at a cost of 310 hours, or � 6hours per defect. This shows that it would take far less than 20 hours to �nd and �x the critical defects frominspections if they happen instead to be discovered before system testing.Discovering defects in unit and module testing saved an estimated 710 hours in subsequent maintenance. Whiletesting seemed to give a lower return on investment (710310 � 230% as compared to 61890 � 685% for inspections),it should be noted again that the farther along the test stage, the longer it takes to �nd defects. Also note thatthe 310 hours included machine time (which may be less expensive than people time) to execute the test cases,as explained in assumption A4.Another interesting point is that noncritical defects comprised 85% of the defects found at inspection. It isnot clear how much of the 90 hours invested in inspections were spent looking for and �xing these { they mightbe dealt with using automated tools, as explained in assumption A4. Also, the return on investment comparisonbetween inspection and testing might be more accurate if only the savings and costs from critical defects foundat inspection were considered.Grady and van Slack[21] discuss nearly 20 years of inspection experience at Hewlett-Packard. In one 50,000-line project, they report that design inspections saved at total of 1759 engineering hours in defect-�nding e�ort.(It was not explained how this value was calculated.) The cost was 169 engineering hours in training and start-up. (The cost of performing the actual inspections was not given.) The inspections also shortened the estimateddevelopment interval by 1.8 months. Overall, they estimated that inspections saved HP $21.4 million dollars in1993.Fowler[17] summarizes the results of several studies on the use of inspections in industry. In one study, amajor software organization increased its productivity by 14% from one release to the next after introduction ofimproved project phasing and tracking mechanisms, including inspections. It also showed a tenfold improvementin quality. Fowler acknowledges, however, that these results cannot be attributed solely to inspections. Anotherstudy gave the results of using inspections in the AT&T 5ESS switch project. It claimed that defects detectedin inspections cost ten times less to �x than defects found during other development phases (assumption A2).Another study gave the results of using inspections in a project within AT&T's network services. These resultsshowed that inspections are twenty times more e�ective than testing in �nding bugs and make up only 2% of the

Draft: October 18, 1995 20total cost of testing1.4 Underlying MechanismsHaving looked at how inspection costs and bene�ts are measured, we now look at studies that investigate theunderlying mechanisms driving those costs and bene�ts.Some of the studies use student subjects to inspect nonindustrial artifacts (in vitro { in the laboratory) whileothers are conducted with professional software developers using industrial projects (in vivo { in the industry).Typically, it is more economical to use students subjects, but results may be more generalizable with industrialsubjects. Nevertheless, using student subjects is an important �rst step towards eventually replicating theexperiment with professional subjects because the design and instrumentation can then be re�ned and improvedas experience is gained.4.1 Investigating Underlying Mechanisms { Local AnalysisEarlier we described the attributes of di�erent inspection methods. Supposedly, di�erent values for these at-tributes produce di�erent cost-bene�t tradeo�s (\How many reviewers should we use?", \Do we need a collectionmeeting?", etc.). In this section we describe several empirical studies that investigate some of these tradeo�s.4.1.1 Does Every Inspection Need a Meeting?Votta surveyed software developers in AT&T's 5ESS project to �nd out what factors they believed had the largestin
uence on inspection e�ectiveness[48] . The most frequent reason cited was synergy (mentioned by 79% of thosepolled).Informally, synergy allows a team working together to outperform any individual or subgroup working alone.The Subarctic Survival Situation exercise [28] dramatically shows this e�ect. (groups outperform individualsunless the individual is an arctic survival expert.)If synergy is fundamental to the inspection process, we would expect to see many inspection defects foundonly by holding a meeting. That is that few defects are found in preparation (before the meeting), but many1The reader should realize that this huge cost-bene�t advantage of inspection over testing is in part due to an exceedingly costlysystem test lab.

Draft: October 18, 1995 21
Review Number

P
er

ce
nt

 o
f F

au
lts

 F
ou

nd
 A

t R
ev

ie
w

2 4 6 8 10 12

0
5

10
15

20

Figure 3: Measured Synergy for Low Level Design Inspections. Each point represents the synergy rate fora particular collection meeting, i.e., the number of defects which went undetected by reviewers in their preparation(before the meeting was held to collect the inspection results), divided by the total number of defects recordedat the meeting. This rate is marked with an �. The vertical line segment through each � marks one standarddeviation in the estimate of the rate (assuming each defect was a Bernoulli trial). Thus the more defects usedfor the rate estimate, the shorter the line segment, and hence, the more precise the estimate of the rate. Thisprovides information on the signi�cance of any one rate measurement. The average synergy rate is about 4%(the dashed line) for these 13 inspections.are found (during the meeting). Votta made this measurement as part of a study of capture-recapture samplingtechniques for estimating the number of defects remaining in a design artifact after inspection[14] . Figure 3displays data showing that synergy is not responsible for inspection e�ectiveness (it only accounted for 5% of thedefects found by inspections).4.1.2 The E�ect of Di�erent Inspection ApproachesInspection approaches are usually evaluated according to the number of defects they �nd. As a result, someinformation is available about the e�ectiveness of di�erent approaches, but very little about their costs. Porter etal. argued that cost is as important as e�ectiveness. In particular, they believed that longer inspection intervalsresult in longer development intervals. They hypothesized that di�erent approaches make signi�cantly di�erenttradeo�s between inspection interval and detection e�ectiveness. Speci�cally, that (1) inspections with largeteams have longer inspection intervals, but �nd no more defects than smaller teams; (2) collection meetingsdo not signi�cantly increase detection e�ectiveness; and (3) multiple-session inspections are more e�ective than

Draft: October 18, 1995 22single-session inspections, but at the cost of signi�cantly increasing the inspection interval.To evaluate these hypotheses they conducted a controlled experiment to compare the tradeo�s between theminimum interval and e�ort and the maximum e�ectiveness of several inspection approaches[40] .They ran this experiment at AT&T on a project that is developing a compiler and environment to supportdevelopers of the AT&T 5ESS telephone switching system. The �nished system contained 45 lines of C++ code,of which about 8K is reused.The subjects were all of the team's six members plus �ve other developers. All were experienced, and all hadreceived training on inspections within �ve years of the experiment. The project conducted more than 100 codeinspections.The experiment manipulated three independent variables:1. the team size (one, two, or four members, in addition to the author);2. the number of inspection sessions (one session or two sessions);3. the coordination between sessions. (In two-session inspections the author either repaired or did not repairknown defects between sessions).For each inspection they measured four dependent variables:1. inspection intervals,2. estimated defect detection ratio,3. the percentage of defects �rst identi�ed at the collection meeting (meeting gain rate),4. the percentage of potential defects reported by an individual, but not recorded at the collection meeting(meeting suppression rate).They also captured repair statistics for every defect.This experiment used a 22� 3 partial factorial design to compare the interval and e�ectiveness of inspectionswith di�erent team sizes, di�erent numbers of inspection sessions, and di�erent coordination strategies. Theychose a partial factorial design because some treatment combinations were considered too expensive (e.g., two-session-four-person inspections with and without repair).The results showed the following:

Draft: October 18, 1995 23
0

20
40

60
80

10
0

1sX1p 1sX2p 1sX4p 2sX1pN 2sX1pR 2sX2pN 2sX2pR All

TREATMENT

O
B

S
E

R
V

E
D

 T
R

U
E

D
E

F
E

C
T

 D
E

N
S

IT
Y

 (
de

fe
ct

s/
K

N
C

S
L)

Figure 4: Observed Defect Density by Treatment. This plot shows the observed defect density for eachinspection treatment. Across all inspections, the median defect detection rate was 24 defects per KNCSL.1. There was no di�erence in either e�ectiveness or inspection interval between small teams and large teams.2. 2-session, 2-reviewer inspections were more e�ective than 1-session, 4-reviewer inspections, but 2-session,1-reviewer inspections were not more e�ective than 1-session, 2-reviewer inspections. Also, 2-session in-spections held in parallel have no di�erence in inspection interval when compared to 1-session inspections.(See Figure 4.)3. There was no di�erence in e�ectiveness between 2-session inspections held in parallel and those held insequence. But those held in sequence had signi�cantly longer intervals. (See Figure 5.)4. Meeting gain rates (33%) were higher than in previous, recent studies[22, 47] .4.1.3 Comparing Meetings and Their AlternativesVotta [47] evaluated the importance of meetings in a case study of 13 design inspections at AT&T. To quantifythe usefulness of inspection meetings, he determined the proportion of defects found during the inspection thatwere originally discovered at the meeting (the meeting gain rate). He reported that the average meeting gainrate for these inspections was � 5%. This would mean that if 20 defects were discovered during the inspection,19 were already known before the meeting ever started!

Draft: October 18, 1995 24
0

10
20

30
40

1sX1p 1sX2p 1sX4p 2sX1pN 2sX1pR 2sX2pN 2sX2pR All

TREATMENT

P
R

E
M

E
E

T
IN

G
 IN

T
E

R
V

A
L

(w
or

ki
ng

 d
ay

s)

Figure 5: Interval by Treatment. This plot shows the observed pre-meeting interval (availability of inspectionmodule up to the inspection meeting) for each inspection treatment. Across all treatments, the median intervalis 8.5 working days.This result was striking, but later data seems to contradict it. Porter et al.[40] conducted another study, alsoat AT&T, involving > 100 code inspections. Although their primary goal was not to study inspection meetings,they collected data on meeting gains in much the same way that Votta's earlier study had.2 This time the averagemeeting gain rate was 33%, with considerable variance in the observations (i.e., many meetings produced no gainsat all, while some had rates as high as 80%.)This situation illustrates that every empirical study is at best an approximation, needs to be checked againstprevious observations, and di�erences resolved through continued experimentation.Porter et al.[32] attempted to to resolve the con
icting results of two earlier industrial case studies. Whiledoing this they uncovered anecdotal evidence that pointed to two possible explanations: (1) di�erences in thetype of artifact being inspected (design documents vs. code units) led to the use of di�erent \implicit" inspectionprocesses, and (2) defects found at the meeting might be explained by factors other than meeting synergy orteamwork. Initially they are concentrating on the second explanation.They hypothesized that inspection meetings are not nearly as cost-bene�cial as many people believe; andthat inspection methods that eliminate meetings are at least as cost-e�ective than methods that rely heavily on2We strongly believe that empirical research must be replicated. This experience illustrates an economical way to do this. Weinstrumented the study so that it provided not only the data we were immediately interested in, but also the data needed to replicateVotta's earlier study.

Draft: October 18, 1995 25them, and probably more so. They expected to see this result because they expected that bene�t of additionalindividual analysis to be equal to or greater than the bene�t of holding inspection meetings.To evaluate these hypotheses they designed and conducted a controlled experiment. The goals of this ex-periment were twofold: to characterize the behavior of existing approaches, and to assess the potential bene�tsof meetingless inspections. They ran the experiment in the spring of 1995 with 21 subjects { students taking agraduate course in software engineering { who acted as reviewers.Three inspection methods were used in this experiment.� Preparation-Inspection (PI). Each reviewer individually analyzes the artifact in order to become fa-miliar with it. The goal is not to discover defects but only to prepare for the inspection meeting. After allreviewers have completed this Preparation the team holds an Inspection meeting to �nd as many defectsas possible.� Detection-Collection (DC). Each reviewer individually analyzes the artifact with the goal of Detectingas many defects as possible. As with the PI approach, the team then meets (the Collection phase) toinspect the document. The results of the collection phase will, of course, contain many defects alreadyfound during the detection phase.� Detection-Detection (DD). Each reviewer individually analyzes the artifact with the goal of Detectingas many defects as possible. After all reviewers complete this �rst Detection phase, each is asked to conductdefects Detection a second time, again individually, and again with the goal of detecting as many defectsas possible. This approach does not involve a meeting, and instead the time is used by the reviewers tocontinue working individually.The experiment manipulated four independent variables:1. the inspection method used by each reviewer (PI, DC, or DD);2. the inspection round (each reviewer participated in two inspections during the experiment);3. the speci�cation to be inspected (two were used during the experiment);4. the order in which the speci�cations were inspected. (Either speci�cation could be inspected �rst.)For each inspection they measured three dependent variables:

Draft: October 18, 1995 261. the Individual Defect Detection Rate,2. the Team Defect Detection Rate, 33. the Gain Rate, i.e., the percentage of defects initially identi�ed during the second phase of the inspection.The results of this study showed1. that the inspection method used can't be ignored as a signi�cant source of variation in the meeting gainrates,2. that meetingless inspections detected more new defects in the second phase of the inspection than didinspections using the other methods,3. that meetingless inspections found more total defects than did inspections with meetings.These results suggest that defects found at inspection meetings might be explained by factors other thanmeeting synergy or teamwork. Because of the small number of data points, further replications of this experimentare needed.4.1.4 The E�ect of Di�erent Detection MethodsTwo types of defect detection methods are most frequently used, Ad Hoc and Checklist. Ad Hoc reviewers usenonsystematic techniques and are assigned the same general responsibilities. Checklist reviewers are given a listof items to search for. Checklists embody important lessons learned from previous inspections within a speci�cenvironment or domain.Porter et al.[39] , hypothesized that an alternative approach which assigned individual reviewers separate anddistinct detection responsibilities and provided specialized techniques for meeting them would be more e�ective.This hypothesis is depicted in Figure 7.To explore this alternative they prototyped a set of defect-speci�c techniques called Scenarios { collections ofprocedures for detecting particular classes of defects. Each reviewer executes a single Scenario and all reviewersare coordinated to achieve broad coverage of the document.The experiment manipulated �ve independent variables:3The Team and the Individual Defect Detection Rates are the number of defects detected by a team or individual divided by thetotal number of defects known to be in the speci�cation. The closer these values are to 1, the more e�ective the detection method.No defects were intentionally seeded into the speci�cations. All defects were naturally occurring.

Draft: October 18, 1995 27
Team Number

F
au

lt
D

et
ec

tio
n

R
at

e

1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

WLMS

PI, Round 1
DC, Round 1
DD, Round 1
DD, Round 2

Team Number

F
au

lt
D

et
ec

tio
n

R
at

e

1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CRUISE

PI Round 1
PI, Round 2
DC, Round 1
DC, Round 2
DD, Round 2

Figure 6: Defect detection by inspection method. The observed defect detection rates are displayed above.The un�lled symbols indicate observations from Round 1; the �lled symbols those from round 2. The verticalline through each point indicates one standard deviation in the rate's estimate (modeling defect detection asBernoulli trials). The dashed (dotted) lines display the average detection rates for Round 1 (Round 2).1. the detection method used by a reviewer (Ad Hoc, Checklist, or Scenario);2. the experimental replication (they conducted two replications);3. the inspection round (each reviewer participated in two inspections during the experiment);4. the speci�cation to be inspected (two were used during the experiment);5. the order in which the speci�cations are inspected.For each inspection they measured four dependent variables:1. the individual defect detection rate;2. the team defect detection rate;3. the percentage of defects �rst discovered at the collection meeting (meeting gain rate);4. the percentage of defects �rst discovered by an individual but never reported at the collection meeting(meeting loss rate).They evaluated this hypothesis in a controlled experiment, using a 3 � 24 partial factorial, randomizedexperimental design [39] . Forty-eight graduate students in computer science participated in this experiment.

Draft: October 18, 1995 28
SYSTEMATIC
SELECTIVE
DISTINCT

NONSYSTEMATIC

IDENTICAL
GENERAL

Figure 7: Systematic Inspection Research Hypothesis. This �gure represents a software requirements speci�cationbefore inspection (top) and after an inspection using nonsystematic techniques with general and identical responsibilityassignments (bottom left), and an inspection using systematic techniques with speci�c and distinct responsibility assign-ments (bottom right). The points and holes represent various defects and the line-�lled regions indicate the coverageachieved by di�erent inspectors. Our hypothesis is that inspections using systematic techniques with speci�c and coordi-nated responsibilities achieve broader coverage and minimize reviewer overlap, resulting in higher defect detection ratesand greater cost-bene�ts than do nonsystematic methods.They were assembled into 16 three-member teams. Each team inspected two software requirements speci�cations(SRS) using some combination of ad hoc, checklist and scenario methods.The experimental results showed1. that the scenario method had a higher defect detection rate than either the ad hoc or the checklist methods(see Figure 8),2. the scenario reviewers were more e�ective at detecting the defects their scenarios were designed to uncover,and were no less e�ective at detecting other defects,3. that checklist reviewers were no more e�ective than ad hoc reviewers,4. that regardless of the method used, collection meetings produced no net improvement in the defect detectionrate { meeting gains were o�set by meeting losses.

Draft: October 18, 1995 29
VARIABLE

R
A

T
E

0.
0

0.
2

0.
4

0.
6

0.
8

All Data Method Specification Round Replication Order

Ad Hoc

Check

Scen

CRUISE

WLMS

R1
R2

E1
E2

CW
WC

Mon Apr 11 12:32:47 CDT 1994Figure 8: Defect Detection Rates by Independent Variable. The dashes in the far left column show eachteam's defect detection rate for the WLMS and CRUISE. The horizontal line is the average defect detection rate.The plot demonstrates the ability of each variable to explain variation in the defect detection rates. For theSpeci�cation variable, the vertical location of WLMS (CRUISE) is determined by averaging the defect detectionrates for all teams inspecting WLMS (CRUISE). The vertical bracket,], to the right of each variable shows onestandard error of the di�erence between two settings of the variable. The plot indicates that both the Methodand Speci�cation are signi�cant; but Round, Replication, and Order are not.4.1.5 Indicators of Quality InspectionsThe number of defects found in an inspection is not an adequate indicator because it is in
uenced by the qualityof the artifact being inspected. Buck [7] conducted a study at IBM by Buck[7] to identify a variable, other thanthe number of defects found, that would di�erentiate high quality inspections from low quality ones.He collected data from 106 code inspections of a single piece of COBOL source code. Next he examinedseveral potential indicators.1. inspection rate,2. team size (3, 4, or 5, including the author),3. major defects found per hour of inspection,4. preparation rateThe collected data showed1. that code inspections conducted at a rate of less than 125 NCSL per hour found signi�cantly more defects,

Draft: October 18, 1995 302. that there was no di�erence in defect detection capability between 3-, 4-, and 5-member teams,3. that e�ectiveness was also independent of major defects found per hour,4. that additional preparation resulted in more defects being found. 4Thus, the study suggests that quality inspections are a result of following a low inspection rate.4.1.6 Using Multiple Inspection TeamsThe N-fold inspection method[44] is based on the idea that no single inspection team can �nd all the defects ina software requirements document, that N separate inspection teams do not signi�cantly duplicate each others'e�orts, and therefore that N inspections will be signi�cantly more e�ective than one. Replicating the inspectionprocess 5 or 10 times will certainly be expensive, but it might be acceptable for critical systems if the detectionrate increased signi�cantly.To evaluate the hypothesis, they designed and ran an experiment with 27 students who were taking a graduatecourse in software engineering as subjects. The subjects were divided into 9 inspection teams of 3 persons each.An attempt was made to form evenly matched teams based on background experiences. These teams inspecteda single requirements document that was seeded with 99 defects. After the inspections, each recorded defect wasto be checked to see if it was one of the 99 seeded defects. If so it was entered into the defect database. Theauthors then calculated the number of defects found by exactly x teams, where x = 0:::N .The results show that the 9 teams combined found a little more than twice as many of the seeded defectsas the average found by any single team (78% compared to 35%). Also, no single defect was found by everyteam. The authors suggest that this supports their claims that parallel teams do not duplicate each other'swork. The inspection took 1.5 weeks, from distribution of the document to completion of the meetings, and used324 person-hours.4.1.7 Computer-Aided InspectionsComputer support adds a new dimension to the inspection process. By automating some parts of the process andproviding computer support for others, the inspection process can possibly be made more e�ective and e�cient[29]4The study concludes with the unsatisfying result that you can always spend more preparation time and �nd more defects. Thereis no discussion of what a practical limit may be.

Draft: October 18, 1995 31. For example, during preparation computer support allows artifacts to be inspected, inspector comments to berecorded and project management reports to be handled online. This eliminates much of the bulky printedmaterials and the forms normally generated by inspections.Software tools can also perform automated detection of simple defects, freeing inspectors to concentrate onmajor defects. Using such tools required that artifacts are speci�ed with some formal notation, or programminglanguage. For example, a C language-speci�c inspection tool called ICICLE[29] uses lint[25] , to identify Cprogram constructs that may indicate the presence of defects. It also checks the C program against its ownrule-based system.Computer support for meetings can reduce the cost of meetings. With videoconferencing, inspectors indi�erent locations can easily meet. Computer support can also mitigate the group-interaction-related problemsby allowing meetings to be held in \nominal" fashion, where inspectors do not actually have to meet, but canjust place their comments in a central repository which others can read at their convenience and extend [11] .The main disadvantage is inadequate technological support. Most computer-aided inspection systems are stillin the research labs and not yet ready for industrial use. In addition, some special equipment may be needed forvideoconferencing.Collaborative Software Inspection. Mashayekhi, et al.[31] , discuss a case study on the use of CollaborativeSoftware Inspection (CSI), a software system to support inspections. Computer support is provided for thepreparation and meeting steps. CSI assists with online examination of the artifact and recording of inspectorcomments. In addition, CSI collates the comments into a single list. The main feature of CSI is that it allowsthe meeting to be geographically distributed, with the artifact being displayed on each inspector's screen and avoice connection that allows people to talk to each other.This case study was conducted with 9 student volunteers from a software engineering class and comparedthe e�ectiveness of using CSI with face-to-face inspection meetings. The participants were divided into 3 teams,each of which inspected the same 4 pieces of code for a total of 12 inspections. Of these, 5 inspection meetingswere randomly selected to use CSI while the rest met face-to-face. The results showed that in only one of the 4pieces did CSI �nd more defects. However, because the teams retained their relative rankings across all modulesinspected (i.e., Team 1 was always �rst in each module, Team 2 was always second, Team 3 was always last), theauthors concluded that the use of CSI did not have any positive or negative e�ect on any of them.

Draft: October 18, 1995 32FTArm. Johnson[24] presents the Formal Technical Asynchronous review method (FTArm) implemented onCollaborated Software Review System (CSRS). CSRS is a software inspection environment whose aim is not tospecify inspection policy, but only to automate the support functions required for various inspection methods.FTArm is geared towards asynchronous software inspections. All comments by reviewers are kept online. Theinspection consists primarily of a private review step and a public review step. During the private review step,reviewers cannot see each other's comments. In the public review step, all comments become public and reviewerscan build on each other's suggestions. They then vote on whether they agree or disagree with the comments madeabout each section of the artifact being inspected. If unresolved issues remain, they are handled in a face-to-facegroup review meeting. Evaluation of the e�ectiveness of FTArm is under way.4.2 Investigating Underlying Mechanisms { Global AnalysisHolding, or not holding, inspections has an e�ect on the cost of the overall software development process. Severalfactors in
uence the relationship between inspections and the rest of the software development process.4.2.1 Inspection Versus TestingTesting is traditionally the most widespread method for validating software. The tester prepares several test casesand runs each on through the program, comparing actual output with expected output. Testing puts theory intopractice: a program thought to work by its creator is applied to a real environment with a speci�c set of inputs,and its behavior is observed. Defects are normally found one at a time. When the program behaves incorrectlyon certain inputs, the author carries out a debugging procedure to isolate the cause of the defect.Inspections have an advantage over testing in that they can be performed earlier in the software developmentprocess, even before a single line of code is written. Defects can be caught early and prevented from propagatingdown to the source code. In terms of the amount of e�ort to �x a defect, inspections are more e�cient since they�nd and �x several defects in one pass as opposed to testing, which tends to �nd and �x one defect at a time[1] . Also, there is no need for the additional step of isolating the source of the defect because inspections lookdirectly at the design document and source code. It may be argued that this additional step in testing is o�setby inspection preparation and meeting e�ort, but testing also requires e�ort in preparation of test cases andsetting up test environments. However, testing is better for �nding defects related to execution, timing, tra�c,

Draft: October 18, 1995 33transaction rates, and system interactions[43] . So inspections cannot completely replace testing (although somecase studies argue that unit testing may be removed)[1, 49] .The following two studies compare inspection methods with testing methods. The �rst is a controlled exper-iment while the second is a retrospective case study.Comparing the E�ectiveness of Software Testing Strategies. Basili and Selby[3] investigated the e�ec-tiveness of 3 program validation techniques: functional (black box) testing, structural (white box) testing, andcode reading by stepwise abstraction (described in Section 2.2).The goals of the study were to determine which of the 3 techniques detects the most faults in programs, andwhich detects faults at the highest rate, and to �nd out if each technique �nds a certain class of faults.A controlled experiment was conducted in which both students and professionals validated 4 di�erent piecesof software, labeled P1, P2, P3, and P4. Three independent variables were manipulated: (1) testing technique(functional testing, structural testing, code reading), (2) software type (P1, P2, P3, P4), and (3) level of expertise(advanced, intermediate, junior).The dependent variables measured included (1) number of faults detected, (2) percentage of faults detected(the total number of faults was predetermined), (3) total fault detection time, and (4) fault detection rate.The experiment was carried out in three phases, the �rst two with student subjects and the third withprofessional developers. Each phase validated three of the four programs. The experiment employed a partialfactorial design, assigning each subject to validate all three programs using a di�erent technique on each. Thesequence of programs and techniques was randomized.The most interesting result is that code reading was more e�ective than functional and structural testingat �nding faults in the �rst and third phases and was equally good in the second phase. With respect tofault detection rate, code reading achieved the highest rate in the third phase and the same rate as the testingtechniques in the other two phases. Finally, code reading found more interface faults.Evaluating Software Engineering Technologies. Card, et al.[9] describe a study measuring the importanceof certain technologies (practices, tools, and techniques) on software productivity and reliability.Eight technologies were assessed:1. quality assurance (reviews, walkthroughs, con�guration management, etc.),2. software tool use (use of design language, static analysis tools, precompilers, etc.),

Draft: October 18, 1995 343. documentation,4. structured programming,5. code reading,6. top-down development,7. chief programmer team (a team organized around a technical leader who delegates programmingassignmentsand reviews �nished work),8. design schedule (putting more weight on the design phase).A non-random sample of 22 software projects from NASA Goddard Space Flight Center was chosen. Theselection criteria were chosen to minimize the e�ects of the programming language and the development envi-ronment. Variation in the sizes of projects was also minimized. The e�ects of nontechnological factors wereremoved { productivity was corrected for computer use (amount of time spent using computers) and programmere�ectiveness (development teams' years of experience), while reliability was corrected for programmer experienceand data complexity (number of data items per subsystem).The results showed that no technological factor explained any of the remaining variation in productivity. How-ever, variation in software reliability was reduced using code reading and quality assurance. The authors concludethat since reliability and productivity are positively correlated, improving reliability improves productivity.5 Conclusions and Future WorkWe have presented a survey of existing research, paying attention to how each study measured the costs andbene�ts of holding inspections and how they explained the factors that in
uence these measurements, at eithera local or a global level.At the global level, we see that software inspection is still an e�ective method for detecting and removingdefects. However, whether it is cost-e�ective remains to be seen. The literature contains little solid empiricalevidence. Many studies have focused on the bene�ts of inspections and made cost assumptions that seldom holdin actual practice. Future studies should take a more realistic view. The results (or lack of them) to be foundin existing research indicate that, while it is relatively easy to measure the global bene�ts of holding inspections,

Draft: October 18, 1995 35it is very di�cult to measure the global cost incurred by inspections, especially the cost of greater developmentintervals, which we believe is signi�cantly higher than has been realized. This could have serious economicconsequences, especially in a highly competitive environment where being the �rst to introduce a new (evenpoorly implemented) feature to the market may mean the di�erence between success and failure of a product[45]. Obviously, it would be expensive and impractical to replicate entire development projects to see how removinginspections from the process a�ects the development interval. Future research will need to �nd more economicalways to estimate this cost.At the local level, we have almost the opposite problem when measuring costs and bene�ts. While it is ofteneasy to tell if one inspection method costs more than another (for example, inspections using several sessions areclearly costlier than inspections using one session), it is very di�cult to tell if one method is actually better thananother at detecting defects (paired studies are expensive, we have to get the same artifact and the same set ofreviewers to try out each inspection method). One problem comes in comparing the resulting defect detectionratios { the number of defects found in the inspection divided by the total number of defects in the artifact. Afundamental technical problem is that we can never know exactly how many defects are originally in an artifact,unless we follow the product through its life cycle. Even then, we don't know for sure; there may still be defectsleft undiscovered. Also, it is very hard to trace a certain failure in the �eld to a defect that was missed in theinspection of a certain artifact. One solution is to estimate the pre-inspection defect content using statisticalmethods. One such method is capture-recapture[14, 46] , which is based on the intuitive premise that if reviewersare �nding many of the same defects in an inspection, then it is likely that there are few defects to be found inthe �rst place. Conversely, if reviewers are �nding few defects in common with one another, then it is likely thatthere are many more defects to be found. However, experience has shown that capture-recapture does not workwell when the overall number of defects found by each reviewer is small. Future research should look further intothis and other estimation methods.

Draft: October 18, 1995 36References[1] A. Frank Ackerman, Lynne S. Buchwald, and Frank H. Lewski. Software inspections: An e�ective veri�cationprocess. IEEE Software, pages 31{36, May 1989.[2] Victor R. Basili and Harlan D. Mills. Understanding and documenting programs. IEEE Trans. on SoftwareEngineering, SE-8(3):270{283, May 1982.[3] Victor R. Basili and Richard W. Selby. Comparing the e�ectiveness of software testing strategies. IEEETrans. on Software Engineering, SE-13(12):1278{1296, Dec. 1987.[4] David B. Bisant and James R. Lyle. A two-person inspection method to improve programming productivity.IEEE Trans. on Software Engineering, 15(10):1294{1304, Oct. 1989.[5] Barry Boehm. Verifying and validating software requirements and design speci�cations. IEEE Software,1(1):75{88, January 1984.[6] Robert N. Britcher. Using inspections to investigate program correctness. IEEE Computer, pages 38{44,Nov. 1988.[7] F. O. Buck. Indicators of quality inspections. Technical Report 21.802, IBM, Kingston, NY, Sep. 1981.[8] Marilyn Bush. Improving software quality: The use of formal inspections at the Jet Propulsion Laboratory.In Proceedings of the 12th International Conference on Software Engineering, pages 196{199, 1990.[9] David N. Card, Frank E. McGarry, and Gerald T. Page. Evaluating software engineering technologies. IEEETrans. on Software Engineering, SE-13(7):845{851, July 1987.[10] Jarir K. Chaar, Michael J. Halliday, Inderpal S. Bhandari, and Ram Chillarege. In-process evaluation forsoftware inspection and test. IEEE Trans. on Software Engineering, 19(11):1055{1070, Nov. 1993.[11] Alan R. Dennis and Joseph S. Valacich. Computer brainstorms: More heads are better than one. Journalof Applied Psychology, 78(4):531{537, April 1993.[12] James H. Dobbins. Inspections as an up-front quality technique. In Handbook of Software Quality Assurance,pages 137{177. Van Nostrand Reinhold, 1987.[13] E. P. Doolan. Experience with Fagan's inspection method. Software Practice and Experience, 22(2):173{182,Feb. 1992.[14] Stephen G. Eick, Clive R. Loader, M. David Long, Scott A. Vander Wiel, and Lawrence G. Votta. Estimat-ing software fault content before coding. In Proceedings of the 14th International Conference on SoftwareEngineering, pages 59{65, May 1992.[15] Michael E. Fagan. Design and code inspections to reduce errors in program development. IBM SystemsJournal, 15(3):182{211, 1976.[16] Michael E. Fagan. Advances in software inspections. IEEE Trans. on Software Engineering, SE-12(7):744{751, July 1986.[17] Priscilla J. Fowler. In-process inspections of workproducts at AT&T. AT&T Technical Journal, 65(2):102{112, March-April 1986.[18] Louis A. Franz and Jonathan C. Shih. Estimating the value of inspections and early testing for softwareprojects. Hewlett-Packard Journal, pages 60{67, Dec. 1994.[19] Daniel P. Freedman and Gerald M. Weinberg. Handbook of Walkthroughs, Inspections, and Technical Re-views. Little, Brown and Company, 3rd edition, 1982.[20] Tom Gilb and Dorothy Graham. Software Inspection. Addison-Wesley Publishing Co., 1993.[21] Robert B. Grady and Tom Van Slack. Key lessons in achieving widespread inspection use. IEEE Software,pages 46{57, July 1994.

Draft: October 18, 1995 37[22] Watts S. Humphrey. Managing the Software Process, chapter 10. Addison-Wesley Publishing Company,1989.[23] Daniel Jackson. Aspect: An economical bug-detector. In Proceedings of the 13th International Conferenceon Software Engineering, pages 13{22, 1991.[24] Philip M. Johnson. An instrumented approach to improving software quality through formal technical review.In Proceedings of the 16th International Conference on Software Engineering, pages 113{122, Sorrento, Italy,May 1994.[25] S. C. Johnson. A C program checker. In UNIX(TM) Time-Sharing System - UNIX Programmer's Manual.Holt, Rinehart and Winston, New York, 7th edition, 1982.[26] John C. Kelly, Joseph S. Sherif, and Jonathan Hops. An analysis of defect densities found during softwareinspections. Journal of Systems and Software, 17:111{117, 1992.[27] John C. Knight and E. Ann Myers. An improved inspection technique. Communications of the ACM,36(11):51{61, Nov. 1993.[28] C. La�erty. The Subarctic Survival Situation. Synergistics, Plymouth, MI, 1975.[29] F. MacDonald, J. Miller, A. Brooks, M. Roper, and M. Wood. A review of tool support for softwareinspection. Technical Report RR-95-181, University of Strathclyde, Glasgow, Scotland, Jan. 1995.[30] K.E. Martersteck and A.E. Spencer. Introduction to the 5ESS(TM) switching system. AT&T TechnicalJournal, 64(6 part 2):1305{1314, July-August 1985.[31] Vahid Mashayekhi, Janet M. Drake, Wei-Tek Tsai, and John Riedl. Distributed, collaborative softwareinspection. IEEE Software, pages 66{75, Sep. 1993.[32] Patricia McCarthy, Adam Porter, Harvey Siy, and Lawrence G. Votta. An experiment to assess cost-bene�tsof inspection meetings and their alternatives. Technical Report CS-TR-3520, University of Maryland, CollegePark, MD, September 1995.[33] Steve McConnell. Code Complete, chapter 24. Microsoft Press, 1993.[34] J.F. Nunamaker, Alan R. Dennis, Joseph S. Valacich, Douglas R. Vogel, and Joey F. George. Electronicmeeting systems to support group work. Communications of the ACM, 34(7):40{61, July 1991.[35] David L. Parnas and David M. Weiss. Active design reviews: Principles and practices. In Proceedings of the8th International Conference on Software Engineering, pages 215{222, Aug. 1985.[36] Dewayne E. Perry. The Inscape environment. In Proceedings of the 11th International Conference onSoftware Engineering, pages 2{12, May 1989.[37] Dewayne E. Perry and W. Michael Evangelist. An empirical study of software interface faults | an update.In Proceedings of the Twentieth Annual Hawaii International Conference on Systems Sciences, volume II,pages 113{126, Jan. 1987.[38] Dewayne E. Perry and Carol S. Stieg. Software faults in evolving a large, real-time system: a case study. In4th European Software Engineering Conference { ESEC93, pages 48{67, Sept. 1993. Invited keynote paper.[39] Adam Porter, Lawrence G. Votta, and Victor Basili. Comparing detection methods for software requirementinspections: A replicated experiment. IEEE Transactions on Software Engineering, 21(6):563{575, June1995.[40] Adam A. Porter, Lawrence G. Votta, Harvey P. Siy, and Carol A. Toman. An experiment to assess the cost-bene�ts of code inspections in large scale software development. In The Third Symposium on the Foundationsof Software Engineering, Washington, D.C., Oct. 1995. To appear.[41] Stan Rifkin and Lionel Deimel. Applying program comprehension techniques to improve software inspections.In Proceedings of the 19th Annual NASA Software Engineering Laboratory Workshop, Greenbelt, MD, Nov.1994.

Draft: October 18, 1995 38[42] David S. Rosenblum. Towards a method of programming with assertions. In Proceedings of the 14thInternational Conference on Software Engineering, pages 92{104, Melbourne, Australia, May 1992.[43] Glen W. Russell. Experience with inspection in ultralarge-scale developments. IEEE Software, pages 25{31,Jan. 1991.[44] G. Michael Schneider, Johnny Martin, and Wei-Tek Tsai. An experimental study of fault detection in userrequirements documents. ACM Trans. on Software Engineering and Methodology, 1(2):188{204, Apr. 1992.[45] George Stalk, Jr. and Thomas M. Hout. Competing Against Time: How Time-Based Competition is Re-shaping Global Markets. The Free Press, 1990.[46] Scott A. Vander Wiel and Lawrence G. Votta. Assessing software design using capture-recapture methods.IEEE Trans. Software Eng., SE-19:1045{1054, November 1993.[47] Lawrence G. Votta. Does every inspection need a meeting? In Proceedings of ACM SIGSOFT '93 Symposiumon Foundations of Software Engineering, pages 107{114. Association for Computing Machinery, December1993.[48] Lawrence G. Votta. Does every inspection need a meeting? ACM SIGSoft Software Engineering Notes,18(5):107{114, Dec. 1993.[49] Edward F. Weller. Lessons from three years of inspection data. IEEE Software, pages 38{45, Sep. 1993.[50] Alexander L. Wolf and David S. Rosenblum. A study in software process data capture and analysis. InProceedings of the Second International Conference on Software Process, pages 115{124, February 1993.

