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Conventional lag dampers use passive materials, such as elastomers, to dissi-

pate energy and provide stiffness, but their damping and stiffness levels diminish

markedly as amplitude of damper motion increases. Magnetorheological (MR)

fluids based dampers have controllable damping with little or no stiffness. In

order to combine the advantages of both elastomeric materials and MR flu-

ids, semi-active magnetorheological fluid elastomeric (MRFE) lag dampers are

developed in this thesis. In such a damper configuration, magnetic valves are in-

corporated into the chamber enclosed by elastomeric layers. Preliminary MRFE

damper design analysis was conducted using quasi-steady Bingham-plastic MR

flow mode analysis, and MRFE damper performance was evaluated analytically.

To investigate the feasibility of using a combination of magnetorheological (MR)



fluids and elastomeric materials for augmentation of lag mode damping in heli-

copters, a semi-active linear stroke MRFE lag damper was developed as a retrofit

to an existing elastomeric helicopter lag damper. Consistent with sinusoidal load-

ing conditions for a helicopter lag damper, single frequency (lag/rev) and dual

frequency (lag/rev and 1/rev) sinusoidal loadings were applied to the MRFE

damper. Complex modulus and equivalent damping were used to compare the

characteristics of the MRFE damper with the passive elastomeric damper. The

experimental damping characteristics of the MRFE damper were consistent with

the analytical results obtained from the Bingham plastic analysis of the MR

valve. Based on measurements, the Field-OFF MRFE characteristics are similar

to the passive elastomeric damping, and controllable damping as a function of

different flight conditions is also feasible as the applied current is varied in the

MR valve.

A second key objective of the present research is to develop an analytical

model to describe the nonlinear behavior demonstrated by an MRFE damper.

Since the damping behavior of both elastomers and MR fluids is dominated by

friction mechanisms, a rate-dependent elasto-slide element is developed to de-

scribe the friction characteristics. An MR model developed from a single elasto-

slide element successfully emulated the yield behavior of the MR damper, and

this model captured nonlinear amplitude and frequency dependent behavior of

MR dampers using constant model parameters. Meanwhile, using a distributed

elasto-slide structure, an elastomeric model was developed to describe the stiff-

ness and damping behavior of the elastomer as the amplitude of excitation in-

creases. The fidelity of this five parameters time domain model is demonstrated

by good correlation between modeling and experimental results for both the



complex modulus and steady-state hysteresis cycles. Since an MRFE damper

was shown to be a linear combination of the elastomeric and MR component,

a time domain MRFE damper model was constructed based on the linear com-

bination of the MR and elastomer models to describe the nonlinear behavior

of the MRFE damper. Good correlation between the model and experimental

data demonstrates the feasibility of the MRFE model for future MRFE damper

applications.
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Chapter 1

Introduction

1.1 Objective

Aeromechanical instabilities due to the coupling of the lightly damped blade

lag motion with other motions are serious concerns in helicopter rotor systems,

and lead-lag dampers are widely used to mitigate these instabilities. However,

as more advanced helicopter rotor systems emerge, such as soft-in-plane hin-

geless or bearingless rotors, elastomeric snubbers/dampers on these advanced

rotors exhibit a large reduction of lag damping as the amplitude of the blade

motion increases, leading to excessive size and weight of dampers in order to

accommodate all operating conditions. Meanwhile, current snubber/damper de-

signs account for a large fraction of the rotor cost [1]. In addition, despite

continued improvement in material performance, some articulated rotors require

more damping than current elastomers can achieve and this is particularly true

for rotors that were originally designed to use hydraulic lead-lag dampers [2].

The greatest amount of lag mode damping at the lowest cost (both initial and

maintenance) is desirable. Semi-active lead-lag dampers employing field control-
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lable fluids such as magnetorheological (MR) fluids have been proposed [3], and

substantial damping augmentation has been observed in model-scaled dampers

between on-off conditions. However, neither full scale semi-active dampers have

been developed, nor has the behavior of an adaptable lead-lag damper activated

by a continuously controllable field been evaluated.

The objective of this dissertation is firstly to develop MR fluid elastomeric

dampers (MRFE) and evaluate their controllable damping performance under

loading conditions encountered by a helicopter lag damper, and secondly to

develop an MRFE damper model to describe MRFE damper behavior.

1.2 Background and Motivation

Aeromechanical stability of helicopters is a nonlinear phenomenon involv-

ing complex interactions of aerodynamic, inertial and elastic forces. The state

of the art on rotorcraft aeromechanical stability is addressed in a review [4].

Due to stress and weight considerations, advanced helicopter rotors are soft-in-

plane, and are susceptible to aeromechanical instabilities, such as air and ground

resonance. Classical ground resonance, caused by the coupling of blade lag mo-

tion and landing gear modes, is mitigated in conventional articulated rotors

using mechanical lag dampers. Air resonance, which is a coupling of rotor blade

modes with fuselage modes for an airborne vehicle, is mitigated via elastomeric

dampers, and is strongly dependent on flight condition. However, lag damper

effectiveness is reduced for advanced rotors because of small displacements near

the blade root. The reduced effectiveness of existing lag mode dampers, cou-

pled with high maintenance cost and weight/drag of mechanical dampers, and

2



high cost of elastomeric dampers, make alternative rotor stability augmentation

schemes attractive. Therefore, except that the blade root is strong and heavy

enough to accommodate the in-pane loads [5], passive and active damping strate-

gies are indispensable for soft-in-plane rotors and should be explored to exploit

the full potential of damping augmentation strategies in the rotor.

One example of lag damping augmentation strategies is applied on the Co-

manche’s five-bladed bearingless main rotor [6]. The Boeing-Sikorsky RAH-66

Comanche is configured as an advanced five-bladed bearingless main rotor. As is

characteristic of many soft-in-plane main rotor aircraft, the Comanche exhibited

a lightly damped roll response or a regressing lag mode oscillation when under-

going a sustained high-G maneuver. This air resonance phenomenon was caused

by the coalescence of the body roll-regressing flap mode with the rotor regress-

ing lag mode and was interpreted by the pilot as a ringing in the roll response

at the regressing lag mode frequency. The Comanche main rotor employed a

passive snubber-damper at the root end of the blade to provide auxiliary damp-

ing to the first lag mode. Since the Comanche demonstrated adequate levels

of air resonance stability in most flying states and significant ground resonance

stability margins, using a improved damper to add lead-lag damping was not a

cost-effective option. Instead, the fly-by-wire Automatic Flight Control System

(AFCS) on the Comanche provided the option of active augmentation of air res-

onance stability. Using body pitch and roll rate signals to calculate swashplate

control inputs that enhanced rotor stability, the air resonance controller signifi-

cantly augmented the air resonance damping especially at high thrust conditions

and meanwhile satisfied all of the stability and handling quality requirements.

Active control methods to augment aeromechanical stability are also applied on

3



other helicopters. A Stability Augmentation System (SAS) was developed for

ground and air resonance, and was claimed to be highly efficient and robust on

a Super Puma Mk2 helicopter [7]. Other active control technology using Indi-

vidual Blade Control (IBC) control system was mentioned in Refs. [8] and [9].

These efforts show the effectiveness of active feedback with the potential ben-

efit being a lighter system solution for the lead-lag dampers. However, in the

active damping control strategy, a sophisticated digital flight control system is

needed and additional power input is required to actuate swashplate or blade

flap actuators. In addition, although a limited number of studies have shown

considerable promise for active control on aeromechanical stability, the active

damping augmentation strategy is not yet mature and will not be fielded in

the short term. Other alternative approaches to provide lag damping instead of

using hydraulic or elastomeric dampers have been under development, such as

the tuned vibration absorbers [10] and the piezoelectric lag damper [11]. The

absorbers can be embedded inside the blade leading edge weight structure, and

the piezoelectric materials can be attached to a rotor flexure of a hingeless rotor.

Thus, both configurations can be claimed to provide an aerodynamically cleaner

rotor hub. These approaches are feasible from a practical point of view only if

they are simple and durable enough to compete with lead-lag dampers. While

research has been ongoing to design damperless main rotor configurations, at

this time, development of semi-active lag dampers is still a more straightforward

mechanical solution to enhance aeromechanical stability.

Conventional lag dampers use passive materials, such as elastomers, to dissi-

pate energy, but their damping and stiffness levels diminish markedly as ampli-

tude of damper motion increases. In forward flight conditions, the blade lead-lag

4



motion in helicopters occurs at two frequencies - the lead-lag or first in-plane ro-

tor blade bending modal frequency (lag/rev) and the rotor operational frequency

(1/rev). Large in-plane bending motions at 1/rev will reduce the damping ca-

pacity at lag/rev substantially, thus, introducing the potential for undesirable

limit cycle oscillations [12]. Moreover, as mentioned in damping requirements

for the Comanche [6], damping augmentation is only required over certain flight

regimes where there is a potential for instabilities to occur, and a passive damper

providing sufficient damping over the expected amplitude range could produce

unfavorably large periodic loads on the rotor hub as well as a bulkier damper.

Additionally, the mechanical properties of different dampers should be matched

to minimize the impact of varying damper mechanical properties on rotor track-

ing conditions [3]. Clearly, an adaptable or semi-active damper would be of

considerable value if it had the following capabilities: 1) to produce sufficient

damping at key flight conditions while simultaneously reducing periodic hub

loads at other flight conditions, 2) to compensate for damping losses at the

lag/rev frequency for high amplitude single frequency excitations, 3) to compen-

sate for the reduction in damping at lag/rev because of 1/rev excitation of the

lag mode, 4) to compensate for differences among individual dampers employed

in a rotor hub.

A promising option is to employ controllable or smart fluids. Magnetorheo-

logical (MR) fluids are a soft ferromagnetic powder (typically, 30 micron carbonyl

iron) suspended in a silicone oil, and each particle has a natural magnetic dipole.

The physical mechanism of the MR fluid is one of magnetic polarization. When

a magnetic field is applied across the volume of fluid, the magnetic dipoles ori-

ent themselves with respect to the applied magnetic field and form chains. It

5



is these chains that induce the yield stress: a local shear stress must be applied

that is greater than the yield stress before the chains break and flow is induced.

The yield stress can be as high as 100 kPa for commercial MR fluids [13], and

the substantial field-induced yield stresses exhibited by MR fluids make possible

many applications, such as rotary brakes or dampers. Applications of MR flu-

ids in fluid-based dampers have been examined [14–16]. Compared with passive

and active dampers, MR dampers can provide continuously variable damping

force with little energy input effort. Many MR dampers for shock and vibration

isolation mounts have been designed and tested, and their controllable damping

capabilities are well established [17–20].

Typically, elastomeric lag dampers are concentric bearing type or multiple

laminations of metallic and elastomeric rings. By introducing an adaptable ma-

terial, such as MR fluids, as a working fluid inside the lamination stack forming

the elastomeric bearing, and an electromagnet to activate the MR fluid, the ap-

parent viscosity can be greatly increased. Deformation of the elastomer results

in relative motion between the damper body and an enclosed MR valve. An

advantage of such an approach is that there is no dynamic rod seal since the

elastomeric members are used to create a fluid chamber, so that the possibility

of leaks due to the erosion of dynamic seals is eliminated. Second, while the

stiffness in the elastomer is available as a necessary rotor hub design parame-

ter and the damping is provided by the combination of the elastomer and MR

fluids, the magnetorheological fluid and elastomeric (MRFE) hybrid lag damper

can actively and selectively augment damping over critical frequency ranges and

increase stability of a helicopter rotor. In addition, the passive damping, in both

elastomeric and MR damping elements, provides fail-safe damping in the event
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that control of the field dependent MR damping is lost.

The MRFE damper can be developed in different configurations. Schematic

structures of the proposed prototype concentric bearing type MRFE damper are

shown in Figure 1.1(a) and (b). The linear stroke damper consists of elastomeric

layers and an MR fluid reservoir enclosed by the elastomer layer. The relative

motion between the damper rod and the damper body leads to a shear defor-

mation of the elastomer along the damper body length, and also forces the MR

fluid to flow through the field activated gaps in the piston. Thus, the output

force of the damper is a field dependent damping force provided by the MR

component in addition to a passive spring and damping force provided by the

elastomeric layer. Schematic diagrams of the proposed prototype MRFE snub-

ber damper is shown in Figure 1.1(c). The primary elements that comprise this

MRFE snubber are the lag bearing, torsion bearing, paddle with MR valves,

damper cover (for attachment to the torque tube) and circular flange (to attach

to the flexbeam). The lag bearing consists of plates interspersed with elastomeric

layers, or a multiple lamination of metallic and elastomeric layers. The MR fluid

would fill the cavity (nearly elliptical with flat sides) inside the lag bearing. The

paddle will move through the MR fluid reservoir inside the lag bearing as the

stack of metal-elastomer layers shear relative to each other due to lag motion.

The MR valve on the paddle will allow flow through the valves in the absence

of field, but in the presence of magnetic field, the MR valves will impede flow

through the valves. By varying the magnetic field, the MR damping component

can be greatly modified.

Since an MRFE damper includes damping effect from elastomers and MR

fluids, appropriate analytical models for the elastomer and MR material are
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necessary to describe the behavior of an MRFE damper. The behavior of these

materials, however, is very complex. Constitutive behaviors and characteristics

of both elastomers and MR fluids are nonlinear and dependent on the amplitude

and frequency of loading motion. Especially, the behavior of an elastomer is

also affected by temperature and preloading conditions. These properties make

characterization, modeling, and design of MRFE dampers a very difficult task.

The need for a precise damper model cannot be over-emphasized as the damper

strongly influences the dynamics and aeromechanical stability characteristics

of the helicopter rotor, such that attempts to predict these without accurate

damper characterization are of limited value. This provided the motivation to

develop an accurate MRFE lag damper constitutive model that can adequately

represent its behavior over the range of operating conditions. Since the MRFE

model should be easily and conveniently integrated into a rotor dynamic analysis

including trim and perturbation analysis, the damper model to be developed

should be a phenomenological or mechanical time domain model rather than in

terms of microstructural or atomic processes.

1.3 Literature Review

1.3.1 Semi-active Lag Damping

The study on applying semi-active damping to helicopter rotor systems dates

back to the 1990s when the Comanche helicopter was reported to be encounter-

ing a significant air resonance due to the nonlinearity of the elastomeric damper

[21]. This led to two key research topics on helicopter lag dampers. One was

elastomeric damper modeling, which could be used to study the effect of the elas-
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tomeric dampers on aeromechanical instabilities and these research efforts will

be reviewed later. The other research work emphasized measures to improve

the performance of the lead-lag dampers. A significant solution was the devel-

opment of a fluid elastomeric hybrid damper (Fluidlastic) [22, 23]. To counter

the disadvantage of elastomeric dampers, this fluid elastomeric damper uses

proven bonded elastomer technology in conjunction with inert silicon based vis-

cous damping fluids to expand dynamic range. However, all these dampers

are passive dampers, and their damper properties will change due to ambient

temperature changes and self-heating resulting in uncertainties in lag damping

enhancement [24]. Thus, following the emergence of the MR technology, some

academic researchers, especially the research group led by N.M. Wereley at Uni-

versity of Maryland and the research group led by K.W. Wang at Penn State,

began a feasibility study on the semi-active lead-lag dampers using MR technol-

ogy. The first MR lag damper study was conducted by Kamath, Wereley and

Jolly (Ref. [3]). They developed a Froude-scaled MR fluid damper by incor-

porating a permanent magnet inside the chamber body of the baseline Froude-

scaled Fluidlastic damper. Their study demonstrated the feasibility of using

MR dampers for lag mode damping applications wherein a substantial increase

in damping can be achieved by applying a magnetic field. The feasibility of a

combination of MR fluids and elastomeric materials was studied by an emulation

of a magnetorheological fluid and elastic (MRFE) composite damper [25]. The

experimental study of this emulation validated a considerable damping control

range provided by the flow mode valve in the linear stoke MR component of the

damper. While the damping was provided by the combination of the elastomer

and MR fluid, this preliminary MRFE damper can actively augment damping
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over critical frequency ranges and enhance the stability of helicopter rotors.

Despite the fact that a number of algorithms have been developed for con-

trolling smart fluid devices since the 1990s [26–28], lag damping control schemes

using MR dampers for helicopter stability augmentation are not much explored.

Marathe et al [29] firstly investigated the effect of two different control schemes

on rotor stabilities by integrating an MR damper model with a rotor aerome-

chanical model. Two different control schemes were the On-Off scheme and

Feedback Linearization scheme, and they were compared for lag transient re-

sponse in ground resonance and their ability to reduce periodic damper loads in

forward flight. Based on analysis using a shear mode MR damper model, the

MR damper of a size comparable to an elastomeric damper can provide sufficient

damping for ground resonance stabilization and can significantly reduce periodic

damper loads with a judicious choice of operation scheme. The On-Off scheme

is straightforward and easy to implement but is not optimal for reducing hub

loads. Feedback control is more versatile but required more complexity due to

sensors and feedback control system. When the feedback linearization scheme

was utilized, Gandhi et al [30] explored the effects of MR fluid damper model un-

certainties on helicopter rotor system stability. For specified uncertainty bounds,

a robust control can be synthesized to eliminate instabilities by using a much

larger value of prescribed damping ratio. Zhao et al [31] developed a different

linearization feedback control strategy to integrate the MR damper into a classic

linear ground resonance analysis assuming an isotropic rotor hub (all dampers

and blades similar) or an anisotropic rotor hub (for example, lag damper dis-

similarity due to damage), and they assessed the capability of the MR damper

to stabilize a rotor system which exhibited unstable ground resonance behavior
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as a result of lag damper degradation or damage. The analysis developed in

this study demonstrated that an MR damper, in conjunction with semi-active

feedback control using sliding mode or feedback linearization strategies, can sta-

bilize an unstable rotor except for the case where 100% damping was lost on

one blade. The ground resonance analysis of helicopter using MR lag dampers

are also found in the study conducted by Wang et al [32]. Overall, as shown in

these analysis, MR dampers offer an opportunity to enhance stability augmen-

tation strategies over passive elastomeric dampers, and should be considered in

advanced rotor design.

1.3.2 MR Fluids and MR Damper Modeling

MR fluids are semi-active materials with a controllable yield stress in the

presence of magnetic field. The most common constitutive model to describe

the MR fluid behavior in fully developed flow is the idealized Bingham plas-

tic model [33]. The Bingham plastic model implies that the material remains

rigid below a critical field-dependent yield stress and exhibits nearly Newtonian

behavior after the shear stress exceeds the yield stress. While this assumption

works well for high strain rates where the onset of flow has occurred, it does

not accurately describe the fluid behavior for small strain rates below the yield

point where these is elastic deformation. Since most MR dampers operate in

dynamic or transient response, the exact description of material characteristics

in the pre-yield region becomes important since the entire hysteresis cycle needs

to be predicted such that the behavior of MR dampers in damping control ap-

plications can be evaluated. To be consistent with quasi-steady modeling using

MR fluids, the Bingham-plastic constitutive model [34–37] was used to describe
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the MR damper behavior under oscillatory sinusoidal loading conditions. Sim-

ilar to the fluid constitutive model, even though the Bingham plastic model is

mathematically simple and gives a good description of postyield behavior of an

MR damper, the damper force predicted by the model exhibits a step jump dis-

continuity in the transition region from preyield to postyield. Thus, Bingham

plastic model cannot account for the practical behavior of the progressive and

continuous yield behavior that is observed in the test data. To mitigate the

drawback of the Bingham plastic model, a biviscous model was introduced by

Williams and Stanway et al [38, 39]. The biviscous model is characterized by

two distinct viscosities in accord with the preyield and postyield regions, and

the preyield viscosity is much greater than the postyield viscosity. Since the

biviscous model cannot describe a smooth transition from preyield to postyield,

Lionel et al [40] developed an Eyring-plastic model to provide improvement over

the Bingham plastic model and the biviscous model. In the Eyring model, an

arc hyperbolic sine function was used to introduce a smooth transition through

the preyield and postyield region which is much closer to the practical situation.

However, both biviscous and Eyring models are not capable of describing the

preyield stiffness effects or compression loop, and the force-velocity hysteresis

behavior cannot be described by these models.

To capture the preyield force-velocity hysteresis, various phenomenological

modeling methods were developed. Using a combination of several piecewise

continuous models, the hysteretic biviscous model [36, 41] can well describe the

hysteresis behavior of MR dampers. Alternatively, some modeling efforts use

suitable mathematical functions to phenomenally describe the hysteresis behav-

ior demonstrated by MR dampers. The nonlinear hysteretic Bingham model
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with simplicity in form [18] was proposed to describe the low speed hysteresis

characteristics of an MR isolator, and this model was shown successfully in con-

trol applications. Kamath and Wereley [3, 42] developed a nonlinear piecewise

smooth viscoelastic-plastic model using a nonlinear shape function to describe a

smooth transition between preyield viscoelastic and postyield viscous state. A

polynomial model proposed by Choi et al [43] employed polynomial to fit the

force-velocity hysteresis loop, and it predicted fairly well the nonlinear hysteresis

behavior of the MR damper. Also focusing on predicting the behavior of electro-

logical dampers (similar to MR dampers), Gamota and Filisko [44] proposed an

extension of the Bingham model, which is given by a Bingham model in series

of a standard linear solid model. All of these models can accurately capture the

postyield and preyield behavior of MR dampers. However, these models only

phenomenologically describe the hysteresis using some shape functions and do

not reflect the physical yield mechanism in the MR damper. As a result, this

type of modeling strategy leads to amplitude and frequency dependent model pa-

rameters. While the damper model is implemented, damper loading amplitude

and frequency have to been known as a priori which is unfavorable in predicting

the response under complex loading conditions.

An exception for hysteretic modeling is the Bouc-Wen model [45]. To accu-

rately describe a variety of hysteretic phenomena exhibited in structural systems

under dynamic loading, a hereditary restoring function between loading, x, and

response, z, was introduced in the Bouc-Wen model. In differential form, the

model force is determined by

ż = −α|ẋ|zn − βẋ|zn|+ Aẋ, for n odd

ż = −α|ẋ|zn−1|z| − βẋzn + Aẋ, for n even

(1.1)
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or in an integral form

dz

dx
= A± (α± β)zn (1.2)

A variety of hysteretic responses can be constructed by adjusting the values of

the constants of A, α, β and n. The Bouc-Wen model has proven successful in

analytical modeling of a hysteretic system under random excitation. Based on

the Bouc-Wen model, a generalized hysteresis model was proposed by Spencer

et al [46]. The model parameters were determined to best fit the response data

due to step loading, constant voltage/random displacement and random dis-

placement/random voltage, so the hysteretic behavior of the damper under step

and random loading was predicted very well using this modified fourteen param-

eter Bouc-Wen model. However, the physical interpretation of the Bouc-Wen

model parameters is tenuous at best, and the model structure is quite compli-

cated. In contrast, the hydro-mechanical model developed by Hong et al [47]

is also a nonlinear differential equation. The hydro-mechanical model consists

of physically motivated hydromechanical lumped parameters to represent fluid

inertia, damping, yield force and compliances associated with MR dampers, and

preyield hysteresis force behavior is well represented by the lumped mechanical

parameters.

Both the Bouc-Wen model and the hydromechanical model are able to cap-

ture the field dependent hysteresis behavior of MR dampers, but the capability

of both models to describe the amplitude dependent behavior were not shown.

1.3.3 Elastomeric Modeling

An elastomeric damper has proven to be efficient for damping augmentation

in helicopter rotors due to their simple design, low weight and high reliability.
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However, filled elastomeric dampers exhibit significant nonlinearities, especially

the amplitude dependent and weakly frequency dependent behavior [48]. The

large reduction of damping as the amplitude of loading motion increases leads

to excessive size and weight of dampers in order to accommodate all operat-

ing conditions. It was also found that the highly damped elastomeric dampers

demonstrated low loss factors at low amplitudes resulting in unacceptable limit

cycle oscillations [24]. Therefore, a precise analytical model is necessary to de-

scribe these nonlinear behaviors of an elastomeric damper and determine the

dynamic characteristics when the damper is implemented in a helicopter.

Since the complex modulus method is successful in characterizing viscoelastic

materials under harmonic excitation, early modeling efforts focused on lineariza-

tion using complex moduli at a given frequency, where the storage modulus is a

measure of the energy stored, and the loss modulus is measure of the energy dis-

sipated, over one period of oscillation. This model can be represented as a spring

and a dashpot in parallel (Kelvin chain). The complex modulus is a lineariza-

tion method in the frequency domain which replaces the nonlinear hysteresis

loop with an equivalent ellipse, and is only applicable to steady harmonic forced

response analysis. For nonlinear elastomeric materials, the complex moduli are

also amplitude dependent. Some researchers extended the basic Kelvin chain to

a more complicated mechanism-based modeling approach to describe the non-

linear behavior of elastomers. Felker et al [12] developed a nonlinear complex

modulus model based on one single Kelvin chain, in which the spring force was

a nonlinear function of the displacement, and the damping force was a nonlin-

ear function of displacement and velocity. This model was used to describe the

amplitude dependent moduli and to study dual frequency damper motions. In
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order to display basic behavioral characteristics, such as creep and relaxation, a

viscoelastic solid can be represented as a spring in series with Kelvin elements

(if one Kelvin element is used, it is called a Zener model [49]). Gandhi and

Chopra [50] developed a nonlinear viscoelastic solid model in which a nonlinear

leading spring was used in series with a single linear Kelvin chain. Using this

model, the variation of the analytical complex moduli with different amplitudes

matched closely with experimental data. The parameters in all of these mod-

els were identified using amplitude-dependent complex modulus data, and they

cannot capture nonlinear stress time histories of elastomers. Kunz [51] similarly

used a nonlinear Kelvin chain to capture the nonlinear hysteresis behavior of

an elastomeric damper. In this model, the stiffness was expressed as a fourth

order polynomial function of displacement, and the damping was described by

a second order polynomial function of velocity. Though it can predict the har-

monic damper force rather well, this approach is only applicable for a particular

amplitude and frequency. In the model developed by Tarzanin et al [52], the

total damper force was represented by a nonlinear spring force and a nonlinear

Coulomb friction damping force. This model was based on single frequency data

and was used to match the value of energy dissipation per cycle. However, a

sudden jump in predicted damper force was shown when velocity changed sign,

which was unrealistic. Panda et al [24] replaced the Coulomb friction damping

element with a variable friction damping element whose force was calculated

based on the peak displacement of excitation when the velocity was zero. This

model correlated well with experimental hysteresis data, but the effectiveness

of this model over a range of amplitudes and frequencies has not been demon-

strated in the literature. In a recent study, Krishnan [53] developed a model
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which consisted of a linear Kelvin chain and a parallel cubic spring element.

Snyder [37] improved this model by adding an elasto-slide element. Both models

were developed to capture nonlinear elastomeric damper hysteresis cycles, but

the model parameters were still amplitude and frequency dependent.

On the other hand, some elastomeric models were developed using internal

variable or nonlinear integral equations. Strganac [55] used a stress shift func-

tion to formulate a nonlinear time domain model for elastomers, but the nonlin-

ear integral formulation in the model was difficult to implement in traditional

aeromechanical analysis. Lesieutre and Bianchini [56] developed the anelastic

displacement field (ADF) method to describe the frequency-dependent behavior

of linear materials. It was based on the notion of scalar internal variables or

augmenting thermodynamic fields (ATF) [57] that described the interaction of

the displacement field with irreversible processes occurring at the materials level.

In the ADF approach, the effects of the thermodynamic processes were focused

on the displacement field which consists of both elastic and anelastic parts. The

anelastic part may be further subdivided to consider the effects of multiple relax-

ation processes. Although there is no explicit physical interpretation when multi-

anelastic elements are involved, one single ADF model is mechanically analogous

to the Zener model. In order to capture the characteristic nonlinear behavior

of elastomeric materials, Govindswamy et al [58] developed a nonlinear ADF

model, in which the linear ADF parameters were replaced with nonlinear terms.

The model captured the variations of the complex modulus with amplitude, and

performed as well in matching the strain-stress hysteresis. Furthermore, other

functional forms for the ADF parameters were introduced in order to improve

hysteresis loop predictions. Brackbill et al [59] improved the nonlinear ADF
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model by adding rate independent nonlinearity, in which friction-damping and

linear-spring elements in parallel with the baseline nonlinear ADF model were

used to provide additional amplitude dependent relaxation behavior. As many

as sixteen parameters were used to construct the model. Although the complex

moduli were fitted well along amplitude and frequency ranges, nonlinear stress

time histories could still be improved. Moreover, the parameter determination

process was complicated by the fact that some parameters were chosen by em-

pirical observation. In a recent study, Ramrakhyani et al [60] developed an ADF

based model containing nonlinear fractional derivatives and frictional elements.

This model used eight parameters instead of sixteen parameters to capture the

amplitude-dependent and mild frequency-dependent modulus. However, it did

not improve prediction of the hysteresis loop, and the determination of model

parameters remains complicated.

Generally, most existing modeling efforts are based on the viscoelastic as-

sumption for elastomeric characteristics. However, an elastomeric damper usu-

ally demonstrates tribo-elastic behavior [48] such that those damper models

using linear or nonlinear Kelvin chain combinations cannot adequately capture

the elastomeric behavior. Either the model parameters are amplitude dependent

or the model poorly describes the hysteretic behaviors of an elastomeric damper.

Although in some modeling efforts Coulomb or friction damping was used to de-

scribe the rate-independent damping behavior significantly demonstrated by the

elastomer, a single or even finite number of Coulomb dampers are not sufficient

to adequately model damper force in response to sinusoidal excitation over a

range of amplitude and frequency. The disadvantage for these modeling efforts

is that the excitation amplitude must be known a priori to use these models
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effectively.

Thus, an efficient and accurate model for an elastomeric model will be devel-

oped based on a physical understanding of the damping mechanisms within the

damper material. Physically, the amplitude dependent behavior demonstrated

by the elastomer is mostly based on the interaction between fillers and rubber

compound inside the filled elastomeric materials [61]. Before large deformation

of a filled elastomeric damper, an intact filler structure displays a large stiffness

and small loss factor for small amplitudes. As the amplitude increases, the filler

structure breaks resulting in a stiffness reduction. However, the breaking of filler

structures, which is similar to frictional behavior, increases the loss factor. As

the amplitude increases further and the frictional effect is fully released, both

stiffness and loss factor drop to lower levels, which then are maintained relatively

constant by the remaining polymer chains.

Motivated by the above physical mechanisms, a number of researchers have

attempted combinations of springs and frictional slides to represent the filler and

rubber compound in filled rubbers or elastomers. As early as 1930, Timoshenko

[62] suggested that the general hysteretic system consist of a large number of ideal

elasto-plastic elements with different yield levels. Iwan [63,64] further developed

a distributed-element model to study the steady-state dynamic response of a

hysteretic system. Instead of specifying a distribution function numerically to

agree with experimental data, a constant band-limited statistical function was

used to define yield properties of the slide elements in this model. This model

proved successful in predicting steady-state frequency response of a hysteretic

system using method of linearization. However, the excitation amplitude must

be known as a priori while this model is applied in the analysis, which is only
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applicable in steady-state response prediction. The theory of triboelasticity [65]

also stated that the behavior of a filled elastomer can be represented by a large or

infinite number of alternate springs and frictional slides in series, and each slide

has a constant yield force and each spring has a constant stiffness. Coveney et

al [48] developed a three-parameters standard triboelastic solid (STS) based on

theory of triboelasticity and further developed a four-parameter rate-dependent

triboelastic (RT) model. These models gave a satisfactory representation of

material behavior. However, since the yield force is fixed along different slides,

these models shows less flexibility to represent the amplitude dependent behavior

for different filled-level materials.

1.4 Scope of Current Research

Semi-active Magnetorheological Fluid-Elastic (MRFE) lag damper technol-

ogy is developed in this study to overcome the amplitude dependent damping loss

issues associated with passive elastomeric lag dampers and to provide adaptable

lag damping for varying lag damping requirements at different flight conditions.

The layout of this thesis is based on the process of the development of the MRFE

damper. Firstly, the material components of the MRFE damper, i.e. MR fluids

and elastomers, are studied individually. Characterization and modeling efforts

for the MR fluid based damper and elastomeric damper are summarized, and

new modeling methodologies are developed for an MR valve and an elastomeric

damper, respectively. Using a quasi-steady MR fluid flow analysis, the overall

MRFE system architecture, actuator design, analysis, and component integra-

tion aspects of the MRFE damper are described. This is followed by a discus-
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sion of damper prototyping and testing and experimental evaluation. Finally, an

MRFE damper model is constructed based on the MR and elastomeric modeling

approaches, and it is used to describe the damper behavior.

In preparation for the development of an MRFE damper, a substantial feasi-

bility study was undertaken in order to provide the controllability analysis and

evaluate the compatibility of the elastomer with the MR fluid over a similar

range of displacement loading. A preliminary MRFE damper test setup was

constructed as shown in Figure 1.2, and two distinct damping components were

mounted in the test fixture: 1) an elastomeric damping component, and 2) a

magneto-rheological damping component. The elastomeric damping component

was a double lap shear specimen of high loss factor filled elastomer, and the

second component consisted of two linear stroke MR dampers. In this parallel

configuration, the damping contributions from each damping component were

found to be additive, so that the MR and elastomeric damper can be charac-

terized independently. To obtain a general MRFE damper behavior including

extreme working conditions, a broad displacement loading was used and ranged

from 0.5mm to 5 mm (ranging from 2.5 % to 50 % shear strain) and suit-

able frequency range for helicopter systems. This experimental feasibility study

demonstrated that a substantial damping control range was provided by the MR

component of the damper. While the stiffness in the elastomer is still available

as a design parameter, the semi-active MR damping can augment the passive

elastomeric damping. In addition, the passive damping contributed by the elas-

tomeric and MR damping component provides fail-safe damping capability in the

event that the field dependent MR damping is lost. The details of the feasibility

study can be found in Ref. [25].
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To describe the nonlinear behavior demonstrated by both MR and elas-

tomeric components, analytical models for MR and elastomeric dampers are

developed separately based on the experimental results of the preliminary MRFE

damper setup. First, a new modeling approach was developed for the MR

damper to describe the damper hysteretic behavior over a broad amplitude

and applied current range, and the modeling results were correlated with ex-

perimental data using comprehensive loading conditions. In this model, a rate-

dependent elasto-slide was used to physically describe the effects of preyield

stiffness, preyield slip and postyield viscous damping demonstrated by the field

activated MR flow. Rate-dependence of the slide was determined via numer-

ical analysis by a robust initial differential algorithm. In parallel with a lin-

ear viscous fluid damping and a weak accumulator stiffness, the rate-dependent

elasto-slide model captures most physical properties of an MR damper. Model

parameters were determined by extracting the virtual loading curve from the

force-displacement and force-velocity hysteresis. In order to validate the model,

extensive MR damper tests including single frequency and dual frequency tests

were conducted on a material test machine. Uniquely, this model describes the

amplitude and frequency dependent behavior of an MR damper using parameters

that are independent of the displacement excitation amplitude. Second, in order

to evaluate the dynamic behavior of the elastomer, a new elastomer modeling

effort using five constant parameters is to be described on the basis of a detailed

characterization of an elastomeric specimen. This physically motivated model

consists of a non-uniform distribution of rate-dependent elasto-slide elements

and a parallel linear spring. The elasto-slide element is used to emulate filler

structure behavior, and the linear spring represents the remaining polymer stiff-
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ness. Extensive tests including single frequency and dual frequency tests were

conducted on an elastomeric specimen and a full scale linear stroke elastomeric

lag damper using a material testing machine, and complex modulus method was

used to characterize the elastomeric specimen and damper. The model parame-

ters were determined using a virtual initial loading curve identified from single

frequency force-displacement hysteresis cycles. Efficient numerical algorithms

were developed to apply the elastomer model to modeling of force due to sinu-

soidal displacement inputs, as well as dynamic analysis. This model was applied

in predicting forced response while the specimen was under slowly varying cyclic

loading conditions. To analytically study the influence of a nonlinear elastomeric

damper on the stability performance for a dynamic system, the elastomer model

was incorporated into a one single degree of freedom dynamic system and the

transient response was compared with the results using corresponding viscous

damping. The non-uniform distributed rate-dependent elastomer model is ap-

plicable in complex loading conditions without any prior information, and the

flexibility in determining distribution function provides a potential to improve

the model and to apply the model to elastomers with different filler materials.

At this point of the research, a model for MR damper and a model for the

elastomeric damper were validated. The next step was to combine them as two

damper components to achieve fail-safe and controllable damping.

Using well established modeling and design procedures [35] developed and

experimentally validated, a concentric bearing type MRFE damper is built by

incorporating an existing MR damper into the inner chamber available in the

baseline damper. The MRFE damper will be characterized in the laboratory

using a single frequency and dual sinusoidal excitation. A fixture setup is de-
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signed to hold the MRFE damper on a material testing machine such that the

uniaxial motion of the loading actuator results in a shear deformation of the

elastomer and a uniaxial MR valve translation through an MR fluid reservoir.

Complex modulus and equivalent damping are used to characterize the MRFE

damper. Performance predictions using quasi-steady nonlinear Bingham-plastic

fluid flow analysis and elastomeric characteristic data are conducted as a basis

for developing a comprehensive MRFE damper design code. On the other hand,

MRFE damper design strategies are developed based on MR flow mode analysis.

In addition, a snubber type MRFE lag damper for bearingless helicopter rotor

was developed based on a baseline Comanche fluid-elastic damper. The detailed

snubber design and experimental results can be found in Ref. [66].

Based on the modeling approaches of the MR valve and elastomeric material,

an MRFE time domain model is developed to describe the nonlinear behavior of

the MRFE damper, especially the single and dual frequency hysteretic behavior.

In this model, a distributed elasto-slide element is used to describe the behavior

of the filled elastomer, and a field dependent elasto-slide is used to represent the

behavior of the MR valve. Model parameters are determined by extracting the

basic characteristics from the virtual initial loading curve. The unique advantage

of the MRFE damper model developed in this study is that it can capture am-

plitude and frequency dependent behavior demonstrated by the MRFE damper

and can be applied in any complex loading conditions, without resorting to either

amplitude dependent or frequency dependent model parameters.

This dissertation is organized as follows to present the details of design and

fabrication, dynamic tests, modeling process of the semi-active MRFE lead-lag

dampers and conclusions of the current research.
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• Chapter 2: As a key element of the MRFE damper, basic characterization

of the MR damper is described. To capture nonlinear behavior of the

MR component, a new MR damper modeling approach is developed. A

commercial truck seat damper is used as a benchmark damper to evaluate

the MR model, and single frequency and dual frequency tests are conducted

on the MR damper. The determination of model parameters using single

frequency test results is described, and the fidelity of the modeling method

is validated using both single and dual frequency test data.

• Chapter 3: Elastomer as the second key component of the MRFE damper is

characterized and analyzed. To describe the nonlinear viscoelastic behavior

of elastomers, a new time domain model for filled elastomers or elastomeric

dampers is derived. Hysteresis behavior of an elastomeric specimen and a

concentric bearing elastomeric lag damper under sinusoidal loadings is in-

vestigated. The determination of model parameters using single frequency

test results is described for both elastomeric specimen and damper. The

elastomeric model is validated by the correlation results under single and

dual frequency loading conditions.

• Chapter 4: Based on quasi-steady MR damper analysis, the important

design parameters of the MRFE damper are deduced. Equivalent damping

characteristics of the MRFE damper under simulated sinusoidal lag motion

is analyzed and validated using experimental test data. The important

features to be modified to improve damper performance are also described.

• Chapter 5: The development of a concentric bearing type MRFE damper is

described. The MRFE damper is characterized, and damping performance
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of the MRFE damper is evaluated. A MRFE damper model is developed

based on the MR and elastomer modeling approaches. Damper behavior

predicted by the MRFE model is correlated with experimental results.

• Chapter 6: Conclusions of the present work are summarized and some

recommendations for future work are discussed.

26



(a) MRFE Damper Configuration I

(b) MRFE Damper Configuration II

(c) MRFE Damper Configuration III

Figure 1.1: Possible MRFE Damper Configurations
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Figure 1.2: Preliminary MRFE Damper Test Setup
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Chapter 2

Characterization and Modeling of a

Magnetorheological Damper

Magnetorheological (MR) fluids are materials that change their rheological

behavior in the presence of an applied magnetic field. The substantial field-

induced yield stresses exhibited by MR fluids can change their apparent vis-

cosity very rapidly with the application of magnetic field, and MR fluids can

be easily activated using standard circuit board DC power sources. Alhough

the quasi-steady behavior of the MR valve or damper can be described by a

simple Poiseuille flow analysis as in Refs. [35, 72, 73], the hysteresis behavior

demonstrated by the MR valve under a sinusoidal loading cannot be sufficiently

captured by the analysis. Since the MR valve in the MRFE damper may operate

in dynamic or transient loading conditions, prediction of dynamic behaviors are

important to evaluate the performance of the MR valve.

Quasi-steady modeling using the Bingham-plastic constitutive model for MR

fluids [33, 35] was extended to describe the behavior of the MR damper under

oscillatory sinusoidal loading conditions [36, 37]. The nonlinear Bingham model

can be represented by a viscous damping and a Coulomb friction element in
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parallel, but it cannot describe the practical behavior of the progressive and

continuous preyield behavior that is observed in the test data of MR dampers.

On the other hand, the biviscous model [38, 39] and the Eyring-plastic model

[40] utilize piecewise or continuous functions to represent preyield and postyield

viscosity, but both biviscous and Eyring models cannot be used to describe the

force-velocity hysteresis behavior due to preyield stiffness.

Generally, phenomenological modeling methods have been used to capture

the preyield force-velocity hysteresis. The hysteretic biviscous model developed

by Pang et al [36,41] is a combination of several piecewise continuous functions,

and the force-velocity hysteresis can be reconstructed using these functions. Choi

et al [18] developed a single hysteretic function to describe the low speed hys-

teresis characteristics of an MR isolator, and this model was shown successfully

in control applications. In addition, a polynomial model proposed by Choi et

al [43] employed a polynomial to fit the force-velocity hysteresis loop. All of

these models employ mathematical functions, instead of mechanical elements,

to capture the force-velocity hysteresis. Alternatively, Kamath and Wereley [3]

developed a mechanisms based nonlinear piecewise smooth viscoelastic-plastic

model. This model consists of a viscoelastic element for preyield behavior and

a viscous element for postyield behavior, between which a nonlinear shape func-

tion describes the smooth transition between preyield viscoelastic and postyield

viscous behaviors. As an extension of the Bingham plastic model, Gamota and

Filisko [44] proposed a model given by a Bingham model in series with a standard

linear solid model. All of these models can describe the postyield and preyield

behavior of MR dampers. However, these models only phenomenologically de-

scribe the hysteresis using some shape functions and do not reflect the physical
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yield mechanism in the MR damper. As a result, this type of modeling leads to

amplitude and frequency dependent model parameters. In order to implement

the damper model, the excitation amplitude and frequency have to been known

as a priori, which is inconvenient when predicting the response under complex

loading conditions.

An exception for hysteretic modeling is the Bouc-Wen model [45]. The Bouc-

Wen model has proven to be successful in numerical modeling of a hysteretic

system under random excitation. Based on the Bouc-Wen model, a generalized

hysteresis model was proposed by Spencer et al [46]. The model parameters were

determined to best fit the data including step response, constant voltage/random

displacement and random displacement/random voltage, so the hysteretic behav-

ior of the damper under step and random loading was predicted very well using

this modified fourteen parameter Bouc-Wen model. However, the detailed rela-

tionship between model parameters and excitation amplitude and frequency was

not shown. Also, the physical interperation of the Bouc-Wen model parameters

is tenuous at best, and the model structure is quite complicated. Thus, a simple

and physically-motivated model is required to capture the nonlinear behavior of

the MR damper using parameters that are independent of the excitation ampli-

tude.

Based on the Bingham-plastic model, a physically motivated rate-dependent

elasto-slide model is developed in this chapter to study the quasi-steady and

dynamic behavior of the MR-fluid based damper. Instead of an ideal Bingham

relationship between damping force and velocity, this time-domain model uses a

rate-dependent slide in parallel with a viscous damping mechanism to emulate

practical yield behavior of MR fluids and uses a stiff spring in series with the

31



slide to reflect the preyield stiffness. A method of identifying model parameters

is introduced using MR damper single frequency hysteresis data. The model

parameters are determined using virtual initial loading curves identified from

the force-displacement and force-velocity hysteretic diagrams. A relationship

between current controllable parameters and the corresponding current input is

approximated during the process of parameter identification at different currents.

2.1 Experimental Characterization

In order to determine model parameters and evaluate the fidelity of the pro-

posed rate-dependent elasto-slide model, dynamic tests with steady-state sinu-

soidal loading were conducted on two identical MR linear stroke dampers. A

schematic of the nominal MR damper is shown in Figure 2.1. The hydraulic

cylinder houses the damper piston, in which is mounted a magnetic circuit. At

the base and inside the hydraulic cylinder is a nitrogen accumulator. The accu-

mulator is used to compensate for changing rod volume in the hydraulic cylinder,

as well as thermal expansion of the MR fluid, and to prevent cavitation on the

low pressure side of the piston in the MR damper. The MR fluid in the damper

flows through an annular gap in the piston head, where it can be activated by a

current applied to the magnetic circuit.

The configuration of the test setup is shown in Figure 2.2. A DC power

supply was used to provide current control during testing. The normal range of

the applied current is between 0A and 1.5A, and the maximum applied voltage

is 10V DC. An HP 8904A multi-function synthesizer was used to generate and

sum the sinusoidal signals for dual frequency tests. The frequency range was
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chosen appropriate for a helicopter rotor system at Ωpri = 7.5Hz, the baseline

1/rev frequency, Ωlag = 5Hz, the lag/rev frequency, and Ωcom = 2.5Hz, a lower

harmonic of lag/rev and 1/rev frquencies. An MTS 24.466kN (5000lbs) servo-

hydraulic testing machine was used to apply the desired damper shaft sinusoidal

displacement. A displacement LVDT sensor was used for displacement measure-

ment and a load cell for measuring the force. The machine can be operated in

two ranges for both displacement 127mm and 12.7mm (5in and 0.5in) and force

24.466kN and 2.4466kN (5000lbs and 500lbs). Fixtures and grips were designed

to hold the damper in place. Single and dual frequency tests were conducted on

the MTS machine at room temperature (25◦C).

The steady-state dynamic tests for both MR dampers consist of single fre-

quency and dual frequency tests. For single frequency tests, the shaft of the

damper was excited using sinusoidal displacement at amplitudes from 0.25mm

to 4mm and at three different frequencies of Ωpri, Ωlag and Ωcom respectively. At

each excitation amplitude, the applied currents were in the range of 0-0.3A in

increments of 0.1A. The single frequency force-displacement and force-velocity

data were used to determine the model parameters and evaluate the fidelity of

the model. For dual frequency tests, two dual frequency combination, 2.5Hz/5Hz

and 5Hz/7.5Hz, were used to evaluate the adaptability of the model in multi-

frequency loading conditions. The dual frequency experimental matrix is shown

in Table 2.1.

During each test, the sampling frequency was chosen as 2048Hz, which is far

above the required Nyquist frequency. Nominally, ten to twenty cycles of force

and displacement data were measured for each test case. To reduce the noise

of the sinusoidal displacement signal, a Fourier series was used to reconstruct
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the input displacement. The reconstructed displacement signal was then differ-

entiated to obtain the velocity data. The Fourier series expansion of the input

displacement is

x(t) =
x0

2
+

∞∑
k=1

[Xc,k cos(kωt) + Xs,k sin(kωt)] (2.1)

where

Xc,k =
ω

π

∫ 2π
ω

0

x(t) cos(kωt)dt

Xs,k =
ω

π

∫ 2π
ω

0

x(t) sin(kωt)dt

(2.2)

For single frequency testing, any bias and higher harmonics were filtered, so

that only the frequency of interest remained where ω = Ωpri, Ωlag, and Ωcom

respectively. The displacement is reconstructed using only the first harmonic as:

x(t) = Xc cos(ωt) + Xs sin(ωt) (2.3)

For dual frequency testing, the HP 8904A multi-function synthesizer was used

to generate and sum the sinusoidal signals for both frequencies. The general

equation for the input dual displacement signal is written as

x(t) = Alag sin(Ωlagt) + Acom sin(Ωcomt) (2.4)

and

x(t) = Alag sin(Ωlagt) + Apri sin(Ωprit) (2.5)

The signal is periodic with a frequency corresponding to the highest common

factor of both harmonics, i.e., 2.5Hz. The displacement signal was filtered using

ω = 2.5Hz as the base frequency. The first three harmonics were needed to

reconstruct the dual frequency displacement signal. Since the MR damper pro-

duces nonlinear damping force, the measured force was not filtered. However, to
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reduce the offset in the measured force due to the presence of the accumulator,

the measured bias force was subtracted using the bias term in the Fourier series

of the force.

Typical force-displacement hysteresis data are shown in Figure 2.3(a), where

the force-displacement diagram was obtained using a sinusoidal displacement

excitation at Ωlag = 5Hz with an amplitude of 3.5mm. Four different currents

of 0, 0.1, 0.2 and 0.3A were applied to the MR damper. From the force vs.

displacement cycles, damping is proportional to the area enclosed by a force-

displacement hysteresis cycle, which is the energy dissipated by the MR damper.

The typical effect of the applied current shown in the hysteresis cycles is the

increment of the steep area close to the zero velocity (shown at the maximum

displacement) such that the enclosed hysteresis area is enlarged. This implies

that the damping effect of the MR damper is obtained by the friction effect or

yield process of the MR fluid in the flow valve inside the damper. Similarly, the

force-velocity diagram of the MR damper shown in Figure 2.3(b) demonstrates

a Bingham or yield behavior, and the force-velocity hysteretic behavior results

from a preyield stiffness or compression effect.

In order to demonstrate the damping augmentation effect quantitatively, a

standard linearization technique, equivalent viscous damping, is applied to the

nonlinear MR damper data while under sinusoidal loading

x = X0 sin(Ωt + φ) (2.6)

The analytical damping force, F (t), is assumed proportional to the damper shaft

velocity, ẋ(t), as

F (t) = Ceqẋ(t) (2.7)

With experimental damper force data, f , the equivalent viscous damping, Ceq,
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is computed by equating the energy dissipated over a cycle, E, at frequency, Ω,

using

E =

∮
f(t)dx =

∫ 2π
Ω

0

f(t)ẋ(t)dt (2.8)

and equating the dissipated energy of the damper to that of an equivalent viscous

damper:

Ceq =
E

πΩX2
0

(2.9)

where, X0 is the amplitude of the displacement excitation. Thus, the damping

characteristic of the MR damper at different amplitudes and currents can be

demonstrated using equivalent viscous damping as shown in Figure 2.4. Clearly,

the equivalent viscous damping of the MR damper is a nonlinear function of

excitation amplitude, which is different from one would expect for linear viscous

damping. However, the significant advantage of the MR damper is that the

equivalent damping can be varied over a wide range as the applied current is

varied.

The equivalent viscous damping is a linear characterization method that can

be used to determine the damping capacity of the MR damper, but it cannot be

used to predict the nonlinear forced response of the MR damper. Therefore, a

rate-dependent elasto-slide damper model is developed in order to capture the

nonlinear damper behavior, and the model performance is evaluated by compar-

ison between experimental and predicted damper response under varied loading

conditions.
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2.2 Evaluation of a Rate-dependent Elasto-slide

Model

The proposed rate-dependent elasto-slide model (RDES) is shown in Figure

2.5, which is composed of a rate-dependent elasto-slide element to describe the

yield behavior of MR dampers, a parallel postyield viscous damping and a paral-

lel soft spring to reflect the stiffness effect of the accumulator. The composition

of the model is similar to the Bouc-Wen model, but instead the Bouc-Wen ele-

ment is replaced with a physically motivated elasto-slide mechanism. It will be

shown that this simple elasto-slide element is appropriate for the yield behav-

ior of MR fluid based dampers, and that the rate-dependent elasto-slide model

captures most nonlinear characteristics of MR dampers.

While the MR fluid is characterized by the Bingham plastic model, a force-

velocity relationship is derived on the basis of a flow mode damper. Since

this ideal relationship does not include the effect of practical fluid bleed in the

damper, the Bingham damper model cannot describe the transition behavior

from preyield to postyield. Thus, extended from the Bingham model mech-

anisms, the rate-dependent elasto-slide element is physically interpreted. The

numerical fulfillment of the model is discussed. A suitable slide function is found

to avoid a stiff numerical problem. The identification procedure for the model

parameters is also given in this section.

2.2.1 Rate-dependent slide

The quasi-steady behavior of MR dampers is well understood by the analysis

using MR fluid constitutive model and damper geometry [35, 67, 72]. For a
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flow mode damper with a steady shaft velocity, the damping force is developed

because of the pressure drop through the annular gap within the cylindrical

MR damper body. According to the quasi-steady flow analysis [35], the ideal

relationship between damper force, F , and shaft velocity, v, is derived as

F =
C0

(1− δ̄)2
(
1 + δ̄

2

)v (2.10)

where, C0 is the Newtonian damping coefficient for the field-off MR damper,

and δ̄ is the nondimensional plug thickness, which is a function of yield force

and shaft velocity. From Eq. 2.10, the ideal quasi-steady force-velocity plots are

shown as dotted lines in Figure 2.6. Analytically, before the damper force reaches

a certain yield force, the MR fluid in the valve of the damper cannot flow. Thus,

there is an abrupt jump in force from preyield solid to postyield Newtonian flow

at small velocities, and the yield force is a function of the applied field. It was

shown in [25] that Eq. 2.10 can be approximated by a linear summation of a

field controlled yield force and a postyield Newtonian force,

F = Fy + C0v (2.11)

This is the Bingham plastic damper model. Since the approximation works

best in the high speed post-yield region, the Bingham plastic model inherently

cannot predict damper force accurately especially over the transition region from

preyield to postyield.

The macro behavior of the damper predicted by both quasi-steady analysis

and the Bingham-plastic damper model presents a rigid preyield region which

is exactly the behavior of a Coulomb slide. However, the piston bleed or blow-

by of fluids between the piston and cylinder in a practical MR damper results

in a preyield slip between preyield and postyield phase in the force-velocity
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curve. Thus, to render the Coulomb slide more applicable, a rate-dependent slide

model can be used to describe the nonlinear damping behavior in the preyield or

low velocity region. Taking numerical feasibility into consideration, a fractional

power function of velocity is feasible to simulate both preyield and postyield

behavior of the force-velocity curve, i.e.

N∗ = N

(
v

vr

) 1
p

(2.12)

where, N is the field dependent yield force, p is a positive odd integer, and vr

is a constant reference velocity at which the slide transitions from the pre-yield

region to the post-yield region. The force-velocity relationship described by the

rate-dependent slide model combined with a post-yield viscous damping is shown

as solid lines in Figure 2.6. Compared with the nonlinear Bingham-plastic model,

the rate-dependent slide demonstrates significant improvement in describing the

force-velocity relation over a broad velocity and yield stress range.

2.2.2 Elasto-slide model

In the above analysis, the MR fluid in the pre-yield condition is assumed

rigid. However, due to the compressibility of the fluid, the MR fluid in the

preyield regime behaves like an elastic solid such that the MR damper exhibits a

strong force-velocity hysteresis at low velocity. Thus, the preyield stiffness must

be considered in a physically motivated damper model. In the RDES model,

the series combination of a stiff spring and the slide will be proven reasonable to

reflect the preyield behavior of the MR fluid, and the coupling between the spring

and the rate-dependent slide can be solved by efficient mathematical algorithms.

In order to demonstrate the efficiency of the elasto-slide model in describing
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yield behavior of MR fluids, a Coulomb slide instead of the rate-dependent slide

is used in series with a linear leading spring. The stiffness of the leading spring

is denoted by k, and the maximum controllable yield force of the Coulomb or

slip slide is N . Apparently, when the spring stiffness becomes large, the elasto-

slide model behaves exactly the same as the nonlinear Bingham plastic model.

When cycled between fixed deflection limits, the elasto-slide model has a force-

deflection diagram similar to that shown in Figure 2.7. Upon initial loading, the

spring force increases linearly with the applied displacement until it reaches the

maximum slide yield force, i.e.

f = kx, ẋ > 0, 0 6 x 6
N

k

f = N, ẋ > 0, x >
N

k

(2.13)

If the direction of loading is reversed after the MR fluid has yielded, the force-

deflection relation will become

f = N − k(A− x), ẋ < 0, A− 2
N

k
6 x 6 A

f = −N, ẋ < 0, x 6 A− 2
N

k
(2.14)

where A is the amplitude of the displacement excitation. An expression similar

to Eq. 2.14 is obtained when the excitation reaches the minimum deflection and

is reversed again so that ẋ > 0. This process continues until the excitation is

stopped. The simulated force-displacement hysteresis by the elasto-slide model

at two different amplitudes are shown in Figure 2.7, and the arrows on the solid

line show the loading direction of the model. Compared with the experimental

force-displacement hysteresis of the MR damper, the elasto-slide model captures

the major characteristics of the MR fluids yield behavior under sinusoidal excita-

tion except that the hysteresis around the maximum velocity cannot be described
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by the Coulomb slide. The Coulomb slide is an approximation of real MR fluid

yield behavior, and the amplitude of the excitation must be known as a priori.

However, this problem can be easily solved if the Coulomb slide is replaced with

a rate dependent slide.

Physically, the series combination of a spring and a rate-dependent slide can

analytically describe the yield behavior of the MR fluid in the valve. Before an

MR damper is subjected to excitation, the MR fluid in the flow gap consists

of chain structures due to an applied magnetic field. Thus, it behaves like a

elastic solid instead of a fluid. While the damper piston is excited by an initial

displacement excitation, the spring force due to the elastic MR solid increases

with displacement. At the same time, the movement of the piston induces the

partial break-down of the chain structures and the piston bleed reduce the spring

force. In this phase, the MR fluid flows like a plug. After all of the chain

structures are broken, the MR fluid is totally yielded and the imagined spring is

not extended any more such that the damper demonstrates a viscous damping

behavior. As the loading is reversed, the direction of the MR flow is also reversed

and a similar yield process is repeated.

In addition to the rate-dependent elasto-slide element, a viscous damping

element is added in parallel in the RDES model since the postyield behavior of

the MR damper is similar to a viscous damper. Meanwhile, a soft parallel spring

is introduced to account for the effect of the stiffness of the accumulator in the

damper. Thus, as shown in Figure 2.5, the MR damper can be represented by

the mechanism-based rate-dependent elasto-slide model. The parameters in the

model, including N , vr and p for the rate-dependent slide, k for the leading

elasto-spring, c for viscous damping, and k0 for the accumulator stiffness, need

41



to be identified.

2.2.3 Identify model parameters using hysteresis data

As stated in the comparison of the elasto-slide model to the Bingham plastic

model, the model parameters could be determined from the MR fluid and damper

geometry data. On the other hand, when these data are not available, the model

parameters can be identified to fit the predicted or modeled response to the

experimentally measured response from either quasi-steady or dynamic tests. In

this study, we take a system identification perspective, so that we use force-

displacement and force-velocity hysteresis cycles obtained from the MR damper

under single frequency sinusoidal loadings to identify the model parameters.

The analysis of the Coulomb elasto-slide showed that the initial loading curve

from preyield to postyield phase can provide estimates of the yield force N and

the preyield stiffness k. Therefore, the first step to determine the model param-

eters is to build a virtual initial loading curve from steady-state hysteresis cycle

diagrams. Since the maximum force corresponds to the maximum displacement

or zero velocity for a Coulomb friction slide, the virtual initial loading curve can

be obtained from the force-displacement hysteresis by locating the damper force

at zero velocity for each sinusoidal loading amplitude as shown in Figure 2.8(a).

Thus, the effect of the viscous damping force is eliminated. The loading curve

is easily optimized by an exponent function as

Fdis = N
(
1− e−

k
N

x
)

+ k0x (2.15)

from which the stiffness k + k0 is the slope of the loading curve at zero dis-

placement, k0 is the slope of the postyield region of the loading curve, and N
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is the yield force. Since the slope of the loading curve at small displacements

is sensitive to the hysteresis curve at smallest amplitude, the determination of

the preyield stiffness, k, was also referred to the force-displacement slope around

maximum displacement. Since the Coulomb behavior is an idealization of the

RDES model, the virtual initial loading curve determined from the above method

is revised by judiciously adjusting yield force in reference to the force-velocity

hysteresis to include the effect of the rate-dependent slide and the post-yield

viscous damping.

To determine parameters in the rate-dependent elasto-slide, i.e. vr and p, and

the postyield viscous damping, c, a force-velocity loading curve is constructed

from experimental force-velocity hysteresis diagrams. As shown in Figure 2.8(b),

the damper force at zero displacement is used to obtain the virtual loading curve

since ideally the effect of the stiffness is excluded at zero displacement. Without

the stiffness, it is known from the RDES model structure that the force-velocity

relationship of the damper can be described by

Fvol = N

(
v

vr

) 1
p

+ cv (2.16)

Thus, by optimizing the loading curve using this function and the determined

yield force, vr, p and c can be identified. However, determination of p is a trade-

off process. Physically, the index p should be large enough so that the postyield

damping will not over-predicted, but a larger index will lead to a stiffer system

mathematically. Consideration must be taken carefully into account in the choice

of p.

A group of single frequency hysteresis cycles at different excitation amplitudes

(0.25-4.0mm) is used to determine the model parameters at a fixed frequency and

applied current. The model parameters were determined independently at three
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different frequencies, 2.5Hz, 5Hz and 7.5Hz, and at four different currents, 0.0A,

0.1A, 0.2A and 0.3A. Since the damping mechanism for an MR damper is mainly

due to the yield process of the MR fluid, the model parameters demonstrate

weak dependence on three frequencies. In a moderate frequency range, the

model parameters are fixed by an averaging process. The dependence of the

parameters on the applied current was also studied. Two major parameters, N

and k, are a function of current as shown in Figure 2.9. The modeling results for

two MR damper demonstrate the same trend as applied current changes from

0A to 0.3A. The yield force increases sharply with the applied current since the

magnetic field is not saturated yet. This result is consistent with the result in

Ref. [77]. Comparatively, the preyield stiffness varies much slowly with applied

current. As the applied current increases, the preyield stiffness converges to a

constant value. Since the other four parameters, k0, vr, p and c, are not sensitive

to the variation of the current, these parameters are fixed at an average value.

The resulting modeling parameters are given in Table 2.2. Note that the

field-off yield force is not zero, and it can be interpreted by the effect of the

residual magnetization in the MR valve and the friction of the damper assembly.

Since the rate-dependent elasto-slide model is a physically motivated model, the

determination of model parameters, especially for N , k, c and k0, is a process

to capture the relationship between damper mechanism and damper behavior.

Either quasi-steady or dynamic test data can be used to evaluate the model

parameters. The method for parameter determination used in this study is only

an option, and it does not require fitting the hysteresis response of the model to

the experimentally measured response.
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2.3 Model Validation

Since the rate-dependent elasto-slide model is a time domain model, it can be

used for both quasi-steady and dynamic analysis. In this section, the numerical

implementation of the model is developed, and the quasi-steady and dynamic

modeling results are validated by the experimental data.

2.3.1 Numerical fulfillment of the model

Numerically, in the rate-dependent elasto-slide model, the internal displace-

ment x0 of the rate-dependent slide is a coupling variable between the elastic

stiffness and the slide. For a rate-dependent elasto-slide element as shown in

Figure 2.5, as displacement loading, x, is applied, the resistant force of the

elasto-slide element is given by

F = k(x− x0) = N

(
ẋ0

vr

) 1
p

(2.17)

The coupling displacement, x0, is given by

ẋ0

vr

=

[
k

N
(x− x0)

]p

(2.18)

This is a typical well-posed initial-value problem, and numerical solution for this

differential equation can be obtained given an initial condition. The simplest

way to guarantee a stable solution for stiff initial-value problems is to adopt a

predictor-corrector approach with the corrector iterated to convergence(PECE)

[79]. In this application, the numerical algorithm for Eq. 2.18 is based on the

Adams-Bashforth four-step method as predictor and one iteration of the Adams-

Moulton three-step method as corrector, with the starting values obtained from

the Runge-Kutta method of order four [79]. In accordance with the ratio of
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yield force and stiffness k
N

in current MR damper and an appropriate choice

of p, a stable and fast solution can be given by the Adams-Bashforth-Moulton

method using limited time steps. Including the postyield viscous damping and

accumulator stiffness, the total MR damper model force is given by

FMR = k(x− x0) + cẋ + k0x (2.19)

In addition, the model response can be solved using MATLAB ODE solver.

Since the internal velocity, ẋ0, is the function of internal displacement, x0, and

loading displacement, x, as shown in Eq. 2.18, the internal displacement can

be solved using ODE23 and this first-order state-space equation, and the model

force is further developed by Eq. 2.19. Similarly, while the MR damper is

incorporated in a mass-spring system with damping, the motion of equation of

the system is transfered to the first-order state-space form and the system free

vibration and forced response can be obtained using ODE solver. For instance, a

1-DOF mass-spring system with an MR damper can be expressed in state space

form as

ẋ = ẋ

ẍ = F (t)
M
− K

M
x− 1

M
[k(x− x0) + cẋ + k0x]

ẋ0 =
[

k
N

(x− x0)
]p

vr

(2.20)

where, M and K are the mass and spring of the system respectively, and F (t)

is a forced loading on the system. Thus, given a initial condition, the system

response will be easily solved. Using the same ODE solver, the RDES model can

also be applied in the MATLAB Simulink program such that control simulations

using MR damper can be easily realized.

46



2.3.2 Experimental validation

Since the RDES model is a time-domain model, the quasi-steady and steady-

state hysteretic modeling results are used to validate the model. For quasi-steady

study, the model response is calculated while the damper model is applied by

displacement loading with a constant velocity. Figure 2.10 shows the analytical

damper force under varied velocities and applied currents in comparison with

the experimental data. The experimental data is provided by the Lord’s damper

performance data sheet, in which the offset force due to the accumulator is ex-

cluded. As shown in the figure, the damper force due to a steady shaft velocity

predicted by the RDES model demonstrates similar field-dependent characteris-

tics demonstrated by the experimental result.

It is more important to understand the damper behavior while the damper

is applied by sinusoidal loadings since the damper is mainly used in a dynamic

system to dissipate energy. Single frequency and dual frequency experimental

results are used to evaluate the fidelity of the rate-dependent elasto-slide model.

For single frequency data, modeling and experimental results are compared us-

ing both force-displacement and force-velocity hysteresis cycles. Figure 2.11 and

2.12 show the force-displacement and force-velocity hysteresis at 5Hz. The ap-

plied current is 0A and 0.3A respectively. Clearly, the modeling results correlate

very well with the experimental results, and especially the proposed model cap-

tures the amplitude-dependent damping behavior of the MR damper. The main

reason for irregular curve at upper-left and lower-right corner of the experimen-

tal force-displacement diagram is due to the loose fit of the insert pin connection

between the MR damper and the fixture connected to the material testing ma-

chine. Similarly, the single frequency modeling results at 2.5Hz are shown in
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Figure 2.13 and Figure 2.14, and the modeling results at 7.5Hz are shown in

Figure 2.15 and Figure 2.16. Both figures show that the rate-dependent elasto-

slide model can predict the damper response very well in a moderate frequency

range.

For dual frequency data, the force-displacement diagram is used to evaluate

the MR damper model. The modeling and experimental results at various com-

binations of dual frequency amplitudes and currents are shown in Figure 2.17

and Figure 2.18. The modeling results for combination of 2.5Hz and 5Hz are

shown in Figure 2.17, where Alag is the amplitude of the sinusoidal signal at

5Hz and Acom is the amplitude at 2.5Hz. There are six combinations of ampli-

tudes for Alag and Acom, and the results at two different currents demonstrate

controllability of the MR damper. The dual frequency data at 7.5Hz and 5Hz

are shown in Figure 2.18. The correlation results in both figures show that

the rate-dependent elasto-slide model performs quite well in predicting the dual

frequency behavior at a broad amplitude and frequency range.

The fidelity of the rate-dependent elasto-slide model over a broad amplitude

and moderate frequency range is justified by the good correlation with experi-

mental single and dual frequency test data. Since the proposed model is a time

domain model, it also can be used to predict damper behavior under quasi-steady

or complex dynamic loading conditions. Especially, while the exact relation be-

tween model parameters and the applied current is known, the damper model

is capable of predicting the behavior of the MR damper for a continuously con-

trolled magnetic field.
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2.4 Conclusion

A rate-dependent elasto-slide (RDES) model for a linear stroke MR damper

was developed. The MR damping mechanism was developed using the Bingham

model of MR fluids and the parallel plate assumption. The relationship between

model parameters and damper mechanisms was studied. The model parameters

were determined using identified virtual loading curves from force-displacement

and force-velocity hysteresis data. A stable numerical method was chosen to pre-

dict the model response under various loading conditions. The predicted forced

response correlated very well with the single and dual frequency experimental

results. Significantly, the nonlinear amplitude dependent behavior of the MR

damper was described by this six constant parameters model. The RDES model

can be used in a variety of applications such as initial or forced response analysis

of the system using MR dampers and a wide range of proposed control strate-

gies dealing with the MR damper. The modeling result is well matched with

the experimental data. Significantly, this modeling approach captures nonlinear

amplitude and frequency dependent behavior of MR dampers using constant

model parameters which can be determined by the properties of the MR fluids

and damper geometry data.

Apparently, the MR damper behavior is dominated by damping effect con-

tributed by a preyield elasto-slide mechanism and a postyield viscous damping.

As a counterpart, a filled elastomer is a typical visco-elastic material, and can

provide fail-safe stiffness and damping. Similar friction behavior due to the in-

tersection of the cross link in the material leads to the damping effect of the

elastomer. In the modeling approach for the MR behavior, the elasto-slide el-

ement is used to capture the friction effect due to the yield behavior of the
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MR fluids, and thus the elasto-slide concept can also be used in the elastomeric

modeling effort which will be described in the next chapter.
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Figure 2.1: Schematics of an MR Damper

Figure 2.2: Test Setup for MR Damper
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Table 2.1: Dual Frequency Test Matrix

2.5Hz\5Hz 0.5mm 1mm 1.5mm 2.5mm Current(A)

0.5mm x x x x 0-0.3A

1.0mm x x x x 0-0.3A

1.5mm x x x x 0-0.2A

7.5Hz\5Hz 0.5mm 1.5mm 2.5mm Current(A)

0.5mm x x x 0-0.2A

1.0mm x x x 0-0.2A

52



−4 −3 −2 −1 0 1 2 3 4
−600

−400

−200

0

200

400

600

Displacement(mm)

F
or

ce
(N

)
I=0.0A 

I=0.1A 

I=0.2A 

I=0.3A 

(a) Force-Displacement Diagram

−150 −100 −50 0 50 100 150
−600

−400

−200

0

200

400

600

Velocity(mm/s)

F
or

ce
(N

)

I=0.0A 

I=0.1A 

I=0.2A 

I=0.3A 

(b) Force-Velocity Diagram

Figure 2.3: Hysteresis Cycles for MR Damper
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Figure 2.5: Rate Dependent Elasto-slide Model

55



−300 0 300
−400

0

400

Velocity(mm/s)

D
am

pi
ng

 F
or

ce
(N

)

Quasi−steady Bingham Model
Nonlinear Bingham Plastic Model
Rate Dependent Slide Model

Figure 2.6: Quasi-Static Force-Velocity Relationship Predicted by MR Models

−2 −1 0 1 2
−200

−150

−100

−50

0

50

100

150

200

Displacement(mm)

F
or

ce
(N

)

Experimental Data
Elasto−Slide Model

Figure 2.7: Hysteresis Behavior of an Elasto-slide Model

56



−4 −3 −2 −1 0 1 2 3 4
−400

−300

−200

−100

0

100

200

300

400

Displacement(mm)

F
or

ce
(N

)
Estimated Loading Curve 

(a) Force-Displacement Diagram

−150 −100 −50 0 50 100 150
−400

−300

−200

−100

0 

100

200

300

400

Velocity(mm/s)

F
or

ce
(N

) Estimated Loading Curve 

(b) Force-Velocity Diagram
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Table 2.2: Model Parameters

Parameter Value Current(A)

N(Newton) 76.75 0

470.48 0.3

k(N/mm) 973.13 0

2883.35 0.3

c(N*s/mm) 0.25

k0(N/mm) 3

vr(mm/s) 50

n 7
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Figure 2.11: Model Fit at 5Hz and 0A
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Figure 2.12: Model Fit at 5Hz and 0.3A
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Figure 2.13: Model Fit at 2.5Hz and 0.1A
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Figure 2.14: Model Fit at 2.5Hz and 0.3A
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Figure 2.15: Model Fit at 7.5Hz and 0A
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Figure 2.16: Model Fit at 7.5Hz and 0.2A
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Figure 2.17: Dual Frequency Modeling at 5.0Hz and 2.5Hz
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Figure 2.18: Dual Frequency Modeling at 5.0Hz and 7.5Hz
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Chapter 3

Characterization and Modeling for

Elastomeric Materials

As a major component of the MRFE damper, filled elastomer can provide

damping and stiffness. The elastomer has proven to be efficient for damping aug-

mentation due to their simple design, low weight and high reliability. However,

filled elastomeric materials exhibit significant nonlinearities, especially ampli-

tude dependent and frequency dependent behavior [48]. A precise analytical

model is necessary to describe the nonlinear behaviors of an elastomeric damper

and to determine the dynamic characteristics when the elastomer is applied in

an MRFE damper.

Since the complex modulus method is successful in characterizing viscoelastic

materials under harmonic excitation, early modeling efforts focused on lineariza-

tion using complex moduli at a given frequency, where the storage modulus is

a measure of the energy stored over a cycle and the loss modulus is measure

of the energy dissipated over a period. This model can be represented as a

spring and a dashpot in parallel (Kelvin chain). The complex modulus is a lin-

earization method in the frequency domain which represents the nonlinear force
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vs. displacement hysteresis loop with an equivalent ellipse, and is only appli-

cable to steady harmonic forced response analysis. For nonlinear elastomeric

materials, the complex modulus is also amplitude dependent. Some researchers

extended the basic Kelvin chain to a more complicated mechanism-based mod-

eling approach to describe the nonlinear behavior of elastomers. Felker et al

[12] developed a nonlinear complex modulus model based on one single Kelvin

chain, in which the spring force was a nonlinear function of the displacement,

and the damping force was a nonlinear function of displacement and velocity.

This model was used to describe the amplitude dependent moduli and to study

dual frequency damper motions. In order to display basic behavioral character-

istics, such as creep and relaxation, a viscoelastic solid can be represented as a

spring in series with Kelvin elements (if one Kelvin element is used, it is called

a Zener model [49]). Gandhi and Chopra [50] developed a nonlinear viscoelas-

tic solid model in which a nonlinear leading spring was used in series with a

single linear Kelvin chain. Using this model, the variation of the analytical com-

plex moduli with different amplitudes matched closely with experimental data.

The parameters in these models were identified using amplitude-dependent com-

plex modulus data, and these models cannot be used to capture the nonlinear

hysteresis behavior of elastomers. Kunz [51] similarly used a nonlinear Kelvin

chain to capture the nonlinear hysteresis behavior of an elastomeric damper. In

this model, the stiffness was expressed as a fourth order polynomial function

of displacement, and the damping was described by a second order polynomial

function of velocity. Though it can predict the harmonic damper force rather

well, this approach is only applicable for a particular amplitude and frequency.

In the model developed by Tarzanin et al [52], the total damper force was rep-
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resented by a nonlinear spring force and a nonlinear Coulomb friction damping

force. This model was based on single frequency data and was used to match

the value of energy dissipation per cycle. However, a sudden jump in damper

modeling force was shown when velocity changed sign, which was unrealistic.

Panda et al [24] replaced the Coulomb friction damping element with a vari-

able friction damping element whose force was calculated based on the peak

displacement of excitation when the velocity was zero. This model correlated

well with the experimental hysteresis data, but the effectiveness of this model

over a range of amplitudes and frequencies suitable for helicopter lag dampers

has not been demonstrated in the literature. In a recent study, Krishnan [53]

developed a model which consisted of a linear Kelvin chain and a parallel cu-

bic spring element. Snyder [37] improved this model by adding an elasto-slide

element. Both models were developed to capture nonlinear elastomeric damper

hysteresis cycles, but the model parameters were still amplitude and frequency

dependent.

On the other hand, some elastomeric models were developed using internal

variable or nonlinear integral equations. Strganac [55] used a stress shift func-

tion to formulate a nonlinear time domain model for elastomers, but the nonlin-

ear integral formulation in the model was difficult to implement in traditional

aeromechanical analysis. Lesieutre and Bianchini [56] developed the anelastic

displacement field (ADF) method to describe the frequency-dependent behavior

of linear materials. It was based on the notion of scalar internal variables or

augmenting thermodynamic fields (ATF) [57] that described the interaction of

the displacement field with irreversible processes occurring at the materials level.

In the ADF approach, the effects of the thermodynamic processes were focused
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on the displacement field which consists of both elastic and anelastic parts. The

anelastic part may be further subdivided to consider the effects of multiple re-

laxation processes. Although there is no explicit physical interpretation when

multi-anelastic elements are involved, one single ADF model is mechanically

analogous to the Zener model. In order to capture the characteristic nonlinear

behavior of elastomeric materials, Govindswamy et al [58] developed a nonlinear

ADF model, in which the linear ADF parameters were replaced with nonlin-

ear terms. The model captured the variations of the complex modulus with

amplitude fairly well but did not match the strain-stress hysteresis successfully.

Therefore, other functional forms for the ADF parameters were called for to

improve hysteresis loop predictions. Brackbill et al [59] improved the nonlinear

ADF model by adding rate independent nonlinearity, in which friction-damping

and linear-spring elements in parallel with the baseline nonlinear ADF model

were used to provide additional amplitude dependent relaxation behavior. As

many as sixteen parameters were used to construct the model. Although the

complex moduli were fitted well along amplitude and frequency ranges, non-

linear stress time histories could still be improved. Moreover, the parameter

determination process was difficult because some parameters were chosen by em-

pirical observation. In a recent study, Ramrakhyani et al [60] developed an ADF

based model containing nonlinear fractional derivatives and frictional elements.

This model used eight parameters instead of sixteen parameters to capture the

amplitude-dependent and mild frequency-dependent modulus. However, it did

not improve prediction of the force response, and the complexity in determining

model parameters is still great.

Generally, most existing modeling efforts are based on the viscoelastic as-
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sumption for elastomeric characteristics. However, an elastomeric damper usu-

ally demonstrates tribo-elastic behavior [48] such that those damper models us-

ing linear or nonlinear Kelvin chain combinations cannot capture the elastomeric

behavior in reality. Either the model parameters are amplitude dependent or the

model poorly describes the hysteretic behaviors of an elastomeric damper. Al-

though in some modeling efforts the Coulomb or friction damping was used to

describe the rate-independent damping behavior significantly demonstrated by

the elastomer, a single or finite number of Coulomb dampers are not sufficient

in modeling. The disadvantage for those modeling efforts is that the excitation

amplitude has to be known a priori while using these models.

Thus, an efficient and precise model for an elastomeric model will be devel-

oped from an empirical understanding of the damping mechanism within the

damper. Physically, the amplitude dependent behavior demonstrated by the

elastomer is mostly based on the interaction between fillers and rubber com-

pound inside the filled elastomeric materials [61]. Before large deformation of

a filled elastomeric damper, an intact filler structure displays a large stiffness

and small loss factor for small amplitudes. As the amplitude increases, the filler

structure breaks resulting in a stiffness reduction. Moreover, the breaking of

filler structures, which is similar to frictional behavior, increases the loss factor.

As the amplitude increases further and the frictional effect is fully released, both

stiffness and loss factor drop to a substantially reduced level, both of which are

then maintained by the remaining polymer chains.

Motivated by the above physical mechanisms, a number of researchers have

attempted combinations of springs and frictional slides to represent the filler and

rubber compound in filled rubbers or elastomers. As early as 1930, Timoshenko

73



[62] suggested that the general hysteretic system consist of a large number of ideal

elasto-plastic elements with different yield levels. Iwan [63,64] further developed

a distributed-element model to study the steady-state dynamic response of a

hysteretic system. Instead of specifying a distribution function numerically to

agree with experimental data, a constant band-limited statistical function was

used to define yield properties of the slide elements in this model. This model

proved successful in predicting steady-state frequency response of a hysteretic

system using method of linearization. However, the excitation amplitude must

be known as a priori while this model is applied in the analysis, which is only

applicable in steady-state response prediction. The theory of triboelasticity [65]

also stated that the behavior of a filled elastomer can be represented by a large or

infinite number of alternate springs and frictional slides in series, and each slide

has a constant yield force and each spring has a constant stiffness. Coveney et

al [48] developed a three-parameters standard triboelastic solid (STS) based on

theory of triboelasticity and further developed a four-parameter rate-dependent

triboelastic (RT) model. These models gave a satisfactory representation of

material behavior. However, since the yield force is fixed along different slides,

these models shows less flexibility to represent the amplitude dependent behavior

for different filled-level materials.

To describe the nonlinear behavior of elastomers, a distributed rate-dependent

elasto-slide model was developed to describe the amplitude dependent behavior

for filled elastomeric dampers. Since a filled elastomer exhibits frictional behav-

ior, this physically motivated model consists of a large number of ideal rate-

dependent elasto-slide elements with different yield levels and a parallel polymer

remaining stiffness. Similar to the MR damper modeling method, the elasto-slide
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element is used to emulate friction behavior demonstrated by the filler struc-

ture in the elastomer, and the linear spring represents the remaining polymer

stiffness. Extensive tests including single frequency and dual frequency tests

are conducted on an elastomeric specimen and a linear stroke elastomeric lag

damper using a material testing machine, and complex modulus method is used

to characterize the elastomeric specimen and damper. The model parameters are

determined using a virtual initial loading curve identified from single frequency

force-displacement hysteresis cycles. Efficient numerical algorithms are devel-

oped to apply the elastomer model to damper analysis. The modeling results

for single frequency and dual frequency damper behavior are correlated quite

well with experimental results in a broad amplitude and moderate frequency

range. This model is successfully applied to predicting the forced response while

the specimen is subjected to slowly varying cyclic loading conditions. To ana-

lytically study the influence of a nonlinear elastomeric damper on the stability

performance for a dynamic system, the elastomer model is incorporated into

a one single degree of freedom dynamic system and the transient response is

compared with the results using corresponding viscous damping. It is shown

that the non-uniform distributed rate-dependent elastomer model is applicable

in complex loading conditions without any prior information, and the flexibil-

ity in determining the distribution function provides a potential to improve the

model and to apply the model to elastomers with different filler structures.
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3.1 Experimental Setup

To characterize elastomeric materials and evaluate the model, dynamic tests

were conducted on two different elastomeric devices to evaluate model adapt-

ability in various elastomers. The first elastomeric device was a double lap

shear specimen, or flat linear bearing, hereinafter called the elastomeric speci-

men. The second elastomeric device was a linear concentric tubular bearing or

damper, hereafter called the elastomeric damper. Testing was carried out with

varying excitation amplitudes and frequencies, and all tests were conducted at

room temperature (25◦C).

A test setup for the elastomeric specimen is shown in Figure 3.1 and was de-

signed and built for the purpose of obtaining the elastomeric specimen response

data. The silicone based filled elastomeric specimen, in the form of double lap

shear, were provided by Paulstra-Vibrachoc. As shown in Figure 3.2, the spec-

imen have three parallel brass plates between which the elastomeric material is

sandwiched symmetrically. To study the effect of preload on damper behavior,

the elastomeric specimen tests were conducted using no preload and preload

conditions, respectively. The elastomeric specimen was applied preload by com-

pressing the double lap shear specimen at 10% of the width of the specimen

using a simple vise. A 24.466 kN (5000 lbs) servo-hydraulic MTS test machine

was used to test these dampers. Fixtures and grips were designed and machined

appropriately to hold the damper specimens in place. The hydraulic power sup-

ply (HPS) supplied the servo fluid to the testing machine for power, and the

specimens were loaded and tested on the load frame. The actuator on the load

frame moved according to the signal sent by the server. A displacement LVDT

sensor was used for displacement measurement and a load cell for measuring the
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force. The machine can be operated in two ranges for both displacement ±127

mm and ±12.7 mm (±5
′′

and ±0.5
′′
) and force ±24.466 kN and ±2.4466 kN

(±5000 lbs and ±500 lbs). Single and dual frequency tests were conducted by

using this machine. In dual frequency test, a HP 8904A multi-function synthe-

sizer was used to generate and sum the sinusoidal signals for both frequencies.

The single frequency test was conducted with displacement control for excitation

amplitude range from 0.25 mm to 5 mm (2.5% to 50% shear) in increments of

0.25 mm. The frequency range was chosen appropriate for a helicopter rotor

system: Ω1 = 7.5 Hz was assumed to be the 1/rev frequency or rotor RPM,

Ωlag = 5 Hz was assumed to be the lag/rev frequency, and Ω = 2.5 Hz was a

lower harmonic of these two frequencies. The dual frequency testing was carried

out at 1/rev frequency of Ω1 = 7.5 Hz and the lag/rev frequency of Ωlag = 5 Hz.

The range of the lag/rev amplitudes were the same as for the single frequency

tests, and the 1/rev amplitudes respectively tested were 0.5, 1.5, 2.5, 3.5, and

4.5 mm.

An important effect of filler materials in the filled elastomeric specimen is

stress-softening. If an elastomer sample is stretched for the first time to 100%

followed by a release in the strain and then stretched again to 200%, there is

a softening in the strain of up to 100% after which it continues in a manner

of following the first cycle. This stress softening effect was first discovered by

Mullins and is called the ‘Mullins Effect’ [74]. To account for this phenomenon,

the test samples were first cycled and loosened before the actual tests by exciting

them at 1 Hz frequency and 5 mm for 300 cycles because 5 mm is the maximum

amplitude during tests. Stress relaxation is also shown in the case of dynamic

loading. As the material is subjected to cycling loading, energy dissipation in
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the material heats up the material and results in high temperature softening.

Usually, material self-heating and other unsteady effects require about 250 sec-

onds to stabilize and reach a steady state. Hence, in order to ensure temperature

stabilization and consistency of data, during a normal test, the elastomer sample

was typically excited at the test frequency and amplitude for 300 seconds before

collecting data. For simplification, the stress softening and relaxation effects

were not considered in the modeling process such that the distribution function

was independent of the loading level and temperature. However, in principle this

model could be used to account for those observed behaviors if the distribution

function includes these effects.

A linear concentric tubular elastomeric lag damper was also used to evaluate

the performance of the modeling method. The linear stroke elastomeric damper

test setup is shown in Figure 3.3. As shown in Figure 3.4, the elastomeric

damper is made of two concentric cylindrical metal tubes and one elastomeric

layer sandwiched between an outer and inner tubes. The volume enclosed by

the inner tube forms a cylindrical inner chamber, and a threaded trapezoidal

column is attached to one end of the inner tube. When the damper is installed

in the main rotor, the outer tube is attached to the rotor head, and the inner

tube connected to the blade root. Thus, the lead-lag motion of the blade induces

a relative translation between the inner tube and the outer tube which in turn

leads to a shear deformation of the elastomer along the damper body length.

The deformation of the elastomer provides required stiffness and damping for

the lead-lag mode of the rotor blade. To simulate the loading conditions applied

on the elastomeric lag damper by the MTS servo-hydraulic testing machine, the

inner tube of the damper is connected with the load cell of the MTS machine
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by a screw adapter, and the outer tube of the elastomeric damper is connected

to the actuator on the MTS loading frame using a tension rod configuration.

Thus, the axial translation of the actuator results in shear deformation of the

elastomeric component. The lag damper was excited in displacement control by

a sinusoidal signal to simulate damper motion due to the lag motion of a blade.

The displacement and force were measured by LVDT sensor and load cell of the

MTS machine. The excitation amplitude ranged from 0.25 mm (10 mil) to 1

mm (40 mil) in increments of 0.25 mm (10 mil) at three different frequencies of

Ω1, Ωlag and Ωcom, respectively.

All test data were collected using a high sampling frequency (2048 Hz) such

that most higher harmonic components in the nonlinear force were included. To

reduce the noise of the sinusoidal displacement signal, a Fourier series was used to

reconstruct the input displacement. The reconstructed displacement signal was

then differentiated to obtain the velocity signal. The Fourier series expansion of

the input displacement is

x(t) =
x0

2
+

∞∑
k=1

[Xc,k cos(kωt) + Xs,k sin(kωt)] (3.1)

where

Xc,k =
ω

π

∫ 2π
ω

0

x(t) cos(kωt)dt

Xs,k =
ω

π

∫ 2π
ω

0

x(t) sin(kωt)dt

(3.2)

For single frequency data processing, any bias and higher harmonics were filtered,

so that only the frequency of interest, ω, remained where ω = Ω, Ωlag, or Ω1.

For dual frequency testing, the general equation for the input dual displacement

signal is written as

x(t) = Xlag sin(Ωlagt) + X1 sin(Ω1t) (3.3)
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The signal is periodic with a frequency corresponding to the highest common

factor of both harmonics, i.e., 2.5 Hz in our case. The displacement signal was

filtered using Ω = 2.5 Hz as the base frequency. The first three harmonics

were needed to reconstruct the dual frequency displacement signal in order to

capture the lag/rev and the 1/rev frequencies. The Fourier series was also used

to reconstruct the measured force. However, due to nonlinearity of elastomers,

the higher harmonics of the measured force were not filtered.

3.2 Elastomer Characterization

A typical approach used for characterizing elastomer behavior is the complex

stiffness. The linearized complex stiffness, K∗, is composed of the in-phase or

storage stiffness, K
′
, and the quadrature or loss stiffness, K

′′
, as follows:

K∗ = K
′
+ jK

′′
(3.4)

Therefore, the damper force can be written as the summation of an in-phase

spring force and a quadrature damping force, and the damper force can be

approximated by the first Fourier sine and cosine components at the frequencies

ω = Ω, Ωlag, and Ω1:

F (t) = Fc cos(ωt) + Fs sin(ωt)

= K
′
x(t) +

K
′′

ω
ẋ(t)

(3.5)

where Fc and Fs are the first harmonic Fourier coefficients of the measured

force. The storage stiffness, K
′
, and the loss stiffness, K

′′
, are determined by
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the following equations:

K
′
(ω) =

FcXc + FsXs

X2
c + X2

s

K
′′
(ω) =

FcXs − FsXc

X2
c + X2

s

(3.6)

where, Xc, Xs are the first harmonic Fourier coefficients of x(t).

The typical linear characterization results of the elastomeric specimen are

shown in Figure 3.5 where no preload was applied to the elastomeric specimen.

These plots indicate that the linearized storage stiffness and loss stiffness of

the specimen are highly amplitude dependent at low amplitudes. For smaller

amplitudes, the rate of change of the storage stiffness and the loss stiffness is

much greater than one for larger amplitudes. However, the complex stiffness

does not change substantially over the narrow frequency range tested. The loss

factor, η, is also strongly dependent on amplitude. The maximum value of the

loss factor is as high as 1.025 for this filled elastomer. This is much higher than

the values for existing lag damper materials. This elastomeric material performs

most effectively within the amplitude range of 0.76 - 1.27 mm (30 - 50 mils) where

η > 1. Similar results are demonstrated by the elastomer with preload. Thus,

it can be concluded that the linearized behavior of the elastomeric specimen is

highly amplitude dependent and weakly frequency dependent in this frequency

range.

The complex modulus and loss factor of the elastomeric lag damper are shown

in Figure 3.6. Both inphase and quadrature stiffness demonstrate moderate am-

plitude dependence and weak frequency dependence. In contrast to the charac-

terization of the elastomeric specimen, the inphase stiffness of the elastomeric

damper is much higher than the quadrature stiffness, and both inphase and

quadrature stiffness vary with the displacement amplitude at a similar rate.
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Thus, the loss factor of the elastomeric damper is quite low (around 0.25 to 0.3)

and almost constant along different displacement amplitudes and frequencies, as

shown in Figure 3.6(c).

The single frequency linear characterization can capture the general trends

of the in-phase and quadrature stiffness for a filled elastomer. However, this

linear analysis cannot be used to accurately reconstruct the nonlinear amplitude

dependent hysteresis behavior exhibited by the elastomer. Therefore, a new

nonlinear modeling effort will be presented in the following section.

3.3 Distributed Rate-dependent Elasto-slide Model

The distributed rate-dependent elasto-slide model is shown in Figure 3.7,

in which a series of elasto-slide elements are combined in parallel with a con-

stant linear spring or elastic modulus. The model can be applied either in

force-displacement relations or in stress-strain relations, but only the force-

displacement formulation will be used in this paper. Each elasto-slide element

consists of a leading spring with stiffness k/N in series with a rate-dependent

slide which has a yield force f ∗i /N and a transition velocity vr between preyield

and postyield region, where N is the total number of elements. The yield force for

each element is different, and the stiffness for each leading spring is assumed to

be a constant. The rate-dependent slide is used to describe the friction behavior

of a filler structure element which includes a preyield slip and a postyield viscous

motion. When vr approaches zero, the rate-dependent slide demonstrates ideal

Coulomb behavior. For each ideal element, when a loading displacement x is so

small that the consequent leading spring force is smaller than the yield force,
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only the spring is deformed to provide a forced response. After the spring force

reaches the yield force, the slide is yielded and moves, and the resisting force of

the element remains constant with the same value as the yield force. Since each

element is assumed to have a different yield force level, this model shows gradual

stiffness reduction as amplitude increases until such a condition as all elements

have yielded. At that time, only the parallel spring, k0, remains to represent

polymer stiffness of the elastomer. As the elastomer is a continuum, the total

number of elements, N , approach infinity, and, in the limit, the discrete yield

force for a single slide is replaced by a distributed density within a certain yield

force range.

The existence of the filler structures inside the elastomer leads to hysteretic

behavior when the damper is cycled between fixed deflection limits. Analyti-

cally, a distribution function of yield force is denoted as ϕ(f ∗) such that the

density of the slides with yield force f ∗ is expressed as ϕ(f ∗)df ∗. Using the ideal

slide assumption, the slide behaves as a Coulomb friction element. Thus, upon

initial loading, the leading spring at a certain yield element stretches with the

displacement x until it reaches the maximum slide yield force, i.e.

df = kxϕ(f ∗)df ∗, ẋ > 0, 0 6 x 6
f ∗

k

df = f ∗ϕ(f ∗)df ∗, ẋ > 0, x >
f ∗

k
(3.7)

If the direction of loading is reversed, the force-deflection relation is more com-

plicated. Including the yielded and not yielded elements, the force-deflection

83



relation will become

df = [f ∗ − k(A− x)]ϕ(f ∗)df ∗, ẋ < 0, A− 2
f ∗

k
6 x 6 A, f∗ 6 kA

df = −f ∗ϕ(f ∗)df ∗, ẋ < 0, x 6 A− 2
f ∗

k
, f∗ 6 kA

df = kxϕ(f ∗)df ∗, ẋ < 0, f∗ > kA

(3.8)

where A is the maximum deflection that occurred with ẋ > 0. An expression

similar to Eq. 3.8 is obtained when the loading reaches the minimum deflection

and is reversed again so that ẋ > 0. This process continues until the loading

is stopped. Clearly, at each time, only part of the elasto-slide elements have

yielded. The total resisting force can be obtained by integrating all of the elasto-

slide forces along the yield distribution region and by adding the spring force

due to the residual polymer stiffness. Thus, from Eq. 3.7, the initial loading

force is given as

f =

∫ kx

0

f ∗ϕ(f ∗)df ∗ + kx

∫ ∞

kx

ϕ(f ∗)df ∗ + k0x, ẋ > 0 (3.9)

Similarly, the resisting force due to the reversed loading is obtained by integrating

Eq. 3.8

f =

∫ k(A−x)
2

0

−f ∗ϕ(f ∗)df ∗ +

∫ kA

k(A−x)
2

[kx− (kA− f ∗)]ϕ(f ∗)df ∗

+ kx

∫ ∞

kA

ϕ(f ∗)df ∗ + k0x, ẋ < 0, x 6 A

(3.10)

Thus, while an elastomer is under the cyclic displacement loading

x = A sin(ωt) (3.11)

an analytical force-deflection hysteresis cycle can be computed and is shown as

a dashed line in Figure 3.8, where A is 2.5 mm and the frequency is 2.5 Hz.
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Compared with the experimental hysteresis as shown in dotted line, the model

prediction gives a good match to the non-elliptical hysteresis cycle.

The distributed elasto-slide model resembles the physical mechanism of an

elastomer, so it can account for nonlinear characteristics of the behavior demon-

strated by an elastomer under a cyclic loading either in single frequency or

multi frequencies. However, using Coulomb slide, the cyclic limit at turning

point must be known for response calculation, which makes it impossible for the

model to describe elastomer behavior under complex loading conditions. The

ideal elasto-slide is also incapable of modeling any frequency dependent prop-

erties and non-hysteresis behavior in the time domain such as stress relaxation

or creep. In reality, the Coulomb slide is only an idealized friction model. The

practical friction behavior includes preyield slip and postyield steady resistance

which lead to rate dependent damping effect [75, 76]. Thus, a rate-dependent

elasto-slide model is introduced to improve the modeling performance.

In the rate-dependent elasto-slide model, the Coulomb slide is replaced with

a non-Coulombic friction function and the coupling between a slide and a leading

spring is described by an internal displacement denoted as x0 such that the slide

force for a certain yield region is written as

df = f ∗ϕ(f ∗)df ∗
(

ẋ0

vr

) 1
p

(3.12)

where p is a positive odd integer. Coupled with the lead spring kϕ(f ∗)df ∗, the

internal displacement x0 at certain yield region is obtained using the function

ẋ0

vr

=

[
k

f ∗
(x− x0)

]p

(3.13)

By integration over the whole yield force region, the damper force due to any
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deflection loading, x, is determined by

f =

∫ ∞

0

k(x− x0)ϕ(f ∗)df ∗ + k0x (3.14)

Eq. 3.13 is a typical well-posed initial-value problem, and numerical solution

for this differential equation can be obtained given an initial condition. The

simplest way to guarantee a stable solution for such a stiff initial-value problems

is to adopt a predictor-corrector approach with the corrector iterated to conver-

gence(PECE) [79]. In this application, the numerical algorithm is based on the

Adams-Bashforth four-step method as the predictor step and one iteration of

the Adams-Moulton three-step method as the corrector step, with the starting

values obtained from a Runge-Kutta method of order four [79]. In accordance

with the ratio of yield force and stiffness, k
f∗

, and an appropriate choice of p, the

Adams-Bashforth-Moulton method gives relatively stable and fast convergence

of a solution within a limited number time steps.

For an elastomer under loading as in Eq. 3.11, the steady-state response

predicted by the rate-dependent elasto-slide model is shown as a solid line in

Figure 3.8. The predicted hysteresis cycle correlates much better with the ex-

perimental data, especially at turning points of the loading deflection. It should

be noted that there is no requirement for excitation amplitude information in

this modeling process. Thus, the distributed rate-dependent elasto-slide model

can predict forced response of an elastomer in the time-domain in response to a

sinusoidal displacement excitation.

In order to apply the elastomer model to a dynamic system, a numerical

method using MATLAB ODE algorithm was also evaluated. For a dynamic
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system with governing equations

Mẍ + Cẋ + Kx + Fd(x, ẋ) = F (t) (3.15)

where, M, C, and K are mass matrix, equivalent damping matrix, and stiffness

matrix, respectively, Fd(x, ẋ) is used to describe the force due to an elastomeric

damper, and F (t) is a loading vector applied on the system. The size of the

matrix depends on the degree of freedom of the system. For simplicity, only

a 1-DOF system is considered. In the distributed rate-dependent elasto-slide

damper model, there are infinite internal variable x0’s theoretically. However,

the distributed yield stress is usually within a limit range. Therefore, according

to the form of a distribution function, the continuous yield force distribution

area can be uniformly decomposed into n discrete elements from minimum to

maximum yield force and each element has a yield force range, ∆f ∗. At each yield

stress, f ∗i , the corresponding distribution is equal to the area of that element,

ϕ(f ∗i )∆f ∗. Thus, each element has an internal variable denoted as x0i, i =

1, ..., n, and each x0i satisfies the Eq. 3.13. Thus, the damper force Fd can be

described by

Fd = k
n∑

i=1

ϕ(f ∗i )∆f ∗(x− x0i) + k0x (3.16)

Rewrite Eq. 3.15 into a first order form and combine Eq. 3.13 and 3.16, the
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state equation of the system is expressed as

ẋ = ẋ

ẍ = F (t)
M
− 1

M
[(K + k0)x− k

∑n
i=1 ϕ(f ∗i )∆f ∗(x− x0i)]− C

M
ẋ

ẋ01 =
[

k
f∗1

(x− x01)
]p

vr

. . .

. . .

. . .

ẋ0n =
[

k
f∗n

(x− x0n)
]p

vr

(3.17)

This is a (n + 2)th order state function. Using the ODE23 algorithm, the forced

response due to F (t) or the transient response due to the initial condition x(0)

and ẋ(0) can be solved numerically. For the system with more degrees of free-

dom or elastomeric dampers, the state function can easily accommodate these

additions by using a larger number of states.

3.4 Determination of Model Parameters

As seen in the construction of the model, the major parameters to be deter-

mined are the leading spring, k, and yield force distribution function, ϕ(f ∗), for

the distributed elasto-slide element, and the parallel spring, k0, for the remaining

polymer stiffness. In the absence of the knowledge of the elastomer structure,

the selection of these parameters are only based on experimental data though

the elasto-slide distribution could be determined by the properties of the filler

structures in the elastomer. One possible selection of methods would be to make

use of an experimentally determined initial loading curve.

The definition of the distribution function implies that ϕ(f ∗) has to obey the
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following three constraints: ∫ ∞

0

ϕ(f ∗)df ∗ = 1

ϕ(f ∗) > 0

0 6 f ∗ 6 ∞
(3.18)

From the initial loading curve Eq. 3.9, yields

df

dx
= k

∫ ∞

kx

ϕ(f ∗)df ∗ (3.19)

where,

f ∗ = kx (3.20)

Then

d2f

dx2
= −k2ϕ(f ∗) (3.21)

Thus, the distribution function would be related to the curvature of the initial

loading curve by the formula

ϕ(f ∗) = − 1

k2

d2f

dx2
(3.22)

And the determination of the distribution function relies on the identification of

the initial loading curve from the experimental data.

In the view of distributed elasto-slide model using ideal Coulomb slide, the

initial loading curve is independent of loading rate such that the maximum force

of the initial loading responds to the maximum displacement in cyclic loading.

As a result, an initial loading curve can be obtained using a series of experimental

hysteresis loops at different amplitudes. An example of the initial loading curve

is shown in Figure 3.9, the initial loading curve at three different frequencies are
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obtained from hysteresis cycles of the elastomeric specimen by identifying the

force at corresponding maximum displacement. The analytical initial loading

curve is determined by considering the influence of the rate-dependent slide.

This curve appears an elasto-plastic behavior, which is described as

f =
1

ϕ0

(1− e−kϕ0x) + k0x (3.23)

Notably, ϕ0 is a distribution constant and an index of the post yield force level. k

and k0 are the stiffness of the leading spring and the remaining polymer stiffness

respectively. Summation of the leading spring and the polymer stiffness is just

the slope of the force-displacement curve when x → 0. This is conceivable since

there only exists the influence of the springs while all slide elements are not

yielded. Substituting Eq. 3.23 into Eq. 3.22, yields a very simple distribution

function as

ϕ(f ∗) = ϕ0e
−ϕ0f∗ (3.24)

The distribution area for the elastomeric specimen is shown as shadow area in

Figure 3.10. It is easily shown that the distribution function satisfies all the

properties of Eq. 3.18.

The initial loading curve is determined from the experimental hysteresis di-

agrams, and the distribution function or ϕ, k and k0 can be determined by

fitting Eq. 3.23 with the test data. For the distributed elasto-slide model us-

ing Coulomb slide, the steady-state forced response of the damper under cyclic

loading will be predicted with determined ϕ0, k and k0 as follows:

f =
1

ϕ0

(1 + e−kϕ0xmax − 2e−kϕ0
x−xmin

2 ) + k0x, ẋ > 0

f = − 1

ϕ0

(1 + e−kϕ0xmax − 2e−kϕ0
xmax−x

2 ) + k0x, ẋ < 0

(3.25)
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where xmax and xmin are the displacement at turning points while ẋ < 0 and

ẋ > 0 respectively.

For the rate-dependent elasto-slide model, the reference velocity vr and the

exponent p were determined as follows. The choice of vr is based on steady state

force-velocity curves in which the boundary between preyield slip and postyield

flow is approximated. Analytically, p should be as large as possible such that the

post yield force rapidly transitions to a constant value, which is similar to fric-

tion behavior. However, large values of p result in a stiffer system. Thus, p was

chosen by trading off between both factors. For the elastomeric specimen, the

determined model parameters are shown in Table 3.1, in which the elastomeric

damper has two preload conditions. For elastomeric damper with 10% preload,

the distribution constant ϕ0 is lower than that without preload. This means that

the yield force level can be increased by the normal force in the preload condi-

tion. Similarly, the preload force also can increase the stiffness. As a result,

the addition of preload perpendicular to the loading axis tends to increase the

equivalent stiffness and damping over the entire amplitude range. This effect is

due to the compressive preload increasing the friction response of the filler in the

elastomer, and is not reflected in the distributed elasto-slide model. Thus, the

model parameters are different for different preloading conditions. For the elas-

tomeric lag damper, the determined model parameters are shown in Table 3.2.

Notably, the elastomeric material in the elastomeric damper is much stiffer than

the elastomeric specimen since the stiffness of the leading spring and remaining

spring is much higher than the elastomeric specimen. Thus, the loss factor of the

elastomeric damper appears much lower than the elastomeric specimen though

the yield force level of the elastomeric damper is higher than the elastomeric
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specimen.

3.5 Model Applications

As stated before, the distributed rate-dependent elasto-slide model resembles

the behavior of filler structures in the elastomer such that it can predict forced

response of an elastomer in the time domain. In this section, single frequency

and dual frequency steady-state hysteresis data are used to evaluate the fidelity

of the model, in which the model is validated over an appropriate amplitude

and frequency range for helicopter lag dampers. Since the intention is to apply

these materials in a lag damper in a helicopter rotor, the damper forced response

under dual frequency loading with slowly varying amplitude is also correlated

with model predictions. In order to determine the soundness of the model and

the underlying numerical algorithms while applied to a dynamic system, the

elastomeric model is incorporated into a one degree of freedom dynamic system.

The transient response due to the initial disturbance is predicted, and the re-

sult is compared with the transient response obtained using equivalent viscous

damping.

3.5.1 Single Frequency Modeling Results

For the elastomeric specimen, three sets of single frequency hysteresis cycle

data are used to verify the fidelity of the modeling results. Each set of data

is obtained by measuring the forced response while the elastomeric specimen is

under sinusoidal displacement loading at 2.5 Hz, 5.0 Hz and 7.5 Hz, respectively.

At each frequency, the loading amplitude is chosen as 1 mm, 2 mm, 3 mm and
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4 mm. In Figure 3.11(a)(b)(c), the experimental data at three frequencies are

shown compared with the modeling results. Basically, the modeling results cor-

relate quite well with the experimental results while the displacement amplitude

x0 is in the moderate amplitude range (2 < x0 < 5 mm). In the small amplitude

range x0 < 2 mm, the elastomer model under-predicts the area enclosed by the

hysteresis cycle. The reason for that is partly because the lower yield region

for the elasto-slide element is replaced with a non-zero constant yield force for

numerical consideration and the influence of this approximation is amplified at

small deflection loading.

The complex modulus determined by the elastomeric model is also compared

with the experimental result. As shown solid lines in Figure 3.12, the storage

stiffness and loss stiffness predicted by the model have the same amplitude depen-

dent trend as the experimental result. The analytical moduli are well matched

by the experimental moduli at moderate amplitude range except that the mod-

uli over small amplitude range are under-predicted especially for loss stiffness.

Model predictions are also compared with experimental data for loss factor. The

predicted loss factor shares common features of the elastomer. Clearly, at small

amplitude, most of the filler structures, or corresponding elasto-slide elements,

have not yielded, so that the loss factor is small. As the amplitude increases,

breaking filler structures or yielding of slides leads to a rise in the loss factor.

After all of the slide elements have yielded, the loss factor decreases again. In Fig-

ure 3.12, it also shows that both experimental and predicted moduli are weakly

dependent on frequency. This phenomenon is consistent with the tribo-elastic

mechanism of elastomeric materials [65].

Similar single frequency modeling results for the elastomeric lag damper are
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shown in Figure 3.13 as force-displacement diagrams for different amplitudes at

2.5 Hz (Fig. 3.13(a)), 5 Hz (Fig. 3.13(b)) and 7.5 Hz (Fig. 3.13(c)) respectively.

Clearly, the elastomeric model captures the amplitude and frequency dependent

behavior of the elastomeric damper.

3.5.2 Dual Frequency Modeling Results

In a helicopter lag damper, the elastomer would experience multi-frequency

excitation, especially as a combination of regressive lead-lag frequency and 1/rev

rotor frequency, while the helicopter is in the forward flight condition. Under

such a circumstance, the potential loss of damping at the lag frequency due to

limitation of stroke is well known [12], so it is important to predict the response of

the elastomeric dampers under dual frequency excitation. Dual frequency force-

deflection experimental data of the elastomeric specimen are used to evaluate

the adaptability of the model under complex loading conditions.

In stable forward flight conditions, the blade motion at 1/rev is constant at

a given amplitude. Thus, the test data were obtained while the amplitudes at

both frequencies (lag/rev and 1/rev) were held constant. For each test condi-

tion, the amplitude for lag frequency and 1/rev frequency ranges from 0.25 mm

to 5 mm, and the sum of both amplitudes must not exceed 5 mm, which corre-

sponds to maximum allowable strain of 50%. The modeling result at each dual

frequency loading condition is correlated with the corresponding experimental re-

sult. Some of these dual frequency modeling results are presented in Figure 3.14,

3.15, 3.16 and 3.17. The figures are grouped according to the 1/rev frequency

amplitude. Figure 3.14 shows the modeling results for 3.5 mm amplitude at

the 1/rev frequency and at four different amplitudes at lag frequency. Clearly,
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as the lag amplitude increases, the ability of the elastomer model to capture

the hysteresis cycle is also increased. Over the small amplitude range, the model

under-predicts the forced response due to inadequacy of the elasto-slide elements

in describing the effect of viscous damping. In the moderate amplitude range,

the model accurately captures the outer hysteresis loop and fairly captures the

inner loop. Similar results are shown in Figure 3.15, 3.16 and 3.17. In general,

the distributed rate-dependent elasto-slide model performs well in the moderate

amplitude range except it over-predicts the inner loop in some cases. The model

also should be improved to predict the response over the small amplitude range.

In unstable forward flight conditions, the lead-lag damper may encounter a

slowly-varying amplitude modulated periodic loading. For simplicity, the ana-

lytical and experimental simulation results are only shown for one scenario, in

which the amplitude for 1/rev frequency is 1.5 mm and the amplitude for lag

frequency is assumed as

Alag = 1.5[1 + 0.2 sin(0.2πt)]mm (3.26)

The predicted forced response is shown in Figure 3.18(a) and (b) compared with

the experimental results for two different time scales. Similarly, the modeling

force-displacement hysteresis cycle is also compared with the experimental data

as shown in Figure 3.18(c). As seen, the predicted force output due to the

slowly varying loading has the same varying trend, and also the force value is

tracked quite well. Clearly, the proposed elastomeric model performs fairly well

in predicting dual frequency response, and especially the distributed elasto-slide

model can predict the behavior of the elastomeric damper under any complex

loading conditions.
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3.5.3 1-DOF Dynamic Response Analysis

To examine the influence of an elastomeric damper in a dynamic system,

the proposed elastomeric model is included in a dynamic oscillator. Figure 3.19

shows the schematic of a dynamic oscillator with a damper. This model is

representative of the lag dynamics of a helicopter rotor blade, so that the mass,

M, represents the blade lag inertia, the system damping, C, includes the effect

of structural damping, Cstruc, and aerodynamic damping, Caero, and the spring,

K, is the blade lag stiffness. The damper force is denoted as Fd, and the system

transient response is calculated either using a nonlinear elastomeric damper or

an equivalent viscous damper such that the effect of the nonlinear elastomeric

damping can be obtained compared with the viscous damping. The equation

of motion for this oscillator is shown in Eq. 3.15. For simplicity, the natural

frequency of this system is set at 5 Hz, and the required damping ratio is assumed

to be 5%. It is also assumed that the damping coefficient for the viscous damper

is equal to the equivalent damping of the elastomeric damper at 1 mm amplitude.

Thus, the effective mass is 1524 Kg, the effective stiffness is 1504 N/mm, and

equivalent damping is 4.8 Nmm/s. Given an initial displacement perturbation

x(0) = 3 mm, the transient response of the system can be obtained by solving

Eq. 3.17 using MATLAB ordinary differential equation solver.

Due to the aerodynamic effect, the aerodynamic damping, Caero, can be re-

duced and even become negative. Thus, the response of the oscillator at different

aerodynamic damping conditions are studied. First, the damping effect of the

elastomeric damper and the viscous damper is obtained using nominal system

damping (5% damping ratio). As shown in Figure 3.20, with the same ini-

tial perturbation, the decay rate of the viscous damper is faster than that for
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the nonlinear elastomeric damper. Moreover, compared with the constant os-

cillation frequency for the viscous damping case, the oscillation frequency for

the elastomeric damper case increases as response amplitude decreases. This is

caused by the stiffness of the elastomer over the small amplitude range being

stiffer than that at larger amplitudes. Second, to examine whether the elas-

tomeric model can reproduce limit cycle oscillation which is observed in the real

elastomeric damper, the system transient response is solved with a simulated

negative aerodynamic damping, i.e. the system damping, C, is reduced to zero

due to a negative aerodynamic damping. Figure 3.21 shows that with the same

zero system damping and displacement perturbation, the transient response due

to the viscous damping still diminishes within several seconds, but the transient

response due to the elastomeric damping settles to constant or slowly decayed

oscillations (jitter phenomenon). Therefore, the elastomeric damper model cap-

tures this characteristic of the elastomer.

3.6 Conclusions

Modeling methods for elastomeric material behavior in simple shear were

investigated. Most prior models introduced nonlinear terms into the conven-

tional Kelvin model or Zener model. As filled elastomers are anelastic materials,

friction mechanism damping proves useful to model rate-independent damping.

Nonlinearity in tested elastomeric materials was manifested in two ways. First,

the forced response of an elastomer is nonlinear which means the response can-

not be predicted by linear differential and integral equations. The other is that

the stiffness and damping of elastomers vary as a function of amplitude and fre-
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quency. Therefore, different modeling emphases result in different model effec-

tiveness. While some models capture the amplitude dependent complex moduli

very well with constant parameters, they cannot predict stress-strain hysteresis

accurately. On the other hand, those hysteresis models can predict stress time

histories quite well, but their parameters are usually amplitude and frequency

dependent. The methods require amplitude and frequency as prior information

when these models are implemented or simulated.

Developed from a hysteresis modeling method, a distributed rate-dependent

elasto-slide elastomeric model is used to describe the amplitude dependent char-

acteristics of an elastomer. This physically motivated damper model resembles

the behavior of filler structures in the elastomer under loading. The method

to determine the model parameters was presented. It was found that a unique

exponential function can be used to describe the yield force distribution for elas-

tomers. Numerical algorithms were developed for model applications. Dynamic

test conducted on an elastomeric specimen and an elastomeric lag damper are

used respectively to evaluate the modeling method. The fidelity of the model

was verified by the good correlation between predicted single and dual frequency

force-deflection hysteresis and the experimental results except that the damping

at lower amplitude range can not be fully predicted by the model. Since the

proposed model is a time domain model, the adaptability of the model in pre-

dicting damper response under complex loading was evaluated. The predicted

force response for slowly varying amplitude loading correlated quite well with the

corresponding experimental data. Finally, a single degree of freedom system was

used to study the influence of the elastomeric damper on the blade lag motion.

The transient response and limit cycle oscillation were simulated and predicted
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by the model.

In conclusion, the distribute rate-dependent elasto-slide elastomeric damper

model is a time-domain modeling approach to capture nonlinear behavior of

the elastomer. The damper model can easily be implemented into the dynamic

systems. Since the model is physically motivated, the flexibility in determining

the distribution function provides a potential to improve the model performance

especially in small amplitude range. Though only a one-dimensional elastomeric

model is described in this paper, the distributed elasto-slide model can also be

extended into a three-dimensional form such that it can be implemented easily

into a finite element analysis for a complex elastomeric damper configuration.

The distributed elasto-slide model was successfully applied to elastomeric

materials. Thus, the behavior of both MR fluids and elastomeric materials can be

well described using similar elasto-slide mechanism. An MRFE damper includes

the effect of the MR fluids and elastomer, and the MRFE model then can be

developed by combining MR and elastomeric models. In the following chapters,

a design analysis of an concentric bearing type MRFE damper is described, and

then the experimental behavior of the damper is correlated with the modeling

results.
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Figure 3.1: Elastomeric Specimen Test Setup

Figure 3.2: Schematic of the Elastomeric Double Lap Shear Specimen (Dimen-

sions in mm)
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Figure 3.3: Elastomeric Lag Damper Test Setup

Figure 3.4: Cross Section of Concentric Bearing Elastomeric Lag Damper (Di-

mensions in mm)
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Figure 3.5: Linear Characterization of an Elastomeric Specimen
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Figure 3.6: Linear Characterization of the Elastomeric Damper
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Figure 3.7: Distributed Elasto-Slide Model
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Table 3.1: Model Parameters for Elastomeric Specimen

Parameter No Preload 10% Preload

ϕ0(1/Newton) 0.0068 0.0053

k(N/mm) 504.51 739.40

k0(N/mm) 44.44 64.87

vr(mm/s) 50 50

p 7 7
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Table 3.2: Model Parameters for Elastomeric Damper

Parameter No Preload

ϕ0(1/Newton) 0.0015

k(N/mm) 6436

k0(N/mm) 2915

vr(mm/s) 15

p 7
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Figure 3.11: Single Frequency Hysteresis Modeling for Elastomeric Specimen
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Figure 3.12: Variation of Complex Modulus with Dynamic Amplitude for Elas-
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Figure 3.13: Single Frequency Hysteresis Modeling for Elastomeric Damper
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Figure 3.14: Dual Frequency Hysteresis Modeling for Elastomeric Specimen
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Figure 3.15: Dual Frequency Hysteresis Modeling for Elastomeric Specimen
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Figure 3.16: Dual Frequency Hysteresis Modeling for Elastomeric Specimen
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Figure 3.17: Dual Frequency Hysteresis Modeling for Elastomeric Specimen
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Figure 3.18: Modeling Results for Dual Frequency with Slowly Varying Ampli-

tude
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Figure 3.19: Dynamic Oscillator
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Chapter 4

MRFE Damper Design and Analysis

Magnetorheological (MR) fluids have attracted much attention as a func-

tional fluid for improving the properties of mechanical systems and in the devel-

opment of new devices. Many MR device design methods have been developed,

and several design parameters related with MR or similar ER damper have been

established for design optimization (Refs. [67–70]). However, most design meth-

ods are based on an idealized MR valve in which only field activated gaps were

considered. In this chapter, an MR valve fluid dynamic analysis is conducted

based on a flow-mode MR valve configuration. The effect of the MR circuit and

leaking path on the damping performance of the MR valve is investigated. Com-

bined with experimentally obtained elastomeric data, damping performance of

an MRFE damper is evaluated using analytical equivalent damping. As a basis

for developing a comprehensive MRFE damper design code, design directives are

established and a damping objective is given.
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4.1 MR Flow Mode Analysis

The MR component to be incorporated into the proposed MRFE damper is

a flow-mode MR damper, and the design analysis will be carried out using the

flow-mode analysis [35]. The MR fluid behavior in steady shear flow mode is

characterized by an idealized Bingham plastic model, in which the constitutive

relationship between the post-yield shear stress, τ , and the shear strain, γ, can

be expressed as:

τ = τysgn(γ̇) + µγ̇, τ > τy (4.1)

Here, τy is a field dependent yield stress, and µ is a plastic viscosity. Both τy

and µ are MR material properties. Performance of an MR valve resides not only

in MR fluid properties but also in the hydraulic mechanism design of the MR

valve.

In a flow mode valve, there are two flow paths existing in the MR valve, and

the damping force due to an applied shaft velocity is developed because of the

pressure drop through the flowing paths. Figure 4.1 shows the schematic of an

flow mode MR valve, in which a piston is seated inside a fluid chamber. One

major flow path is the active flow path shown as the gap across the piston, in

which da is the gap width and L is the total length of the gap. In certain MR

valve configurations, an interior volume of fluid in the gap length Lm cannot

be activated due to the existence of the magnetic circuit, so only the fluid in

the length La is field activated. As a result, the pressure drop ∆P across the

active flow path consists of effects of La and Lm, denoted as ∆Pa and ∆Pm,

respectively. An additional passive flow path appears between the piston and

the chamber wall since the piston translates relatively to the chamber, and the
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width and length of the passive flow path are denoted as dp and Lp, respectively.

Thus, the damper force includes the effect of the active and passive volumes of

fluid, i.e. the effect of da, dp, La, Lm and Lp.

The MR valve is assumed to operate in a quasi-steady state. Thus, neglecting

fluid inertia effect, the governing equation for flow through the field activated

gap, is

dτ

dy
= −∆Pa

La

(4.2)

where, y is the local coordinate perpendicular to the axis of the active gap. To

predict the damping force developed by forcing fluid through the field activated

valve, the velocity profile through the gap must be first predicted as a function

of the piston or shaft velocity, v. The typical velocity profile across the gap in

a flow mode valve is illustrated in Figure 4.2, where u(y) is the fluid velocity

inside the gap. Since the pressure distribution across the gap width is assumed

uniform while using the parallel plate assumption, the velocity profile is sym-

metric about the center of the annular gap. Thus, let the coordinate y originate

at the centerline of the parallel plates, and decompose the velocity profile into

three regions. Regions 1 and 3 are post-yield regions, in which the shear stress

exceeds the dynamic yield stress τy and the material is in fluid mode. In both

regions, the velocity gradient, du
dy

, is not equal to zero, and the fluid properties

can be described by the Bingham model, as

τ1(y) = τy + µ
du

dy

τ3(y) = −τy − µ
du

dy

(4.3)

Region 2 is the pre-yield region, where the velocity across the region is constant.

Therefore, the flow behavior in region 2 is similar to a solid plug, and the thick-

ness of the plug is denoted as δ. The plug thickness and its location in the gap
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can be determined using the shear stress boundary conditions. Using symme-

try arguments for the parallel plate geometry assumed here, the plug is located

symmetrically about the flow velocity axis as shown in Figure 4.2. Thus, the

top edge of the plug is located at

y =
δ

2
(4.4)

and the bottom edge is located at

y = −δ

2
(4.5)

Moreover, the shear stress in the plug is given by integrating Eq. 4.2,

τ = −∆Pa

La

y + A2 (4.6)

Since the boundary conditions for region 2 are

τ(−δ

2
) = τy

τ(
δ

2
) = −τy

(4.7)

yields an expression for the plug thickness

δ =
2Laτy

∆Pa

(4.8)

The plug thickness is a key parameter for the valve action in MR valves. As the

field dependent τy increases, the plug thickness also increases thereby constricting

the flow through the valve, increasing the pressure drop and the damping force.

On the other hand, the plug will disappear if no field is applied or τy = 0, so

that the flow is nearly Newtonian. To obtain the velocity profile in each region,

boundary conditions, compatibility conditions and symmetry conditions must

be satisfied. For convenience, the velocity profile in the ith region is denoted as
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ui(y). Since for ideal viscous laminar flow there is no slip at the upper and lower

walls, so that

u1(−
da

2
) = 0

u3(
da

2
) = 0

(4.9)

For symmetry geometry, velocity compatibility requires

u1(−
δ

2
) = u2(−

δ

2
)

u3(
δ

2
) = u2(

δ

2
) (4.10)

Velocity gradient compatibility conditions must also be satisfied as the flow gov-

erning equation implies that shear stress across the gap should be continuous.

Note that the plug moves at a constant velocity, so that the velocity gradient

across the plug must be zero. Then, it leads to

u′1(−
δ

2
) = u′3(

δ

2
) = 0 (4.11)

Thus, in region 1 and 3, substituting Eq. 4.1 into Eq. 4.2, the velocity profile is

obtained by direct integration, so that

u(y) = − ∆Pa

2µLa

y2 + Ay + B (4.12)

Using the boundary conditions,

u(±da

2
) = 0

u′(±δ

2
) = 0

(4.13)

leads to the velocity profile for region 1,

u1(y) =
∆Pa

2µLa

[(
da

2
− δ

2

)2

−
(

y +
δ

2

)2
]

(4.14)
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and the velocity profile for region 3,

u3(y) =
∆Pa

2µLa

[(
da

2
− δ

2

)2

−
(

y − δ

2

)2
]

(4.15)

In region 2, considering velocity continuity Eq. 4.10, the velocity of the pre-yield

plug is obtained

u2(y) =
∆Pa

2µLa

(
da

2
− δ

2

)2

(4.16)

Considering the effect of the magnetic circuit and the passive flow path, the

MR fluid flowing through the passive gap is characterized by the Newtonian

behavior. Thus, the velocity profile along the passive gap is described by

um(y) =
∆Pm

2µLm

[(
da

2

)2

− y2

]
(4.17)

and

up(y) =
∆Pp

2µLp

[(
dp

2

)2

− y2

]
(4.18)

where, um(y) is the velocity profile in the passive region of the active flow path

and the gap width is assumed the same as the active gap width, and up(y) is the

velocity profile in the passive flow path.

The volume flux through the active flow path, Qa, can be obtained by inte-

grating the velocity profile along the active gap width as

Qa = Aa

∫ da
2

− da
2

u(y)dy

=
∆PaAad

2
a

12µLa

(1− δ̄)2

(
1 +

δ̄

2

) (4.19)

where, Aa is the cross-sectional area of the active gap, and

δ̄ ,
δ

da

(4.20)
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Since the MR volume flux through the active region of the active flow path is the

same as the volume flux through the passive region due to the magnetic circuit,

Qa is also described by

Qa =
∆PmAad

2
a

12µLm

(4.21)

As the pressure drop across the piston is

∆P = ∆Pa + ∆Pm (4.22)

Qa can be rewritten as a function of ∆P as

Qa =
∆PAad

2
a

12µLa

(1− δ̄2)
(
1 + δ̄

2

)
(

L
La
− 1

)
(1− δ̄2)

(
1 + δ̄

2

)
+ 1

(4.23)

Similarly, the MR volume flux through the passive flow path is determined as

Qp =
∆PApd

2
p

12µLp

(4.24)

where, Ap is the cross-sectional area of the passive gap. Due to the continuity

of flow, equating the volume flux through the flow paths to the volume flux dis-

placed by relative motion between the piston and chamber wall with a constant

velocity, yields

Q = Qa + Qp = vA (4.25)

where, A is an effective cross-sectional area of the piston, and v is the velocity

of the relative motion. The relationship between ∆P and shaft velocity v is

described as

∆Pd2
a

12µLa

Aa

(1− δ̄2)
(
1 + δ̄

2

)
(

L
La
− 1

)
(1− δ̄2)

(
1 + δ̄

2

)
+ 1

+ Ap

d2
p

d2
a

La

Lp

 = vA (4.26)

Using Eq. 4.26, the MR valve behavior can be determined for either an

applied load or an applied velocity. Moreover, equivalent damping analysis and

MR valve design code can be developed from Eq. 4.26.
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4.2 MR Valve Design

Since the controllable damping capability of the MRFE damper is determined

by the MR valve, the main task for the MRFE damper design is the MR valve

design. To design an effective MR valve, the MR fluid flow path geometry should

be determined to induce required minimum and maximum damping, and the

configuration of the MR circuit also should be determined to apply a significant

magnetic field on the MR fluids to obtain a controllable damping objective.

4.2.1 Determine MR Valve and Performance

As a basis for MRFE damper design, equivalent viscous damping is used to

evaluate semi-active damping capability of the MRFE damper compared with

the experimental results. Since ∆P is related to the damping force due to the

MR valve, FMR, as

∆P =
FMR

A
(4.27)

From Eq. 4.26, the MR valve behavior can be described by an equivalent damp-

ing which is defined as the ratio between the damping force and the shaft velocity,

and is expressed as

CMR ,
FMR

v

=
12µLa

Aa

(
A

da

)2

(
L
La
− 1

)
(1− δ̄2)

(
1 + δ̄

2

)
+ 1

(1− δ̄2)
(
1 + δ̄

2

) (
1 + Ap

Aa

d2
p

d2
a

L−La

Lp

)
+ Ap

Aa

d2
p

d2
a

La

Lp

(4.28)

As δ̄ = 0, the Field-OFF Newtonian damping, CMR
0 , is obtained by

CMR
0 , 12µLa

(
A

da

)2
1

Aa
La

L
+ Ap

(
dp

da

)2 (
La

Lp

) (4.29)
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which represents the viscous damping in the absence of field. When δ̄ = 1, a

Field-ON viscous damping, CMR
1 , is determined by:

CMR
1 , 12µLa

(
A

da

)2
1

Ap

(
dp

da

)2 (
La

Lp

) (4.30)

which represents the viscous damping when the flow through the field activated

gap is blocked. Since δ̄ varies between 0 and 1 as the applied field and velocity

are varied, the damping coefficient of the MR valve is varied between CMR
0 and

CMR
1 . To determine δ̄ and then CMR, substitute Eq. 4.20 into Eq. 4.26, and

yields a quadrinomial function as[
6µv

τyda

A

Aa

(
L

La

− 1

)
δ̄ − 1

]
(1−δ̄2)

(
1 +

δ̄

2

)
+

6µv

τyda

δ̄−Ap

Aa

(
dp

da

)2
La

Lp

= 0 (4.31)

Since a piston shaft velocity and an applied field are known, the nondimensional

plug thickness is determined using Eq. 4.31 and the MR valve equivalent damp-

ing is found from Eq. 4.28. Thus, the MR valve performance can be evaluated

using the equivalent damping as a function of the applied field and the velocity.

In addition, the quasi-steady relationship between damping force and the

shaft velocity of the MR valve can be obtained using Eq. 4.28 for four different

configuration conditions, i.e. (a) ideal valve (no effect of the magnetic circuit

and the passive flow path), (b) effect of the magnetic circuit only, (c) effect of

the passive flow path only, and (d) effect of both circuit and passive flow path.

As shown in Figure 4.3, the effect of the magnetic circuit is demonstrated by a

increase in postyield viscous damping, and the effect of the leakage is shown by an

emergence of the preyield viscous damping which is the typical preyield behavior

demonstrated by a flow mode MR valve or damper. However, both magnetic

circuit and leakage path do not lead to dramatic changes for the field-dependent

yield force.
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Clearly, the MR valve damping at any applied current and velocity can be

evaluated using basic MR fluid motion analysis, geometry data and material

properties. On the other hand, to design an MR valve, the damper geometry

size has to be determined using prescribed design objectives and various con-

straints. Those design objectives include controllable damping range, maximum

or minimum damping force and operating velocity range, etc., and the prescribed

constraints usually are maximum diameter and length, damper stroke, and power

requirements. Based on the equivalent damping analysis, a practical MR valve

design can be conducted using an iterative process as the design parameters are

prescribed. The initial valve sizing will be accomplished by the following three

constraints:

• The maximum controllable damping objective Cobj requires

Cobj ≤ CMR
1 = 12µLa

(
A

da

)2
1

Ap

(
dp

da

)2
La

Lp

(4.32)

such that the first constraint is

I :
A2Lp

Apd2
p

≥ Cobj

12µ
(4.33)

• Due to the existence of the passive flow path, an optimum damper velocity

range is required to obtain a constant maximum equivalent damping within

this range, i.e. a damper velocity limit for required maximum equivalent

damping, vcr, should satisfy

v ≤ vcr =
(τy)max

6µ

Ap

A

d2
p

da

La

Lp

(4.34)

This leads to the second constraint

II :
Apd

2
pLa

AdaLp

≥ 6µvcr

(τy)max

(4.35)
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• A damping control range is defined by a ratio, λ, between the maximum

Field-ON and Field-OFF damping:

λ =
CMR

1

CMR
0

≤
Aa + Ap

(
dp

da

)2 (
La

Lp

)
Ap

(
dp

da

)2 (
La

Lp

) (4.36)

results in the third constraint

III :
Ap

Aa

(
dp

da

)2
La

Lp

≤ 1

λ− 1
(4.37)

In accordance with damper geometry constraints, the effective piston area, A,

can be chosen first. Thus, using the Constraint I, passive flow path parameters,

Ap, dp and Lp are determined initially, and the thickness and length of the active

gap, da and La would be given using Constraint II and Constraint III. If these

results do not satisfy the practical geometric constraints, a new choice of Lp and

dp are chosen again until the iteration reaches a physically acceptable result.

4.2.2 Magnetic Circuit Design

The MR effect of MR fluid is actuated by passing a magnetic field per-

pendicular to the direction in which the fluid is flowing. This field causes the

micron-sized magnetizable particles in the fluid to form chains, which will remain

intact below a yield sheer stress in the fluid. It is this yield stress which char-

acterizes the magnetorheological properties of MR fluid. The presence of these

chains within a fluid obstructs fluid flow through a gap, which is used to alter

the damping properties of a fluid damper. Thus, the objective of the magnetic

circuit design is to maximize the magnetic field across the fluid gap to increase

the yield stress of the fluid, which in turn will increase the performance of the

MRFE damper.
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In practice, MR circuits use high-magnetic-permeability materials in con-

junction with magnetic solenoids to guide a controllable magnetic field across

the fluid gap. As shown in Figure 4.1, the magnetic circuit uses the entire of

the piston to create the magnetic field. The field first flows through the center

of the piston, shunts outward through the upper arms, across the gap across the

piston, and then returns the field through the piston. Considerations in design-

ing a magnetic circuit are made to avoid magnetic flux saturation in the circuit,

which will decrease the field available at the gap. Saturation can be prevented by

increasing the cross-sectional areas of the circuit through which the field flows,

or by using a more magnetically-permeable material which can handle higher

flux densities.

Several factors should be considered during the initial design of the magnetic

circuit. Firstly, the magnetic circuit should have a low reluctance flux conduit to

guide and focus magnetic flux into the fluid gap in the MR fluid valve, and suf-

ficient cross-sectional area should be maintained to avoid saturation. Secondly,

the size restriction due to the chamber dimension and the damping requirements

set a constraint for the magnetic circuit design, and this process is coupled with

the MR valve geometry determination. Therefore, the magnetic circuit is de-

signed initially using principle of Continuity of Magnetic Flux, and this design

can be optimized by a magnetic FEM analysis.

If the damping objective is known and the magnetic fluid is chosen, the

operating point in the MR fluid can be selected to yield a desired yield stress

such that the total magnetic flux flowing through the gap is given as

φ = BgAg (4.38)

where, Bg is the flux density in the gap and Ag is the average area of the gap
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perpendicular to the magnetic flux. Since the magnetic flux flowing through the

magnetic circuit is the same according to the principle of continuity of magnetic

flux, the flux density at each cross-section of the magnetic conduit is denoted as

Bs =
φ

As

(4.39)

From the B-H curve of the magnetic conduit material, required magnetic field

strength at each section, Hs, is determined. In this step, the cross-sectional area,

As, and length, Ls, of the magnetic conduit can be determined by trading-off

between the geometry constrictions and the flux saturation constraint. Then,

using Kirchoffs law of magnetic circuits, the required amp-turns of the magnetic

circuit would be

NI = Hgg + HsLs (4.40)

where, g is the gap thickness. After choosing a suitable maximum current, I,

the wire gauge and the required winding turns, N, can be determined.

4.3 MRFE Damping Performance Prediction

Consistent with sinusoidal loading conditions for a helicopter lag damper,

single frequency (lag/rev) and dual frequency (lag/rev and 1/rev) sinusoidal

loadings are applied to the MRFE damper. As the MR valve is applied by

a sinusoidal loading, the damping effect can be characterized by the energy

dissipated by the MR valve within one cycle and is quantitatively described

by an equivalent viscous damping such that the energy dissipated by a linear

viscous damper with this viscous damping over one circle is equal to the energy

dissipated by the MR valve. In detail, while a linear viscous damper is applied
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by a sinusoidal loading as

x = X0 sin(Ωt + φ) (4.41)

the damping force, F (t), is proportional to the damper shaft velocity, ẋ(t), as

F (t) = Ceqẋ(t) (4.42)

and the dissipated energy by the viscous damper is

E =

∫ 2π
Ω

0

F (t)ẋ(t)dt = πΩX2
0 (4.43)

Similarly, the dissipated energy of the MR valve is

EMR =

∮
f(t)dx =

∫ 2π
Ω

0

f(t)ẋ(t)dt (4.44)

where f is the MR valve force under the same loading and is analytically deter-

mined by

f = CMRẋ (4.45)

Since CMR is the function of ẋ, Eq. 4.44 can be solved numerically using the

trapezoidal rule. Equating the energy dissipated by the MR valve to the energy

dissipated by the linear viscous damper, the equivalent viscous damping of the

MR valve under the sinusoidal loading is:

CMR
eq =

EMR

πΩX2
0

(4.46)

MRFE lead-lag dampers can be designed in different configurations as shown

in Figure 1.1(a), 1.1(b), and 1.1(c). However, in each MRFE damper configu-

ration, the contribution of the elastomeric and MR component are considered

decoupled. Thus, combined with the determined elastomeric equivalent damp-

ing (usually experimentally determined), the total equivalent damping for the

MRFE damper is

Ceq = CMR
eq + CEM

eq (4.47)

132



where, CEM
eq represents the equivalent damping due to the elastomeric layer in

the MRFE damper. The experimental data of the preliminary MRFE damper

shown in Figure 1.2 are used to evaluate the equivalent damping performance

analysis. In the preliminary MRFE damper, two MR dampers are combined in

parallel with an elastomeric damper. The linear stroke MR damper used for this

study is a commercially available truck seat damper manufactured by the Lord

Corporation [70], and the silicone based filled elastomeric damper, in the form of

double lap shear specimen, was provided by Barry Controls [71]. As the MRFE

damper is subjected to a sinusoidal loading at a nominal lag frequency (5 Hz),

the comparison between the analytical and experimental equivalent damping is

shown in Figure 4.4, where the applied currents are 0, 0.1, 0.2 and 0.3 A, respec-

tively. Similar to the experimental equivalent damping (solid line), the analytical

equivalent damping (dashed line) demonstrates amplitude dependent behavior

and a damping augmentation effect due to the applied current. The equivalent

damping characteristics at 1/rev (7.5 Hz) are similar to that at lag/rev (5 Hz)

except that the equivalent damping at higher frequency is smaller than damp-

ing at lower frequency. Therefore, the equivalent damping analysis can capture

both amplitude and frequency dependent damping characteristics demonstrated

by the MR valve or damper.

4.4 Conclusion

In this chapter, quasi-steady damping analysis was conducted for flow mode

MR dampers with an approximate parallel plate assumption. Using idealized

Bingham constitutive model to characterize the MR fluid behavior, the equiva-
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lent damping as a function of the applied field and velocity was derived. There-

fore, for a constant shaft velocity, the damping control capacity under differ-

ent fields control can be predicted. Based on the quasi-steady analysis, MRFE

damper design directives were developed, and the magnetic circuit design was

also described. In the next chapter, the development of a concentric bearing

type MRFE damper will be introduced, and the damping performance of the

MRFE damper will be investigated both analytically and experimentally.
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Figure 4.1: Flow-mode MR Valve Mechanism

Figure 4.2: Typical Velocity Profile
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(a) Ideal MR Valve (b) Effect of Magnetic Circuit

(c) Effect of Passive Flow Path (d) Effect of Magnetic Circuit and Pas-

sive Flow Path

Figure 4.3: Analytical Quasi-Steady MR Valve Behavior
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(a) Damping Characteristics at lag/rev

(b) Damping Characteristics at 1/rev

Figure 4.4: MRFE Equivalent Damping Prediction
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Chapter 5

Characterization and Modeling for

MRFE Damper

A major concern for an MR lag damper, as for any hydraulic damper, is fluid

leakage, so that the combination of elastomeric materials and MR fluids in a lag

damper becomes a rational choice ensuring some level of fail-safe damping in the

event of fluid loss. First, elastomeric materials can contribute stiffness to the

lead-lag mode of blades. Second, an elastomer itself can act as a flexible sealant

material to eliminate the possibility of leakage. Third, the kinematical complex-

ity in modern bearingless or hingeless helicopter main rotors requires a flexible

damper body to allow for multiple degrees of freedom such that damper cham-

ber is usually made from a laminated stack of alternating elastomeric-metallic

rings, and the flexible damper body provides a housing for damping fluids or

MR fluids (e.g. Comanche snubber damper) [24, 42]. The feasibility of a com-

bination of MR fluids and elastomeric materials was studied by an emulation

of a magnetorheological fluid and elastic (MRFE) composite damper [25]. This

experimental feasibility study validated a considerable damping control range

provided by the flow mode MR valve in the MRFE damper. While damping
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is provided by the combination of the elastomer and MR fluid, this preliminary

MRFE damper can actively augment damping over critical frequency ranges and

enhance the stability of helicopter rotors. While the stiffness in the elastomer is

still available as a design parameter, the MR and elastomeric damping elements

of the MRFE damper can augment each other. In addition, the passive damping

in both the elastomer and MR damping elements provides a fail-safe damping

in the event that control of the field dependent MR damping is lost.

This chapter focuses on developing a linear stroke MRFE lag damper as a

retrofit to an existing concentric elastomeric bearing type lag damper and evalu-

ating its controllable damping capacity under loading conditions encountered by

the baseline elastomeric damper. The MRFE damper is developed by incorpo-

rating an MR valve into the inner chamber of the baseline concentric elastomeric

damper. A fixture setup is designed to hold the MRFE damper on a material

testing machine such that the uniaxial motion of the loading actuator results in a

shear deformation of the elastomer and a uniaxial MR valve translation through

an MR fluid reservoir. Complex modulus and equivalent damping are used to

characterize the MRFE damper. It will be shown that the Field-OFF damping

of the MRFE damper is comparable to that of the baseline elastomeric damper,

and the damping capacity of the MRFE damper can be controlled by varying

applied field. Performance predictions using quasi-steady nonlinear Bingham-

plastic fluid flow analysis and elastomeric characteristic data are conducted as

a basis for developing a comprehensive MRFE damper design code, and the

analytical equivalent viscous damping is validated by the experimental results.

Linearized constants, such as equivalent viscous damping, are not sufficient

to uniquely define the dynamic behavior of the MRFE damper as applied to a
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helicopter rotor lag damper, and a precise damper model plays an important role

in the choice of the control strategy for a given application [27,29]. Therefore, an

MRFE time domain model is developed to describe the nonlinear behavior of the

MRFE damper, especially the single and dual frequency hysteretic behavior. In

this model, the distributed elasto-slide element is used to describe the behavior

of the filled elastomer, and the field dependent elasto-slide is used to represent

the behavior of the MR valve. Model parameters are determined by extracting

the basic characteristics from a virtual initial loading curve derived from steady

state sinusoidal forcing data. Compared with these elastomeric damper models

developed in Refs. [50,51,54,58], and MR models developed in Refs. [18,42,44,

46], the unique advantage of the MRFE damper model developed in this study is

that it can capture amplitude and frequency dependent behavior demonstrated

by the MRFE damper and can be applied in any complex loading conditions,

by resorting to neither amplitude dependent nor frequency dependent model

parameters.

5.1 Damper Setup and Testing

The MRFE damper is made from a linear stroke concentric elastomeric bear-

ing damper and an enclosed MR valve, as shown in Figure 5.1. The linear stroke

elastomeric damper was provided by Hutchinson Aerospace and is treated as

the baseline damper for MRFE damper evaluation. The baseline elastomeric

damper is made of two concentric cylindrical metal tubes, with an elastomeric

layer sandwiched between the outer and inner tubes. The volume enclosed by

the inner tube forms a cylindrical inner chamber, and a threaded trapezoidal col-
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umn is attached to one end of the inner tube. The outer tube is attached to the

rotor head, and the inner tube connected to the blade root. Thus, the lead-lag

motion of the blade induces a relative translation between the inner tube and

the outer tube, which in turn leads to a shear deformation of the elastomer along

the damper body length. The deformation of the elastomer provides required

stiffness and damping for the lead-lag mode of the rotor blade, but the stiffness

and damping of the damper are passive and cannot be varied as flight condi-

tions are varied. Therefore, using an MR valve compatible in size with the inner

chamber, a simplified full scale MRFE damper is constructed. The MR valve

is composed of an MR fluid chamber and a piston seated in the chamber. The

fluid chamber is fixed relative to the inner tube, and the piston is fixed relative

to the outer tube. The relative motion between the inner and outer tube forces

the MR fluid to flow through the field activated gaps in the piston, so that field

dependent damping force is added to the output force of the damper.

To simulate the loading conditions applied to the MRFE lag damper, a test

fixture was designed to hold the MRFE damper in a 24.466 kN (5000 lbs) MTS

servo-hydraulic testing machine. The MRFE test setup is shown in Figure 5.2, in

which the inner tube of the baseline damper and MR fluid chamber is connected

together with the load cell of the MTS machine by a screw adapter, and the outer

tube of the elastomeric damper and the piston of the MR valve are connected

to the actuator on the MTS loading frame using a tension rod configuration.

Thus, the axial translation of the actuator results in shear deformation of the

elastomeric component and MR piston motion inside the MR fluid chamber.

The displacement LVDT sensor of the MTS machine was used for displacement

measurement and the load cell for measuring the force. The frequency range
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of the excitation was chosen appropriate for a rotor system at ω1=7.5 Hz, the

baseline 1/rev frequency, ωlag=5.0 Hz, the lag/rev frequency, and ωcom=2.5 Hz, a

lower harmonic of these two. An HP 8904A multi-function synthesizer was used

to generate and sum the sinusoidal signals for dual frequency tests. A DC power

supply provided current control for the MR component during testing. Damper

testing was carried out with varying excitation amplitudes and magnetic fields.

All tests were conducted at room temperature (25◦C).

The applied currents were in the range of 0-0.8 A in increments of 0.2 A.

For each applied current, the MRFE damper was tested for single frequency

excitation and dual frequency excitation conditions. The single frequency tests

were conducted with displacement control for excitation amplitude range from

0.25 mm (10 mil) to 1 mm (40 mil) in increments of 0.25 mm (10 mil) at three

different frequencies of ω1, ωlag and ωcom, respectively. In these tests, 1 mm

corresponds to 20% shear strain. For dual frequency tests, the combination of

5 Hz/7.5 Hz was used to evaluate the MRFE damper behavior in helicopter

forward flight conditions. The complete array of dual frequency tests for the

MRFE damper is given in Table 5.1, in which the symbol × indicates the dual

frequency test conditions.

During each test, the sampling frequency was chosen as 2048Hz, which is

far above the required Nyquist frequency. Nominally, twenty cycles of force and

displacement data were measured at each test case. To reduce the noise of the

sinusoidal displacement signal, a Fourier series was used to reconstruct the input

displacement. The reconstructed displacement signal was then differentiated to

obtain the velocity data. Since the MRFE damper produces nonlinear damping

force, the measured force was not filtered. However, to reduce the offset in the
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measured force due to the presence of the accumulator, the measured bias force

was removed using the bias term in the Fourier series expansion of the force.

5.2 MRFE Damper Characterization

5.2.1 Linearization of Damper Characteristics

To characterize the MRFE damper and compare the MRFE damper with the

baseline elastomeric damper, a linearization technique was adopted and equiva-

lent linear constants that serve as comparison metrics were calculated. A typical

approach used for characterizing MRFE damper behavior is the complex modu-

lus. The linearized complex modulus, K∗, is composed of the in-phase or storage

stiffness, K
′
, and the quadrature or loss stiffness, K

′′
, as follows:

K∗ = K
′
+ jK

′′
(5.1)

When the MRFE damper is under single frequency sinusoidal displacement ex-

citation as

X = Xc cos(ωt) + Xs sin(ωt) (5.2)

the linearized damper force can be written as the summation of an in-phase

spring force and a quadrature damping force, so that the damper force can be

approximated by the first Fourier sine and cosine components as

F (t) = Fc cos(ωt) + Fs sin(ωt)

= K
′
X(t) +

K
′′

ω
Ẋ(t)

(5.3)

where Fc and Fs are the first harmonic Fourier coefficients of ω. From Eq. 5.2

and Eq. 5.3, the inphase stiffness, K
′
, and the quadrature stiffness, K

′′
, are
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determined by the following equations:

K
′
(ω) =

FcXc + FsXs

X2
c + X2

s

K
′′
(ω) =

FcXs − FsXc

X2
c + X2

s

(5.4)

The loss factor, η, is also used to measure the relative levels of damping to the

stiffness. The ratio is written as

η =
K ′′

K ′ (5.5)

For the case of motion at two or more frequencies simultaneously, K
′
and K

′′

are determined form the oscillatory force and displacement associated with each

of the frequencies. Thus, for dual-frequency motion at the frequencies ωlag and

ω1, the damper response is characterized by K∗
ωlag

and K∗
ω1

respectively.

Alternatively, a standard linearization technique, equivalent viscous damp-

ing, is used to evaluate the damping capacity of the MRFE damper under si-

nusoidal loading. The equivalent viscous damping is obtained by equating the

energy dissipated over a cycle by the MRFE damper to the energy dissipated by

an equivalent viscous damper. For a single frequency loading with experimental

damper force and displacement data, F and X, the dissipated energy of the

MRFE damper over a cycle, E, at frequency, ω, is calculated

E =

∮
F (t)dX =

∫ 2π
ω

0

F (t)Ẋ(t)dt (5.6)

and the equivalent viscous damping coefficient is given by

Ceq =
E

πωX2
0

(5.7)

where, X0 is the amplitude of the displacement input. The equivalent viscous

damping can be approximately related to the quadrature stiffness by:

Ceq ≈
K ′′

ω
(5.8)
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This relationship is approximate because the complex stiffness considers only the

harmonic at frequency ω. For dual frequency motion, the equivalent damping

at lag frequency is determined by Eq. 5.8 using the quadrature stiffness at the

lag frequency.

5.2.2 Single and Dual Frequency Characteristics

To evaluate the performance of the MRFE lag damper, the elastomeric lag

damper was tested, so that characteristics of damping and stiffness could be

recorded as a baseline. The lag damper was excited using displacement con-

trol using a sinusoidal signal to simulate damper motion due to the lag motion

of a blade. The maximum deformation was chosen to be 1 mm (40 mil) as

dictated by the shear deformation limitation of the elastomeric damper. One

example of an experimental hysteresis cycle is shown in Figure 5.3, in which

the loading frequency is 5 Hz and the loading displacement amplitudes are from

0.25 mm to 1 mm. As shown by the hysteresis cycle, the elastomeric damper

mostly provides stiffness together with some damping. Using the linearization

method, the complex modulus and loss factor of the elastomer are shown in

Figure 5.4. Both inphase and quadrature stiffness demonstrate moderate am-

plitude dependence and weak frequency dependence. Further, the loss factor of

the elastomeric damper is quite low (around 0.25 to 0.3) and almost constant

for different displacement amplitudes and frequencies.

In comparison, typical force versus sinusoidal displacement data of the MRFE

damper are shown in Figure 5.5, in which the baseline elastomeric damper data

are shown together with the MRFE damper data at a fixed displacement am-

plitude and several different applied currents. Clearly, though an MR valve is
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combined with the baseline damper, the Field-OFF characteristics of the MRFE

damper are similar to those of the baseline damper. This implies that the viscous

damping of the MR valve is nearly zero over this amplitude range (0-1 mm), but

it may not be true for higher amplitudes. The damping in the MRFE damper,

which is represented by the area enclosed within the force versus displacement

diagram, includes the effect of both elastomeric and MR components. As the

applied current increases, the area enclosed by the force vs. displacement curve,

hence the damping, increases dramatically. The slope of the MRFE force vs.

displacement curves reflects the stiffness of the elastomer, which varies slightly

as current varies implying that most stiffness is contributed by the elastomer.

Complex modulus was also used to characterize the MRFE damper. At a sin-

gle frequency, the complex modulus and loss factor of the damper are shown in

Figure 5.6. Compared with the baseline damper, the Field-OFF MRFE damper

provides similar inphase stiffness and quadrature stiffness. As the applied cur-

rent increases, the index of the damping, i.e. the quadrature stiffness, increases

dramatically. Comparatively, the inphase stiffness increases much less than the

quadrature stiffness. Thus, the loss factor of the MRFE damper increases signif-

icantly over the entire amplitude range (0.5 vs. 0.3 between maximum Field-ON

and Field-OFF status). This increase in loss factor implies that the MRFE

damper can provide a substantial damping control range (minimum 70% damp-

ing increase). Notably, as the applied current increases over 0.8 A, the MR

component cannot provide more damping augmentation due to the saturation

of the MR circuit. The characteristics of the MRFE damper at different fre-

quencies are also evaluated in terms of inphase stiffness and loss factor as shown

in Figure 5.7. As mentioned before, the baseline damper demonstrates weak
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frequency dependence over the tested frequency range. For the MRFE damper,

the nonlinearity of the MR component leads to a stronger frequency dependent

behavior, but the frequency dependence is still insignificant. Comparatively, the

complex modulus of the MRFE damper demonstrates similar amplitude depen-

dent behavior to the baseline damper, and the loss factor at each applied current

is almost constant along the current amplitude range.

Helicopter lag dampers encounter multi-frequency excitations, especially for

regressive lead-lag frequency and 1/rev rotor frequency. Under such a circum-

stance, the complex modulus of an elastomeric damper at lag frequency decreases

significantly due to its amplitude dependent property. Similarly, the complex

modulus of the MRFE damper at the lead-lag frequency is reduced as the mo-

tion at the 1/rev frequency is increased as shown in Figure 5.8. This effect is

particularly dramatic for small lead-lag motion amplitudes. However, as field is

applied to the MRFE damper (0.6 A), the complex modulus in Figure 5.8(b)

increases dramatically compared with the Field-OFF modulus in Figure 5.8(a).

This damping augmentation effect is also demonstrated by the dual frequency

force-displacement hysteresis cycle as shown in Figure 5.9. Notably, as the ap-

plied current increases, the area enclosed by the force vs. displacement curve,

hence, the damping, increases dramatically.

5.2.3 Equivalent Damping of the MRFE Damper

As a basis for MRFE damper design, analytical equivalent damping is used

to evaluate semi-active damping capability of the MRFE damper compared with

the experimental results. Since the MR valve in the MRFE damper is in flow

mode, damping force is developed because of the pressure drop, ∆P , through
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a field activated annular gap in the piston, d in thickness, and a passive gap

between the piston and chamber wall, d
′
in thickness. The damping force can

be determined by equating volume flux through the gaps to the volume flux

displaced by the piston. The volume flux flowing through the passive gap, Qd′ ,

is determined using laminar flow analysis as

Qd′ =
∆Pd

′2Ad′

12µl′
(5.9)

where, Ad′ and l
′

are the passive gap area and length, respectively, and µ is

the post-yield viscous damping of the MR fluid. As the MR fluid behavior is

described by the Bingham plastic model, the volume flux flowing through the

active gap, Qd, is known as (Ref. 25)

Qd =
∆Pd2Ad

12µl
(1− δ̄)2

(
1 +

δ̄

2

)
(5.10)

where, Ad and l are the active gap area and length, respectively. In addition,

δ̄ ,
δ

d
=

2lτy

∆Pd
(5.11)

is the non-dimensionalized plug thickness, and 0 ≤ δ̄ ≤ 1. The plug thickness δ

is the flow region in the active gap where the shear stress has not exceeded the

yield stress, i.e. τ ≤ τy.

The yield stress is the function of an applied field or current. The ideal

relationship between the yield stress and applied current for the MR fluid is

shown in Figure 5.10, which is obtained by an empirical equation as [70]:

τy = 271700ν1.5239 tanh(1.1078I) (5.12)

In this equation, ν is the volume fraction of the iron particles in the MR fluid,

and I is the applied current. In Figure 5.10, the yield stress of the MR fluids

148



increases proportionally to the applied current, but saturates above 1 Amp. As

the MR valve geometry and the yield force of the MR fluid are known, the

quasi-static yield force of the MR valve can be known as shown in Figure 5.11.

Similarly, the MR valve demonstrates a small increase in yield behavior for the

range of applied current above 1 Amp, as opposed to the much large increase

below 1 Amp.

Due to the continuity of flow, equating the volume flux through the gaps to

the volume flux displaced by the piston with a constant velocity, yields

Q = Qd + Qd′ = vA (5.13)

where, A is the piston area, and v is a constant shaft velocity. Since ∆P is

related to the damping force of the MR valve, FMR, as

∆P =
FMR

A
(5.14)

From Eq. 5.13, the MR behavior can be described by an equivalent MR damping

which is defined as the ratio between the damping force and the shaft velocity,

and is expressed as

CMR ,
FMR

v

= 12µl

(
A
d

)2

(1− δ̄)2
(
1 + δ̄

2

)
Ad + Ad′

(
d′

d

)2
l
l′

(5.15)

As δ̄ = 0, the Field-OFF Newtonian damping, CMR
0 , is obtained by

CMR
0 , 12µl

(
A

d

)2
1

Ad + Ad
′

(
d′

d

)2 (
l
l
′

) (5.16)

which represents the viscous damping in the absence of field. When δ̄ = 1, a

Field-ON viscous damping, CMR
1 , is determined by:

CMR
1 , 12µl

(
A

d

)2
1

Ad′

(
d
′

d

)2 (
l
l′

) (5.17)
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which represents the viscous damping when the flow through the field activated

gap is blocked. Since δ̄ varies between zero and one as the applied field and

velocity are varied, the damping coefficient of the MR valve is varied between

CMR
0 and CMR

1 . To determine δ̄ and then CMR, substitute Eq. 5.11 into Eq.

5.15, and yields a cubic polynomial function as

δ̄3

2
−

(
3

2
+

6µv

τyd

A

Ad

)
δ̄ +

[
1 +

A
′

d

Ad

(
d
′

d

)2
l

l′

]
= 0 (5.18)

Since a piston shaft velocity and an applied field are known, the nondimensional

plug thickness is determined using Eq. 5.18 and the MR equivalent damping is

found from Eq. 5.15.

As the damping coefficient of the MR valve is obtained, the analytical equiv-

alent viscous damping of the MR valve under a sinusoidal loading can be known

using Eq. 5.7, and is denoted as CMR
eq . Combined with the experimental elas-

tomeric equivalent damping, the total equivalent damping for the MRFE damper

is

Ceq = CMR
eq + CEM

eq (5.19)

where, CEM
eq represents the equivalent damping due to the elastomeric layer in

the MRFE damper. As the MRFE damper is excited by a sinusoidal loading

at 5 Hz, the comparison between the analytical and experimental equivalent

damping is shown in Figure 5.12, where the applied currents are 0, 0.4 and 0.8

A, respectively. Similar to the experimental equivalent damping (gray line), the

analytical equivalent damping (dotted line) demonstrates amplitude dependent

behavior and a damping augmentation effect due to the applied current. Notably,

due to the effect of the passive gap (the effect of the accumulator pressure is not

considered here), the equivalent damping at small displacement amplitude range
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approaches a constant value as the applied current increases. The equivalent

damping characteristics at 2.5 Hz and 7.5 Hz are similar to that at 5 Hz. In

general, the single frequency equivalent damping characteristic of the MRFE

damper can be evaluated using quasi-steady MR fluid flow analysis.

For the dual frequency case, of particular interest is the equivalent damping

that is available at lag/rev (5 Hz), since it affects the rotor stability characteris-

tics. As shown in Figure 5.13, the lag damping degradation as a function of 1/rev

(7.5 Hz) excitation amplitude is found when the MRFE damper is under dual

frequency excitation. The damping at the lead-lag frequency is generally reduced

by 1/rev motion, and the loss of the equivalent viscous damping at lag frequency

is substantial at lower amplitudes as the amplitude of the 1/rev excitation in-

creases. However, compared with the damping behavior under both current

inputs, the damping loss at the lag frequency can be recovered significantly by

applying a field to the MRFE damper. For instance, as the displacement am-

plitude at 7.5 Hz is 0.25 mm and the displacement amplitude at 5.0 Hz is 0.75

mm, the equivalent damping of the lag mode can be varied from 30 Ns/mm to

60 Ns/mm by applying a moderate field (0-0.6 A).

Apparently, the equivalent damping of the MRFE damper can be varied

dramatically as a function of the applied current. In other words, the dissipated

energy of the MRFE damper due to sinusoidal loading can be varied with little

energy input. In Figure 5.14, the dissipated energy due to the MR valve at

three different currents is compared with the input control power. At the whole

amplitude range except at very small displacement, the input control power

is only few percents of the dissipated power. Meanwhile, as the displacement

amplitude (or velocity as the product of frequency and displacement amplitude)
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increases, the dissipated power of the MR valve increases much faster than the

input power. Thus, the MRFE damper as a semi-active damper can provide

significant damping dissipation capability with low power consumption.

5.3 MRFE Damper Modeling

Linearized characteristics, such as complex modulus and equivalent damping,

are appropriate for determining the damping capacity of the MRFE damper in

the frequency domain, but they cannot be used to predict the nonlinear forced re-

sponse demonstrated by the MRFE damper. Thus, based on a distributed elasto-

slide elastomer model and a rate-dependent elasto-slide MR model, an MRFE

analytical model is developed in this section to describe nonlinear behavior of

the MRFE lag damper in time and frequency domain. Since contributions of the

elastomeric and MR component in the MRFE damper are considered decoupled,

the MRFE model is constructed by a linear combination of elastomeric and MR

model. Model parameters are determined using experimental force-displacement

hysteresis data, and modeling results are correlated with single frequency and

dual frequency hysteresis cycles.

The structure of the MRFE damper model is shown in Figure 5.15, in which

the elastomeric model and MR model are combined in parallel. The elastomeric

component model consists of a distributed elasto-slide element. In each rate-

dependent elasto-slide element, k/n is the stiffness of the spring in series, and

f ∗i /n is the yield force of the ith slide. For a continuous elastomer, the total

number of elements n approaches to infinity, and the yield force is described by

a distribution function denoted as ϕ(f ∗) such that the number of elasto-slides
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with yield force f ∗ is ϕ(f ∗)df ∗. Behavior of the MR component is described

by a single field-dependent elasto-slide and a viscous dashpot. The MR elasto-

slide consists of a stiff spring, K, which accounts for the pre-yield stiffness, and

a rate dependent slide, N∗, which is a pseudo-Coulombic friction function of

velocity and is dependent on an applied field. The linear viscous dashpot, C0, is

parallel to the elasto-slide element to represent a post-yield viscous damping. In

addition, a parallel spring in the MRFE model, k0, accounts for the stiffness effect

of the elastomeric polymer and MR valve. The yield behavior of the elastomer

or MR slide is shown in Figure 5.15(a), in which an ideal rate-dependent friction

behavior is sketched.

As a displacement loading, X, is applied to the MRFE damper, the damper

force is developed by the elastomeric component and MR valve as:

F = FEM + FMR

=

∫ ∞

0

f ∗ϕ(f ∗)df ∗ + N∗ + K0X + C0Ẋ
(5.20)

The yield force, f ∗i or N∗, for each elasto-slide element, can be denoted by a

rate-dependent function as

N∗ = K(X − x0)

= N

(
ẋ0

vr

) 1
p

(5.21)

where, x0 is an internal displacement coupled between the slide and the elasto

spring for each elasto-slide element, p is a positive odd integer, and vr is a

constant reference velocity at which the slide goes from the pre-yield region to

the post-yield region. For elastomer, N and K are replaced with f ∗ and k,

respectively. For MR valve, N is dependent on an applied field or current. Eq.
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5.21 leads to

ẋ0 = vr

[
K

N
(X − x0)

]p

(5.22)

Since the internal velocity, ẋ0, is the function of internal displacement, x0, and

loading displacement, X, as shown in Eq. 5.22, the internal displacement was

solved using a variable step ODE solver (ODE23 in MATLAB) and the model

force was calculated using Eq. 5.20.

5.3.1 Determine Model Parameters

For a single elastomeric damper or MR valve, model parameters are deter-

mined from estimated initial loading curves. Using force-displacement hysteresis

data, the initial loading curve is identified as the maximum force as displacement

amplitudes increases. For the elastomeric component only, the loading curve is

represented by an exponential function as

F = F ∗
(
1− e−

kx
F∗

)
+ k0x (5.23)

The distribution function can then be deduced:

ϕ(f ∗) =
1

F ∗ e
− f∗

F∗ (5.24)

where, F ∗ is the total yield force, and the total stiffness of the spring in the

distributed elasto-slide element, k, is the slope of the loading curve at zero

displacement input while the effect of the stiffness, k0, is excluded. For MR

component only, the initial loading curve is optimized by the same exponent

function as Eq. 5.23, but the yield force and preyield stiffness are denoted by N

and K, respectively. Similarly, the model parameters of the MRFE damper can

also be determined using the initial loading curve of the MRFE damper. Idealy,
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the initial loading curve should be optimized by a summation of two exponent

functions to represent the effect of elastomer and MR valve as shown below:

F = F ∗
(
1− e−

kx
F∗

)
+ N

(
1− e−

Kx
N

)
+ k0x (5.25)

However, for numerical simplicity, several assumptions are made to determine

model parameters. First, the initial loading curve can be fitted to a single expo-

nential function. Second, the Field-OFF initial loading curve is only governed by

the elastomeric component and the effect of the MR valve is trivial. Thus, the

yield force distribution for the elastomer and the parallel spring can be deter-

mined from the Field-OFF initial loading curve as Eq. 5.23. From the Field-ON

initial loading curves at different applied currents, the yield force and preyield

stiffness are determined using Eq. 5.23, and they are proven to be the same

as the ones determined using Eq. 5.25. By subtracting determined Field-OFF

yield force and preyield stiffness from the Field-ON values, the field dependent

model parameters related to the MR valve can be identified. The postyield

viscous damping due to the MR valve, C0, is determined by postyield slope of

force-velocity curves. In addition, parameters related to the elasto-slide, such as

vr and p, are determined as follows. The choice of vr is based on force-velocity

curves in which the boundary between preyield slip and postyield flow is approx-

imated. Analytically, p should be as large as possible, such that the post yield

force approaches a constant, which is similar to friction behavior. However, a

too large value of p results in a stiff mathematical model. Thus, p was chosen by

trading off between both factors. Finally, the determined model parameters are

shown in Table 5.2. In Figure 5.16, the field dependent yield force and preyield

stiffness are shown as a function of the applied current. The determined yield

force is compared with the analytical results which is obtained using Eq. 5.15.
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As shown in Figure 5.16(a), the determined yield force for the MRFE model

is consistent with the predicted results except over the higher applied current

range (>1A), so the method for determining the model parameters is validated.

5.3.2 Modeling Results

Three sets of single frequency hysteresis cycle data were used to verify the

fidelity of the modeling results. Each set of data was obtained by measuring

the forced response while the MRFE damper was under sinusoidal displacement

loading at 2.5 Hz, 5.0 Hz and 7.5 Hz, respectively. At each frequency, the loading

amplitude was chosen as 0.25 mm, 0.50 mm, 0.75 mm and 1.00 mm, and the

applied current was varied from 0.0 A to 0.8 A. In Figure 5.17, 5.18 and 5.19, the

experimental data at three frequencies were compared to the modeling results.

Clearly, the modeling results correlate very well with the experimental results,

and especially the proposed model captures the amplitude-dependent behavior

of the MRFE damper.

Since a helicopter lag damper experiences multi-frequency excitation, espe-

cially for regressive lead-lag frequency and 1/rev rotor frequency. Under such a

circumstance, the potential loss of damping at lag frequency has been known,

so it is important to predict the response of the MRFE damper under dual fre-

quency excitation. At various combinations of dual frequency amplitudes and

currents, the force-displacement hysteresis data are used to evaluate the MRFE

damper model. The modeling results for combination of 5.0 Hz and 7.5 Hz are

shown in Figure 5.20, 5.21, and 5.22, in which Alag is the amplitude of the sinu-

soidal signal at 5Hz and A1 is the amplitude at 7.5 Hz. In Figure 5.20 and 5.21,

the amplitude of the sinusoidal loading at 7.5 Hz is 0.5 mm, and the modeling
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results for different applied current (0.0 A and 0.4 A) are correlated with the

experimental results. In Figure 5.22, the amplitude for 7.5 Hz is 0.75 mm, and

the applied current is 0.0 A and 0.6 A, respectively. Clearly, the MRFE damper

model performs quite well in predicting the dual frequency behavior over this

broad amplitude and frequency range.

5.4 Conclusions

Helicopter lag dampers are important to augment helicopter stability, such

as to mitigate air and ground resonance. While simple and reliable elastomeric

dampers have proven efficient for damping augmentation in helicopter rotors,

they show strong nonlinearity in amplitude, frequency and temperature, which

leads to lag damping degradation under adverse conditions. On the other hand,

an MR damper can augment lag mode damping during specific flight conditions

by the application of a controllable magnetic field. Therefore, a linear stroke

MRFE damper was studied to demonstrate the feasibility of augmenting lag

damping with little stiffness variation.

As a retrofit of a baseline elastomeric lag damper, a preliminary linear stroke

MRFE damper was designed and experimentally evaluated. It was shown that

the MR component in the MRFE damper could provide most damping while the

elastomeric component provided stiffness and some passive damping. The Field-

OFF MRFE damper behaves similarly to the baseline elastomeric damper. As

the current is applied to the MR component, the damping of the MRFE damper

can be varied dramatically (loss factor was increased from the baseline value of

0.3 to 0.5), and meanwhile the effective stiffness is not changed substantially
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by the application of field. The MRFE damping performance and controllabil-

ity were well predicted using equivalent damping analysis. Compared with the

baseline elastomeric damper, the MRFE damper demonstrates similar amplitude

dependence and stronger frequency dependence characteristics.

To describe the nonlinear hysteresis behavior of the MRFE damper, a damper

model was developed based on the modeling methods developed for elastomeric

and MR damper, respectively. The model structure is a linear superposition of

both elastomer and MR model since the elastomeric and MR component in the

MRFE damper are not coupled. The fidelity of the MRFE model was justified

by the good correlation with experimental single and dual frequency test data.

Since the proposed model is a time domain model, it also can be used to predict

damper behavior under quasi-steady or complex dynamic loading conditions.

Because the relationship between model parameters and the applied current is

known, the damper model can predict the behavior of the MRFE damper when

subjected to a continuously controlled magnetic field.
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Figure 5.1: Schematic of MRFE Damper

Figure 5.2: MRFE Damper Experimental Setup
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Table 5.1: Dual Frequency Test Matrix

5Hz\7.5Hz 0.25 mm 0.50 mm 0.75 mm

0.25 mm x x x

0.50 mm x x

0.75 mm x
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Figure 5.3: Typical Hysteresis Cycles of the Baseline Damper for Varying Dis-

placements
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Figure 5.4: Linear Characterization of the Baseline Damper
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Figure 5.5: Hysteresis of the MRFE Damper

163



Figure 5.6: Linear Characterization of MRFE Damper at Single Frequency
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Figure 5.7: Linear Characterization of MRFE Damper at Different Frequencies
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(a) Field-OFF (0.0 A) MRFE Damper

(b) Field-ON (0.6 A) MRFE Damper

Figure 5.8: Dual Frequency Characterization
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Figure 5.9: Dual Frequency Hysteresis

167



Figure 5.10: Empirical Relationship between Yield Stress and Current

Figure 5.11: Empirical Relationship between Yield Force and Current
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Figure 5.12: MRFE Equivalent Damping Prediction

Figure 5.13: Dual Frequency Equivalent Damping

169



Figure 5.14: Semi-active MR Damping Power Characteristics
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(a) Slide Function

(b) MRFE Mechanical Model

Figure 5.15: MRFE Model Structure
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Table 5.2: Model Parameters

Parameter Elastomer MR valve

F ∗/N(Newton) 851 Figure 5.16(a)

k/K(N/mm) 4635 Figure 5.16(b)

vr(mm/s) 15 50

p 7 7

C0(Nmm/s) 0.25

k0(N/mm) 2550
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(a) Yield Force

(b) Preyield Stiffness

Figure 5.16: Field Dependent N and K
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(a) Field-OFF (0.0 A)

(b) Field-ON (0.4 A)

Figure 5.17: Force-Displacement Hysteresis Modeling at 2.5 Hz, Four Amplitude

Cases: 0.25, 0.50, 0.75 and 1 mm
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(a) Field-OFF (0.0 A)

(b) Field-ON (0.4 A)

Figure 5.18: Force-Displacement Hysteresis Modeling at 5.0 Hz, Four Amplitude

Cases: 0.25, 0.50, 0.75 and 1 mm
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(a) Field-OFF (0.0 A)

(b) Field-ON (0.4 A)

Figure 5.19: Force-Displacement Hysteresis Modeling at 7.5 Hz, Four Amplitude

Cases: 0.25, 0.50, 0.75 and 1 mm
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(a) Alag=0.25 mm,A1=0.50 mm

(b) Alag=0.50 mm,A1=0.50 mm

Figure 5.20: Field-OFF (0.0 A) Dual Frequency Modeling
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(a) Alag=0.25 mm,A1=0.50 mm

(b) Alag=0.50 mm,A1=0.50 mm

Figure 5.21: Field-ON (0.4 A) Dual Frequency Modeling
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(a) Field-OFF (0.0 A)

(b) Field-ON (0.6A)

Figure 5.22: Dual Frequency Modeling: Alag=0.25 mm,A1=0.75 mm
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Chapter 6

Summary and Conclusions

This research focused on the development of semi-active MRFE damper tech-

nology, in which two goals were accomplished including MRFE damper exper-

imental evaluation and modeling of damper response. First, MRFE damper

configurations and design parameters were explored to evaluate the feasibility of

an MRFE damper in lag damping augmentation, and the experimental result of

the prototype MRFE damper demonstrated that the MRFE damper could pro-

vide fail safe lag damping, control of single frequency damping loss and control

of dual frequency damping loss. The specific contributions in developing and

evaluating MRFE dampers are:

1. Design and fabrication of a concentric bearing type magnetorheological

fluid and elastic damper especially in parameter studies to identify key

design parameters that affect MRFE damper performance.

2. Experimental evaluation of the MRFE damper and damping augmentation

investigation on the MRFE damper activated by a continuously variable

magnetic field.
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3. Exploration of the feasibility of the MRFE technology in different lag

damper configurations.

Second, characterization of elastomeric materials and MR fluids were con-

ducted extensively, and new modeling strategies for elastomeric and MR dampers

were developed to provide significant improvements over prior modeling efforts

in describing amplitude and frequency dependent behavior demonstrated by the

elastomer and MR damper. Using these models, modeling of response to sinu-

soidal loadings was conducted for MR dampers, elastomeric dampers and MRFE

dampers, respectively. The detailed modeling contributions are:

1. Development of a distributed elasto-slide elastomer model to describe non-

linear triboelastic behavior demonstrated by elastomers. This time do-

main model is developed based on physical damping mechanisms of the

elastomer. Using a simpler model structure and constant damper param-

eters, the damper model can describe amplitude and frequency dependent

behavior of the elastomer or elastomeric dampers.

2. Investigation of behavior of an elastomeric damper under slowly varying

loading conditions using the new modeling approach and experimental re-

sults.

3. Development of a rate-dependent elasto-slide MR model, in which the

model parameters are amplitude and frequency independent which is unique

compared with the other existing models.

4. Development of an MRFE damper model based on the elastomeric and

MR model.
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Specifically, this research can be summarized according to the following: ma-

terial characterization and modeling, MRFE damper design and analysis, and

MRFE damper characterization and modeling. The following conclusion sections

are arranged in this order.

6.1 MR Damper Modeling

A rate-dependent elasto-slide (RDES) model for a linear stroke MR damper

was developed. The MR damping mechanism was developed using the Bingham

model of MR fluids and the parallel plate assumption. The relationship between

model parameters and damper mechanisms was studied. The model parameters

were determined using identified virtual loading curves from force-displacement

and force-velocity hysteresis data. A stable numerical method was chosen to pre-

dict the model response under various loading conditions. The predicted forced

response correlated very well with the single and dual frequency experimental

results. Significantly, the nonlinear amplitude dependent behavior of the MR

damper was described by this six constant parameter model. The RDES model

can be used in a variety of applications such as initial or forced response analysis

of the system using MR dampers and a wide range of proposed control strategies

dealing with the MR damper.

In conclusion, the rate-dependent elasto-slide model is a physically motivated

time domain model. It captures the nonlinearity of the MR damper using a

simple model structure. The model parameters are predictable using MR fluids

and damper geometry data, and can be easily identified using dynamic steady-

state data. The ability of the RDES model in predicting dynamic response is
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also justified.

6.2 Elastomer Modeling

Modeling methods for elastomeric material behavior in simple shear were in-

vestigated. Most prior models introduced nonlinear terms into the conventional

Kelvin model or Zener model. As filled elastomers are anelastic materials, fric-

tion damping mechanism has proven useful to model rate-independent damping.

Nonlinearity in elastomeric materials was manifested in two ways. First, the

forced response of an elastomer is nonlinear which means the response cannot

be predicted by linear differential and integral equations. The other is that the

stiffness and damping of elastomers are not constant with varying amplitudes

and frequencies. While some models capture the amplitude dependent complex

moduli very well using constant parameters, they cannot predict stress-strain

hysteresis accurately. On the other hand, existing hysteresis models that can

predict stress time histories well require parameters that are usually amplitude

and frequency dependent, that is, these models require amplitude and frequency

as prior information when these models are implemented.

Developed from a hysteresis modeling method, a distributed rate-dependent

elasto-slide elastomeric model was used to describe the amplitude dependent

characteristics of an elastomer. This physically motivated damper model resem-

bles the behavior of filler structures in an elastomer under loading. The method

to determine the model parameters was presented. It was found that a unique

exponential function can be used to describe the yield force distribution for elas-

tomers. Numerical algorithms were developed for model applications. Dynamic
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tests conducted on an elastomeric specimen and an elastomeric lag damper were

used to evaluate the modeling method. The fidelity of the model was verified

by the good correlation between predicted force-deflection hysteresis and the

experimental results except that the damping over lower amplitude range can

not be fully predicted by the model. Since the proposed model is a time do-

main model, the adaptability of the model in predicting damper response under

complex loading was evaluated. The predicted force response for slowly vary-

ing amplitude loading correlated quite well with the corresponding experimental

data. Finally, a single degree of freedom system was used to study the influence

of the elastomeric damper on the blade lag motion. The transient response and

limit cycle oscillations were simulated by the model.

In conclusion, the distribute rate-dependent elasto-slide elastomeric damper

model is a time-domain modeling approach to capture nonlinear behavior of

the elastomer. The damper model can easily be implemented into the dynamic

systems. Since the model is physically motivated, the flexibility in determining

the distribution function provides a potential to improve the model performance

especially in small amplitude range.

6.3 MRFE Damper Design and Analysis

To develop an MRFE damper, equivalent damping analysis was conducted

based on MR fluid flow motion model and a quasi-steady damping analysis.

The quasi-steady damping analysis was conducted for flow mode MR dampers

with an approximate parallel plate assumption. Using idealized Bingham plastic

model to characterize the MR fluid behavior, the damping control capacity un-
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der different fields control can be predicted on any different sized dampers. The

effect of the magnetic circuit and passive flow path on the quasi-steady damp-

ing was also evaluated. On the other hand, as a damping objective is required,

design constraints for the MRFE damper were established based on the equiv-

alent damping analysis, and three geometry constraints were developed as the

directives for MRFE damper design.

6.4 MRFE Damper Development and Model-

ing

A prototype linear stroke MRFE damper was developed. An MRFE damper

setup was designed and tested on the MTS machine. Damper forces under si-

nusoidal displacement loading were measured with different amplitudes. The

magnetic field applied to the MR component was varied with different currents.

Complex modulus and equivalent viscous damping were used to evaluate the

damper characteristics. As shown in the experimental result of the linear stroke

MRFE damper, the MR component in the MRFE damper can provide substan-

tial damping augmentation and control range while the geometry and loading

conditions are compatible with the baseline damper. The Field-OFF MRFE

damper behaves similarly to the baseline elastomeric damper. As the current is

applied to the MR component, the damping of the MRFE damper can be varied

dramatically (loss factor was increased from the baseline value of 0.3 to 0.5), and

meanwhile the effective stiffness is not changed substantially by the application

of field. Compared with the baseline damper, the MRFE damper demonstrates

similar amplitude dependence and stronger frequency dependence.
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An MRFE modeling method was described. Model parameters of both elas-

tomeric and MR components in the MRFE damper were determined using force-

displacement hysteresis data. The MRFE damper model hysteresis behavior was

constructed by linear superposition of both components. The modeling results

correlated well with experimental results.

6.5 Future Work

6.5.1 Future MR and Elastomeric Model

In this study, the rate-dependent elasto-slide element has shown great promise

in terms of modeling elastomeric and MR damper behavior. Both rate-dependent

elasto-slide MR model and distributed elasto-slide elastomer model can well cap-

ture the hysteresis behavior of the elastomeric and MR damper over a moderate

amplitude range. However, the capability of the model over a broad frequency

range, and for different scaled dampers, has not been studied. To further eval-

uate the model performance and then improve the model, three future tasks

should be undertaken.

1. Since the MRFE damper model should be used to predict damper be-

havior from wind tunnel rotor speed condition to full scale rotor speed

condition, the validity of the model over a broad frequency range should

be evaluated. Thus, high frequency (i.e. 10-30 Hz) sinusoidal displace-

ment loadings should be applied to the MR and elastomeric damper, and

the experimental data should be compared with modeling results.

2. Since future MRFE dampers vary in size and performance according to
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different rotor hub requirements, the variation of the model parameters

with the damper scale should be studied such that the damper model can be

used to predict the behavior of the damper at any scale or configuration. In

addition, although only a one-dimensional elastomeric model is described

in this thesis, the distributed elasto-slide model can also be extended into

a three-dimensional form such that it can be implemented easily into a

finite element analysis for a complex elastomeric damper formation.

3. Several MR modeling efforts have proven to be successful in describing

nonlinear behavior of the MR damper. To asses inherent characteristics

and performance of the rate-dependent elasto-slide MR model, this model

could be compared with the hydro-mechanical model developed by Hong

et al [47]. In this way, the model parameters of the RDES model could be

correlated with the damper parameters of the hydro-mechanical model.

6.5.2 Future Development of the MRFE Damper

Though the preliminary semi-active MRFE damper has shown great promise

for helicopter lag damping augmentation, significant challenges remain to im-

plement the MagnetoRheological Fluid-Elastic (MRFE) system on a full-scale

rotor system. A key element of the future work is to refine and ruggedize the

damper for operation at high centrifugal loading conditions and wide operating

temperature ranges (−40◦F to 200◦F ). Additionally, the MRFE damper must

be configured to operate in fail-safe mode by behaving as a passive element in

the event of power loss or MRF failure. The passive damping of the elastomeric

and magnetorheological damper components will be designed to meet a baseline
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damping requirement to ensure rotor stability. The existing prototype damper

design will be scaled up to meet the damping requirements of a full-scale rotor

system (such as Boeing MD-500). Finally, to evaluate the performance of the

MRFE damper for helicopter stability augmentation, the damper model need

to be incorporated into the rotor dynamics analysis codes, and the effect of the

adaptable MRFE damping on the helicopter stability need to be evaluated in

the future. Lag damping control strategy is also required. In general, the fu-

ture work of the MRFE damper can be summarized in three major efforts, i.e.

damper refinement, full-scale damper development and ground/air resonance

analysis using MRFE damper model.

Damper Refinement

Based upon the databases and analyses of magnetorheological (MR) fluids

and dampers, as well as the extensive database of elastomeric material properties,

damper refinement together with a comprehensive design analysis needs to be

conducted to meet the operating conditions for a helicopter lead-lag damper.

Systems parameters such as magnetic field dependent MR fluid yield stress and

post-yield viscosity, MRFE damper geometry, mechanical characteristics, and

power and control electronics will be examined to the first order. Refinement

will be made to the analysis in parallel as the MRFE damper is prototyped,

tested, and refined. In detail, the damper refinement includes:

1. Formulate comprehensive MRFE design tool based on full-scale rotor re-

quirements

2. Exploit commercial off-the-shelf MR fluids and elastomeric bearings
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3. Develop MRFE damper current control and feedback control system

4. Maximize device efficiency through minimization of frictional losses

5. Improve reliability by utilizing few or no moving parts (no dynamic seal)

6. Prototype laboratory devices and control electronics for systems evaluation

and validation

7. Conduct single and dual frequency sinusoidal excitation tests in vacuum

chamber and wind tunnel to assess system performance/validate design

tools

8. Assessment of long term behavior fatigue, erosion of internal parts, tem-

perature dependence

Full-scale MRFE Lag Damper Development

Based on the performance evaluation conducted on the prototype MRFE

damper, full-scale MRFE lag damper can be further developed to be incorporated

in a specific helicopter. Necessary refinements such as component replacement,

part redesign, and possible ruggedization of high-wear components, must be

undertaken to ensure that the MRFE damper can be integrated and fielded with

an advanced bearingless rotor. The potential for single and dual frequency semi-

active damping control of the MRFE damper can be investigated in hover stand.

Additional empirical testing of the MRFE lag damper bearing will be conducted

to establish the performance of the semi-active or controllable damper under

single (lag/rev) and dual frequency (lag/rev plus 1/rev) excitation.
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Full-scale Comprehensive Analysis for Ground Resonance utilizing

MRFE damper

The MRFE model has been used to model hysteretic behavior of the pro-

totype MRFE damper with good success. Thus, it would be useful to include

the MRFE model in a comprehensive rotor analysis and investigate the effects

of the MRFE damper on the rotor dynamics. Ground/air resonance modeling

needs to be examined utilizing refined damper model and semi-active damping

control algorithms.
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