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Abstract

If p1,-+-,pm are n-variate polynomials with integral coefficients and no common zeros
in C™, Brownawell has shown in 1986 that there exist ¢1,--:,¢m polynomials with integral

coefficients and v €Z” such that

Prg1+ o+ Pm@m = V,
and max deg ¢; < (max deg p;)™. On the other hand if A = logarithm of the largest coefficient
of all the p;, and h; is the corresponding quantity for the g¢;, then there is no sharp estimate

of hy in terms of A and max deg p;. In this paper we show that when the variety of common

zeros at infinity of the p; is discrete then (essentially) we have:

hy < D°"h

for an absolute constant c.

If there were an algorithm to compute the ¢; in D" time one would obtain exactly the

above estimate. Current algorithms require about D™ operations.



& 1. Introduction

Let pl,...,pm € Z[zl,...,zn] = Z[{z] without common zeros in
%*
Cn. Hilbert's Nullstellensatz ensures that there is a € 2 and
polynomials Apreverdy € Z[z] such that for every =z = ch
(1.1) a = p;(z)q,(z) + ... + p.(z)a, (2).

The explicit resolution of the Bezout equation (1.1)
consists in giving an algorithm to find such polynomials
PRI One such algorithm has been implemented by Buchberger
[10]. It is based on principles that go back to G. Hermann [14]
and Seidenberg [24]. Masser—Wﬁstholz [21] used this method to
estimate the degree and the size of the polynomials qj, and the
size of a. Denote by h(P) the logarithmic size of a polynomial
Pe 2Z2[{z], i.e., h(P) = the logarithm of the modulus of the

coefficient of P of largest absolute value. They showed that

using the Hermann algorithm one could find = SR satisfying:
2n*l
(1.2) max{deg qj) < 2(2D) , D = max(deg pj)
ax2"71
(1.3) max(loglal,h(qj)) s (8D) + (h + 8d log 8D),

h = max h(pj).

More recently, using a combination of methods from
elimination theory and several complex variables, Brownawell [8]
has obtained an essentially sharp bound for the degrees of

polynomials qj satisfying (1.1):



(1.4) max(deg qj) < unDu + ub, pn = inf{n,m}.

To be able to compare the‘nature of these two results, a word is
necessary about Brownawell's polynomials qj. First one proves
that there exist q; € C[z] satisfying the equation (1.1) with
a =1, with degrees bounded as in (1.4). These q; are
obtained as integrals over the whole space ¢ of some
conveniently constructed kernels. 1In some sense we should say the
q§ are given by explicit formulas, but these formulas do not
constitute an algorithm. Namely, how does one compute the
numerical integrals over @n appearing in this method? One also
obtains an upper bound of the absolute value of the coefficients
of the q;, this follows from the effective bounds for the
constant <, appearing in the Lojasiewicz; type inequality [8],
[23]

n 1/2 n
(1.5) [Z lpj<z)l2] > oy (1+)z)) T (ATHID
j=1

Since the p. have integral coefficients, the existence of q;
implies the existgnce of a s« Z*, qj € Z{z] satisfying (1.1)
and (1.4) (Lefschetz' principle). This is simply linear algebra
(cf. e.g. [21], Lemma 1). One could ask what is the size of a
and of the polynomials qj obtained this way? Setting

5 = unD” + uD, then the above mentioned lemma of Masser-Wustholz
yvields the estimate

(1.6) max(loglal.h(qj)) < m[ngé]{h + log m + log[ngé]}.



" For m : n the order of magnitude of the right hand side of
(1.6) is essentially

2
{(1.7) mnnDn (h + logm+ n log n + n2 log D).

Note that in special cases where a better estimate than

(1.4) 1is possible, then this same Lefschetz' principle provides a
better bound in (1.6). Such is the case studied by Macaulay
[17], [19] when the polynomials Pyre- Py have no common points

at infinity. Then one can find qj satisfying the estimate

(1.8} deg qj < n(D - 1).
The corresponding estimate for a and h(qj) is essentially
(1.9) max(loglal,h(qj)) s mnnDn(h + logm+ n logn+n log D).

As soon as there is even a single common point at ~ for
PyreeiPps the estimate (1.8) 1is false. This is precisely the

situation for the example of Masser-Philippon [8]

=D S O = -0 =1-
(1.10) P =2, Pp=2%, Zos vy Ph_17%2,_9 Zi-1 pn—l zn__lzn '

for which the best estimate possible for deg qj is D" - D

One of the objectives of this paper is to study the case
where the set of common zeros of pl,...,pm at «© is finite. We
obtain a better bound than (1.7) for the size of a and the

qj. Essentially one finds that by losing a little bit in the

. n
estimate of the degrees of qj, D instead of Dn, the size



2 x.n
estimate is basically (1.7) where p" is replaced by D 2

(ﬂl,x absolute constants), c¢f. Theorem 4.1 below.

2
Our method depends on tools from complex function theory,
except that we have succeeded in obtaining by this method a
solution qj,a lying directly in Z[z],? respectively. Z can
be replaced by the ring of integers of any number field. The
formulas we introduce can also be used to study the question of
finding a division formula in #{z]. That is, if g belongs to
the ideal I generated by pl,...,pm in Z[z]}, to obtain
polynomials S PRI € N[z] of the smallest possible degree

such that
{(1.11) 4 =qp; + ... + g P,

We show in Theorem 3.3 that if the variety

i

V= (z € @n:pl(z) = pm(z) = 0} 1is discrete, then we one can

)nn’ for some absolute

estimate max(deg qj) by (max(D,deg q)
constant #x. On the other hand, if the variety V is not
discrete, this estimate cannot hold by an example of Mayr-Meyer

(22]. What is shown in [22] is that for any D 2 5, k &€ N,

there are n + 1 polynomials Pyre+Ppyq € Z{z])], n = 10k, with
z, € I, max deg pj =D and if Ayroverdyyq @f{z)] satisfy
(1.12) z, = 4,Pg oot APy

2k-—l
then max deg qj > (D-2)

OQur hope is that our methods might eventually reconcile the

estimates (1.4) for the degrees, with (1.9) for the size of the



solutions a,qj of (1.1) in the general case. One might guess
that in this direction one might find an algorithm of lower
complexity than plain linear algebra to solve (1.1}).

We would especially like to thank Dale Brownawell for his

many useful remarks,.



¢ 2. Residue Currents

We incorporate in this section some results of Complex

Analysis which form the basis for the rest of the paper. We start

by fixing some notation that will be used throughout.

Let f = (fl,...,fn) be a ®n~valued function, m e N a
multi-index of length |mi = m, + ... +m. Then we denote
m 1/2
m 1 n _ . _ 2)
£ = £, ... £ 0, Fo=ff, Hfl!——[ZIfle
n 2 of |
e = = A = —
(2.1) f = f, ~ ... A~ Of Q afj, cfj }: 5%, dz,
k=1
_ n o 0f
Of = 3f, A~ ... A Tf =/ 5fj, ofy = }: —= dz,,
1 azk
k=1
df = df, ~ ... A df_, df . = 3f_, + Jf _,
1 n J J J
where gE_’ o__ are the standard first order complex derivative
' oz
k

operators [13], [15], and the functions fj are continuously

differentiable. Note that dz = dz1 AL . A dzn and

dz = dEl N dEn are particular cases of (2.1). Also note

n

A is always understood in increasing order.

1
n
n —

If Q is a (1,0) form, i.e. Q(U) = Z Qj({) df , then 8Q

Jj=1

is a (1,1) form, and there is no ambiguity in writing for k € N

(2.2) (§Q)k =3Q A ... A JQ (k times)



since (1,1) forms commute for the wedge product. ((50)o = 1.)
The space of differential forms of type (j.k) with smooth
coefficients of compact support in ¢® is denoted DJ k*

¢ € D, is called a test form. The dual space of D

ik n-j,n-k’

1rn—j,n—k’ is called the space of currents of type (J,k). It can
be identified to the space of differential forms of type (J.k)
with coefficients in the space 9’ of distributions in ch {18].
Given n entire holomorphic functions fj defining a
discrete variety V = V(£f), V := {(z ¢ Cn:fl(z) = L., =rfn(z) = 0},
we can define the Grothendieck residue current 5% as the

current of type (0,n) defined on test forms ¢ € Dn 0 by

n{n-1)
2
(2.3) FL,9> = 11m {21 A® J (2~ Vge A o,
A0 (27zi)n n
c

where the meaning of the integral on the right hand side of (2.2)
is the following. PFirst, it is well defined as a holomorphic

function of A for Re A > 1. Then, the product

A J |F|2(l-1)5f A ¢ can be analytically continued to the whole

ol
complex plane to become a meromorphic function of A, which is
holomorphic in a neighborhood of A = 0. 1In fact, the limit in
(2.3) 1is just the evaluation of this analytically continued

function at A = 0. {cf [7]). This coincides with the usual
definition of the Grothendleck residue current [12]. If we want

to emphasize the components of f we will write



gl =31 A ... A3l .
- OF, £

In particular 5¥% = 5—%— A v A 5;%—. Note there is no
f 1 n
fl fn

contradiction between this notation and (2.1). If the

holomorphic function fj is such that fi is differentiable, it

J

means that fj has no zeros. Therefore the usual differential

form 5(?i) = 0, but the Grothendieck residue will also be zero
J

since V = @. Furthermore, this observation holds in a local

sense also, that is, if supp ¢ n V =@ we have <5%,¢> = 0.

1,...,fn are polynomials defining a discrete (hence
(s 13

finite) variety V and if h 1is a function which is ¢C in a

If ¢

neighborhood of V we can define the action of 5% on the form

h dz by

1 o onl
<§-f,h dz> : <a-?,(P daz>,

where ¢ € 9, ¢ =1 on a (small) neighborhood of V. When h

is actually holomorphic in a neighborhood of V then

1 1 dz
(2.4) <8%=,h dz> := lim — } h(z)
£ 8q0+ (2ni)n fl(z)...fn(z)
| £]=¢

=lim—i~J pdz

e-0 (2ni)" ¥
J£l=¢

where ({|f| = ¢} is the smooth cycle (z € anlfj(z)l = ¢,
1< js n)} defined (by Sard's theorem) for 0 < ¢ outside a

negligible set, and it is taken to be positively oriented (that is



d{arg fl) A .. A d(arg fn) > 0 on |f] =¢) (cf. [13], [27]).
Furthermore, once 0 < ¢ << 1, the limit coincides with the
integral over ({|f] = €}.

It follows from the fact that the current 5% has support in

V that for ¢ € 0

(2-5) <§%I‘sz> = [ 2 Z Ca’caéa)] (‘p)l
eV a

where the interior sum takes place over multi-indices o,

la]l < N, € ¢ € C. In case the point ¢ € V 1is a simple zero

= =_—1;_.. =
then ca,{ =0 for awx 0 and co,c SMtak J(L) determinant
a(fl...fn)
Jacobian at z = (. More generally, we have the
a(zl...zn)

identity ([11]}, § 1.9) for ¢ € 9:

' 1
. <J d0=, > = =
(2.6) .)‘5f pdz [ z m§6§ ](«o) z mc¢(<)
Lev Lev
where mc is the multiplicity of ¢ as a common zero of
fl""’fn' Here we use the fact that a current can be multiplied
by a smooth function g by the rule <g§%.¢> ;= <5%,g¢>. Note

this multiplication will also make sense if g 1s of class CN in

a neighborhood of V, N the integer from (2.5}).

The formula (2.6) allows us to write Cauchy's formula in
terms of residues. Namely, let ¢ € Cé(@n) and consider the
functions fj(C) = (., - zj, j=1,...,n, for 2z e c? fixed.

J
Then we have

= 1

<af:-£,¢(< )ag> = ¢(z).



In fact this is a particular case of (2.6), where V = {2z},

z ) "

1 _ =
(2.8) fjg? =0, j=1,...,n.
Therefore, 53 vanishes on the Cw—submodule of 9
f o] (n,0)
generated by fl""’fn'

The three properties (2.5) {(conveniently modified), (2.6),

and (2.8) hold also for entire functions fj'

Lemma 2.1. Let K be a subfield of C, fl""'fn € K[z]

defining a discrete variety V, ¢ < K[z]. Then

) maglt) < K.
rev

Proof. By (2.€) we have

z mcg(C) = <J5%,gdz>
{ev

By elimination theory [26] there are polynomials

4y, € Kiz], qj a polynomial depending only on the jth

Qqrees
variable such that
n
(2.9) q = z he sy by j < Kizl.
j=1

Let us denote A = det[hk j]k 3 The transformation law for the
residue yields for any h smooth in Cn, holomorphic in a

neighborhood of V (c¢f. [13], [7, Prop. 2.3])

10



=1 P |
<a?,hdz> = <Aaa,hdz>.

In particular
_ _xl
z ng(C) = <5q,AJgdz>.

To finish the proqf it is enough now to show that for any monomial

03 QAyq

a
z =z n

it...z " we have <5%,zdz> € K. To compute this value we

can apply (2.4):

<5i,zadz> = lim 1 J z2 — 49z
q £-0 (2111)n qy---9y
tal=e

n

dz

= 1 a J

TTuman| % gy
Jj=1
lqj|=c

TT { z res tad/qj(t)},

j=1 lq (8)=0 B

where res h(t) denotes the usual one variable residue of the
B

function h at the point 8. The easiest way to compute the
inner sums is to recall that for rational functions of one
variable the sum of the residues over all the poles plus the point

at o 1is zero. Therefore

z res taJ/qj(t) = - res taJ/qj(t) = a_,
(8)=0 ®
9
a a
aj _ 1 -1 -2
where t /qj(t) =a;tt + ... +ay et —;5 + ... in a

11



neighborhood of ®. The coefficients a,  are rational linear
combinations of the coefficients of qj. Hence each sum is in K.

]

Corollary 2.2, Let K be a number field of degree e,

_,,0 0
f ,fn,g as in Lemma 2.1. Let CO = (Cl,...,tn) € V then

g

Q(CO) is an algebraic number of degree < e[ z mc}. If
tev

max deg fj = D then the degree of g({o) s eD".
J

Proof. Let M = z mc = total number of finite zeros of
LeV

£ o £ and denote Cl,...,tM these zeros, each repeated

1"' nl
according to its multiplicity. Then the polynomial

M
| ] (x—g(cj)) has coefficients in K. In fact, the symmetric
1

functions of g(Cj) can be written as rational combinations of the

elementary symmetric functions (Newton Sums) [26], 1.e., as

M
rational combinations of 2 g(tj)p = Z mc(g(?;j))p € K by
j=1 j=1

Lemma 2.1. The last statement follows from Bezout's theorem.

o
Lemma 2.3. Let K, fl""'fn as in Lemma 2.1. Let
r € K(z) without any poles on V, then <5%,rdz> € K.
Proof. Let Qgreeerdy be the same as in the proof of Lemma

2.1. Let r = g/p, g,b coprime polynomials in K[z],

V(p,fl,...,fn) = @, The difficulty in carrying over the proof as

12



in Lemma 2.1 consists in that p could vanish on some points of
V(ql,...,qn)\v. (In the application of the transformation law for
the residue one had to assume h was globally smooth, it would be
enough to know it is smooth in a neighborhood of V(ql,...,qn)

but if r has a pole there we cannot apply that formula). We
first show we can in fact assume this is not the case,

Let N be the integer defined by (2.5) and consider the

polynomial
- N+1 N+1

(2.10) P = lop + xlfl + ...+ Anfn .
By Lemma 1, [21] we can choose ko,...,ln € Z such that P does
not vanish on V(ql,...,qn). In particular Ao » 0. Therefore we
can set ko = 1 and 11,...,An € ., From (2.5) it follows now
that

7= 2 = <31l 9

< ' dz> <6?,P dz>

since g/p and g/P coincide and have same derivatives up to
total order N at each point of V.
Since we are now assuming that r has no poles on

V(ql,...,qn) we have, as in Lemma 2.1,
<5%,rdz> = <§%, Ardz>.

This time Ar 1is a rational function, hence we cannot reduce
ourselves to the case of monomials as in Lemma 2.1. To overcone
this difficulty let us factorize qj in K[t] into irreducible

factors:

13



n n
_ 1 s : - . +
(2.10) qj = qj,l'.'qj,S’ qj,ke K[t], s =s8(]), nke Z .

From (2.4) we can take O < ¢ << 1 so that A(z)r(z) is

holomorphic in {Iqjl <€, 15 jsn)y={lgl s e} and

1 A{z)r(z) dz
(2mi)P® ql(zl)---qn(zn)

lql=¢

<51,Ardz> =
q

This integral can be computed one variable at a time. Fixing 2,

z' = ‘22”"'zn)' we have
h(z,,z')

1 1

(2.11) m J W dzl
la,(z,)1=¢
s(1) n,
h(z,.z')/[ay(21)/qy  (Z1)] }
= E: res o .
ke © Ay gle)=0 BT CHMERTI

k
interior sum of (2.11). The zeros of Q are all simple, let

Fix k, let » =n_, Q= 3 gk’ P = numerator in the

them be al,...,aﬂ. We can factorize Q(t) as follows:

Qt) = (t-a ) (Q(a)+...) = (t-a )R, (t),

Rl(t) is a polynomial in t with coefficients in K[aI]. For a
different root aj we will have Q(t) = (t—aj)RJ(t), where the
coefficients of Rj are obtained by replacing a, to aj
everywhere in the computation of Rl. The function P is

holomorphic at t = al""'“u since the different irreducible

14



factors of q, have no common zeros. Therefore P(t)/Q(t) has a

pole of order exactly v at t = a, .

-1
P(t) _ 1 & P(t)
(2.12) Tes v (v-1)1 v-1 v
t—al (Q(t)) at (Rl(t))
t=a1
This expression is now a rational expression in « (and 2z’)

1
with coefficients in K, such that the residue at ¢t = g is

obtained simply by replacing al by aj everywhere. Therefore
P(t) .
z res a is a rational function in K(z').
- a k

Furthermore, we note that the portion of the denominator of P(t)

¢

which depends on =z is p(t,z’). The expression (2.12) will

have a common denominator which is p(al,zﬁp. Hence the inner

’

sum of (2.11) has no poles for 2z a zero of the product
qz(zz)...qn(zn). The same thing holds therefore for the
expression (2.11). Now we can iterate the procedure and conclude

that <§é,Ardz> € K. Hence <5%,rdz> € K,

Remark 2.4. Later on we will need a quantitative version of
the fact that <5%,rdz> € K. For this purpose we will use the
local character of the residue current 5%. That is, by using a

partition of unity {wc) we have <5%,rdz> = 2 <5%,¢<rdz>,
Lev
¢C = 1 near ¢. We further can assume that ¢{ 1is the only zero

of V(ql""'qn) lying in the support of ¢< and tha; r |is

holomeorphic on supp ¢<. Therefore for each term of this sum we

15



can apply the transformation law for residues without changing

r at all, i.e.

1 1 1
. < R ] -, = - ’
(2.13) 5? rdz> Z <5q Ar¢§d2> <5q Ardz>v
Lev

where we have introduced the last notation to indicate it is only
the points of V that count. Note there are ﬁany less points in

Vv than in V(ql,...,qn). In the first case one has at most D

2
points, while in the secondé one might have as many as p" points.

In Section 3 we will need the following results from [7] to

compute residues.

Theorem 2.5. (cf. [7, Theorem 2.2]). Let fl""’fn be

n polynomials in ch defining a discrete variety V, ¢ a test
function which is holomorphic in a neighborhood of Vv, m an

n-tuple of non-negative integers. Then the function defined for

Re A sufficiently large by

n(n-1)

(2.14) A - L23) — m J |E|
(2mi) IHEN

2(n+imj)Ar

m
SRFTE]) © Ot AP K

has an analytic continuation to the whole plane as a meromorphic
function. Moreover, this continuation is holomorphic at A = 0

and its value at this point is given by

m! 1
(2.15) TR el <5fM+l'¢ dag >,
I = ! ! =
where m! myt...m !, m+ 1 (m1+1,...,mn+1).

i6



§ 3. Division Formulas

The division formula we obtain here generalizes our previous
representation formulas for solutions of the algebraic Bezout
equation. We had originally considered them from the boint of view
of deconvolution (cf. [3], [56], [6]). The same techniques
can be applied to entire functions, but to simplify we will only
consider the algebraic case [7].

Throughout this section we will assume we have M

polynomials Pyr-++ /Py € €[z] such that

(3.1) M2 n,

(3.2) dx >0, ¢ >0 and d > 0 such that when [l 2 «
we have

n 1/2
[ ) ij(t)lz] > clig)®,
j=1

(3.4) max (deg pj) = D,
1< js<n
We will adopt the notation f = (fl""'fn) = (pl,...,pn), hence

(3.2) can be written as |[|[£f(¢)} = cucud and it impllies that the
variety V = V(f) is discrete.

For every polynomial pj we can find polynomials gj,k in
2n variables, of degree s deg p. - 1 1n each variable, such that

J
for every z,f{ € ¢® we have

n
(3.4) Py(z) = By(E) = ) gy (2.0) (L)
k=1

17



For instance we can take

gj’k(z,t:) =

If pj € Z[z)], deg p:j = Dj' then with this choice of gj,k we

have Dj!gj,k e Z[z]

Theorem 3.1. Assume (3.1},

be a polynomial in I(pl,...

functions holomorphic in a neighborhood @

(3.5) P =up, +
Then for g€ N satisfying
(3.6) dg > deg
and for any =z € c¢® we have
M
_ 1
P(z) = <3fm+l . z uy
Iml<g-n j=1

n
where m € N7,

determinant represents the variable (

m+ 1 = (m1+1,m

! 6p

J srd (t+t(z-1)) at.
k

0

(3.2), and (3.3) hold.

.pM) and let Uyoeee Uy

+ UpPy in Q.

P + (n-1)(2D-4) + 1,

gy,1(2.0)  -ooog, 4(200)

gl,n(z'.) .o gn,n(z")

£,(2)-£, (). £ (2)-F (°)
2+1,...,mn+1),

1
current 5;511 acts.
Remark 3.2. (1) The only term in the sum (3.7)

priori might not belong to

corresponding to m = (0,...

I(Pl'---:PM)

,0).

i8

is that one

and h(Dj!gj,k) < h(pj) + log DJ!‘

Let P

by any

of V su;h that

gj,l(z'.)

gj'n(zl')
pj(Z)

on which the residue

that a

In that case the development

ac> fM(z)

and the dot in the



of the determinants along fhe'last row shows that either one has a
multiple of pj(z) for some Jj, 1 s J =< M, or a multiple of
fj(C) for some Jj, 1 < j < n. This last type of term vanishes
since 5% annihilates the ideal generated by the fj' Therefore

(3.7) has the form
P(z) = Al(z)pl(z) + ... + AM(z)pM(z).

(i1i) In the case M= n + 1 and V(pl,...,pM) = ¢ this
theorem improves upon Theorem 3 [6] and its applications in
[3].

(iii) ©Note that the conditions (3.5) and P € I(pl,...,pM)

are equivalent by Cartan's Theorem B [15].

Example 3.3. Let M =n + 1, V(pl,...,pn+1) = @,
pj € Z[{z]. For P =1 we can take uy = ... =u = o,
u = 1 In that case Lemma 2.3 implies that (3.7) gives a

n+l1 pn+1

Bezout formula in @([z], that is ;
1= pl(z)Al(z) + ...+ pn+1(z)An+1(z)

with A, € @fz]. Note that the result remains true if ¢ 1is

J
replaced by a number field X and £ by the field of integers

ox of K.

Proof of Theorem 3.1. The germ of the idea of this proof

goes back to our paper on deconvolution [5§], [6] except that
here we have to deal inevitably with multiple zeros in V. In the

recent past we have found that the best way to deal with this i

i9



question is fhrough the principle of analytic continuation of the

2mx as functions of A [7]. We also use the

distributions |f|
recent work of Andersson-Passare on integral representation
formulas [2].

Let us fix once and for all ¢  92(Q), ¢ =1 in a

neighborhood of V.

Let p > 1 so that Qp {¢ € Cn:utn < p) 2 supp & U {(z}.

[

Let x € 9(Qp) such that x 1 in a neighborhood of
supp ¢ v {z}, O = x s 1. §

Consider the differential form QO = Qo(z,c) given by

n
) (TyEy) 4y
(3.8) Q, := (1-x(r)) I

g -z| 2

If ® is an open set such that z € @ and x =1 on ® then

Q, is ¢® in o x ¢, Let

(3.9) Lolt) = (1+6)Y, | ;

with N any integer > n.

For ALe C, Re A > 1 + %, let Q, = Q,(z,£,A) be the

differential form (with the notation of § 1):.

n
RFLOL?

2r j=1
HE(L )12

’

(3.10) Q, := {F(C) |

where the differential forms Gj = Gj(z,C) are given by
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n
(3.11) G := z 9y Gy
k=1

The coefficients of Gj are therefore polynomials in z and (.
Q1 is of class C1 and polynomial in z. If we let Re A >> 1
we can make Q1 of class Ce for any <€ given. With g as in

(3.6) let
(3.12) P (t) = (1 + )4,

Finally, define a third differential form Q2 = Q2(Z.§) by

M

(3.13) Q, = #() 2 uy(£)6,.
j=1

(3.14) Fz(t) 1= t.

These three differential forms are of type (1,0) in ¢,

hence they can be associated to cP-valued functions, simply take
the coefficient of dcj as its jth component. Using their
bilinear products with the vector valued function =z - { we can

construct three auxiliary functions Qj' We have

-]
i

(3'15) - <QO(ZIC)'Z_C> =

n
= (1-x(C)) F -z -r .) = -1
ppa jzl(cj Z;)(257C5) = x(¢) -1,
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(3.16) . = <Q1(z,t,l),z—t>

ox D
- IF(CH2 Z ?;(()<Gj,z-c>
EICS TR
2a D o
_ 1R | 3]
- F8) | ) 94 1 (Z:8)(24-C4)
Tk jZI ] kgl 3.k 1
ox B
AL Z’f‘;m[fj(z)-fj(t))r
e 2 |

by (3.3).

The last one 1s given by

(3.17) $, = <Q2(z,<),z—t> + P(L)
M
= 9(¢) ug(g) (py(2)-py(5)] + P(L).
=1
M
Note that in a neighborhood of V we have §2 = Z uj(C)pj(z).
. j=1

As a function of [ consider the product

(3.18)  — @ = FO(QO)FI(QI)F2(§2),

for 2z fixed and A fixed, Re A >> 1, this is a Cn+1

function of compact support since FO(QO) = x(C)N. Furthermore
(3.19) o(z) = P(z).
We need one more piece of notation: for O0 < j < 2, and

a non-negative integer denote
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a
R TR SRS Sy ypey

(3.20) r .
J J at® J |t=§j(z,{)

(Recall that él depends also on A.)

The following lemma will allow us to compute P(z) with the
help of Cauchy's formula (2.7) applied to ¢ (cf. [2]). 1ts

proof will be postponed to the end of the proof of Theorem 2.1.

Lemma 3.2. With the above notation we have, for Re A >> 1,

r{ao)p(ay)
P(z) = ?;;§75 J 8,(z,0) ) an’“i’ B Q0 (z.£))% A @, 0, (2,5 ,1))M
Q, Gptdyn
(3.21)
r (% )y (ayg)
’ 7;;§75J ) oao!ai! By (=200 B0 (2.2,0))H AT, Qp(.8) .

a . +a,=n-1
0 1
fol

The next step will be to study the analytic continuation of
this formula as a function of A. For that purpose, we compute

explicitly (§%Q1)a, 1 <a < n, always for Re A >> 1. To

simplify we simply write 3 for 5%. Let us write first
n
DESLE
A= }"—"—2—; Ql = IFIZKA-
Il £4)
Then
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2(kr-1)

(3.22) (3e )" = I¥ AR a K 4 aklF F 3FAan(3a) K72

A is Cco form off the variety V. The form (501)n can be
n

written in a slightly different way by writing Q1 = z ijj'

j=1
2)
wj = |F|2 f.. Then
£ J
n n {n-1)n n n
(3Q,)" = [ z 3p ,AG ] =(-1) %2 nt A3y, Ag
1 73 PARAS RO
j=1
We have
2(A-1) 2
3y, = | F| 5E, + fj["F' — 3% - LEL_ 3¢y ]
I £l £ e
Hence
n 2{(An-1)

A Bp IFl 757 + 2 [EI — z T, AJE ABF A AJE,
j=1 3y £l K< <k
n
'F' A FE, A e A A 5F,

nfu2 n+1) Z J k<y j<k

Note that OF = z (F/%, )8, and FieN? = z £,9f,. Since

5?k A 5?k = 0 we have

n 2An 2An __ w1 2An
(3.23) ATy = LELEH_ 3F + m lEii__ FE "‘lg%ﬁIIT I£1% 3F
1 i| £4 £l HEN

2in
= n) ﬂ—z—fl——ﬁ.
£
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(n-1)n

2An
(3.24) (3™ = (-1) 2 nim LEL

a— 3f A
1€ 20

>0
o)

Following the principle we introduced in [5] we have to

transform, using Stokes' theorem, some terms in (3.21) to make
them more singular. In this case consider in the second term of
(3.21) the term with ag = 0, a, =n - 1. then

F(O)r(n—l)(ng)n~1A 5Q2

5Er((30)rin—l)(5Q1)n—l’\ Q,) o 1

= = n-1 (0). (n) = n-1
N 1 ax/\(aql) /\Q2+I‘ 11 §¢1A(6Q1) A Q

0] 2°

Recall that Féo) has compact support in Qp and that

3x A Q2 = 0, since x = 1 on supp ¢. Therefore

0 0 2°

Q Q
p p

J r{Or (071 5q )14 3, = - J r{®r Mg A (FeH)" A q

To simplify the computation of this last integral let us Introduce

polynomials Aj 10 1s 3= n, 1=z 1s M, by
(3.25) G1 A e A Gj A vee A Gn A Gl = Aj,l dg, and
(3.26) G1 A v A Gn = AO dac .

Now we can compute the integrand above as follows

n

- - n-1 _ c _ i _ n~1
- a§1 A (an) A Q2 = —[ z [ j(z)—fj(t)jawj]A\[E awj A Gj} A Q2
1

=1
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(n-2)(n-1) n n

= (-1) 2 (n-l)!EA ij] z (-1)3 (2 (2)-£,(5)) LA
1 jo1
(n-2) (n-1) n M
L 2 F| R )
(-1) n-xﬁgﬁ-—s?A[jzll§h( 1) (£,(2) fj(C))Aj'l(z,C)0(()u1(5)]d(

Note that we have already computed in (3.24) the term with

ao = 0 in the first integral of (3.21). Let us write now

(3.21) as a sum of the contributions from a, = 0 in both

o
integrals and the other terms put together:
(n-1)n
2
(3.27) p(z) = =1 —— m j réo)rin) IFI T 5 A
(2mi) ik
Q
P
- J
{ion + (-1)" { z (-1) [f (z)-f ) 3.1 1]} dc¢
3.1
+ R(A,z)

Let us call T(z,{) the term between brackets in (3.27).
Let us show that in the set where ¢ = 1 this term is exactly the

determinant that appears in the final formula (3.7). First we

M
observe that since on supp ¢ we have P({) = z uj(t)pj(t) then
j=1
M
§,(z,0) = le uy(€)py(2).

Now we can expand the determinants in (3.7) by the last row and
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obtain T(z,). This function is therefore holomorphic on ¢ in
a neighborhood of V.

To evaluate (3.27) we will use the fact that both terms are
holomorphic functions of A for Re A >> 1 and they have analytic
continuations to the whole plane as meromorphic functions. We
will further see that they are botﬁ holomorphic at A = 0, hence

P(z) will appear as 1lim R(A,z) + lim (of the first term in
' A-+0 A0

(3.27)).

We proceed now to verify these statements for the first term

of (3.27). We have
n q-n
(n) _ _q! g-n _ _ qgq! 21
(™ - Al (e ) el (C LRI NS EREN
1
a-n 21k
- _9q! | 24 y9-n- lel m
ey El ERTL TR P Z XM f™z)
k=0 Im|=
g-n 21k g-n-k
! F n-k 2) -
i ) (R 3 e tn ][ ] o)
k=0 j=0 [m|=k

In order to apply Theorem 2.5, we fix a Lk, a multi-index nm
Im| = k, and an index Jj in the expansion of Fin). The

corresponding term in (3.27) is then, up to a factor fm(z),

n{n-1)

- 21 (j+k+n)
(3.28) (-1) — oo L J IFIz(n+|m|) ™ 5F A (xV7) ac,
(27i) B £l
Q
P
_ .13 g! k!flg-n)[{q-n-k)
where Ck,m,J = (-1) (q-n)'ﬁTL Kk jt P j Replacing 2 by



n+imj
[j+k+n]l' we are in the situation of (2.14) wup to the new

. = [_n+k =
constant ck,m,j = {n+k+j]ck,m,j' {Note x 1 1in a neighborhood
of V, hence xNT is holomorphic there.) Therefore, by Theorem

2.5, the analytic continuation exists, it is holomorphic at A =0

and its value at this point is

1 N
+1,x T d¢>.

. m!
°k,m,3 (m+im()}

(3.29) <5fm

Note that the value in (3.29) is independent of the choice of
X. We need to evaluate the constant obtained by adding over all

values of jJ.

g-n-k a-n-k
_ , n+k
(3.30) ck,m = z Ck'm'J - z [n+k+j]ck,m.3
j=0 j=0
g-n-k
. _ 9! kifg-n Z (_1)5 g-n-k]_m+k
T {q-ny ! mi{ k b n+k+j’
j=0

This sum can be computed in terms of the Beta function. Namely,

q-n-k 1
z (_l)j{q~?-kﬂn+i+j = J (1-u) 3707k Gotk-1 gy
j=0 0

(n+k-1)!{(g-n-k)!
q!

= B(n+k,g-n-k+1) =

We find

m! _
(3-31) memn T “km

Therefore, the value at A = 0 of the first term in (3.27) is
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exactly the right hand side of (3.7). We stress once more the
value we obtained is independent of the choice of x.
To end the proof we need to étudy the analytic continuation
of R(XA,z) and evaluate it at A = 0. Recall we work first with
1

Re A > 1 + a° In R(A,z) we have all terms (3.21) where

a. > 0. Introducing the auxiliary differential forms

0
n n
S = 2 (Cjwzj)d(:jr S = z (Cj—zj)df,j
j=1 j=1 :
we have
E‘: —
dg .AdC
R J J =
(3.32) 5Q0 = -—z&ié- + (1_1){3 1 5 _ SAS 4].
g -zl g -zl g -zl

This shows that 5Qo is identically zero in a neighborhood of
supp # U {z} by the conditions imposed on x. Since there is a

factor ¢ in Q2, it follows that all the terms with Aq >0 in

the second integral of (3.21) are identically zero.

Consider now the term with Ay = n in the first integral.

Let us rewrite first
n

(3.33) 8. +1=1- |F1% + 7% Zejfj(z)
j=1

1 - (F1% 4+ 7?8,

where ej = Gj(C) = ?j(()/ﬂf(t)nz. On the support of 5QO we
have that B is Cw, since Y = 1 on a neighborhood of the
singular points of Hf(C)H_z, namely V. Since F is a

polynomial, it follows (for instance by the Weierstrass'
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Preparation Theorem or Hironaka's Resolution of Singularities)

that on the ball §b we have that IF!"C is integrable for some

&€ > 0. Whence, this term with Ay = n which is given by
(3.34) b [ﬂ] [ 2,00 P14 )9 (T )"
(27i)
Q
Jo}

for Re A > 1 + % and depends on A only in the term (1+§i)q,
is holomorphic for Re A > -¢. Its value at A = 0 1is obtained
simply by taking 2 = 0 in the expression of @1. That is, the
value at A = 0 of (3.34) is

1 (N N-n _gq n
(3.35) ————-———[]léx B(JQ.) .
(2ni)n n 2 0
0
o)

We now have left the case 0 < ao < n, al = n - ao, to

consider. By (3.22) we have (5Q1)a1 as the sum of two terms.
We study first the one that does not contain the factor A. As

we have just shown, A is smooth on the support of §Qo and the
whole integral is holomorphic for A = 0. 1Its value, obtained by

simply setting 2 = 0, is the following

N-ao q-oy
(3.36) --—1-)-5 [g J[g] J & X B (5Q0)°‘° A (TA)H,
(2mi 0 1

Q
o)

The other term can be written as a linear combination of

integrals of the form
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A J iF12(PA-p 5% A ¢,
Q

o

p an integer 2> a C a smooth form of compact support. By

1 !
Theorem 1.3 [7], this function has an analytic continuation as
a meromorphic function of i, whose value at A = 0 is, up to

multiplicative constants
=1 '
<6F, FC>

which is the residue on the hypersurface F = 0. 8Since F
appears in the test form FC, this residue is zero.
At this point we can summarize what we have just done by

saying that A +~ R(A,z) has an analytic continuation which is

holomorphic at A = 0, and
(3.37) Ry = R(A,2) |, 4 =
n .
= 1 N[ a N-joq-(n-J) 54 J n-j
e - J Z [n][n_j]ézx B (3Q,)In (3a)"7Y.
(271) j=1
Q
o]

By now we are essentially in the same situation as in the new
Andersson-Passare proof of the Andersson-Bendtsson integral
representation formula (cf. formula (6), proof of Theorem 2,
[2]). They show we can let x tend to the characteristic
function of Qp and use the fact that for a smooth form ¢, and
1,

p integral : one has
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Since B = (§1+1)ik=0 and A = Q1|1=0' the formula (3.37) is
just the boundary term in the Andersson-Berndtsson formula for the

single pair (A,t9) (cf.[21,[71):

n-1
1
(3.38) R, = — J z 3
0 n 2
(2mi) §=0

aQ
fel

lt—n

[ q ]Bq+j+1én SA(5S)jA(5A)n-1—J
Hin-1-] lg-z)203%) 7

e

where 3 = 5&.

The last step of the proof is to verify that the estimates on
A, B we can obtain from the hypotheses are enough to let p — ®
in (3.38).

Since JE€(g) =2 cucud if {iZll 2 » we have that for p > «x»

the following estimates hold:

IB] < const. HCHmd.
| largest coefficient of (5A)n_1—j| < const. HCHZ(D_d-l)(n_1_j).
Furthermore §2 = P on aop. If follows that the worst term in

the sum corresponds to j = 0. From this we conclude that since
(3.39) deg P + {n-1)(2D-d) + 1 < dq

the integral in (3.38) tends to zero when p — ®,
This concludes the proof of Theorem 3.1, except for the proof

of Lemma 3.2.
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Proof of Lemma 3.2. From its definition (3.18) and (3.19) we

n+1

have a C function ¢ of compact support in' Qp which for a
fixed 2z satisfies ¢(z) = P(z). Cauchy's formula (2.7) states
that

(3.40) Tz .0 (£)A> = (z) = P(z).

The proof of this lemma consists in evaluating the residue in the
left hand side of (3.40) using the particular form of ¢. It
simplifies the computation of this residue to consider the slightly

more general form of ¢:
(3.41) p(£) =T(,<Q(z,8),z-¢>),

where I' is an entire function of n + v variables ({,t),
Q = (Ql""'Qv) a vector of (1,0)-differential forms in ¢, of
class Cn+1, <Q,z-{> := (<Q1,z—c>,...,<Qv,z—(>). For a

multi-index a of » components, we write, as above,

a a a
(3.42) pla) .o 1)11 .. DT = Q—a rl .
at t=<Q(zI<)Iz_C>
{n—-1)n
From (2.3) we have |c = (-1) 2n :
(2mi)
= 1 13 n n 2(u-1) -
B0 (L)dE> = ﬂirg c H ,T:T (<j~zj)l p(L) A A dC.

We compute the analytic continuation of this integral which is

originally defined for Re u > O.
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One can easily verify that:

d TfITEIT|C1"le 'T;T (€ 4-24) e (L)dl, A
nl-2 2(p-1) _
= u l'l_r (¢ -—z.)l @(£)dal A &
1 J J
n-1 n 2(u-1)
n-1 u 2u N -
+ (-1) g—l—_—zz |(1—Zl| |T_2T(Cj Zj) d(,'z A

Here d,8 are only computed with respect to (.,

. A dfn A dCJ

A dfn

A Jp A dr.

Since the first

term is the exact differential of a form of compact support, we

have by Stokes' Theorem:

nl-2 ‘ 2(u-1) _
(3.43) Ju ITT (cj-zj)‘ ()AL A g =
1
n-1 n 2{u—-1)
2 —
(—1)“I Cﬁ‘zl €42y |*H lT;T (Cj-zj)l at, A
From (3.41) we have
v n
6‘[’ = ZDkF(Z (zj-Cj)an'j(zlc)]l
k=1 j=1

. A

an

A B¢ A dL.

n
where we recall Qk = z Qk jdcj‘ Let us rewrite J¢ as follows
j=1

v

(3.44) 3 = -(t,-z,) z DI 3Q ; + R,.
k=1

The analytic continuation of the two separate terms obtained by
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replacing (3.44) into (3.43) exists by Theorem 1.3 [7])]. The

second one is a sum of integrals of the form: (1 = k < v,

- 2u
ICI z, | n

n-1 1 2(p-1
U Dkr_—E;:EI——(zi_Ci) T;T(Cj“zj)‘

)
dCZA...AanAan,iAdC.

2
1% 42,1 # n-1 | —

Since the two distributions ——m——, pu ll |(Cj—zj)

2

£17%

2(u-1)

depend on different variables, their analytic continuations as
distribution-valued meromorphic functions can be multiplied

(this is just their tensor product). The first one is holomorphic
for u = 0, the second one leads to the residue current

= 1 = 1
a A .o oA
£o72, ‘n"%n

But the remaining differential form is in the

ideal generated by the functions defining this current. Therefore
the value of this product at pu = 0 is null.
4

We can therefore forget R1 and consider only

v
2(p-1) _ _
& .. ./\an/\[ z DT 3Q, 1]Ad<

n-1 n-1 2p |2
(DT 2 P T T (e 2y
2 k=1

(3.45)

In ([7], Proof of Theorem 1.3), we have shown, in a much

more general situation, not only that the analytic continuation of

(3.45) 1is holomorphic at u = 0 but its value is exactly the

same as the one obtained from
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2(u-1) v

n- 1 n-1 = = =
(3.46)  (-1) J lT—[(c ~z,) aTn. anA[ZDkF an'J/\dY,
k=1

(This also follows from the above remark on the product of the
distributions of separate variables). It is clear now what the
general procedure is, the only point to verify is that the factor

(z,-r,) does not reappear when we apply Stokes' theorem. For
v

this, it is enough to compute z (5DkFA5Qk 1)~
k=1

n
DT ATQ ;= Z 2 D,D r[z z, Ci)gqj,i]Ang,l'
1 k=1 j=1 i=1

~
1

v

The term (z,-{,) AJS the coefficient of z DjDﬁﬂng,lAng,l =
j. k=1

0 by the anticommutativity of the wedge product.
After iterating this procedure a total of n times, and some

i = 1 = 1
algebra, one obtains, (a (al,az,...,av), al al....av.)

a

= 1 1 (a) 1 A
B, p (L)AL > = —F (3Q,) "A...A(3Q,) .
{-z (2%1) J ? o v

Note that 5Qj are (1,1) forms which absorb the 4 term from
(3.44). For a detailed version of this algebraic computation see
([2], Proof of Theorem 1). The statement of the Lemma follows

from the explicit form of I 1in this case, we just use that

2.
DI = o. a
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As a first application of Theorem 3.1, we will show the
impossibility of the Mayr-Meyer [22] example (1.12) for

discrete varieties as mentioned in the Introduction.

Theorem 3.3. Let Pyrvv-sPy € C[z] defining a discrete
variety VO, VO = {z & ¢ pj(z) =0, 1= m=x M). Let Pe €[z]
which belongs to the ideal 1 generated by pl,...,pM. Let

D = max(deg pj (1 <= j = M), deg P}. Then there are polynomials

A A such that P = plAl + ...+ pMAM and

17 By

(3.47) max deg Ay = (n+1)3pontl

Proof. If VO = ¢ then by [8] there are polynomials qj,
\

max deg qj < unDy + ub, u = inf{n,M} such that

1= plq1 + ... + quM'

Therefore Aj'= qu will satisfy the conclusion of the Theorem.
Hence we assume V0 # ¢. In this case we have the following
Lemma 3.4. If pl,...,pM define a discrete, non-empty,

variety V, in ¢™, ‘there exist polynomials hy,....h eI

which are linear combinations of the pj with integral

coefficients such that h .,hn is a regular sequence.

177"
Furthermore, these integers will have absolute value = Dg—l,

where DO = max {deg pj}.
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Let ﬁs accept this Lemma for the time being. By Bezout's
Theorem [26], the cardinality of Vl’ V1 = {z € ch.
hl(z) = ,,, = hn(z) = 0}, is at most D®. Therefore we can finﬂ
polynomials gl,...,gn, gj € @[zj], deg gj < Dn and gj
vanishing on Vl' We can use Rabinowitsch's trick to estimate the
power one needs to raise a .gj to be in the ideal J Agenerated

by hl""'hn' Namely, for fixed Jj consider the polynomials of

n + 1 variables.

hl(z)l"'lhn(z)l 1 - zOgj(zj)
which form a regular sequence in C[Z], 2Z = (zo,z),
zZ = (zl,...,zn), and have no common zeros. By ([8], Proposition

8) one has the inequality (c > 0)

2n+1
2.1/2 1-nD
(B2 1% + 11 - 259,(2,01%) 2 > ozt ™"

By the classical division formulas of Skoda [25], one obtains

polynomials Bj,l""'Bj,n+1 of the n + 1 wvariables such that
(3.48) Bj'lh1 + .0 + Bj,nhn + Bj,n+1(1'zogj) =1
with deg B, . < n(n+1)D?™?! 4+ np®™! = e, Multiplying (3.48) by

h
e

gj and replacing z, by l/gj we obtain

e e=
fj = gj Cj,lhl + ...+ Cj,nhn
we have the estimates
(3.50) deg f < eD”, deg Cy 5 ¢ e(1+D").
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These degrees are essehtially DSF. Brownawell has announced a
more precise est;mate of the exponent e and the deg CJ [9].
From this it would follow an estimate of the order of magnitude.
D2n in (3.50). There will be a corresponding improvement in
(3.47). Multiplying, if necessary, fj by a power of zj we can

assume

= n _
(3.51) deg f1 Cee deg fn = eD D1

this will make deg Cj i < 2eD" = 2D1.
We will apply Theorem 3.1 for the sequence of M + n

polynomials f S PyscerrPy- In this case & =D from

1’ " n 1

(3.51) since the variables are separated. Let uj be any
polynomials such that P = u,Py + 0.+ UyPy and, to avoid any
indexation problems, denote 7j,k the polynomials defined by
(3.4) for the pj. It follows from (3.6) that q =n

suffices. Therefore the formula (3.7) will have a single term:

" gy,1(2:8) o9y 4 (2,8) 7y 4 (2,0)
(3.52) P(z) = B3 , ) u,(€)° d>.
j=1 9y,nl(Z:8) v 9y n(28) 7y L (2.0)
£.(2)=£,(X) .. £ (2)-£,(8)  py(z)

Since the current 5% annihlilates the elements in the ideal of

f 'fn' we can eliminate the terms fj(c) from (3.52) when

EEEE
developing the determinant. Hence (3.52) simplifies to
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91,i(z"’ ee Gn,q(200) 7y (20

M
= <F1 ' :
(3.52) P(z) —‘<6f ) z uy (2.0 (z.-) z.-)
j=1 91,n'% e gn,n ! rj,n !

fl(z) fn(z) Pj(z)

Rt < <
]
e
Lo
.

é qlf1 + ...+ qnfn +

with deg q._J < (n—l)(Dl—l) + D -1, deg r, s n(D1 - 1).

b
Replacing fj by 2 Cj,ipi’ deg Cj,i < 2D1 we have
i ,

P(z) = plA1 + ... + pMAM'

with

deg A. < (n+1)D1 + D ~-n s (n+1)3D3n+1.

J

Proof of Lemma 3.4. This is a very small modification of the
proof of Lemma 2, [21].
We can assume that n > 1 and that none of the pj is a

constant. Define hl 2= Py

Let 31,...,3r be the prime ideals associated to the

principal ideal th[z]. We have 1 < r < Do. For each 3j,

1< j=< r, there must exist Py -4 SJ, otherwise Vo could not

be discrete. By Lemma 1, [21], there are integers A .o sA

17 M’

Ilj[ < DO such that
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€ 3., 1 s i< r.

+...+A,MpM i

The ideal ((hl’hz)) generated by hl,h2 is proper, otherwise

VO = @. By intersection theory [28], the degree of the ideal

((hl,h2)) is < Dg. This ideal is unmixed of rank 2 (Macaulay's
Theorem [28]), hence it has at most Dg associated prime ideals
Si' One can restart the argument above 1f n > 2. In this case
we will have integers Hyeeso by Iujl ks Dg such that

h3 P= M4Py + ...+ HymPu & 31, for any 1.

The ideal ((hl’hz’hs)) is again proper. Continuing this way we

obtain the polynomials hl""'hn we were looking for.
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§ 4. Effective bounds for sizes in Bezout lidentities.

In this section we will study the Bezout equation for
polynomials in OK[z]. OK = ring of integers of a number field
K,[K:@] = e. We need to recall a few definitions from algebraic

number theory [16]}. Given an algebraic number o denote

jal = max {la’'|:a' conjugate of a over Q}

s(a) = max {log den(a), log lal},

where den(a) = denominator of o = smallest integer d > 0 such

that is an algebraic integer. For a polynomial p € OK[z],

da
p(z) = z ckzk, denote
H(p) = max |c |, h(p) = log H(p) = max log s(c.).

Note that h(p) can be defined for p € K{z] using the last term

as its definition.

Let C/

5= [n+d"1] = number of monomials of degree exactly d,

n—-1

Cd < (1+d)n-1, and Cd = (n;d] = dimension of the vector space of

peolynomials of degree at most d, Cd < (1+d)n, Then if

p.g € 0K[z], deg p s d, we have
(4.1) H(pq) < C H(pP)H(q).
If one changes coordinates as follows:

w., 1< js n,

= + .., + &
4 a..w in"n

J jil

a € 2, < M, det[ajk] #» 0, and define a polynomial q €

ik la g,
OK[W] by the formula
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qg(w) = p(z),

we have the estimate

(4.2) H(q) s Cg(nM)%H(p).

Finally, let p € OK[zl""'zn]' al,...,an algebraic
numbers, and 8 = p(al,...,an). To estimate den(B) and s(B),
let rj > degz p = degree of p with respect to the variable zj.

J
Then
n rJ
(4.3) den(B3) 1is a divisor of T | (den(aj)) ,» and
J=1
n
(4.4) s(8) < h(p) + jEl(rjs(aj) + log(r,+1)).

Later on we will need to estimate the denominator of the
inverse of an algebraic number a (a ~ 0). If N{(a) denotes its
norm and d a denominator of <« one can use that N(da) is a

denominator for (da)"l. Therefore

(4.5) log den{a” 1) < log den((da)~1) < log N(da)

s (deg a)s(da) < 2(deg a)s(a)

Given polynomials PyressPy of deg pj = dj' consider
p? = Jeading homogeneous term of pj. Then the variety at o of

the pj, v is the conic subvariety of ch defined by

ml

V& = {z € Cn:pg(z) = Q, 1 =< J s m}.

We will say Vw is discrete, if dim VcD < 1. (The

terminology is justified by considering Vw as a subvariety of
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n-1

P .) From the algebraic point of view, V00 is discrete is
equivalent to the fact that the rank of the ideal ((pi,...,p:))
generated in C[zl,...,zn] by pg,,..,pg, is at least n-1, cf.
[28].

Let ”j be the homogenecus polynomial in the n+l1 variables

(zo,z) associated to pJ. Namely, let 2 = (zo.z) and

d
nj(Z) = zojpj(Z/zo)' Then, if Vm is discrete, the rank of the

ideal ((wl,...,nm)) in ¢€[Z] 1is at least n, and conversely.

The main theorem of this paper is the following:

Theorem 4.1. Let PgeeseoPy € ox[zl,...,zn].
max deg pj = D, max h(pj) = h. Assume PyreeesPy do not have

any common zeros in c¢® and that Vm is discrete. Then there

are polynomials Qyreeody € ox[z], ae 2zt such that they
satisfy the identity
(4.6) a= qul + v * I

and, the estimates

(4.7) deg qj < 10n3p2"
(4.8)
max{log a, max h(qj)) < 5235n+2 3n+15 8n+3(6n Dlog nD + log m + h)

The proof of this theorem will depend on the use of formula
(3.7) after we have found convenient polynomials fl....,fn in the
ideal ((pl,...,pm)) < ox[z]. We assume D =2 2, n 2 2, otherwise
the theorem is trivial. The next few lemmas have as a purpose to
find the fj‘
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Lemma 4.2. There exists a family of homogeneous polynomials

rj k € Z[z], 1 =< j3 s n-1, 1 < k < m, such that the polynomials

Sj glven by

(4.9) Py(z) = ) ry \po, 1 3= n-1,
k=1

are homogeneous of degree exactly D, and the rank of

((51,...,§n_1)) in C{z] is exactly n-1. Moreover
{(4.10) max h(rJ k) s (D-1)log n + (n-2)Dlog D.

Proof. Let Py be a 'p§ of degree D. We can assume that

n>=2., Let J the prime ideals associated to ((;1)).

1, 2,--0
There are at most D of them. It is not possible that all the
monomials Zyreoe i By balong to 31. The same holds for 32, etc.
By ([{21], Lemma 1) there are integers Uyreo s, |uj| < D,

such that the linear form

does not belong to any 31,

Let us now multiply p? by L?’dj, 2 < js n. The new
polynomials p3 are homogeneous of degree exactly D. For any
31, it is not possible that all pi,pé,...,pi € 51. therwise,
since 31 is prime and Ll & 51, then pg,...,p; would all
belong to 51 and, hence, rank of ((p?....,p;)) = 1 < n-1. One
can apply again ([21]}, Lemma 1) and find 11""'Rm € Z, !Aji <

D such that
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~

p2 = llpl + ... + lmpm

does not belong to any Bi.
It follows that ((pl,pz)) is a proper ideal of rank 2,

degree < D2. Therefore by Macaulay's Theorem [28] it has at most

D2 associated prime ideals. If n =3 we are done, If n > 3

we can continue the same way. (Construct a new linear L2 and

D-q;
2

To end the proof of Lemma 4.2 we only need to estimate

define ps = L p? for the next step.)

h(r where we have written pj as in (4.9). We had

D-d;
i,1 1.3 T2.3 1

(4.1) (and the fact that they are all homogeneous)

j’k)l

=1, =0 for 2 < j < m; = le hence by

. D-d; D-d;
H(rz,j) < D(Cl) H(Ll) .
Therefore
h(r2 j) s (D-1)log n + D log D.

For ry 3 the size of the corresponding Aj is < D2,

H(Lz) < D2 since this depends only on the number of components of

((pl,pz)). The worst case estimate occurs for r We have

n-1,3°

< (D-1)log n + (n-2)}D log D. (1lsks<n-1, 1<jsm).

h(rk,j) <

This proves the lemnma.

Let us now define Pl""'Pn—l € ((pl,...,pm)) n OK[z] by
m
(4.11) Pj = 2 rj,kpk' 1 < J< n-1,
k=1
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with r._j Kk given by Lemma 4.2. Then we have Pg = leading term
of Pj = pj. Let oj be the corresponding homogeneous
polynomials in OK[Z]
(4.12) o0.(2) = 22P (z/z,)

L] j o J o .
The ideal ((g,,...,0. ,)) has rank n-1 in C€[Z], that is
TqrevasOp 4 is a regular sequence. If that were not the case

1

dim W > 2, where W = {Z € Cn+ :aj(Z) =0, 1=s js n-1}).

Therefore

dim(W n {zo = 0}) =2 2.

— - x1-” = - =
But W n {zo = 0} {z € C .pl(z) o pn_l(z) 0} has dim 1
since ((pl,...,pn_l)) was of rank n-1 in C[z].

It follows that the ideal ((01,...,0 }) is unmixed and it

n-1

n-1

has at most D assocliated prime ideals 51.

Recall that = - ®, are the homogeneous versions of

R
PyrevesPy and that the rank of ((nl,...,nm)) in C[{Z] 1is at

least n. By the same argument of Masser-Wustholz as above, for

each Si there is some "j which does not belong to it.
n-21

Therefore there are integers ”k’ Iukl < D such that
A L + ... + Mo "4 31 for any 1.
Hence the rank of ((01,...,0£)) in C€([Z] 1is exactly n.
We can define
(4.13) Pé(z) = aﬁ(l.z).
n
' "1 n
Hence P’ = } i , lg.l < D', Not €
1
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(1 < J s n-1), PA = 0} is discrete. We do not yet have the right
choice of the nth polynomial to add to the list Pl""'Pn—l' We need

o

. . _ o _ - - .
that the variety wGD defined by Ww i = (P1 = ,,, = Pn = 0} in

¢® does not change if we take away one of the equations. For

that reason, let

o 2
(4.14) P =P/ + zpj.

n-1 n-1
We know that Z (P?)2 = z (pj)2 # 0. Otherwise the sequence
1 1

PpreeiPy_yq could not have been a regular sequence. Therefore
n-1
deg Pn = 2D and Pg = z (P?)z. Clearly, this polynomial
Jj=1
satisfies the required condition on the variety Wm. By Lemma 4.2,
dim W, = 1.
m
Let us write Pn = z rn,kpk' The logarithmic height of
k=1
rn,k can be estimated by

(4.15) h(rn k) < h + logm+ 3nD log nD.

For later use we summarize the different estimates of the

size of Pl”"’Pn into the single estimate

(4.16) h(Pj) < 2(h + log m) + 4nD log nD (1 < 3 s n).
Lemma 4.3. There are constants oy 2 0 such that for

el = X

(4.17) 1PN = [ilpj(cnz]l/z > e g P-2(n-1)D%,

1
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Proof. We follow the proof of ([8], Proposition 8). The
only difference here is that the'variety X = (Pl = ,,, = Pn = 0}
= {P1 = ,,., = Pn—l = Pﬁ = 0} 1s not empty but discrete by the
observation after (4.13).

One observes that the step Hn in that prdof is valid for

*
the regular seguence Pl""'Pn' Fn is the product of Chow forms
corresponding to points in c®. (Here we use the discreteness of
X.) These Chow forms are u, + b1u1 + ... % unbn'
»
(by,....,b ) € €7, From the definition of IE N, (18], Section

III) we have.

E
Uanc > constant > 0 if il = ”1'

Part (iii) of Hn' gives

v

n
logiP(¢)il = const. + (min deg Py)loglitll - {(n-l)T‘Tdeg Pj}logut:u
1

const., + (D - 2(n-1)D™)logliC}.

which is the inequality we were looking for.

The construction of L is the proof of Lemma 2.4, this time

1
with respect to the variety W, shows there is a linear form

L e Z[z]
L = al'lz1 4+ ... + al,nzn'
(4.18)
H(L) = maxla, .| s ™%,
llj
such that Ww n (L = 0} = {(0}.
Lemma 4.4. Let fl""’fn be defined by
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n
(4.19) £5 = (L + j-1)2(n-1)D Py

There are constants ¥,c > 0 such that

(4.20) NE()l = elighh  4f g 2 ».

Proof. By (4.17) in the preceding Lemma we have

n
D-2(n-1)D 1fnCl 2 x..

IPEEIN = lgl .

Since W can be defined by any n-1 among the Pg and,

WGD n {L = 0} 1is just the origin, 1t follows that there exist
constants Cyrky > 0 such that for |} = x, we have for any k,

1 < k< n,

1/2
(4.21) (1« §eet?) 77 s e
Jmk
2n3/2
Let Xy = max{xl,xz, g, }. For any given ¢, Ll 2 Xy, We can
choose k such that
c _ _ n
1P (6117 = max {py(¢)) = =2 peyPm2RTLIDT
1< j<n yn

For this k we apply (4.21). Either

€2
1L{g)l 2 — ligH,
¥n

hence, for some constant Cqy > 0,
JL(g) + k-1 =2 c3H§H.

in which case
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|£,(¢)1 = const. Ig)P.

Or, in the other case, there is an index Jj » k such that

c

1P )] = =2 gy
/n
By the definition of k we also have
€2
IPk(C)I 2 — JiCh.
n

Since k= j we have

IL(g) + k-1t + |L(¢) + J-1f 2 |k-j| 2 1.

It follows that

1

LE(E)1 + £ (0)1 2 [5 —= g

]Z(n—l)Dn c,
n

This proves (4.20).

Note that though deg fj = 2(n—1)Dn + D, 1< j = n-it,
deg £ = 2(n-1)D™ + 2D, the cardinality of
V=o(zee™ £(z) = ... =f(z) =0) is at most (2D+1)(D+1)""?

< 2(D+1)n by Bezout's theorem.

Since the original polynomials PyreeesPy have no common
zeros we can find Dj « £, lvjl < 2(D+1)n, such that if
(4.21) Pn+1 1= vlp1 + ... + vmpm,
then

Vn{(ze c™P  (z) =0} =0.

n+1

51



Before proceeding any further let us remark that one can
estimate the logarithmic size of the fj and of the polynomial

coefficients representing them in terms of the original

polynomials PyrvessPpy-

m
n
= _+12(n-1)D
Let sj.k := (L + j~1) rj,k' Then

m
(4.22) £, = z 8, 1Py

ka1
Then

' ‘ n

(4.23) deg aj,k s 2nD,
(4.24) his, ,) s b+ logm+ 6n2D"” log D
(4.25) h(f,) s 2(h + log m) + 8n2p™ log D.

We also know from above that
(4.26) h(Pn+1) s n log(D+1) + log 2m + h.

We have now performed the preliminary algebraic steps and we

are ready to proceed to the proof of Theorem 4.1.

Proof of Theorem 4.1. The seguence fl""’fn’P fits exactly

n+l
in the situation of Example 3.3. From there it follows that there

are polynomials A ., A € K[z] such that

e n+l

What we need to do now is to unravel (3.7) to obtain an
estimate for the common denominator of the Aj and the size of
their coefficients. Together with the estimates (4.23)-(4.25)

we will then be able to achieve the proof of Theocrem 4.1.
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We now have d =1 in (3.2), P =1 (hence deg P = 0),

1

n+1i

in (3.4) is now max {deg fj' 1 s 3 < n} s 2(n—1)Dn + 2D. An

u, = u, = ... =u_ =0, u = in (3.5). The quantity D

easy estimate for g 1In (3.6) says we can take

(4.27)g = 4n°D".

With this estimate we can obtain an estimate of the degree of

the polynomials Aj by

(4.28) deg Ay s an’p?",

From this estimate, (4.7) follows immediately. Let us recall

that in this case (3.7) has the form

(4.29) 91,1 *++ 9n,1 In+1,1

1= <5 mii 5 11 acrs> £8(z).
fmj<g-n £= n+l gl,n Tt gn,n gn+1,n
fl(z)-—fl...fn(z)-—fn Pn+1(z)

We are therefore obliged to estimate a common denominator as
well as their largest possible absolute value for all the

algebraic numbers of the form

Kk
(4.30) F2, L2 — ar>, (ki s 200", Iml s q).
£ n+1

To compute these residues, we can use an observation from ([7],

Proposition 2.3 and following remark) that shows it is enough to

find n polynomials Gyrereogy € OK[z], gj a polynomial in the
single variable zj, which belong to the ideal generated by

f "fn’ With a little bit of care we could find g&s with

1,--
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reasonable degrees as it was done in the previous section. Our
problem is that we also need a control on the logarithmic sizes

h(gj). For that purpose we will appeal to the following variation

of a result of Macaulay [14], [19].

Lemma 4.5. Let Vyreeor¥q € OK[zl""’zn]', deg 73 s &,
h(yj) < M. Assume Y = (z € anrl(z) = ... = 71(2) = 0} is
discrete. Let Vqreees?q be the polynomials of n-1 wvariables

. - _ .0

defined by 7j(zz,...,zn) = 7j(0,zz,...,zn), assume the origin of
Cn—l is their only common zero (r? is the leading term of 7j).
Then there is a non-zero polynomial ¢ € ((71,...,71)) n
OK[zl,...,zn], P depends only on the variable zl,

1
o(z)) = 2 by(z)7(z), with

1

n.n

(4.31) max (deg ¢, deg bj) < 1n'8",
(4.32) max(h(e) h(b)) s 1n%™(M + log(1n"")).

Proof. Since Y 1is discrete there is at least one
pelyvnomial » = 0, y depending only on z, such that

1
w(zl) = cj(Z)rj(z), cj e OK[z].
j=1

(See previous section or use elimination theory.) Let Cl € C be

fixed such that w(cl) # 0 and consider the polynomials 73 of

’

n-1 variables given by 75(22,...,zn) = rj(i) = 7J(C1,zﬂ.

The homogeneous variety ({z’' « ®n~1: )°(z) =0, 1< js 1) ¢

(73
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(z' e ¢P71, ;j(zﬁ =0, 15 js< 1) = (0). Moreover, the
identity (4.32) evaluated at the point z1 = Cl has the form
1
0 = p(L,) = j 163(2')73(2').

That means that the polynomials ré(z’) have no common zeros in

Cn-l. As pointed out in (1.8), a classical result of Macaulay

”

tells us there are polynomials cJ € €C{z'] such that

1
(4.33) cg(zﬂyé(zW -1=0
i

(4.34) deg cg < (n-1)(6-1).

One can consider (4.33) as a homogeneous system of equations
with 1[‘“;2;5} + 1 unknowns, which has a non-trivial solution.

The coefficients of the matrix are polynomials in OK[§1], of
degree < 86, logarithmic size < M. By linear algebra (cf. [21].
Lemma 4) one can choose a particular solution using r x r minors

of the matrix such that the last entry is different from zero in

(n-1)6
OK[CI] [r < t[ n-1 ]]. Though up to this point (1 was

considered a fixed value, the total number of solutions
constructed by this method is finite. Therefore there is one of
them that leads to a non-zero polynomial ¢ in ox[zll. We have

therefore
1

?(z) = jZij(z)rjm.
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Using that o is an r x r minor we have

deg ¢ < r6 < 15[(“"1)5} s 18((n-1)8+1)""1 ¢ 1a7%7,
n-1
The same estimate holds for the degrees of the bj' Similarly we

obtain logarithmic size estimates (4.32).

The residue formula (4.30) 1is a sum of local residues at

the points of the variety V of common zeros of fl""'fn’ At

one such zero a, at most one of the functions L,L+1,...,L+n-1
could vanish. Let us say L(a) = 0. Then the local form of
(2.4) says that

k k

1 ¢ 1 1 = 1 £
(4.35) <d—, > = <3 A 8. A ves A D y— >,
g Phy @ £M™M ph2 Pﬁ" Q a

where < , >a indicates the local residue at a, and

2(n-1)p"
] If one of the other affine

n mj
Q = Pn+1[T‘T2 (L+3-1)
functions L+j vanishes at «a, the expression one obtains is

obviously similar. If none of them vanish we will nevertheless

group them as in (4.35),
Our construction of P1""'Pn’L is such that the variety at

® of the polynomials fT‘,...,fgn is W, which 1s discrete and
has at most Dn—1 points in common with the hyperplane at o,

Before applying Lemma 4.5 we will introduce new coordinates

w by

1;--. n

n

(4.36) <a,,z> = "wj' aj e 2, n := det[aj'k]

J
so that W, does not intersect any of the hyperplanes {w:l = 0}.
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We can choose a, as in (4.18) since the required condition
Woo n {wl = 0} =0 is already satisfied with this choice. The

condition on the a is therefore

J

n T 1 <aj.L> = 0,
£,3

where { are projective representatives of the points in Nw.

This is a polynomial condition on the aj Kk (2 < 3 s n) of

degree (n—l)(Dn—1+1). Theorem 1, [20] ensures that there is a
solution a2,...,an with

o 3.n-1
(4.37) nax laj'ka < nbD .

This estimate also holds for J =1 by (4.18). It follows that

2
(4.38) 1s Inl = ldetfa, ]I = néhpt |

Using this change of coordinates, we have
w
(4.39) z = A w,

A* is the cofactor matrix of {aj k]; all its entries are

integers

2
* én_n
{(4.40) maxlaj'kl s n D

If we define

(w) = P (z) = P (A"w), A(w) = L(a"w),

73 3
then using (4.2) and (4.16), we find:

(4.41) Alw) = nw1
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h(rj)As 8n2D lJog nD + 2(log m + h), (1 < 3 =< n).

(4.42)

h(y ) < 4n2D log D + log 2m + h.

n+1

We can now apply Lemma 4.5 to the system of polynomials

lrl,rz,....rn. We find polynomials ¢j € ox[wj], bj,i € ox[w]
such that
n
(4.43) P ) = by WA (W7 (W) + ) by (W7 (W),
i=2 -
(4.44) max(deg ¢,.deg by ;) s n™*1(2p+1)® < (anp)?*?,

1

{(4.45) max(h(¢j),h(b ’1)) < (3nD)n+ (11n2D log nD + 2 log m + 2h).

J

The estimates have been generous enough so that they will not
change in the other possible groupings of (4.35), the
polynomials wj will change.

To profit from the knowledge of the ¢J to compute (4.38)
as we have done in Lemma 2.1, we need first to change

coordinates. From (2.4) it is clear that

k
1 1 1 z - 1 1 i R
G—AT——A .. A8, % dz> = (det A )<B—-AT——A...AD s Aw>,,
£ pia pBn Q a ( ) wmi y M2 »0n S aw B
1 2 n 1 2 n
* ] k L] Aa
where vl(w) = fl(A w), R(w) = (Aw) , 8S=Q(Aw), 8 = 5
- 4.2n
It is easy to see that if N = 8n'D then
N my My m,
(4.46) Py < (" 7% eeen? ™)), Iml s @, 15 J s n.
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Let

N
oy = cj,lvTi + ... + ¥ yoe

n’n "’ Cj,i € OK[z].

Denote A := det[cj'i] € oxlz]. The cj,i' A depend on the

multi-index m. One can verify:

(4.47) deg A < 5n6(anD3)“ and
n(A) s 10n°D?™(3nD)™* 1 (11n%D log nD + 2(log m+h)).
We alsc have
(4.48) h(R) < 5nD™ log nD, deg R = |k| < 2np".
(¢.49)  h(S) < 18n°D*™log nD + (log m+h), deg S s 8n°p2",

The transformation law of residues (cf. Lemma 2.1) can now be

used and it vyields:

®
£ = 2(8) := (det A )<F—anF2n.. AT R g, =
my m, m,’s B
vi 72 yn
]
= (det A )<5—§-A...A3'—-§-,AE dw> .
N N' 8 B8
?q ®n

This last expression can be computed iteratively as we have done

in Lemma 2.1. Let B8 = (Bl,...,ﬁn), ”j the multiplicity of Bj
as a zero of ¢ . Define @ by the identity
v
. - J = AR -N
wj(t) = (t Bj) Gj(t). If we let &(w) 5(91"'9n) , the

above residue is given by
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: * N(yy+...+0,)-n
(4.50) L= w —1§?Eg ?Ng =177 e M, -1 7w
1 T n Taw, Y T.,..9w_ P
1 n w={3
The number ¢ is in K(Bl,;..,Bn). In fact it depends also

on the index k. We want td estimate first a common denominator
for all the ¥ that appear with a fixed A8 and an arbitrary k.
Since ¥ 1is obtained (up to a rational number) by evaluating a
derivative of ¢, we rewrite ﬂ» in order to use (4.3).

Leibniz' rule allows us to write

Njv|—-n
3 1 1 1
(4.51) — — & (W) = @(w e e e W, ’ y e e e },
c’iwl;w1 1...6w§v“ 1 1 n'g(w) Gl(wl) Gn(wnf
$ e OK[XI""'X2n+1]' We have rj 1= deng ¢,

6n6(3nD3)anvl if 1 < j < n

1A

r.
J
(4.52) rosp S Njv|

ij if 1 s j < n.

I‘n+1+j <

By letting Vj take the largest possible values we guarantee that

n r. r n r

d = T J(den(s)) J(den(1/8(8)) n+1T_T(den(1/9j(Bj))) n+1+j(Nv1)!...(an)!
j=1 1

(4.53)

is a denominator for ¥£(8) for all k (and all conjugates of
B8.) To simplify the notation let ej i = ej(Bj)’ o := S$(8). This
shows that to estimate the qguantity 1log d we need to estimate

d B2.), tc.
en( J) etc

A0



For that purpose we use the fact that Bj is a root of
¢j(t) = 0. A denominator for Bj is therefore given by product
of all the conjugates (over Q) of the leading term of ¢j’

therefore (recall e = [K:0])

n+1 2

(4.54) 1log den(ﬂj) < eh(¢j) < e(3nD) (11n°D log nD + 2(log m+ h)).

To use the estimate (4.5) for den ¢” !, den 631 we need

to estinmate s(o), s(cj). These are dependent on
s(Bl),...,s(Bn). To obtain s(Bj) we use again the equation
¢j(Bj) = 0. Let us write this equation as

1 1-1 _
(4.55) aO(Bj) + al(Bj) + ... tay = 0.

We can assume that Ile > 1 since we are trying to compute
s(Bj) = max{log den Bj’ longjl,loglﬁsl,...), where 33,... are

the conjugates of Bj. Hence

1
laghiB gl < ) layl.
i=1
Multiplying by the conjugates of ag (a0 € OK) we obtain

e-1

1
(4.56) 851 < 165IN(ag) < [ Y 1F71] (F51)
' 1

Since a conjugate of Bj will be an equation like (4.55) where
each a; is replaced by some conjugate and the estimate is

independent of the conjugate of the ais we pick, we conclude

(4.57) log ]F}l < log deg ¢ + eh(wj)



n+1

(4.58) s(8;) < (n+1)log(3nD) + e(3nD) (11n%D log nD + 2(log m+h)).

{The first term can be eliminated replacing e by

e(1 + 8x107%).)
Now €y = ———;uT—l~ € OK[Bj], its degree and logarithmic
5!

size can be easily estimated. Using (4.4) we obtain

i~

(4.58) s{e )

i h(¢j) + (deg ¢j)1§g 2 + (deg wj)S(Bj) + log(deg wj)

2

e(l + 10—3)(3nD)2(n+1)(11n D log nD + 2(log m+h)).

iA

We know that 8 is a solution of the equations

krl = 72 = ... =y.= 0. By Corollary 2.2 it follows that

deg 6 < e(2D+1)" and deg £ 8 e(2D+1)". Using (4.5) again we
have

(4.60) | log den(s}l) < 2e(20+1)"s (s ).

Similarly,

(4.61) s(o) < e(1 + 10 2)8n*p?®(3nD)™* 1 (11n%D log nD + 2(log m+ h))

log den ot < 2e(2D+1)s(0).

We can now use (4.53) with Vj replaced by (3nD)n+1,

which is an upper bound for deg wj. We have, d = d4(8),

le234n+3n3n+15 7n+3

(4.62) log 4 < 5 D (11n2D log nD + 2(log m+h)).

A denominator do for the sum of all the local residues
appearing in the algebraic number (4.30) will be the product of
the different denominators d(3) (3 corresponds to an a after

a change of coordinates that depends on a), hence



(4.63) log d, s (2D+1)"max{log d})

a
. +
< %e235n 2n3n+1508n+3(11n2D log nD + 2(log m+h)).
What we want to do next is to estimate |E(B)|. There are

basically two ways to proceed. One way is to write ¥(8) as an
element in OK(BI""’Bn)' and estimate the logarithmic size of
the numerator and denominator polynomials. Another way, simpler
in our view, is to estimate |E(B)|, lE(8')|,... analytically
using the integral expression of a residue. For this purpose (in
fact, this is also needed in the first approach), we need lower
bounds for |Oo}, chl, and the expressions obtained replacing B

by 8, etc. The size'inequality ([16], Chapter 1) |is
log lo_ll < 2s8(c)(deg o) < 2e(2D+1)%s(0)

similarly for the other terms. These are precisely the expression
in (4.60) and the second ineguality in (4.61). Note we can
obtain better inequalities using the Proposition in [23]. But in
any case the worst estimates will eventually come from (4.63).

We observe that

=
it

log max {ij(t)lzltl < !le + 1}

iA

log (deg ® + 1) + h(wj) + deg(¢j)(8(3j)+1)
and

G = log max l[grad S(z)|| = (n+l)log(deg S)+h(S)+(deg S)(max s(BJ)+1).
fz-Bll<1

If there is a zero to of ¢J in IBj-tl < 1 then (cf. [4],

Lemma 3)



-1
1 ~t] 2 =10 £ - M.,.
og !BJ | g | 5 I j
We can define & = 8(8) by
log & = inf{-log |631| - M;, (15 335 mn), -6 - log lo”Y) - 1o0g 2.
With this choice of & we have that

log |¢j(3j-t)l 2 deg(wj)log 5, It] =8

-1
log IS(Bl—t .,Bn—tn)l z ~log lo 7| - log 2, Itjl = &,

1'

By the remark after (2.4) we have

_ o= 1 = 1 AR
E(B) = (deg A )<6-ﬁA...Aa—ﬁ, -3 dw>B
qp1 wn
- (det A*)__l_.[ j A(B-t)R(8-t) at. ..
(2n1)® S(B-t)py (B,~t,)...on(8 ~t )
3t1|=5 it _|=6
n
Therefore
€] s lnn-1|<5n nax A(B t)R(B~ t)
Itjl—a S(B- t)¢ (B —t ). ¢n(Bn—tn)

Using the above estimates one obtains

(4.64) logle| s e239n+3,8n+8pTn+1 441,12 Jog nD + 2(log m+h)).
In fact (4.64) is an estimate for 1loglZ(B8)|. The sum over
all points in the variety V of zeros of fl""'fn gives us the

element (4.30) of K. PFor fixed k, we will have

k

log <3’—-—%,Pc df| < estimate (4.64) + n log (2D+1).
£ n+1
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We can now return to the identity (4.29). A denominator
common to all the entries in the determinants is (max deg fJ)!
Therefore a common denominator for all the determinants is

(2nDn)!n. Hence we can take a e 2zt for (4.6) to be
(4.65) a := do(ZnDn)!n.
This way we obtain polynomials qj € OK[z] satsifying

a = p1q1 + 00+ pmqm

and

h(qy) e23®nt4,3n+8,In+1 1 112p log nD + 2(log m+h)).

This concludes the proof of Theorem 4.1.

Let us denote

- e235n+2n3n+15D8n+3 2

b(n,D,m,h,e) (6n"D log nD + log m+h).

Corollary 4.7. Let p.,...,p. € 0_[z] without common zeros
—m— 1 m K

at infinity. Let g € ox[z] vanish on the variety V of common

zeros of the pj. Set D = max(deg pj,deg q), h= max(h(pj),h(q)).

Then there are a,u < Z+, QqreeeQy € OK[z] such that
aq’ = pyg, + ... + p.q,
deg t:,[:j < 20(n+1)3(D+1)2(n+1)
p s 10(n+1)3(D+1)2(n+1)

max(log a, h(qj)) < b(n+l,D+1,m+1,h,e).
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Proof. Using Rabinowitsch’s trick one considers

Q & oK[zo,z] given by Q(zo,z) = 31 - zoq(z). The polynomials

1
have no common zeros and exactly

Q,pl....,pm considered in ¢™
one common zero at ®. One can apply Theorem 4.1 tc these

polynomials and obtain
m

a = A(zy,2) (1 - zga(z)) + ) By(z5.2)py(z).
3=1

We have by (4,7)4

deg A, deg By < 10(n+1) 3 (D+1)2(n+1)

1

2{n+l)
. Then, set as usual zo = ETET'

Let 4 = 10(n+1)>(D+1)
m m

agh(z) = Z q”Bj(é.z)pj(Z) = Z a4(2)py(z).
J=1 1

One computes the size of the qj using (4.8) and obtains the

desired bound.

The inequalities can be improved by separating deg q from
deg pj and using the sharper new form of the Nullstellensatz

found by Brownawell [9].
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